Owner's
 Manual

Model 2032

32K Static RAM Module

CCS MODEL 2032

32K STATIC RAM MODULE OWNER'S MANUAL

COPYRIGHT 1980

CALIFORNIA COMPUTER SYSTEMS 250 CARIBBEAN DRIVE SUNNYVALE CA 94086

TABLE OF CONTENTS

FEATURES ii
CHAPTER 1 SETTING THE 2032 JUMPERS
1.1 SETTING THE MEMORY GROUP ADDRESSES 1-1
1.2 SETTING THE BANK BYTE 1-2
1.3 SETTING THE BANK PORT ADDRESS 1-2
1.4 SETTING MEMORY GROUP BANK-INDEPENDENCE 1-3
1.5 SETTING THE RESET JUMPER 1-3
1.6 SETTING THE PHANTOM JUMPER 1-3
1.7 SETTING THE WAIT JUMPER 1-4
1.8 EXAMPLES OF JUMPER SELECTION 1-5
CHAPTER 2 THEORY OF OPERATION
2.1 MEMORY 2-1
2.2 MEMORY ADDRESSING 2-2
2.3 BANK SELECTION 2-2
2.4 BANK-INDEPENDENCE 2-3
2.5 DATA BUFFERS 2-4
2.6 WAIT STATES 2-4
2.7 RESET 2-4
CHAPTER 3 TESTING AND TROUBLESHOOTING THE 2032
3.1 FRONT PANEL QUICK CHECKOUT 3-1
3.2 DIAGNOSTIC TEST OVERVIEW 3-3
3.3 PREPARING DRIVER ROUTINES 3-4
3.4 SETTING UP FOR THE TEST 3-5
3.5 LOADING THE DIAGNOSTIC 3-5
3.6 RUNNING THE DIAGNOSTIC 3-5
3.7 ERROR PRINTOUT INTERPRETATION 3-8
3.8 SAMPLE MEMORY DIAGNOSTIC RUN 3-10
3.9 MEMORY DIAGNOSTIC LISTING 3-11
CHAPTER 4 TECHNICAL INFORMATION
4.1 SCHEMATIC/LOGIC DIAGRAM 4-2
4.2 ASSEMBLY COMPONENT LAYOUT 4-3
4.3 PARTS LIST 4-4
4.4 CONTROL ROM TRUTH TABLE 4-6
4.5 ADDRESS/CHIP TABLE 4-7
4.62032 BUS CONNECTOR PINOUT 4-8
APPENDIX A LIMITED WARRANTY

FEATURES

Uses Popular 2114 Static RAMS
Available with 200,300 , or 450 nsec RAMs
Berg Jumpers Used for Selectable Features
8K Memory Blocks Individually Addressable to Any 8 K Boundary
Bank Selection by Bank Port and Bank Byte
8K Blocks Individually Bank-Enabled
LEDs Indicate Board Active and Bank Active States
Wait State Jumper
Phantom Line Capability
Optional Board-Enabling on Reset
Operates on +8 Volts
Fully Buffered
Meets IEEE Proposed S-100 Signal Standards
Diagnostic Software Included
FR-4 Epoxy PC Board Solder-Masked on Both Sides
Silk Screen of Part Numbers and Reference Designations

CHAPTER 1

SETTING THE 2032 JUMPERS

The CCS 2032 is a 32 K byte static RAM board designed for use on S-100 busses. Sixty-four popular 2114 static RAM chips make up the four 8 K memory groups A through D. Each memory group is individually addressed and bank-enabled, and up to three memory groups can be buried to reconfigure the board to $8 \mathrm{~K}, 16 \mathrm{~K}$, or 24 K . The bank select feature, using a bank port and bank byte, is compatible with Alpha-Micro and Cromemco as well as with other systems. Board Active and Bank Active states are indicated by LEDs.

To provide optimum compatibility with a variety of systems, CCS has equipped the 2032 with selectable addressing and several optional features. Selections are hardwired with easy-to-use, reliable Berg jumpers. The addresses for each of the 8 K memory groups, the bank port address and bank byte, and the bank-dependence or bank-independence of each memory group are jumper-selected by the user to best suit his system. Phantom, Wait, and Reset features can be jumper-enabled as desired. Each jumper-selectable feature is discussed individually below. Further explanation can be found in Chapter 2, "Theory of Operation." Illustrations showing jumpei settings and relative locations are provided in Section 1.8.

1.1 SETTING THE MEMORY GROUP ADDRESSES

In order to provide maximum flexibility in the location of the 2032's memory groups within a bank, CCS has made the addresses of the four memory groups jumper-selectable. "The jumper-set address of a memory g oup is compared with the high-order address lines A13-hif, and if the address
matches, the group is selected. The Group Address (GRP ADDR) jumpers are in the upper left corner of the board (with the connector pins at the bottom). Set the jumpers of each group to the three high-order binary digits that specify the multiple of 8 K at which you wish to locate the group. For example, the addresses of the block between 16 K and 24 K are $4000 \mathrm{~h}-5 \mathrm{FFFh}$, so you would locate a group in that block by setting its jumpers to 010. Since a memory group's base address must be a multiple of 8 K , an easy way to calculate the jumper settings is to divide the base address by 8 K . You can then set the jumpers to the binary equivalent of the result.

The memory groups are fully prioritized, with A having the highest priority and D the lowest. This allows you to give two (or more) memory groups the same address. Only the higher-priority group will be selected by that address; the RAMs of the other group(s) will be buried, inaccessible and occupying no memory space until the address jumpers are reset. This allows you to configure the 2032 to 8, 16, or 24 K without removing RAMs.

1.2 SETTING THE BANK BYTE

The Bank Byte jumpers allow you to hardware-map the 2032 memory board to whichever of the eight memory bank levels $0-7$ you choose. They are located at the top of the board. To select a bank level, jumper-set a 1 in the bit that corresponds to the desired bank level and jumper-set all other bits to 0. For example, to select bank 3 you would set bit D3 to 1 and D0-D2 and D4-D7 to 0 .

You may enable the 2032 with more than one bank. Set to 1 the Bank Byte jumper corresponding to any bank with which you want the board to be enabled.

1.3 SETTING THE BANK PORT ADDRESS

In order to assign the board to a bank, you must output the bank byte to the bank port. Most presently-marketed $\mathrm{S}-100$ products using the bank port/bank byte scheme address the bank port at 40 h . We recommend that you use this bank port address unless you have a strong reason for doing otherwise. The Bank Byte jumpers are at the bottom of the board, just above the connector pins. Remember that A7 is
the high-order bit; thus you will set the binary bank port address from right to left on the board. 40 h is selected by jumper-setting $A 6$ to 1 and $A 0-A 5$ and $\dot{A} 7$ to 0 .

1.4 SETTING MEMORY GROUP BANK-INDEPENDENCE

Each memory group can be made independent of bank selection, causing it to be enabled whenever it is addressed regardless of which bank is active. This makes it possible, in time-sharing situations, for some groups to be commonly accessible while the remaining bank-dependent groups are reserved for individual users. The bank-independence jumpers are located at the bottoms of the GRP ADDR columns. Setting a jumper to BE (Bank Enable) makes the corresponding memory group bank-dependent. To enable a memory group independent of bank selection, set its bank-independence jumper to ME (Memory Enable).

1.5 SETTING THE RESET JUMPER

The Reset jumper, at the top center of the board, controls the activating of the bank-dependent memory groups during system resets. If the Reset jumper is set to B, all 32 K of memory will be enabled each time the power is turned on or the system is reset. If the Reset jumper is set to A, the bank-dependent memory groups will be enabled only when the board's bank has been selected.

Due to lack of room on the board, the Reset jumper labels may be hard to find. The B position is to the right; the A position is to the left.

1.6 SETTING THE PHANTOM JUMPER

The Phantom jumper is in the lower right corner of the board. Setting the jumper to B allows a device that generates a PHANTOM signal to overlay portions of the 2032 memory. For example, CCS peripheral control boards generate Phantom signals when certain ROM locations are addressed; these locations contain code to drive the peripherals. If an identically-addressed location exists on the 2032 board, the Phantom signal will block the output from the board of
the contents of that location. This allows you to access the rest of the memory locations within the 8 K block that contains the overlayed portion. Without Phantom capability the 2032 would not be able to locate a memory group in that block because the 2032 and the peripheral control board would both put data on the bus when a shared location was addressed.

Setting the Phantom jumper to A disables the -PHANTOM signal.

1.7 SETTING THE WAIT JUMPER

The Wait jumper allows you to slow down your processor every time the board is addressed. This will be necessary if your processor allows a shorter memory access time than your RAMs require. The jumper is in the upper right corner of the board. Off is the A position; on is B.

If you have a 2032 with 200 nsec or 300 nsec RAMs, you should not need to enable the Wait feature for use with presently-available microprocessors. If you have the 450 nsec RAMs and a processor that operates at 4 mHz you will, in theory at least, need to enable Wait. You should experiment, however; in many cases the 450 nsec RAMs will work successfully with a 4 mHz processor without a Wait state.

Some Z-80 CPU boards, including the CCS 2810, provide a jumper-selectable Wait feature. Enabling this feature may be preferable to enabling the 2032 Wait feature. The 2032 Wait causes a Wait state to occur in every memory cycle in which the board is addressed; the CCS CPU Wait feature causes a Wait state to occur during the M1 cycle only. Because memory access time in the M1 cycle is half a clock cycle shorter than in the other machine cycles, a Wait state in this cycle effectively increases the time allowed for memory response without unnecessarily slowing the processor in other memory cycles. However, if your system includes memory boards operating at different speeds, you probably will want to enable the Wait features as necessary on the slower memories rather than enable the processor Wait. This will allow you to operate at maximum speed with the faster memories. To find out what is best for your system, check your CPU manual and, if you're not sure, experiment.

1.8 EXAMPLES OF JUMPER SETTINGS

The first diagram shows jumper settings for a basic CCS system consisting of a 2810 Z-80 CPU, a 2422 disk controller, and the 2032. The bank port address must be 40h. The board is enabled with bank 0 and on start-up. Memory is located between 0 and 32K. Phantom and Wait are disabled.

In the second diagram, memory groups A and B are bank-independent and located in the last 16 K of memory. Groups C and D reside in banks 2 and 4 between 24 K and 40 K . The bank port address is 40 h . Only groups A and B are enabled on start-up. Phantom and Wait are enabled.

GRP ADDR

BHANT
A

CHAPTER 2

THEORY OF OPERATION

This chapter is provided for those users who want a more thorough understanding of the 2032 operation than they need just to make the board function in their systems. Used in conjunction with the Logic Diagram and the Control ROM Truth Table in Chapter 4, it should give you a sound understanding of the design and features of the board. Additional information, if desired, can be obtained from data sheets for the individual chips.

2.1 MEMORY

The 2032 uses sixty-four 2114-type RAMs. The memory chips are arranged in two-chip columns in order to provide an eight-bit byte, and the thirty-two columns are divided into four 8 K memory groups A through D. Because the 2114 provides 4096 bits of storage organized 1024×4, each RAM requires ten address inputs and four bi-directional data lines. A Chip Select input (-CS) provides for the selection of individual chips in the memory array. To prevent erroneous data from getting into the chip a $R /-W$ input inhibits the data input buffer when high. Thus data can be written to a memory chip only when both -CS and $R /-W$ are low. The 2032 controls -CS through the Column Select Decoders; R/-W is controlled by the Control ROM through the Read/Write Decoder.

2.2 MEMORY ADDRESSING

Addressing a specific memory location on the 2032 involves addressing a location on each chip while enabling only one two-chip column. Address lines A0-A9 address one location on each chip through a common address bus. Column selection is handled by four 3-to-8 decoders. Each decoder selects one of eight columns depending on the conditions of inputs A, B, and C, which are controlled by address lines A10-12. Inputs G1, G2A, and G2B determine whether an individual decoder will be enabled, G2A and B low and G1 high enabling a decoder.

The three highest-order address lines determine the 8 K block in which a memory group resides. Jumpers are used to select each memory group's base address (see Section 1.1). The jumper settings are compared with the top three bits of the incoming address, and if a group's settings correspond to the address bits that group's output line is pulled low. Each group's output line is tied directly to input G2A of the decoder for that group. Also, low outputs from Group A and Group C disable through G1 the decoders for Groups B and D respectively. In addition, groups C and D are disabled through G1 if the output of the ANDing of Groups A and B is low--i.e., if either Group A or Group B has been addressed. This provides full prioritizing of the memory groups, with A the highest priority and D the lowest. Whenever two or more memory groups are given the same base address, only the highest-priority group will be enabled by that address. The other groups will effectively be buried; they will be unaddressable and will occupy no memory space.

The final input for each decoder, G2B, is determined by the Control ROM through -CSE (Column Select Enable). See Section 4.4 for the specific conditions under which -CSE will be low.

2.3 BANK SELECTION

The CCS 2032 is bank-selectable by bank port address and bank byte. Thus it is fully compataible with Cromemco, AM100, and other port-bank-select systems. IT IS NOT COMPATIBLE WITH ADDRESS-SELECT SYSTEMS SUCH AS IMSAI.

You assign the 2032 to a bank by jumper-setting the bank port address and the bank byte. The 2032 compares A0-A7 with the jumper-set bank port address using an open
collector set of exclusive-OR gates. A pull-up resistor holds the output high unless a wrong address pulls the output low. The BANK PORT ADDRESS line inputs to the Control ROM. If the conditions of the BANK PORT ADDRESS line and the other Control ROM inputs are right (see Section 4.4), BANK CLK will pulse low, clocking the Bank Enable flip-flop when it rises to high again. In the meantime the bank byte becomes present on DIO-7 and is inverted. Setting a Bank Byte Select jumper to 1 connects the corresponding inverted DATA IN line to the BANK DATA line. Thus a low signal on an inverted DATA IN line, indicating a 1 in the bank byte, will pull BANK DATA low if the corresponding Bank Byte Select jumper is set to 1.

When the flip-flop is clocked, the condition of BANK DATA, the flip-flop's D input, determines the outputs Q and $-Q$. Q takes the value of D and $-Q$ is D's complement. When BANK DATA is low, indicating that the bank byte and the Bank Byte Select jumpers specify at least one bank in common, the $-Q$ output is high. The $-Q$ output is tied to BANK ENABLE. When BANK ENABLE is, high, selection of bank-dependent memory groups is enabled. At the same time, the low output at Q lights the Bank Select LED and pulls -BANK ACTIVE low. When -PORT READ and -BANK ACTIVE are both low, -ACK will be low, acknowledging to the processor that a bank has been enabled.

When BANK DATA is high, the low on BANK ENABLE forces all bank-dependent memory groups' slect lines (-GROUP A-D) high. The low on $-Q$ also turns of the Bank Select LED, while the high on -BANK ACTIVE (from Q) ensures that -ACK will be high.

Because flip-flop outputs do not change until the flip-flop is re-clocked, BANK ENABLE, -BANK ACTIVE, and the Bank Select LED will maintain the same states until the bank port is addressed again, when another bank byte will determine whether a high or a low gets clocked into the Bank Enable flip-flop.

2.4 BANK-INDEPENDENCE

The 2032 allows you to make any memory group independent of bank disabling by setting a jumper so that the BANK ENABLE line is not connected to the memory-address-comparison circuitry of the memory group you want to make independent. This prevents that memory group's output from being pulled low when the BANK ENABLE line is low. The memory group will therefore be enabled whenever it is addressed, independent of which bank has been selected.

2.5 DATA BUFFERS

The DATA IN and DATA OUT lines from the data bus are tied together to form the bi-directional data lines for the RAM chips. DIO-7 and DOO-7 are buffered by 3-state bus drivers. If the drivers are in the high-impedance state, the lines they drive are disabled. The -RD ENABLE and -WR ENABLE lines, which determine whether the DI or DO buffers will be in the high-impedance state, are controlled through the Read/Write Decoder by the Control ROM. See Section 4.4 for the specific conditions under which -RD ENABLE and -WR ENABLE will be low.

2.6 WAIT STATES

A wait state is necessary when a peripheral device takes more time to complete a task than the processor normally allows. Because the 2032 is available with 200, 300 , or 450 nsec Rams, and because processor speeds vary, the Wait feature on the 2032 has been made jumper-selectable. If the Wait jumper is set to B, pSYNC is inverted and ORed with -CSE, with the output being the pRDY line. When pRDY goes low, the processor adds an extra clock cycle to each memory read or memory write machine cycle during which the board is selected, thereby increasing the. time that signals remain on the address and data busses. If the jumper is set to A, a high signal is ORed with -CSE, the 2032 does not pull pRDY low, and a Wait state does not occur unless it originates elsewhere.

2.7 RESET

The Reset jumper allows you to choose whether or not the 2032 will be enabled when the system is powered up or reset by determining which input of the Bank Enable flip-flop will be controlled by pRESET. Pull-up resistors normally hold both the Preset and Clear inputs high, which they must be for the flip-flop to set and reset normally. The - pRESET line can be jumper-connected so that either the Preset input or the Clear input is pulled low whenever the power is turned on or the system is reset. If the Reset jumper is set to position A, -pRESET active pulls the Preset input low, the flip-flop is set, BANK ENABLE is low, and the bank-dependent memory groups are disabled. If the jumper is set to position B, - pRESET active pulls the Clear input low, the flip-flop is reset, BANK ENABLE is high, and the bank-dependent memory groups are enabled.

CHAPTER 3

TESTING AND TROUBLESHOOTING THE 2032

3.1 FRONT PANEL QUICK CHECKOUT

(If your computer does not have a front panel, skip this section.)

Before powering on the computer, set the 2032 jumpers as follows:

The priority feature will cause Group A to be selected. Set the Front Panel Adress Switches A0-A15 to the off position (0000H). Examine that address. Set the Data Switches D1-D7 to the OFF position and . DO to the ON position (01H). Deposit (write) into memory and compare the Data readout with the switch settings. Now switch D0 to OFF and D1 to ON, deposit into memory again, and compare the result with the switch settings. Continue the pattern of one Data

Switch $O N$ and the rest $O F F$ until all data bits have been checked. If any data does not match the switch settings, isolate the malfunction with a logic probe or voltmeter before continuing.

After Group A has been checked, power down the computer and set Groups B-D to 00.1 as shown:

GRP ADDR

Group B will be selected. Examine 2000 H (A13 ON, the rest OFf), and deposit the same data bytes as for Group A. Isolate and correct any malfunctions as they become apparent.

To check Group C, power down the computer and set Groups C and D to 010:

GRP ADDR

Examine 4000 H (A14 ON , the rest OFP), ard test as with Groups A and B.

Finally, to test Group D, power down and set Group D to 011:

GRP ADDR

Examine 6000 H (A14 and A13 ON, the rest OFF), and test as before. When all malfunctions have been corrected, proceed to the next test.

3.2 DIAGNOSTIC TEST OVERVIEW:

These memory diagnostics run on 8080 or Z-80 systems and provide a practical test of the 2032 memory board. Two diagnostics are provided: a walking bit test and a burn-in test. The routines have been written so that they do not require RAM other than the system stack and the RAM under test. The routines may be executed from either RAM or ROM.

Diagnostics in general can be divided into three classes: fault detection, fault isolation, and fault correction. These routines perform fault detection and provide sufficient data for fault isolation. After a fault is isolated, correction is a hardware matter.

Errors are displayed on the console device when they are detected. Two formats are used. The first, used by the burn-in test and the first stage of the walking bit test, shows errors as follows:
$x x$ yyyy zz
-
Each character is a hexadecimal digit; $x x$ is the bad data, yyyy is the address where the bad data occurred, and $z z$ is what the data should have been.

The second stage of the walking bit test logs errors as follows:
wwww xx yyyy zz
Again, each character is a hexadecimal digit; wwww is the address where the error was found, $x x$ is the bad data, yyyy is the address where data was last written, and $z z$ is the last written data.

These error displays provide enough information for the problem to be isolated.

3.3 PREPARING DRIVER ROUTINES

Except for the system-unique input/output drivers, the memory test routines are capable of standing alone. The drivers must be provided by the user. Three routines are needed:

CONIN: Console input. Reads one ASCII character from the console keyboard and sets the parity bit (bit 7) equal to 0. The character is returned in the accumulator (A register).

CONOUT: Console output. Writes one ASCII character to the console display device. The character to be output is passed to CONOUT in the C register. If the console output device is sensitive to bit 7 , then the user must set/reset bit 7 to what is needed in the CONOUT routine.

CONST: Console status. This routine reads the console input status. If data is not available, then the accumulator is set to 0 and the status flags must match. If data is pending, then a -1 (OFFH) should be returned in the accumulator (A register). The status flags must show at least a non-zero condition on the return.

After these routines have been prepared they must be loaded into memory. To allow the diagnostics to find them, three jump instructions are located at the front of the diagnostic: 0103H for CONIN, 0106 H for CONOUT, and 0109 H for CONST. The user should put the addresses of his I/O routines into these locations. See lines 51, 52, and 53 in the assembly listings.

3.4 SETTING UP FOR THE TEST:

When you are ready to begin the test, set the 2032 jumpers as illustrated:

GRP ADDR

$0_{0}^{20 B B E B}$

At this point you are ready to install the 2032 in your computer. Make sure that no other memory will respond to addresses in the range $4000 \mathrm{H}-0 \mathrm{BFFFH}$.

3.5 LOADING THE DIAGNOSTIC:

No special precautions are necessary. Use your standard method to load the routines. Load the diagnostic into your system at location 0100 H . The diagnostic is small enough to fit into the first 1 K of memory. It was assembled assuming a 16 K block of memory would be available starting at 0000 H ; if less memory is available, the only change necessary is to alter the stack location. The stack is currently initialized to $3 F 76 H$; a good alternate location would be 0100 H .

3.6 RUNNING THE DIAGNOSTIC

Transfer control of the computer to location 0100 H . The computer will type out:

You can now select which diagnostic you want. Current options are "C" for continuous burn-in or "W" for walking bit test. Any other selection will cause ???? to be displayed, after which "DIAGNOSTIC:" will again be printed. For the initial test, type in W. The computer will respond:

DIAGNOSTIC: WALKING BIT TEST
BLOCK SIZE:
Select a small block size initially. This way the read/write circuitry can be checked out without a flood of error printouts. A block size of 2 is suggested. To terminate entry type in a space, a comma, or a carriage return. If you type in the wrong number, continue typing in until the last four digits are correct.

The computer will now ask for
BASE ADDRESS:
Type in the desired base address. (Note: The base address must be a multiple of 1024 (0400H). For the board setup suggested, a base address of 4000 H is indicated.) At this time the diagnostic will do its test. On completion it will type out

> TEST DONE

DIAGNOSTIC:
It is now ready for the next test. If errors were logged, see the troubleshooting section and correct the malfunction. Rerun the diagnostic until an error-free run is achieved.

Rerun the walking bit test with a block size of 1 K $(400 \mathrm{H})$ and a base address of 4000 H . Repeat the test, increasing the base address in $1 \mathrm{~K}(4000 \mathrm{H})$ increments, until base address BCOOH has been tested. This tests all memory chips. If errors are logged, replace the appropriate chip(s). Table 3.1 narrows any error to two chips. If the bad data is in the upper half of the byte, replace the odd-numbered chip. If the bad data is in the lower half of the byte, replace the even-numbered chip. For example, the following error printout indicates chip 71 bad:
$\begin{array}{llll}5 C 02 & 84 & 5 C 02 & 04\end{array}$
After a good run for all thirty-two 1 K increments, run the walking bit test with a block size of $32 \mathrm{~K}(8000 \mathrm{H})$.

BASE	CHIPS	MEMORY
ADDRESS	TESTED	GROUP
4000H	U67, U68	A
4400 H	U65, U66	A
4800 H	U63, U64	A
4 COOH	U61, U62	A
5000 H	U77, U78	A
5400 H	U75, U76	A
5800 H	U73, U74	A
5 COOH	U71, U72	A
6000H	U49, U50	B
6400H	U47, U48	B
6800 H	U45, U46	B
6 COOH	U43, U44	B
7000 H	U57, U58	B
7400 H	U55, U56	B
7800 H	U53, U54	B
7 COOH	U51, U52	B
8000 H	U32, U33	C
8400 H	U30, U31	C
8800 H	U28, U29	C
8 COOH	U26, U27	C
9000 H	U40, U41	C
9400 H	U38, U39	C
9800 H	U36, U37	C
9 COOH	U34, U35	C
A 000 H	U16, U17	D
A 400 H	U14, U15	D
A 800 H	U12, U13	D
ACOOH	U10, U11	D
B000H	U24, U25	D
B400H	U22, U23	D
B800H	U20, U21	D
BCOOH	U18, U19	D

TABLE 3.1

At this point, invert the memory group address jumpers and run a 32 K block starting at 000 H . This tests the group-select circuitry completely. The primary chips tested here are U1-U3.

When all walking bit tests run error-free, type in C for the continuous burn-in test. Specify a block size of 8000 H and the appropriate base address (4000 H if you follow the above procedure). Let it run for an hour or two to shake out the weak links (infant mortality). To terminate
this test type in Control C. Errors, if any, will be printed out as they occur. The total number of errors will be printed out upon completion of the test.

3.7 ERROR PRINTOUT INTERPRETATION:

Errors may show up in many forms. Table 3.2 on the next page matches typical symptoms with probable causes. The best way to isolate a problem (and correct it at the same time) is to pull out a suspect part and replace it with a part that you know to be good. Then rerun the diagnostic and see if the problem is still present.

If a problem persists after all suspect parts are replaced, set up a controlled test condition and troubleshoot the problem with a logic probe or a voltmeter, using the logic diagram to identify test points.

ERROR CONDITION	PROBABLE CAUSE	SUSPECT PARTS
Bad data $=0 \mathrm{FFH}$,	a) bank select	U5, U6, U85
all groups	b) board select	U3, U5, U85
Random data or all 0 data, all groups	bad write control	U5, U83, U85
OFFH data, one	a) group A select	U2, U3, U9
group only	b) group B select	U2, U3, U42
	c) group C select	U1, U3, U60
	d) group D select	U1, U3, U70
One address line hung (printout: good data, bad address)	address buffers	$\begin{aligned} & \text { U81 (A0-6, A15) } \\ & \text { U82 (A7-14) } \end{aligned}$
One data line hung a) hung 0 (good address, bad data=0)	grounded data line	U83, U84
b) hung 1 (good address, bad data=1)	a) open data line b) data line shorted to +5 V	U83, U84 U83, U84, memory chips
Soft errors (random addresses and data, non-repeatable)	a) memory chip access time b) heat-sensitive parts	Try setting Wait jumper to B and rerunning tests. Treat as a hard error and replace suspect parts.
Hard memory errors	bad memory chip	See Table 3.1 to identify chip.

TABLE 3.2

3.8 SAMPLE MEMORY DIAGNOSTIC RUN:

```
DIAGNOSTIC: WALKING BIT TEST
BLOCK SIZE: 30
BASE ADDRESS: }30
BAD BASE ADDRESS:
BASE ADDRESS: }40
TEST DONE
DIAGNOSTIC: WALKING BIT TEST
BLOCK SIZE: 400
BASE ADDRESS: 400
TEST DONE
DIAGNOSTIC: WALKING BIT TEST
BLOCK SIZE: 1000
BASE ADDRESS: }40
TEST DONE
DIAGNOSTIC: WALKING BIT TEST
BLOCK SIZE: 1800
BASE ADDRESS: 400
TEST DONE
DIAGNOSTIC: ????
DIAGNOSTIC: WALKING BIT TEST
BLOCK SIZE: 579
BASE ADDRESS: 400
TEST DONE
DIAGNOSTIC: CONTINUOUS BURNIN
BLOCK SIZE: }376
BASE ADDRESS: 3D3
OO ERRORS
TEST DONE
DIAGNOSTIC: CONTINUOUS BURNIN
BLOCK SIZE: 3ABC
BASE ADDRESS: 3EF
OO ERRORS
TEST DONE
DIAGNOSTIC:
```

Typed in W Block may be any size

Base address must be multiple of 1 K (400 H)

New test
Equal block size, base address

Larger block size test

Typed in 1
Odd block size

Typed in C
No parameter restrictions
Up to OFFH (255D) errors shown

```
TEST DONE
DIAGNOSTIC: CONTINUOUS BURNIN
BLOCK SIZE: 3ABC
BASE ADDRESS: 3EF
00 ERRORS
TEST DONE
DIAGNOSTIC:
```


27601 AB
277 01AB
27801 AB
27901 AB
28001 AB
28101 AB
28201 AB
28301 AB
28401 AB
28501 AB
286 01AB CD1E01
28701 AE 288 01AE
289 01AE C5
290 01AF 0603
291.01B1 CDB601

292 01B4
293 01B5 C9
$29401 \mathrm{B6}$
295 01B6
296 01B6 78
297 01B7 4E
298 01B8 B9
299 01B9 C8
300 01BA CD0501
301 01BD 79
302 01BE 23
303 01BF B7
304 01C0 F2B601
305 01C3 C9
30601 C 4
$30701 \mathrm{C4}$
$30801 \mathrm{C4}$
$30901 \mathrm{C4}$
$31001 \mathrm{C4}$
$31101 \mathrm{C4} 21 \mathrm{CDO} 1$
$31201 \mathrm{C7}$ CDAEO1
313 01CA C30C01
$31401 C D$
$31501 C D$
$3 F 3 F 3 F B F$

CHAPTER 4

TECHNICAL INFORMATION

4.1 SCHEMATIC/LOGIC DIAGRAM

LOOXVT LNGNOdWOD XTGWGSS甘 己"

4.3 PARTS LIST

QTY REFERENCE \quad DESCRIPTION CCS PART \#

CAPACITORS

3
C5-7
6 C1-4,8-9
RESISTORS
$3 \quad$ Z 1-3
INTEGRATED CIRCUITS
64

2

```
U10-41,43-58, 61-68,71-78
```

2 U79,80
U59,69

2 U1,2
2 UT,8
4 U9,42,60,70
$2 \mathrm{U} 4,86$
1 U6
1 U3
1
U5
4 U81-84
1 U85

Network, SIP, 2.7K x 7 40930-72726
Tantalum, 4.7uf, 42804-54756 35 vdc, 20\% Ceramic, .luf, 42142-21046 50 vdc, 20%

MOS 2114 1Kx4
Static RAMS

LM323 +5 v regulator
31900-21142 (200nsec) or -21143 (300nsec)
or -21144 (450nsec)
32000-03230
74LS136 quad ex-OR:OC 30000-00136
74LS20 dual 4-in NAND 30000-00020
74LS05 hex inverter:0C 30000-00005
74LS138 octal decoder 30000-00138
75453 dual 2-in OR: OC 30300-00453
74 LS 74 dual D flip-flop 30000-00074
74LS08 quad 2-in AND 30000-00008
74LS139 2:4 decoders 30000-00139
74LS244 Tri buffer 30000-00367
ROM 5623256×4 30900-05623
QTY REFERENCE DESCRIPTION

IC SOCKETS

28	XU4, 86	IC	Socket,	8	pin	58102-00080
	XU 1-3, 6-8, 79-80	IC	Socket,	14	pin	58102-00140
6	$\begin{aligned} & X U 5,9,42 \\ & 60,70,85 \end{aligned}$	IC	Socket,	16	pin	58102-00160
64	$\begin{array}{r} \mathrm{XU} 10-41,43-58, \\ 61-68,71-78 \end{array}$	IC	Socket,	18	pin	58102-00180
4	XU81-84	IC	Socket,		pin	58102-00200

MISCELLANEOUS

35
35
2
2
4
4
1
2

2

1

Header Strip, 1x3
56004-01003
Berg Jumper
56200-00001
Diode, Light Emitting
37400-00001
Heatsink, Ahamtor 423 60022-00002
Screw, Phillips head 71006-32071
(SIMS), 6-32×7/16
Nut, hex, 6-32
73006-32001
\& lock washer (KEPS)
PC Board
02032-00002
Extractor, PCB 60100-00000
Non-locking
Roll Pin Extractor 60100-00001
Mounting
Owner's Manual
89000-02032

CONTROL ROM INPUTS									ROM OUTPUTS					DECODER OUTPUTS					OPERATION
			$\begin{aligned} & \stackrel{山}{4} \\ & \frac{1}{\pi} \\ & \frac{3}{2} \end{aligned}$	\sum_{i}^{\sim}	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$	\bigcirc	$\begin{aligned} & 2 \\ & { }_{0}^{0} \\ & \frac{2}{2} \\ & \frac{1}{1} \\ & \vdots \\ & \hline \end{aligned}$	$\sum_{\sum_{n}^{\infty}}^{\stackrel{x}{2}}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \underset{x}{x} \end{aligned}$	$\begin{aligned} & \ll \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \dot{\alpha} \end{aligned}$		a 岂 w m m		$\begin{gathered} w \\ \hline \\ \hline \end{gathered}$				
崖	A 7	A 6	A5	A 4	A 3	A2	A 1	AO		04	03	02	01	Y1	Y2	Y1	Y2	Y3	
13	0	0	0	1	0	0	1	1	6	0	1	1	0	0	1	0	1	1	Bark－ndependert Memory Read
22	0	0	1	0	0	0	1	0	A	1	0	1	0	0	1	1	0	1	Bank－hdopendern Memory Witte（CPU）
32	0	0	1	1	0	0	1	0	A	1	0	1	0	0	1	1	0	1	Bark－ndependeert Memory Write（FP）
46	0	1	0	0	0	1	1	0	9	1	0	0	1	1	0	1	0	1	Wite to Port，Memory Selectiod
53	0	1	0	1	0	0	1	1	6	0	1	1	0	0	1	0	1	1	Bark－Dependert Memory Read
56	0	1	0	1	0	1	1	0	C	1	1	0	0	1	1	1	1	0	Read from Port，Memory Selected
62	0	1	1	0	0	0	1	0	A	1	0	1	0	0	1	1	0	1	Bank－Dependent Memory Write（CPU）
72	0	1	1	1	0	0	1	0	A	1	0	1	0	0	1	1	0	1	Bank－Dependent Memory Write（FP）
C6	1	1	0	0	0	1	1	0	9	1	0	0	1	1	0	1	0	1	Write to Port，No Memory Selected
D6	1	1	0	1	0	1	1	0	C	1	1	0	0	1	1	1	1	0	Read trom Port，No Memory Selected
			ny o	her lo	locatio				0	0	0	0	0	1	1	1	1	1	

4.5 ADDRESS/CHIP TABLE

	2032 ADDRESS/CHIP TABLE							
	Low	High	Low	HIGH	Low	HIGH	Low	High
w	U10	U11	012	013	014	U15	416	417
w+1	418	419	$\mathbf{U 2 0}$	U21	$\mathbf{U 2 2}$	U23	U24	U25
x	U26	027	U28	029	U30	U31	032	433
$\mathrm{x}+1$	U34	U35	U36	437	U38	439	440	141
Y	U43	444	U45	046	047	$\cup 48$	449	U50
r+1	051	052	453	054	055	056	U57	458
z	U61	462	U63	U64	065	066	U67	068
z+1	471	472	473	074	U75	476	U77	478

4.62032 BUS CONNECTOR PINOUT

APPENDIX A

LIMITED WARRANTY

California Computer Systems (CCS) warrants to the original purchaser of its products that
(1) its CCS assembled and tested products will be free from materials defects for a period of one (1) year, and be free from defects of workmanship for a period of ninety (90) days; and
(2) its kit products will be free from materials defects for a period of ninety (90) days.

The responsibility of CCS hereunder, and the sole and exclusive remedy of the original purchaser for a breach of any warranty hereunder, is limited to the correction or replacement by CCS at CCS's option, at CCS's service facility, of any product or part which has been returned to CCS and in which there is a defect covered by this warranty; provided, however, that in the case of CCS assembled and tested products, CCS will correct any defect in materials and workmanship free of charge if the product is returned to CCS within ninety (90) days of original purchase from CCS; and CCS will correct defects in materials in its products and restore the product to an operational status for a labor charge of $\$ 25.00$, provided that the product is returned to CCS within ninety (90) days in the case of kit products, or one (1) year in the case of CCS assembled and tested products. All such returned products shall be shipped prepaid and insured by original purchaser to:

Warranty Service Department
California Computer Systems
250 Caribbean Drive
Sunnyvale, California
94086

CCS shall have the right of final determination as to the existence and cause of a defect, and CCS shall have the sole right to decide whether the product should be repaired or replaced.

This warranty shall not apply to any product or any part thereof which has been subject to

(1) accident, neglect, negligence, abuse or misuse;

(2) any maintenance, overhaul, installation, storage, operation, or use, which is improper; or
(3) any alteration, modification, or repair by anyone other than CCS or its authorized representative.

THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED OR STATUTORY INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS OR SUITABILITY FOR USE OR INTENDED PURPOSE AND OF ALL OTHER OBLIGATIONS OR LIABILITIES OF CCS. To any extent that this warranty cannot exclude or disclaim implied warranties, such warranties are limited to the duration of this express warranty or to any shorter time permitted by law.

CCS expressly disclaims any and all liability arising from the use and/or operation of its products sold in any and all applications not specifically recommended, tested, or certified by CCS, in writing. With respect to applications not specifically recommended, tested, or certified by CCS, the original purchaser acknowledges that he has examined the products to which this warranty attaches, and their specifications and descriptions, and is familiar with the operational characteristics thereof. The original purchaser has not relied upon the judgement or any representations of CCS as to the suitability of any CCS product and acknowledges that CCS has no knowledge of the intended use of its products. CCS EXPRESSLY DISCLAIMS ANY LIABILITY ARISING FROM THE USE AND/OR OPERATION OF ITS PRODUCTS, AND SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL OR INCIDENTAL OR COLLATERAL DAMAGES OR INJURY TO PERSONS OR PROPERTY.

CCS's obligations under this warranty are conditioned on the original purchaser's maintenance of explicit records which will accurately reflect operating conditions and maintenance preformed on CCS's products and establish the nature of any unsatisfactory condition of CCS's products. CCS, at its request, shall be given access to such records
for substantiating warranty claims. No action may be brought for breach of any express or implied warranty after one (1) year from the expiration of this express warranty's applicable warranty period. CCS assumes no liability for any events which may arise from the use of technical information on the application of its products supplied by CCS. CCS makes no warranty whatsoever in respect to accessories or parts not supplied by CCS, or to the extent that any defect is attributable to any part not supplied by CCS.

CCS neither assumes nor authorizes any person other than a duly authorized officer or representative to assume for CCS any other liability or extension or alteration of this warranty in connection with the sale or any shipment of CCS's products. Any such assumption of liability or modification of warranty must be in writing and signed by such duly authorized officer or representative to be enforceable. These warranties apply to the orginal purchaser only, and do not run to successors, assigns, or subsequent purchasers or owners; AS TO ALL PERSONS OR ENTITIES OTHER THAN THE ORIGINAL PURCHASER, CCS MAKES NO WARRANTIES WHATSOEVER, EXPRESS OR IMPLIED OR STATUTORY. The term "original purchaser" as used in this warranty shall be deemed to mean only that person to whom its product is originally sold by CCS.

Unless otherwise agreed, in writing, and except as may be necessary to comply with this warranty, CCS reserves the right to make changes in its products without any obligation to incorporate such changes in any product manufactured theretofore.

This warranty is limited to the terms stated herein. CCS disclaims all liability for incidental or consequential damages. Some states do not allow limitations on how long an implied warranty lasts and some do not allow the exclusion or limitation of incidental or consequential damages so the above limitations and exclusions may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

