General
echnical Information

Mass Storage

LIMITED WARRANTY

Corvus warrants its hardware products against defects in materials and
workmanship for a period of 180 days from the date of purchase from
any authorized Corvus Systems dealer. If Corvus receives notice of
such defects during the warranty period, Corvus will, at its option,
either repair or replace the hardware products which prove to be
defective. Repairs will be performed and defective parts replaced
with either new or reconditioned parts.

Corvus software and firmware products which are designed by Corvus for
use with a hardware product, when properly installed on that hardware
product, are warranted not to fail to execute their programming
instructions due to defects in materials and workmanship for a period
of 180 days. If Corvus receives notice of such defects during the
warranty period, Corvus does not warrant that the operation of the
software, firmware or hardware shall be uninterrupted or error free.

Limited Warranty service may be obtained by delivering the product
during the 180 day warranty period to Corvus Systems with proof of
purchase date. YOU MUST CONTACT CORVUS CUSTOMER SERVICE TO OBTAIN A
"RETURN AUTHORIZATION CODE" PRIOR TO RETURNING THE PRODUCT. THE RAC
(RETURN AUTHORIZATION CODE) NUMBER ISSUED BY CORVUS CUSTOMER SERVICE
MUST APPEAR ON THE EXTERIOR OF THE SHIPPING CONTAINER. ONLY ORIGINAL
OR EQUIVALENT SHIPPING MATERIALS MUST BE USED. If this product is
delivered by mail, you agree to insure the product or assume the risk
of loss or damage in transit, to prepay shipping charges to the
warranty service location and to use the original shipping container.
Contact Corvus Systems or write to Corvus Customer Service, 2100
Corvus Drive, San Jose, CA, 95124 prior to shipping equipment.

ALL EXPRESS AND IMPLIED WARRANTIES FOR THIS PRODUCT, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
ARE LIMITED IN DURATION TO A PERIOD OF 180 DAYS FROM DATE OF PURCHASE,
AND NO WARRANTIES, WHETHER EXPRESS OR IMPLIED, WILL APPLY AFTER THIS
PERIOD. SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED
WARRANTY LASTS, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

IF THIS PRODUCT IS NOT IN GOOD WORKING ORDER AS WARRANTED ABOVE, YOUR
SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED ABOVE. 1IN NO
EVENT WILL CORVUS SYSTEMS BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING
ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE SUCH PRODUCT,
EVEN IF CORVUS SYSTEMS OR AN AUTHORIZED CORVUS SYSTEMS DEALER HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY
OTHER PARTY.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS, SO THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE
OTHER RIGHTS WHICH MAY VARY FROM STATE TO STATE.

CORVUS MASS STORAGE SYSTEMS
GENERAL TECHNICAL INFORMATION

Part Number: 7100-05945-01
Release Date: October 1984
Revision: A

Mass Storage Systems GTI Table of Contents

TABLE OF
CONTENTS

LiStOf Figures 0 0 e s e0 0 et s es 00 seecssssoosscessssosrecesssescssssee X
Scope .oooooa.oo-coQlO.Qoo.l.ouoooooootlo.ooooo.-noolot.l.o.n-ox

Conventions ® 0 0 0 0 0 0 0 00 C P 00 s S S O OGO P GO S O T 8 T O S LS GO0 0SSO S S e 0o Vi

Chapter 1: Controller Functionscsoceseecsessssscssnseses 1
Read-Write COMMANAS ...ccceeesnsecsacsscsascssssnssssssscsess B
Logical Sector Address Decodingeeveceevecscscsasansasses 11
Write Verify Option ..iiiiieeeeeeeencsnoecocosonnssonnsnnnes 12
Fast Tracks (BanNK) ceeeeeescencesscssssascsssssaseascssssssssss 12
SEemMapPhOYeS «.ciceccccssscccsosssansssassasssssncsssssssssascssss 14

Implementation Details For Semaphoresceeececeeeese 18
Performance Considerations When Using Semaphores 19
PiP@S titetesssesesessssssscssssssscsssassssssncsssasssssss 20
Implementation Details FOr PipeS ..i.cveeteccossccsnceses 29
Individual Pipe Disk Space Allocationccveeeveences 32
Performance Considerations When Using Pipes ...cceceeeee. 33
Active user tablec.vetetaceccnensesssscrcsassacssssnass 34

Implementation Details For The
Active User Tableeeeeeececscsnsssscssosssssnsssossss 41

Booting ® & 0 6 ¢ & 0 & 0 0 O 0 O O S P e A B O SO S 9 e 0SS TSN LT LSS OSSP SSe S PE SN 42
Implementation Details For Boot Commandsccecees.. 44

Drive Parameters ® © 0 @ 6 0 0 ¢ 8 0 2 0 0 8 0 0 0 S 00O A OO T OSSOSO LOEOLEEOLEOCETOCE 45

Corvus Systemns iii

Mass Storage Systems GTI Table of Contents

Parking The HeadsS ..:ccsesescessscesesasssssssssssccscnsees 48
Changing Bank Tapes Or Powering Off The BankKseceeceeee. 49
Checking Drive Interface ...iceeeceeeeocssccsscssscoscceaes 49
Prep MOAE@ .iicceeeeeseeccccosossoossssascssssssssancessssss 50
Format Driveiceeeeeeeeeecesesnsssncssssssasesssasanses 52
Format Tape (Bank) ..ceceeececsssccossasscsoossssssssscances 54
Media Verify (CRC) .coesveeocsescsessssasssssssssossesssesees 56
Track SPAring teeeeeseessssessessossesssssssssssssssssssecsss 60
Physical Versus lLogical AAAresSSing ...ceeseecessccesccenasss 61
INnterleave ...ceeeecesecsccsoscesscosossssccscsosssssssccscccces 64
Read-Write Firmware AYe€aceeseeseescscsssssssscssssscs 65
Virtual Drive Table (Rev B/H Drives) ...ceeeescecscesscscess 68

Constellation ParametersSc.cceeceecececcccccccscscscsace 69

Chapter 2: Omninet ProtoColsS ...iceeseescossscosossscssssaasss 73
Constellation Disk Server ProtoColsccecececescccesss 76
Sending A Short Command ..c..oseesessesccsscssessnssnssse 77
Sending A Long COmMMANd +.cesecesecssssssecssssssossssocsses 80

0ld Disk Server ProtoCOlSieeseesecscsesesccscsencsasss 87
‘New Disk Server ProtoColsceveeveenenecececaceneeess 93
Constellation Name LooKup ProtoCOlsS ..:.cceseesecsocsccssess 102

Activeusertable © © 0 0 0 0 0 0 0 0600006000000 060600000 0000000 000000 lll

Chapter 3: Outline Of A Disk Driverccecececececcccees 113
Omninet ..'......Q'.‘..‘.l...........O'..........‘...'..ll. 114

01ld Disk Server ProtoCOlS ..cceceeceoossooscscsscsscscsasseces 118

Corvus Systems iv

Mass Storage Systems GTI

Table of Contents

New Disk Server ProtoCOlSeeeseecececoesossssconssansnaes

Flat cable

Chapter 4:

Chapter 5:

® © @ 0 0 8 0 0 © 9 9 S S L O 0L LSO E PG L LT e S A S PO T O 000 OO0 o

Sending Other Disk CommManNds ..esceesssccccccsasss

Semaphores L R A R I R N N A IR A B N B A N R I L B I T B I I I BN I)

volume Sharing L I I N R N N A A A I B R B B BN NI B S B I B I I I I I I

Volume Locking ...

® 5 5 0 8 0 0 0 0 0 0 0 0LV P EOE LSOO 000 N0 0000

File or Record Locking ® 6 6 0 8 6 0 5060 060 ¢ 0 00 08 S T EE e e OO0

Chapter 6: USinNg PiPeS .veeeseessteersossssooasossssssssssssnas

A Simple SpOOler ® 0 8 8 0 6 00 0 5 © 0 00 0 S e P S E T LSS OO L 0000000

Using Pipes to Send MeSSAgEeS sveseesverosesscesaosssascnses

The COrvuS spOO]. Program L I N I I I O N N B B I R I I B BN B R I B N A)

Appendix A:

Device Specific Informationcoeeecennccnens

Rev B/H Drives ® 5 0 0 0 92 0 0 0 00 000006000 000000 00000000000 0000000

Rev B Hardware Descriptionccececeencesecccosscncs

Rev
Rev
Rev
Rev
Rev
Rev
Rev

Rev

B

8

fa J < < o H v N+ B ¢

Fimware And Prom COde ®© 6 6 ¢ 0 s 0 00 020080 000 e 0o

Firmware Layout © 06 0 06 0 6 0 0600 0 0 3 00 e Ve O e 0000000

Parameters ® 6 0 0 2 6 0 00 0 5 P O 0 O G SO0 0L NGO R0 e 8000 o0

Front Panel LED's And Switchesceceeeecccncns

DIP Switches

€ 8. 6 0 0 ¢ 0 0 0 0 0 000 0 02 0 0L E 000G e 0 00000

Parameters ...'..'l........i....'.tl.......0""..

Front Panel LED's And Switches ...ceeveeecccccccs

DIP Switches

® ®@ @ & 8 0 0 6 06 8 00 C ¢ 0 0 C L 0 0000000000 o0

Disk Flat Cable INterfacCe ...cceescecnscsosccccosanssascs

Cable timing

2 9 0 @ 9 6 8 0 0 6 0 0 @ 0 0 0 0 S 0 0 P 0 S OO LS OB 00000 G 0000

Cable Connector Description ...ceieeececiectiecnceecencnne

Corvus Systems

129

145

149

167
168
169

172

181
185
186

187

193
194
194
194
195
197
197
199
200
200
201
202
203

205

Mass Storage Systems GTI

OmniDriVe ®© © 0 00 00 0 0006060000 00000000 00

omniDrive Hardware Description ..

omniDrive Firmware And Prom Code

omniDrive Firmware Layout

OmniDrive Parameters

® e 0o 00006000 00

OmniDrive Front Panel LED's ...

OonmniDrive DIP Switches

The Bank ® 06 0 06 0060000806000 0000000000000

The Bank Hardware Description ...

The Bank Firmware And Prom Code

The Bank Firmware Layout

The Bank Parameters .c.ccceeeoeee

The Bank Front Panel LED's

Appendix B:

TableS ceeeeeeesccccnccses

Constellation Device TypesS .ceecs..

.

e o

Constellation Boot Number Assignments

Summary Of Disk Commands In Numerical

Return Codes For Rev B/H Drives

Return Codes for OmniDrive/Bank

Active User Table errors

Boot Command €rrorS eeceeceoccceccs

Pipe statescc000nens
Pipe errors ...esoeeeeess
Semaphore states

Semaphore errors

Corvus Systems

Order

Table

® s 0 0 0

of

Contents

cees 205
cee. 205
ese. 206
eees 207
cees 209
eeee 210
cees 211
.;.. 212
ceee 212
eees 213
eeees 214
eees 218

e o 0o 0 218

eees 221
eees 221
eees 223
cees 224
ceee 225
eees 227
csee 227
eees 227
cees 228
cees 228
cees 228

® o o 0 228

Mass Storage Systems GTI Table of Contents

Transporter Result codes ..cieeeeeens

Transporter Command SUMMAYY «cceeeooessccscocssoscsssocsssse
Appendix C: OmniDrive and Rev B/H Drivescceeecesecceces

Appendix D: Transporter CardS ...cesceossecsccoscssssossnccnnss
The Apple II Transporter ..eeeceeeeccesosccssooscosscscssncas
Software Notes ...c.iicieeeresesecesosasnosssescssosssons

The Concept TransSportercscecessessesesssnsssssscsccs

The IBM PC Transportercc..ccceeeses

® ¢ % 5 ® 00 000000000 0 0

RomserViceS ®© 60 0000008 000000000000

€ 9o v s s 0 0 0000000000000

I/O SErViCeS cvveerssosesssossascssssnsssoasssssssssassans
The NC-TransSportercoeececsscssesscsssssscsscssscssssss
The VT=180 TranSpoOrter ...:.ceeeeseseccssssscssccccsssccssa
The Sony Transporterceosceseeessssccssssssssasssascsnse
The Universal Buffered TransSporterececsesesscsccns
The Z-80 Engineering Tranporter ettt eeeteerte et
The IBM PCJr TranSportercc.cesesecesecscsescssasosans
The Z-100 TranSpPoOrLer .:...ceeessesessscsssocsssccsssscsas
The Rainbow Transporterce:seeeececscsscsssssssannnans

INterruptsS ..ccceececcossossscesssssssnssoscssssasscsscrss
LSTI~-1]1 Transporter ...ccoececocccccssssssascsssssccscsssss

Jumpers And SWitChesSceoseessscessesoscsnssscssocsscs

BOOtStrap ccccececcocnccccccsncesosssncsssoscssscncsssaos

Device AdAYEeSS teeeeeessscssssosssssscssoscssssosnsasnss

Programming GUide © 6 2 8 €0 0 0 0 0 0 00 0 0% ° 000000 s OO E SO 0 o

CSR - Control And Status Registercceeeececececs

Corvus Systems

229

229

231

235

235

236

236

237

238

238

241

242

243

243

244

245

245

246

247

248

248

248

248

249

249

Mass Storage Systems GTI Table

CAR - Command Address Registercceceeeeese
Software Notes ® ® 8 0 9 0 0 0 8 0 0 O 0 00O NSO S0 OO 00N O e S 0o
Interrupts ® @ 0 & 6 5 & 0 0 5 0 0 % 0 0 O S 0P O OO S OSSO PP O 0 e 0o

Byte Order ...c.ceeceeececsecccccosscassasaccsassssss

Appendix E: Corvus Flat Cable Interface Cards
Sample Interface Routine FOr 6502coveeeesnes
Sample Interface Routine For 8080/Z80 ...covesosscs
Sample Interface Routine For 8086/8088ceoesess
Entry Points For Apple II ROM .cvveeeessscscscccnss
Entry Points For IBM PC/TI ROM .ccveecsssssassnasnss

Software Developer's Informationiececeecensccccss
MSDOS ¢:evecessscossoassossosssossssoessssssocssssssssss
CP/M 80 Constellation IIcceeeecesceccocncnnnnns
CP/M 86 Constellation II ...ceeeseescncossossnsanns
CP/M 80 (Flat Cable Only) ..cceeeecoccesossoscscccccnss
Apple Pascal Constellation Icciveeeecenncncesas

Apple DOS Constellation I ...viceceescscescnncosanns

Index ® © 0 0 0 06 8 0 0 00 0 00 0 0 0 0 00 0 0 00 00 0000000008 00000000000

Corvus Systems

of Contents

250
250
250

250

253
255
258
275
281
281
283
283
285
285
286
287

287

289

viii

Mass Storage Systems GTI List Of Figures

LIST OF
FIGURES
1.1 Functional list of controller commandsSeseceeecsoses
2.1 Message exchange for disk server protoColeseesscsncs
2.2a Find all disk servers using directed commandscce...
2.2b Find all disk servers using broadcast commands
3.1 Message exchange-for disk server protocol,
showing timeoutscceverseetrsosevesssencesssssenansas
3.2 Flowchart of a short command,
0ld disk server protoColccesiveeerssosorssssscssnnsas
3.3 Flowchart of a long command,
0ld disk server pProtoCOlceseesveseresnssssosseannsnss
3.4 Flowchart of wait for disk server response,
old disk server pProtoCOl .cccssesscscesssccscscsscocsons

3.5 Flowchart of flush, old disk server protocolcceee.

3.6 Flowchart of a short command,
new disk server pProtoCol .c.ieeocecersscrncersvscrsansnnas

3.7 Flowchart of a long command,
new disk server protoCOleoseesscscscsasscessansanss

3.8 Flowchart of wait for disk server response,
new disk server protoCOleeeeseescssosssscscnsassosse

3.9 Flowchart of cancel, restart check,
new disk server protoCOlceeeereerscrtsassoscocccssonns

3.10 Flowchart of flush, new disk server protocolecee.e

3.11 Flat cable command SEQUENCE .:ccesseesosorsssssssscccnsosns
3.12 Flat cable turn around routine seccecssesessrasenssssnes
D.1 LSI-11l Transporter board jumper locationseeceescess

Corvus Systems

3-4
77
103

104

115

121

124

127

128

134

137

141

142
143
146
146

251

ix

Mass Storage Systems GTI Scoupe

SCOPE

This manual describes the command protocols used by Corvus mass
storage systems. It covers the disk commands and the Omninet
protocols used to send those commands. It also describes how to
use the various features provided by the commands. It is meant
to be used in conjunction with the following manuals:

omninet Local Area Network General Technical Information,
Corvus P/N 7100-02040

Constellation Software General Technical Information,
Corvus P/N 7100-05944-01

omninet Protocol Book

CONVENTIONS

Hexadecimal values are suffixed with an h. For example, FFh,
02h.

When not otherwise qualified, a sector is 512 bytes. A block is
always 512 bytes.

All program examples are given in psuedo-Pascal and are not
necessarily syntactically correct. The examples are meant to
serve as guidelines to you in implementing your own programs.

In command and table descriptions, 1sb means least significant

byte or least significant bit, depending on context. Similarly,
msb means most significant byte or most significant bit.

Corvus Systems : X

Mass Storage Systems GTI

The TYPE column used in describing commands, protocols, and

tables has the

Type

BYTE
WORD

FWRD

ADR3
FAD3

DADR

BSTR

NSTR

FLAG

ARRY

Corvus Systems

following meanings:

Meaning

;;-;;;;gned 8 bit value.

An unsigned 16 bit value; msb, lsb format.

An unsigned 16 bit value; 1lsb, msb format:
a byte-flipped WORD.

An unsigned 24 bit value; msb..lsb format.

An unsigned 24 bit value; lsb..msb format;
a byte-flipped ADR3.

A 3-byte field, called Disk address:;
interpretation is shown in Chapter 1, section
titled Logical sector address decoding.

A string of 1 or more characters, padded on the
right with blanks (20h).

A string of 1 or more characters, padded on the
right with NULs (0Oh).

A byte with bits numbered 7..0; msb..lsb format.

An array of 1 or more BYTEs.

Scope

xi

Mass Storage Systems GTI Controller Functions

I
CONTROLLER |
FUNCTIONS | 1
l
I

Corvus currently supports three mass storage devices: the
Revision B/H Series drives, the OmniDrive (TM) mass storage
system, and The Bank (TM) mass storage system. Each of these
devices may be attached to a Corvus network. The Rev B/H drives
may be attached to a Corvus multiplexer, or through a disk server
to an Omninet (TM) local area network. The OmniDrive and The Bank
have built-in Omninet interfaces.

Although these devices- have very different hardware
characteristics, the software interface to each is very similar.

For example, one software disk driver can interface to all these
devices.

This chapter describes the functions supported by Corvus mass
storage devices. Each section describes the function and lists

the relevant commands. Where needed, additional explanatory text
follows.

The commands are described as a string of bytes to be sent to the
device, and a string of bytes that is the expected reply. The

format used to describe commands is shown in the following
example:

Jorvus Systems 1

Mass Storage Systems GTI Controller Functions

Command Name: Read a sector (256 byte sector)

Command Length: 4 bytes
Result Length: 257 bytes
Command

Offset/Len| Type | Description

0o/ 1 | BYTE | command code - 2h
1/ 3 | DADR | sector number
Result

In this example, the command described is the Read a sector
command. As you can see, the command length is 4 bytes, and the
expected result length is 257 bytes. This means that you send 4
bytes to the drive, and expect to receive 257 bytes in reply.
Each field of the command and result is described by its starting
offset in the string of bytes (indexed starting at 0), the length
of the field, and its type. Then a verbal description of the
contents of the field is given.

The first byte of any command is always the command code; the
value of the command code is given in the description column. In
this case, the command code for Read a sector is 2h. Whenever a
field has a fixed value, its value is given in the description
column. ‘

In the case of an error, normally only one byte, the disk result
code, is received. Disk result codes are summarized in Appendix
B.

Chapter 2 describes the Omninet protocols used to send the
commands. Chapter 3 gives examples of sending commands over
Omninet and over flat cable.

Corvus Systens . 2

Mass Storage Systems GTI Controller Functions

Figure 1.1:

(continued on next page ...)

Corvus Systems

Command name Code:Modifier Length Length
Read/Write Commands:
Read Sector (256 bytes) 02h 4 257
Write Sector (256 bytes) 03h 260 1
Read Sector (128 bytes) 12h 4 129
Read Sector (256 bytes) 22h 4 257
Read Sector (512 bytes) 32h 4 513
Read Sector (1024 bytes-Bank) 42h 4 1025
Write Sector (128 bytes) 13h 132 1
Write Sector (256 bytes) 23h 260 1
Write Sector (512 bytes) 33h 516 1
Write Sector (1024 bytes-Bank) 43h 1028 1
Record Write (Bank) 16h 2 1
Semaphore Commands:
Semaphore Lock 0Bh:01h 10 12
Semaphore Unlock OBh:11h 10 12
Semaphore Initialize 1Ah:10h 5 1
Semaphore Status 1Ah:41h 5 257
Pipe Commands:
Pipe Read 1Ah:20h 5 516
Pipe Write 1Ah:21h 517 12
Pipe Close 1Ah:40h 5 12
Pipe Status 1 1Ah:41h 5 513
Pipe Status 2 1Ah:41h 5 513
Pipe Status 0 1Ah:41h 5 1025
Pipe Open Write 1Bh:80h 10 12
Pipe Area Initialize 1Bh:AOh 10 12
Pipe Open Read 1Bh:COh 10 12
Active User Table Commands:
AddActive 34h:03h 18 2
DeleteActiveUsr (Rev B/H) 34h:00h 18 2
DeleteActiveNumber (OmniDrive) 34h:00h 18 2
DeleteActiveUsr (OmniDrive) 34h:01h 18 2
FindActive 34h:05h 18 17
ReadTempBlock C4h 2 513
WriteTempBlock B4h 514 1

Ssummary of Disk Commands by Function

Mass Storage Systems GYI

Command name

Miscellaneous Commands:

Boot

Read Boot Block

Get Drive Parameters
Park heads (Rev H)
Park heads (OmniDrive)
Echo (OmniDrive,Bank)

Put Drive in Prep Mode:
Prep Mode Select
Prep Mode Commands:

Reset Drive

Format Drive (Rev B/H)
Format Drive (OmniDrive)
Fill Drive (OmniDrive)
Format Tape (Bank)
Reformat Track (Bank)
Verify (Rev B/H,OmniDrive)
Non-destructive Verify (Bank)
Destructive Verify (Bank)
Read Corvus Firmware
Write Corvus Firmware

Controller Functions

Command Result
Code:Modifier Length Length

1l4h 2 513
44h 3 513
ioh : 2 129
11h 514 1
80h 1 1
F4h 513 513
1lh 514 1
(0]0) 1 1
0lh 513 1
0lh 1 1
81h 3 1
0lh:01h 8 1
0lh:02h 8 2
07h 1 variable
07h:02h 6 10
07h:01h 6 10
32h 2 513
33h 514 1

Figure 1.1: Summary of Disk Commands by Function (cont.)

Corvus Systems

Mass Storage Systems GTI Read-Write Commands

READ-WRITE COMMANDS

Five sets of read-write commands are supported, each set
specifying a different sector size. Data can be read or written
in sectors of 128 bytes, 256 bytes, 512 bytes, or 1024 bytes.
There are two sets of commands that support 256 byte sectors;
they are identical.

The Rev B/H controller and the OmniDrive controller use a
physical sector size of 512 bytes. When a host sends a write of
a sector size other than 512 bytes to the drive, the controller
first reads the entire physical sector, overlays the written data
onto the appropriate chunk of the physical sector, and then
writes the physical sector. It is therefore recommended that
hosts, where possible, use a write command of 512 bytes to
minimize overhead when writing to the drive.

The Bank physical sector size is 1024 bytes. When a host sends a
write of a sector size other than 1024 bytes to The Bank, the
data is buffered until the whole sector is.received; then the
data is written to the media. If any other commands are received
before this buffer is full, or if another sector is to be written
to, the controller performs as described above; that is, it reads
the whole physical sector, overlays the written data onto the
appropriate chunks of the physical sector, and then writes the
physical sector. It is therefore recommended that hosts, where
possible, use a write command of 1024 bytes to minimize overhead
when writing to The Bank.

The fact that The Bank buffers write commands has one other
ramification: the controller always returns 0 as the disk result
code, indicating a successful write. When it comes time for the
Bank to actually write the sector and an error is encountered, no
error status is reported to the host.

The read function always reads the whole physical sector and
returns the appropriate chunk of data. Unlike the write mode, no

performance penalty is paid when using any particular sector
size.

All of the read-write commands decribed below use a three byte

sector number as the disk address. The interpretation of sector
number (DADR) is described in the next section.

Corvus Systems 5

Mass Storage Systems GTI Read-Write Commands

Command Name: Read a sector (256 byte sector)

Command Length: 4 bytes
Result Length: 257 bytes

Offset/Len| Type | Description

0/ 1 | BYTE | command code - 2h
1/ 3 | DADR | sector number
Result

Command Name: Write a sector (256 byte sector)

Command Length: 260 bytes
Result Length: 1 byte

Offset/Len| Type | Description

Offset/Len| Type | Description

- - D G S P SIS G S S G GID GE I GI IR I S D I SR D GED GNP GES GED GID GEP GNS GEE GED D I GED GEN GED GNP GER GNP I GHD GHS GRS GNP GEP GNP Gl G G GE

0/ 1 | BYTE | disk result

Corvus Systems 6

Mass Storage Systems GTI Read-Write Commands

Command Name: Read a sector (128 byte sector)

Command Length: 4 bytes
Result Length: 129 bytes

Command

Offset/Lenl Type | Description

0/ 1 | BYTE | command code - 12h
1/ 3 | DADR | sector number
Result

Command Name: Write a sector (128 byte sector)

Command Length: 132 bytes
Result Length: 1 byte

Command
Offset/Len| Type | Description

Offset/Len| Type | Description

G - - - W T . - GRS D D G GES G G G G N G GEE D S G R G S W . - . Y - Y. G . G T S G G . W G G W G - — - .

0/ 1 | BYTE | disk result

Cecrvus Systems 7

Mass Storage Systems GTI Read-Write Commands

Command Name: Read a sector (256 byte sector)

Command Length: 4 bytes
Result Length: 257 bytes

0/ 1 | BYTE | command code =- 22h
1/ 3 | DADR | sector number
Result

Command Name: Write a sector (256 byte sector)

Command Length: 260 bytes
Result Length: 1 byte

Command

Corvus Systems ' 8

Mass Storage Systems GTI Read-Write Commands

Command Name: Read a sector (512 byte sector)

Command Length: 4 bytes
Result Length: 513 bytes

Conmand

0/ 1 | BYTE | command code - 32h
1/ 3 | DADR | sector number
Result

Command Name: Write a sector (512 byte sector)

Command Length: 516 bytes
Result Length: 1 byte

Offset/Len| Type | Description

T e W P G G S . IR GID IR I G W D D S R D G IS IR IS I D G GIR GIP SIS G GED G GER GED NG GEB CUP GIN RO SUP SIS GRS EPT W GED GED GED GNS GIN GEP N GNR G GID GIF Em G G

Corvus Systems 9

Mass Storage Systems GTI Read-Write Commands

Command Name: Read a sector (1024 byte sector) (Bank only)

Command Length: 4 bytes

Result Length: 1025 bytes

Command

otfset/Len| Type | Description
0,1 | BYTE | command code - 420
""1,3 | oaoR | sector mumber
Result

Command Name: Write a sector (1024 byte sector) (Bank only)

Command Length: 1028 bytes
Result Length: 1 byte

Command

Corvus Systems 10

Mass Storage Systems GTI Read-Write Commands

LOGICAL SECTOR ADDRESS DECODING

On the Rev B/H drives, the three byte sector number specified in
a read or write command is decoded into a 4-bit drive number and
a 20-bit address. The decoding is described below:

byte 1 byte 2 byte 3
d 1sb msb

Byte 1, upper nibble, is the most significant nibble
of the address.
Byte 1, lower nibble, is the drive number (1 through 15).
Byte 2 is the least significant byte of the address.
Byte 3 is the middle byte of the address.

Thus to write to drive 1, address 02D348h, the host should send
to the controller these bytes:

21h, 48h, D3h

A 20-bit address allows the controller to address approximately 1
million sectors per drive, or 512MB using 512 byte sectors.
Virtual drives can be used to extend the addressing capabilities
of the Rev B/H controller; see the section titled "Virtual Drive
Table" later in this chapter.

For OmniDrive and The Bank, the three byte sector number is
treated as a 24-bit address; all three bytes are used to indicate
the address. The OmniDrive and Bank controllers can thus address
16 times more data than the Rev B/H controller, or approximately
8 gigabytes using 512 byte sectors. The three byte address is
decoded as follows:

byte 1 byte 2 byte 3
d 1sb msb

Byte 1, upper nibble, is bits 17-20 of the address.

Byte 1, lower nibble, is decremented by 1, and becomes
bits 21-24 of the address.

Byte 2 is the least significant byte of the address.

Byte 3 is the middle byte of the address.

Thus to write to an address, say 32D348h, the host should send to
the controller these bytes:

24h, 48h, D3h
The controller flips the nibbles in byte d, subtracts 10h from
the result and uses this value as the most significant byte of

the address. Byte 2 is used as the least significant byte and
byte 3 the middle byte.

Corvus Systems 11

Mass Storage Systems GTI Controller Functions

Note that for addresses of 20 bits or less, the two addressing
schemes are equivalent. For example, to write to drive 1,
address 2D348h, the host sends these bytes:

21h, 48h, D3h

The address specified in the Read-Write commands is a sector
address, where the size of the sector is specified by the
command. For example, to read block 8 of the device, any of the
following commands can be used:

Command string Meaning

02h, 0l1lh, 10h, OOh sector 16 (256-byte sector)

12h, 0lh, 20h, 0Oh sector 32 (128-byte sector)

22h, Olh, 10h, O0Oh sector 16 (256-byte sector)

32h, 0lh, 08h, 0Oh sector 8 (512-byte sector)

42h, 0lh, 04h, 00O sector 4 (1024-byte sector; Bank only)

WRITE VERIFY OPTION

The OmniDrive provides the option of specifying write-verify or
non-write-verify. If the write-verify option is chosen, the
controller, after each write to the media, performs a read
operation of that sector to verify that the sector can be read
with a correct CRC. If the non-write-verify option is specified,
there is no read after write.

The tradeoff is between performance and reliability. The
write-verify costs at least an extra revolution of the disk but
it verifies that the data is recorded properly on the media. The

other provides higher performance without the assurance of data
integrity.

The option is represented by one byte in the firmware area. The
standard firmware release has this byte set to non-write-verify.
The option can be changed using the Corvus diagnostic program.

Rev B/H drives always use write-verify. The Bank always uses
non-write-verify.

FAST TRACKS (BANK ONLY)

A Bank Tape (TM) cartridge can be configured to use fast-track or
non-fast-track mode. In fast-track mode, a read completes much
faster than in non-fast-track mode. However, a write takes much
longer in fast-track mode than in non-fast-track mode. Fast-track
mode is therefore recommended for applications which require

heavy look-up of data, but little or no modification of the data

Corvus Systems 12

Mass Storage Systems GTI Controller Functions

the data.

In fast-track mode, the first 16 tracks of the user data area
(4MB) are redundantly recorded. For a 200MB tape, the controller
records each sector of data 8 times, once on each of 8 tracks;
each succeeding track has the data skewed 1/8 around the tape
loop. For a 100MB tape, the controller records each sector of
data 4 times on 4 tracks; each succeeding track has the data
skewed 1/4 around the tape loop.

When a sector is read, the controller determines where on the
track its head is, and reads from the closest sector. Thus, the
average read access time is 1/8 (or 1/4) that of the
non-fast-track mode.

There are two types of write to the fast tracks area: normal
write and record write. For normal write, the controller updates
all the redundant sectors in one pass. Thus, it takes an entire
revolution to complete one write. For record write, the host can
specify the redundant sector to be written. The sector specified
is used for all succeeding Write commands, until the next Record
Write command is received. This feature allows the host to write
to a whole track, then repeat the process for the redundant
tracks.

To turn record write on or off, use the Record Write command.

Command Name: Turn on Record Write (Bank only)

command Length: 2 bytes
Result Length: 1 byte

Command

- G G G - T N W A G T G (N IR RO D GRS GED 1 S SN D G P D IS GNP S G IS G SN GHD WIS G GEN W e A R G GID GES U G GED I G WS GED G G G

Offset/Len| Type | Description

- G " > B TP W A R GED SR GEN MBS W GED LR FES GRB OV TN GNP NS WIS GRS GHD GE GED R U NS GED GRS GND S R T WSS SN G S GED G S GRS GER GES G GED GED GED GED G GE = =

60/ 1 | BYTE | command code - 16h
1/1 | BYTE | sector number*
Result

Offset/Len| Type | Description

. O G . T W - G S LS D GRS GIP IS D GNE 7 SR G S S GED GED GED GNP GED G WD GEN GED G GH WD G GG W S D CHD GED GER WD GNP GRS GNP NS GHD ED W NN G

0/ 1 | BYTE | disk result

* For a 200MB tape, valid sector numbers are 80h-87h, specifying
sector 0 through 7; for a 100MB tape, valid sector numbers are
80h-83h, specifying sector 0 through 3.

Corvus Systems 13

Mass Storage Systems GTI Read-Write Commands

Command Name: Turn off Record Write (Bank only)

Command Length: 2 bytes
Result Length: 1 byte

Offset/Len| Type | Description

0/ 1 | BYTE | command code - 1l6h
1 /1 | BYTE | 0Oh
Result

Offset/Len| Type | Description

When using normal write, updating 100 sectors requires 100 tape
revolutions, one for each sector write. When updating many
consecutive sectors, it may be faster to use record write. Let's
assume you want to update sectors 100 to 199 on a 200MB tape.

You first issue a Record Write command for redundant sector 0
(80h), and then 100 sector write commands, one for each sector
100 to 199. Depending on the interleaving, this should take only
1 tape revolution. Next you issue a Record Write command for
redundant sector 1 (81h), and then the same 100 sector write
commands. Repeat this sequence for redundant sectors 2 through
7, and you should complete the update in only 8 tape revolutions,
as opposed to the 100 revolutions used in normal write.

SEMAPHORES

Semaphores provide an indivisible test and set operation for use
by application programs. See chapter 5 for examples of how to
use semaphores.

The semaphore commands are listed below:

Semaphore Lock

Semaphore Unlock
Initialize Semaphore Table
Semaphore Status

Any host can, at any time, request to lock a semaphore. If the

specified semaphore is not already locked, the controller locks
the semaphore. If a semaphore is already locked, the application

Corvus Systems 14

Semaphores

program using the semaphores can continue to poll the semaphore
table by resending the Lock command until the desired semaphore
is no longer locked.

The Semaphore Unlock command always unlocks the semaphore.

The status of the semaphore prior to each operation is also
returned to provide for a full test-set or test-clear operation.

A semaphore can be any 8-byte name, except for 8 bytes of 20h
(ASCII space character). There is no limit on the number of

semaphores that may exist in a given application or network:;

however, only 32 semaphores may be locked at any one time (on
each server).

Two semaphores are equivalent only if each character in the name
is exactly the same. For example, semaphore 'CORVUS1ll' is
different than semaphore 'corvusll', which is different than
'Corvusll'. The characters do not have to be printing
characters; eight bytes of 10h (ASCII LF character) is a legal
semaphore name.

OmniDrive and The Bank support a wild card character in semaphore
names. The character 00h (ASCII NUL character) matches any other
character in semaphore lock and unlock operations.

The Initialize Semaphore Table command clears the semaphore
table, which is equivalent to unlocking all the semaphores. The
semaphore table can be initialized by any processor, but this
should only be performed on system~wide initialization or for
recovery from error conditions.

The Semaphore Status command returns the semaphore table, which
can then be examined to see which semaphores are locked.

Zorvus Systems 15

Semaphores

Command Name: Semaphore lock

Command Length: 10 bytes
Result Length: 12 bytes

Command

0/ 1 | BYTE | command code - 0Bh

1 /1 | BYTE | 0O1lh

2/ 8 | ARRY | semaphore name
Result

Corvus Systems 16

Semaphores

Command Name: Semaphore unlock

Command Length: 10 bytes
Result Length: 12 bytes

Command

offset/Len| Type | Description
"0/ 1 | BYIE | command code - 0BM
1,2 yswe | am T
"2/8 | ARRY | semaphore name
Result

offset/Len| Type | Description
0,1 | BYIE | aisk resauit
1,1 | BYIE | semaphore result

- Gr T G D G G G G SID W R D S G G GED G G G WS I W GES GRS W WED NS GES S NEV GES G WS GES GE GED W IS N G G D = G I W G - -

Y G e AT W W - G GED G GED G SR G S G G D W G D D G D GES ST NS R B G G GRS GED U W D G WIS S NS G CER GE W GES GRS GED N GES S GH GES G ww

Command Name: Initialize semaphore table

Command Length: 5 bytes
Result Length: 1 byte

Command

0/ 1 | BYTE | command code - 1lAh

1/1 | BYTE | 10h

2/ 3 | ARRY | don't care - use 00Oh
Result

- D G S - - R D G S D WD G G G G S S O G G G I G G D N SIS SRS R G GED G I GH G G GE SN S SR N D NS W G =
T - CH D G G G D D T D IR G W G D I SE W D G GED SN SID G GED IS S M D N N G G S G SUY WS GED N W E GED GHD G NS G GE GNP G S G G W G -

Corvug Systems 17

Semaphores

Command Name: Semaphore status

Command Length: 5 bytes
Result Length: 257 bytes

Command

Offset/Len| Type | Description

0/ 1 | BYTE | command code - 1lAh

1/1 | BYTE | 41h

2/ 1 | BYTE | 03h

3/ 2 | ARRY | don't care - use 00h
Result

Semaphore results

Value Meaning
0 oh Semaphore Not Set/no error
128 80h Semaphore Set

253 FDh Semaphore table full ;
254 FEh Error on semaphore table read/write
255 FFh Semaphore not found

Implementation Details For Semaphores

The semaphores are implemented using a lookup table containing an
8-byte entry for each of the 32 possible semaphores. A used
entry in the table indicates that the semaphore is locked.

Unused table entries are represented by 8 bytes of 20h (ASCII
space character).

When a Lock command is received, the controller searches the

table for a matching entry. If one is found, a Semaphore Set
status (80h) is returned. Otherwise, the semaphore is written

Corvus Systems 18

Semaphores

over the first empty entry, and a status of Semaphore Not Set (0)
is returned.

When an Unlock command is received, the controller searches the
table for a matching entry. If one is found, it is overwritten
with blanks, and a status of Semaphore Set (80h) is returned.
Otherwise, a status of Semaphore Not Set (0) is returned.

The format of the semaphore table is shown below. See Appendix A
for the location of the semaphore table.

Table layout Entry layout

el bt + byte 0 ==l tmmmmmmmcc e e +
| semaphore #1 | | | 1st byte |
tmmm—— e —— + | +=- -+
| semaphore #2 |[<==========- + | 2nd byte |
tommm e ——— + | +~- -+
I I I I I
= = | = =
I I I I I
L E L L e + I += -+
| semaphore #31| | | 7th byte |
L L L L LT + | +- -+
| semaphore #32| | | 8th byte |
tomm e ——— + byte 255 t=e< tommmccc e ——— +

For Rev B/H drives, the semaphore table is initialized to blanks
only when the firmware is rewritten or when an Initialize
Semaphore Table command is received. For OmniDrives and Banks,
the semaphore table is initialized at power up or when an
Initialize Semaphore Table command is received.

Performance Considerations When Using Semaphores

For Rev B/H drives, a semaphore operation causes 2 disk reads,
and 0 or 1 disk writes. First the semaphore block must be read
from the firmware area. If the Lock or Unlock is successful,
then the semaphore table must be written back to the disk.
Finally, the dispatcher code must be reloaded from the firmware
area.

For OmniDrives and Banks, a semaphore operation causes no disk

I/0, as the semaphore table is maintained in the controller RAM.
The table is not saved when the device is powered off.

Corvus Systems 19

Mass Storage Systems GTI Pipes

PIPES

Pipes provide synchronized access to a reserved area of the disk.
Any computer can use the pipes commands to read or write data to
the pipes area at any time, and not worry about conflicting with
another computer's read or write to the pipes area. See chapter
6 for examples of how to use pipes.

The pipe commands are listed below:

Pipe Open for Write
Pipe Open for Read
Pipe Write

Pipe Read

Pipe Close

Pipe Purge

Pipe Status

Pipe Area Initialize

The pipes area must be initialized before any other pipe commands
are used.

The Pipe Area Initialize command specifies the pipe area starting
block number and the length in number of blocks. Note that the
block size is 512 bytes for the Bank as well as the OmniDrive and
Rev B/H drives. The pipes area must be entirely within the first
32k blocks of the tape or disk; the starting block number plus
the number of blocks must be less than 32k. The Pipe Area
Initialize command does not actually write anything to the pipes
area, other than the pipes tables.

The normal sequence of events in using the pipes area is as
follows:

One host opens the pipe for write. It then uses Pipe Write
commands to write blocks to the pipe. When it has written all
the data, it uses the Pipe Close command to close the pipe.

Later on, either the same host or some other host issues a Pipe
Open for Read command. It uses Pipe Read commands to read data
from the pipe. When done reading, it issues a Pipe Close
command. If the pipe is empty (i.e., all of the data has been
read), it is deleted. 1If data is still remaining, the host can
open the pipe again later to finish reading the data.

Each time a pipe is opened for write, a new pipe is created.
When a Pipe Open for Read command is received, the lowest
numbered closed pipe with the specified name is opened.

The Pipe Purge command can be used to purge any unwanted pipes.
The Pipe Status command is used to view the state of the
internally managed pipe tables.

Corvus Systems - 20

Mass Storage Systems GTI Pipes

Command Name: Pipe Open for Write

Command Length: 10 bytes
Result Length: 12 bytes

/1 | BYTE | command code - 1Bh
1/ 1 | BYTE | 8o0h
2/ 8 | BSTR | pipe name

Result

6/ 1 | BYTE | disk result
1,1 | BYTE | pipe resuit
271 | BYTE | pipe number (1-62)
"3/ 1 | FLAG | pipe state - see below
"4/ 8 | ARRY | unused (no meaning)

Corvus Systems 21

Mass Storage Systems GTI Pipes

Command Name: Pipe Open for Read

Command Length: 10 bytes
Result Length: 12 bytes

Command
otfset/Len| Type | Deseription
"0/ 1 | BYIE | command code - 1BR
1,1 | BYE | con T
""2/8 | BSTR | pipe name
Result

0/ 1 | BYTE | disk result
1,1 | BvrE | pipe resuit
2,1 | BYIE | pipe number (1-e2)
3,1 | FLac | pipe state - see below
"4 /8 | ARRY | unused (no meaning)

Corvus Systems 22

Mass Storage Systems GTI Pipes

Command Name: Pipe Read

Command Length: 5 bytes
Result Length: 516 bytes

Command

- D W D D D I B G D G G G D NS R CHD D G GID TR W S T VIS GER GMD N G CED G R I N N GP M GRS NN W S G GE GED D G I W G G G D W W

0o/ 1 | BYTE | command code - 1lAh

1/ 1 | BYTE | 20h

2/ 1 | BYTE | pipe number

3/ 2 | FWRD | data length - 00h, 02h (512 bytes)
Result

- - S R SR CEL GID UD WIS SN GWR SN EES W GED e GED GES I NS N WS W T G A SIS SN IS GEN WES GER EES WRS GES WS WE WD GEL W G S G G - ——— - — -

0/ i | BYTE | disk result
1/ 1 | BYTE | pipe result
2 /2 ! FWRD | number of bytes read - 00h, 02h (512 bytes)

. G WRS G @ P T G CLD ENS IR N WD CHD GNP GRS GER R GRS WS CHD G MR AR GES GER G D THe S A GNS GED GED GAD GEP GEE GHD N U N GHD N GER GED GHD GHE GHD GED GHD SHR G GEN GE G G

D G S RS P B T e ITH (R GES OND GND D CUR CHS GED GNP GED GMD THR NS (WS @R CHS GED GIX NS GN GNP GED GNE GEP GNP D LS GEM S GO AR SHS GED GID WS GIU GAD GED GED IR GV G I GHD G GE S

Corvus “ystems

23

Mass Storage Systems GTI Pipes

Command Name: Pipe Write

Command Length: 517 bytes

Result Length: 12 bytes

Command

offset/Len| Type | Description T
"0/ 1 | BYIE | command code - 1h
1,1 yBveE | 2mm T
2,1 | BVIE | pipe number
3,2 | FWRD | data length - 00h, 02h (512 bytes)
"5 / 512 | ARRY | data to be written
Result

offset/Len| Type | Description
0,1 | BYIE | aisk resuit
1,1 | BYIE | pipe resuit
"2/ 2 | FWRD | number of bytes written - 00h, 02h (512 bytes)
"4/ 8 | ARRY | unused (no meaning)

Corvus Systems 24

Mass Storage Systems GTI

Command Name:

Command Length:
Result Length:

Command

Pipe Close, Pipe Purge

5 bytes
2 bytes

Pipes

Offset/Len|

Type

FEh - close write
FDh - close read
00h - purge

Offset/Len|

Description

disk result

Corvus Systenms

25

Mass Storage Systems GTI ' Pipes

Command Name: Pipe Status

Command Length: 5 bytes
Result Length: 513 bytes

Command

Offset/Len| Type | Description

"0/ 1 | BYTE | command code - 1ah T
1,1 svte | am T
"2/ 1 | BYIE | oln - Pipe Name table
| | 02h - Pipe Pointer table

"3/ 2 | ARRY | don't care - use 0Oh
Result

offset/Len| Type | Description
0,1 | BYTE | disk result

Corvus Systems 26

Mass Storage Systems GTI Pipes

Command Name: Pipe Status

Command Length: 5 bytes
Result Length: 1025 bytes

Command

- S D NS D S G . R P G ShS G A N G G N TN G D GhS GND G D GER ED T GED G R S G SN G G ESe WS VI G S S GED G D G UH GRS G W N W G GMS GED

0/ 1 | BYTE | command code - 1lAh

1 /1 | BYTE | 41h

2/ 1 | BYTE | OCh

3/ 2 | ARRY | don't care - use 00h
Result

This is the only command which returns more than 530 bytes. 1If
you are using a general purpose command buffer for sending device
commands, you may wish to use the version of the Pipe Status
command which returns either the Pipe Name table or the Pipe
Pointer table, so that you do not have to declare a 1025-byte
buffer.

Corvus Systems 27

Mass Storage Systems GTI Pipes

Command Name: Pipe Area Initialize

Command Length: 10 bytes
Result Length: 2 bytes

Command

Offset/Len| Type | Description

0/ 1 | BYTE | command code - 1Bh
1,1 | evE | aon
2,2 | FWRD | starting block number
"4/ 2 | FWRD | length in blocks
"6,/ 4 | ARRY | don't care - use ooh
Result

Starting block number + Length in blocks must be less than 32k.

Pipe state flag (returned on Pipe Open)

Bit # Meaning

bit 7 l=contains data / O=empty
bit 1 l=open for read

bit 0 l=open for write

Value Meaning

0 O00h No error.

8 08h Tried to read an empty pipe.

9 0%h Pipe not open for read or write.
10 0Ah Tried to write to a full pipe.
11 O0Bh Tried to open an open pipe.

12 o0cCh Pipe does not exist.

13 oDbh Pipe buffer full.

14 OEh Illegal pipe command.

15 OFh Pipes area not initialized.

Corvus Systens 28

Mass Storage Systems GTI Pipes

Implementation Details For Pipes

Internally, the pipes area is managed by two tables: a Pipe Name
Table and a Pipe Pointer Table. These tables are stored in
different areas on the various disk devices; see Appendix A. The
host can retrieve these tables by sending a Pipe Status command.

The Pipe Name Table contains 64 entries of 8 bytes each. The
first and last names in the table are reserved for system use.
The first name is WOOFWOOF and the last name is FOOWFOOW. An
entry of all blanks (20h) indicates an unused entry.

The format of the Pipe Name Table is shown below:

tom——— e + byte 0
pipe number 0 | WOOFWOOF |

Frmmmmm—————— + byte 8
pipe number 1 | |
pipe number 62| |

tom—m e + byte 504
pipe number 63| FOOWFOOW |

D LT +

The Pipe Pointer Table also contains space for 64 entries of 8
bytes each, each entry being formatted as shown below:

Rev B/H OmniDrive/Bank

tommm e + Rt +
| pipe number | byte 0 | pipe number |
T + R L L LR P T +
| starting (msb) | byte 1 | starting (0) |
+- -+ +- -+
| byte [| block (msb) |
+- -+ +- -+
| address (1sb) | | address (1sb) |
e + Rt e +
| ending (msb) | byte 4 | ending (0) |
+=- -+ += -+
| byte | | block (msb) |
+= -+ += -+
| address (1sb) | | address (1sb) |
T et + e +
| pipe state | byte 7 | pipe state |
tommm e + R e +

While the format of the Pipe Pointer table on the disk is
different for the Rev B/H drives than it is for OmniDrive and
Bank, the table returned by the Pipe Status command always has

Corvus Systems 29

Mass Storage Systems GTI Pipes

the Rev B/H format. That is, the OmniDrive and Bank convert the
disk format to the Rev B/H format for the Pipe Status command.

Pipe number (byte 0) is an index into the Pipe Name Table. A
pipe number of 0 indicates the first entry in the Pipe Name
Table, and a pipe number of 63 indicates the last entry in the
Pipe Name table.

Entries in the Pipe Pointer Table are ordered by starting
address. Unlike the Pipe Name table, where unused entries are
interspersed with used entries, all of the unused entries in the
Pipe Pointer table occur at the end of the table. The entry with
pipe number 63 marks the end of the used entries.

For the Rev B/H drives, the starting and ending byte addresses
are absolute disk byte addresses. Each should be divided by 512
to get an absolute block address.

The Pipe State is a flag which is interpreted as shown below:

bit # Meaning

bit 7 l=contains data / O=empty
bit 1 l=open for read

bit © l=open for write

The first entry in the Pipe Pointer Table always looks like the
following, which corresponds to the WOOFWOOF entry in the Pipe
Name Table:

Rev B/H OmniDrive/Bank

e L L T e + R et e +
| pipe number = 0 | byte O | pipe number = 0 |
tomm—————— —————————— + tommm e +
| starting byte | byte 1 | starting block |
+= -+ +- -+
| address of pipes | | address of pipes |
+- -+ += -+
| area | | area |
Rt ittt + e +
| starting byte | byte 4 | same as bytes |
+=- + +- +
| address of pipes | | 1 through 3

+=- -+ +=- -+
| area + 1024 | | : |
T e + R ettt +
| pipe state = 80h | byte 7 | pipe state = 80h |
tm———— ———————————— -+ e et +

Corvus Systems 30

Mass Storage Systems GTI Pipes

The last entry in the Pipe Pointer Table always looks like the
following, which corresponds to the FOOWFOOW entry in the Pipe
Name Table):

Rev B/H OmniDrive/Bank

T + R ettt +
| pipe number = 63 | byte 0 | pipe number = 63 |
e ——-————--——— + - —————-—— +
| ending byte | byte 1 | ending block |
+= -+ +=~ -+
| address of pipes | | address of pipes |
+- -+ +=- -+
| area | | area |
o o e e o e e 2 e + e r e e ——————— +
| same as bytes | byte 4 | same as bytes |
+- + += +
| 1 through 3 | | 1 through 3 |
+- -+ +- ' -+
| I I l
o 2 s + o —————————————— +
| pipe state = 80h | byte 7 | pipe state = 80h |
o e + Rt +

Whenever a Pipe Area Initialize command is received, the pipes
tables are initialized with the entries for pipes 0 and 63 shown
above, and all other entries unused. The pipes area can be
deleted by rewriting the firmware.

Corvus Systens 31

Mass Storage Systems GTI Pipes

The following example shows a typical state of the pipe tables.
It shows 3 existing pipes, two called PRINTER and one called
FASTLP.

Pipe Pointer table offset Pipe Name table
tomm—————— ———————————— + fommmme e +
| entry for pipe 0 | 0 | WOOFWOOF 1
tomme e + , e +
| entry for pipe 1 | 1 | PRINTER
e L + T +
| entry for pipe 6 | 2 | FASTLP |
e et CE L LT T + e et L L +
| entry for pipe 2 | 3 | blanks |
e L L S T e + tommmm e +
| entry for pipe 63 | 4 | blanks |
B + e +
| O's | 5 | blanks |
tmmm—— e —— e ———————— + e e T T e +
| o's | 6 | PRINTER |
e e L L L L L L + e et +
I I I I
I I | I
L + e il +
| O's | 63 | FOOWFOOW I
R e EE L L LT e + e e T LT +

Individual Pipe Disk Spéce Allocation

The pipes area consists of used space and holes (unused space).
There are two kinds of holes:

Active hole -- a contiguous area of unused pipe space
bounded on the low address end by an open for writing pipe.

open for
writing
pipe

e ———————— +
I I
| I

+ +
| | the open pipe in front of the hole
| | can grow into this region.
e +

I I

Corvus Systems 32

Mass Storage Systems GTI Pipes

Inactive hole -- a contiguous area of unused pipe space
bounded on the low address end by the end of a closed
pipe or the end of an open for reading pipe.

I l
e T L e LR +
| open for |
| reading or |
| closed pipe |
tmmmmmm e +
| inactive |
| hole |
+ +

the pipe in front of the hole
cannot grow.

l l

New pipe allocations are made by examining all the holes in the
pipe area. The allocator looks for the larger of: (1) the
largest inactiwve hole or (2) half the size of the largest active
hole. A new pipe starts at the beginning of an inactive hole or
at the midpoint of an active hole. All pipes grow in the same
direction, by increasing address.

When an open for writing pipe hits the end of a hole (that is, it
bumps into an existing pipe), the error code, tried to write to a
full pipe (0Ah), is returned. This can happen even if there is
space remaining in other holes.

Performance Considerations When Using Pipes

On a Rev B/H drive, a Pipe Write results in 2 disk reads, and 2
disk writes. First, the pipes code is overlayed into the
controller RAM; then the data is written and the Pipe Pointer
Table rewritten; finally, the dispatcher code is reloaded. A
Pipe Read is similar, only there are 3 disk reads and 1 disk
write. Since the controller code is located in the firmware
area, and the pipes area is in the user area of the drive, a pipe
operation can cause considerable head movement.

For OmniDrives and Banks, the pipes controller code is loaded at
power-on time, and does not have to be swapped in and out. Also,
the Pipe Name Table and the Pipe Pointer Table are located in the
firmware area. For the OmniDrive, the tables are written back to
the drive only when a pipe is closed, so a Pipe Read is 1 disk
read operation, and a Pipe Write is 1 disk write operation. For
the Bank, the pipe tables are only written to the media when the
Bank is ready to turn off the motor (see section titled "Changing
Bank Tapes" later in this chapter).

Corvus Systens 33

Mass Storage Systems GTI Active User Table

ACTIVE USER TABLE

The Active User Table is used by Corvus applications software to
keep track of the active devices on the network. At any given
time, it should contain a list of those users who are connected
to the network. See the section titled "Active User Table" in
Chapter 2 for more explanation.

The Bank does not support the Active User Table.
There are six commands supported:

AddActive

DeleteActiveUsr

DeleteActiveNumber (OmniDrive only)
FindActive .
ReadTempBlock

WriteTempBlock

The AddActive command adds a user to the table. The host
specifies the user name, the Omninet address, and the device
type. See Appendix B for a list of device types.

The DeleteActiveUsr command deletes a user from the table. Note
that the command code for DeleteActiveUsr is different for the
Rev B/H drives than it is for the OmniDrive.

The DeleteActiveNumber command deletes all users with the
specified Omninet address from the table (OmniDrive only).

The FindActive command returns the Omninet address and the device
type of the user with the specified name.

The ReadTempBlock command can be used to read the entire Active
User Table, and the WriteTempBlock can be used to initialize the
Active User Table.

Corvus Systems ' 34

Mass Storage Systems GTI Active User Table

Command Name: Add Active

Command Length: 18 bytes
Result Length: 2 bytes

Command

——
——
——
——

12 / 1 | BYTE | host Omninet address

13 / 1 | BYTE | host device type

14 / 4 | ARRY | unused - use 0's
Result

Corvus Systemns ’ 35

Mass Storage Systems GTI Active User Table

Command Name: Delete Active User (Rev B/H drives only)

Command Length: 18 bytes
Result Length: 2 bytes

- D G = - I D G D G G = G G I G I D G T G I D T G W G W G G S D G G GE N N SN GE I GED I WS G G

0/ 1 | BYTE | command code - 34h

1 /1 | BYTE | OOh

2 /10 | BSTR | name

12 / 6 | ARRY | unused - use 0's
Result

Offset/Len| Type | Description

Corvus Systems 36

Mass Storage Systems GTI : Active User Table

Command Name: Delete Active User (OmniDrive only)

Command Length: 18 bytes
Result Length: 2 bytes

Command
Offset/Len| Type | Description

. T . G R . G D D G SR G GED GES CTER SR GHM D NS GND GEL GEN CHD GED WSS T3 WA GED W MY WO GEO GNA ER GHN W GI) GED GER D GNP GUR GEP G GED GEP W GED G G Gwm G

Corvus Systems 37

Mass Storage Systems GTI Active User Table

Command Name: Delete Active Number (OmniDrive only)

Command Length: 18 bytes
Result Length: 2 bytes

Command

12 /1 | BYTE | host Omninet address
13 / 5 | ARRY | unused - use 0's
Result

Offset/Len| Type | Description

- — - — - — ——— - ———— ——— — T G G I . G D G . G - - -

Corvus Systems 38

Mass Storage Systems GTI

Command Name:

Command Length: 18 bytes

Result Length: 17 bytes

Command

offset/Len| Type | Description
"0/ 1 | BYTE | command code - 3&h
1,1 |syme | osn T
"2 /10 | BSTR | mame
12 /6 | ARRY | unused - use o's
Result

offset/Len| Type | Description
0,1 | BYTE | disk result
"1/ 1 | BYTE | first byte of name, or table result
"2 /s | BSTR | remaining bytes of name
11,1 | BYTE | host omninet address
12 /1 | BYTE | host device type
13 /4 | ARRY | unusea

Corvus Systems

Active User Table

Find Active

39

Mass Storage Systems GTI Active User Table

Command Name: Read Temp Block

Command Length: 2 bytes
Result Length: 513 bytes

Command

Offset/Len| Type | Description

0/ 1 | BYTE | command code - C4h
1/ 1 | BYTE | block number - 0 to 6 for Rev B/H,

| | 0 to 3 for OmniDrive

Command Name: Write Temp Block

Command Length: 514 bytes
Result Length: -1 bytes

Command

1/1 | BYTE | block number - 0 to 6 for Rev B/H,
| | 0 to 3 for OmniDrive

Corvus Systems 40

Mass Storage Systems GTI Active User Table

Table results

Value Meaning
0 Oko
1 No room to add.
2 Duplicate name.
3 User not found.

Implementation Details For The Active User Table

The Active User Table implementation is similar to semaphores, in
that an unused entry is indicated by blanks. When an AddActive
command is received, the controller searches the table for an
entry with a matching name. If one is found, the entry is
overwritten with the new data, and a table result of duplicate
name (2) is returned. If no matching entry is found, the first
entry with blanks is overwritten with the specified data, and a
status of Ok (0) is returned.

For DelectActiveUsr, the first entry with a matching name is
overwritten with blanks. For DeleteActiveNumber, all entries
with matching Omninet addresses are overwritten with blanks.

The table consists of four blocks, located in the firmware area.

The blocks are numbered 0 to 3. Each table entry is 16 bytes
long, as shown below:

Corvus Systems 41

Mass Storage Systems GTI Boot Commands

Table layout

tommmm e + block 0

| entry #1 I

tomm e +

| | Entry layout

= = +==< = —e +

| | | | name | byte 0
e et T + | +- -+

| entry #32 | | [|

tommme e e + block 1 | = =

| entry #33 | | | |
tomm————— ———————— + | +- -+

I I | I | byte 9
= = <=——mme——eo + e EE L P LT T +

= = | |Omninet address| byte 10
I | I +

tommr + block 3 | | device type | byte 11
| entry #97 | [Rt il +
Fremmmee e e + | | unused | byte 12
I I I = (0's) =

= = [| | byte 15
[| t==< tmmmmccecc e +
o +

| entry #128 |

e et Tt +

Omninet address is 0 to 63. Device types are listed in Appendix
B.

The normal initialization of the Active User table is described

in the section titled "Active User Table" in Chapter 2. The table
can also be initialized by rewriting the firmware, or by issuing
Write Temp Block commands.

BOOTING

There are two commands which provide a boot function. The
purpose of these commands is to provide a machine independent
means of booting a host computer.

The first boot command, called the Boot command (14h), was
Corvus' first attempt to provide a boot function. The Boot
command was not flexible enough, so a second boot command, the
Read Boot Block command (44h), was added.

The first Boot command is used by Corvus to support Apple II (TM)
computers and Corvus Concept (TM) workstations. The Read Boot Block
command is used to support all other computers. Each computer is
assigned a computer number by Corvus. See Appendix B for a list

of the currently assigned computer numbers.

Corvus Systems 42

Mass Storage Systems GTI Boot Commands

Both boot commands return a block of 512 bytes to the host
computer. This block normally contains boot code for the
computer, but can be used for whatever the particular computer
requires.

In order to use the boot commands, an application program must be
written which sets up the data structures used by the boot
commands. Corvus provides such an application program, called
BOOTMGR, with its Constellation II software. Refer to the manual
titled Constellation Software General Technical Information for
more information on how Corvus software uses the boot commands.

Command Name: Boot

Command Length: 2 bytes
Result Length: 513 bytes

Command

Offset/Len| Type | Description

- - - D P WD G N G D S G - - . W W G G - D NS W . W S S TS G GID SR R G G D GES G Gue WD G G G -

o/ 1 | BYTE | command code - 14h
1 /1 | BYTE | boot block number (0-7)
Result

- " — T G S D . W S W WS S W P D W G O W VAR S SN D S N B G G S G -
- G GIP N D CIR I D P D P G D D G D R IS G T D R D G G G S G G G - R G S N e . G S - -
. D D G D S G D CEN S P G IR G S G G GI SIS I NS GE M I CED GES GAS GES D e N GNR GED WD NS GER G CeN W W W G W W G B SR G GES W G W G G e - -

D S D D G G - - . SO G G . D R G SIS P S S S TS 0% S GNP TR G NN W UG W G SR N I G N G G G G ——— e o -

Corvus Systems 43

Mass Storage Systems GTI Boot Commands

Command Name: Read Boot Block

Command Length: 3 bytes
Result Length: 513 bytes

Command

0/ 1 | BYTE | command code - 44h
1/1 | BYTE | computer number (See Appendix B)
2 /1 | BYTE | block number

Result

* If the disk result = FFh, the block could not be found.

Implementation Details For Boot Commands

For the Boot command, the boot blocks are located in the firmware
area (see Appendix A for exact locations). Blocks 0 through 3
contain 6502 code for the Apple II, and blocks 4 through 7
contain 68000 code for the Corvus Concept. These blocks are
included in the firmware files distributed by Corvus.

For the Read Boot Block command, the following data structures
are used:

Block 8, bytes 36 - 39 contain the absolute block address of the

Corvus volume. The Boot Table is located 6 blocks past this
location. The format of the Boot Table is described below:

Corvus Systems 44

Mass Storage Systems GTI Boot Commands

Table format

tom——————————————— +

| entry #0 | block 0

e bbbl + Entry format

| | +7< tmmmmcmm—— e — e +

= = i | address (msb) | byte 0
| | €m=mmmme——e——— + +- -+

tommmm e -—=+ | | address (1lsb) | byte 1
| entry #127 | +=< tmmm—m— e ———— +

e e e L L L +

| entry #128 | block 1

trm——————————————— +

| I

I I

e e +

| entry #255 |

o ——— e +

The address is a relative block address which is added to the
Boot Table address. The result is the block number of the 0Oth
block of boot code. The block number specified in the Read Boot
Block command is added to this result to get the absolute block
address of the data to be returned. Thus, the block address of
the data returned is computed as follows:

Boot Table address + boot code address + boot block #
(contents of block 8, (from Boot Table) (from Read Boot
bytes 36-39, + 6) Block command)

DRIVE PARAMETERS

The Get Drive Parameters command can be used by application
programs to find out the user-accessible size of the drive
(device capacity) and other device specific information. The
format given differs slightly from that used for other commands:
the first page shows the information that is returned from all
devices and the second page shows the device specific
information.

Corvus Systens 45

Mass Storage Systems GTI Drive Parameters

Command Name: Get drive parameters

Command Length: 2 bytes
Result Length: 129 bytes

Command

0/ 1 | BYTE | command code - 10h
1 /1 | BYTE | drive number (starts at 1)
Result

0/ 1 | BYTE | disk result
"1/ 32 | BSTR | firmvare message
33,1 | BYTE | ROM version
34/ 4 | ARRY | track information (see below)
38 /3 | FAD3 | capacity in 512 byte blocks

57 / 1 | BYTE | interleave factor

| ARRY | Table information (see below)
58 / 12 | | MUX parameters
70 / 6 | | pipes information
76 / 14 | | virtual drive table
90 / 16 | | LSI-11 information
106 / 1 | BYTE | physical drive number
107 / 3 | FAD3 | capacity of physical drive
110 / 1 | BYTE | drive type (see below)
111 / 6 | ARRY | tape information (see below)
117 / 2 | WORD | media id (see below)
119 / 1 | BYTE | maximum number of bad tracks (see below)
120 / 8 | ARRY | unused (no meaning)

Corvus Systems , 46

Mass Storage Systems GTI

Drive Parameters

The table below shows the meanings of the status bytes that are
different for the various device types.

sectors/track
(1sb,msb)

drive type
(82H)

| *tape life
| (# of minutes)

start/stop
count

fast track
flag (=1 fast
tracks on)

Offset/Len| Type | Rev B/H Drives | omniDrive
35 / 1 | BYTE | sectors/track | sectors/track
36 / 1 | BYTE | tracks/cylinder | tracks/cylinder|
37 / 2 | FWRD | cylinders/drive | cylinders/drive]|
58 / 12 | ARRY | MUX parameters | unused
70 2 | FWRD | pipe name tbl ptr | pipe area ptr
72 2 | FWRD | pipe pointer tbl | pipe area size
I | ptr I
74 / 2 | FWRD | pipe area size | unused
76 14 | ARRY | Virtual drive tbl | unused
90 8 | ARRY | LSI-11 VDO table | unused
98 8 | ARRY | LSI-11 spared tbl | unused
110 / 1 | BYTE | unused | drive type
| I I
111 / 3 | FAD3 | unused | unused
I I I
114 / 2 | FWRD | unused | unused
| I I
116 / 1 | FLAG | unused | unused
I I |
I | I
117 / 2 | WORD | unused | media id
119 / 2 | BYTE | unused max # of bad

tracks

A - e S SRS e LWE B W G T G WS WS (AR W G MR WD TR SUR G GER M GER SRR IV GNP GuP SEP GRS WES Web W HNS WL TS GRD NER GND GNR GED N WED W W N RS FHE SN GHD R SUT TAD WAE WEE WA GHR T GRS Gee Gew e G G e =

* The tape life is specified at 500 hours and 2000 start/stops

Zorvus Systems

47

Mass Storage Systems GTI Park Command

PARKING THE HEADS
Rev B drives do not require parking of heads.
The Rev H and OmniDrives provide a firmware command that allows a
host to instruct a drive to park its heads in a landing zone or
cylinder. This command is used in preparing the drive for
shipping.
The landing (or parking) cylinder is a reserved cylinder for Rev
H drives; for OmniDrives, the landing cylinder is specified in
the disk parameter block of each drive. Some drives
automatically park the heads,during power off; the landing
cylinder in this case is specified as OFFFFh. No actual movement
of the heads is performed when a park command is sent to one of
these drives.
The park command only positions the heads over the landing
cylinder; it does not turn off the motor. When the drive is
parked, it is offline to the network, and no host can communicate
with it. The drive stays parked until it is reset.

Command Name: Park the heads (Rev H Drive ONLY)

Command Length: 514 bytes
Result Length: 1 bytes

This is really a special Prep block.

Corvus Systems 48

Mass Storage Systems GTI Park Command

Command Name: Park the heads (OmniDrive ONLY)

Command Length: 1 byte
Result Length: 1 byte

Command

D D G G G W D R G D GN G M R CED CHR GEI GED AND EED GED NP GNP SED WIS IS G IR G SR EHE G SN N W WIS M G S I IS TED GHD GED R G - G W G G =

Offset/Len| Type | Description

D W I IR I D T I G G G S CEP GES I S G NS GED S D GHD TED GV I GHB G M WAD MR CUD VN W WD SN MR WIS GED WA A MM TED G G D SN VEG GND G G S G W W G Gm W
- . S G IR T T G WP WIS GNP G TID GRE WS GER N G GUR GNP GND GED WD GNP GWR (P GND GND GRS NED G GND WS R W G GEA TR S G GID WIS G W G SR WD MU N WE WS SR

- - N . G G G I G . G S D . G G W I W D G G LS W LY N D M G G G GNL NS S SR WS S S GRD TR WS GEN G D G WD S G S -

CHANGING BANK TAPES OR POWERING OFF The Bank

The Bank Tape is continuously looping. While the motor is on,
the tape cannot be removed. If the tape is not accessed for
about 1 minute 15 seconds, The Bank goes into a "shut down" mode.
The controller flushes tape information back to the firmware
area, seeks to track 0, then turns off the motor. At this point,
the tape can be removed.

There is a reset switch on The Bank which can be used to force

the "shut down" sequence. However, this switch should only be
used when absolutely necessary.

CHECKING DRIVE INTERFACE

The Echo command can be used té check the interface to the drive.
The host sends 512 bytes to the drive, and expects to get the
same 512 bytes back.

Corvus Systems 49

Mass Storage Systems GTI Miscellaneous Commarnds

Command Name: Echo (OmniDrive/Bank ONLY)

Command Length: 513 bytes
Result Length: 513 bytes

PREP MODE

The host can put the drive into prep mode by sending a prep
command with 512 bytes of executable controller code. The
controller loads this code over the RAM-resident dispatcher whose
function is to interpret the command bytes sent to the
controller. Thus in effect, the prep block can be considered as
a specialized dispatcher. Some applications requiring direct
control of the hardware can utilize this feature (e.g., burn-in
program). The standard prep block shipped by Corvus supports the
following functions:

format the drive or tape

verify the drive (Rev B/H, OmniDrives only)
read from the firmware area ‘

write to the firmware area

fill the drive with a pattern (OmniDrive only)

reformat a track (Bank only)
destructive verify a track (Bank only)
non-destructive verify a track (Bank only)

All prep blocks should support a reset function in order to take
the drive out of prep mode and back to the normal mode. This is
done through a reset command (command code = 00h) in prep mode.
Also, when the controller is put in prep mode, the front panel
LED's are set as a visual indication of this mode. For Rev B/H

Corvus Systemns 50

Mass Storage Systems GTI Prep Mode Commands

drives, the FLT and RDY lights are turned off and the BSY light
is turned on. For OmniDrives and Banks, the opposite is true;
i.e., the FLT and RDY lights are turned on and the BSY light is
turned off.

Rev B/H drives can use only one prep block at a time (maximum 512
bytes of code). OmniDrives and Banks, however, use a maximum of
4 prep blocks (2K of code). The first prep command puts the
drive into prep mode. Any additional prep command blocks are
loaded after the previous block. After the fourth block has been
received, any additional block overlays the fourth block.

Prep blocks are hardware dependent. Prep blocks for Rev B/H
drives contain Z80 code, whereas prep blocks for OmniDrives and
Banks contain 6801 code.

Command Name: Put drive in prep mode

Command Length: 514 bytes
Result Length: 1 byte

Command

- D D - G D D G - D D G G I G D GID G WS D W D G W G TR G S e S NS GEe W N S GPS O CAR W W S N G GED W GPU G W G S S =

Offset/Len| Type | Description

- - - - D S D = G WD R WD G S A Ge) I T G W S W R W S e S S W I W CE N G W I WD D . G S - -

- G G G R G D G D D D D G - W S - - W T S . - S, - - = - - ——— ———

Offset/Len| Type .| Description

0/ 1 | BYTE | disk result

- - - - - - - - - G G D SIS D G D e W D - G S S T W P . G . - I G- SES WD GRS W RSP v W W S G S -

Corvus Systems 51

Mass Storage Systems GTI Prep Mode Commands

Command Name: Reset drive (take drive out of prep mode)

Command Length: 1 bytes
Result Length: 1 byte

Command

Offset/Len| Type | Description

Offset/Len| Type | Description

FORMAT DRIVE

In prep mode using the Corvus prep block, the host can send a
format command to the controller. The controller lays down on
the media the sector format, and the data fields are filled with
whatever is specified by the Format command. OmniDrives use the
pattern FFFFh.

A Format command destroys ALL information on the drive, including
the firmware itself. The spared track table, the virtual drive
table, and the pipes tables, as well as the polling parameters,
interleave factor, read after write flag, etc., are all destroyed
by Format. You would not normally format a drive until this
information is written down, so that it may be manually restored
after formatting.

For Rev B/H drives, the controller refuses the Format command if
the Format switch (beneath the front panel LED's, second from
right) is set to the left. You must set this switch to the right
in order to format the drive.

Drives shipped from Corvus have been formatted, burned-in, bad
tracks logged in the spare table, and the firmware written. If
you must format the drive, you should always verify the drive
after formatting, and spare any bad tracks found. See the
section titled "Verify," later in this chapter, for more
information.

Corvus Systems 52

Mass Storage Systems GTI Format Command

Command Name: Format drive (Rev B/H drives ONLY)
(drive in prep mode)

Command Length: n bytes
Result Length: 1 byte
Command

The Corvus diagnostic programs send 513 bytes and use pattern
76h or E5h.

Command Name: Format drive (OmniDrives ONLY)
(drive in prep mode)

Command Length: 1 byte
Result Length: 1 byte
Command

- D S W W D G IS B I €6 EYS TI GES G NS GED RS G GSN G WE GES T GHS TN W ATS GEE GHD GED GUD IR WIR GEN TEG WV TIP GED GEI R THS GND G S W G S W G G W G -

- e G G G - G G G UID I GED I N RS IR S I WIS EPR GEI T D SN GED EID W IR D TN GV FEN CAR GER W S e NI G G GED CHD SN WEP W A G GG WD NS G G G WS
S A D I G D TS B W N TED WS WIS Sb TS GED GED NS D GED I GRD (TS SED D CED R S S G S G T G G - - - - —— - —— - —

Corvus Systems 53

Mass Storage Systems GTI Format Command

Command Name: Fill the drive (OmniDrives ONLY)
(drive in prep mode)

Command Length: 3 bytes
Result Length: 1 byte
Command

0/ 1 | BYTE | command code - 81lh
1/ 2 | WORD | fill pattern
Result

Note: The recommended fill pattern is B6D9h.

FORMAT TAPE (BANK)

In prep mode using the Corvus prep blocks, the host can send a
tape format command to The Bank. With this command, the host
specifies whether fast tracks are to be used, the tape type
(100MB or 200MB), and the interleave factor to be used.

The interleave factor must be an odd number between 1 and 31.
The controller automatically increases by 1 any specified even
interleave. Any interleave greater than 31 is set to 31.

After receiving the format command (full tape format only), the
controller sends back a success status immediately to acknowledge
that the format command has been received. It then turns .off
interrupts, thus taking The Bank offline. During this time, no
devices can communiate with The Bank. After formatting the
media, the controller fills the tape with a pattern (BéDSh). It
then attempts to verify the tape by reading all sectors. Any bad
sectors are spared automatically. The results of the format are
written to firmware block 2.

Any tracks reported as bad have more than 4 bad sectors, and
should not be used. If any bad tracks are reported, the tape
should either be discarded, or dummy volumes allocated over the
bad tracks. See the section titled "Physical Versus Logical
Addressing" later in this chapter for more information on mapping
track numbers to block addresses.

Corvus Systemns 54

Mass Storage Systems GTI Format Commands

The prep block also allows the host to send a command to reformat
one track. The tape is assumed to have been formatted, so the
controller uses the current interleave and tape parameters. This
feature is provided in case one track has read-write problems and
needs to be reformatted.

The command to reformat one track returns the number of bad
sectors on the track. 1If the number of bad sectors is greater
than 4, the track is bad. You should use the Get Drive
Parameters command to check the tape life. Tapes are rated for
500 hours and 2000 start-stops. If either of these numbers is
exceeded, the tape should be discarded. Otherwise, you should
allocate a dummy volume over the bad track. See the section
titled "Physical Versus Logical Addressing" later in this chapter
for information on mapping track numbers to block addresses.

Command Name: Format tape (Bank ONLY)
(Bank in prep mode)

Command Length: 8 bytes

Result Length: 1 byte

Command

- WO S0 I W - - SES SN GCh U R D S e T SR G G W TR e W G S D SIS T DS MR N A G G NS WSS M RS G G —Ne - - —

Offset/Len| Type | Description

B S D MAB Wb YD CTW SR XN T T U GAS G M GHS W G WA SIS GUR GRS GRS GV M SR TUR WS GES VER GHR GRE EVR U AT MW WD WM AR N R W30

O G - G G . S - —— .-

0/ L | BYTE | command code - 0lh
1,1 (eve | owm T
2,3 | ARRY | unused - use o's
5, 1 | FIAG | fast track flag (0lh = fast tracks on)
"6/ i | BYTE | tape size (Olh = 200MB; 0Oh = 100MB)
"7 /71 | BYTE | interleave factor (odd number 1 to 31)
Result

T . BB EE G D T D . W G G S N S G G G TR SR WS GF) G B SN G SN WP W NN wen Wee W G A A S T M P S TS G GNS W S SN GeR NS G Mmm W SNR G e Swn w— -

<
.
o
<
+
1
2]
O
n
o
‘—J
ot

GO €3 B3 AT VE MWL LST R AN NS SR IR W GUR SN AW NS SND R SR GER ATV CWR GRS NS SR WA GRS R WA MR G SN A SR GEE GRS W e 06 DT WD SR Gt S S G GNP GES GMP ST GRD W SN TWR W M o

An evern: interleave factor is automatically increased by 1.
Interleave greater than 31 is set to 31.

The resuits are recorded in firmware block 2 in the following
format:

Corvis Systems 55

Mass Storage Systems GTI Format Commands

Offset/Len| Type | Description

Command Name: Reformat one track (Bank ONLY)
(Bank in prep mode)

Command Length: 8 bytes
Result Length: 2 bytes
Command

0/ 1 | BYTE | command code - 0Olh

1 /1 | BYTE | 02h

2 / 2 | FWRD | track number to format

4 / 3 | ARRY | unused - use 0's
Result

Track number range is 0-100. The firmware track (track 1)
contains sparing information for the whole tape; if this track
is reformatted, the sparing information for the rest of the tape
will be lost.

MEDIA VERIFY (CRC)

The verify command is a prep mode command. For Rev B/H drives,
the verify is performed as follows: The controller reads each
sector on the disk. If it is unable to read a particular sector,
it tries again to read the sector. If it can read the sector
within 10 retries, it reports a soft error. If it cannot read

Corvus Systems 56

Mass Storage Systems GTI Verify Command

the sector, it rewrites the sector with the data it read, which
is probably bad, and reports a bad sector.

For OmniDrives, each sector is read only once, and a hard error
is reported if the sector is bad. The sector is not rewritten.

Marginal sectors may be reported on one execution of the Verify
command, yet not show up on the next. Any sector which is ever
reported as bad should be spared. Each media has a maximum
number of tracks that may be spared. If the Verify command

reports more than this number, the media is bad, and should not
be used.

A list of spared tracks should be maintained on paper near the
drive. Then if it is ever necessary to reformat the drive or

rewrite the entire firmware area, the appropriate tracks can be
respared.

A list of bad sectors is returned to the host. The sector
numbers are physical sector numbers, and are converted to track
nunbers with the following algorithm:

track # = [(cylinder #) * (number of heads)] + (head #)

Note that those sectors which are already spared may be reported
as bad.

For The Bank, the prep block provides two verify features: a
non-destructive verify and a destructive verify. These commands
work on one track at a time. The non-destructive track verify
reads all the sectors on the specified track and reports the
number of bad sectors found and the sector numbers of the first
four bad sectors. The destructive verify fills the track with
the input pattern (2 bytes) first and then verifies the track as
described for non-destructive verify.

See the section titled "Physical Versus Logical Addressing" later

in this chapter for information on mapping track numbers to block
addresses. ‘

Corvus Systems 57

Mass Storage Systems GTI Verify Command
Command Name: Verify drive (OmniDrive, Rev B/H ONLY)
(Drive in prep mode)

Command Length: 1 byte
Result Length: 2+4#*n bytes

Command

0/ 1 | BYTE | result
""1/1 | BYTE | number of bad sectors
"2/ 4 | ARRY | head, cylinder, sector of lst bad sector
"6 /4 | ARRY | head, cylinder, sector of 2nd bad sector

Offset/Len| Type | Description

0/ 1 | BYTE | head number
1/ 2 | FWRD | cylinder number
3/ 1 | BYTE | sector number

Corvus Systems 58

Mass Storage Systems GTI Verify Command

Command Name: Non-destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length: 6 bytes
Result Length: 10 bytes
Command

- - T D G D D G D D D D T R R IR G D I S GH T S CID EED SRS D W GAR N W S S G W D T S L SR G S G G W . ——— - —-—

- - - D D I I D D P G D G I G I D D I I G D SR S W G SIS D G SER SR SN R T TE CE WV G W WS R TR SW UES GER W W SND SIS W G W W G =

0/ 1 | BYTE | command code - 07h

1 /1 | BYTE | 02h

2 / 2 | FWRD | track number

4 / 2 | ARRY | unused - use 0's
Result

S G S - D = G CE I G2 W S S GED I D W S AP GED GED NS D W e S GRS GNS EE e Cwp W I e GHS S G e NS - G G ————— - — - —

0/ 1 | BYTE | result

1/1 | BYTE | number of bad sectors

2 / 2 | WORD | sector number of lst bad sector
8 / 2 | WORD | sector number of 4th bad sector

The sector number is interpreted as msb = head number and 1lsb
= sector number. Since there are 256 sectors per section, this
value is also an absolute sector number.

Corvus Systems 59

Mass Storage Systems GTI Verify Command

Command Name: Destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length: 6 bytes
Result Length: 10 bytes
Command

o/ 1 | BYTE | command code - 07h

1 /1 | BYTE | O1lh

2 / 2 | FWRD | track number

4 / 2 | WORD | £fill pattern
Result

0/ 1 | BYTE | result

1/1 | BYTE | number of bad sectors

2 / 2 | WORD | sector number of 1lst bad sector
8 / 2 | WORD | sector number of 4th bad sector

The recommended fill pattern is Bé6D9h.

TRACK SPARING

When the drive is formatted, it is filled with a pattern. A
burn-in can then be performed to find the marginal tracks. These
can be recorded in the firmware track sparing block to make them
invisible.

Each type of mechanism has a different number of spared tracks
allowed. This number is returned by the Get Drive Parameters
command to let the host know the maximum number of tracks it can
spare out. Rev B drives allow 7 spared tracks; Rev H drives
allow 31 spared tracks; OmniDrives allow from 7 to 64 spared
tracks, depending on the drive type (see Appendix A).

Internally, the spared tracks are recorded in the firmware area;
see Appendix A for a complete description of the spared track

Corvus Systemns 60

Mass Storage Systems Track Sparing

table. You should also maintain a list of the spared tracks on a
piece of paper near the drive, so that if the firmware is ever
overwritten you can respare the proper tracks.

Tracks are spared by updating the firmware blocks containing the
spared track table. The Corvus Diagnostic program provides this
capability.

For Banks, when a tape is formatted, it is also verified and all
the. bad sectors are logged in the firmware area. Each track has
four sectors reserved for use as spared tracks.

Since only four sectors are reserved, any track with five or more
bad sectors should not be used. The firmware has no capability
to skip these tracks. Therefore it is recommended that the tape
be discarded or dummy volumes be located over this track. A
dummy Constellation volume can be allocated to this track to skip
it. See the next section for information on converting sector
numbers to block numbers.

PHYSICAL VERSUS LOGICAL ADDRESSING

The physical layout of each media is shown below.

Rev B/H OmniDrives Bank
Firmware tracks 0 - (m-1) tracks 0 - 3 track 1
User area tracks m - n tracks 4 - n tracks 2 - z
Unused tracks n+l - z tracks n+l - 2z
where m = (# of heads/drive) * 2 (see Appendix A)
z = total number of tracks - 1
X = maximum number of spared tracks allowed

n =2z - x + number of tracks currently spared

The unused area is used up as tracks are spared.
Track 0 on The Bank is reserved for a landing area.

For Rev B/H drives and OmniDrives, the drive is viewed as a
series of consecutive physical tracks, where a track is
identified by a head number and a cylinder number (head number
varies fastest). Logical tracks are mapped onto the physical
tracks one-to-one, skipping over spared tracks and the firmware
area. A typical layout of a hypothetical drive is shown below.
This example assumes a 4 track firmware area, 120 tracks total,
with 16 maximum spared tracks allowed. The drive has 4 heads and
20 sectors per track. Two tracks, tracks 34 and 67, are spared:

Corvus Systems v 61

Mass Storage Systems GTI Physical Versus Logical Addressing

Physical Head, Cyl Logical
e e + e +
s | track O | 0,0 | firmware area |
firmware area = = = =
A4 | track 3 | 3,0 | |
trm—— e ——— + tom—— e —————— +
A | track 4 | 0,1 | track O |
| tmm————————————— + to—————————————— +
| | track 5 | 1,1 | track 1 |
| track 33 | 1,8 | track 29 |
Y et LT + tem—m e ——— +
user | track 34 | 2,8 | spared track |
area tom————— ————————— + tmm———— e, ————— +
| track 35 | 3,8 | track 30 |
e it + e +
I I I I
e ettt + R e E L L +
| track 67 | 3,16 | spared track |
| e —————————— + tm————————————— +
I = = = =
v | track 103 | 3,25 | track 97 |
tom—————— e ——— + tom—e e, ——— +
A | track 104 | 0,26 | track 98 |
reserved +--=--c--—-c---- + tmmmmm e +
for spared | track 105 | 1,26 | track 99 |
tracks = = e e ——— +
v | track 119 | 3,29 = unused =
tom———— e ————— + trm————————————— +

When a track is spared, the user data following the spared track
is still there, but is no longer accessible, since the data is
now located at a different logical address.

The algorithm for converting block numbers to physical sector
numbers would be as shown below, if it were not for the firmware
area and spared tracks. The real algorithm is explained
immediately following the simplified form.

sector # = (block #) modulo (sectors per track)
track # = (block #) div (sectors per track)
head # = (track #) modulo (number of heads)
cylinder # = (track #) div (number of heads)

Note that the track number is a temporary result and is not a
directly addressable entity in the drive; a given block is
addressed physically by sector number, head number and cylinder
number.

The real algorithm for converting block numbers to physical
sector numbers is shown below:

Corvus Systems 62

Mass Storage Systems GTI Physical Versus Logical Addressing

sector # = (block #) modulo (sectors per track)

logical track # = (block #) div (sectors per track)

physical' track # = (logical track #) plus (firmware
area offset)

physical track # = (physical' track #) plus (one for
every spared track preceding).

head # = (physical track #) modulo (number of heads)

cylinder # = (physical track #) div (number of heads)

Continuing with the example given above, let's convert block
number 1308 to a physical sector address.

sector # = 1308 mod 20 = 8

logical track # = 1308 div 20 = 65

physical' track # =65 + 4 = 69
Tracks 34 and 67 are spared, so add 2

physical track # = 69 + 2 = 71

head # = 71 mod 4
cylinder # = 71 div 4

1
17

Alternatively, suppose you have run the Verify Drive command, and
it reported a bad track at head 2, cylinder 12, sector 10. You
want to compute the range of blocks that the bad sector lies
within. You must apply the above algorithm in reverse:

physical track # = 2 + (12*4) = 50
Track 34 is already spared, so subtract 1
physical track #'= 50 - 1 = 49
logical track # = 49 - 4 = 45
starting sector # = 45 * 20 = 900
ending sector # = 900 + 20 - 1 = 919

Thus, the bad sector lies somewhere between sector 900 and sector
919. You must apply the interleave factor (see next section) to
determine exactly which sector is bad.

For Banks, the tape is viewed as a series of tracks numbered 0 to
100. Each track consists of a number of sections; a 200MB tape
has 8 sections per track, while a 100MB tape has 4 sections per
track. Each section contains 256 sectors, and a sector contains
1024 bytes. On a Bank tape, each track has four sectors reserved
for sparing, so a given block number always falls within the same
track. The track number of the track in which a given block is
located is computed as follows:

sector # = (block #) div 2
logical track # = (sector #) div (sectors per track)
physical track # = logical track # + 2

To compute which blocks lie within a given track, use the
following algorithm:

Corvus Systems 63

Mass Storage Systems GTI Physical Versus Logical Addressing

blocks per track
starting block #
ending block #

(sectors per track = 4) * 2
(track # = 2) * (blocks per track)
(starting block #) + (blocks per track)

Thus, if track 17 is reported as bad (more that 4 bad sectors)
by the Track Verify command, you compute the bad blocks as
follows (assuming a 200MB tape):

blocks per track = (2048 - 4) * 2 = 4090
starting block # = (17-2) * 4090 = 81350
ending block # = 81350 + 4090 - 1 = 85439

In order to "spare" the track, you should allocate an unused
volume starting at block 81350 that is 4090 blocks in length.

INTERLEAVE

Interleaving provides-a& way of improving disk performance on
reading sequential sectors. The interleave factor specifies the
distance between logical sectors within a given track. For
example, if we assume 20 sectors per track, an interleave factor
of 1 specifies that the sectors are numbered logically 1 to 20.
An interleave factor of 2 specifies that the sectors are numbered
i, 11, 2, 12, ..., 10, 20. An interleave factor of 5 specifies
that the sectors are numbered 1, 5, 9, 13, 17, 2, 6, 10, 14, 18,
3 ...

As you can see, the interleave factor specifies how far apart
sequential sectors are located. If the interleave factor is
optimal, a sequential read operation is able to read more than
one sector per disk revolution. Note that different interleave
factors are optimal for different applications. You will have to
decide if changing the. interleave factor will significantly
enhance the speed of one application without penalizing other
users of the drive.

The interleave is specified in the drive information block of the
firmware area. When the firmware is first updated, it uses the
standard interleave specified in the firmware file. Legal values
are given below:

min max default
Rev B/H 1 19 9
OmniDrive 1 17 9
Bank 1 31 11

Interleave for The Bank must be odd.
If the media has information recorded, a change of interleave

effectively scrambles the information. Changing the interleave
back to the o0ld value restores all information. When the

Corvus Systems 64

Mass Storage Systems GTI Interleave

interleave is changed, the sparing information is preserved since
it is physical track information. Also, the firmware blocks are
not interleaved.

The interleave is changed by updating the firmware block
containing it. This capability is provided in the Corvus
Diagnostic program.

READ-WRITE FIRMWARE AREA

Each mass storage device has a designated firmware area which is
not accessible to normal read-write commands, and is not counted
in reporting the usable blocks on the drive. To access this
area, the host must put the drive in prep mode and send firmware
read~-write commands. There is no interleaving performed on the
firmware area, nor may this area have any bad sectors.

For Rev B/H drives, the firmware file currently consists of 40
blocks. (Some old firmware files were 60 blocks.) The firmware
file occupies the first 2 tracks of cylinder 0; a duplicate
firmware file is located in the first 2 tracks of cylinder 1.
The remaining tracks of the first 2 cylinders are unused. The
user area starts at cylinder 2.

The read-write firmware commands require a head and sector as the
address, rather than a block number. The head-sector number is a
byte field: the head number occupies the upper 3 bits of the
byte, and the sector number occupies the lower 5 bits. Firmware
blocks 0-19 are head 0, sectors 0-19, and blocks 20-39 are head
1, sectors 0-19. For example, firwmare block 16 is addressed as
10h, and firmware block 32 is addressed as 2Ch.

For OmniDrives, the firmware file consists of 36 blocks, thus
occupying two entire tracks. A total of four tracks are reserved
on the media so that a duplicate copy of the firmware can be
maintained. The user area starts at track 4.

The firmware blocks are numbered from 0 to 35. The read-write
firmware commands require a block number as the address. Note
that this is different from the Rev B/H drives where a physical
head and sector are specified instead.

For The Bank, track 1 of the tape nas the first 38 sectors
designated as the firmware area; only the first 512 bytes of each
physical sector are used. The first three sectors contain
identical information and are called the boot blocks (triple
redundancy for safety). The firmware blocks are numbered 0 to
35, and a block number is used as the address for the firmware
read-write commands.

Corvus Systems 65

Mass Storage Systems GTI Read-Write Firmware

Command Name: Read a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length: 2 bytes

Result Length: 513 bytes

Command

offset/Len| Type | Description T
0,1 | BYIE | command code - 320
"1/ 1 | BYIE | head (bits 7-5), sector (bits 4-0)
Result

Command Name: Write a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length: 514 bytes
Result Length: 1 byte

Command

Corvus Systens 66

Mass Storage Systems GTI Read-Write Firmware

Command Name: Read a block of Corvus firmware (OmniDrive/Bank)
(Drive in prep mode)

Command Length: 2 bytes
Result Length: 513 bytes
Command

Offset/Len| Type | Description

0/ 1 | BYTE | command code - 32h
1 /1 | BYTE | block number
Result

- - - - D R D S D D A S S - G S W T . S W G WD e S G S G4 W S WD W W D GEA G A NS GRS N G G Gw -
- - G - - - - G W - W . G W W W GV S B W G W Wl BE G G G A AT N S G WD G NS D G AR AR P W G G - -
- D - - G S G S . D D G S KD G G R S G W D G - W IR G GO W W, GRS WSS GND G G- - - - -

G D D D G D —— > — . - - - — - G - WS e T G G - - - G I G G D G G G - - - -

Command Name: Write a block of Corvus firmware (OmniDrive/Bank)
(Drive in prep mode)

Command Length: 514 bytes
Result Length: 1 byte

- D - . I - - - - O G T - O P N CHS W) ST S G G G S N W G - ——
D - D D I G G - — - - S - - D T T VG S O T W W G G G G — - -

D G - - D . . IS D WD > S D N G AP VS R D GE D S G TP GEN GED G SN W M WD N WY G VD WD GE PN WAL WD S W G e G W WS e SN W - -

G D G G - S G - - - V) T GO TN SRS IR G GY WS GER WD e SN S R D WS GES WEN WA VG W W R S GED I U NN WM TP WD GEe WIS WSS GE wEw G
- I D D - - . - D . - VR OB R T G NS S W W S G W G G W AN WA S S WD U S TN IS WD G N SIS GRS YD G NN WD GHD WER G W

. - - - D G W G = CON GES KN W AR N W AT AW VS WA M SR . G WS W RGNS NN WIS TN T WED GED W GUD SAD GED S SN WD W R GHD END WWS G W

Corvus Systems 67

Mass Storage Systems GTI Virtual Drive Table

VIRTUAL DRIVE TABLE (REV B/H DRIVES)

The Virtual Drive Table was implemented to avoid rewriting
drivers which had a 16MB addressing limitation.

The controller maintains a table of virtual drives in the
firmware area. This 14 byte table provides for the definition of
up to 7 virtual (logical) drives per physical drive. The format
for the virtual drive table is shown below:

| track offset (1lsb)|
+- of 1lst virtual -+
| drive (msb)

| track offset (1lsb) |
+- of 2nd virtual -+

| drive (msb) |
o e o e e e e e e +
I . I
+- . -+
l . I
+

| track offset (1lsb) |
+=- of 7th virtual -+
| drive (msb)

An entry with a track offset equal to FFFFh indicates the absence
of the corresponding virtual drive.

The track offset is a logical track number, and is simply
multiplied by the number of sectors per track to obtain a block
offset. When a drive number is specified in a Read-Write
command, the controller examines its virtual drive table. If an
entry exists for that drive, the track offset is multiplied by 20
(the number of sectors per track), and the result is added to the
address.

For instance, on a 20MB Rev B . drive, which has a user capacity of
38460 blocks, the Constellation I Apple software creates a
virtual drive table with 0 as the entry for the first drive, and
947 as the entry for the second drive. Virtual drive 1 consists
of blocks 0 to 18939, and virtual drive 2 consists of blocks
18940 (20*%947) to 38459.

The controller does not check whether an address exceeds the
capacity of a virtual drive. I.e., if virtual drive 2 starts at
track 100 (address 2000 on a Rev B/H drive), then block 2010 can
be addressed as drive 1, block 2010, or as drive 2, block 10.
This allows hosts that do not need the artificial disk division
to share the same disk with those that do.

Corvus Systems 68

Mass Storage Systems GTI

Virtual Drive Table

The Virtual Drive Table is updated by editing the firmware block
containing it. The Corvus Diagnostic program provides this

capability.

The settings used by Corvus for Apple II Constellation I systems

are listed below:

Total Drive 2
Drive blocks offset

Rev B 20MB 38460

DOS only 976

Pascal/Basics 947
Rev H 20MB 35960

DOS only 911

Pascal/Basics 896

CONSTELLATION PARAMETERS

Drive 1
blocks

19520
18940

18220
17920

Drive 2
blocks

18940
19520

17640
17940

The Constellation parameters are used when a Rev B/H drive is
connected to a master MUX, and the MUX switch (second from left

under the front panel LED's) is set to the right.

The parameters

specify what kind of host is connected to each slot in the MUX; a
host cannot communicate with the drive if this table is not set
up properly. Note that the table must be set up BEFORE the MUX

is installed.

The format of the table is shown below:

tomm—— e ————— +

|value for slot 1| byte O
e e L L +

|value for slot 2|
e ——— +

l !

I I

e ————— +

|value for slot 8| byte 7
o e +

| poll param 1 | byte 8
tom e ——————————— +

| poll param 2 | byte 9
tomm— e, e ———— +

| poll param 3 | byte 10
o ——————— +

| poll param 4 | byte 11
et +

Corvus Systens

69

Mass Storage Systems GTI Constellation Paramters

The slots on the MUX are numbered as shown below:

0oL,
IR XWRITN

X

where the flat cable connects at X.

valid slot values are shown below:

Values

Meaning
Nothing
MUX
LSI-11
Computer

Each slot value is set to 1 (MUX) by default. It is possible to
have a computer connected to a slot with a value of 1; and it is
possible to have a MUX connected to a slot with a value of 128;
however, this is not recommended because performance of the

network suffers.

The meaning of each polling parameter is given below:

poll param 1:

poll param 2:

poll param 3:

poll param 4:

Time scale factor for timing out on a
host. This is the total time the MUX
will stay at one slot, regardless of the
number of transactions completed. This
prevents a user from hogging the network.

Time scale factor for timing out on a
potential host. This determines how
long the multiplexer waits for the first
request at a particular slot.

The maximum number of transactions that
will be accepted from a host before the
multiplexer switches to the next slot.

unused

The default values for the polling parameters are:

poll param 1:
poll param 2:
poll param 3:
poll param 4:

Corvus Systems

180
16
32

0

70

Mass Storage Systems GTI Constellation Paramters

The Constellation parameters are updated by editing the firmware
block containing them. The Corvus Diagnostic program provides
this capability.

Corvus Systenms 71

Mass Storage Systems GTI

This page intentionally left blank.

Corvus Systems

Constellation Paramters

72

Mass Storage Systems GTI Omninet Protocols

|
OMNINET |
PROTOCOLS | 2
I
l

This chapter describes the Omninet functions of the

omniDrive mass storage system, The Bank mass storage system, and
the disk server for Rev B/H drives. It describes how disk
commands are sent over an Omninet local area network.

A brief review of the Omninet local Area Network General
Technical Information Manual, chapter 3, will help you
understand the material presented here. In that manual, the
Oomninet command vectors used to send and receive messages are

described. The two commands that are relevant to this discussion
are repeated below:

Corvug Systems 73

Mass Storaye Systems GTI

Send Message
Command vector

Omninet Protocols

0/ 1 | BYTE | Command code = 40h
"1/ 3 | ADR3 | Result record address
"4/ 1 | BYIE | Destination socket T
5,3 | ADR3 | Data address
8,2 | WoRD | Data lemgth
10/ 1 | BYTE | User control length
11,1 | BYTE | Destimation host

0/ 1 | BYTE | Return code - values are:
| | 00-7Fh - message sent successfully
| | 80h - message not acknowledged
| | 81h - message too long
| | 82h - message sent to unitialized socket
| | 83h - control length mismatch
| | 84h - invalid socket number
| | 85h - invalid destination address
1/ 3 | BYTE | Unused
4 / n | ARRY | User control information

Corvus Systens

74

Mass Storage Systems GTI Omninet Protocols

Setup Receive Message
Command vector

Offset/Len| Type | Description

- - I - D " - S D D - D R G D S G I D I G I D R WS SIS A W S W W G G G S S W S I W G G -

0o/ 1 | BYTE | Command code = FOh
173 | ADR3 | Result record address
"4/ 1 | BYTE | Socket number
5,3 | ADR3 | Data address
"8/ 2 | WORD | Data length
10 /1 | BYTE | User control lemgth

- S - G S G D G G - D - = ——— - - OO - - G o~ w— - -

- D D G G P B G I D G G I D I G G I G IR GNP GID GNP GE R D G NS G W G S T GRS D W WS W e T N G R SV WPl S GMN WD Wb Wi G W

- - - - D S D G D G G T G G D I I G CID G D G G GI IS GED W G TED T W W SN SER WS CER GNR e TR NS NP GE W G G - S S -

0/ 1 | BYTE | Return code - values are:
| | FFh - initial value (set by user)
| | FEh - socket set up succesfully
| | 84h - invalid socket number
| | 85h - socket already set up
| | 00h - message received
1/1 | BYTE | Source host
2/ 2 | WORD | Data length
4 / n | ARRY | User control information

- D - - D - D S T D D S G D D D R G G AT T G S G G S I D M SID G S W GER P S e SR SRR SN D M R MEs W M GED GER D NS Sw

Any message exchange on Omninet consists of setting up a receive
socket with a Setup Receive command, sending the message with a
Send command, and waiting for the reply to be received. You
always need at least 4 buffers for this task:

1) a command vector

2) a data buffer

3) a result record for the Setup Receive message,
4) a result record for the Send message.

You can use two separate command vectors: one for Setup Receive
and one for Send, but you don't have to. You can also use
separate data buffers. You MUST use separate result records.

The disk servers on Omninet currently provide two functions: the

execution of disk commands, and a name service. In the future,
they and other servers, developed by Corvus or other software

Corvus Systems 75

Mass Storage Systems GTI Omninet Protocols

developers, will provide many more services. 1In order for a
server to distinguish which service is being requested, Corvus
has defined a message format which includes a protocol identifier
(protocol ID) as the first 2 bytes of each message. This
protocol ID identifies what type of service is being requested or
provided. For more information on protocol IDs, refer to the
Omninet Protocol Book.

CONSTELLATION DISK SERVER PROTOCOLS

The Disk Server Protocol is used to exchange commands and data
between Corvus disk devices on Omninet and the host computers
which they support. The disk commands were defined in Chapter 1.
The Disk Server Protocol defines the format of Omninet messages
which contain disk commands, data, and control information. It
also describes the mechanism for exchanging those messages. In
general, the Disk Server Protocol is a two way conversation
between a client and a server. The server is usually a Corvus
disk device and the client is usually a personal computer. It is
possible for a personal computer to run a program which enables
it to act as a Corvus disk device. Corvus OmniShare for the
IBM-PC, and Corvus DisketteShare for the Apple II, are two
examples of such a program.

The Disk Server Protocol is a transaction based protocol; in
other words, for each message sent, a reply is expected. There
are two basic types of transactions: short commands and long
commands. Short commands (4 bytes or less) involve the exchange
of two messages, while long commands require four messages to
complete a transaction. A disk read is a short command and a
disk write is a long command.

The general message exchange for data transfer is shown in Figure
2.1. For a short command, the Disk Request message contains the
first four or fewer bytes of the command, and the Results message
contains the results of the command. For a long command, the
Disk Request message contains the first four bytes of the
command. After sending the Disk Request message, the host waits
for a Go message from the server. After receiving the Go
message, the host sends the remaining bytes of the command with a
Last message. The server finally sends the results of the
command with the Results message.

Corvus Systems | 76

Mass Storage Systems GTI Omninet Protocols

Short command Long command
Client Server Client Server
Disk Request ' Disk Request
O e ncc o c e e - -—-—————— > O m e e e e —-————————————— >
Results Go
e —————————————————— o o o e e e e o)
Last
O ————————————————— >
Results
oo e e e o

Figure 2.1: Message exchange for Disk Server Protocol

There are two versions of Disk Server Protocol: old and new.
These are described in detail in the sections "0ld Disk Server
Protocol," and "New Disk Server Protocol." The new protocol
follows the protocol guidelines established in the Omninet
Protocol Book, supports more operations than the old, and uses
different sockets. The operations supported are listed below:

old new originator

Disk request (send disk command) x x client
Last (remainder of disk command) X X client
Abort request X client
Go X X server
Results (of disk command) X x server
Cancel request x server
Restart request X server

An example is probably in order. Let's look at the process of
sending both a short and long command. This example uses the 01d
Disk Server protocol. You may wish to refer ahead to the section
"0ld Constellation Disk Server Protocol" for further explanation
of the message contents.

Sending A Sshort Command

This section contains an example of sending a short command.

We will use the Read a Sector (512-byte sector) command to read
sector 0 from drive 1 on server 1. Recall that this command is 4
bytes long: command code is 32h, and the sector address is 01h,
00h, OOh.

Corvus Systems 77

Mass Storage Systems GTI

First, we must issue a Setup Rec

Omninev Protocols

eive command to the transporter.

The fields marked with - will contain the indicated data upon

receipt of the Results message.

Command vector

tom———— ———————————————— + +
|]command code = FOh | |
tom e ——— e ——————— + |
| result | ===+
+= -+
| record |
+= -+
| address |
L e L e e L L T +
| socket number = BOh |
te—— e ———————— +
| user | ===+
+= -+ |
| data I I
+= -+ |
| address | |
+ |
| user data 02h | |
+=- -+ +
| length = 512 0o0h |
e ——— +
|control len = 03h |
e e L L L L L L e +

Corvus Systems

Receive Result Record

| return code FFh |
o ————————————— - +
| (source address) |

trm——————— e ——————— +
| = (user data |
+= -+
| = 1length) |
- e e e e o e e e e e e -
| = (user control |
+= -+
| = information) |
+= -+
I I
e et +
User data buffer
------ Stemmm e — et
| = (512 bytes of |
+= -+
| - data) |
| - I
e L +

78

Mass Storage Systems GTI

Omninet Protocols

When the return code field in the Receive Result Record changes

to FEh, the socket has been successfully set up.

We can now

proceed to send the Disk Request message.

Command vector

tom—— e, —————— + +
| command code = 40h | |
e et + i
| result | ===+
+=- -+
| record [
+- -+
| address |
e e L DL L L E +
| socket number = BOh |
o ————— +
| user | ===+
+=- -+ (
| data | |
+- -+ |
| address | [
e T + |
| user data 00h | i
+- -+ 1
| length = 4 04h | |
L + +
|control len = 04h |
tmmmm e ——— +
|destination = 01h |
tommr e - +

Corvus Systems

Send Result Record

e +
| return code = FFh |
tom e ——— +
| unused |
+= -+
| I
+- -+
| |
e e e +
| send length 00h |
+ = -+
| length = 4 04h |
et et +
| receive 02h |
+= -+
| length = 512 00h |
o ——————— +
User data buffer

e +
| read 32h |
+- -+
| command 0lh |
+= -+
I 00h |
+- -+
| ooh |
trm— e ———————— +

79

Mass Storage Systems GTI Omninet Protocols

When the return code field of the Send Result Record changes to
less than 80h, the message has been successfully sent. Now you
must wait for the return code field of the Receive Result Record
to change to 00h, indicating that a message has been received.
If there are no errors, the Receive Result Record and the User
Data Buffer will look like this:

Receive Result Record

tmm————— e ——————— +
| return code = 00h |
tmme e +
| source addr = O01lh |
tmm——— e ———————— +
| user data 02h |
+= -+
| length = 512 00h |
- o e e e e e e e R
| length of 02h |
+=- -+
| response=513 0lh |
o ————————————— +
| disk rslt 00h |
e e L LT +

Sending A Long Command

This section contains an example of a long command. We will use

the Write a Sector (512-byte sector) to write sector 0 to drive 1
on server 1. Recall that this command is 516 bytes long: command
code is 33h, and the sector address is 0lh, 00h, 00h, followed by
512 bytes of data.

Corvus Systems 80

Mass Storage Systems GTI Omninet Protocols

First, we must set up a socket to recevie the Go message. The
fields marked with - will contain the indicated data upon receipt
of the Go message.

Command vector Receive Result Record
ot ———— + Fomm——— Stemmm e —— e +
| command code = FOh | | | return code = FFh |
trm e ———————— + | o e e +
| result | ===+ | = (source address) |
+= -+ e L L e e e e +
| record | | - (user data |
+=- -+ += -+
| address | | = 1length) |
tom— e ———— + e ettt +
| socket number = BOh |
o ————————————— +
| user | ===+
+- -+ | User data buffer
| data | tom———— Stemmm e ———— +
+ - -+ | = (2 bytes of data) |
| address [+- -+
o ——— + | - |
| user data 0o0h | = =
. -+ | ‘
| length = 2 02h | tom—————— - e +
tom e ———— +
|control len = oo0h |
o ————— +

Corvus Systens 81

Mass Storage Systems GTI Omninet Protocols

When the return code field in the Receive Result Record changes
to FEh, the socket has been successfully set up. We can now
proceed to send the Disk Request message.

Command vector Send Result Record

Lt CEEE L P L P Lt + tm————— Stemm e ————————— e +
| command code = 40h | | | return code = FFh |
tom— e — e —————— + | o ———————————————— +
| result | ===+ | unused |
+- -+ +- -+
| record | | |
+- -+ += -+
| address | | |
e e L LT + ——t e —————— +--
| socket number = BOh | | send 02h |
e et e L L L L Lt + += -+
| user | ===+ | length = 516 02h |
+= -+ | tomm e +
| data | | | receive ooh |
+= -+ | += -+
| address | | | length = 0 00h |
e + | tom——— e ————— +
| user data 00h | |
+- -+ |
| length = 4 04h | | User data buffer
e + + Dt ———————— +
|control len = 04h | | 1st four 33h |
e e L L L L LT LT + += -+
|destination = 0lh | | bytes of 0lh |
D e L + +=- -+
| write ooh |
+- -+
| command 00h |
tmmm— e ——— e +

Corvus Systems

82

Mass Storage Systems GTI Omninet Protocols

When the return code field of the Send Result Record changes to
less than 80h, the message has been successfully sent. Now you
must wait for the return code field of the Receive Result Record
to change to 00h, indicating that a message has been received.
If there are no errors, the Receive Result Record and the User
Data Buffer will look like this:

Receive Result Record

e E L C L T +
| return code = O0O0h |
toe— e ——————— +
| source addr = 01h |
e e L LT L T +
| user data 00Oh |
+ - -+
| length = 2 02h |
o e e e +

Corvus Systems 83

Mass Storage Systems GTI

Omninet Protocols

After the Go message has been recevied, we are ready to send the
Last message, but first we must set up to receive the Results

message.

There will be no user data received, since the Write

command returns only a disk return code, but we will specify a
data buffer anyway.

Command vector

tom— e, ——————— +
| command code = FOh |
tomm e ———— +
| result
+= -+
| record |
+=- -+
| address |
bt ——— ——————e————— +
| socket number = BOh |
L L e e e +
| user
+= -+
| data |
+- -+
| address |
e L L L L L L L E Lt +
| user data 02h |
+- -+
| length = 512 00h |
e e L L L L L Lt +
~|control len = 03h |
e e L L L T e +

Corvus Systens

Receive Result Record

Stemm e ——————— +
| return code = FFh |
tom—— e —————— +
| = (source address) |
T et L T e +
| - (user data |
+- -+
| = 1length) |
tom—————————————————— +

+- -+
| = information) |
+- -+
| I
fmmm— - +
User data buffer

P e +
I I
+- -+
I I
I I
o ————————————— +

84

Mass Storage Systems GTI

When the return code field in the Receive Result Record changes
to FEh, the socket has been successfully set up.
proceed to send the Last message.

AOh.

Command vector
tom— e ————————— + +
|command code = 40h | {
temm e —————— + i
| result | ===+
+= -+
| record |
+- -+
| address |
tmmm e ————— +
| socket number = AOh |
tomm e ———— +
| user | =t
+- -+ |
| data | +
+- -+
| address !
e e LT L +
| user data 02h |
+=- -+
| length = 512 ooh |
tmrm e ————— +
|control len = ooh |
e ———————————————————— +
|destination = 0lh |
e e e C L L L +

Corvus Systemns

- o -

Omninet Protocols

We can now

Send Result Record

D o o e e o o +
| return code = FFh |
e +
| unused |
+- -+
l I
+= -+
I I
e e L L L LT L +

512 bytes of data

to be written

Note that the socket number is

85

Mass Storage Systems GTI Omninet Protocols

When the return code field of the Send Result Record changes to
less than 80h, the message has been successfully sent. Now you
must wait for the return code field of the Receive Result Record
to change to 00h, indicating that a message has been received.
If there are no errors, the Receive Result Record and the User
Data Buffer will look like this:

Receive Result Record

o —————— +
| return code = 00h |
e e L L +
| source addr = O01lh |
tmm—— e ————— +
| user data ooh |
+= -+
| length = 0 00h |
- e e e e e e e e e o =
| length of 00h |
+= -+
| response=1 0lh |
tomm— e ————— +
| disk rslt 00h |
Y L L L L L et T e +

For the example above, the sequence of message exchange using the
new protocol would be exactly the same; only the contents of the
User Control and the User Data buffers and the socket usage would
differ.

As you can see from the above example, the disk server protocol
uses the transporter's message splitting feature. The disk
server protocol always knows what packet is expected next, so it
can specify the user's buffer when it sets up a receive. The
control information always goes to a separate data area managed
by the driver. This feature cuts down on the amount of data
movement that must take place, by putting the command results
directly into the user's buffer.

The concept of short and long commands is used because of limited
buffer space in the disk server. The disk server is capable of
queuing one request for each network device. When it is ready
for the Last portion of the disk command, it sends the Go

Corvus Systems 86

Mass Storage Systems GTI Omninet Protocols

message. The disk server emulates the Constellation multiplexer
in that once the server services a particular host, it accepts up
to 32 commands before going on to the next host. See Chapter 3
for more information on disk server service times.

The OmniDrive and Bank controllers support both the old and the
new protocols, while the disk server for Rev B/H drives supports
only the old protocol. All the hosts on the network are treated
separately, i.e. the OmniDrive and Bank can support one protocol
for one host and a different protocol for another host. The
protocol to be used is derived from the type of Omninet message

format received by the controller. It will be used for only that
command.

OLD DISK SERVER PROTOCOL

(The 0ld Disk Server Protocol was written before the idea of
protocol IDs was finalized; therefore it does not abide by the
current protocol guidelines.)

Corvus Systens 87

llass Storage Systems GTI 0ld Disk Server Protocols

Name: Disk request Protocol ID: -
User Control Length: 4 Message Type: -
User Data Length: 4 or less Socket Usage: BOh

User Control Format:

Field Name |Offset/Len| Type | Description

M | 0/ 2 | WORD | Number of bytes in command.
| | | If M>4, then this is a long
| | | command.

N | 2/ 2 | WORD | Maximum number of return

| | | bytes excluding the disk
| | | return code.

Field Name |Offset/Len| Type | Description

DATA | 0/ n | - | First 4 or fewer bytes of
| | | disk command.

This message is used to send the first four bytes of a disk
command to the server.

If M > 4, then a Go message is expected next, otherwise a Results
message is expected.

Corvus Systens 88

Mass Storage Systems GTI 0ld Disk Server Protocols

Name: Last Protocol ID: -
User Control Length: 0 Message type: -

User Data Length: depends on command Socket Usage: AOh

User Data Format:'

DATA | 0/ n | WORD | M minus 4 bytes of
| | | disk command

The Last message is used to send the last M-4 bytes of a long
command to the server. This message is sent in response to a Go

message from the server. M is the M from the Disk Request
nmessage.

If there are no errors, the next message from the server should
be the Results message.

This command is always sent to socket AOh.

Corvus Systems 89

Mass Storage Systems GTI 0ld Disk Server Protocols

Name: Go Protocol ID: -
User Control Length: O Message type: -
User Data Length: 2 : Socket Usage: BOh

User Data Format:

GO | 0/ 2 | WORD | 'GO' - 474Fh

The Go message is sent by the server in response to a Disk
Request message. It tells the client that the server is ready to
receive the Last message.

If the most significant bit of the first byte of the GO Field

(i.e., the 'G' byte) is on, the disk has been reset and the
operation should be restarted.

Corvus Systems 20

Mass Storage Systems GTI 0ld Disk Server Protocols

Name: Results Protocol ID: -
User Control Length: 3 Message type: -

User Data Length: depends on command Socket Usage: BOh

User Control Format:

- - I I D T GE = S G D GED I G GED G G G SHS GED N GED GRp GED N GNP GHD GNP N ED G D GIN GED WP WS GAN GoR WV GNN GNP WED GNP SUA SN S G G GPT SIS W Ma - -

Field Name |Offset/Len| Type | Description

- D - G S D D - - G . - - - - - . .- W S WS VWS I CHD W W W - - -

NACTUAL | O / 2 | WORD | Number of bytes actually
| | | returned including the disk
| | | return code.

D - - - - - - —— ¥} I NS D W D G D NS GAG GO VNS WA WN) GRS GuA ThG WS GO WAA W WA ERO WD W MEA GUD A WS W WA E S S

S - D D D G I S G S - G S G S . G G G S G GED SIS SIS WIS D (TR FWS GEA GRS W WS W W WD SN GE W GXR S W S . G - -

Field Name |Offset/Len| Type | Description

- - . T - G W G G . - F . G - G . NS NS R G G SN W SN WS A W S GHA G W G G G W -——— - -

DATA | 0/ n | ARRY | Results of disk command
I I i (NACTUAL-1 bytes).

This message contains the results of a disk command.

If the most significant bit of the first byte of the NACTUAL
field is on, the disk has been reset and the operation should be
restarted.

Corvus Systems 91

Mass Storage Systems GTI 0ld Disk Server Protocols

Name: Find a server Protocol ID: Ol1FEh
User Control Length: O Message type: O0lh
User Data Length: 8 bytes Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
"MsGTYP | 2/ 1 | BYTE | Message type - 01n
"M | 3/ 2 | WORD | Length of command - 0001h
Ty T 5,2 | WORD | Expected length of

| | result - 0000h

This message is used to broadcast an illegal disk command. The
disk server and the OmniDrive respond to this message with a
Results message; The Bank does not respond to this message.

Some host systems using this protocol broadcast an illegal disk
command during power on to find servers on the network. They try
to boot from the first server that replies. To prevent host
systems from booting from The Bank, The Bank controller ignores
the illegal command opcode FFh and does not return any status.
Other illegal commands are acknowledged.

Corvus Systems 92

Mass Storage Systems GTI New Disk Server Protocols

NEW SERVER PROTOCOL

Disk servers with PROM versions DS8A.A or DSD18A do not support
the new disk server protocol.

Disk servers with PROM version DSD9B1D and later, OmniDrives, and
Banks support the old disk server protocol as well as the new
disk server protocol.

The new disk server protocol is similar to the old in basic
message exchange; that is, for a short command the client sends a
Disk Request message and expects a Results message; for a long
command, the client sends a Disk Request message, the server
replies with a Go message, the client sends a Last message, and
the server replies with a Results message. However, the new
protocol uses different sockets than the old, and includes more
information with each message. The new protocol also includes
three new messages: Abort, Cancel and Restart.

With the new disk sexrver protocol, the client always sends the
Disk Request message to socket 80h of the server, and the server
always sends the Go message to socket 80h of the client. For the
Last and Results messages, the server and the client respectively
specify to which socket (AOh or BOh) to send the message. All
asynchronous messages (Cancel, Restart, and Abort) are sent to
socket 80h.

The new disk server protocol requires that a media ID be sent
along with each Disk Request. This is to prevent the case when
the media is swapped and the host unknowingly attempts to write
to the wrong tape. During power up, the controller generates a
random number to be used as the media ID of the tape. This
number is based on the value of the free running counter of the
6801 clocks; it is random and has a value between 0-0FFFFh.

The host can obtain the current media ID by issuing a Get Drive
Parameters command with a media ID of zero. A media ID of zero
is honored by the controller regardless of the current ID. The
current media ID is one of the parameters returned by the Get
Drive Parameters command.

The controller broadcasts a Cancel message during power up to
inform all hosts on the network about a media change. If a host
does not receive or act upon the Cancel message, it will receive
a Wrong Media ID error message when it tries to access the tape.
The host can recover by reissuing a Get Drive Parameters command
with an ID of zero in order to obtain the new media ID number.

The new disk server protocol also requires that a request ID be
sent along with each disk command. This is done so that either
the disk server or the host can cancel, abort, or restart a
particular command. The request ID is selected by the host, and
can simply be an integer which is incremented for each request.

Corvus Systems 93

Mass Storage Systems GTI New Disk Server Protocols

Any Cancel, Restart, or Abort message includes a field which
indicates the reason for the abnormal condition. The possible
reason codes are summarized below:

02h

03h

04h

05h

Corvus Systems

Meaning

Timed out - either the disk server timed out
waiting for a Last message, or the host timed out
waiting for a Go or Results message. See chapter
3 for more information on timeouts.

Offline - the disk device is currently offline for
backup or reformatting.

Out of synch - the server has received a Last
message when it was not expecting one.

Wrong media - the MEDIAID in the Disk Request
message does not match the current media ID.

Rebooted - the server has just come online.

94

Mass Stor

Name: Di
User Cont

User Data

User Data

Field Nam

MEDIAID

RESHOST

This mess
command t
(ResHost)

The host
during th
server.
media ID
then the
but will
~includes

IfM> 4,
Results m

Corvus Sy

age Systems GTI New Disk Server Protocols

sk request Protocol ID: Ol1lFFh

rol Length: O Message Type: 0001lh
Length: 18 Socket Usage: 80h
Format:

e |Offset/Len| Type | Description

| 2 / 2 | WORD | Message type ~ 0001h
") 4/ 2 | WomD | Request 1p
"6/ 2 | WORD | Media 1p
"1 8/ 1 | BYTE | Result host
| 8/ 1 | BYIE | Result socket - AOh or Boh
"1 10/ 2 | WORD | Number of bytes in command.
| | | If M>4, then this is a long
| | | command.
"1 12 / 2 | WORD | Maximum number of return

| | | bytes excluding the disk
| | | return code.

| 14 / 4 | ARRY | First 4 or fewer bytes of
| | | disk command.

- — - - W - ——— - En - . Y S TmE US G THR GH R D €N W N - W S AT S - —————— - — -

age is used to send the first four bytes of a disk
o the server. It tells the server to which host
and to which socket (ResSock) to send the reply.

selects the request ID. The media ID was established
e first message exchange between the host and this

If the media ID does not match the server's current
(because someone has switched Bank tapes, for example),
server will not respond to the Disk Request message,
send a Cancel message instead. The Cancel message

the current media ID.

then a Go message is expected next, otherwise a
essage is expected.

stems 95

Mass Storage Systems GTI New Disk Server Protocols

Name: Last Protocol ID: O1FFh
User Control Length: 12 Message Type: 0002h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

PID | 0/ 2 | WORD | Protocol ID # - OlFFh
" MSGTYP | 2/ 2 | WORD | Message type - 0002h
"RQSTID | 4/ 2 | WORD | Request ID
“reserved | 6/ 2 | WORD | Reserved - use 0's
“reserved | 8, 2 | WORD | Reserved - use o's
reserved | 10/ 2 | WORD | Reserved - use 0's

Field Name |Offset/Len| Type | Description

DATA i 0/ n | ARRY | M minus 4 bytes of disk
| | | command

The Last message is used to send the last (M-4) bytes of a long
command to the server, where M is the M from the Disk Request
message. This message is sent in response to a Go message from
the server. Last messages are sent to socket AOh or BOh,
whichever was specified in the Go message.

If there are no errors, the next message from the server should
be the Results message.

Corvus Systems 96

Mass Storage Systems GTI New Disk Server Protocols

-Name: Abort Protocol ID: Ol1lFFh
User Control Length: O Message Type: 0003h
User Data Length: 8 Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID | 0,/ 2 | WORD | Protocol ID # = O1lFFh
MSGTYP | 2/ 2 | WORD | Message type - 0003h
"RQSTID | 4/ 2 | WORD | Request I»
"REASON | 6/ 2 | WORD | Reason for abort:

| | | 0lh = timed out waiting for
| l | disk server response

- G G S 2 I W\ TR W WS GER WU I U WD S G G G G N I G CE W IR G T G G G I G S D I G G D D G I D R S D WD G G S D - -

This message tells the server to abort request RQSTID. If the
RQSTID is 0 then abort any requests from this host.

Corvus siystems 97

Mass Storage Systems GTI

Name: Go
User Control Length: O

User Data Length: 8

User Data Format:

New Disk Server Protocols

Protocol ID: O01FFh
Message Type: 0100h

Socket Usage: 80h

Field Name |Offset/Len|
PID | o0/ 2 |
MSGTYP | 2/ 2 |
RQSTID | 4 /2 |
reserved | 6 /1 |
LASTSOCK | 7/1 |

Socket number to which Last
message should be sent
(AOh or BOh)

The Go message is sent by the server in response to a Disk
Request message. It tells the client that the server is ready to
receive the Last message for request RQSTID.

Corvus Systems

S8

Mass Storage Systems GTI New Disk Server Protocols

Name: Results Protocol ID: O1lFFh
User Control Length: 12 Message Type: 0200h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

D - G G S D - G T . T D I G G W GED WG WS GE S WD W GEM CED D GER GHS N MED SR AN R GRS MR BB GNR MY U wme T TR W G WY W A S

- - - - . - Gw W = CE W G G D G G G Gh TH G W GRS S Y N T WSS W G G IR W N T OW G e M -

PID | 0/ 2 | WORD | Protocol ID # - OlFFh
"MSGTYP | 2/ 2 | WORD | Message type - 0200n
"RQSTID | 4/ 2 | WORD | Request 10
U NACTUAL | 6/ 2 | WORD | Number of bytes acutally

| | | returned, including the disk
| | | return code.

T - S WD D WIS > R ot G - - S - - — W W W S G T O NI MM GED GER GEM NS M WO VHD D Sve GED NP MK TS W W N G W M G G S G S W

reserved | 8 1 | BYTE | Reserved - use O
RETCODE | 9 1 | BYTE | Disk return code
reserved | 10 / 2 | WORD | Reserved ~ use 0's

D D D G M D G G GED TR TR I S W N G S W GD AR M - WS G W . G W GE R WD U K M S STY COw % e G S NS G CHE NS WE S B S T S - G w— o S

D SED G WD A D GES W WA AT T M G G GG GRS G GRS GED VMR GND NN G GN WS G Vel UL GNS MR WS CER WA GN GID €SR GNR GES N W TR OOA EER WI NS ©ES GH GES GHN S NED WD W S CER WS i

- G N G as GE VER WD OV VD W W SN NS W S D G G W R G GED D e ORGSO NS GES I KT €U TS NS GND EIR GNP L VW G S G S GHD R AP GND (T WS WEN KN GHE ENS aNe W

DATA ; 0 / n | ARRY | Results of disk command
: | (NACTUAL-1 bytes)

I VS T TR T D S NS WM GET S G M e GG S G S NS S W G S W S W N T R GKD (KR W IR W WD O @N WA G W GNP WA e O PN N TS G G N GO M TAE W de G e

This message contains the results of a disk command. It is sent

to socket AOh or BOh, whichever was specified in the Disk Request
message.

Corvus Systems 99

Mass Storage Systems GTI

Name: Cancel
User Control Length: 0

User Data Length: 10

User Data Format:

New Disk Server Protocols

Protocol ID: 01FFh
Message Type: 0300h
Socket Usage: 80h

Reason for cancel:
02h - disk device has gone
offline
04h - the MEDIAID in the
Disk request message
does not match the
current MEDIAID

Field Name |Offset/Len| Type
PID | 0/ 2 | WORD
MSGTYP | 2/ 2 | WORD
RQSTID | 4 / 2 | WORD
REASON | 6 / 2 | WORD

| I

| I

I |

I I

I I

I I
MEDIAID | 8 / 2 | WORD

This is the server's mechanism for cancelling a request.

RQSTID

identifies the request which was cancelled.

Corvus Systems

100

Mass Storage Systems GTI

Name: Restart
User Control Length: O

User Data Length: 10

User Data Format:

New Disk Server Protocols

Protocol ID: O1FFh
Message Type: FFO0Oh

Socket Usage: 80h

Field Name |Offset/Len| Type | Description

PID | 0/ 2 | WORD | Protocol ID # - OlFFh
MSGTYP | 2 / 2 | WORD | Message type -~ FFOOh
RQSTID | 4 / 2 | WORD | Request ID
REASON | 6 / 2 | WORD | Reason for restart:
| l | 05h - server has been
| | | rebooted
| i | ©O3h - out of synch: a Last
| | | message was received
I | | when one was not
| ! | expected.
i | | O0lh - timed out: Last
| | 2 message not received
I | i after Go was sent
MEDIAID | 8 / 2 | WORD | Current Media ID

T - D D D T D G D WS TS 3 WD G G G D S G D S G SIS I I D G TS G G W A W WO T -

This is the server's mechanisin for telling the host to restart a

request. This tells.the client to send request RQSTID again.

RQSTID is zero then the client should
pending te that server.

restart any requests

MEDIAID is the current media ID. If it does NOT match the

MEDIAID of the pending request, then the the media was changed

(e.g., chhanging a Bank tape) while the server was offline.

Corvus Svstems

If

101

Muss Storage Systems GTI Name Lookup Protocols

CONSTELLATION NAME LOOKUP PROTOCOL

The Constellation name lookup protocol is used to identify
devices on the network by name. It is currently supported by
disk servers DSD18A, DSD9B1D, and later, all OmniDrives, and all
Banks. It is NOT supported by disk server DS8A.A.

The messages are summarized below:

Hello
Goodbye

wWho Are You
Where Are You
My ID Is

The Hello and Goodbye messages are broadcast during power up and
power down respectively, to announce the presence or absence of a
device. The Who Are You and Where Are You messages can either be
broadcast or directed; a My ID Is message is expected in
response.

Each device on the network can be identified by its name, its
Omninet address, or its device type. Using the name lookup
protocol, you can find the answers to such questions as, What are
the addresses of all the disk servers on the network? and What is
the address of the disk server named RDSERVER?

Each device is assigned one or more device types which are used
to identify the types of services it supports. There are two
kinds of device types: generic and specific. Generic device
types define a class of Omninet hosts, while specific device
types define a specific service. The currently assigned device
types are listed in Appendix B.

As always, there are a few exceptions to the rules; the device
types for disk devices are listed below. As you can see, the
disk server and the Bank each respond to only one device type.

Generic Specific
Rev B/H disk server 1 1
OomniDrive 1 6
Bank - 5

Corvus Systems 102

Mass Storage Systems GTI Name Lookup Protocols

For example, the following algorithm finds all (booting) disk
servers on the network:

Reset Up Receive
On Socket 80h

Figure 2.2a: Find all disk servers using directed messages

Corvus Systems 103

Mass Storage Systems GTI Name Lookup Protocols

You could also use the following algorithm, but it is not quite
as reliable since it uses a broadcast command and timeouts:

(5

Setup Recelve
On Socket BOh

L 4

Send Who Are You
Device Type= 1
To Destination FFh

Time <~ Time ~1

Y
Time = 07
Setup Recieve
v On Sockel 80h
in
End Receive On Ast
Socket 80h N R Py
N A
4
Count A
Done Disk Server

Figure 2.2b: Find all disk servers using broadcast messages

Corvus Systems 104

Mass Storage Systems GTI Name Lookup Protocols

The following algorithm is used to reply to Who Are You and Where
Are You messages:

1. Respond to all device types that apply.

2., If the device type is FFh, the device responds with its
most specific device type.

3. If the device type is generic, and it is one of the
generic types assigned to this device, then the device
responds with the same generic device type. For example,
if the OmniDrive receives a Who Are You, device type =
0lh, it replies with a My ID Is, device type = 0Olh.

4, If the device type is specific, ther the device
responds with the same device type.

Corvus Systems 105

Mass Storage Systems GTI Name Lookup Protocols

Name: Hello Protocol ID: O01FEh
User Control Length: O Message Type: 0000h
User Data Length: 18 Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
" MSGTYP | 2/ 2 | WORD | Message type - 0000n
"SOURCE | 4/ 2 | WORD | Omninet address of device
" DEVIYPE | 6, 2 | WORD | Device type
"NaME | 8/ 10 | BSTR | Device name

This message should be broadcast whenever a host "logs onto" the
network.

Whenever a disk server receives one of these messages, it adds
the device to its Active User Table. If DEVTYPE is 1,
indicating that the Hello message came from some other disk
server, then the receiving disk server sends back a My ID Is
message to the originator of the Hello message. See the
discussion of the Active User Table in the next section.

Corvus Systems 106

Mass Storage Systems GTI Name Lookup Protocols

Name: Goodbye Protocol ID: Ol1lFEh
User Control Length: O Message Type: FFFFh
User Data Length: 18 Socket Usage: 80h

User Data Format:

D D CED IR IS I D GE P GHR GER GED IR G SR U S G S R IS N G GED GND GED G L N G GRS G G S G T S T T G D G W W - T G . - -

PID | 0/ 2 | WORD | Protocol ID # - OlFEh
" MSGTYP | 2/ 2 | WORD | Message type - FFFFh
"'SOURCE | 4/ 2 | WORD | Omninet address of device
"DEVIYPE | 6/ 2 | WORD | Device type
" NAME | 8/ 10 | BSTR | Device name

D G . T G R R W G G N R TR S G G G CEL D G T GE W A S GN) UED SN CND SN WD GEN AR GRS W (N SES GUR NOR TP GNR W W W GMD GED G W e G

This message should be broadcast whenever a host "logs off" the
network.

Corvus Systems , 107

Mass Storage Systems GTI Name Lookup Protocols

Name: Who Are You Protocol ID: Ol1lFEh
User Control Length: © , Message Type: 0200h
User Data Length: 8 Socket Usage: 80h

User Data Format:

- - I G G T S I G W I D D N UED GNR SIS P D G G G G G SRS G M S GED GHD WS GNP GED GES GNP GED GES GHE GES GED G GNS GNP GND G E) WD GID G G GE G

Field Name |Offset/Len| Type | Description

PID [0/ 2 | WORD | Protocol ID # - OlFEh
"MSGTYP | 2/ 2 | WORD | Message type - 0200h
"SOURCE | 4/ 2 | WORD | Omninet address of deivce
"DEVIYPE | 6/ 2 | WORD | Device type

This message can be directed or broadcast. Only devices which
are assigned the specified DEVTYPE will respond. If DEVTYPE =
FFh, all devices will respond.

The expected response is a My ID Is message.

Corvus Systems 108

Mass Storage Systems GTI Name Lookup Protocols

Name: Where Are You Protocol ID: Ol1lFEh
User Control Length: O Message Type: 0300h
User Data Length: 18 Socket Usage: 80h

User Data Format:

PID | 0/ 2 | WORD | Protocol ID # - O1lFEh
"MSGTYP | 2/ 2 | WORD | Message type - 0300h
"SOURCE | 4/ 2 | WORD | omninet address of device
"DEVIYPE | 6/ 2 | WORD | Device type
" NaME | 8/ 10 | BSTR | Device name

This message is broadcast. Only devices with the specified name
and device type will respond.

The expected response is a My ID Is message.

Corvus Systems : 109

Mass Storage Systems GTI Name Lookup Protocols

Name: My ID Is Protocol ID: O1FEh
User Control Length: O Message Type: 1000h
User Data Length: 18 Socket Usage: 80h

User Data Format:

Field Name |Offset/Len| Type | Description

PID | 0/ 2 | WORD | Protocol ID # - O1FEh

"MseTYP | 2/ 2 | WORD | Message type - 1000h
"SOURCE | 4, 2 | WORD | omninet address of device
" DEVTYPE | 6, 2 | WORD | Device type
" NAME | 8/ 10 | BSTR | Device name

This message is sent in reponse to a Who Are You or a Where Are
You message.

Corvus Systems 110

Mass Storage Systems GTI Active User Table

ACTIVE USER TABLE

It is not practical to implement the Constellation name protocol
on all hosts, because the name lookup protocol requires that a
host respond to an asynchronous message. Not all processors or
operating systems support asynchronous events. Therefore, Corvus
provides a rudimentary name service with the Active User Table.
The contents of this table were described in Chapter 1. The
Active User Table commands are repeated below:

AddActive
DeleteActiveUsr
DeleteActiveNumber
FindActive
ReadTempBlock
WriteTempBlock

An Active User Table is maintained on each disk device on the
network. Whenever a disk device receives a Hello message, it
adds the user to its Active User Table with an AddActive command.
Similarly, whenever a disk device receives a Goodbye message, it
deletes the user with a DeleteActiveUsr command.

If all the hosts on the network broadcast a Hello message on boot
up, and broadcast a Goodbye message as part of the shut-down
procedure, then the Active User Table will usually contain a list
of which hosts are currently active on the network.

However, since the Hello and Goodbye messages are normally
broadcast, it is possible that a disk device may miss a Hello or
Goodbye message, and that an Active User Table may not reflect
the actual state of the network. It is also possible, in a
multiple disk server network, that the Active User Table on one
disk device may not be the same as that on another disk device.

Each disk device is responsible for initializing its Active User
Table. Here is the sequence of events that occurs when a disk
server is powered on:

1. The disk server broadcasts a Hello message with a
device ID of 1.

2. If another server is present on the network, it will
add the new server to its Active User table, and send a My
ID Is message back to the new server.

3. If the new server receives a My ID Is message, it
reads the Active User table from the server that sent the
message, and uses it to initialize its own table.

4. If the new server does not receive a My ID Is message,

then there are no other disk servers on the network, so it
initializes its Active User table to blanks.

Corvus Systems 111

Mass Storage Systems GTI Active User Table

The OmniDrive goes through a process similar to the one detailed
above, with one difference. The OmniDrive broadcasts a Hello
message with a device ID of 1, so that the old disk server PROM
will recognize it as a disk device. The OmniDrive then
broadcasts another Hello message with a device ID of 6, so that
the Active User Table will contain device ID 6 instead of 1.

Also for the sake of compatability, the OmniDrive replies to a
Hello message with a My ID Is message of device type 1. For the
Who Are You and Where Are You messages, the OmniDrive replies
with device type 6.

The Bank has an Omninet device type of 5. This number is used
for the Hello message during power on and for response to the Who
Are You message. The Bank does not implement the Active User
Table.

Corvus Systemns 112

Mass Storage Systems GTI Disk Drivers

|
OUTLINE OF |
A DISK DRIVER | 3
|
I

This chapter outlines a simple disk driver that interfaces to any
Corvus mass storage device. If written properly, the same Omninet
driver can support a disk server, an Omnidrive mass storage
system, or The Bank mass storage system. A flat cable driver

can support a Rev B/H drive directly, or one connected via a MUX.

When writing a disk driver, you should remember that the Corvus
disk merely supports absolute disk sector reads-writes. It knows
nothing about which computers are connected to it, nor whether it
is connected over flat cable or Omninet. It knows nothing about
volumes or users or file systems. In a network environment, the
drive merely knows which command came from which computer, so
that it can send the reply to the proper computer. Thus, a disk
driver for a Corvus device resides at the BIOS level of the
operating system. This is different from other network
implementations, where references to the disk may be intercepted
at the file level.

A typical BIOS level interface for a disk driver has at least
three entry points: Driver Initialization, Device Read, and
Device Write. These are the only functions discussed here.

The Device Read and Write entry points generally have the
following parameters:

Device number: this number is used as an index into a
table of device characteristics, such as device type,
device location, device size, etc.

Sector number: this is the sector number to be read or
written. Disk devices consist of n sectors, numbered O
to n-1.

Number of sectors: this is the number of sectors to be
read or written.

Buffer: this is the address of a buffer where the data is
to be read into or written from.

Result code: this value is returned. It either indicates

a successful operation, or indicates the nature of the
failure.

Corvus Systems 113

Mass Storage Systems GTI Disk Drivers

The Device Read portion of the driver sends a Corvus disk Read
Sector command, and returns the data in the user's buffer. The
Device Write portion sends a Write Sector command along with the
data in the user's buffer. The sector command used (128, 256,
512, or 1024 bytes) depends upon the sector size used by the
operating system. The examples below assume a 512 byte sector
size. Any information that depends on sector size is marked.

For the purposes of this chapter, it is assumed that the disk
driver treats the entire disk as one device. See the
Constellation Software General Technical Information Manual for
information on how a Constellation disk driver treats a disk as
more than one device.

There are several types of errors that the driver can encounter:
timeout errors (device does not respond), disk errors (controller
errors), hardware errors (Omninet transporter errors). Your
driver must map these errors into the codes that your operating
system defines.

OMNINET

You may want to refer to the following manuals while reading this
section:

omninet Local Area Network General Technical Information,

Chapter 3, pages 31-38, which describes the Omninet commands
Setup Receive, Send, etc.

Chapter 2 of this manual, which describes the disk server
protocols.

Chapter 1 of this manual, which describes the sector read
and write commands.

The disk driver described here is simplified in two ways. First,
this description assumes that the disk driver is the only user of
the tranporter (TM) interface card; that is, the disk driver
expects to be able to use the transporter at will and it throws
away messages it does not recognize. 1In reality, the transporter
functions should be handled by a transporter driver, and the disk
driver should call on the transporter driver to do transporter
functions. Corvus is currently developing a specification of a
transporter driver and software which uses such a driver.

Secondly, the description of the disk driver given here ignores
whether the transporter is buffered or unbuffered. A driver
which handles a buffered transporter will naturally be more
complicated since it must manage the buffer space and move data
to and from user memory. Of course, if a transporter driver

Corvus Systems 114

Mass Storage Systems GTI Omninet

existed which the disk driver could use, then the transporter
driver would handle the buffering, and the disk driver would not
have to worry about whether the transporter were buffered or not.
This is another reason for having a transporter driver.

However, as mentioned above, the driver described here does not
assume the existence of a transporter driver.

The driver is described by the data structures, flowcharts and
notes on the next few pages. The flowcharts cover how to send
short and long commands and describe timeout recovery procedures.
Many systems have no recourse when a timeout error occurs. A
driver written for one of these systems should implement the
timeout recovery described here, but instead of reporting a
timeout error, restart the operation from the appropriate point.

Figure 3.1 reviews the flow of data for a read (short) command,
and for a write (long) command, and shows the areas where
timeouts can occur.

Short Command Long Command

Personal Disk Personal Disk
Computer Server Computer Server

T T
T3.> :/T-II)-S
- T4 \“J'

__/

Figure 3.1 Timeouts for short and long command exchanges

Corvus Systemns 115

Mass Storage Systems GTI Omninet

There are two types of events which would cause a driver to time
out: waiting for a response from the local transporter, and
waiting- for a disk server response. These can be broken down
further as follows:

Transporter timeouts

TO0: The time between a command strobe and the next ready.
Recommended timeout value: 10ms.

Tl: The time between strobing a receive command and the
receive result changing from FFh to FEh. This is very
fast, ususally within 200 microseconds. However, an
incoming receive could happen during the processing of
the Setup Receive, so the elapsed time could be
several milliseconds. Recommended timeout value:
l0ms.

T2: The time between strobing a Send command and its
result changing. The result for a Send command does
not change until an acknowledgement is received or the
transporter gave up after sending 10 retransmissions.
This can produce a very long delay (in computer time),
since 1l transmissions are possible and the
transporter will accept messages for any receives
which are set up. Recommended timeout value: 100ms.

Disk Server timeouts (refer to figure 3.1)

T3: The time between the completion of the Send of the
Disk Request message and the receipt of the Results
or Go message. This interval could be as long as 3
minutes for a disk, and 11 hours for a Bank.
Recommended timeout value: see below.

T4 The time between the completion of the Send of the
Last message and the receipt of the Results message.
Recommended timeout value: 150ms for a disk, 20
seconds for a Bank.

The disk server itself will timeout between sending a Go message
and receiving the Last message. This timeout value is 768ms.
This time is indicated in figure 3.1 by TDS.

Most systems do not use the transporter timeouts (TO, T1, and T2)
since there is nothing they can do if the transporter is not
working reliably.

All systems must support the disk server timeouts (T3 and T4) in
order to work reliably in a multiple server environment. The
timeout value for T3 must be variable, since a 3 minute or 11
hour timeout is not practical.

Coxrvus Systems 116

Mass Storage Systems GTI Omninet

The recommended approach to implementing the T3 timeout is to use
an adaptable timeout. Since different devices have different
timing characteristics, the timeout value must depend upon the
device type. Also, as more servers are added to a network, the
response times will lengthen. Therefore, the timeout value must
also adapt to the network environment.

The flow chart in figure 3.4 shows a very simple method for
adapting the timeout values. The timeout value should start out
relatively short (3 seconds for a disk, 20 seconds for a Bank),
and increase only when a long delay is encountered.

The 01ld Disk Server Protocol is described first, and then the New
Disk Server Protocol is described.

Corvus Systems | 117

Mass Storage Systems GTI 0ld Disk Server Protocols

OLD DISK SERVER PROTOCOL
This section describes the old disk server protocol.

Sample data structures for a disk server driver using 01d Disk
Server Protocol

First the data structure is declared, then a list of offsets
into the structure are declared.

Transporter command vector (see Omninet GTI, pgs. 32,33)
It is not necessary to have more than one command vector,
although it is sometimes more convenient to use separate
records which are preinitialized as Send and Setup receive

WO WO e We W W we “e “e wo wo

commands. .
TCmd .BYTE O : OpCode - command code
.BYTE O ; ResAdr - high order byte of result address
.WORD O H - low order word of result address
.BYTE O 7 Sock - socket number
.BYTE O ; DatAdr - high order byte of data address
.WORD 0 H - low order word of data address
.WORD 0 ; Datalen - data length
.BYTE O ; Crtllen - user control length
.BYTE OFFh ; Dest - destination host number
;7 offsets
OpCode .EQU 0 ; offset to OpCode
ResAdr .EQU 1 ;7 offset to ResAdr
Sock .EQU 4 ; offset to socket number
DatAdr .EQU 5 ; offset to DatAdr
Datalen.EQU 8 ; offset to data length
CrtlLen.EQU 10 ;7 offset to user control length
Dest +EQU 11 ; offset to destination host number (Send only)

Corvus Systems 118

Mass Storage Systems GTI 0ld Disk Server Protocols

Sample data structures for a disk server driver using 0ld Disk
Server Protocol (cont.)

Result record definitions (see section 2.2)
Every driver must have 2 separate result records, one for
sends, and one for receives.

Send result record

we w8 we “e “e “e

SndRes .BYTE O transporter return code
.BYTE O unused
+WORD O unused

SndUC .WORD O M - the number of data bytes to send to drive
.WORD 0 N - the maximum number of data bytes

expected on receive
offsets
offset to transporter return code
offset to M
offset to N

RCode .EQU 0
M .EQU O
N +EQU 2

we Ne We We “e “e “we We “e S “o

Receive result record

RcvRes .BYTE O transporter return code
.BYTE O Src - source host number
+WORD 0 Len - actual length of data received

RcvUC .WORD O DLen - number of bytes actually returned from driv
.BYTE 0 DCode - disk return code

offsets

offset to Src
offset to Len
offset to DLen
offset to DCode

Src .EQU 1
Len .EQU 2
DLen .EQU O
DCode L.EQU 2

WO WO WMe Ve We W We W We “e “o

Data area buffers

G)Y Se ~e ~o e

oData .BYTE OFFh
.BYTE OFFh

this is where we receive the 'GO' packet

~e

DCmd .WORD O
+WORD 0

space for the disk command

~e

Corvus Systems 119

Mass Storage Systems GTI

c, e we we Wo “wo wo wo

a T are

e we we we “o wo

’

OkCode .EQU
GiveUp .EQU
TooLong.EQU
NoSock .EQU
BadHdr .EQU
SndErr .EQU
TOErrDS.EQU
TOErrTR.EQU

~e wo we

rvRet .BYTE O

DrvRet values:
The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with

.
’

0ld Disk Server Protocols

Sample data structures for a disk server driver using 0ld Disk
Server Protocol (cont.)

DrvRet is a global variable in the driver which each routine
sets. It is the value that will be returned to the operating
system upon completion of the driver call.

Driver return code

transporter return codes.

0

128
129
130
131
140
252
253

TimeOut.WORD O
DSNum .BYTE O

Corvus Systems

“e “e We we We we “o “wo “wo

-e we

*T

T - gave up after n retries

T - message too long

T - socket not initialized

T ~ header length mismatch - should never happen
* - unable to send messages to disk server

timed out waiting for disk server response
timed out waiting for transporter
(hardware error)

*

The following global variables are set on each read or
write, to the values specified for the device.

used to control disk server wait loop
disk server number '

120

Mass Storage Systems GTI 0l1d Disk Server Protocols

Fiush

Setup Receive
For Results
Message

V'S

v

-~

Figure 3.2: Flowchart of a short (read) command
0ld Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systems 121

Mass Storage Systems GTI 0l1d Disk Server Protocols

1. Setup receive for results.

TCmd+OpCode <= FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes

TCmd+Sock <= BOh

TCmd+DatAdr <- address of user's buffer
TCmd+DatalLen <- 512 (use appropriate sector size)
TCmd+CrtllLen <- 3

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

2. Send disk command.

TCmd+0OpCode <= 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= BOh

TCmd+DatAdr <- address of DCmd buffer
TCmd+Datalen <- 4 (4 byte read command)
TCmd+Crtllen <- 4

TCmd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)

SnduC +M <- 4

SndUC +N <= 512 (use appropriate sector size)
DCmd+0 <- 32h (use appropriate read command)
DCmd+1 <- sector address byte a4

DCmd+2 <- sector address 1sb

DCmd+3 <- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3. Wait for disk server response.

This is a loop which is checking the transporter return code
in the receive buffer (RcvRes+Rcode). When this value goes
to zero, the disk read has completed. See figure 3.4 and
accompanying notes.

4, If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure.

4, Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

Zorvius Systems 122

Mass Storage Systems GTI 0ld Disk Server Protocols

6. Check the first byte of the User Control Data (RcvUC +DLen).
If the most significant bit is on, the disk has been reset.
Start the entire sequence over.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Corvus Systems 123

Mass Storage Systems GTI 0ld Disk Server Protocols

£

Figure 3.3: Flowchart of a long (write) command
0l1d Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systens 124

Mass Storage Systems GTI 0ld Disk Seuver Protocols

1.

2.

Setup receive for the 'GO' command.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <= BOh

TCmd+DatAdr <- address of GoData
TCmd+Datalen <- 2

TCmd+CrtlLen <= 0

RcvRes+Rcode <- FFh (must initialize the result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Send the first 4 bytes of the write command.

TCmd+OpCode <= 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= BOh

TCmd+DatAdr <- address of DCmd buffer
TCmd+Datalen <- 4

TCmd+CrtlLen <- 4

TCmd+Dest <= DSNum

SndRes+Rcode <= FFh (initialize result code)
SnduC +M <- 516 (use appropriate sector size)
SnducC +N <=0

DCmd+0 <= 33h (use appropriate read command)
DCmd+1 <= sector address byte d

DCmd+2 <- sector address 1lsb

DCmd+3 <- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

Wait for disk server response.

This is a loop which is checking the transporter return code
(SndRes+Rcode). When this value goes to zero, the 'GO!
message has been received. See figure 3.4 and accompanying
notes.

If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure.

Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

Corvus Systems 125

Mass Storage Systems GTI 0l1d Disk Server Protocols

6.

10.

Check the first byte of the data buffer (GoData). If the
most significant bit is on, the disk server has been reset,
and you should restart the sequence from the beginning.

If the data received is anything but the 2 bytes 'GO', the
message is irrelevant. Setup the receive again, and wait for
another response.

Set up another receive to get the results of the next Send.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <= BOh

TCmd+DatAdr <~ address of DCmd buffer
TCmd+Datalen <- 4

TCmd+Crtllen <~ 3

RcvRes+Rcode <- FFh (must initialize the result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Send the rest of the Write command. Note that the socket
number is AOh, not BOh as for the previous commands.

TCmd+OpCode <= 40h (Send command)

TCmd+ResAdr <- address of SndRes

TCmd+Sock <= AOh

TCmd+DatAdr <- address of user's buffer
TCmd+Datalen <- 512 (use appropriate sector size)
TCmd+CrtlLen <~ 0

TCmd+Dest <~ DSNum

SndRes+Rcode <= FFh (initialize result code)
User's buffer contains the data to be written.

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is 82h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

Check the first byte of the User Control Data (RcvUC +DLen).
If the most significant bit is on, the disk has been reset.
Start the entire sequence over.

Check the disk result code (RcvUC+Dcode). If the most
significant bit is on, report an error.

Corvus Systems 126

Mass Storage Systems GTI 0l1d Disk Server Protocols

Figure 3.4: Wait for disk server response
0ld Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1.

The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is 0,
the driver loops forever, waiting for a response. A timeout
value of 0 should be used only for Mirror and Prep mode
commands.

The count of 3 is arbitrary. It is basically a retry count.

The loop terminates when the transporter return code goes to
0 (message received), or when the timeout value is reached.

If the number of retries is exceeded, report a timeout error
and exit.

Corvus Systems 127

Mass Storage Systems GTI

1
End Receive

Send Flush 2
Command

Done

Figure 3.5: Flush
0l1d Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions

below.

1. Do an End Receive on socket BOh.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

SndRes+Rcode

<- 10h (End receive command)
<- address of SndRes
<- BOh

<= FFh (initialize result code)

0ld Disk Server Protocols

If transporter result (SndRes+Rcode) does not change within
l0ms, report a hardware error (DrvRet <- TOErrTR) and exit.

If transporter result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

Corvus Systems

128

Mass Storage Systems GTI 0ld Disk Server Protocols

2. Send a Flush command.

TCmD+OpCode <- 40h (Send command)
TCmD+ResAdr <- address of SndRes
TCmD+Sock <= BOh

TCmD+DatAdr <- address of DCmd buffer
TCmD+Datalen <- 4

TCmD+Crtllen <- 4

TCmD+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)
SnducC +M <= 0
SnduC +N <=0

If transporter result (SndRes+Rcode) does not change within
100 ms, report a hardware error (TOErrTR) and exit.

NEW DISK SERVER PROTOGOL

The description of the New Disk Server Protocol is very similar
to that of the 0l1ld Disk Server Protocol, but there are two
important differences. The first is that the driver must be
prepared to generate request IDs and use media IDS. The second
is that the driver must be prepared to receive a Cancel or
Restart message at any time. The flowcharts for Wait for Disk
Server Response (figure 3.9) and Flush (figure 3.10) are
therefore more complicated. The flowcharts for the Short (figure
3.6) and Long (figure 3.7) commands look similar to those for the
0ld Disk Server Protocol (figures 3.2 and 3.3), but the
explanations differ.

The new disk server protocol requires that you specify to which
socket, AOh or BOh, the server should send the Results message.
The server tells you to which socket you should send the Last
message.

You will also see that some of the fields in the declarations are
described in three places: as part of the RcvUC record, as part
of the SndUc record, and as part of the Dcmd record. This is
because the protocol information is sometimes included in the
User Data portion of the message, and sometimes in the User
Control portion.

Corvus Systems 129

Mass Storage Systems GTI New Disk Server Protocols

Sample data structures for a disk server driver using New Disk
Server Protocol

First the data structure is declared, then a list of offsets
into the structure are declared.

Transporter command vector (see Omninet GTI, pgs. 32,33)
It is not necessary to have more than one command record,
although it is sometimes more convenient to use separate
records which are preinitialized as Send and Setup receive

We NG NG NG "¢ WE NP “e “"e. _“we “wo o

commands.
TCmd .BYTE O ;7 OpCode -~ command code
.BYTE O ; ResAdr - high order byte of result address
.WORD 0 H - low order word of result address
.BYTE 0O ;7 Sock - socket number
.BYTE O : DatAdr ~ high order byte of data address
.WORD O H - low order word of data address
.WORD 0 ; Datalen - data length
.BYTE O ;7 CrtlLen - user control length
.BYTE OFFh ; Dest - destination host number
; offsets
OpCode .EQU O ; offset to OpCode
ResAdr .EQU 1 ; offset to ResAdr
Sock .EQU 4 ;7 offset to socket number
DatAdr .EQU 5 ; offset to DatAdr
DataLen.EQU 8 ; offset to data length
CrtlLen.EQU 10 ; offset to user control length
Dest .EQU 11 ; offset to destination host number (Send only)

Corvus Systems 130

Mass Storage Systems GTI New Disk Server Protocols

sends, and one for

e we o we “o “e “eo

SndRes .BYTE
.BYTE
.WORD
SndUC .WORD
.WORD
.WORD
«WORD
. WORD

OO0O0O00O00O0

RCode .EQU
ProtolD.EQU
MsgTyp .EQU
RgstID .EQU
Reason .EQU
MediaI2.EQU

OO NOO

RcvRes .BYTE
.BYTE
.WORD
RcvUC .WORD
«WORD
«.WORD
«WORD
.BYTE
.BYTE
«WORD

[eNeoNeoNeoNoNoNoNeNoNeo]

Src .EQU 1
Len .EQU 2
NActual.EQU 6
DCode .EQU 9

Rcv80 .BYTE O

.BYTE O
.WORD 0

Corvus Systems

Sample data structures for a disk server driver using New Disk
Server Protocol (cont.)

Result record definitions (see section 2.3)
Every driver should have 2 separate result records, one for

receives.

Send result record

transporter return code

unused

unused

ProtoID - Protocol ID

MsgTyp - message type

RgstID - request ID

M - the number of data bytes to send to drive

N - the maximum number of data bytes
expected on receive

offsets

offset to transporter return code

offset to ProtolID

offset to MsgTyp

offset to RgstID

offset to Reason (for Cancel and Restart)

offset to MediaID (for Cancel and Restart)

WO MO N NE NE WO NE Ve W We We W Ve We W “o “o

Receive result record

transporter return code

Src = source host number

Len - actual length of data received

ProtolID - Protocol ID

MsgTyp - message type

RgstID - request ID

NActual - number of bytes returned from drive
reserved

DCode - disk return code

reserved

offsets

offset to Src

offset to Len

offset to NActual

offset to DCode

Second receive result record for Cancel or Restart
transporter return code

Src - source host number

WO WO WO W Ne e N WP N9 We WE WE WE _We WEe We “we o “we o

131

Mass Storage Systems GTI

Data area buffers

U~o e we “o o

Cmd «WORD
«WORD
«WORD
. WORD
.BYTE
.BYTE
«WORD
«WORD
«WORD
. WORD

[eNeNeoNeoRNolNeNoNoRo o]

MediaID.EQU 6
ResHost .EQU 8
ResSock.EQU 9
M .EQU 10
N .EQU 12
Cmd .EQU 14

S80Msg .WORD O
«WORD 0
+WORD C
.WORD O
<WORD O

LstSock.EQU 7

Corvus Systens

e Wwe e Ne Wwe “o N WO Ne N e We We “e “e “wo

e WO We e We W wo wo

ProtolD
MsgTyp

RgstID

MediaID
ResHost
ResSock
M

N

space f

offsets
offset
offset
offset
offset
offset
offset

space f
ProtoID
MsgTyp
RgstID
Reason,
MediaID
offsets

or

to
to
to
to
to
to

or

New Disk Server Protocols

Sample data structures for a disk server driver using New Disk
Server Protocol (cont.)

the disk command (4 bytes)

MedialD

ResHost

ResSock

M

N

start of command

socket 80h messages (Go, Cancel or Resta

LastSock

Last socket for Go message

132

Mass Storage Systens GTI New Disk Server Protocols

Sample data structures for a disk server driver using New Disk
Server Protocol (cont.)

DrvRet is a global variable in the driver which each routine
sets. It is the value that will be returned to the operating
system upon completion of the driver call.

cj we we we “e “e “wo we

rvRet .BYTE O : Driver return code

DrvRet values:
The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with
a T are transporter return codes.

o “e “e “we weo “wo

timed out waiting for disk server response
timed out waiting for transporter
(hardware error)

TOErrDS.EQU 252
TOErrTR.EQU 253

*
I

’
OkCode .EQU O ;7 *T
GiveUp .EQU 128 ; T - gave up after n retries
Toolong.EQU 129 : T - message too long
NoSock .EQU 130 : T - socket not initialized
BadHdr .EQU 131 ; T - header length mismatch should never happen
SndErr .EQU 140 ; * - unable to send messages to disk server
’
!

The following global variables are set on each call from the
values specified for the device.

~o we we we

TimeOut.WORD O ; used to control disk server wait loop
DSNum .BYTE OFFh ; disk server number
Media .WORD 0 ; media id

; The following global variables are set on each call.

which socket to use (AOh or BOh)
bumped by 1 on each call

UseSock.BYTE O
Request.WORD O

; The following global variables are set at driver
H initialization

MyAddr .BYTE O ; this computer's transporter address

Corvus Systems 133

Mass Storage Systems GTI New Disk Server Protocols

§

L 4

Figure 3.6: Flowchart of a short (read) command
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systems GTI 134

Mass Storage Systems GTI Mew Disk Server Protiocols

1. Setup receive for results.

TCmd+OpCode <= FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes

TCmd+Sock <- UseSock

TCmd+DatAdr <- address of user's buffer
TCmd+Datalen <- 512 (use appropriate sector size)
TCmd+CrtlLen <- 12

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket 80h message (Cancel or
Restart):

TCmd+OpCode <= FOh (Setup Receive command)
TCmd+ResAdr <- address of Rcv80

TCmd+Sock <-- 80h

TCmd+DatAdr <- address of S80Msg
TCmd+Datalen <- 8

TCmd+CrtlLlen <- 0

Rcv80+Rcode <- FFh (must initialize result code)
2. Send disk command.

TCmd+OpCode <= 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= 80h

TCmd+DatAdr <- address of DCmd buffer
TCmd+Datalen <- 18

TCmd+CrtlLen <- 4

TCmd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUc +M <- 4
SnduUc +N <= 512 (use appropriate sector size)

DCmd+ProtoID <- O01FFh

DCmd+MsgTyp <= 0001h (Disk request)
DCmd+RgstID <- Request
DCmd+MediaID <- Media

DCmd+ResHost <- MyAddr

DCmd+ResSock <- UseSock

DCmd+M <- 4 (4 byte read command)
DCmd+N <= 512 (use appropriate sector size)
DCmd+Cmd <= 32h (use appropriate read command)

DCmd+Cmd+1 <- sector address byte d
DCmd+Cmd+2 <- sector address 1lsb
DCmd+Cmd+3 <- sector address msb

Corvus Systems , 135

Mass Storage Systems GTI New Disk Server Protocols

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

Wait for disk server response.

This is a loop which is checking the transporter return code
in the receive buffer (RcvRes+Rcode). When this value goes
to zero, the disk read has completed. See figure 3.8 and
accompanying notes. '

This loop must also check whether a Cancel or Restart message
has been received. See figure 3.9 and accompanying notes.

If a timeout error or cancellation occurred, try to recover.
See figure 3.10 for a description of the recovery procedure.

Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

Check the User Control Data (RcvUC). Ensure the ProtolID is
1FFh, and that MsgTyp is 0200h. If not, the message
received is irrelevant. Setup the receive again, and wait
for another response.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket 80h.
TCmd+OpCode <- 10h (End Receive command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <= 80h

SndRes+Rcode <- FFh (initialize result code)

Corvus Systems 136

Mass Storage Systems GTI New Disk Server Protocols

4 £ P S

Solip Rucaive

Figure 3.7: Flowchart of a long (write) command
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systems GTI _ 137

Mass Storage Systems GTI

New Disk Server Protocols

1. Setup receive for the Go message. The Go message is sent to

socket 80h.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCmd+DatalLen
TCmd+CrtlLen

Rcv80+Rcode

L =
-
<-
L -
< -
< -

L =

FOh (Setup Receive command)
address of RcVRes

80h

address of S80Msg

8

0

FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

2. Send the first

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCnmd+Datalen
TCmd+CrtlLen
TCmd+Dest

SndRes+Rcode

DCmd+0
DCmd+2
DCmd+4
DCmd+6
DCmd+8
DCmd+9
DCmd+10
DCmd+12
DCmd+14
DCmd+15
DCmd+16
DCmd+17

4 bytes of the write command.

< -
-
< -
L =
-
L =
L -

K -

<—
L -
L=
L -
< -
L -
L =
L -
L =
L -
-
L -

40h (Send command)
address of SndRes

80h

address of DCmd buffer
18

4

DSNum

FFh (initialize result code)

1FFh (protocol id)

001h (message type = Disk request)
request id

media id

FFh

UseSock

516 (use appropriate sector size)
1

33h (use appropriate read command)
sector address byte d

sector address 1sb

sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3 Wait for disk server response.

This is a loop which is checking the transporter return code.
Since the Go message will be received on socket 80h, the
driver must check Rcv80+Rcode, not RcvRes+Rcode, as in all

. When this value goes to zero, a message has
See figure 3.8 and accompanying notes.

the other cases
been received.

Corvus Systems

138

Mass Storage Systems GTI New Disk Server Protocols

9.

This loop must also check whether a Cancel or Restart
message has been received. See figure 3.9 and accompanying
notes.

If a timeout or cancellation error occurred, try to recover.
See figure 3.10 for a description of the recovery procedure.

Check the responding disk server (Rcv80+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

No box.

If the data received is anything but the Go message
(S80Msg+ProtoID=01FFh, S80Msg+MsgTyp=0100h), the message

is irrelevant. Setup the receive again, and wait for another
response.

Set up another receive to get the results of the next Send.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <= UseSock

TCmd+DatAdr <- address of DCmd buffer
TCmd+Datalen <- 4

TCmd+Crtllen <- 12

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket 80h message (Cancel or
Restart):

TCmd+0OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of Rcv80

TCmd+Sock <- 80h

TCmd+DatAdr <- address of S80Msg
TCmd+Datalen <- 8

TCmd+Crtllen <= 0

Rcv80+Rcode <= FFh (must initialize result code)
Send the rest of the Write command.

TCmd+OpCode <- 40h (Send command)

TCmd+ResAdr <- address of SndRes

TCmd+Sock <- specified in Go message (S80Msg+LstSock)
TCmd+DatAdr <- address of user's buffer

TCmd+Datalen <- 512 (use appropriate sector size)
TCmd+CrtlLen <- 12

Corvus Systems 139

Mass Storage Systems GTI New Disk Server Protocols

10.

TCmd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)
SnduC +ProtolId<-1FFh

SndUC +Msgtyp<- 002h (Last message)

SndUC +RgstId<- RegestId

SndUC +Reserl<- 0

SndUC +Reser2<- 0

SndUC +Reser3<- 0

User's buffer contains the data to be written.

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is 82h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

Check that the Results message was received (RcvUC+ProtolID =
1FFh; RcvUC+MsgTyp = 0200h). If not, the message received

is irrelevant. Setup the receive again, and wait for another
response.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket 80h.
TCmd+OpCode <- 10h (End Receive command)

TCmd+ResAdr <- address of SndRes
TCmd+Sock <- 80h

SndRes+Rcode <= FFh (initialize result code)

Corvus Systems 140

Mass Storage Systems GTI New Disk Server Protocols

Figure 3.8: Wait for disk server response
‘ New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1.

The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is 0,
the driver loops forever, waiting for a response. A timeout
value of 0 should be used only for Mirror and Prep mode
commands.

The count of 3 is arbitrary. It is basically a retry count.
The loop terminates when the transporter return code goes to
0 (message received), when a Cancel or Restart message is
received, or when the timeout value is reached.

See figure 3.9 for the Cancel and Restart check.

If the number of retries is exceeded, report a timeout error
and exit.

Corvus Systems GTI 141

Mass Storage Systems GTI New Disk Server Protocols

Figure 3.9: Check for Cancel or Restart
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1,

Has a message been received on socket 80h (Rcv80+Rcode=00h)?
If not, continue waiting for disk server response.

Is the message from our server (Rcv80+Src=DSNum)? If not,
ignore the message, resetup the receive on socket 80h, and
go back to waiting.

Is the message a Cancel message (S80Msg+ProtoID=01FFh,
S80Msg+MsgTyp=0300h)? If so, set Cancelled flag, and exit
the wait for response loop.

Is the message a Restart message (S80Msg+ProtoID=01FFh,
S80Msg+MsgTyp=FF00Oh)? If so, set Restart flag, and exit
the wait for response loop.

The message is not a Cancel or Restart, so ignore it.
Resetup the receive, and go back to waiting.

Corvus Systems GTI 142

Mass Storage Systems GTI

T e

Figure 3.10: Flush
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions

below.

1. Do an End Receive on socket UseSock.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
SndRes+Rcode

If transporter
l0ms, report a

If transporter

Corvus Systems GTI

L
=
< =

L=

10h (End receive command)
address of SndRes
UseSock.

FFh (initialize result code)

New Disk Server Protocols

result (SndRes+Rcode) does not change within
hardware error (DrvRet <- TOErrTR) and exit.

result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

143

Mass Storage Systems GTI New Disk Server Protocols

2. Check the Cancelled flag. If set, report an error and exit.
3. Check the Restart flag. If set, restart from the beginning.
4. End receive on socket 80h, in preparation for restart.

TCmd+OpCode <- 10h (End receive command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- 80h

SndRes+Rcode <- FFh (initialize result code)
5. Send an Abort command.

TCmd+0OpCode <= 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- 80h

TCmd+DatAdr <- address of DCmd buffer
TCnmd+Datalen <- 8

TCmd+Crtllen <= 0

TCmd+Dest <= DSNum

SndRes+Rcode <- FFh (initialize result code)
Dcmd+ProtoID <- 1FFh
Dcmd+MsgTyp <- 0003h (Abort message)

Dcmd+RgstID <- Request
Dcmd+Reason <= 0lh (Timedout)

If transporter result (SndRes+Rcode) does not change within
100ms, report an error (TOErrTR) and exit.

Corvus Systems 144

Mass Storage Systems GTI Flat cable duiver

FLAT CABLE

You may want to refer to the following manuals while reading
this section:

Chapter 1 of this manual, which describes the sector
read and write commands.

Appendix A of this manual, which describes the flat cable
interface bus.

Corvus Systems 145

Mass Storage Systems GTI Flat cable driver

.
v

Output Byte
Count <- count - 1 i

Direction =
Drive To Host

A
L4

< Delsy 4

Direction =
Drive To Host

‘nput Byle
Couil <~-Count + |

()
3

Figure 3.11 Figure 3.12
Flat cable command sequence Flat cable turnaround routine

Corvus Systems GTI 146

Mass Storage Systems GTI Flat cable driver

Refer to the interface signal descriptions at the end of
Appendix A.

Disk read:

1. Send out read command (4 bytes). For each byte, check
that drive is ready (READY line high), then output byte.
See note below.

2. Wait for bus to turn around (READY line high and DIRC
line low).

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is low,
read the data byte and increment the count of bytes received.
In our example, we expect to receive 512 bytes; you should
expect to receive the number of bytes specified by the read
command (128, 256, 512, or 1024).

4, Check first byte received. If the most significant bit
is on, an error occurred.

Disk write:

1. Send out write command. 1In our example, we send out 516
bytes. You should send out the appropriate number for the
write command that you are using (132, 260, 516, or 1028).
For each byte, check that drive is ready (READY line high),
then output byte. See note below.

2. Wait for bus to turn around (READY line high and DIRC line
low).

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is low,
read the data byte and increment the count of bytes received.
In our example, we expect to receive 1 byte.

4., Check first byte received. If the most significant bit is
on, an error occurred.

Note: Some care must be exercised in sending out at least the
first byte of a command if a multiplexer is being used. There is
a potential timing problem if the system software can be
interrupted during the send of this first byte. On a multiplexer
network, the individual computers must respond within
approximately 50 microseconds after the READY line goes high, or
the multiplexer will switch to the next slot. (It will first
wait for a while after dropping the READY line -- a period
controlled by the second polling parameter.) If your driver is
interrupted after it detects that the READY line is high, and

Corvus Systems 147

Mass Storage Systems GTI Flat cable driver

before it sends the first byte, then by the time it is ready to

send the first byte, the multiplexer may have already switched to
the next slot.

This problem can be avoided by turning off the interrupt system
during part of the send loop to insure that if your driver finds
the drive ready, it can send out the byte without being
interrupted. See the sample 8086 driver in Appendix E for an
example of this sequence.

Corvus Systems 148

Mass Storage Systems GTI Sending Disk Commands

S8ENDING OTHER
DISK COMMANDS

[

The Corvus mass storage devices support more operations than just
read and write. Semaphores, pipes, mirror operations, etc., can
all be invoked by application programs. This chapter discusses
how these commands may be used by application programs.

This chapter merely describes how to send the command bytes and
receive the results. The functionality of the commands is
described in other chapters (Chapter 5: Semaphores, Chapter 6:
Pipes).

The interface for sending a drive command generally consists of
specifying the number of bytes to send, the maximum number of
bytes expected to be received, and 2 buffers, one which contains
the bytes to be sent and one which will contain the results.

PROCEDURE SendCom(SendLen: INTEGER; VAR Recvlen: INTEGER;
VAR SendBuf, RecvBuf: Dbuf);

After a call to SendCom, Recvlen contains the number of bytes
actually received, and RecvBuf contains the data.

For example, the code to send a semaphore lock command would look
something like this (the semaphore name is 'S '):

TYPE Dbuf: PACKED ARRAY [1..530] OF 0..255;

VAR SendBuf, RecvBuf: Dbuf;
Sendlen, Recvlen: INTEGER;

BEGIN

Sendlen := 10; { semaphore lock sends 10 bytes)

Recvlen := 530; (the size of RecvBuf)

SendBuf([l] := 11; SendBuf([2] := 1; {(command code and subop }
SendBuf([3] := ORD('S'); { semaphore name)}
SendBuf[4] := ORD(' '):

SendBuf[10] := ORD(' '):

SendCom(SendlLen, Recvlen, SendBuf, RecvBuf):;

Corvus Systems 149

Mass Storage Systems GTI Sending Disk Commands

{ now check resuls)
IF RecvBuf[l]) > 127 THEN { disk error ...) ELSE
IF RecvBuf[2] = 0 THEN { semaphore successfully locked) ELSE
CASE RecvBuf[2] OF { couldn't lock, report error)
128: (already locked)
253: (table full)
254: (table read-write error)
END; '

END.

Corvus provides a version of the SendCom procedure for each
operating system it supports. The next sections describe each
implementation in detail. Often, there are several layers of
interface, and the application developer can pick the level of
interface desired. Generally, the highest level interface is the
most flexible, but also the most costly in terms of execution
time and memory space required.

Of course, you as a software developer may choose to ignore any
software provided by Corvus, and develop your own interface which
talks directly to the transporter or flat cable card. The
flowcharts given in Chapter 3, "Disk Drivers," should be helpful in
this case. If you do choose to develop your own interface, you
must consider the impact on other software developers. As
mentioned in the section on Omninet in Chapter 3, the receipt of
unknown messages and the use of buffer space in buffered
transporters must be considered.

The same example, a semaphore lock, is used in each description
below, but the procedures described may be used tc send any disk
command.

The implementation of the SendCom procedure takes one of two
forms: 1) the SendCom procedure calls an entry point in the disk
driver to do the actual send of the command, or 2) the SendCom
procedure is a stand-alone procedure, which does not require the
disk driver to be present.

The advantages and disadvantages of form 1, where the SendCom
procedure calls the driver, are summarized below:

Advantages: the send-receive need only be coded once, and it
becomes part of the operating system. Application programs
then do not have to c¢hange when they are ported from one

ardware environment to another.

Disadvantages: the application program cannot run unless the

driver is installed. Drivers become part of the resident
operating system, and therefore occupy memory, leaving less

Corvus Systems 150

Mass Storage Systems GTI - Sending Disk Commands

memory available to those applications which do not use
the feature.

The advantages and disadvantages of form 2, where the SendCom
procedure is a stand-alone procedure, are summarized below:

Advantages: the driver need not be installed, leaving more
memory available to the application.

Disadvantages: each application which uses the interface must
be relinked if the interface changes, either because of
bugs or hardware changes.

Most of the early Corvus implementations, including Apple (R)
Constellation I and CP/M 80 (TM), use form 2, a stand-alone procedure,
to send drive commands. The later implementations, including

MS (TM) -DOS Constellation II, use form 1.

In most of the Corvus implementations, the procedure SendCom is
usually coded as “two separate procedures: CDSEND and CDRECV (the
reason for this is historical). A call to CDSEND must always be
followed immediately by a call to CDRECV. Also, in most of the
Corvus implementations, the SendBuf and RecvBuf are the same
buffer; i.e., the results of a command overlay the command
itself.

Corvus Concept operating system:

Direct communication with the Corvus drive is handled by the two
procedures CDSEND and CDRECV. Any command described in Chapter 1
may be sent to the Corvus drive using these routines. These
procedures are contained in the unit CCDRVIO, which is in the
library C2LIB. C2LIB is included in the standard release of
Concept software. ——"

Please refer to the Pasca brary User Guide (Corvus P/N
7100-04978). You will need to look at Chapter 14, "Corvus Disk
Interface Unit" (ccDRVIO).

CDSEND and CDRECV each have two parameters described by the
following type declarations, which appear in the interface
section of unit ccDrvio:

const SndRcvMax = 530;

type CDaddr = RECORD
SlotNo: byte;
Kind: SlotTypes:;
NetNo: byte;
Stationno: byte;
Driveno: byte;
BlkNo: LONGINT;

slot number }

omninetDisk or LocalDisk (defined in CCDef
unused }

omninet server address)

drive number)}

block number)

P o~ i - o -

Corvus Systems 151

Mass Storage Systems GTI Sending Disk Commands

type SndRcvStr= RECORD
sln: INTEGER; { length of command to be sent)
rln: INTEGER:; { maximum number of bytes to be returned)
CASE INTEGER OF
2: (c: PACKED ARRAY [1..SndRcvMax] OF CHAR):;
1l: (b: ARRAY [l..SndRcvMax] OF byte):
END;

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variables are normally used for both calls.

The unit ccDRVIO must be initialized by calling the procedure
ccDrvIoInit BEFORE calling any other procedures in the unit.
ccDrvIoInit should only be called once, at the beginning of your
program.

The following program fragment demonstrates a normal command
sequence:

USES (CCLIB) CCDefn,
{C2LIB) ccDrvio;

VAR xcv: SndRcvStr;
Netloc: CDAddr:;
X INTEGER;

BEGIN

ccDrvIoInit; { initialize the unit)
InitSlot(Netloc):; { sets NetLoc to boot device)
Xcv.8ln := 10; xcv.rln := 530;

xcv.b[1l] := 11; xcv.b[2] := 1; { semaphore lock command)
Xcv.c[3] = 'S';.xXcv.c[4] ="' ';

Xcv.c[1l0] = ' ';

CDSEND (NetLoc, xcv):
CDRECV (NetLoc, xcv):

IF xcv.b[l] < 0 THEN (report disk error)} ELSE
IF xcv.b[2] = 0 THEN { semaphore successfully locked)} ELSE
BEGIN
X (= xcv.b[2]);
IF X < 0 THEN x := x+256;
CASE x OF
128: { already locked }
253: (table full)
254: (error on table read-write)}
END;
END;

Corvus Systems 152

Mass Storage Systems GTI Sending Disk Commands

The procedures CDSEND and CDRECV are found in the unit ccDrvio in
the file C2LIB. This unit has several other procedures in it, so
the unit is rather large. 1If space is a problem, you can
interface directly to the SlotIO driver as described below.

Commands are sent using the UNITWRITE procedure. Results are
received with the UNITREAD procedure. The parameters are
described below:

UNITWRITE (unitno, the SlotIO driver)

buffer, the command to be sent)
length, length of the command)
o, not used)

control):; control contains the slot and
server # where the command is
to be sent; msb is server # and
1sb is slot #. server # is 0
for slots 1 to 4 (local disk))

UNITREAD (unitno, the SlotlIO driver)

buffer, where the results will be stored)
length, maximum length to be received)
0, not used)

P e e e) P i - o i -~ o~

control); same as on UNITWRITE)
UNITWRITE and UNITREAD should always be used in pairs; i.e., a
UNITWRITE should be followed immediately by a UNITREAD. The
function IORESULT should be called following each call to
UNITWRITE or UNITREAD to check for an error. The following
errors may be returned:

Value Meaning
(o] no error
4 disk error (disk result > 7Fh)

The unit number to which the SlotIO driver is assigned may be
obtajned by calling the EXTERNAL procedure OSS1ltDv.

For instance, the following code fragment sends a semaphore lock
command:

VAR c: PACKED ARRAY [1..530] OF CHAR; { the longest command
{ is 530 bytes }

FUNCTION OSS1tDv: EXTERNAL;
BEGIN

€[1] := CHR(11);
c[2) := CHR(1):
c[3] = 'S';

semaphore command)
lock)
semaphore name)}

o~~~ -

Corvus Systems 153

Mass Storage Systems GTI Sending Disk Commands

c[1l0]) = ' *;
UNITWRITE(OSSlotDv, ¢, 10, 0, $105); (send command to)

ior := IORESULT;
IF ior = 0 THEN BEGIN
UNITREAD(OSSlotDv, c, 530, 0, $105); { get results)
ior := IORESULT:;
END;
IF ior=0 THEN {all ok} ELSE {(report error}:
CASE ORD(c[2]) OF
0: (semaphore locked successfully)}
128: { semaphore was already locked)}
253: (semaphore table full)}
254: ({ error reading-writing semaphore table)}
END;

L]

M8-DOS8 1.x, 2.X Constellation II:

For MS-DOS, direct communication with the Corvus drive is handled
by the two procedures CDSEND and CDRECV. Any command described

in the Chapter 1 may be sent to the Corvus drive using these
routines.

The source and object files for the routines described here are
available on diskette as part of the Software Developer's Kit for
MS-DOS. See Appendix F for details. Appendix E contains a
listing of the flat cable versions of the CDSEND and CDRECV
routines.

The procedures CDSEND and CDRECV are written in machine language
and are assembled using the Microsoft Assembler. Because there
is no standard or dominant language for MS-DOS applications
developers, we have chosen to give the examples here in the
language used by Corvus for MS-DOS applications, MS Pascal.
Unfortunately, each language uses a slightly different parameter
passing mechanism. On the developer's diskette mentioned above,
interfaces are provided for MS Pascal and compiled Basic. If you
are using some other language, you will have to make the
ippropriate changes to the source for DRIVEC2.ASM and reassemble

The procedures CDSEND and CDRECV are contained in the module
DRIVEC2.0BJ. The routines in this module must be initialized by
calling the function INITIO BEFORE calling any other procedures
in the module. INITIO should be called only once, at the
beginning of your program.

CDSEND and CDRECV each have one parameter described by the
following type declaration:

Corvus Systems 154

Mass Storage Systems GTI Sending Disk Commands

type Longstring= RECORD

length: INTEGER;

CASE INTEGER OF
{ n should be equal to the length of the longest)
{ command you intend to send or receive }
1: (int: PACKED ARRAY [l..n] OF 0..255);
2: (str: PACKED ARRAY [l..n] OF CHAR):;

END;

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

PROCEDURE CDSEND(xcv:longstring); EXTERN;
PROCEDURE CDRECV(xcv:longstring); EXTERN;
FUNCTION INITIO: INTEGER; EXTERN;

VAR xcv:¢ longstring;

BEGIN

IF INITIO <> O THEN {(error...): { initialize the unit)
Xcv.length := 10;

xcv.int[1] := 11; xcv.int[2] := 1; (semaphore lock command)}

xcv.str(3] := 'S!
xcv.str(4] = ' !

«e wp

xcv.str[10] = ' !';

CDSEND (xcvV) ;
CDRECV (xcvV) ;

IF xcv.int[1]>127 THEN { report disk error } ELSE
IF xcv.int[2]=0 THEN { semaphore successfully locked } ELSE
BEGIN
CASE xcv.int[2] OF
128: .{ already locked)}
253: (table full)
254: { error on table read-write }
END;
END;

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:

function SETSRVR(srvr: INTEGER): INTEGER; EXTERNAL;

Corvus Systems 155

Mass Storage Systems GTI Sending Disk Commands

The following function call sets the server to server 3:

IF INITIO <> O THEN { error ...)
b ¢:= SETSRVR(3):;

The function SETSRVR returns the boot server address, and ignores
the parameter if it is greater than 255, or negative. Thus, you
can also use this function to find out the boot server address:

IF INITIO <> 0 THEN (error...)
b := SETSRVR(-1):
{ now b contains the Omninet address of the boot server)

CP/M-80 and CP/M-86 Constellation II:

For CP/M-80 and CP/M-86 (TM), direct communication with the Corvus
drive is handled by the two procedures SEND and RECV. Any
command described in the Chapter 1 may be sent to the Corvus
drive using these routines.

The source and object files for the routines described here are
available on diskette as part of the Software Developer's Kit for

Constellation II, CP/M-80 or CP/M-86. See Appendix F for
details.

The procedures SEND and RECV are written in machine language and
are assembled using the Digital Research assembler. Because
there is no standard or dominant language for CP/M applications
developers, we have chosen to give the examples here in the
language used by Corvus for CP/M applications, Pascal MT+.
Unfortunately, each language uses a slightly different parameter
passing mechanism. -On-the developer's diskette mentioned above,
an interface is provided for Pascal MT+. If you are using some
other language, you will have to make the appropriate changes to
the source for CPMIO.ASM or CPMIO86.A86 and reassemble it.

The procedures SEND and RECV are contained in the module
CPMIO.ERL for CP/M-80 and in CPMIO86.R86 for CP/M-86. The
routines in this module must be initialized by calling the
function INITIO BEFORE calling any other procedures in the
module. INITIO returns the address of the Corvus driver if it is
successful, otherwise it returns 0. INITIO should be called only
once, at the beginning of your program.

SEND and RECV each have one parameter described by the following
type declaration:

type longstring= RECORD

length: INTEGER;
CASE INTEGER OF

Corvus Systems 156

Mass Storage Systems GTI Sending Disk cOmmands'

{ n should be equal to the length of the longest)
{ command you intend to send or receive)
1: (int: PACKED ARRAY [l..n] OF 0..255);

2: (str: PACKED ARRAY [l..n] OF CHAR):;

Calls to these procedures occur in pairs. That is, a call to
SEND is followed immediately by a call to RECV. The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

EXTERNAL PROCEDURE SEND(xcv:longstring):;
EXTERNAL PROCEDURE CDRECV(xcv:longstring):
EXTERNAL FUNCTION INITIO: INTEGER;

VAR xcv: longstring;
BEGIN

IF INITIO = 0 THEN (error...}: { initialize the unit)

xcv.length := 10;
xcv.int[l] := 11; xcv.int[2] := 1; { semaphore lock command }
Xcv.str[3] = 'S';
xcv.str[4] = ' !

xcv.str[10] = ' !';

e ~

SEND (xcv) ;
RECV (xcv) ;

IF xcv.int[1]>127 THEN {(report disk error)} ELSE
IF xcv.int[2])=0 THEN (semaphore successfully locked) ELSE
BEGIN
CASE xcv.int[2] OF
128: ({ already locked)
253: (table full)
254: (error on table read-write)
END;
END;

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:
EXTERNAL function SETSRVR(srvr: INTEGER): INTEGER;

The following function call sets the server to server 3:

Corvus Systems v 157

Mass Storage Systems GTI Sending Disk Commands

IF INITIO = 0 THEN (error ... }
b := SETSRVR(3):;

The function SETSRVR returns the boot server address and ignores
the parameter, if the parameter is greater than 255, or negative.

Thus, you can also use this function to find out the boot server
address:

IF INITIO = 0 THEN { error... }
b := SETSRVR(-1);
{ now b contains the Omninet address of the boot server)

Apple DOS Constellation II:

Please read the section on Apple DOS Constellation I first.
Constellation II is not supported on multiplexer networks. If
you are using an omninet network, you should assemble and use the
code given below in place of OMNIBCI.OBJ, because the transporter
RAM code is different for Constellation II than it was for
Constellation I.

For Apple Constellation II, direct communication with the Corvus
drive is handled by calling an entry point in the Corvus driver.
The Corvus driver must have been previously loaded into the RAM
on the transporter card; it is loaded by the boot process.

The driver is called by activating the slot containing the card,
and then executing a JSR to location C80Bh. The next 8 bytes
following the JSR instruction contain the parameters to the
driver:

Bytes Meaning

0 and 1 Address of command buffer.

2 and 3 Length of command.

4 and 5 Address of result buffer.

6 and 7 Maximum length of result.

Here is a listing of OMNIBCI.OBJ for Constellation II:

+ABSOLUTE
. PROC OMNIBCI

LEN .EQU 0300
BUF +EQU 0302

START .ORG 8A00

LDA LEN ; move command length
STA CmdLen

Corvus Systens 158

Mass Storage Systems GTI Sending Disk Commands

LDA LEN+1

STA CmdLen+l

LDA BUF ;7 move command address

STA CmdBuf

STA RsltBuf ;s make result address same as command
LDA BUF+1 H address

STA CmdBuf+l
STA RsltBuf+l

LDY #28. ; make result length = 530
STY RsltLen
LDY #2

STY Rsltlen+l

JSR GORAM ; RAM code will return to next instruction
LDA Rsltlen ; return result length

STA LEN

LDA Rsltlen+l

STA LEN+1

RTS : return to caller

GoRAM BIT OCFFF
BIT 0C600
JSR 0C80B

enable Omninet RAM
assumes slot 6
no return necessary

«e %o %o

CmdBuf .WORD 0 ; address of command

CmdLen .WORD O ; length of command

RsltBuf.WORD O : address of result

RsltLen.WORD O ; maximum length of result
.END

If you use this version of OMNIBCI.OBJ, your programs that were
coded using the OMNIBCI.OBJ provided by Corvus for Constellation
I need not be modified. for Constellation II.

Version IV p-system and Apple Pascal Constellation II:

Direct communication with the Corvus drive is handled by the two
procedures CDSEND and CDRECV. Any command described in Chapter 1
may be sent to the Corvus drive using these routines. These
procedures are contained in the file CORVUS.LIBRARY, which is
part of the Software Developer's Kit available for Version IV
p-system and Apple Pascal 1.2. See Appendix F for details.

CLSEND and CDRECV are contained in unit UCDRVIO.
CDSEND and CDRECV each have two parameters described by the
following type declarations (these declarations appear in the
interface section of unit UCDrvio):

const SndRcvMax = 530;

Corvus Systems 159

Mass Storage Systems GTI Sending Disk Commands

type CDaddr = RECORD
SlotNo: byte;
Kind: SlotTypes;
NetNo: byte;
Stationno: byte;
Driveno: byte;
BlkNo: LONGINT;

slot number)

omninetDisk or LocalDisk (defined in CCDefn)
unused }

Omninet server address)}

drive number)

block number)

o~ p - A

type SndRcvStr= RECORD
sln: INTEGER; length of command to be sent)
rln: INTEGER; { maximum number of bytes to be returned)
CASE INTEGER OF
2: (c: PACKED ARRAY [1l..SndRcvMax] OF CHAR):;
1l: (b: PACKED ARRAY [1l..SndRcvMax] OF byte):
END;

o~

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variables are normally-used for both calls.

The unit UCDRVIO must be initialized by calling the procedure
ccDrvIoInit BEFORE calling any other procedures in the unit.
ccDrvIoInit should only be called once, at the beginning of your
program.

The following program fragment demonstrates a normal command
sequence:

USES (CORVUS.LIBRARY) UCDefn, UCDRVIO;

VAR xcv: SndRcvStr;
Netloc: CDAddr;
X .INTEGER;

BEGIN

ccDrvIoInit:; { initialize the unit)}
InitSlot(Netloc): { sets NetLoc to boot device)}
Xcv.sln := 10; xcv.rln := 530;

xcv.b[l] := 11; xcv.b[2] := 1; { semaphore lock command }
Xcv.c[3) := 'S'; xcv.c[4] ="' ';

xcv.c[l0] = ' ';

CDSEND (NetLoc, xcv):;
CDRECV (NetLoc, xcv):;

IF xcv.b[1l] > 127 THEN { report disk error)} ELSE

IF xcv.b[2] = 0 THEN { semaphore successfully locked) ELSE
BEGIN
X (= Xcv.b[2];

Corvus Systems 160

Mass Storage Systems GTI Sending Disk Commands

CASE x OF
128: { already locked)
253: (table full)

254: (error on table read-write)
END;
END;

L N

The procedures CDSEND and CDRECV are found in the unit UCDrvio in
the file CORVUS.LIBRARY. This unit has several other procedures
in it, so the unit is rather large. If space is a problem, you
can interface directly to the machine language routines contained
in the module DRVSTF.CODE. The routines are:

PROCEDURE drvSend (VAR s:sndRcvStr); EXTERNAL
PROCEDURE drvRecvVv (VAR s:sndRcvStr); EXTERNAL
Uses PASCAL global variable DISK_SERVER

FUNCTION OSactSlt:INTEGER; EXTERNAL

Returns 1 if we have booted up under CONSTELLATION II,
0 if we have not.

FUNCTION OSS1ltType(slot : INTEGER) : INTEGER; EXTERNAL;
For valid slots, return the interface card type,
1=flat cable 2=Omninet; for all other slots
returns O=no disk

FUNCTION OSactSrv : INTEGER;
Return the active disk server. This procedure assumes

that the driver is attached and we have booted up under
CONSTELLATION II. No checking is done

FUNCTION XPORTER _OK : BOOLEAN;
Returns true if transporter is ok, false if transporter

with duplicate address is on the network. Returns true
if flatCable interface is present.

FUNCTION FIND ANY SERVER(VAR server : INTEGER): BOOLEAN;
Returns true if any disk server is found on the network,
and sets the variable server to the address of the disk
server. Returns false if no disk server replys.

Returns true with a server of zero if the interface card
is flat cable.

Commands are sent using the drvSend procedure. Results are
received with the drvRecv procedure.

Two global variables must also be declared: active_slot and
disk_server. These must be set prior to calling drv_send.

For instance, the following code fragment sends a semaphore lock
command:

Corvus Systems 161

Mass Storage Systems GTI Sending Disk Commands

VAR active_slot: INTEGER;
disk_server: INTEGER;
omni_error: INTEGER;

xcv: SndRcvStr;

BEGIN
active_slot := OSactSlt; Disk_server := OSActSrv;

Xcv.sln := 10; xcv.rln := 530;
Xcv.b[1l] := 11; xcv.b[2] := 1; { semaphore lock command)}
Xcv.c[3] := 'S'; xcv.c[4)] = ' ';

xcv.c[1l0] = ' !';

drv_send(xcv) ;
drv_recv(xcv):

IF xcv.b[1] > 127 THEN (report disk error)} ELSE

IF xcv.b[2] = 0 THEN (semaphore successfully locked) ELSE
BEGIN

X = xcv.b[2]:;
CASE x OF
128: { already locked)
253: (table full)
254: (error on table read-write }
END;
END;

Apple Pascal Constellation I:

In Pascal, direct communication with the Corvus drive is handled
by the two procedures-LDSEND and CDRECV. Any command described
in Chapter 1 may be sent to the Corvus drive using these
routines.

These procedures are contained in the unit Driveio of
CORVUS.LIBRARY. This unit must be initialized by calling the
procedure Driveioinit BEFORE calling any other procedures in the
unit.

Driveioinit should only be called once, at the beginning of
your program.

CDSEND and CDRECV each have one parameter described by the
following type declaration (which appears in the interface
section of Driveio):

type LONGSTR= RECORD
length: INTEGER;
CASE INTEGER OF
{ n should be equal to the length of the longest)}

Corxvus. Systems 162

Mass Storage Systems GTI Sending Disk Commands

{ command you intend to send or receive)
1: (int: PACKED ARRAY [l..n] OF 0..255);
¢ (byt: PACKED ARRAY [l..n] OF CHAR):;

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. - The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

USES Driveio;
VAR xcv: LONGSTR;
BEGIN

Driveioinit; { initialize the unit)

xcv.length := 10:
xcv.int[1] := 11; xcv.int[2] := 1; { semaphore lock command)
xcv.byt[3] := 'S!';
xcv.byt[4] = ' ';

xcv.byt[10] = ' !;

CDSEND (xcv) ;
CDRECV (xcv) ;

IF xcv.int[1]>127 THEN { report disk error) ELSE

IF xcv.int[2]=0 THEN (semaphore successfully locked } ELSE
BEGIN

CASE xcv.int[2] OF
128: { already locked)
253: (table full)
254: (error on table read-write)
END;
END;

The procedures CDSEND and CDRECV are found in the unit DRIVEIO in
the file CORVUS.LIBRARY. These procedures are independent of
whether you are using flat cable or Omninet. The price you pay
for this independence is that the unit DRIVEIO is fairly large.
You can interface directly to the assembly language drivers for
flat cable or Omninet with the routines in the unit OMNISEND,
also in the file CORVUS.LIBRARY. The interface to these assembly
language routines is described next.

Use drv_send and drv_recv for flat cable interface. Aactive_slot
must be a global variable.

Corvus Systems 163

Mass Storage Systems GTI Sending Disk Commands

Use omni_send and omni_recv for Omninet interface. Prior to the
first use of these routines in a program, you should use the code
shown below to get the disk server address, unless you make the

assumption that the disk server has a fixed address. Disk_server
and active_slot must be global variables.

In either case, the Corvus interface card may be used in any
slot. The variable active slot is set to the slot number that
the card is plugged into. But remember that the interface card
must be in slot 6 for normal operation.

CONST
longstr_max = 1030;
broadcast_add = 255;

TYPE
byte = 0..255;
LONGSTR= RECORD
length: INTEGER;
CASE INTEGER OF --~—-~
{ n should be equal to the length of the longest)
{ command you intend to send or receive }
1: (int: PACKED ARRAY [l..n] OF byte);
2: (byt: PACKED ARRAY [l..n] OF CHAR);
END;

valid_slot = 1..7;

VAR
active_slot : valid_slot; (* used by assembler routines to
determine io location *)
disk_server : byte; (* used by assembler routines %)
omni_error : integer:; (* used by asm - returns timeout status *)

PROCEDURE drv_send (VAR st longstr); EXTERNAL;

PROCEDURE drv_ recv(VAR st longstr); EXTERNAL;

PROCEDURE omni _send (VAR st : longstr); EXTERNAL;

PROCEDURE omni_recv (VAR st); EXTERNAL;

(* did not specify type so init portion could send a dummy *)

The following initialization is required for omni_send and omni_recv:

disk_server := broadcast_add;

omnirecv(dummy); (* looks for disk server %)

IF disk_server = broadcast_add THEN (* omnirecv sets disk server #)
error;

Corvus Systems 164

Mass Storage Systems GTI Sending Disk Commands

Apple DOS Constellation I:

Corvus provides two assembly language procedures (BCI.OBJ and
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
multiplexer networks, and OMNIBCI.OBJ is for Omninet networks.

Each routine is a binary file which must be BLOADed into memory
before being called. BCI.OBJ must be loaded at location 300h,
while OMNIBCI.OBJ must be loaded at location 8AOOh. Neither
routine is relocatable. BCI.OBJ ends at location 386h, while
OMNIBCI.OBJ ends at location 9044h. OMNIBCI.OBJ is much longer
because it includes buffer space for Omninet messages.

A drive command is poked into memory, and the address and length
of the command are passed to BCI (or OMNIBCI) by poking the
address into location 302h and 303h, and poking the length of the
command into locations 300h and 301h. BCI (or OMNIBCI) is then
CALLed. Upon return, the length of the result can be peeked from
location 300h and 301h, and the result itself has been written
into the space pointed-to by the address parameter.

See the DIAGNOSTIC program, lines 10000-10007 for an example of
how to load BCI (or OMNIBCI). See lines 15000-15110 for an
example of how to call BCI (or OMNIBCI).

BCI does not use the ROM on the Corvus interface card. OMNIBCI
does use the RAM on the transporter card. This RAM is loaded
from a reserved area on the Corvus drive at boot time. If you
want to use OMNIBCI without booting from the Corvus drive, you
must execute the code that loads the RAM. See the BSYSGEN
program, lines 20000-20060 for an example of how to initialize
OMNIBCI.

A listing of BCI.OBJ is included in appendix E.

CP/M 80 Constellation I:
You may order the Software Developer's Kit for your particular

machine for examples of how to send commands using the flat cable
interface. Version available are listed in Appendix F.

Corvus Systems 165

Mass Storage Systems GTI Sending Disk Commands

This page intentionally left blank.

Corvus Systems 166

Mass Storage Systems GTI Using Semaphores

|
SEMAPHORES | 5

I

I

This chapter gives examples of how the semaphores feature of the
Corvus mass storage systems may be used.

Semaphores can be used to control access to any shared resource
on the network. Most often, semaphores are used to coordinate
access to shared files. You should understand that semaphores
merely provide the capability to access shared files; it is you
who must ensure that your programs use this capability.

Programs written for single-user access may not be used to access
shared files; they must be modified to include semaphore calls.

User libraries that implement semaphore calls are supplied with
most of the versions of Corvus utilities. A typical interface
consists of two function calls, each with one parameter
specifying the name of the semaphore to be accessed:

function LOCK (SEMA4: string): integer:;

function UNLOCK (SEMA4: string): integer;

Each function returns a value which indicates the result of the
operation. The values are as follows:

0 Semaphore was not previously locked. For LOCK,
this means that the semaphore has now been locked
successfully.

128 Semaphore was previously locked. For LOCK, this

means that the semaphore could not be locked by
this call. For UNLOCK, this means that the
semaphore is now unlocked.

<0 Some error occurred, and the semaphore could not
be locked. Specifically, the values returned are

-253 Semaphore table is full.
-254 Error reading/writing semaphore table.

=255 Unknown error.

Corvus Systems 167

Mass Storage Systems GTI Using Semaphores

- Thus, a successful LOCK call returns a value of 0. A successful
UNLOCK call returns 0 or 128.

As mentioned above, semaphores can be used to control access to
any shared resource on the network. Let's look in detail at two
common uses for semaphores: shared volumes and shared files.

Volume sharing implies that several users will be modifying
different files in the same volume. To coordinate such access,
some sort of volume locking scheme must be used. File sharing
implies that several users will be modifying a particular file.
This access requires a file locking scheme.

VOLUME SHARING

The problems associated with volume sharing include directory
update and dynamic file allocation. Both of these problems can
be solved by the wolume- locking scheme described below. First,
let's look at what happens if you try to do volume sharing
without some sort of locking scheme.

Most systems keep a copy of the directory in memory. Whenever a
new file is opened, an entry is made in the memory copy of the
directory, but this copy is not necessarily written to disk right
away. Thus, if two users open two different files at
approximately the same time, the memory copies of the directory
will differ. Eventually, both copies will be written back to
disk, and one user will lose the file just opened.

Systems which use dynamic file allocation, such as MS-DOS and
CP/M, keep a memory image of the disk space allocated. Whenever
a new file is opened, or a new record is written past the current
end of file, the file.system searches its file allocation table
for free space on the disk. Enough free space is allocated to
the file to contain up to and including the new record, and a new
end of file mark is written. The file allocation table is
written back to the disk only when absolutely necessary, in order
to minimize disk I/0.

Let's look at what happens when two users are creating files on
the same volume at the same time. Each user has a current copy
of the file allocation table in memory; the operating system
searches the memory copy of the file allocation table for free
space, and allocates the same disk blocks to two different files.
Everytime one user updates the data in that disk block, the data
for the other user is destroyed. This can result in many
confusing error messages and incomprehensible data.

Many application writers, for this reason, preallocate any files

their application requires. This operation consists of opening a
file, writing to the last record, and then flushing the

Corvus Systems 168

Mass Storage Systems GTI Using Semaphores

allocation map. Then the application does not have to worry
about further allocation, until the file fills up. Most data
bases are preallocated anyway, as this makes it easier for the
application to manage the data base.

VOLUME LOCKING

Unlike some other network systems, Corvus software does not
define a volume type of shared access. Instead, Corvus software
defines volume access in terms of read-write access or read-only
access. If more than one user has read-write access to the same
volume, then that volume is a shared volume, and access to it
must be protected by using semaphores.

When two users wish to access the same volume, they must
coordinate that access in some way. One way to do this is with
volume locking. In the scheme described here, it is assumed that
each user has the volume in question mounted with read-only
access.

Users must indicate when they are ready to write to the volume by
executing a LOCK program, and specifying the name of the volume
to be locked. The LOCK program will ensure that no other user
currently has write access to the volume, and then grant the user
write access.

How does the program know if any user currently has write access
to the volume in question? This example assumes that if a
certain file, called LOCKED, exists in the volume, then the
volume is currently locked by some user. Furthermore, the name
of the user who locked the volume is contained in the file
LOCKED. ‘

The steps the LOCK program must take are listed below:

1) Try to open the file LOCKED. If found, report that
the volume is currently locked, and exit.

2) Change the user's access to read-write. This change
is done in memory, so that it is temporary.

3) Create a file called LOCKED in the volume, and write
the user's name into it.

Thus, if a user executes the LOCK program after the volume is
locked, the user receives an error message saying that the volume
is already locked. Let's look at what happens, however, if the
volume is not locked, and two users happen to execute the LOCK
program at the same time.

Corvus Systems 169

Mass Storage Systems GTI Using Semaphores

User 1 User 2

open file LOCKED open file LOCKED

not found, so change not found, so change
access to read-write access to read-write

create file LOCKED, create file LOCKED,
write user name write user name

As you can see, both users think that the volume has been
successfully locked, and both have write access to the volume.
This is NOT supposed to happen. While the likelihood of two
users executing the program at the same time is small, it still
has to be prevented. The only way to prevent it is to use
semaphores.

The reason that both users were able to lock the volume is that,
on a Corvus network, computers have no way to do a read followed
imhediately by a write. The computer may send the write command
immediately after the read, but some other computer may be

serviced in between the two operations. The semaphore operation
is the only way to do an indivisible write after read operation.

In our example, a semaphore called VOLLOCK is used to synchronize
access between the two users. The steps the LOCK program must do
are expanded to the following:

1) Lock the semaphore VOLLOCK. If it can't be locked,
wait in a loop, and try again.

2) Try to open the file LOCKED. If found, report that
the volume is currently locked, unlock the semaphore,
and exit.

3) Change the user's access to read-write. This change
is done in memory, so that it is temporary.

4) Create a file called LOCKED in the volume, and write
the user's name into it. Flush file buffers and
5) Unlock the semaphore VOLLOCK.

Now let's look at what happens when two users execute the LOCK
program at the same time.

Corvus Systems 170

Mass Storage Systems GTI Using Semaphores

User 1 User 2
Lock semaphore Lock semaphore
VOLLOCK VOLLOCK
Semaphore successfully Semaphore already locked,
locked. wait in loop.
Open file LOCKED semaphore still locked...
Not found, so change semaphore still locked...
access to read-write
Create file LOCKED, semaphore still locked...
write user name
Unlock semaphore Semaphore successfully
locked.

Open file LOCKED.

Found, so cannot lock volume.
Print message, unlock
semaphore and exit.

As you can see, only one user is able to lock the volume at any
one time.

There are still some problems with the algorithm given above. On
file systems which do directory buffering, the program must force
the directory to be flushed to the disk after creating the file.
Some hints for this are given in the specific operating system
sections below. Also, an UNLOCK program must be provided so that
a user can release access to a volume. This program must perform
the following steps:

1) Delete the file LOCKED.
2) Change the user's access to read only.

Again, in certain file systems, the directory must be flushed
after deleting the file. 1In this case, no semaphore is locked,
because, in order to delete the file, the user must already have
write access to the volume.

Other problems include a user forgetting to unlock a volume
before powering off. Now no one can write to the volume, since
it is locked and no one has write access to it. This problem can
be gotten round in part by making the LOCK program a little
smarter: if the user executing the LOCK program has the same name
as the user name in the file LOCKED, then grant the user
read-write access.

Corvus Systems 171

Mass Storage Systems GTI Using Semaphores

Note that the same semaphore name, VOLLOCK, is used, regardless
of which volume is being locked. Thus, if two users attempt to
lock different volumes at the same time, one user finds that the
semaphore is locked. This is generally not a problem, since the
length of time that the semaphore is locked should be very short;
the second user should notice only a slight delay before the
program completes. Of course, the LOCK program could use the
name of the volume to be locked as the semaphore name.

In fact, the LOCK program could be made much simpler if the
following algorithm were used:

1) Lock a semaphore with the same name as the volume.
If the semaphore cannot be locked, report error and
exit.

2) Change user access to read-write.
The UNLOCK program has only 2 steps as well:
1) Change user access to read only.
2) Unlock the semaphore with the same name as the volume.

While this algorithm avoids the directory buffering problem
mentioned above, there are two disadvantages to it:

1) There is no way to tell who has the volume locked.

2) Since the semaphore may be locked for an extended
period of time, a network with many users could fill
up the semaphore table.

FILE OR RECORD LOCKING

File or record locking is complicated by the file buffering
schemes used by most operating systems.

Most file systems have one or more file buffers. These buffers
are used to minimize disk overhead by keeping the most recently
accessed file blocks in memory. When the operating system
receives a file read or write call, it first checks its buffers
to see if the specified file block is already in memory; if it
is, then the I/0 is done to the memory image, rather than to the
disk. The buffer is flushed to the disk only when necessary,
usually when the buffer must be used for some other I/0
operation. Depending on the number and size of the buffers, it
may be quite a while before a file write is actually transferred
to the disk itself. Most operating systems provide a system call
that forces all buffers to be flushed to the disk.

Corvus Systems 172

Mass Storage Systems GTI Using Semaphores

Thus a write to a file does not actually get recorded on the disk
until some later time. In a network environment, this can mean
disaster for shared data bases, where many users are attempting
to read or write to a common file. Shared file applications must
therefore be coded very carefully; you must completely understand
the file buffering characteristics of the file system you are
using. The following description of record locking assumes that
you do understand your system's file buffering.

Basically, you must lock a semaphore on filling a file buffer,
and unlock the semaphore after the buffer has been flushed. Thus
the steps in updating a record are as follows:

1. Lock the semaphore.

2. Read the record (fill the file buffer)

3. Modify the data.

4. Flush the file buffer.

5. Unlock the semaphore.
The semaphore name associated with a given record must be
specified by your program. Your program must ensure that each
record that resides in the same disk block is assigned the same
semaphore name. For example, let's assume that your application
is called zXY, and it deals with a file structure that has 32
records per disk block (that is, each file buffer can hold 32 of
your application's records). A good algorithm for assigning
semaphore names is shown below:

l. Compute record number DIV 32.

2. Embed this ASCII representation of this number in the
string 2ZXY00000.

For record 50, your application should lock semaphore 2ZXY00001l.
For record 600, your application should lock semaphore ZXY00018.

Using this algorithm, each record which falls within the same

file buffer is assigned the same semaphore name. Let's look at
what happens when two users execute the program at the same time:

Corvus Systens 173

Mass Storage Systems GTI Using Semaphores

User 1 User 2

5;;;;; record 50: 6;;;;; record 52:

Lock semaphore ZXY00001l. Lock semaphore ZXY00001l.

Semaphore successfully locked. Semaphore already locked,
wait in loop...

Read record 50. Semaphore still locked...

Make changes. Semaphore still locked...

Flush file buffer to disk. Semaphore still locked...

Unlock semaphore ZXY00001l. Semaphore successfully locked.

Read record 52.

Make changes.

Flush file buffer to disk.
Unlock semaphore ZXY00001l.

Note that using this algorithm causes your program to use many
more than the 32 semaphore names provided by Corvus semaphores.
However, only a few semaphores will be locked at any one time, so
chances are you will never fill up the semaphore table. If you
are worried about this problem, you can set up your own
semaphore table, with semaphore names as long as you wish and
with as many semaphores as you wish. This table could reside in
a file or in a reserved disk block. Access to this user
semaphore table can be controlled with one Corvus semaphore in
the following manner:

1. Lock the Corvus semaphore SEMTAB.

2. Search the user semaphore table for the specified
semaphore name. If there, return the appropriate error.
If not there, add the semaphore and return the
appropriate return code.

3. Unlock the Corvus semaphore SEMTAB.

In the above discussion, we have tried to highlight some of the
problems involved in resource sharing, and how these problems can
be solved by proper use of semaphores. The next sections
describe the library routines provided for each operating system
supported by Corvus.

Corvus Systems 174

Mass Storage Systems GTI Using Semaphores

Corvus Concept Operating System:

Please refer to the Pascal Library User Guide (Corvus P/N
7100-04978). You need to look at Chapter 14, "Corvus Disk

Interface Unit" (ccDRVIO), and Chapter 16, "Corvus Disk Semaphores
Interface Unit" (ccSEMA4).

Note that the procedure CCSEMA4INIT must be called prior to
calling any of the other procedures or functions in the ccSEMA4
unit. The parameter NetLoc specifies which server will be used
for semaphore operations. Specifically, the following fields of
Netloc must be defined before calling CCSEMA4INIT:

Netloc.slotno slot number
Netloc.stationno server number (ignored for MUX)
Netloc.Kind either OmninetDisk or LocalDisk

Here is a portion of a LOCK program for Concept Pascal:

PROGRAM IOCK;
USES (CCLIB} CCDEFN,
{C2LIB} CCDRVIO, CCSEMA4:;

VAR s: Semkey;

NetAddr: CDAddr: { CcDhAddr is declared in ccDrvio }
i, err: INTEGER;

BEGIN
ccDrviolnit; initialize unit ccDRVIO)
Initslot (NetAddr):; this procedure, from ccDrvio,
initializes slotno, stationno, and kind
fields to boot device. Sets driveno

to 1, all other fields to 0)

ccSema4Init (NetAddr); (initialize unit ccSEMA4)
o { get volume name to be locked)}

s := 'VOLLOCK';

i:=0;

REPEAT
i:= i+1;
err := SemLock(s):

UNTIL (err <> SemWasSet) (wait for semaphore to be not set)}
OR (i > 32000); { or timeout)

IF err <> SemNotSet THEN ... { report error and exit program)}

e { lock volume)
{ closing the file causes the directory on disk to be updated)}

Corvus Systems 175

Mass Storage Systems GTI Using Semaphores

err := SemUnlock(s):; { don't forget to unlock semaphore)

END.

Version IV p-system and Apple Pascal Constellation II:
Look at the interface sections for the following units:

UCDEFN, UCDRVIO, and UCSEMA4.
These units are found in library CORVUS.LIBRARY.
Note that the procedure CCSEMA4INIT must be called prior to
calling any of the other procedures or functions in the UCSEMA4
unit. The parameter Netloc specifies which server will be used

for semaphore operations. Specifically, the following fields of
Netloc must be defined before calling CCSEMA4INIT:

Netloc.slotno slot number
Netloc.stationno server number (ignored for MUX)
Netloc.Kind either omninetDisk or lLocalDisk

Here is a portion of a LOCK program:

PROGRAM LOCK;
USES (CORVUS.LIBRARY)} UCDEFN, UCDRVIO, UCSEMA4:;

VAR s: Senmkey:;

NetAddr: CDAddr; { CDAddr is declared in ccDrvio)
i, err: INTEGER;

BEGIN
ccDrviolInit; initialize unit ccDRVIO)
Initslot (Netaddr); this procedure, from ccDrvio,

» initializes slotno, stationno, and kind
fields to boot device. Sets driveno

to 1, all other fields to 0 }

P~ o~ - o~

ccSemadInit (NetAddr); (initialize unit ccSEMA4)
oo { get volume name to be locked)

g8 := 'VOLLOCK':;
i :=0;
REPEAT
= i+l1;
err := SemlLock(s):;
UNTIL (err <> SemWasSet) { wait for semaphore to be not set }
OR (i > 5000); { or timeout)

IF err <> SemNotSet THEN ... { report error and exit program)}

Corvus Systems 176

Mass Storage Systems GTI Using Semaphores

cee { lock volume)

{ closing the file causes the directory on disk to be updated)
err := SemUnlock(s):; { don't forget to unlock semaphore)}
END.

MS-DOS 1.x and 2.x Constellation II:

The MS-DOS file system uses both file buffering and dynamic file
allocation. Refer to the DOS manual for information on managing
file buffers and file allocation tables.

The machine language interface described in Chapter 4 may be used
to send semaphore commands. The Software Developer's Kit
contains examples of using semaphores with MS Pascal and compiled
Basic.

A new set of routines provides direct semaphore calls. These
routines are written in machine language and are assembled using
the Microsoft Assembler. Interfacing to these routines from a
high level language may require changing the routines slightly.
This change is required because there is no standard parameter
passing mechanism in MS-DOS.

The routine declarations are as follows:
FUNCTION SemLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemUnLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemStatus(VAR Name: STRING): INTEGER; EXTERN;

These routines are found in the file SEMAASM.OBJ. You must also
use the INITIO .and SETSRVR procedures from DRIVEC2.0BJ.

Here is a portion of a LOCK program:
PROGRAM Lock (INPUT,OUTPUT)

CONST SemWasSet = 128;
SemNotSet = 0;

VAR s: LSTRING(80):;
err, i: INTEGER;

FUNCTION SemLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemUnLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION InitIO: INTEGER; EXTERN;

BEGIN
IF INITIO <> 0 THEN (error... }

Corvus Systems 177

Mass Storage Systems GTI Using Semaphores

e { get volume name to be locked)

8 := 'VOLLOCK';

i:=0;

REPEAT
i = i+1;
err := SemLock(s):

UNTIL (err <> SemWasSet) { wait for semaphore to be not set)
OR (1 > 32000); { or timeout)

IF err <> SemNotSet THEN ... { report error and exit program }

o { lock volume)}

{ flush directory to disk }

err := SemUnlock(s): { don't forget to unlock semaphore)
END.

CP/M-80 and CP/M-86 Constellation II:
The machine language interface described in Chapter 4 must be
used to send semaphore commands. The Software Developer's Kit
contains examples of using semaphores with Pascal MT+.
Apple Pascal Constellation I:
Look at the interface sections for the following units:

DRIVEIO and SEMA4S.
These units are found in library CORVUS.LIBRARY.
Note that the procedure SEMA4INIT must be called prior to calling
any of the other procedures or functions in the SEMA4S unit. The
parameter is a BOOLEAN which should be set to FALSE. A TRUE
value results in some debugging statements being printed.
Here is a portion of a LOCK program:

PROGRAM LOCK;
USES (CORVUS.LIBRARY) DRIVEIO, SEMA4S;

VAR s: Semkey:;
i, err: INTEGER;

BEGIN
DriveioInit; { initialize unit Driveio }

Sema4Init (FALSE) ; { initialize unit SEMA4S)

Corvus Systems 178

Mass Storage Systems GTI Using Semaphores

e { get volume name to be locked)

s := 'VOLLOCK';

iz= 0;

REPEAT
1 := i+1;
err := Semlock(s):

UNTIL (err <> SemWasSet) (wait for semaphore to be not set)}
OR (i > 5000); { or timeout)

IF err <> SemNotSet THEN ... { report error and exit program)}

e { lock volume)}

{ closing the file causes the directory on disk to be updated)}
err := SemUnlock(s): { don't forget to unlock semaphore }
END.

If you have limited memory available, you may wish to write your
own semaphore routines. See Chapter 4 for information on
interfacing directly to unit DriveIO.

Refer to the Apple Pascal Operating System Reference manual for
information on file buffering and allocation.

Apple DOS Constellation I/II:

Corvus provides two assembly language procedures EBCI.OBJ and
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
multiplexer networks, and OMNIBCI.OBJ is for Omninet networks.

The program SHARE on the distribution floppy for Constellation I
shows how to send samaphore commands using these routines.

Refer to the Apple DOS manual for information on file buffering
and allocation.

Corvus Systens 179

Mass Storage Systems GTI Using Semaphores

This page intentionally left blank.

Corvus Systems 180

Mass Storage Systems GTI Using Pipes

USING

PIPES 6

This chapter gives two examples of how the pipes features of the
Corvus mass storage systems may be used. The first example is a
spooling program; the second shows how messages can be exchanged
using pipes. The features of the Corvus-supplied Spool program
are also described.

User libraries that implement pipes calls are supplied with
several of the versions of Corvus utilities. A typical interface
consists of 9 functionrs. These are summarized below:

Function Description

PipeStatus Get status of pipes area
PipeOpRd Open pipe for reading
PipeOpWr Open pipe for writing
PipeRead Read data from pipe

PipeWrite Write data to pipe

PipeClRd Close pipe for reading
PipeClWr Close pipe for writing
PipePurge Purge pipe

PipesInit Initialize pipes area on disk

Sample declarations of each function are listed below.
The DrvBlk data type used in these declarations is
TYPE DrvBlk = PACKED ARRAY 0..511 OF 0..255;

The negative error codes referred to in the declarations are
listed here:

Value Meaning
-8 Tried to read an empty pipe
-9 Pipe not opened
-10 Tried to write to a full pipe
-11 Pipe open error
-12 Pipe does not exist
-13 No room to open new pipe
-14 Invalid pipes command
-15 Pipes area not initialized
< =127 Disk error

Corvus Systems 181

Mass Storage Systems GTI Using Pipes

PipeStatus Function -===--cc-ccccccccnccccccccrcc e
PipesStatus uses the Pipe Status command to read the Pipe Name
table and the Pipe Pointer table. The definition of the
function is as follows:

FUNCTION PipeStatus(VAR Names, Ptrs: DrvBlk): INTEGER;

Parameter Data Type Description
Names DrvBik Pipe Name Table
Ptrs DrvBlk Pipe Pointer Table

This function returns 0 if ok; a negative result indicates a
pipe error.
PipeOpRd function ===mre-ceccccccccccccccrccrccccccccccccccncna-"

PipeOpRd uses the Pipe Open for Read command to open a pipe for
reading. The definition of this function is as follows:

FUNCTION PipeOpRd(PName: PNameStr): INTEGER;
Parameter Data Type Description
PName PNameStr Name of pipe to open
This function returns the pipe number if the specified pipe
exists, and can be opened. Otherwise, a negative error code is
returned.
PipeOpWr function ====-ecccccccmcccnccccccccnccccccccc e e cc e

PipeOpWr uses the Pipe Open for Write command to open a pipe for
writing. The definition of this function is as follows:

FUNCTION PipeOpWr(PName: PNameStr): INTEGER;
Parameter Data Type Description
PName PNameStr Name of pipe to open

This function returns the pipe number if the pipe was

successfully opened. Otherwise, a negative error code is
returned.

Corvus Systems 182

Mass Storage Systems GTI Us.ng Pipes

PipeRead function =====cceccccccccccrcccccncrccrcrcrcccc e

‘PipeRead uses the Pipe Read command to-read a block of data from
the specified pipe. The definition of this function is as
follows:

FUNCTION PipeRead(PNum: INTEGER; VAR Info: Drvlk): INTEGER;

Parameter Data Type Description
Pnum INTEGER Pipe number
Info DrvBlk Data read from pipe

This function returns the number of bytes read if the read is
successful. Otherwise, a negative error code is returned.
The number of bytes read should always be 512.

PipeWrite function ====eccccccecccnncccccccrncncccccccccccncccccas

PipeWrite uses the Pipe Write command to write a block of data to
the specified pipe. The definition of this function is as
follows:

FUNCTION PipeWrite(PNum, Wlen: INTEGER;
VAR Info: Drvlk): INTEGER;

Parameter Data Type Description

Pnum INTEGER Pipe number

Wlen INTEGER Number of bytes to write (=512)
Info DrvBlk Data to be written

This function returns the number of bytes written if the write
is successful. Otherwise, a negative error code is returned.
The number of bytes to write should always be 512.

PipeClRd function ==-=cec-ccccecccccccccccccnccccnccccccccncccca-

PipeClRd uses the Pipe Close command to close the pipe for
reading. The definition of this function is as follows:

FUNCTION PipeClRd(PNum: INTEGER): INTEGER;
Parameter Data Type Description
PNum INTEGER Pipe number
This function returns 0 if the pipe was successfully closed.

Otherwise, a negative error code is returned. If the pipe is
empty, it is deleted.

Corvus Systems 183

Mass Storage Systems GTI Using Pipes

PipeClWr function ----------f--------¥ --------------------------

PipeClWr uses the Pipe Close command to close the pipe for
writing. The definition of this function is as follows:

FUNCTION PipeClWr(PNum: INTEGER): INTEGER;
Parameter Data Type Description
PNum INTEGER Pipe number
This function returns 0 if the pipe was successfully closed.
Otherwise, a negative error code is returned. Once a pipe has
been closed for writing, no additional data can be written to it.
PipePurge function ===ececcccccnccccccncnccccccccccccncccccccccca"

PipePurge uses the Pipe Close command to purge the pipe. The
definition of this function is as follows:

FUNCTION PipePurge(PNum: INTEGER): INTEGER;
Parameter Data Type Description
PNum ;NTEGER Pipe number
This function returns 0 if the pipe was successfully purged.

Otherwise, a negative error code is returned.

PipesInit function ====cecccccccccrccncnccnccccccnccc e — -

PipesInit uses the Pipe Area Initialize command to initialize the
pipes area. The definition of this function is as follows:

FUNCTION PipesInit(Baddr, Bsize: INTEGER): INTEGER;

Parameter Data Type Pescription
Baddr INTEGER Pipes area starting block number
Bsize INTEGER Pipes area length, in blocks

This function returns 0 if the pipes area was successfull<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>