
CHAPTER 6

Instruction Set
64

SOFTWARE FEATURES
	

Instruction Set

OF THE 9900

SOFTWARE FEATURES OF THE 9900

In order to understand the operation of the 9900 instructions, the basic software features
of the 9900 must be understood. These features include the processor-memory
interrelationships, the available addressing modes, the terminology and formats used in
the 9900 assembly language, and the interrupt and subroutine procedures used by the
9900.

PROCESSOR REGISTERS AND SYSTEM MEMORY

There are three registers in the 9900 that are of interest to the programmer; their
functions are illustrated in Figure 6-1:

Program Counter—This register contains the address of the instruction to be executed by
the 9900. This instruction address can point to or locate an instruction anywhere in
system memory, though instructions normally are not placed in the first 64 words of
memory. These locations are reserved for interrupt and extended operation transfer
vectors.

Workspace Pointer—This register contains the address of the first word of a group of 16
consecutive words of memory called a workspace. The workspace can be located
anywhere in memory that is not already dedicated to transfer vector or program storage.
These 16 workspace words are called workspace registers 0 through 15, and are treated
by the 9900 processor as data registers much as other processors treat on-chip data
registers for high access storage requirements.

■ 6 	Status Register—The status register stores the summary of the results of processor
operations, including such information as the arithmetic or logical relation of the result
to some reference data, whether or not the result can be completely contained in a 16-bit
data word, and the parity of the result. The last bits of the status register contain the
system interrupt mask which determines which interrupts will be responded to.

These three 16-bit registers completely define the current state of the processor: what
part of the overall program is being executed, where the general purpose workspace is
located in memory, and what the current status of operations and the interrupt system
is. This information completely defines the current program environment or context of
the system. A change in the program counter contents and workspace register contents
switches the program environment or context to a new part of program memory with a
new workspace area. Performing such a context switch or change in program
environment is a very efficient method of handling subroutine jumps to subprograms that
require the use of a majority of the workspace registers.

6-2 	 9900 FAMILY SYSTEMS DESIGN

TRANSFER
VECTORS

(64 WORDS)

32,
WO

PROGRAM

RO --
R1 16
• WORD
. WORK-

SPACE

R15

64

68
DS

PROGRAM COUNTER
A, THROUGH A1 ,

(ADDRESS OF
INSTRUCTION)

WORKSPACE POINTER
16 BITS

A, THROUGH A,.

(ADDRESS OF
WORKSPACE
REGISTER 0)

STATUS REGISTER
16 BITS

`-•••••••••--,--•••••--•

STATUS 	INTERRUPT
MASK

Instruction Set
	

SOFTWARE FEATURES
OF THE 9900

Program Counter

Figure 6-1 illustrates the use of the three processor registers. The program counter is
the pointer which locates the instruction to be executed. All instructions require one or
more 16-bit words and are always located at even addresses. Multiple word instructions
include one 16-bit operation word and one or two 16-bit operand addresses. Two of the
processors in the 9900 family (TMS9900, SBP9900) employ a 16-bit data bus and
receive the instructions 16 bits at a time. The other processors (TMS9980A/81,
TMS9985, TMS9940) use an 8-bit data bus and require extra memory cycles to fetch
instructions. In both cases the even and odd bytes are located at even and odd addresses
respectively as illustrated in Figure 6-2 In addition, data may be stored as 16-bit words
located at even addresses or as 8-bit bytes at either even or odd addresses.

Workspace

The workspace is a set of 16 contiguous words of memory, the first of which is located
by the workspace pointer. The individual 16-bit words, called workspace registers, are
located at even addresses (see Figure 6-1). All of the registers are available for use as
general registers; however, some instructions make use of certain registers as illustrated
in Figure 6-3. Care should be exercised when using these registers for data or addresses
not related to their special functions.

9900 PROCESSOR
REGISTERS

SYSTEM
MEMORY

(16 BIT WORDS)

Figure 6-1. 9900 System Memory and Processor Registers.

9900 FAMILY SYSTEMS DESIGN 6-3

WORKSPACE POINTER (WP)

II

	 I ADDRESS OF FIRST
_.J WORD OF WORKSPACE

PROGRAM COUNTER (PC)

I

ADDRESS OF INSTRUCTION

STATUS REGISTER (ST)

SUMMARY OF EFFECT OF
PROGRAM OPERATIONS

(SEE FIGURE 6-4)

SOFTWARE FEATURES
	

Instruction Set

OF THE 9900

Status Register

The status register contents for the 9900 are defined in Figure 6-4. The 9900 interrupt
mask is a 4-bit code, allowing the specification of 16 levels of interrupt. Interrupt levels
equal to or less than the mask value will be acknowledged and responded to by the 9900.
The 9940 status register is similar, except the interrupt mask occupies bits 14 and 15 of
the status register, providing for four interrupt levels in the 9940.

MOST SIGNIFICANT
8 BIT BYTE

(EVEN ADDRESS, A 15 =0)

LEAST SIGNIFICANT
8 BIT BYTE

(ODD ADDRESS, Ai , = 1)

0 	1 	2 	3 	4 	5 	6 	7 I 8 	9 	10 11 	12 13 14 	15

MOST 	 LEAST
SIGNIFICANT 	 SIGNIFICANT

BIT 	 BIT

I

16 BIT WORD
(ADDRESSED BY 15 MOST

SIGNIFICANT ADDRESS BITS)

Figure 6-2. Word and Byte Definition.

PROCESSOR REGISTERS

WORKSPACE

■ 6

11 BL SUBROUTINE CALL RETURN ADDRESS

12 CRU BASE

13 LOC. OF CALLING PROG. WORK SPACE

14 LOC. OF NEXT WORD AFTER CALL

15 STATUS OF CALLING PROGRAM

SHIFT
COUNT

DATA
OR

ADDR

INDEX
CAPABILITY

RTN ADDR

CRU BASE

STORED WSP

STORED PC

STORED ST

Figure 6-3. Workspace Register Utilization.

6-4 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set
	

SOFTWARE FEATURES
OF THE 9900

Status
Register

Bit

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	131112131415

L> A> EQ C OV OP // 	X Z., /
RESERVED/

/ 	/ / 	/

INTERRUPT
MASK

0 LGT — Logical Greater Than— set in a comparison of an unsigned number with a smaller
unsigned number.

1 AGT — ilrithmetic Greater Than— set when one signed number is compared with another that
is less positive (nearer to — 32,768).

2 EQ — Equal— set when the two words or two bytes being compared are equal.

3 C 	— Carry— set by carry out of most significant bit of a word or byte in a shift or
arithmetic operation.

4 OV 	Overflow — set when the result of an arithmetic; operation is too large or too small to
be correctly represented in 2's complement form. OV is set in addition if the most
significant bit of the two operands are equal and the most significant bit of the sum is
different from the destination operand most significant bit. OV is set in subtraction if
the most significant bits of the operands are not equal and the most significant bit of
the result is different from the most significant bit of the destination operand. In
single operand instructions affecting OV, the OV is set if the most significant bit of
the operand is changed by the instruction.

5 OP — Odd Parity—set when there is an odd number of bits set to one in the result.

6 X 	— Extended Operation — set when the PC and WP registers have been to set to values of
the transfer vector words during the execution of an extended operation.

7-11 	Reserved for special Model 990/10 computer applications.

12-15 	Interrupt Mask — All interrupts of level equal to or less than mask value arc enabled.

Figure 6-4. 9900 Status Register Contents

64

9000 FAMILY SYSTEMS DESIGN 	 6-5

SOFTWARE FEATURES
	

Instruction Set

OF THE 9900

ADDRESSING MODES

The 9900 supports five general purpose addressing modes or methods of specifying the
location of a memory word:

Workspace Register Addressing

The data or address to be used by the instruction is contained in the workspace register
number specified in the operand field of the instruction. For example, if the programmer
wishes to decrement the contents of workspace register 2, the format of the decrement
instruction would be:

DEC 2

The memory address of the word to be used by the instruction is computed as follows:

REGISTER R

(PC)---0.1 INSTRUCTION 	---1.- (WP)+2R OPERAND

This type of addressing is used to access the often used data contained in the workspace.

Workspace Register Indirect Addressing

The address of the data to be used by the instruction is contained in the workspace
register specified in the operand field (the workspace register number is preceded by an
asterisk). This type of addressing is used to establish data counters so the programmer
can sequence through data stored in successive locations in memory. If register 3
contains the address of the data word to be used, the following instruction would be used

■ 6 	to clear (CLR) that data word:

CLR 	*3

In this instruction the contents of register 3 would not be changed, but the data word
addressed by the contents of register 3 would be cleared (set to all zeroes — 000 16). The
word address is computed as follows for this type of addressing:

REGISTER R

H(PC) 	 INSTRUCTION H(WP)+ 2R ADDRESS

OPERAND

Workspace Register Indirect Addressing With Autoincrement-

This addressing mode locates the data word in the same way that workspace register
indirect addressing does, with the added feature of incrementing the contents of the
address register after the instruction has been completed. The address in the register is
incremented by one if a byte operation is performed and by two if a word operation is
performed. Thus, to set up a true data counter to clear a group of successive words in
memory whose address will be contained in register 3, the following instruction would
be used:

CLR 	*3+

6-6
	

9900 FAMILY SYSTEMS DESIGN

-101 	 -0. (PC) 	 INSTRUCTION 	 (WP) +2R --il■ 	ADDRESS • 	•

Instruction Set SOFTWARE FEATURES
OF THE 9900

where the asterisk (*) indicates the workspace register indirect addressing feature and
the plus (+) indicates the autoincrementing feature. With this type of addressing, the
following computations occur:

REGISTER R

OPERAND

WORD + 2
BYTE + 1

Symbolic or Direct Addressing

The address of the memory word is contained in the operand field of the instruction and
is contained in program memory (ROM) in the word immediately following the
operation code word for the instruction. For example, to clear the memory word at
address 1000 16 , the following format would be used:

CLR 	@ >1000

where the at sign ((a) indicates direct addressing and the greater than (>) sign indicates
a base 16 (hexadecimal) constant. Alternatively, the data word to be cleared could be
named with a symbolic name such as COUNT and then the instruction would be:

CLR @COUNT

and if COUNT is later equated to 1000 16 , this instruction would clear the data word
at address 1000 16 . The instruction would occupy two words of program memory:

(PC) 	04C016 	Operation Code for Clear

(PC) + 2 	100016 	Address of Data

The address of the memory word is thus contained in the instruction itself and is located
by the program counter. Since this address is part of the instruction, it cannot be
modified by the program. As a result, this type of addressing is used for program
variables that occupy a single memory word such as program counters, data masks, and
so on. The address computations for direct addressing are as follows:

64

(PC) --111.. 	INSTRUCTION

(PC) i 2 ADDRESS

OPERAND

9900 FAMILY SYSTEMS DESIGN 6-7

REGISTER R

(PC) 	INSTRUCTION
(WP)+

2R

INDEXED
VALUE

(PC) + 2
BASE

ADDRESS

SOFTWARE FEATURES
	

Instruction Set

OF THE 9900

Indexed Addressing

Indexed addressing is a combination of symbolic and register indirect addressing. It
provides for address modification since part of the address is contained in the workspace
register used as an index register. Registers 1 through 15 can be used as index registers.
The memory word address is obtained by adding the contents of the index register
specified to the constant contained in the instruction:

OPERAND

Thus, to locate the data word whose address is two words down from the address
contained in register 5, and to clear this memory word, the following instruction is used:

CLR 	@4(5)

This instruction will cause the processor to add 4 to the contents of register 5 to
generate the desired address. Alternatively, a symbolic name could be used for the
instruction constant:

CLR 	@DISP(5)

with the value for the symbol DISP defined elsewhere in the assembly language
program.

Special Addressing Modes

Three additional types of special purpose addressing are used by the 9900.

Immediate ilddressing

Immediate addressing instructions contain the data to be used as a part of the instruction.
In these instructions the first word is the instruction operation code and the second word
of the instruction is the data to be used:

INSTRUCTION

IMMEDIATE VALUE

(PC)

(PC) + 2

6-8 9900 FAMILY SYSTEMS DESIGN

Instruction Set
	

SOFTWARE FEATURES
OF THE 9900

Program Counter Relative "lc/dressing

Conditional branch or jump instructions use a form of program counter relative
addressing. In such instructions the address of the instruction to be branched to is
relative to the location of the branch instruction. The instruction includes a signed
displacement with a value between — 128 and + 127. The branch address is the value of
the program counter plus two plus twice the displacement. For example, if LOOP is the
label at location 10 16 and the instruction:

JMP LOOP

is at location 18, 6 , the displacement in the instruction machine code generated by the
assembler will be — 5 or FB,„. This value is obtained by adding two to the current
program counter:

18, 6 + 2 1A„

and subtracting from this result the location of LOOP:

1A11 10, 6 = Al6 = 10 decimal.

The displacement of 5 is one-half this value of 10 and it is negative since LOOP is 5
words prior to the 18„ + 2 location.

CR U Addressing

CRU addressing uses the number contained in bits 3 through 14 of register 12 to form a
hardware base address:

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15
I 	lilt

R12

CRU Hardware Base address = Contents of R12 divided by 2

Thus if R12 contains 0400, 6 (the software base address), bits 3 through 14 will be
0200, 6 . This hardware base address is used to indicate the starting CRU bit address for
multiple bit CRU transfer instructions (STCR and LDCR). It is added to the
displacement contained in single bit CRU instructions (TB, SBO, SBZ) to form the
CRU bit address for these instructions. For example, to set CRU bit 208 to a one, with
register 12 containing 400 16 , the following CRU instruction would be used:

SBO 	8

so that the CRU bit address is 200 16 + 8. = 20816.

64

9900 FAMILY SYSTEMS DESIGN 6-9

ASSEMBLY LANGUAGE
	

Instruction Set

PROGRAMMING INFORMATION

ASSEMBLY LANGUAGE PROGRAMMING INFORMATION t
In order to understand the instruction descriptions and applications the assembly
language nomenclature must be understood. Assembly language is a readily understood
language in which the 9900 instructions can be written. The machine code that results
from the assembly of programs written in this language is called object code. Such object
code may be absolute or relocatable, depending on the assembly language coding.
Relocatable code is that which can be loaded into any block of memory desired, without
reassembling or without changing program operation. Such code has its address
information relative to the first instruction of the assembly language program so that
once a loader program specifies the location of this first instruction, the address of all
instructions are adjusted to be consistent with this location. Absolute code contains
absolute addresses which cannot be changed by the loader or any operation other than
reassembling the program. Generally, relocatable code is preferable since it allows the
program modules to be located anywhere in memory of the final system.

ASSEMBLY LANGUAGE FORMATS

The general assembly language source statements consist of four fields as follows:

LABEL MNEMONIC OPERANDS COMMENT

The first three fields must occur within the first 60 character positions of the source
record. At least one blank must be inserted between fields.

Label Field

► 6 	The label consists of from one to six characters, beginning with an alphabetic character
in character position one of the source record. The label field is terminated by at least
one blank. When the assembler encounters a label in an instruction it assigns the current
value of the location counter to the label symbol. This is the value associated with the
label symbol and is the address of the instruction in memory. If a label is not used,
character position 1 may be a blank, or an asterisk.

Mnemonic or Opcode Field

This field contains the mnemonic code of one of the instructions, one of the assembly
language directives, or a symbol representing one of the program defined operations.
This field begins after the last blank following the label field. Examples of instruction
mnemonics include A for addition and MOV for data movement. The mnemonic field is
required since it identifies which operation is to be performed.

Operands Field

The operands specify the memory locations of the data to be used by the instruction.
This field begins following the last blank that follows the mnemonic field. The memory
locations can be specified by using constants, symbols, or expressions, to describe one of
several addressing modes available. These are summarized in Figure 6-5.

t Excerpts from Model 990 computer TMS 9900 Microprocessor Assembly Language Programmer's Guide.

6- 10 	 9900 FAMILY SYSTEMS DESIGN

0

U

	

c 	 -E
,_, 1) c, ,,- v . s 0

(..., —0 0 — ‘_, 	,-,- --.--, — 	C E -0 -6 r:4 *-, ,I.) -0 o 	 0 c c 	°-, c 	- .47', 	F... . 01 	a.
7- il 	'> O

	

' , ' 	a x v c

	

.a.' -ti _c •- „,°) 	60 0..
— . ,y 	0 5 t -, 	,n ,... 	,,5. 4 o r2 ,'

'c' t) E, 12' „g: 	° ..2.-) 	E c ati S 	-0
' 	

l', ;
., 	. 	

) -0 	 7,
'111 (.4 	 ,_c'-' ,_. 	-,-,' .71 	-.. 	F, :-

Instruction Set
	

ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

M
(R

3)

M
(R

5)

M
(O

N
E

)
-
 M

(
10

)

G

I=4

.`4
6.0

C
	

C

.

N;,1, 	 8 of) 	'8 EL
-> 	, 	,--

757:
P

-5
-Ws

cs
a.,
v -0

.0
,..

,,2

,..)
-C

O
C

c.

af)
o ,
2 	b:c.

.,!',
P 	IL
.0 	---;

6 	?:,
-';i

:_, 	-6
1.7 	...

0 . .-.

75

._. 	-.
-`4 c

	

VI 	. E
a) c

	

VI 	-E =
,...• 0 E

1,-
c v .. C

Fp 0 .0 0
-

, 1,4 8

	

t-' 	.7)

	

- ,̀-,-,i 	
E) a., 	. ,.f.

,a_ ,1

,-.. _

	

. 	',.:, 	-ac, ,E-2 a.
4

u -14
,;:a' ..0 V _C

7

, .tZ

 G 	c

.n

	

t 	-0- 	,•,_,, 7,.-,,'
E E -0 ca'

	

2 	5 5

. -.L. 	-7 -' ' E

	

C 	72
',..,

C 	 ,.. 	S. , _ •-
•_, 	C 	0.) 	H. 	..?-

64

Figure 6-5. Addressing Modes

9900 FAMILY SYSTEMS DESIGN 6-11

ASSEMBLY LANGUAGE
	

Instruction Set

PROGRAMMING INFORMATION

Comments Field

Comments can be entered after the last blank that follows the operands field. If the first
character position of the source statement contains an asterisk (*), the entire source
statement is a comment. Comments are listed in the source portion of the assembler
listing, but have no affect on the object code.

TERMS AND SYMBOLS

Symbols are used in the label field, the operator field, and the operand field. A symbol is
a string of alphanumeric characters, beginning with an alphabetic character.

Terms are used in the operand fields of instructions and assembler directives. A term is a
decimal or hexadecimal constant, an absolute assembly-time constant, or a label having
an absolute value. Expressions can also be used in the operand fields of instructions and
assembler directives.

Constants

Constants can be decimal integers (written as a string of numerals) in the range of
— 32,768 to + 65,535. For example:

257

Constants can also be hexadecimal integers (a string of hexadecimal digits preceded by
>). For example:

> 09AF

ASCII character constants can be used by enclosing the desired character string in single
quotes. For example:

`DX' = 4458 1 „ 	R'+0052,;

Throughout this book the subscript 16 is used to denote base 16 numbers. For
example, the hexadecimal number 09AF will be written 09AF 1 ,.

Symbols

Symbols must begin with an alphabetic character and contain no blanks. Only the first six
characters of a symbol are processed by the assembler.

The assembler predefines the dollar sign ($) to represent the current location in the
program.

A given symbol can be used as a label only once, since it is the symbolic name of the
address of the instruction. Symbols defined with the DXOP directive are used in the
OPCODE field. Any symbol in the OPERANDS field must have been used as a label or
defined by a REF directive.

6-12 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set
	

ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

Expressions

Expressi6ns are used in the OPERANDS fields of assembly language statements. An
expression is a term or a series of terms separated by the following arithmetic
operations:

+ addition

— subtraction

* multiplication

/ division

The operator precedence is +, —, *, / (left to right).

The expression must not contain any imbedded blanks or extended operation defined
(DXOP directive defined) symbols. Unary minus (a minus sign in front of a number or
symbol) is performed first and then the expression is evaluated from left to right. An
example of the use of the unary minus in an expression is:

LABEL + TABLE+ (— INC)

which has the effect of the expression:

LABEL + TABLE — INC

The relocatability of an expression is a function of the relocatability of the symbols and
constants that make up the expression. An expression is relocatable when the number of
relocatable symbols or constants added to the expression is one greater than the number
of relocatable symbols or constants subtracted from the expressions. All other
expressions are absolute. The expression given earlier would be relocatable if the three
symbols in the expression are all relocatable.

The following are examples of valid expressions.

BLUE + 1

2*16 + RED

440/2 —RED

SURVEY OF THE 9900 INSTRUCTION SET

The 9900 instructions can be grouped into the following general categories: data
transfer, arithmetic, comparison, logical, shift, branch, and CRU input/output
operations. The list of all instructions and their effect on status bits is given in
Figure 6-6.

61

9900 FAMILY SYSTEMS DESIGN 	 6-13

ASSEMBLY LANGUAGE
	

Instruction Set

PROGRAMMING INFORMATION

Mnemonic 	L> .A> EQ C OV OP X Mnemonic 	L> A> EQ C OV OP X

A 	 X X X X X 	 DIN' 	 X
AB 	X X X X X X 	 IDLE
ABS 	X X X X X 	 INC 	X X X X X

AI 	 X X X X X 	 INCT 	X X X X X

ANDI 	X X X 	 INN' 	X X X

B 	 JEQ
BL 	 JGT
BLWP 	 J1-I
C 	 X X X 	 JHE
CB 	X X X 	 X 	 JL
CI 	 X X X 	 JLE
CKOF 	 JET
CKON 	 JIMP
CLR 	 JNC
COC 	 X 	 JNE
CZC 	 X 	 JNO
DEC 	X X X X X 	 JOC
DECT 	X X X X X 	 JOP

LDCR 	X X X 	 1 	 SBZ
LI 	 X X X 	 SETO
LIMI 	 SEA 	X X X X X

LREX 	 SOC 	X X X -

LW PI 	 SOCB 	X X X 	 X
MOV 	X X X 	 SRA 	X X X X
MOVB 	X X X 	 X 	 SRC 	X X X X
MPY 	 SRL 	X X X X
NEC 	X X X X X 	 STCR 	X X X 	 1
ORI 	X X X - 	 STST
RSET 	 STW P
RTWP 	X X X X X X X 	SWPB
S 	 X X X X X - 	 SZC 	X X X 	 -
SB 	X X X X X X 	 SZCB 	X X X 	 X
SBO 	 TB 	 X

X 	 2 	7 	2 	2 	7 	7 	2

XOP 	2 	2 	2 	2 	2 	2 	2
XOR 	X X X -

Notes: 1. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte
instructions. Otherwise these instructions do not affect the OP bit.

2. The X instruction does not affect any status bit; the instruction executed by the X instruction sets status
bits normally for that instruction. When an XOP instruction is implemented by software, the XOP bit is
set, and the subroutine sets status bits normally.

Figure 6-6. Status Bits Affected by Instructions

6-14 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

,41111■

Data Transfer Instructions

Load— used to initialize processor or workspace registers to a desired value.

Move— used to move words or bytes from one memory location to another.

Store— used to store the status or workspace pointer registers in a workspace register.

Arithmetic Instructions

Addition and Subtraction—perform addition or subtraction of signed or unsigned binary
words or bytes stored in memory.

Negate and Absolute Value—changes the sign or takes the absolute value of data words in
memory.

Increment and Decrement—Adds or subtracts 1 or 2 from the specified data words in
memory.

Multiply—Performs unsigned integer multiplication of a word in memory with a
workspace register word to form a 32 bit product stored in two successive workspace
register locations.

Divide—Divides a 32 bit unsigned integer dividend (contained in two successive
workspace registers) by a memory word with the 16 bit quotient and 16 bit remainder
stored in place of the dividend.

Compare Instructions

These instructions provide for masked or unmasked comparison of one memory word or
byte to another or a workspace register word to a 16 bit constant.

Logical Instructions

OR and AND—masked or unmasked OR and AND operations on corresponding bits of
two memory words. A workspace register word can be ORed or ANDed with a 16 bit
constant.

Complement and Clear — The bits of a selected memory word can be complemented, or
cleared or set to ones.

Exclusive OR—A workspace register word can be exclusive ORed with another
memory word on a bit by bit basis.

Set Bits Corresponding—Set bits to one (SOC) or to zero (SZC) whose positions
correspond to one positions in a reference word.

64

9900 FAMILY SYSTEMS DESIGN 	 6-15

ASSEMBLY LANGUAGE
	

Instruction Set

PROGRAMMING INFORMATION

Shift Instructions

A workspace register can be shifted arithmetically or logically to the right. The registers
can be shifted to the left (filling in vacated positions with zeroes) or circulated to the
right. The shifts and circulates can be from 1 to 16 bit positions.

Branch Instructions

The branch instructions and the JMP (jump) instruction unconditionally branch to
different parts of the program memory. If a branch occurs, the PC register will be
changed to the value specified by the operand of the branch instruction. In subroutine
branching the old value of the PC is saved when the branch occurs and then is restored
when the return instruction is executed. The conditional jump instructions test certain
status bits to determine if jump is to occur. When a jump is made the PC is loaded with
the sum of its previous value and a displacement value specified in the operand portion of
the instruction.

Control/CRU Instructions

These instructions provide for transferring data to and from the communications register
input/output unit (CRU) using the CRUIN, CRUOUT and CRUCLK pins of the 9900.

INSTRUCTION DESCRIPTIONS

The information provided for each instruction in the next section of this chapter is as
follows:

Name of the instruction.

Mnemonic for the instruction.

Assembly language and machine code formats.

Description of the operation of the instruction.

Effect of the instruction on the Status Bits.

Examples.

Applications.

The format descriptions and examples are written without the label or comment fields
for simplicity. Labels and comments fields can be used in any instruction if desired.

6-16 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set
	

ASSEMBLY LANGUAGE
PROGRAMMING INFORMATION

Each instruction involves one or two operand fields which are written with the following
symbols:

G—Any addressing mode is permitted except I (Immediate).

R—Workspace register addressing.

exp—A symbol or expression used to indicate a location.

value—a value to be used in immediate addressing.

cnt—A count value for shifts and CRU instructions.

CRU—CRU (Communications Register Unit) bit addressing.

The instruction operation is described in written and equation form. In the equation
form, an arrow(•) is used to indicate a transfer of data and a colon (:) is used to indicate a
comparison. In comparisons, the operands are not changed. In transfers, the source
operand (indicated with the subscript s) is not changed while the destination operand
(indicated with the subscript d) is changed. For operands specified by the symbol G, the
M(G) nomenclature is used to denote the memory word specified by G. MB(G) is used
to denote the memory byte specified by G. Thus, transferring the memory word

ow contents addressed by G. to the memory word location specified by Gd and comparing
the source (G s) data to zero during the transfer, can be described as:

M(G,) —.- M(Gd)

M(Gs):0

which is the operation performed by the MOV instruction:

MOV 	Gs,Gd

A specific example of this instruction could be:

MOV @ONE,3

which moves the contents of the memory word addressed by the value of the symbol
ONE to the contents of workspace register 3:

M(ONE)--■ R3

M(ONE) : 0

64

9900 FAMILY SYSTEMS DESIGN 	 6-17

1 	11 	I 	1
	

I 	I

O 0 0 0 0 0 1 0 0 0 0 0
	

R

Instruction Set

LYLIMI
DATA TRANSFER INSTRUCTIONS

The MOV instructions are used to transfer data from one part of the system to another
part. The LOAD instructions are used to initialize registers to desired values. The
STORE instructions provide for saving the status register (ST) or the workspace
pointer (WP) in a specified workspace register.

LOAD IMMEDIATE

LI
Format: LI 	R,value

O 1 	2 3 4 5 	6 	7 	8 	9 10 11 12 13 14 15

(0200 + R)

Operation: The 16 bit data value in the word immediately following the instruction is
loaded into the specified workspace register R.

value -

immediate operand: 0

"lied on Status: LGT,AGT, EQ

	

Examples: LI 	7,5 	 5 	R7

	

LI 	8,>FF 	 OOFF„ 	R8

4pplications: The LI instruction is used to initialize a workspace register with a program
constant such as a counter value or data mask.

LOAD INTERRUPT MASK IMMEDIATE LIMI
Format: LIMI 	value

0
	

2 	3 	4
	

5 	6 	7 	8 	9 	10 11 12 13 14 15
111111 	I 	I 	1

O 000001100000000
	

(0300)

Operation The low order 4 bit value (bits 12-15) in the word immediately following the
instruction is loaded into the interrupt mask portion of the status register:

BITS 	0 	1 	2 3 	4 	5 	6 	7 8 9 10 11 12 13 14 15

ST

I 	 4 BIT VALUE

ilffect on Status: Interrupt mask code only

Example: LIMI 5

Enables interrupt levels 0 through 5

iipp/ication: The LIMI instruction is used to initialize the interrupt mask to control
which system interrupts will be recognized.

6 - 18 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set

LW%0V
LWPI LOAD WORKSPACE POINTER IMMEDIATE

Format: LWPI value

0 	1 	2 	3 4 	5 	6 	7 	8 	9 	10 11 12 13 14 15
111111111111111

0 0 0 0 0 0 1 0 1 	1 	1 	0 0 0 0 0
	

(02E0)

Operation: The 16 bit value contained in the word immediately following the instruction
is loaded into the workspace pointer (WP):

value

Affect on Status: None

Example: LWPI >0500

Causes 0500 1, to be loaded into the WP.

Application: LWPI is used to establish the workspace memory area for a section of the
program.

MOVE WORD

MOV
Format: MOV 	Os,Od

0 2 3 4 5 	6 	7 	8 	9 	10 11 12 13 14 15
I 	 I 	 I

1 1 0 0
	

T d 	D
	

T, 	 S

Operation: The word in the location specified by G s is transferred to the location
specified by Gd , without affecting the data stored in the G s location. During the transfer,
the word (G s data) is compared to 0 with the result of the comparison stored in the status
register:

M(G s) ---3- M(G,,)
M(G,).0

Status Bits Affected: LGT, AGT, and EQ

Examples: 	MOV 	R1,R3 	R1 	R3, 	R1:0
MOV 	*R1,R3 	M(R1) 	 M(R1):0
MOV 	@ONES,*1 M(ON ES) --I- M(R1), 	M(ONES):0
MOV 	@2(5),3 	M(R5 + 	R3, 	M(R5 + 2):0
MOV 	*R1 + ,*R2 + M(R1) --o-M(R2), 	M(R1):0,

(R1) + 2 --0--R1 , 	(R2) + 2 	R2

Application: MOV is used to transfer data from one part of the system to another part.

(C---)

64

9900 FAMILY SYSTEMS DESIGN 	 6-19

Instruction Set

MOVB
MOVE BYTE MOVB

Format: MOVB G„Gd

0 	1 	2 3 	4 5 	6 	7 	8 	9 	10 11 	12 13 14 	15

	

I 	1 	1

	

1 	1 	0 	1 Td D

(D---)

Operation: The Byte addressed by G s is transferred to the byte location specified by Gd .
If G is workspace register addressing, the most significant byte is selected. Otherwise,
even addresses select the most significant byte; odd addresses select the least significant
byte. During the transfer, the source byte is compared to zero and the results of the
comparison are stored in the status register.

MB(G,) --o- MB(G,,)
MB(G,)•0

Status Bits infected: LGT, AGT, E0, OP

Examples: MOVB @>1C14,3
MOVB *8,4

These instructions would have the following example affects:
Memory
Location

Contents
Initially

Contents
4fter Transfer

1C14 2016 2016
R3 542B 202B
R8 2123 2123

2123 1040 1040
R4 OAOC 400C

The underlined data are the bytes selected.

//pplication: MOVB is used to transfer 8 bit bytes from one byte location to another.

6-20 	 9900 FAMILY SYSTEMS DESIGN

SWPB/STST

SWPB

Instruction Set

SWAP BYTES

Format: SWPB G

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 1 4 15
1111

000001

I

1 	0 	1 	1 Ts

1 	1 	1

S

(06C0 + T 5 S)

Operation: The most significant byte and the least significant bytes of the word at the
memory location specified by G are exchanged.

Affect on Status: None

Before After

Example: SWPB 3 	R3 Contents: F302 02F3

Application: Used to interchange bytes if needed for subsequent byte operations.

STORE STATUS

Format: STST R

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15
11111

000000101100

STST

(02C0 + R)
(1.R15

Operation: The contents of the status register are stored in the workspace register
specified:

ST—=R

Affect on Status: None

Example: STST 3 	ST is transferred to R3

Application: STST is used to save the status for later reference.

64

9900 FAMILY SYSTEMS DESIGN 	 6-21

Instruction Set

STWP
STORE WORKSPACE POINTER

Format: STWP R

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

00000010 1 0 1 0
	

R

STWP

(02A0 + R)

Operation: The contents of the workspace pointer are stored in the workspace register
specified:

WP

ilifect on Status: None

Example: STWP 3 	WP is transferred into R3

STWP is used to save the workspace pointer for later reference.

6-22 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set

A
ARITHMETIC INSTRUCTIONS

These instructions perform the following basic arithmetic operations: addition (byte or
word), subtraction (byte or word), multiplication, division, negation, and absolute value.
More complicated mathematical functions must be developed using these basic
operations. The basic instruction set will be adequate for many system requirements.

ADD WORDS A
Format: A 	G„Od

0 2 3 4 	5 6 	7 	8 	9 	10 11 	12 13 14 15
I 	I 	I
	

i
	

I 	I 	I

1 	0 	1 	0
	

Td 	 Ts
	 S

Operation: The data located at the address specified by G s is added to the data located at
the address specified by G d . The resulting sum is placed in the G d location and is
compared to zero:

M(G,) + M(G 4) 	M(G 4)

M(G,) + M(G„):0

Status Bits ilffected• LGT, AGT, EQ, C, OV

Examples: 	A
A

5,@TABLE R5 + M(TABLE) --1.-M(TABLE)
3,*2 	R3 + M(R2) --o-M(R2)

with the sums compared to 0 in each case. Binary addition affects on status bits can be
understood by studying the following examples:

NI(G s)
1000

MSG)
0001

Sum
1001

LGT
1

AGT'''*
1

EQ
0

C
0

OV*
0

F000 1000 0000 0 0 1 1 0
F000 8000 7000 1 1 0 1 1
4000 4000 8000 1 0 0 0 1

*OV (overflow) is set if the most significant bit of the sum is different from the most
significant bit of M(G d) and the most significant bit of both operands are equal.

**AGT (arithmetic greater than) is set if the most significant bit of the sum is zero and if
EQ (equal) is 0.

Application: Binary addition is the basic arithmetic operation required to generate many
mathematical functions. This instruction can be used to develop programs to do
multiword addition, decimal addition, code conversion, and so on.

(A---)

64

9900 FAMILY SYSTEMS DESIGN 	 6-23

Instruction Set

AB
ADD BYTES
	

AB
Format: AB 	G 5 ,Gd

0 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

	

I 	I 	I
	

I 	I

	

1 	0 1 	1 	Td 	D
	TI 	 S

Operation: The source byte addressed by G s is added to the destination byte addressed by
G4 and the sum byte is placed in the Gd byte location. Recall that even addresses select
the most significant byte and odd addresses select the least significant byte. The sum
byte is compared to 0.

MB(G s) + MB(G d)—►- MB(Gd)
MB(G,) + MB(G,i):0

Status Bits Affected.: LGT, AGT, EQ, C, OV, OP

	

Example: AB 	3,*4 + 	R3 + MB(R4)--o- MB(R4), R4 + 2 ---o- R4

	

AB 	@TAB,5 MB(TAB) + R5 ---o- R5

To see how the AB works, the following example should be studied:
AB 	@>2120,@>2123

Memory 	Data Before 	Data After
Location 	 Addition 	 Addition

	

2120 	 F320 	 F320

	

2123 	 2106 	 21F9

The underlined entries are the addressed and changed bytes.

Application: AB is one of the byte operations available on the 9900. These can be
useful when dealing with subsystems or data that use 8 bit units, such as ASCII codes.

6-24 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set Ays

Al ADD IMMEDIATE

Format: Al 	R,Value

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15
I

000000100010
	

R
(0220 + R)

(JR15

Operation: The 16 bit value contained in the word immediately following the instruction
is added to the contents of the workspace register specified.

R + Value 	R, 	R + Value:0

Status Bits Affected: LGT, AGT, EQ, C, OV

Example: Al 	 C

Adds C 16 to the contents of workspace register 6. If R6 contains 1000 16j then the
instruction will change its contents to 100C 16i and the LGT and AGT status bits will be
set.

Application: This instruction is used to add a constant to a workspace register. Such an
operation is useful for adding a constant displacement to an address contained in the
workspace register.

SUBTRACT WORDS
	

S
Format: S 	G„Gd

0 	1 	2 3 4 	5 6 	7 8 9 10 11 12 13 14 15

	

II 	i
0 1 	1 0
	

Td
	 a
	

TS 	S

Operation: The source 16 bit data (location specified by G 1) is subtracted from the
destination data (location specified by G d) with the result placed in the destination
location Gd. The result is compared to 0.

M(G d) — M(G,) 	M(Gd)
M(G,)— M(G s):0

Status Bits Affected: LGT, AGT, EQ, C, OV

Examples: S 	@OLDVAL,@NEWVAL

would yield the following example results:

Memory
Location
OLDVAL
NEWVAL

Before Subtraction
Contents

1225
8223

After Subtraction
Contents

1225
6FFE (8223-1225)

All status bits affected would be set to 1 except equal which would be reset to 0.

Application: Provides 16 bit binary subtraction.

64

9900 FAMILY SYSTEMS DESIGN 	 6-25

SB
	 Instruction Set

SUBTRACT BYTES
	

SB
Format: SB 	G s Gd

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

	

I 	I 	I

	

0 	1 	1 	1
	

T d 	0
	

TI
	

S

Operation: The source byte addressed by G. is subtracted from the destination byte
addressed by Gd with the result placed in byte location Gd. The result is compared to 0.
Even addresses select the most significant byte and odd addresses select the least
significant byte. If workspace register addressing is used, the most significant byte of the
register is used.

MB(G 4) — MB(G s) —1.--MB(G 4)
MB(G d) — MB(G,) 0

Status Bits Affected: LGT, AGT, C, EQ, OV, OP

Format: SB 	*6 + ,1 	R1 — MB(R6) 	R1
R1 — MB(R6) . 0

R6 + 1 	R6

This operation would have the following example result:

	

Memory 	 Contents Before 	 Contents After

	

Location 	 Instruction 	 Instruction

R6 121D 121E
121D 3123 4123
R1 1344 F044

6 	The underlined entries indicated the addressed and changed bytes. The LGT (logical
greater than) status bit would be set to 1 while the other status bits affected would be 0.

Application: SB provides byte subtraction when 8 bit operations are required by the
system.

6-26 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set
	

INCANCT
INCREMENT
	

INC

	

Format: INC 	G

O 1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

	

I 	I 	I 	I 	I 	I 	I 	I 	I

O 0 0 0 0 1 	0 1 	1 	0 Ts 	S

Operation: The data located at the address indicated by G is incremented and the result is
placed in the G location and compared to 0.

M(G) + 1 —0-M(G)
M(G) + 1 0

Status Bits flffected• LGT, AGT, EQ, C, OV

	

Examples: INC 	@TABL 	M(TABL) + 1 	M(TABL)

	

INC 	1 	 (R1) + 1 	R1

iippfication: INC is used to increment byte addresses and to increment byte counters.
Autoincrementing addressing on byte instructions automatically includes this operation.

INCREMENT BY Two
	

INCT
_ Format: INCT G

O 1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

I
TS 	S

I 	I 	I I 	I 	I 	II I

O 0 0 0 	0 	1 	0 	1 	1 	1

Operation: Two is added to the data at the location specified by G and the result is stored
at the G location and is compared to 0:

M(G)+ 2 	M(G)
M(G) + 2 :0

Status Bits Affected: LGT, AGT, EQ, C, OV

Example: INCT 5 (R5) + 2 --g- R5

*pi/cation: This can be used to increment word addresses, though autoincrementing on
word instructions does this automatically.

(05--)

(05--)

9900 FAMILY SYSTEMS DESIGN 	 6-2

Instruction Set

DEVDECT
DECREMENT DEC

Format: DEC G

0
	

2 3 	4 	5 	6 	7 8 9 10 11 12 13 14 15

O 0 0 0 0 1 	1 0 0 0
	

TS 	S

Operation: One is subtracted from the data at the location specified by G, the result is
stored at that location and is compared to 0:

	

M(G)-1 	M(G)
M(G) – 1 0

Status Bits Affected: LGT, AGT, EQ, C, OV

	

Example: DEC 	@TABL 	M(TABL) – 1 	M(TABL)

Application: This instruction is most often used to decrement byte counters or to work
through byte addresses in descending order.

DECREMENT BY TWO

Format: DECT G
DECT

O 1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15
II(

O 00001100 1
	

TS 	S

Operation: Two is subtracted from the data at the location specified by G and the result is
stored at that location and is compared to 0:

M(G) – 2 —•-• M(G)
M(G) – 2 : 0

Status Bits Affected: LGT, AGT, EQ, C, OV

Example: DECT 3 (R3) – 2 R3

Application: This instruction is used to decrement word counters and to work through
word addresses in descending order.

(06--)

(06--)

6-28 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set NEG
/ABS /ABS

NEG NEGATE

Format: NEG 	G

0
	

2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

I

0000010100 TS 	S

Operation: The data at the address specified by G is replaced by its two's complement.
The result is compared to 0:

—M(G)
—M(G) 0

Status Bits Effected• LGT, AGT, EO, OV (OV set only when operand — 800016)

Example: NEG 	5 	— (R5) 	R5

If R5 contained A342 16 , this instruction would cause the R5 contents to changed to
5CBE16 and will cause the LGT and AGT status bits to be set to 1.

ylppfication: NEG is used to form the 2's complement of 16 bit numbers.

	

4111111■ ABSOLUTE VALUE 	
	

ABS
Format: ABS G

0 	1 	2 3 4 	5 	6 	7 8 9 10 11 12 13 14 15

1111111111

0000011101 T5 	S

Operation: The data at the address specified by G is compared to 0. Then the
absolute value of this data is placed in the G location:

M(G) : 0
IM(G)I 	M(G)

Status Bits ilffected• LGT, AGT, EO, OV (OV set only when operand = 800016)

Example: ABS 	@LIST(7) 	1M(R7 + LIST) I 	M(R7 + LIST)

If the data at R7 + LIST is FF3C16 , it will be changed to 00C4 16 and LGT will be
set to 1.

iippfication: This instruction is used to test the data in location G and then replace
the data by its absolute value. This could be used for unsigned arithmetic
algorithms such as multiplication.

(05--)

(07---)

64

9900 FAMILY SYSTEMS DESIGN 	 6-29

Instruction Set

MPY
MULTIPLY
	

MPY
Format: MPY 	G„Rd

2 	3 	4
	

6 	7 	8 	9 	10 11 12 13 14 15
i
	

1 	1 	1

0 0 1 	1 	1 	0
	

D
	

TS
	

S

Operation: The 16 bit data at the address designated by G. is multiplied by the 16
bit data contained in the specified workspace register R. The unsigned binary
product (32 bits) is placed in workspace registers R and R+ 1:

G, 	 Rd
	

R d + 1

MULTIPLIER x
	

MULTIPLICAND

PRODUCTFFFE0001,,,

Affect on Status: None

Example: MPY 	@NEW,5

If the data at location NEW is 0005 16 and R5 contains 0012 1 " this instruction will
cause R5 to contain 0000 16 and R6 to contain 005A16.

Application: MPY can be used to perform 16 bit by 16 bit binary multiplication.
Several such 32 bit subproducts can be combined in such a way to perform
multiplication involving larger multipliers and multiplicands such as a 32 bit by 32 bit
multiplication.

6-30 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set 	

DIV
DIVIDE DIV

	

Format: DIV 	G,,Rd

	

0 	1 	2 	3 	4
	

5 	6 	7 	8 	9
	

10 11 12 13 14 15

A0111111b, 1 	1 	I
	

I 	T

0 	0 	1 	1 	1 	1
	

D
	

Ts 	 S

Operation: The 32 bit number contained in workspace registers Rd and Rd + 1 is
divided by the 16 bit data contained at the address specified by G,. The workspace
register Rd then contains the quotient and workspace Rd + 1 contains the 16 bit
remainder. The division will occur only if the divisor at G is greater than the data
contained in Rd :

Rd

QUOTIENT

R6+ 1

REMAINDER

M(G)

DIVISOR

DIVIDEND

ilffect on Status: Overflow (OV) is set if the divisor is less than the data contained in
Rd. If OV is set, Rd and Rd + 1 are not changed.

Example: DIV 	@LOC,2

If R2 contains 0 and R3 contains 000D i , and the data at address LOC is 0005 16 ,

this instruction will cause R2 to contain 0002 16 and R3 to contain 0003 16 . OV
would be 0.

Application: DIV provides basic binary division of a 32 bit number by a 16 bit
number.

64

9900 FAMILY SYSTEMS DESIGN 	 6-31

C
	 Instruction Set

COMPARISON INSTRUCTIONS

These instructions are used to test words or bytes by comparing them with a
reference constant or with another word or byte. Such operations are used in
certain types of division algorithms, number conversion, and in recognition of
input command or limit conditions.

COMPARE WORDS

Format: C 	G„Gd

0 2 3 4 5 	6 	7 	8 	9 	10 I I 12 13 14 15

I 	I 	I
	

I 	I

1 0 0 0
	

Td 	 TS 	S

Operation: The 2's complement 16 bit data addressed by G. is compared to the 2's
complement 16 bit data addressed by Gd. The contents of both locations remain
unchanged.

M(G,) M(G d)

Status Bits Affected.: LGT, AGT, Ea

Example: C 	@T1,2

This instruction has the following example results:

C

Data at
Location TI

FFFF
7FFF
8000
8000
7FFF
7FFF

Data in
R2

Results of Comparison
LGT 	AGT 	EQ

0000 1 0 0
0000 1 1 0
0000 1 0 0
7FFF 1 0 0
7FFF 0 0 1
8000 0 1 0

Application: The need to compare two words occurs in such system functions as division,
number conversion, and pattern recognition.

6-32 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set 	

CB
COMPARE BYTES

Format: CB 	Gs, Gd

CB
0 	1 	2 3 	4 5 	6 	7 	8 	9 	10 11 	12 13 14 	IS

	

I 	1
	

I 	I 	I

1 	0 	0 	1
	

Td 	D
	

T s
	 S

Operation: The 2's complement 8 bit byte addressed by G s is compared to the 2's
complement 8 bit byte addressed by Gd:

MB(G s) MB(G d)

Status Bits ilfected: LGT, AGT,EQ,OP

OP (odd parity) is based on the number of bits in the source byte.

Example: CB 	1,*2

with the typical results of (assuming R2 addresses an odd byte):

Results of Comparison
R1 data 	M(R2) Data LGT 	zIGT 	EQ 	OP

FFFF 	 FF00 	1 	0 	0 	0
7F00 	 FF00 	1 	1 	0 	1
8000 	 FF00 	1 	0 	0 	1
8000 	 FF7F 	1 	0 	0 	1
7F00 	 007F 	0 	0 	1 	1

The underlined entries indicate the byte addressed.

*pi/cation: In cases where 8 bit operations are required, CB provides a means of
performing byte comparisons for special conversion and recognition problems.

9900 FAMILY SYSTEMS DESIGN 	 6 -33

O 0 0 0 0 0 1 0 1 0 0 0
	

R

Instruction Set

COMPARE IMMEDIATE

Format: CI R,Value

O 1 	2 	3 	4 5 	5 	/ 	8 	9 	10 11 	1? 13 14 15

C I

(0280 + R)

015R15

6

Operation: CI compares the specified workspace register contents to the value contained
word immediately following the instruction:

R : Value

Status Bits Affected: LGT, AGT, EQ

Example: CI 	9, >F330

If R9 contains 2183 16 , the equal (EQ) and logical greater than (LGT) bits will be 0 and
arithmetic greater than (AGT) will be set to 1.

Application: CI is used to test data to see if system or program limits have been met or
exceeded or to recognize command words.

COMPARE ONES CORRESPONDING

Format: COC G„R
COC

0 2 3 4 5 6 8 	9 	10 11 	12 13 14 15

I 	I 	I

D
	

T5 	 S
I 	1 	I 	I

O 0 1 0 0 0

Operation: The data in the location addressed by G s act as a mask for the bits to be tested
in workspace register R. That is, only the bit position that contain ones in the G, data
will be checked in R. Then, if R contains ones in all the bit positions selected by the G,
data, the equal (EQ) status bit will be set to 1.

Status Bits Affected• EQ

Example: COC @TESTBIT, 8

If R8 contains E30616 and location TESTBIT contains C 10216,

TESTBIT Mask = 1100 0001 0000 0010
R8 =1110 0011 0000 0110

equal (EQ) would be set to 1 since everywhere the test mask data contains a 1
(underlined positions), R8 also contains a 1.

Application: COC is used to selectively test groups of bits to check the status of certain
sub-systems or to examine certain aspects of data words.

6-34 	 9900 FAMILY SYSTEMS DESIGN

ULL;

COMPARE ZEROES CORRESPONDING
	

CZC
Format: CZC 	G„R

0
	

2 3 4 	5 	6 	7 8 9 10 11 12 13 14 15

I 	I 	i
	

I 	I

S

I 	I 	I 	I 	I

0 0 1 	0 0 	1

Operation: The data located in the address specified by G. act as a mask for the bits to be
tested in the specified workspace register R. That is, only the bit positions that contain
ones in the G, data are the bit positions to be checked in R. Then if R contains zeroes in
all the selected bit positions, the equal (EQ) status bit will be set to 1.

Status Bits Affected: EQ

Examples: CZC 	@TESTBIT,8

If the TESTBIT location contains the value C10216 and the R8 location contains 2301 16 ,

TESTBIT Data =1100 0001 0000 0010
R8 = 0010 0011 0000 0001

X

the equal status bit would be reset to zero since not all the bits of R8 (note the X
position) are zero in the positions that the TESTBIT data contains ones.

Application: Similar to the COC instruction.

64

9900 FAMILY SYSTEMS DESIGN 	 6-35

11111111111

000000100100

ANDI
LOGIC INSTRUCTIONS

The logic instructions allow the processor to perform boolean logic for the system.
Since AND, OR, INVERT, and Exclusive OR (XOR) are available, any boolean
function can be performed on system data.

	

AND IMMEDIATE
	

ANDI
Format: ANDI R,Value

0 	1 	2 	3
	

4 	5 	6 	7 	8 	9 10 11 12 13 14 15

(0240+R)

Operation: The bits of the specified workspace register R are logically ANDed with the
corresponding bits of the 16 bit binary constant value contained in the word immediately
following the instruction. The 16 bit result is compared to zero and is placed in the
register R:

R AND Value---R
R AND Value:0

Recall that the AND operation results in 1 only if both inputs are 1.

Status Bits ilffected• LGT, AGT, EQ

Example: ANDI 0,>6D03

If workspace register 0 contains D2AB 16 , then (D2AB) AND (6D03) is 4003 19 :
Value = 0110 1101 0000 0011

RO = 1101 0010 1010 1011
RO AND Value = 0100 0000 0000 0011 = 40031 „

This value is placed in RO. The LGT and AGT status bits are set to 1.

Jppfication: ANDI is used to zero all bits that are not of interest and leave the selected
bits (those with ones in Value) unchanged. This can be used to test single bits or isolate
portions of the word, such as a four bit group.

6-36 	 9900 FAMILY SYSTEMS DESIGN

000000100110
	

R

ORI
	

OR IMMEDIATE
	

ORI

	

Format: ORI
	

R,Value

	

0
	

2 3 4 	5 6 	7 8 9 10 11 12 13 14 15

(0260 + R)

0111,
Operation: The bits of the specified workspace register R are ORed with the
corresponding bits of the 16 bit binary constant contained in the word immediately
following instruction. The 16 bit result is placed in R and is compared to zero:

R OR Value
R OR Value : 0

Recall that the OR operation results in a 1 if either of the inputs is a 1.
Status Bits Affected: LGT, AGT, E0
Example: ORI 	5,>6D03

If R5 contained D2A13, 6 , then R5 will be changed to FFAB16 :

	

R5 = 1101 	0010 	1010 	1011

	

Value = 0110 	1101 	0000 	0011

	

1111 	1111 	1010 	101 1 = FFAB 16 = R5 OR Value

with LGT being set to 1.

yippfication: Used to implement the OR logic in the system.

64

9900 FAMILY SYSTEMS DESIGN 	 6-37

EXCLUSIVE OR
	

XOR
Format: XOR 	G,Rd

0 	1 	2 	3
	

4 	5 	6 	7 	8 	9 10 11 12 13 14 15
!III!

001010
	

D
	

T 1 	 S

Operation: The exclusive OR is performed between corresponding bits of the data
addressed by G. and the contents of workspace register Rd. The result is placed in
workspace register Rd and is compared to 0:

M(G,) XOR R 4 	R d
M(G,) XOR R,1 0

Status Bits Affected: LGT, AGT, EQ

Example: XOR @CHANGE,2

If location CHANGE contains 6D03 16 and R2 contains D2AA 1b , R2 will be changed to
BFA916:

	

CHANGE Data = 0110 	1101 	0000 	0011

	

R2 = 1101 	0010 	1010 	1010

	

M(CHANGE) XOR R2 =1011 	1111 	1010 	1001' = BFA9 1 .

and the LGT status bit will be set to 1. Note that the exclusive OR operation will result
in a 1 if only one of the inputs is a 1.

Application: XOR is used to implement the exclusive OR logic for the system.

INVERT INV

	

Format: INV 	G

	

0 	1 	2
	

3
	

4
	

5
	6 	7
	

8
	

10 11 12 13 14 15
I 	 IIIII

0000010101
	

T1

Operation: The bits of the data addressed by G are replaced by their complement. The
result is compared to 0 and is stored at the G location:

M(G) —0- M(G)
M(G) : 0

Status Bits Affected. LGT, AGT, EQ

Example: INV 	11

If R11 contains 00FF 16 , the instruction would change the contents to FF00 16 , causing the
LGT status bit to set to 1.

Application: INV is used to form the l's complement of 16 bit binary numbers, or to
invert system data.

(05--)

6-38 	 9900 FAMILY SYSTEMS DESIGN

II5UM:11CM Oet

CLEAR CLR

	

Format: CLR 	G

	

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15
I 	 111111

0 0 0 0 0 1 	0 0 1 	1
I

T1 	I 	S

Operation: 000016 is placed in the memory location specified by G.

	

0000„ 	M(G)

Affect on Status: None
Example: CLR 61 11

would clear the contents of the location addressed by the contents of R11, that is:
0000 16 --o- M(R11)

Application: CLR is used to set problem arguments to 0 and to initialize memory
locations to zero during system start-up operations.

(04 --)

SETO SET TO ONE

Format: SETO G
o 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15
111111111

	
11

0000011100
	

TS 	S (07--)

Operation: FFFF16 is placed in the memory location specified by G: FFFF„ 	M(G)

Affect on Status: None

Example: SETO 11
	 6♦

would cause all bits of R11 to be 1.

Application: Similar to CLR

9900 FAMILY SYSTEMS DESIGN 	 6-39

uu/SOCB
	 111041 4%.1..111 taGL

SET ONES CORRESPONDING
	

SOC
Format: SOC 	G„Gd

0
	

2 	3 	4
	

5 	6 	7 	8 	9 10 11 12 13 14 15

	

I 	I 	I

	

1 	1 	1 	0 Td
I 	I 	I

D T s
I 	S

Operation: This instruction performs the OR operation between corresponding bits of
the data addressed by G. and the data addressed by Gd. The result is compared to 0 and
is placed in the Gd location:

M(G s) OR M(Gd) — M(Gd)
M(G s) OR M(G d) 0

Status Bits Affected: LGT, AGT, EQ

Example: SOC 3,@NEW

If location NEW contains AAAA 16 and R, contains FF0016 , the contents at location
NEW will be changed to FFAA, and the LGT status bit will be set to 1.

Application: Provides the OR function between any two words in memory.

SOCB SET ONES CORRESPONDING, BYTE

Format: SOCB G,,G d

0 	1 	2 3 	4 	5 	6 	7 8 	9 10 11 12 13 14 15

	

I 	I

1 	1 	1 	1 I 	Td
I 	I

D
	

S

Operation: The logical OR is performed between corresponding bits of the byte
addressed by G. and the byte addressed by Gd with the result compared to 0 and placed
in location Gd :

MB(G s) OR MB(G 5) --o-MB(G d)
MB(G s) OR MB(G 1) . 0

Status Bits Affected: LGT, AGT, EQ, OP

Example: SOCB 5,8

If R5 contains F013 16 and R8 contains AA24 16 , the most significant byte of R8 will be
changed to FA„ so that R8 will contain FA24 16 and the LGT status bit will be set to 1.

Application: The SOCB provides the logical OR function on system bytes.

6-40 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set 	

SZC

SZC SET TO ZEROES CORRESPONDING

	

Format: SZC 	G S ,Gd

	

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

	

I 	I 	I

	

0 	1 	0 0

i

Td 	
!

T5 S

Operation: The data addressed by G s forms a mask for this operation. The bits in the
destination data (addressed by G d) that correspond to the one bits of the source data
(addressed by G s) are cleared. The result is compared to zero and is stored in the Gd

location.

M(G s) AND M(G d) 	M(Gd)
M(G s) AND M(G d) : 0

Status Bits ilffected: LGT, AGT, EC)

Example: SZC 	5,3

If R5 contains 6D03 16 and R3 contains D2AA, 6 , this instruction will cause the R3
contents to change to 92A819:

R5 (Mask) = 0110
R3 = 1101

Result =1001

1101
0010
0010

0000
1010
1010

0011
1010
1000 = 92A8 16

with the LGT status bit set. The underlined entries indicate which bits are to be cleared.

SZC allows the programmer to selectively clear bits of data words. For
example, when an interrupt has been serviced, the interrupt request bit can be cleared by
using the SZC instruction. 64

9900 FAMILY SYSTEMS DESIGN 	 6-41

SZCB
	 Instruction Set

SET TO ZEROES CORRESPONDING, BYTES

Format: SZCB GsGd

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 	12 13 14 15

	

I 	1 	I

	

0 	1 	0 	1

I

Td D T,
I 	S

SZCB

Operation: The byte addressed by G. will provide a mask for clearing certain bits of the
byte addressed by G d . The bits in the G d byte that will be cleared are the bits that are
one in the G s byte. The result is compared to zero and is placed in the Gd byte:

MB(G s) AND MB(Gd)-0- MB(Gd)

MB(G s) AND MB(G d) : 0

Status Bits Affected• LGT, AGT, EQ, OP

Example: SZCB @BITS,@TEST

If location BITS is an odd address which locates the data 18F0 16 , and location TEST
contains an even address which locates the data AA24 16 , the instruction will clear the first
four bits of TEST data changing it to 0A2416.

Application: Provides selective clearing of bits of system bytes.

6-42 	 9000 FAMILY SYSTEMS DESIGN

Instruction Set 	

SRA
SHIFT INSTRUCTIONS

These instructions are used to perform simple binary multiplication and division on
words in memory and to rearrange the location of bits in the word in order to examine a

A., given bit with the carry (C) status bit.

	

SHIFT RIGHT ARITHMETIC
	

SRA

	

Format: SRA 	R,Cnt

	

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15
I 	I 	I 	I

0 0 0 0 1 0 0 1 0

I 	I 	I

C.

I 	I

R

Operation: The contents of the specified workspace register R are shifted right Cnt
times, filling the vacated bit position with the sign (most significant bit) bit: The shifted
number is compared to zero:

0 	 15

C

R

Status Bits Affected: LGT, AGT, EQ, C

Number of Shifts: Cnt (number contained in the instruction from 0 to 15) specifies the
number of bits shifted unless Cnt is zero in which case the shift count is taken from the
four least significant bits of workspace register 0. If both Cnt and these four bits are 0, a
16 bit position shift is performed.

	

Example: SRA 	5,2 	Shift R5 2 bit positions right

	

SRA 	7,0
If RO least four bits contain 6,, then the second instruction will cause register 7 to be
shifted 6 bit positions (Cnt in that instruction is 0):

If R7 Before Shift = 1011 1010 1010 1010 = BAAA
R7 After Shift 	= 1111 1110 1110 1010 = FEEA,G

If R5 Before Shift = 0101 0101 0101 0101 = 5555 16
R5 After Shift 	= 0001 0101 0101 0101 = 1555, 6

After the R7 shift the LGT would be set, and Carry = 1
After the R5 shift LGT and AGT would be set and Carry = 0

Application: SRA provides binary division by 2 "n t .

(08--)

64

9900 FAMILY SYSTEMS DESIGN 	 6-43

0 0

!III!

001010

SLA
Instruction Set

SHIFT LEFT ARITHMETIC

	

Format: SLA 	R,Cnt

	

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

SLA

(OA--)

Operation: The-contents of workspace register R are shifted left Cnt times (or if Cnt = 0,
the number of times specified by the least four bits of RO) filling the vacated positions
with zeroes. The carry contains the value of the last bit shifted out to the left and the
shifted number is compared to zero:

15

Status Bits Affected: LGT, AGT, EQ, C, OV

Example: SLA 	10,5

If workspace register 10 contains 1357 16 the instruction would change its contents to
6AE016 , causing the arithmetic greater than (AGT), logical greater than (LGT), and
overflow (OV) bits to set. Carry would be zero, the value of the last bit shifted.

Application: SLA performs binary multiplication by 2'

6-44 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set

SRL/SRC
SRL SHIFT RIGHT LOGICAL

	

Format: SRL 	R,Cnt

O 1 	2 3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

111111 1 	 111 	II1

00001001 1 	C 	R (09---)

Operation: The contents of the workspace register specified by R are shifted right Cnt
times (or if Cnt = 0, the number of times specified by the least four bits or RO) filling in
the vacated positions with zeroes. The carry contains the value of the last bit shifted out
to the right and the shifted number is compared to zero:

Status Bits Affected: LGT, AGT, EQ, C

Example: SRL 	0,3

If RO contained FFEF,,, the contents would become 1FFL31 16 with the AGT, LGT, and

C bits set to 1:
RO Before Shift = 1111 1111 1110 1111 = FFEF„
RO After Shift = 0001 1111 1111 1101 = 1FFD„

AND-, Application: Performs binary division by 2'

SHIFT RIGHT CIRCULAR

SRC
64 Format: SRC 	R,Cnt

O 1 	2 	3 	4 5 	6 	7 	8 	9 	10 11 12 13 14 15

11111111111 11

O 0001011

Operation: On each shift the bit shifted out of bit 15 is shifted back into bit 0. Carry
contains the value of the last bit shifted and the shifted number is compared to 0. The
number of shifts to be performed is the number Cnt, or if Cnt = 0, the number contained
in the least significant four bits of RO:

15

Status Bits Affected: LGT, AGT, EQ, C

Example: SRC 	2,7

If R2 initially contains FFEF,,, then after the shift it will contain DFFF,, with LGT and
C set to 1.

R2 Before Shift = 1111 1111 1110 1111 = FFEF.
R2 After Shift =1101 1111 1111 1111 = DFFF„

Application: SRC can be used to examine a certain bit in the data word, change the
location of 4 bit groups, or swap bytes.

(08--)

9900 FAMILY SYSTEMS DESIGN 	 6-45

B
	 Instruction Set

UNCONDITIONAL BRANCH INSTRUCTIONS

These instructions give the programmer the capability of choosing to perform the next
instruction in sequence or to go to some other part of the memory to get the next
instruction to be executed. The branch can be a subroutine type of branch, in which case
the programmer can return to the point from which the branch occurred.

BRANCH

Format: B 	G,

0 	1 	2 3 	4 	5 	6 	7 8 	9 10 11 12 13 14 15

I 	I 	I 	I 	I 	I 	I 	I

0 0 0 0 0 1 0 0 0 1 Ts
	 S

Operation: The G. address is placed in the program counter, causing the next instruction
to be obtained from the location specified by G s .

Affect on Status: None

Example: B 	3

If R3 contains 21CC 16 , then the next instruction will be obtained from location 21CC16.

Application: This instruction is used to jump to another part of the program when the
current task has been completed.

B

(04--)

6-46 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set 	

BL

BL BRANCH AND LINK

Format: BL 	G,

o 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15
I 	I 	I 	I 	I

	
I 	I
	

I 	I

0 0 0 0 0 1
	

1 	0 1 	0
	

Ts 	 S (06--)

Operation: The source address G s is placed in the program counter and the address of the
instruction following the BL instruction is saved in workspace register 11.

G s 	PC
(Old PC) 	-R11

Affect on Status: None

Example: BL 	@TRAN

Assume the BL instruction is located at 320016 and the value assigned to TRAN is
200016 . PC will be loaded with the value 2000 16 (TRAN) and R11 will be loaded with

the value 3202 16 (old PC value).

Application: This is a shared workspace subroutine jump. Both the main program and the
subroutine use the same workspace registers. To get back to the main program at the
branch point, the following branch instruction can be used at the end of the subroutine:

B
	

11

which causes the R11 contents (old PC value) to be loaded into the program counter.

64

9900 FAMILY SYSTEMS DESIGN 	 6-47

BLWP
	 Instruction Set

BRANCH AND LOAD WORKSPACE POINTER

Format: BLWP G,
BLWP

0 	1 	2 4 	5 	6 	7 	8 	9 	10 11 	12 13 14 15
111111111

0000010000 1-5
	 S (04--)

■ 6

Operation: The word specified by the source G s is loaded into the workspace pointer
(WP) and the next word in memory (G s +2) is loaded into the program counter (PC) to
cause the branch. The old workspace pointer is stored in the new workspace register 13,
the old PC value is stored in the new workspace register 14, and the status register is
stored in new workspace register 15:

M(G5) ----0- WP
M(G, + 2) 	PC
(Old WP) 	New R13
(Old PC) 	New R14
(Old ST) 	New R15

ilffeet on Status: None

Example: BLWP *3

Assuming that R3 contains 2100 16 and location 210016 contains 0500 16 and location
2102 16 contains 0100„, this instruction causes WP to be loaded with 0500 16 and PC to
be loaded with 0100 16 . Then, location 051A16 will be loaded with the old WP value, the
old PC value will be saved in location 051C,,, and the status (ST) will be saved in location
051E16 . The next instruction will be taken from address 0100 16 and the subroutine
workspace will begin at 0500 16 (RO). BLWP and XOP do not test IREQ at the end of
instruction execution.

iippfication: This is a context switch subroutine jump with the transfer vector location
specified by G s . It uses a new workspace to save the old values of WP, PC, and ST (in
the last three registers). The advantage of this subroutine jump over the BL jump is that
the subroutine gets its own workspace and the main program workspace contents are not
disturbed by subroutine operations.

6-48 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set XOP
EXTENDED OPERATION

XOP
Format: XOP 	G„n

0 	1 	2 3 4 	5 	6 	7 	B 	9 	10 11 12 13 14 15

1

0 	0 	1 	0 	1 	1
	

D
	

T1

Operation: n specifies which extended operation transfer vector is to be used in the
context switch branch from XOP to the corresponding subprogram. The effective
address G, is placed in R11 of the subprogram workspace in order to pass an argument
or data location to the subprogram:

M(n x 4 + 0040 16)-1-WP
M(n x 4 + 00421fi) --P.- PC
(Old WP) 	New R13
(Old PC) --0- New R14
(Old ST) 	New R15
G,--■ New R11

ilffect on Status: Extended Operation (X) bit is set.

Example: XOP 	*1,2

Assume R1 contains 0750 16 . WP is loaded with the word at address 48, 6 (first part of
transfer vector for extended operation 2) and PC is loaded with the word at address 4A16.

If location 48, 6 contains 0200 16 , this will be the address of RO of the subprogram

workspace. Thus, location 0236 1G (new R11) will be loaded with 0750 16 (contents of R1
in main program), location 023A 16 (new R13) will be loaded with the old WP value,
location 023C 16 will be loaded with the old PC value, and location 023E 16 (new R15) will

be loaded with the old status value:

M(48 1G)--1- WP
M(4A 1G)---0- PC
(Old WP) --■ M(023A 16) 	New R13
(Old PC)-- M(023C 16) 	New R14
(Old ST)--,- M(023E„) 	New R15
075016 --i- M(0236 16) 	New R11

J./pp/kat/on: This can be used to define a subprogram that can be called by a single
instruction. As a result, the programmer can define special purpose instructions to
augment the standard 9900 instruction set.

64

9900 FAMILY SYSTEMS DESIGN 	 6-49

RTW Pti m p 	 Instruction Set

■ 6

RETURN WITH WORKSPACE POINTER

Format: RTWP
RTWP

O 1 	2 3 4 	5 	6 	7 	8 	9 10 11 12 13 14 15
I 	1 	1 	I 	1 	1 	1 	I 	1 	I 	I 	I 	I 	1 	I

0 0 0 0 0 0 1 	1 	1 0 0 0 0 0 0 0 	(0380)

Operation: This is a return from a context switch subroutine. It occurs by restoring the
WP, PC, and ST register contents by transferring the contents of subroutine workspace
registers R13, R14, and R15, into the WP, PC, and ST registers, respectively.

R1 3 	WP
R14-4.- PC
R15 	ST

Status Bits ilffected: All (ST receives the contents of R15)

*ffiication: This is used to return from subprograms that were reached by a transfer
vector operation such as an interrupt, extended operation, or BLWP instruction.

UNCONDITIONAL JUMP

Format: JMP 	EXP
JMP

O 1 2 3 4 5 	6 	7 	8 	9 	10 11 12 13 14 15
I 	 1

O 0 0 1 0 0 0 0 	DISP

Operation: The signed displacement defined by EXP is added to the current contents of
the program counter to generate the new value of the program counter. The location
jumped to must be within — 128 to + 127 words of the present location.

ilffect on Status: None

Example: JMP THERE

If this instruction is located at 0018 16 and THERE is the label of the instruction located
at 0010 16 , then the Exp value placed in the object code would be FB (for — 5). Since the
Assembler makes this computation, the programmer only needs to place the appropriate
label or expression in the operand field of the instruction.

*pi/cation: If the subprogram to be jumped to is within 128 words of the JMP
instruction location, the unconditional JMP is preferred over the unconditional branch
since only one memory word (and one memory reference) is required for the JMP while
two memory words and two memory cycles are required for the B instruction. Thus, the
JMP instruction can be implemented faster and with less memory cost than can the B
instruction.

(10--)

6-50 	 0900 FAMILY SYSTEMS DESIGN

11111/111

0000010010
	

T,

Instruction Set

EXECUTE

Format: X 	G s

0 	1
	

2 3 4
	

5 6 	7 8 9 10 11 12 13 14 15

(04--)

Operation: The instruction located at the address specified by G s is executed.

Status Bits ilffected: Depends on the instruction executed

Example: X

If R11 contains 2000 16 and location 2000 16 contains the instruction for CLR 2 then this
execute instruction would clear the contents of register 2 to zero.

Application: X is useful when the instruction to be executed is dependent on a variable
factor.

64

9900 FAMILY SYSTEMS DESIGN 	 6-51

CONDITIONAL JUMP INSTRUCTIONS

These instructions perform a branching operation only if certain status bits meet the
conditions required by the jump. These instructions allow decision making to be
incorporated into the program. The conditional jump instruction mnemonics are
summarized in Table 6-1 along with the status bit conditions that are tested by these
instructions.

Format: Mnemonic Exp

0 	1 	2 3 4 5 6 7 	8 	9 	10 11 	12 13 14 15
111

0 0 0 	1

I
	

r

DISP

1 1

CODE

JH, JL, JHE, JLE, JGT, JLT, 	 Instruction Set

JEQ, JNE, JOC, JNC, JNO, JOP

JH
JL
JHE
JLE
JGT
JLT
JEQ
JNE
JOC

Operation: If the condition indicated by the branch mnemonic is true, the jump will occur JNC
using relative addressing as was used in the unconditional JMP instruction. That is, the JNO
Exp defines a displacement that is added to the current value of the program counter to JOP
determine the location of the next instruction, which must be within 128 words of the
jump instruction.

Effect on Status Bits: None

Example: C 	R1, R2
JNE 	LOOP

The first instruction compares the contents of registers one and two. If they are not
equal, EQ = 0 and the JNE instruction causes the branch to LOOP to be taken. If 121

■ 6 	and R2 are equal, EQ =1 and the branch is not taken.

Table 6-1. Status Bits Tested by Instructions

Mnemonic L> 1> EQ C 01' OP Jump If CODE*

JH X X — L> • EQ= 1 B
JL X — X L> +EQ=0 A
JHE X X — L> +EQ=1 4
JLE X X — L> +EQ=1 2
JGT X — A> =1 5
JLT X X — A> + EQ =0 1
JEQ X EQ =1 3
JNE X — EQ=0 6
JOC X — C=1 8
JNC — X — C =0 7
JNO — X OV = 0 9

JOP — — X OP =1 C

Note: In the Jump if column, a logical equation is shown in which • means the AND operation, +
means the OR operation, and a line over a term means negation or inversion.

*CODE is entered in the CODE field of the OPCODE to generate the machine code for the instruction.

ilpplication: Most algorithms and programs with loop counters require these instructions
to decide which sequence of instructions to do next.

6-52 	 9900 FAMILY SYSTEMS DESIGN

	

I 	I 	I 	f 	I 	I 	I

	

0 	0 	0 	1 	1 	1 	0 	1

I 	I

DISP

I 	F

Instruction Set 	

SBO
CRU INSTRUCTIONS

The communications register unit (CRU) performs single and multiple bit programmed
input/output for the microcomputer. All input consists of reading CRU line logic levels

11111%.
into memory, and all output consists of setting CRU output lines to bit values from a
word or byte of memory. The CRU provides a maximum of 4096 input and 4096 output
lines that may be individually selected by a 12 bit address which is located in bits 3
through 14 of workspace register 12. This address is the hardware base address for
all CRU communications.

SET BIT TO LOGIC ONE

	

Format: SBO 	disp

	

0
	

2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

SBO

(1D--)

Operation: The CRU bit at disp plus the hardware base address is set to one. The hardware
base address is bits 3 through 14 of workspace register 12. The value disp is a signed
displacement.

1 	Bit (disp + base address)

ilffect on Status: None

Example: SBO 15

If R12 contains a software base address of 0200, 6 so that the hardware base address is
001016 (the hardware base address is one-half the value of the contents of R12
excluding bits 0, 1 and 2), the above instruction would set CRU line 010F1 6 to a 1.

ylpplication: Output a one on a single bit CRU line.

64

9900 FAMILY SYSTEMS DESIGN 	 6-53

SBẐ/
TB
	 Instruction Set

SET BIT TO LOGIC ZERO

Format: SBZ 	disp

SBZ
0 1 	2 3 4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

11111
	

1 	1 	1

00011110
	

DISP

Operation: The CRU bit at disp plus the base address is reset to zero. The hardware
base address is bits 3 through 14 of workspace register 12. The value disp is a signed
displacement.

0 	Bit (disp + hardware base address)

1ffect on Status: None

Example: SBZ 2

If R12 contains 00001, the hardware base address is 0 so that the instruction would reset
CRU line 0002 16 to zero.

*pi/cation: Output a zero on a single bit CRU line.

TEST BIT

Format: TB 	disp

0
	

2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15
I

0 	0 	0 	1 	1 	1
	

DISP

Operation: The CRU bit at disp plus the base address is read by setting the value of the
equal (EQ) status bit to the value of the bit on the CRU line. The hardware base address is
bits 3 through 14 of workspace register 12. The value disp is a signed displacement.

Bit (disp + hardware base address) 	EQ

Status Bits ilfected• EQ

Example: TB 	4

If R12 contains 0140 16 , the hardware base address is A016 (which is one-half of 0140 16):

R12 Contents = 0000 0001 0100 0000

Note that the underlined hardware base address is 0A0 1G . Equal (EQ) would be made equal
to the logic level on CRU line OAO„ + 4= CRU line 0A416.

zipplication: Input the CRU bit selected.

(1E--)

TB

(1F--)

6 -54 	 9900 FAMILY SYSTEMS DESIGN

CRU LINES

3F

0 40

0 41

42

0 43

44

45

0 46

0 47

48

Instruction Set

LDCR
LOAD CRU

Format: LDCR G,,Cnt
LDCR

0 	1 	2 3 	4 	5 	6 	7 	8 9 10 11 12 13 14 15

I 	I 	 I 	 I 	I

	

0 0 	1 	1 	0 0
I 	1 	I 	 I 	I

C
	

Ts 	S

Operation: Cnt specifies the number of bits to be transferred from the data located at the
address specified by G„ with the first bit transferred from the least significant bit of this
data, the next bit from the next least significant bit and so on. If Cnt = 0, the
number of bits transferred is 16. If the number of bits to be transferred is one to eight,
the source address is a byte address. If the number of bits to be transferred is 9 to 16,
the source address is a word address. The source data is compared to zero before the
transfer. The destination of the first bit is the CRU line specified by the hardware base
address, the second bit is transferred to the CRU line specified by the hardware base
address + 1, and so on.

Status Bits jffected• LGT, AGT, EQ

OP (odd parity) with transfer of 8 or less bits.

Example: LDCR @TOM,8

Since 8 bits are transferred, TOM is a byte address. If TOM is an even number, the
most significant byte is addressed. If R12 contains 0080 1 ,, the hardware base address is
004016 which is the CRU line that will receive the first bit transferred. 0041 1, will be the
address of the next bit transferred, and so on to the last (8th) bit transferred to CRU line
0047 16 . This transfer is shown in Figure 6-7.

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 	12 13 14 15

64

MEMORY
ADDRESS

TOM
0 	0 	1 	1 	0 	1 	00 	X 	X 	X X 	X 	X 	XX

X = NOT USED

LDCR @TOM,8 	TOM is an even address

Figure 6-7. LDCR byte transfer

9900 FAMILY SYSTEMS DESIGN 	 6-55

X X X X X X X 	0 	1 	0 	I 	0

X = NOT USED

MEMORY

ADDRESS
TOM

3F

0

0

0

40

41

42

43

44

45

46

47

48

49

CRU LINES

LDCR
	 Instruction Set

*ptication: The LDCR provides a number of bits (from 1 to 16) to be transferred from
a memory word or byte to successive CRU lines, starting at the hardware base address line;
the transfer begins with the least significant bit of the source field and continues to
successively more significant bits. A further example of word versus byte transfers is given
in Figure 6-8, in which a 9 bit (word addressed source) transfer is shown.

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

► 6
	 LDCR @TOM,9

Figure 6-8. LDCR Word transfer

6-56 	 9900 FAMILY SYSTEMS DESIGN

47

48 0

49

0 4A

4B

4C

4D 0

4E

4F

Instruction Set

STCR
STORE CRU STCR

Format: STCR G,,Cnt

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 1 5

0 0 1 	1 	0 1
	

C
	

T,
	 S

Operation: Cnt specifies the number of bits to be transferred from successive CRU lines

(starting at the hardware base address) to the location specified by G s , beginning with the
least significant bit position and transferring successive bits to successively more significant
bits. If the number of bits transferred is 8 or less, G, is a byte address. Otherwise, G 1 is a
word address. If Cnt = 0, 16 bits are transferred. The bits transferred are compared to
zero. If the transfer does not fill the entire memory word, the unfilled bits are reset to
zero.

Status Bits Affected: LGT, AGT, EQ
OP for transfers of 8 bits or less

Example: STCR 2,7

Since 7 bits are to be transferred this is a byte transfer so that the bits will be transferred
to the most significant byte of R2. Figure 6-9 illustrates this transfer assuming that R12
contains 90, 6 so that the hardware base address is 48, 6 for the first bit to be transferred.

Note: Bits 8-15 are unchanged if transfer is less than 8 bits.

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

R2 0 	1 0 X X X X X X X X
CRU LINES

6.4

X NOT USED

BIT 0 SET TO ZERO

STCR 2,7

Figure 6-9. STCR Example

9900 FAMILY SYSTEMS DESIGN 6-57

CONTROL INSTRUCTIONS
	

Instruction Set

CONTROL INSTRUCTIONS

The control instructions are primarily applicable to the Model 990 Computer. These
instructions are RSET (Reset), IDLE, CKOF (Clock off), CKON (Clock on), LREX
(restart). The Model 990/10 also supports the long distance addressing instructions:
LDS (Load long distance source) and LDD (Long distance destination). The use of these
instructions are covered in the appropriate Model 990 computer programmer's manuals.

The control instructions have an affect on the 9900 signals on the address lines during
the CRU Clock as shown below:

Ao A, A, OP CODE

H

H

H

L

L

L

H

H

L

H

H

L

H

L

H

H

L

L

0 	1 	2 	3 	4 5 	6 	7 	8 	9 	10 	11 	12 	13 	14 15
IiiIIIIIIIIIIII

0 	0 	0 	0 	0 	0 	1 	1 	1 	1 	1 	0 	0 	0 	0 0

0 	1 2 	3 	4 5 	6 	7 	8 	9 	10 	11 	12 	13 	14 15
I

0 	0

IIIIIIIII 	filll

0 	0 	0 	0 	1 	1 	1 	1 	0 	0 	0 	0 	0 0

0 	1 2 	3 	4 5 	6 	7 	8 	9 	10 	11 	12 	13 	14 15
i

o 	o
,II

0 	o 	0

TIIIII!IIII
0 	1 	1 	1 	0 	1 	0 	0 	0 	0 0

0 	1 2 	3 	4 5 	6 	7 	8 	9 	10 	11 	12 	13 	14 15
I

0 	0

I 	I 	I

0 	0 	0

I 	I 	I 	I 	I 	I 	VIII(

	

0 	1 	1 	0 	1 	1 	0 	0 	0 	0 0

0 	1 2 	3 	4 5 	6 	7 	8 	9 	10 	11 	12 	13 	14 15
i

0 	0

III

0 	0 	0

IIIII 	I 	IIIII

0 	1 	1 	0 	1 	0 	0 	0 	0 	0 0

The IDLE instruction puts the 9900 in the idle condition and causes a CRUCLK output
every six clock cycles to indicate this state. The processor can be removed from the idle
state by 1) a RESET signal, 2) any interrupt that is enabled, or 3) a LOAD signal.

For the 9900 the above instructions are referred to as external instructions, since
external hardware can be designed to respond to these signals. The address signals A o ,
A 1 , and A2 can be decoded and the instructions used to control external hardware.

Instruction

LREX

CKOF

CKON

RSET

IDLE

CRU

(03E0)

(03C0)

(03A0)

(0360)

(0340)

6-58 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set SPECIAL FEATURES
OF THE 9940

SPECIAL FEATURES OF THE 9940

The 9940 instruction set includes the instructions already presented. Two of these
instructions are slightly different for the 9940. These are the extended operation and the
load interrupt mask immediate instructions. There are two new arithmetic instructions
that provide for binary coded decimal (BCD) addition and subtraction. The 9940 uses
extended operations 0 through 3 to generate the load interrupt mask and the decimal
arithmetic instructions. Thus, the 9940 extended operations 4 through 15 are available
to the programmer.

LOAD IMMEDIATE INTERRUPT MASK LIIM

Format: LIIM n

0 	1 2 3 4 5 6 7 	8 	9 	10 11 12 13 14 15
1111

0 	0 1 	0 	1 	1 0 0 1

1111

0 0 0 0 0 n

Operation: The interrupt mask bits 14 and 15 of the status register are loaded with n.
Subsequent to this instruction, interrupt levels greater than n will be ignored by the
processor, and interrupts of level n or less will be responded to by the processor.

0 	I 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

ST

Status Bits Affected• Interrupt Mask (Bits 14 and 15)

Example: LIIM 2

This operation will load the interrupt mask with 2, that is bit 14 would be set to a 1
and bit 15 would be reset to zero. This would disable interrupts of level 3, but would
enable other interrupt levels.

Application: This instruction is used to control the 9940 interrupt system.

(2C8—)

641

9900 FAMILY SYSTEMS DESIGN 	 6-59

XOP
	 Instruction Set

EXTENDED OPERATION

Format: XOP 	G„n
XOP

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 1 1 12 13 14 15

I 	III 	I

0 0 1 	0 	1 	1

I 	1
	

I 	I

D
	

TS 	 S

Operation: n specifies the extended operation transfer vector to be used in the context
switch to the extended operation subprogram. The TMS9940 restricts the range of n
(4 15) so that there are only 12 XOP's available. This is because the first four
are used by the processor to implement the LIIM, DCA, and DCS instructions. The
transfer vector procedure for the programmer-defined extended operations is:

M(40 16 + 4xn)---1- (WP)
M(42 1 . + 4xn)--•- (PC)
G s 	 (New WR11)
(Old WP) 	(New WR13)
(Old PC) 	(New WR14)
(Old ST) 	 (New WR15)

Status Bits Affected: None

Example and Applications: XOP 	*1,4

This instruction will cause an extended operation 4 to occur with the new workspace
register 11 containing the address found in workspace register 1. The new WP value
will be obtained from 4016 + 4 X 4 = 5016 and the new PC value will be obtained from
521 6 .

6-60 	 9900 FAMILY SYSTEMS DESIGN

Instruction Set 	

DCA
DECIMAL CORRECT ADDITION

	

DCA
Format: DCA 	G,

0 	1 	2 	3
	

4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

0010110000
	

Ts
	 S (2C--)

Operation: The byte addressed by G. is corrected according to the table given in Figure
6-10. This operation is a processor defined extended operation with n = 0 so that the
sequence of events described under the XOP discussion will occur in executing this
instruction.

Status Bits infected: LGT, AGT, EQ, C, P, and DC (Digit Carry).

Example: DCA 	*10

This instruction would cause the byte addressed by the contents of the current
workspace register 10 to be decimal adjusted in accordance with the truth table of Figure
6-10.

4pplication: This instruction is used immediately after the binary addition of two bytes
(AB instruction) to correct any decimal digits outside the BCD code range of 0000 2

 through 10012 . It also keeps decimal addition accurate by responding to digit carries. For
example, if 8 16 is added to 8 16 in BCD addition, 16 16 should be generated. However, if
this operation is performed with binary addition, 10 16 results:

	

0 0 0 0 	1 0 0 0

	

+ 0 0 0 0 	1 0 0 0

	

0 0 0 1 	0 0 0 0 	Digit Carry =1

The DCA detects the digit carry and adds 0110 2 to the least significant digit to get the
correct 1616.

61

9900 FAMILY SYSTEMS DESIGN 	 6-61

0
[X

MSB

7 	8 -BIT '''s/1" CONTAINING RESULT
OF E ' 	ADD OR SUBTRACT

LSB j OF 2 Duo ulGITS ■ 6

DCS
	 Instruction Set

DCS DECIMAL CORRECT SUBTRACTION

	

Format: DCS 	G s

	

o 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

11111E111

0010110001

111

Ts

Operation: The byte addressed by G 2 is corrected according to the table given in Figure
6-10. This instruction is a processor defined extended operation with n = 1, so that the
sequence of events described under extended operation will occur in executing this
instruction.

Status Bits ilffected: LGT, AGT, Et), C, P, and DC

Example: DCS 3

This instruction would cause the most significant byte of register 3 to be corrected in
accordance with the truth table of Figure 6-10.

iipplication: As in the DCA instruction, this instruction extends the 9940 capability to
include decimal subtraction. The programmer first performs binary subtraction on bytes
(the SB instruction) and then immediately performs the DCS operation on the result
byte to correct the result so that it is within the BCD code range 0000 2 through 10012.

BYTE BEFORE EXECUTION BYTE AFTER DCA BYTE AFTER DCS
C X DC Y C X DC Y C X DC Y

0
0

0
-

,-
,-
0

0
0
0

o
c

c

0
0

0

0
0

0
0

V
 	

‘,
"

■' 	
A

l
.%1

X
X

X
X

X

X
X

X
X

X
X

N
X

0

0
 0

, -
0
0

, -
0

0

A
l
A

 A

i
v
 A

 A

0
 0
 0

0
 0

0
 0

 0

0
 0

0
0
-
 	

-
 I
 I
 I
 I

+
 	

I 	
I-

+
 	

-1- 	
I 	

1 	
1 	

1
X

X
X

X
X

X

o
o

-
o

o
-
0

o
-
 1

 1
 I
I

Y
Y i- 6

Y 1 G
Y

Y16
Y 1 6

Y
Y i 6
Y -i 6

-

—

—
—

I 	
I 	

I 	
I 	

I 	
I 	

I 	
1 	

1
 0

 0
 -

—
—

—

—

—

—

—

—

X+10
X + 10

X

X

1 	
1 	

1 	
1 	

1 	
I 	

1 	
1
-
 	

-
 of

—

——

—

—

—

—

—

-

Y + 10
Y

Y + 10
Y

Figure 6-10. Result of DC21 and DCS Instructions of the 9940.

6-62 9900 FAMILY SYSTEMS DESIGN

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62

