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INTRODUCTION

ABOUT THE BOOK

The primary purpose of this book is to heip you get the most out of your
scientific calculator. In particular, we have oriented this book o the use of the
CORVUS 500 because of the large number of functions it offers and because it
makes use of Reverse Polish Notation (RPN). RPN is the most efficient means
for expressing complex calculations —~ an entire section of this book is devoted
to a discussion of this important technique.

This book is divided into two main parts. The first part describes the basic
operation of the CORVUS 500. This description also applies to the APF Mark
55 and the OMRON 128R calculators which are functionally identical t6 the
CORVUS. Furthermore, the discussion of RPN is generally applicable and
should provide the reader with a thorough understanding of RPN and an
appreciation for its simplicity.

The second part of this book presents a selection of application problems and
their accompanying solution programs. These sample problems are organized
by application area. These areas include financial, statistical and simple
algebraic calculations.

Every effort has been made to select problems which do not require substantial
background in a specific application area. Instead, understanding the prob-
lems we have selected calls for minimal effort. In that way, the reader can
concentrate on understanding the solution approach and the solution program.
For anyone who uses a scientific calculator, the problems in the applications
portion of this book should be both useful and easily understood.

It should be noted that all sampie problems have been performed on a
CORVUS 500. The APF and OMRON calculators should perform identically.
Other RPN caiculators will not behave in precisely the same way. However,
sufficient similarity does exist between all RPN calculators to render most of
the solution programs useful. Appendix B describes a technigue to adapt the
solution programs to other RPN calculators.



ABOUT THE CORVUS 5060

The CORVUS provides a large number of calculating functions with a minimum
number of keys. Some of the features of this powerful calculating instrument
are listed below.

Display Control — Calculated results may be displayed in either of two modes:
business mode and scientific notation mode. Floating point and fixed point is
available in both modes.

Accuracy — Regardless of the number of digits displayed, the CORVUS
internally maintains 12 significant digits. For certain calculations, such as
powers, roots and trigonometric functions, the 2 or 3 least significant digits
may be incorrect. Even if such “inaccuracies’ are encountered, the precision
of the CORVUS will almost certainly exceed the precision of the data entered.

Range — The CORVUS will accept entry of values between £9.99999999999 x
10% and +0.1 x 109%. However, some functions are only defined for certain
values and other functions utilize approximations that are relatively inaccurate
in certain ranges. These restrictions are summarized in Appendix A.

The CORVUS offers an expanded range for displaying results. Calculations
generating resuits that are not within the normal operating range of the
CORVUS can be obtained if they fall between +9.99999999999 x 10% and
+9.99999999899 x 1019 or between 0.1 X 10% and +0.1 x 10 -9, The
effective range for calculated results on the CORVUS is therefore +10-2% to
+9.99999999999 x 1019, Althoughcalculated resuits are valid for this entire
range, a result out of normal range (0.1 X 10 {0 9.999999999993 x 10%) will
not be valid for use in further calculations.

Frror Indication — The display will flash to indicate out of range results or
undefined function arguments.

pMemories — The CORVUS has 10 addressable memories plus a special

purpose memory. Additionally, the CORVUS has a 4 level mamory stack for

temporarily storing operands during calculation sequences.

Display Key — This key, marked , serves two purposes. First, it is used
in all display control sequences. Second, it serves as a second function or shift
key. Over many of the keys a second function appears in goid letters. The
display key is utilized to perform these functions.

Inverse Key — The utility of each key is further increased through the use of
the inverse key. The inverse of nearly every function is available.

PART I HOW TO USE YOUR CALCULATOR

1 USING PART I

This first part of the book is intended to introduce you to your calculator. Each
caloulator function is described and simple examples are presented.

The examples employed in Part 1 are straightforward function applications.
They are constructed in simple steps with each keystroke outlined, as well as
indicating the accompanying display.

Keystrokes for these examples are shown as , For example, the
key labeled y* is shown as . Shifted keystrokes are shown in the same
manner. Thus VX becomes and the function VX is indicated by
]

All of the problems in Part 1, unless otherwise noted, will assume that the
calculator has just been turned on. That is, all entries are displayed to the
nearest hundredth and all memories are zeroed.

Use of the calculator is carefully developed in this part of the book. Our goal is
to enable you to build upon these basic operating instructions and, with the aid
of the application problems, to enable you to extend the calculator's powerful
features {o suit your own calculating requirements,

Even those who are already familiar with the basic operation of the calculator
should not ignore this part of the book. We think there may be a few features
that will come as a pleasant surprise.

2 ENTERING AND DISPLAYING DATA

2.1 Display Formais

The CORVUS 500 has twc basic display formats — business and scientific.
Business format displays 12 digits and sign (-). Scientific notation displays a
10 digit number part, or mantissa, which is multiplied by a power of ten, or
exponent part. Both the mantissa and the exponent can be negative (-).



2.2 Entering Daia

Data can also be entered in either a business or scientific format.

In business mode, positive numbers are merely keyed-in. Twelve digits can be
entered and any digit key pressed after the twelfth digit is ignored. To enter
negative numbers, the CHANGE-SIGN key ( [cHs] ) is utilized. is
effective at anytime after the first digit of the number has been keyed. The
DECIMAL POINT key ([1]) can be depressed at any spot desired in order to
enter a decimal point.

2.2.2 Entering Data in Scientitic Notation

In scientific mode, the mantissa part is entered in the same manner as a
number in business mode. The exponent part is inserted by depressing the
ENTER EXPONENT key ( E—g] ). Up to a 10 digit mantissa can be displayed in
scientific notation mode. If an 11 or 12 digit mantissa has been entered, the
last digits are internatly maintained, but not displayed. To enter a negative
exponent, |CHS| is pressed at any point after @ has been depressed.

Only a 2 digit exponent can be entered. If more than 2 digits are keyed-in, the
last 2 digits are retained (i.e., key-in: 3.69 [EI 963; the mantissa is 3.69, the
exponent is 63). If no mantissa has been entered, then when @ is pressed
the calculator automatically assumes a mantissa value of one.

2.3 Clearing Data

The CLEAR X button ( } automatically zeroes the display. However, if you
have keyed-in an improper exponent in scientific notation, and do not wish to
clear the entire entry, merely continue to key-in the digits desired. Only the last
two digits of the exponent inserted are maintained (see 2.2.2). Clearing the
calculator's stack and memories is discussed in sections 4 and 5, respectively.

2.4 Display Control

The CORVUS 500 can be formatted to display entered data and calculated
results in two modes, business and scientific. Display controis do not impact
data as keyed. In the examples to be given, one value {1234.56789123} is
entered and merely reformatted in each example.

2.4.1 Basic Display Controf

There are two basic display control sequences - [sct]for scientific
notation and for business mode. In scientific mode, up to @

10 digit mantissa can be displayed, but extraneous zeroes are suppressed. In

business mode 12 digits can be displayed, but once again, extraneous zeroes
are suppressed.

Exampies: (re
KEY DISPLAY COMMENT

"1.234567891 03 Scientific mode
123456789123 Business mode

2.4.2 Rounding Options

In both modes, the mantissa can be rounded to a fixed number of decimal
places by keying-in and then the number of decimal places to be
displayed. In business mode with round-off, no number can be displayed to
more than nine decimal places. For large numbers the calculator can display
as'many decimal places as will fit on the 12 digit display. Thus the nurnber of
decimal places displayed may be limited to the number of digits remaining
after displaying the digits of the integer (non-fraction) part of the number. In
scientific mode, the calculator can always display up to nine decimal places.
The calculator rounds up ore if the first digit not being displayed is greater
than or equal to 5. it is important to note that although the display is rounded
to the desired number of decimal places, the calculator still internally maintains
all 12 digits.

Examples: (reformatting 1234.56789123)

KEY DISPLAY COMMENT

psP [ INV [ scl | 123456789123 Business mode

DSP i 3 1234.568 Rounds up one in last digit
@ 9 1234 56789123 Only abte to display 8 decimal place
[psp 1,23456789 03 Scientific Notation
3 1.235 03 Rounds up one in last digit

DSP |9 1.234567891 03 ~ Roundsto 9 decimal places

[&]



2.4.2.1 Predefined Format

When a CORVUS 500 is switched ‘'on", it automatically displays in business
mode with 2 decimal places shown. This is equivalent to the display format

caused by keying [psp] [inv] [scr ] [osP] 2.

2.4.3 Autemstic Conversions

Regardiess of the display mode, numbers may be entered in either format.
When in business display mode, a number may be entered in scientific form
and it will be automatically converted to business form during the calculation
sequence, If in scientific display mode, a number entered in business mode will
be automatically converted to scientific form. In the course of a problem, the
form of the operands may be intermixed; each operand may be entered in the
most convenient form, with any necessary conversion being performed
automatically.

When the calculator is set in business mode, certain automatic display format
conversions occur. When calculated answers or data entered fatl outside of a
predefined range the display converts to scientific mode. Only numbers
between +.000000000001 and +999999999999 can be displayed in busi-
ness mode. Any data out of that range (which is still within the calcutator's
range. See section 2.6) will be displayed in scientific notation. it will continue
to be rounded to the same number of decimal places as previously formatied.
When the magnitude of the vaiue to be displayed is too small to be displayed
in the formatted number of decimal places, the data will be displayed in
scientific notation. As long as the display hasn't been reformatted to scientific
mode, the calculator will convert back to business mode should the data once
again fall within the given range. It should also be noted that while the
calculator is formatted to scientific notation, no conversions to business mode
are required and none will occur. The example given below illustrates this
automatic conversion feature. The ENTER key ( ) can be viewed as part
of the mechanism for effecting formatting of data.

Example:

KEY DISPLAY COMMENT

_ 0. Business mode

E 2 0.00 2 decimal place format
.003 3.0G6 -03 Automatic conversion because value

too small for display format
.03 0.03

Back to business mode with round
off to two decimal places

2.5 Frror Indication

Under certain circumstances, such as dividing by zero or a calculated result
being out of the calculator's normal range, the calculator indicates an error.
The error is shown by a flashing display. Depressing @ stops the flaghing
and a second depression clears the display. While the display is flashing, the
calculator is, in effect, locked. In order to “unlock’’ the calculator must
be pushed. Appendix A summarizes error conditions.

2.6 Extended Caloulated Range

The normal range of the CORVUS 500 is from +,1 X109 1o +9.99999599999
x 109, Howsver, calculated results can be obtained between +1 x 10! ang
+8.69999999999 X 10! and between +.

1 x 1019 and +.1 X 109 and +.1 x 10-199,
Therefore, the effective range of the calculator is between +.1 x 10 "1¢¢
and $9.99999999999 x 1019,

If the result is outside the normal range yet within the extended range, the
display will flash. Upon depression of , however, the flashing ceases
and a valid result is displayed. in these extended range results the most
significant digit of the exponent part is not displayed. That is, the exponent is
really between either 100 and 199 or -100 and -199 although only the last two
digits and sign (-) are shown (e.g., when a flashing 6.721354687 27 is
displayed, the result is actually 6.721354687 x 10127, The mantissa part of
results which are out of normal range is valid for use in further calculations. The
exponent part of these results, however, is off by 100 (i.e., the value displayed
is the value now internally maintained by the calculator.). If +10.00 x 109
(£9.99999999999 with no round-off) or £0.10% is displayed flashing, the
result is out of the extended range, too large-or too small, respectively.



3 FRPN BASICS

3.1 Why RPN?

Three forms of representation for arithmetic expressions have come into
common use. We are all familiar with one of these notations — ordinary
notation, which is called algebraic by calculator manufacturers and called infix
by mathematicians and computer scientists. The term infix refers to the
position of the operator in relation to the operands. For example, in the
expression a + b, the operator + is fixed between the operands a and b.

Its familiarity would seemingly make infix notation an ideal choice for all
calculators. Unfortunately, infix has certain inadequacies. Consider the expres-
sion 2 X 8 + 4 X 5. Is this expression equivalentto 2 X 7 X 5 = 70 0orto 6
+ 20 = 267

The ambiguity could be resolved with parentheses. Thus the original expres-
sion might be written as 2 x (3 + 4) X 5 oras (2 X 3) + (4 X 5). A little
experience with a parentheses-dependent notation should be sufficient to
indicate how error prone such an approach is. Both missing and extraneous
parentheses are sure to be annoyingly frequent,

Alternatively, the ambiguity could be resolved by defining an operator hierar-
chy. For example, we could define a hierarchy in which multiplications are
performed before additions. Thus the original expression would be interpreted
suchthat2 X 3 + 4 X5 = 6 + 20 = 26. For expressions involving sum-of-
products, this hierarchy works very well. If the expression to be evaluated is not
a sum-of-products however, we are forced to use parentheses or to reformat
the expression. Therefore to override the sum of products hierarchy, we could
do2x (83 + 4)x50r2xXx3x5+2x4x50r3+4=7and7x2x5.

The inadequacies of infix (or algebraic) notation become more severe as the
complexity of the expression increases and are sufficient to cause considera-
tion of two other expression notations, These notations are known as ‘'Polish”
because they were first described by the Polish mathematician Lukasiewisz,
Fortunately (and understandably) these notations are not known as
Lukasiewisz notations. The two varieties of Polish notation are called postfix (or
reverse) and prefix Polish. Both permit parentheses-free, unambiguous repre-
sentation of arithmetic expressions. In postfix notation the operator follows its
operands, thus the infix expression 2 + 3 is written as 2 3 +. In prefix
notation, the operator precedes its operand thus we have + 2 3. The table

1
|
i

.

5
4

£ k. 6, 0 CEST e ISR
p s s, 23 2
l 4 :

| 9§

below shows the expression 2 x 3 + 4 x 5 in infix, postfix and prefix
notations.

INFIX POSTFIX PREFIX
(2X 3+ (4X8) 23X 45 X+ + X 23X 45
2X (3+4)X5 234+ X5X XX 2+345

Both prefix and pbstfix notation eliminate the ambiguity of infix without
parentheses. Typically however, expressions are written in infix notation.
Fortunately the conversion from infix to postfix (RPN) is very simple.

1. Start at the left of the expression.
2. Record next operand.

3. If an operation can be performed (i.e., if all necessary operands have been
recorded), record the operator.

4. If another operation remains which can be performed, repeat steps 3 and 4.

5. If more operands and operators remain in the expression, then repeat steps
2,3,4 and 5.

The conversion from infix notation to prefix notation is not nearly so simple:

1. Locate the operation to be performed last, record the operator.

2. Locate the lefilmost operand of the operator in 1.

3. If the operand is itself an expression, follow all steps in this procedure for
that sub-expression.

4. If the operand is instead a data item, record it.
5. If there exists a next leftmost operand, repeat steps 3, 4 and 5.

RPN offers the advantage of unambiguous representation of complex expres-
sions. Furthermore, as one would suspect from the simple conversion between
infix and RPN, RPN is easily mastered. RPN is therefore best suited to meet
your calcutation requirements, The next two subsections should help you to feel
comfortable with RPN and to lay the groundwork for effective utilization of your
calculator.

3.2 RPN and Your Calculator

To perform calculations on your RPN calculator, operands must be keyed-in
before the operator. Thus the calculator requires some internal means for
storing operands pending operator entry. In the calculator, this is accom-
plished by a set of registers called the stack, A register is an electronic
element utilized for temporary data storage. Since multiple operands may be
keyed in before the operator, some means to indicate the end of an operand is
needed (infix uses the operator itself to separate operands). The ENTER key



provides this means. The stack and operations on the stack will be discussed
in section 4, For purposes of this section we will disregard the potential for
exceeding the stack’s capacity and will delay discussion of the “internal”
workings of the stack. In essence we can conceive of the stack as a place to
temporarily store operands ~ a storage facility with the special property that
the last operand stored is the first operand returned.

3.3 RPN and Four Basic Arithmetic Operations

This subsection presents a series of examples illustrating calculations involving
addition, subtraction, multiplication and division. After keying in each number,
either the ENTER key ( ) or the appropriate operator key ( + , -, X, + )
is depressed. For now, the ENTER key can be thought of simply as a
mechanism for indicating the end of a number entry which is to be stored in
the stack.

Example: Turn your calculator on and let's try one variety of our
familiar example. — (2 X 3) + (4 x &) ?

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 2 2 Key in first operand
2 Enter ENT 2.00 Store operand (2) on stack
3 Data 3 3 Key in next operand
4 Muttiply 6.00 2 X 3is displayed
b Data q 4 Key in next operand
6 Enter 4.00 (2 X 3 and 4 are now on
stack
7 Data 5 5 Key in last operand
8 Multiply 20.00 4 X 6is displayed
9 Add 26.00 {2 X 3) and (4 X 5) were on

stack and are now added,
displaying results.

*  Notice that we have not used any memories yet.

10

?
Example: The other variety of our familiar example 2 X (3 + 4) X5 =

STEP
1

w0 NN ;M ;M bk W N

Example: [(16+4)- 15] +15-3

FUNCTION
Data

Enter

Data

Enter

Data

Add
Multiply
Data
Multiply

KEYSTROKES

N

A oFE g [
3 3

17-(1.6 X 9.8)
FUNCTION KEYSTROKES
Data 16
Enter ENT
Data 4
Divide <]
Data 1.5
Subtract E
Data 15
Add
Data 3
Subtract =
Data 17
Enter TENT |
Data 1.5
Enter
Data 8.8
Multiply
Subtract H
Divide

DISPLAY

L)
£

2.00
3
3.00
4
7.00
14.00
5
70.00

DISPLAY

16
16.00
4
4.00
15
2.50
15
17.50
3
14.60
17
17.00
15
1.50
9.8
14.70
2.30
6.30

COMMENTS
Woai im fir 1
Store operand on stack
Key-in next operand

Store operand on stack
Key-in next operand

3 + 4 isdisplayed

2 X {3+ 4) isdisplayed
Key-in next operand

2 X {3+ 4) X 5isdisplayed

COMMENTS

Key-in first operand

Store operand on stack
Key-in next operand

16 -+ 4 is displayed

Key-in next operand \
[(16+4) - 1.5] displayed
Key-in next operand
[{16+4)-1.6]1+15 displayed
Key-in next operand
[16+4}-1.5]+15-3 displayed
Key-in next operand

Store operand on stack
Key-in next operand

Store operand on stack
Key-in next operand

1.6 X 9.8 displayed

17 ~ {156 X 9.8) displayed

[(16+4)-1.5]+15-3 and
17-{1.5 X 9.8) were on
stack. Result of division
now displayed

"



4 THE STACK

4.1 The Stack Concept

he stack is a storage structure whose application is not limited to RPN
calculators. To be more precise, the stack is a well-developed conceptual
structure which is frequently encountered in data processing and which
appears in a somewhat modified form in calculators. We feel that the
peculiarities of the calculator's stack are more easily understood if viewed in
the context of a "'true"’ stack.

A stack is a set of storage registers forming a linear list (see Figure 4-1),
Insertions and deletions are made at only one end of this list. Thus, the stack is
called a last-in-first-out or LIFO list because the last item added 1o the list is
always the first item removed from the list,

-

Data-in ~ /—4&- Data-out

V!

T~

e
storage elements

Pt

-

Special terminology is utilized in referring to the stack. Data is inserted onto
the top of the stack and removed from the top of the stack. The bottom of the
stack is not immediately accessible — all other items must first be removed.
When an item is added to the stack, we push the stack. The top remains in the
same location but its contents are changed. The old top is moved down one
location. When an item is removed from the stack, we pop the stack.

Stack terminology comes from an analogy with the spring-loaded stack of
plates frequently found in cafeterias. When an additional plate is added to the
stack, the weight of the new plate pushes the rest of the stack downward. The
new plate is at the same level as the previous top plate, When a plate is

vLo a L i

removed from the stack, the rest of the stack pops upward. The top of the
stack always remains at the same level,

4.2 Calculator Stack Operations

The CORVUS 500 stack consists of four storage registers. These registers are
labeled X, Y, Z, and W, where X is the top of the stack and W is the bottom of
the stack. Register W (the bottom of the stack) is sometimes called register T.
After each operation is completed and as new data is being keyed-in, the value
stored in X and the value displayed are the same.
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Each function performed by the CORVUS requires either one or two operands.
When a function is entered, these operands are found on the top of the stack.
Each function performed by the CORVUS produces one or two results. The
net effect of each function is to pop operands off the stack and push results
onto the stack. The description of each function wili inciude the effect of the
function on the stack.

The subsections which follow describe the stack operations provided by the
CORVUS. Each operation is described and the keystrokes to perform the
operation are specified. Each subsection also presents an example of the use
of the operation in tabular form. Rows in these tables represent the content of
the register indicated in the leftmost column. Columns in these tables represent
the content of the registers after the keystroke sequense heading the column
has been completed. The values in the tables are all integers.

( 0 will cause the display to show only integers.) The

tables are sequential; each proceeding from the state of the previous table.

4.2.1 Modified Push (or Enter)

This operation causes the X register to be copied and pushed into the ‘Y
register. The value in the X register remains the same. The previous value in
the Y register is placed in the Z register and the previous value in the Z register
is placed into the W register. if a value was in the W register before the
modified push operation, the value is lost. The modified push operation is
performed by depressing the ENTER key ( [enT] ).

Example Sequence:

(%]

K 1 ent]| 2 enT]| 3 ent] | 4 ENT

wilo|6ejo |0 0|1 |1 |22

It is important to note that after the ENTER key is depressed, the data item next
keyed in will write over the oid X register value.

13



4.2.2 Push

Two variations of the “true’’ stack push operation occur on the CORVUS, First,
the combination of a modified push and a data value being keyed in is
equivalent 1o a push. This form of push is obviously the purpose of the ENTER
key. As was discussed in Section 3, some means is necessary 1o distinguish
between the continuation of a data entry and the beginning of a new data
entry.

The second variation of the push operation does not require a keystroke,
Virtually every operation ieaves a push pending. When a number is entered
following an operation, it is pushed onto the stack. The ENTER key is not
required. The only function key which does not cause a push on the next
number entry is the summation key . whose use is discussed in Section
20. .

Exampie Sequence:

K Previous *® IO # i

gtzgv‘m ewtlZ| (=] | [=] | & |15 30

% % * % * % ¥k

W 2, 1 2, 2, 3] 3, |3 |33

°
(28
L)

*The four basic arithmetic operations all have an identical effect upon the
stack. The two operands are popped off the stack and the result is pushed onto
the stack.

**The CORVUS stack has a special property. Whenever the stack is popped, a
copy of the W register value remains in the W register,

***The value is pushed onto the stack since the operation was performed
immediately before the number entry.

4.2.3. Modified Pop {(or Clear X) and Pop

The moditied pop operation causes the X register 1o pe zeroed and causes the
next value entered to be placed in the X register without affecting the rest of
the stack. Naturally, this operation is most useful for eliminating erroneous
entries. A modified pop is caused by depressing the CLEAR X key .

14
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A true pop operation can be caused by either or =] In

both cases the X register is first zeroed and the value in the Y register is not
changed (but is moved to the X register) by the operation that follows. The net
result of the two keystrokes is to pop the stack.

Example Sequence:

&5

Frevious w
RK cLX 9 \EnTlg| [ex] | [+] | [eex] | =]

Values

X 130, 0, 2.0 5. 0,] 2.| 0. 4. | 3.

Wl 3. 3. 3. 3 3| 3] 3|33

“The sequences | CLX] and [=] pop the stack.

*+The sequence shown ([CLX] [=] followed by data entry) and the equivalent
sequence with followed by data entry have the same net effect
upon the stack as simply followed by data entry.

The clear key, [CLR], is used to zero the entire stack. The appropriate

keystroke sequence is CLR] .

4.2.4. Rolling the Stack

At times, one may need to review the contents of the entire stack or to shift
data within the stack. The ROLL key ( ) provides these capabilities. The
roll operation causes the top of the stack to be inserted on the bottom of the
stack and causes the stack to be popped. That is, after depressing ) the
contents of the X register are moved to the W register, the contents of the ¥
register are moved to the X register, the contents of the Z register are moved to
the Y register, and the contents of the W register are moved to the Z register.
In this operation the stack can be viewed as a circularly connected list in which
the top *'rolls’ around to the bottom slot and each of the other positions “‘roll”
up one slot. Since the stack has four registers, depressing the four times
will return the stack to its original position. The roil operation leaves a push
pending for the next number entry.

16



The following table illustrates the roll operation. The stack is first cleared and
then four new values are pushed onto the stack. Four roll operations are then
performed.

Example Seauence:

[psp] ent| | [ent] | [EnT] | .
RK CLR 1 [7] Al

X0, 1. 2. 3. 4| 3, 2.0 1. 4,

w Uo 0. 0. U. 10 49 3. 20 1‘

4.2.5 Exchange Registers

When coupled with the ROLL key, the EXCHANGE key ( ) provides the
capability of completely reorganizing data stored in the stack. The exchange
operation moves the contents of the X register into the Y register and the
contents of the Y register into the X register. This operation is particularly
useful when operands have inadvertently been entered out of order, For
example, a divisor may be in the Y rather than the X register.

The following table illustrates the exchange operation. The registers are
initialized with the values from sub-section 4.2.4. The keystroke sequence
utilizes the roll and exchange operations to reverse the order of the registers’
contents.

E{ Previous
Example Sequence: R Vox Yox
Values

X4 %4 2L

Z 12, 2| 1, 3 | 3

Wl | L 3| 4, | 4
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5  MEMORY
The CORVUS 500 has several electronic storage registers called memories.

The stack is actuaily four memories. There are also a numoer of memories
which are completely invisible to the user of the calculator, For example, the X
register and the display register are physically distinct although they appear
logically as a single register. Other “invisible’ memories are utilized as a
scratchpad during-calculations, These “invisible’” memories are termed not
addressable since there is no way for the calculator user to access them, In
addition to the four stack memories, the calculator has 11 other addressable
memories. Ten of these are called named memory, and one is a special,
unnamed memory used during calculation seguences involving the summation
function (see Part |, Section 20). The named memories are memory 0, 1, 2, 3,
4,5,6,7, 8, or 9. Memory 0 is also called LAST X. The appropriate digit key is
used in accessing these memories. The following five subsections describe the
operations available for the ten named memories. Section 20 of Part |
describes operation of the unnamed memory.

5.1 Storing and Recalling Data

The STORE and RECALL keys are used in manipulating the named memories.
The INVERSE key doubles as the STORE key. This multiplicity of purpose is
indicated by the gold letters STO. Operations involving the STORE key do not
involve the INVERSE key. Therefore the DISPLAY key ( [BsP]) is not needed
to distinguish between the two uses of the INVERSE/STORE key. The "little
gold box” enclosing the gold letters indicates that no shifting via a is
needed. Similarly, the RECALL key ( ) requires no shifting.

Values are stored by depressing followed by the memory name (also
called address). Values are recalled from memory by depressing
followed by the memory name. This example should clarify the storing and

recalling operations — switch on your calculator and try a few simple memory
operations,

17



STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 3.56 3.55 Put in a data entry.
2 Store §TC |7 3.55 Store 3,65 in memory 7—
leave a push pending.
3 Data 615 6.15 Put in a second data entry.
4 Store @4 6.15 Store 6.15 in memory 4,
5 Multiply 21.83 Calculate 3.55 x 6.15.
6 Recall ReL| 7 3.55 Recall operand from memory-
leave a push pending.
7 Recall @ 4 6.15 Recall other operand.
8 Multiply 21.83 Repeat multiply.
9 Store BTO 4 21.83 Store product over old operand.
10 Clear [cix] 0.00 Clear display.
11 Recall RcL| 4 21,83 To no one’s surprise, the product

|

we stored is still therel

5.2 Exchange with Memory

The CORVUS provides an additional memory operation. Depressing either

STO ]| or [sT0] tollowed by a memory name causes the

contents of the X register to be exchanged with the indicated memory. The
foliowing example illustrates this application.

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 3.14 3.14 Enter a number.

2 Store E_T_O—} 3 3.14 Store the number.

3 Clear stack @@ 0.00 Clear ail values in the stack.

4 Data 7.83 7.93 Enter another number,

5 ;Enxecn};ange @ 3.14 Exchange display and

: memory 3.

6 Clear stack @ 0.00 Clear stack.

7 Recall 3 7.93 Yes, it was really exchanged!

8 Clear stack @ 0.00 Clear stack again.

9 Data 4.56 4.56 Enter another number.

- bination for

0 e s e T
11 Recall RCL| 3 4.56 Yes, it was really exchanged!
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5.3 Limitations on Memory

Although the store, recall and exchange memory operations are valid far each
of the ten memories, there are certain restrictions to the full use of memories 7,
8, 8, and 0. Memories 7, 8, and 9 are utilized during calculation sequences
involving the summation function. If the summation function is not involved in
the calculation, then memories 7, 8 and 9 can be treated identically to
memories 1 through 6. Section 20 of Part | will describe restrictions to the use
of memories 7, 8 and 8 during summation calculations,

Mernory 0 is a special memory also called LAST X. This memory is used in
nearly every calculation sequence. The LAST X memory is further described in
Section 5.5.

54 Clearing Memory

A clear memory instruction is neither provided on the CORVUS 500 nor is such
an instruction necessary. When a new value is stored in memory, any trace of
the value previously stored in that memory is lost. Thus memories are
effectively cleared before being stored into. Naturally, you can always clear all
memories by switching the calculator off and then on again.

55 LAST X

Memory O (or LAST X} is a special purpose memory. Although the store, recall
and exchange operations are valid for this memory, the value stored in memory
0 is changed throughout calculation sequences. Each time an operation is
performed, the last operand to that operation is stored in memory 0. Thus the
term LAST X,

The LAST X memory is a useful feature for correcting errors. An incorrect
operation can be undone with the aid of LAST X, For example, if you
inadvertently muitiply by 5 you could caorrect this error by depressing

Chee) [chsra] (2]

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 4.35 Enter an operand.

2 Push ENT 5. Enter second operand.

3 Multiply D 21,75 Multiply

4 Stop 21.75 Realize that a mistake has been
made--should have divided,
not multiplied.

5 Recover - LAST X 5.00 Recover the last operand.

6 Divide |_j 4.35 Unda the erroneaus operation.

7 Recall mm 5.00 Retrieve operand again.

8 Divide [_I 0.87 Now we've got the desired result!
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& CHANGE SIGN

The CHANGE SIGN key has already been introduced in Section 2. The
purpose of the key as described in that section was 10 enter negative numbers
and negative exponents. The CHANGE SIGN key also provides an unary-minus
function. Unary-minus permits the change of sign for calculated results.

The operation is referred 10 as unary because it requires only one operand. The
four basic arithmetic operations already discussed ( +, -, X, = ) are termed
binary functions because they require two operands. All operations available
on the CORVUS are either unary or binary.

Example: ﬁ(9A67 X (-1,45)> 7
342 X 1076

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Format Display DSP | 0.00 00 Set display for scientific

2 Data 9.67 9.67 notation.

3 PUSH 1.45 -1.45 Enter negative operand.

4 Multiply -1.40 01 Obtain 9.67 x {-1.45)

5 Data 3.42@ 6 3.42 06 Enter operand with negative
exponent.

6 Divide ] 441006  Obtain 2.67x(-145)

3.42x 10-6
7 Unary-Minus CHS 4,1006
7w

Constants are extremely useful in many calculation sequences. Appendix C
contains a number of frequently used constants.

Pi may very well be the most commonly used constant. For convenience, the
CORVUS supplies a Pl key for entering this constant. The value used is
3,14159265359. By depressing this value is pushed onto the
stack. The following simple example calculates the circumference of a circle to
iHustrate the use of the Pl key.

Example: Find the circumference of a circle of radius 3.5 feet. The formula
circumference = 2aris used,

STEP  FUNCTION KEYSTROKES  DISPLAY  COMMENTS

1 Data 2 2 Enter constant 2.
2 Pi @ 3.14 Enter constant 7
3 Multiply 6.28 Find 2n
4 Data 25 3.5 Enterr
5 Multiply 21.99 Obtain 2.
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8 METRIC=ENGLISH CONVERSIONS

The metric system of units is a concise and consistent way of expressing
amounts of length, volume, mass (weight), and temperature. The system
employed most often in the United States is called “"English™" although it is so
outmoded even the English no longer use it. The metric system, now in use
throughout most of the world, employs a system of basic units (e.g., liters is the
basic unit of volume) and a series of prefixes which represent powers of ten
(listed in Section 8.1.2). The United States is currently in the process of
switching to the metric system and for that reason, many measurements are
only given in one system or the other. Thus a simple method of conversion
between metric and English systems is required. The CORVUS 500 provides
this method. Length, volume, mass, and temperature conversions can be easily
accomplished with the calculator.

8.1 The Metric System

8.1.1 Basic Unils of the Metric System

in any system of measurement it is necessary to begin with some quantities
that are considered to be elemental, or basic. The choice of these particular
quantities is arbitrary.

The four elemental units of the metric system* which we are concerned with
are:

UNIT ABBREVIATION UNITS OF CONVERSION TO ENGLISH

Meter m length 1m = 39.37000787402 inches

Gram g mass 1g = .002204622622 pounds

Degree Centigrade °c temperature  temperature C= temperature
(F -32) x 5/9.

Liter 1Y volume 14=.264179449175 gallon

“Not to be confused with the SI system of units, which includes units for time,
amount of a substance, electrical current, and fuminence of light,
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8.2 Prefizes Utilized in the Melrle System

in the metric system, all measurements which need to be expressed in units
larger or smaller than the basic unit are expressed in a unit that is formed from
the basic unit. A prefix which represents a power of ien (positive or negative) is
affixed to the basic unit. (e.g., kilo represents 103; a kilogram is equivalent to
1000 grams). Through this method, any amount, no matter the size, can be
easily expressed. The same prefixes are used for all of the basic units.
Following is a list of the metric prefixes, and their corresponding value and
abbreviation.

FREFIX ABBREVIATION VALUE
tera- T 1012
giga- G 10°
mega- M 108
kilo- k 10°
hecto- h 102
deca- de 10!
deci- d 107!
centi- c 1072
milli- m 1072
micro- u 107
nano- n 107
pico- p 102

8.2 Conversions on the Caloulator

The CORVUS 500 can perform conversions of temperature, volume, length,
and weight between the English and metric systems. Specifically, the calcula-
tor is programmed for conversions between degrees Centigrade and degrees
Fahrenheit, between liters and gallons, between centimeters and inches and
between kilograms and pounds. Because of the simplicity of the metric system,
any metric unit can be easily converted to the units provided by the calculator
(e.g., convert milliliters 1o liters merely by multiplying by 109). Howsaver,
conversions between English units are more complicated, and a table of units
is required. A table of English equivalents can be found in Appendix C.

8.2.1 Mstric> English Conversions

The four metric»English conversion keys are located on the shift of the four
basic arithmetic function keys ( + + ). The keystroke sequence for

these conversions is -m This sequence converts the
value in the X-register and leaves the new value in the X-register with

a push pending.
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82,41 Metric—English Conversions of Temperature

The calculator automatically converts degrees Centigrade, or Celsius, to
degrees Fahrenheit. The values are computed utitizing the formula °F = (8/5
°C) + 32. The value to be converted is keyed into the X-register and followed
by the keystroke sequence - E It should be noted that a third scale
of temperature is often employed in the scientific world, the Kelvin, or absolute,
temperature scale. The conversion from degrees Kelvin 1o degrees Centigrade
is accomplished by subtracting 273.16.

Example; Convert 267.83 °K. to °F.
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 267.83 267.83 Enter data °K
2 Subtract  [ENT]273.16[=] 533 Obtain °C
3 Degree C to | psp [C—»F 22.41 Compute value °F
Degree F
8.2.1.2 WMetric-English Conversions of Volume

The calculator automatically converts liters to gallons using the constant 12 =
.264179449175 gallon. The constant utilized by any of the conversion
functions {excluding temperature, which uses a formula) can be found by
keying 1 and then the conversion function key sequence.

Another excellent feature of the metric system is that volume units are derived
from the length measurements. Using the formula which states that one cubic
centimeter (cm? or cc) is equal to one milliliter (mi), the dimensions of a
container can be easily converted to a volume unit.

The keystroke sequence for the conversion from liters to gallons is

[os7] [Crm-eac |

Example: Convert 8138.41 cm3 to gallons
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 8138.41 8138.41 Enter cm® (same as milliliters)
2 Multipty @ 3 8.14 Convert to liters
Lit—>Gal. 2.15 Compute value in gallons
8.2.1.3 Menic- Englishe Conversion of Length

The calculator automatically converts centimeters to inches using the constant
1 cm = .393700787402 inches. The keystroke sequence for conversions

from centimeters to inches is lDSP CM—*IN
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Example: How long is a 100 meter dash (in yards)?
STEP FUNCTION 'KEYSTROKES DISPLAY COMMENTS
] Data 100 100.00  Enter data in meters
2 Divide [Ee][cHs] 2 [=] 10000.00 Convert to cm.
3 CM=IN 3937.01 Obtain value in inches
4 Divide 36 E] 109.36  Compute value in yards

8.2.1.4 Metric—English Conversions of Mass

The calculator automatically converts kilograms to pounds using the constant 1
kg = 2.20462262185 Ib, The keystroke sequence for ¢onversion from
kilograms to pounds is [ke-Le].

Example: Upon leaving the United States for Europe, Ron weighed 160
pounds. When he weighed himself in Europe, he found that he weighed 78.30
kilograms. How much weight did Ron gain (in pounds)?

STEP FUNCTION KEYSTROKES DISPLAY  COMMENTS
1 Enter 160 160.00  Original weight in x and y
2 Elgg;anmdz 78.30@ 172.62  Weight in Europe
3 Exchange | Y®X 160.00  Weight in Europe is in Y-register
Original weight is in X-register
4 Subtract E 12.62 Compute Ron's weight gain

8.2.2 English-RMetric Conversions

The four English metric conversions on the calculator utilize the INVERSE key
and the conversion keys. The keystroke sequence for these conversions is
[ose | CEoneTion | OF COTvERSIoN] . This sequence converts
the value in the X-register and leaves the new value in the X-register with a
push pending.

8.2.2.1 English—Metric Conversion of Temperaturs

The caiculator automatically converts degrees Fahrenheit to degrees Centi-
grade utilizing the formula °C. = 5/9 (°F -32). The keystrokes used for this

conversion are . To convert degrees Centigrade to

degrees Kelvin add 273.16,

3 5
] i i " i ’ t d
;

Example: Sven is planning a trip to Los Angeles. He checks the L.A. Times and
finds that the temperature is running around 890 degrees. After a brief moment
of panic (80 degrees Centigrade is equivalent to 176° F.), Sven realizes that
the temperature is expressed in Fahrenheil. What is the temperature in
Centigrade?

STEP  FUNCTION KEYSTROKES  DISPLAY  COMMENTS
1 Data 80 80 Data °F
2 °F to °C 26.67 Compute value in °C
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8.2.2.2 English-Metric Conversions of Volume

The calculator automatically converts gallons to liters using the constant 1 gal.
= 3.78530579544 liters. The key sequence for conversion from liters to
gallons is [psp | [INV][LTR=GAL | . it should be remembered that 1 mi. =1 cm?.

Example: If a container has a 16.25 gallon capacity, what Is its volume (in
cm3)?
STEP FUNCTION KEYSTROKES DISPLAY  COMMENTS

1 Data 18.25 19.25 Volume in gallons

2 Gallons to DSP || INV || LTR=GAL | 72.87 Obtain volume in liters

‘ liters

3 Divide chs]3[=]  72867.14  Obtain volume incm?®

3.2.2.3 English—Metric Conversions of Length

The CORVUS 500 provides automatic conversions from inches to centimeters
using the constant 1 in. = 2.54 cm. The keystroke sequence utilized is
.

Example: 50 meter pools are normally used in competition. In an old sports
arena, a 50 yard pool is in use; what is the difference between the two pools
(in decimeters)?

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 50 50.00  Data in meters
2 Data 50 50.00 Data in yards
3 Multiply 36 1800.00  Convert to inches
4 Inches to cm [DSP ][ INV [[CM>IN] 4572.00  Convert to centimeters
5 Multiplty Eé_-] 2 45,72 Convert to meters
6 Subtract B 4,28 Difference in meters
7 Divide El 1 E 42.80  Difference in decimeters

8.2.2.4 Engiish- Metric Conversions of Mass

The conversion from pounds to kilograms is provided on the CORVUS 500.
This conversion utilizes the constant 1 Ib. = .45359237 kg. The keystroke
sequence for this conversion is | DSP| | INV | | KG=LB |,

Example: One store (A) advertises 5 pounds of rice for $2.19. Another store

(B) is selling the same type of rice at 2 kilograms for $1.69. Which store has
the better buy?
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STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 2.19 2.19  Store A data
2 Divide 5 E' 0.44  Store A price per pound
3 1.69 1.69 [ENT| 1.69  Store B data
4 Data 2 2.00 Store B data ’
5 Kifograms @ 4,41 Number of pounds of rice
to Pounds
6 Divide [_T_] 0.38  Obtain Store B price per pound
7 Subtract [—_-:I 0.05 Compute difference between

Store A and Store B

Conclusion: Store B sells rice for 5¢ per pound less than Store A. Therefore,
Store B has the better buy.

8.3 A Multi-Step Conversion

Example: An aquarium measures 72 inches in length, is 24 inches wide and
is 20 inches high. Assuming that the aquarium is built of materials with density
equal to water, what is the capacity (in gallons) and weight (in pounds) of the
filled aquarium?

Approach: This problem can be solved by determining the volume of the
aquarium and expressing the volume in cubic centimeters. The volume can
then be translated to liters and then to gallons. The volume can also be
translated to kilograms (recall that 1 cc (or mi} of water weighs 1 gram) and
then to pounds.

STEP  FUNCTION KEYSTROKES DISPLAY  COMMENTS

1 Data 72 72 Length in inches

2 Data 24 24 Width in inches

3 Data 20 20 Height in inches

4 Muttiply E3ES 34560.00  Volume in cubic inches
5 Data 1 1

6 in>Cm @Uﬂ"_} CM->IN I 2.54  Conversion factor cm/in
7 Multiply [x](X] 1639  Obtain co/in®

8 Multiply (z] 566336.93  Obtain volume in cc

9 Divide [eg] 3 B 566.34  Obtain volume in liters

10 Store 1 566.34  Store a copy for Step 12

11 Lit>Gal 149.61  Obtain aquarium capacity in gals.

12 Recall RrRecL| 1 566.34  Recall volume in liters = weight
in kilograms.

13 KG~LB 1248.56  Obtain weight in potnds

Aquarium weighs 1248.56 pounds when filled with water and holds 149.61
gallons.
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9 RECIPROCALS

The RECIPROCAL key is used to calculate the reciprocal of any value in the X
register. A reciprocal, of multiplicative inverse, is the value which is found when
one is divided by a particular number, hence the symbal 1/X. The RECIPRO-
CAL key is located on the shift of .

The reciprocal of any value in the X register can be found by keying the

sequence . However, the sequence will cause the
display to flash, indicating an error, if the value in the X register is 0. This
operation {1/0) results in the display flashing the maximum value (i.e., 10.00
99 with round-off and 9,989999899 99 without round-off).
Example:

1 2
+

1L
3 -8

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

Reciprocal 3 0.33 Obtain 1/3

1

2 Reciprocal ~ & 0.13 Obtain 1/-8

3 Add 0.21 Obtain 1/3+1/-8

4 Reciprocal 4.80 Compute _1_/%_/__;_
1 -

10 FACTORIALS

Factorials are used in a variety of application areas. In Part Il of this book, for
example, factorials appear in the probability section. The factorial ot X {written
X)) is defined as the product of the integers from 110 X (i.e., 1x2% . . . xXX).
Thus 4! equals 1 X 2 X 3 X 4 = 24. In addition, 0! is defined as equal to 1.
Factorials are only defined for non-negative integers.

The factorial of X is obtained on the CORVUS with the keystroke sequence
. 89 is the largest integer whose factorial lies within the normal
range of the CORVUS. 120! is within the extended range.

Example: 10! 2

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Doata 10

10
2 Factorial 3628800.00 101 is displayed
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11 PERCENTAGE CALCULATIONS
Three percentage calculations are available on the CORVUS,

PR
[N P

The percentage of a fixed amount can be obtained with the keystroke
sequence [Dsp] . The amount is placed in the Y register and the
percentage desired is placed in the X register. The keystrokes @
leave the Y register unaffected and replace the original value in the X register
(call it x,%) with x,% of the value in the Y register.

Example: The price per pound of rice was 40¢ but has since been increased
by 12.5% What is the new price per pound of rice?

STEP FUNCTION KEYSTROKES DISPLAY  COMMENTS
1 Data .40 0.40 Originat price per pound
2 Data 125 125 Enter %
3 Percent [Dse | 0.05 Find 12.5% of .40
4 Add [+] 0.45 New price is displayed

11.2 Percentage Difference

The percentage difference between two amounts can be obtained with the
keystroke sequence [:@ . The amount in the Y register is used as a
base. The percentage difference between the amount in the Y register and the
amount in the X register is calculated by depressing . The inverse
button ([1NV]) is ignored if pressed. The calculated value (2 100) replaces
the old value in the X register. Y

Example: A runner accustomed to competing in the mile, must now compete
in 1500 meter races. What is the percentage difference between the two

distances?

STEP FUNCTION KEYSTROKES  DISPLAY ~ COMMENTS
1 Data 5280 5280 Enter mile in feet
2 Data 1500 1500 Enter 1500 meters
3 Multiply [ent][ee]2 150000.00  Convert 1600 meters to
centimeters
CM~IN 59055.12 Convert to inches
5 Divide 12 [+] 4921.26 1500 meters in feet
6 % difference 6.79 1500 meters is 6.79% sharter

than mile
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11.3 Gross Profit Margin

The CORVUS provides a direct means for computing gross profit margin.
Gross profit margin is given by:

Let C = cost
P = Gross profit margin (amount) p = *@%C__R-
R = Gross profit percentage or markup % based on selling price

Selling price is equal to C + P.

Gross profit margin is obtained with the keystroke sequence
or with . The value in the Y register is assumed to be cost,

C, and is unchanged by the gross profit margin operation. The value in the X
register is interpreted as the markup percentage based on selling price, R, and
is replaced by the gross profit amount R. The selling price C + P can be
obtained by pressing after the gross profit margin operation is complete.

Example: A coffee merchant receives notice that the wholesale price of Java
beans is being increased to $2.10 per pound. If the merchant sells coffee at
only a 25% markup based on selling price, what will be the new selling price
of the Java?

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 2.10 2.10 Enter price per |b. of coffee
2  Deta 25 25 Enter % markup
3  GPM @ 0.70 Obtain gross profit margin
4 Add 2.80 Obtain new selling price
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12 SQUARE AND SQUARE ROOT

The SQUARE ROOT key can be used 1o calculate either the square or square
root of the value in the X register. The calculator can only find the square root
of positive numbers. The SQUARE ROCT key is located on the shift of [¥3].

Both of the operations performed by the SQUARE ROOT key, square and
square root, can also be performed by the POWER key, whose functions are
described in the following section. The square of a number can also be found
by keying the number and then . These alternate operations require
2 stack levels. The square root of any positive value in the X register can be
found by keying the sequence ES—P_—] . The sequence to find the square
of any value in the X register is [Vx]. It is advantageous to
follow those sequences, not only because it requires fewer keystrokes than are
necessary with the POWER button, but also because only the X register is
required,

- ?
J17.22-217.23 =

Example:

STEP FUNCTION  KEYSTROKES  DISPLAY COMMENTS

1 Square 17.2[psP[INV][VX] 295.84 Obtain 17.22

2 Subtract 21723 [-] 78.61 Obtain 17.2% - 217.23

3 Square Root [DSP[VX | 8.87 Compute /17,27 - 217.23

The area of a circle is computed with the formula: 2
Example: | the radius of a circle is 4.925 inches, what is the the area of the

circle? (in square inches)

STEP FUNCTION KEYSTROKES  DISPLAY  COMMENTS
1 Format 3 0.000 Set 3 decimal places display.
Display
2 P 3.142 Constant Pi
3 Square 4.925[Dse |[INV [[V/X | 24.256 Obtain ?
4 Multiply 76.201 Compute 7 r?
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13 POWERS AND ROOQTS

The POWER key can be used to raise a positive number to any finite power or
to find any root of a positive number, The catculator cannot find powers or
roots of negative numbers or zero and the display will flash zero when
calculations are attempted with such values.

To find the power of a number, the number should be pushed into the Y
register and the power should be keyed into the X register. The POWER key
( E] ) is then depressed to complete the operation. The keystrokes for roots
are similar. The number is keyed and pushed into the Y register. The root to be
taken is then keyed into the X register. The root operation is concluded with

the sequence .

Example: (8334 /7381
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 8.3 8.3

2  Push 3.4 3.4 Y and X values in place,

3 Power 1333.11 (8.3)%* ¢ obtained.

4 Data 243.61 243.61 Number whose root is to

be taken.
5 Push 2.7 2.7 Y and X values in place.
Root v ] 7.66 Obtain *\/243.61
7 Subtract 1325.45 Compute (8.3)°% — >"/243.61




Antilogarithm operations are defined for positive and negative values. However,
these operations can easily result in out of range values. For example, the
common antifog of 201 is equal to 102! which is outside the calculator’'s
range.

The following example illustrates the use of logarithms to perform multiplication
and division, and to find powers and roots.

14, LOGARITHMIC FUNCTIONS

The CORVUS offers four basic logarithmic functions., These functions are
common logarithm, natural logarithm (or L.on), powers of ten (10%), and powers
of e (e¥). The following brief review of iogarithms shouid heip to ciarify the
relationship of these four functions.

. 693X 549"
14.1 Logarithms Example: 3.4/g1% 100 =
The logarithm to the base b of a number x is given by: STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
fflogyx =y then b7 = x. Format  Tose][sct | [psP]9  0.000000000 00
Where y is the logarithm, to the base b, of x and x is the antilogarithm of v, Datg Y 6.93 6.93
Logarithms are useful for muttiplication and division and for finding powers and -

3 | m m 8.407332346-01 | 6.93
roots. Recall that bx x by = by, 2o = %Y (bx)y = bw, and J&% = b*/¥ iy (oo ] °9 16:93)
bY 4 Data 5 5

Logarithms provide a means 0 express problems in these expotential forms. 5 log . ‘-—-—-IDSPI @ 6.989700043-01  log 5 4.01
For example, if a = log, ¢ (i.e,, ¢ = b%) and d = log, f (i.e., f = bd) then cf 6  Multiply 4.01[x] 2.80286971700  log {57 ") vor
= b x b® = patd and the antilogarithm to the base b of a+d equals cf. 7 Add hd 364360295200 log (6.83x 577"
Simitarly, c/f £ antilog, (a - d), o = antilog, (fa) and ¥ = antilog, ®. 8 Data 9.1 EE 30 9.1 30
Subsection 14.2 will illustrate these apptications of the logarithmic functions. 9 log 3.095904133 01 log (9.1 x 10°°)

Thus with the aid of a table of logarithms, problems involving multiplications ;

and divisions are reduced to additions and subtractions. Problems requiring “ 10 Divide 34 [+] 9.105600410 00 log (3‘\4/9.1 X 103°>
calculation of powers and roots are simplified to multiplications and divisions. S

Naturally, the CORVUS makes the multiplication, division, power and root
operations extremely easy. However, due to their special properties, logarithms
are frequently encountered in a variety of applications.

11 Subtract =] -5.461997458 00  |og (@23_2&5_“_1‘_)

/01X 1030

12 Antilog 3.451457599-06  6.93 X §°-0!
PYBIX10°°

14.2 Loegarithmic Functions on the Corvus

The CORVUS provides a means for direct calculation of logarithms to the two
most commonly used bases. Common logarithms (or logarithms to the base
10) are obtained with the keystrokes . Natural logarithms (or
logarithms to the base e) are obtained with the keystroke Elﬂ In both cases
the value in the X register is replaced with its logarithm. These operations are
only valid for positive vaiues. Either a zero or a negative value in the X register
when a logarithm operation is performed will cause the display to flash zeroes.

The antilogarithm of the value in the X register can also be obtained. The
keystroke sequence [DSP] [INV | | log | or the sequence
will cause the value in the X register to be replaced by its common antiloga-
rithm. The common antilogarithm of a value a is equal to 102 The keystrokes
[in] will calculate the natural antilogarithm of the value in the X register.
The natural antilogarithm of a value is equal to e®.

The samé result (to the 10 digits displayed) is obtained when the calculation is
performed without logarithmic functions.
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Logarithms are useful in a variéty of calculations. One of these is radioactive
decay. The following example calculates the half-life of radium. The half-life of
a radioactive substance is defined as the time it takes for 50% of the
substance to disappear.
Example: {f 1% of a quantity of radium disappears in 24 years, then what is
the half-lifs of radium?
The amount present at any time is given by:

nLn (-—A--)
t=_ Ag ' wheret = time elapsed
Ln{1-r) n = units of time

Ag = initial amount of substance
A = amount at time t
r = percent loss
Ln of course is natural logarithm
For half-life, A = 1/2 Ag and in this case r =.01. The result will be displayed in
scientific notation with 4 digits.

STEP FUNCTION KEYSTROKES DISPLAY  COMMENTS
1  Format

DSP|3  0.000 00
Display

2 Data 24 24 Enter n,

3 In [ent] .5 [In]

-6.931-01  Enter m(—ﬁ;) = In(5)

4 Multiply -1.66401 Obtainn ln(-AA:)
5 Data 1 1 Enter constant 1
6 Data [EnT] 1 2 1.-02 Enter r

7 Subtract [-] 9.800-01 Obtain 1-r

8 In [in] -1.005-02 Qbtain In {I-r)

9  Divide =] 1.655 03  Obtain t

It should also be noted that the keystroke segquence 1
[in ] will leave the value e in the X register. The number e s, of course,
one of the most important and useful mathematical constants. e is given by the
formula & = lim (1 +2)*%
Z~+Q
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14.3 Logarithms to any Base

Logarithms to any base can be obtained on the CORVUS using either the

natural or the common logarithm functions, The simple derivation of a formula
ogarithm to any base and antilogarithm to any base Is shown below,

tn.—]
TOT fUYQDILn i iy »aoss Qi

PLring

=T 1o

LetLog, X = Y ThenbY = X by definition.
We take the common logarithm of both sides of bY = X and obtain Y logeb =

togjpX. Thus Y = log, X =

From Y loggb = log,gX we obtain X = antilog;, (Y logsb)

Iong
Iogmb

The same derivation applies to the natural logarithm function.

Thus log, X

- (og1 X
Iogmb

In X
Inb

antilog, Y = antilogy, (Y log)gb) = antiIn (Y Inb)

To illustrate the use of logarithms to any base, the following example is
presented. Ten digits accuracy can be obtained.

Example:  Using logarithms to base 6, find 3¢

STEP FUNCTION

Format
In
Store

in
Multiply
Recall
Divide
Recall
Multiply

© 0~ OO W N -

—_
o

antiln

KEYSTROKES

9
)

sTO |1

3iin
+[X

RCL {1

288

0

oo
(2]
-
-

g [
=]

DISPLAY

0.000000000 00
1.791759469 00
1.791759469 00
1.098612289 00
4.394449155 00
1.791759469 00
2.452588771 00
1.791759469 00
4.394449155 00

8.100000000 01

COMMENTS

Find In6
Store for future use
Find In 3
Obtain [n (3%}
Recaver In 6
Obtain logs 3*
Recover In 6
Obtain In g

(logs 3%)
Obtain 3%
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15, ANGULAR UNITS

The CORVUS provides two distinct systems for expressing the measure of an
angle — degrees and radians. We are all familiar with degrees as a unit of
angle. Each degree represents si of the total angie about a point. Radians are
also frequently encountered as a unit of angle. Each radian represents the
angle subtended by an arc equal to the radius (see figure below)

Circle with radius r

. 3
6 = 1 radian = % degrees

27 radians = 360°

15.1 Angle Modes

The CORVUS operates in two angular unit modes. When the calculator is first
switched on, it is in degree mode. In degree mode all functions with angular
measure inputs will interpret those inputs as degrees. All angular measure
outputs are given in degrees. The calculator can also be put into radian mode
in which all angular measure inputs and outpuis are in radians.

The RADIAN key () is utilized fo switch between degree mode and
radian mode. The caiculator can be placed in radian mode with the keystroke
sequence [DSP] . The calcutator will return to degree mode with either
losp] Ninv] [Rabp] or [inv|[psr] . The angle mode is indicated by a
small dot in the lower right hand corner of the display. When the calculator is in
radian mode, the small dot is present. In degree mode, no dot appears.

15.2 Degrees=Racians

The CORVUS provides functions to convert between radians and degrees. The
TO-RADIAN key ( —>RAD] ) is utilized to perform these conversions. The
keystroke sequence [ Dsp will interpret the value in the X register as
a degree measure and convert it to radians. A radian value is converted with

either [psp|{mv] [>RAD] of .
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The following simple example illustrates conversion between degrees and
radians.

Example: 2w radians 2 {in degrees)
S0 degrees 2 {in radians)
STEP FUNCTION KEYSTROKES DISPLAY COMMENT
1 Data 2 2
3 Multiply X 6.28 Obtain 2n
4 -+Degrees @ 360.00 Obtain degree value
5 Clear 0.00
6 Data 80 0
7 —>Radians @ 1.57 Obtain radian value—
should be n/2
8 P 3.14
9 Divide (<] 0.50 yes, it was 71/2
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16  POLAR~RECTANGULAR COORDINATE CONVERSIONS

Polar coordinates provide a more natural means for specifying points in a
plane than the more familiar “x,y" or rectangular coordinate system. Thus
polar coordinates are frequently a more useful way of describing points in a
plane. The CORVUS offers operations to convert between polar and rectangu-
lar coordinates in two dimensions.

16.1 Polar Coordinate Basics

Given a point described by the rectangular coordinates (x,y), we can specify
the same point by the polar coordinates (r,8). The value r is the distance of the
point from the origin (i.e., r = vx? +y? ), 8 is the angle between the x axis
and the segment connecting (x.y) with the origin (i.e., 8 = tan-'¥) as in figure

16-1 below.
P-aa
A
={-r,6 -180")

N (6-180°) X
N = (~r,8 -180° —360n°)
s = (r,0 -360n°}

R
{x,y)={r0)

= {r,0 + 360"}

= {-r,0 + 180°)

= {-r, 8 + 180° + 360n°}

~

Figure 16-1

6.2 Conversion Operations

The CORVUS will convert from rectangular to polar coordinates with the
keystroke sequence . The y coordinate is in the Y register and
the x coordinate is in the X register before the conversion. After the conversion,
r is in the X register and 6 is in the Y register. 6 is expressed in either degrees
or radians as defined by the calculator mode. The value of 8 falls between 0°
and 180° (0 and « radians) for positive y values and between 0° and -180° (0
and -w radians) for negative y values. This operation will not accept x= 0,
y = 0. Furthermore, some conversions may cause out of range results.

The CORVUS will convert from pofar to rectangular coordinates with the
keystroke sequence |psp | [INv] [»poL] or with the seqguence
[inv] . The r value is assumed to be in the X register and & in
the Y register. After the conversion operation, the x coordinate is in the X
register and the y coordinate is in the Y register. This operation is defined "for
all values for r and 9, but as 8 becomes large the accuracy of the operatnqn
gradually decreases. Even at 100,000 revolutions (i.e., 3.6 x 107 degrees), 8IX
digits accuracy is maintained.
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Example: To illustrate the use of polar - rectangular conversions, the point (5,
29°) is converted to rectangular coordinates and then back to polar coordi-
nates. We will round the calculations to 9 places.

F o e

STEP FUNCTION KEYSTROKES DISPLAY CONMMENTS
1 ggrrTat [osp][sci | pse] 9 0.000000000 00.
isplay

2 Data 29 29, 29° = §

3 Data LLENT]5 5, =y

4 -Rectangular | PSP|INV][-POL] 4373098536 00 Display x coordinate

5  Radians [psp ](RAD] 4,373098536 00. We will convert back to
Polar in radian mode

6 -Polar 5000000000 00. Same r

7  Exchange 5.061454831-01. 0 in radians

8 -Degrees 2,900000000 01. 8 in degrees—same &

[osp J[mv][>Ran]

16.3 Rectengular<Zpherical Conversions

The CORVUS can make use of its rectangular=polar conversion capability, to

convert between rectangular coordinates in three dimensions (x,y,z) and

spherical coordinates (r,8,¢). Figure 16-2 below iliustrates spherical coordi-

nates. Ay {r,0,0)
v P

Figure 16 - 2

r.o,)
To convert from rectangular to spherical coordinates, the polar coordinates for
the projection of the point into the x-y plane are determined (i.e., (X,¥)-(re,8)).
The angle is ¢ coordinate in spherical coordinates. The polar coordinates for
the point (ry,z) will be equivalent to (r,8) for the desired point (x,y,z).

Example: Given the point (5, 12, 25) find its spherical coordinates.
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 12 12 Enter v coordinate
2  Data 5 5 Enter x coordinate
3  —Polar ‘ ~POL 13.00 (x,y)=>{ryp)
4 Data 25 25 Enter z coordinate
5  Exchange 13.00
6 ~Polar 28.18 r is displayed {r, z) = (r, 0}
7  Roll 62.53 {r,8,4) on stack
8 Roll 67.38 Display ¢
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17 TRIGONOMETRIC FUNCTIONS

Trigonometric functions are useful in describing the periodic nature of various
phenomena such as pendulums and waves, Trigonometric functions are
therefare encountered in many areas of scientific and engineering endeavour,
The CORVUS provides operations for calculating the trig functions.

17.1 Trigonometric Function Basics

The trig functions can be defined in terms of the ratio of the sides of a right

triangle:
c¥a? +b?
sine @ (written sin ) = a/c
Q, cosine 6 {written cos ) = b/c
tangent @ (written tan§) = a/b
cosecant 0 {written csc8) = 1/sinf =c/a
TR
secant § {writtensec )= 1/cos§ = c¢/b
cotangent § {written cotf} = 1/tan=b/a
Figure 17

[»]
9 (6

B

inverse trig functions are simitarly defined:

g

sin-1a/c=46 csc-1¢c/a=4
cos-1b/c=0 sec-1c/b=4
tan-1a/b=46 cot-1b/a=4

These definitions are only adequate for 0° = 6 < 90° Naturally the trig
functions are defined for angles greater than 90° and less than 0° These
definitions are obtained by considering a point (x,y) with polar coordinates
(r,6) with r = 0. The triangle is formed by the segments connecting (x,y), (x,0)
ana (0,0}. Thus a becomes y, b becomes x, c becomes L and 6 becomes the
coordinate 8. The following table summarizes the trig function values by

quadrant in the%—y plane.

T pAvA
0°~90° 90°-+180° 180°>270° 270°~360°
sin 0 sin 8 sin (180° —0) —sin {6—180%) | ~sin (360°—4)
01 1—0 0->—1 —-1-0
cos 0 cos 8 —cos {180°—6) | —cos {8—180°) | cos { 260°—8)
1~0 01 ~-i—0 01
tan 8 tan 8 —tan (180°~0) | tan (§—180°) | —tan (360°-0)
Droc —oo—>() o0 —oco->(}
csc 8 csc B csc (180°—0) | —csc {8-180%) | —csc (360°—6)
oo—>1 1300 —oo3—1 - =0
sec 0 sec 0 sec (180°—0) sec (0—180°) sec (360°—0)
100 —oo-3>—1 —1—>—0a o>
cot d cot 0 cot (180°—8) cot (8-180°) [ cot (360°~8)
] 0> —o0 o> Q—>—o0
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" STEP FUNCTION KEYSTROKES DISPLAY

17.2 Trigonometric Functions on the CORVUS

The CORVUS provides direct calculation of sin x, cos x, and tan x where the
angle x may be expressed in degrees or radians. These functions are obtained

3|
! ILC‘:“SJ s

register is interpreted as an angle and is replaced by sin x, cos x, or tan x as is
appropriate. The angular mode determines whether the angle is interpreted as
degrees or radians. The values csc x, sec x, and cot x can be obtained by

following [SIN], ,or respectively by )

If the angle entered has a tangent of:«= (e.g., tan 90° and tan 270°, the
tangent operation will cause the display to flash +10.00 99 when the display is
rounded and 8.999999999 99 when the display is not rounded. Otherwise all
operand values are acceptable for all three operations. Accuracy does
gradually degrade with the size of the angle. Even at 100,000 revolutions (e.g.,
3.60 x 107degrees), however, 6 digit accuracy is still maintained.

Example: Verify that the fundamental trig identity sin2x + cos? = 1 holds
for 29°. For this problem, ten digit accuracy is desired,

asi o . .
with the keystrckes | St and {Tan] respectively, The value in the X

COMMENTS
1 Format  [pse|[scr][DsP]9 0.000000000 00
Display
2 Data 29 28 Enter angle
3 Push 2.900000000 01  Copy angle into Y register
for convenience
4 Sin [sin] 4.848096202 ~01 Obtain sin {29°)

Obtain sin? {29%)
Recover angle; put sin?

2.350403679 —01
2.900000000 01

5 X2 psp Linv ][V |

6  Exchange YeX

(29°) in Y register

7 Cos 8.746197071-01 Obtaincos (29°)
8 X2 [osP][nv][vx | 7-649596321-01 Obtain cos® (29°)
Add ] 1.000000000 00 Obtain cos® (29°) +

sin? (29°)
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417.3 Inverse Trigonometric Functions on the CORVUS

The CORVUS provides for direct calculation of sin-!x, cos-!x and tanx. These
functions are obtained by depressing the INVERSE key (] IN

[wrrrenl [p=re e [oan: ammmtiials ln dhans Amarad ) fOHOWGd by
|SIN) , {€O8} , O ‘ TAN| respectively. In these operations, the content of the
X register is replaced by an angle expressed in the units dictated by the
angular mode. The values csolx, secix and cot*x can be obtained by pressing
and then finding sin'x, cos-1x or tan-!x, as appropriate.

Sin x and cos x always fall in the range -1 to + 1. Thus sinx and cos-Ix are
undefined if x>1 or x<-1. If the value in the X register is not in the range -1 to

+ 1, the keystroke sequence SIN| or will cause the

calculator to flash zeroes.

Example: Given a right triangle with legs of length 5 and 13 find the size of
ihe WO acute angLES in radians, {8 digits accuracy desired)

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Format [psp](sci][psp] 7 00000000 00
Display
2 Radians 0.0000000 00. We want angles in
radians
3 Data 5 5 . Length of side a
4 Data |ENT |73 13 . Length of side b
5 Divide + 3.8461638 -01.  Obtain a/b=tan §
6 Push ENT 3.8461538 -01. Copya/b
7 Tan 'x NV [ TA 3.6717383 -01.  Qbtain d
8 Exchange Y+X 3.8461538 -01.  Regitaina/h = cotd
9 Reciprocal DSP i 1/x 2.6000000 00- Obtain b/a=tan @
-1 1 -w
10 Tan "% INV |{TA 12036225 00. Obtamg
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16 HYPERBOLIC POLAR<RECTANGULAR COORDINATE CONVERSIONS

The hyperbolic polar coordinate system is a means for describing a point in
terms of its position on a rectangular hypertiola about the origin. The figure
below depicts a point in polar hyperbolic coordinates.

SHUVY

(x,y) in rectangular system

xz_yz =2

{r,8) in hyperbolic polar system

@ is expressed in hyperbolic radians

Figure 18

note: rectangular hyperbola is given by x2 - y2 = rt
.. hyperbolic polar coordinates can only be applied to (x,y) with Ixi > lyl

in hyperbolic polar coordinates:

x>0,y>0%r>0,0<0
x>0,y<0%r>0,0>0
x<0,y>0%57<0,0<0
x<0,y<0sr<0,6>0

The CORVUS provides a direct means for converting from rectangular to
hyperbolic polar coordinates. Simply press either or

followed by . The content of the X register is inter-

preted as the x coordinate and the content of the Y register is interpreted as
the y coordinate, After the conversion is complete r is in the X register and 8 is
in the Y register. Unfortunately, the CORVUS will always return a positive value
for r. Therefore the sign, which is the same as the sign of the x coordinate must
be remembered.

The CORVUS also provides a direct means to convert from hyperpolic polar to
rectangular coordinates. The keystroke sequence requires pressing

(osp] , and in any order followed by . The translation

described above is reversed. This operation will, as appropriate, convert to
(x,y) in all four quadrants. The relationship Ix) > ly! is maintained. The example
in section 19 will tllustrate these conversions.
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19 HYPERBOLIC FUNCTIONS

Hyperbolic functions are encountered in a variety of application areas includ-
ing physics and electrical engineering. The hyperbolic functions represeni

o . )
refations between the coordinates of a point on 2 rectangular hyperbo

x2-y?=1r2). The hyperbolic functions are given by:

3] - “u
hyperbolic sine of u = sinhuy =L = E.~¢ L
r u +2 - esch u
hyperbolic cosine ofu = coshy =_* = &+ _ 1
r w2 - sech u
hyperbolic tangentof u= tanh u = V.= fu—l—*e_;; = 1
X e’ e coth u

The u in the formula above is equivalent to @ in the hyperbolic polar coordinate
system. @ is therefore said to be expressed in hyperbolic radians (§ = tanh'lv).

The hyperbolic functions sinh x, cosh x and tanhx can be directly obtained on
the CORVUS by pressing [Hve] followed by either [sn], [cos] , or
respectively. The value in the X register is replaced by the appropriate
hyperbolic function. If the value in the X register is of largemagnitude the sinh x
and coshx operations will resuit in the display flashing +5 and 109 indicating
an out-of-range resuit. Tanhx will be 1 for any targe positive x and 1 for any
large negative X. The other hyperbolic functions can be obtained with the
RECIPROCAL key and the appropriate hyperboiic function.

The inverse hyperbolic functions sinh-lx, coshlx, and tanhx can also be
directly calculated on the CORVUS, The inverse hyperbolic functions are

obtained by pressing either or followed by either
(5] . [cos] or [ran]

Tanh-!x is not defined for x=1 or x<-1 and the display will flash zeroes for such
operands. The inverse hyperbolic functions replace the content of the X
register with the appropriate value for 6.

Example: Given a point with x,y coordinates (4,3), find the hyperbolic polar
coordinates of the point, sinh @ and cosh-1 X . '

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data ol 3.00 i
2 Data 4 4.00 x cordinate
3 —Hyp. 2.6 r coordinate
Pol.
4 Data 4 4 Reenter x coordinate
Exchange [:l 1.51 Obtain x/r
and divide - L CN——
Cosh !x Hve[cos] o0.07 Obtain 0
7 Subtract Ej 0.00 @ from coordinate

conversion is the same
hopefully nota -
surprise.
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STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS

8 Recall LASTX | .97 Recover §

9 Sinho [Hve][sN] 113 Display sinh 0

B YaY Y]

20 SUMMATION, MEAN, AND STANDARD DEVIATICH

The CORVUS provides a set of statistical operations which are invaluable in
calculation programs for many application areas. The operations provided are
the sum of entries, sum of the squares of entries and number of entries, as well
as the arithmetic rﬁean and the standard deviation of data entered. |n addition
the sum of entries in two dimensions is mechanized.

20.1 Entering Data for Statistical Operations

Whenever the SUMMATION key ) is pressed, a series of calculations
and store operations are initiated. These operations correspond to the entering
of statistical data,

Pressing causes the value in memory 7 to be incremented by 1.
Memory 7 therefore contains the data entries in the current sequence.

Pressing also causes memory 8 to be increased by the square of the
value in the X register and causes memory 9 to be increased by the value in
the X register. Memory 8 therefore contains the sum of the squares of the X
data entries and memory 9 contains the sum of the X data entries.

Additionally, the sum of the values in the Y register is maintained. Each time
is pressed a special memory is incremented by the value in the Y
register. This special memary is called the Xy memory. It can only be
accessed by the keystroke sequence [RcL] as will be described in
subsections 20.2 and 20.3. Naturally, the Xy memory can be ignored if not
needed.

The CORVUS also provides a means for correcting data entries. The keystroke
sequence causes memory 7 to be decremented by 1, memory 8
to be decreased by the square of the value in the X register, memory 9 to be
decreased by the value in the X register and the 3y memory to be decreased
by the value in the Y register.

It is important to note that neither nor has any effect upon
the stack. Unlike other functions, no push is left pending. Most significantly, the
X and Y values remain unchanged. This "‘residue’ is a particularly convenient
feature since two dimensional calculation sequences frequently require the X
and Y values for further computation {e.g., this feature greatly simplifies
calculation of Zxy).
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20.2 Memory Manipulations and Restrictions

The summation operation utilizes memories 7, 8, and 9 (in addition to the 3y
memory) as accumulating memories for its various calculations. Since these

memories are treated as anmnmnla'h\ln it is egsential that fha\l he handled

carefully so as not to destroy their valldaty. The CORVUS does a part of this job
automatically. The first time is pressed after the calculator is switched
on and after the keystroke sequence [cLR] , the summation memories
are cleared. The clearing occurs only when the summation key is actually
punched. With the singular exclusion of [Cr] any function may be
keyed in without interrupting the accumulation of the summation memocries.
Thus, even if the summation memories are “'stored over”, when the summation
sequence is continued, the memories will continue to accumulate despite their
invalid contents.

20.3 Statistical Operations

20.3.1 Recall Summation

The keystroke sequence [RcL| causes the stack to be pushed twice.
The value stored in memory 8 is placed in the X register and the value stored
in the Ty memory is placed in the Y register. Thus, after a series of data
entries, [5+] puts Zy inthe Y register and 2x in the X register.

20.3.2 HMean and Standard Deviation

The keystroke sequence causes the stack to be pushed twice.
The arithmetic mean of the X data entries is placed in the X register and the
standard deviation of the X data entries is placed in the Y register. To be more

correct, the value placed in the X register is equal to _value in memory 9
value in memory 7

Tx
This value should be —= arithmetic mean. If both memory 7 and memory 9
are “tampered with"’ the display will flash zeroes.

The standard deviation on the CORVUS uses n-1 weighting and thus is given
by ‘! Yx2 ng?. Obviously this value can be obtamed via calculations with

n-1
memories 7, 8 and 9.
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Example: Given the set of points {(10,3), (5, 4), (6,8),
(9,7)) find Ty, 3x, X, and the standard deviation of x. Additionally,find the

1

variance of x using n weighting without using the mean and standard deviation

function. Variance with n weighting:Zx% nx2 Assume the calculator was just
switched on. n
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

Data 3 3 Enter x;

Data ENT| 10 10 Enter v,

Summations 10.00

Repeat steps 1,2 and 3 for all data.
Note that the display column for 1,2 and 3 is valid

only for the first point.

Recall RCL 30.00 Display Ix

Pop 22.00 Display _zy

Mean and S.D. - - 7.50 Display X

Pop - D 2.38 Display Standard
Deviation

Recall 8 242.00 Recall Tx?

Recall 7 4.00 Recall n

Divide B 60.50 X% /n

Recall [rcL] 9 30.00 Recall x

x? [osp][inv][¥X| 900.00 (2x)?

Recall 7 4.00 Recall n

x2 DsP [ Inv 16.00 n?

Divide E} 56.25 (Zx)? /n?=%2

Subtract E 4.25 Variance
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PART Hi: APPLICATION PROBLERMS

21 USING PART Il

The purpose of,the second part of this book is to help extrapolate your basic
knowledge of your calculator's operation into a variety of application areas.
Each problem is accompanied by a description of the solution approach. The
comments are geared toward that description. Thus the motivation for each
step in the solution programs should be apparent.

The sections of Part il are almost completely independent. 1t is not necessary
ta slowly work through each section in order. Particular areas of interest can be
selected or this entire part of the book can simply be used as a reference — a
source of solutions and solution programs to problems as they are encoun-
tered. An index into Part |l by subject is incorporated into the index at the back
of the book. The auxiliary formulas and constants in Appendix C should
complement the solution program set for use as a reference.

As in Part |, each solution program is laid out in tabular form with step-by-step
comments. The format for the problems is virtually identical to Part I. Variable
data items are in italics in the programs of Part Il. Furthermore the program
steps frequently consist of multiple operations. The basic step-by-step solution
format is still maintained though.
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22 FINANGCIAL APPLICATIONS
Simple interest
The basic formula for compound interest is:
FV = PV{i+ni) Where FV= Future Value
PV = Present Value

n= number of periods

i = interest per period
What will be the value (FV) of $1200 (PV) invested at 5% (i=.05) simple
interest for 6 years?

Stack depth used = 4

STEP FUNCT!ON KEYSTROKES  DISPLAY  COMMENTS
1 Data 1200 1200.00 Enter PV

2 Data 1 ENT 6.00 Enter constant
3 Data 6 10.00 Enter n

4 Multiply .05 0.30 Obtain ni

5 Add 1.30 (1+ni)

6 Multiply 1560.00 Fv

How much must be invested (PV) at 6% (i-.06) simple interest to result in
$2500(FV) after 10 years (n)?

Stack depth used = 4

STEP FUNCTION KEYSTROKES  DISPLAY  COMMENTS

1 Data 2500 [ENT] 250000  Enter FV

2 Data 1 ENT 1.00 Enter constant

3 Data 10 10.00 Enter n

4 Mulitply 06 [X] 0.60 Obtain ni

5 Add 1.60 (1+ni)

6 Divide E’ 1562.50 PV (amount invested )
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Compound Interest
The basic formula for compound interest is:
FV=PV(1 +i)» using the same notation as above.
What will be the value of $750 placed in a 5.25% compounded guarterly
savings account for 1% years? Note that although the interest has finer
resolution, leaving the display mode at 2 decimal places does not reduce the
accuracy. The calculator maintains full internal accuracy at all times. Since the
final result we desire is simply a dollars and cents result, the 2 decimal place
display is appropriate.

Stack depth used = 4

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 750 7500.00 Enter PV

2 Data 1 ENT 1.00 Enter constant
3 Data .0525| ENT 0.05 Annual interest
4 Divide 4 B 0.01 Converttoi

5 Add (<] 1.01 (1+1)

6 Data 7.5 |ENT 1.50 Enter years

7 Multiply 4 6.00 Convert to n

8 Power 1.08 {1+i)n

9 Multiply 811.03 FV

Rewriting the basic formula for compound interest

__FV
PV (1+i)"

How much must be placed in a 5% annual interest rate compounded monthly
savings account to yield $1500 after 1 year?

Stack depth used = 4

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 1500 |ENT 1500.00 Enter FV

2 Data 1 E@ 1.00 Enter constant

3 Data g5 0.05 Enter annual interest
4 Divide 12 [+] 4,17-03 Convert to i

5 Add 1.00 (1+1)

6 Data 1 1.00 Enter years

7 Multiply 12 12.00 Convertton

8 Power 1.05 (1+i)0

9 Divide [<] 1426.99 PV {amount saved)
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From the basic compound interest formula, we get
FV

_]n(W__l

In {14}

n=

How long does it take to double your money at 8% annual interest rate
compounded monthly? We know that% is 2.

Stack depth used = 4

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 In 2 0.69 Obtain In 2

2 Data 1 E 1.00 Enter constant

3 Data .06 E 0.06 Enter annual interest
4 Divide 12 E 5.00-03 Convert 1o i

5 Add, In L 0e]  499-03  In(i+i)

6 Divide 138.98 n

7 Divide 12 =] 11.58 convert to years

Continuous Compounding
The formula for continuous compounding is:
FV = PVegh
In the competition for customers, the new savings and foan in town is trying 10
attract customers away from other institutions by offering continuous com-
pounding of interest. You currently have $500.00 in a 5.25% compounded
quarterly savings account. The other savings and loan offers the same interest
rate, but compounds continuously, What would be the difference in the two
accounts after 5 years?

Stack depth used = 2

First perform the program for compound interest to obtain the result for the
quarterly compounding, and store that result in memory 1. (648.98)

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 0525 0.05 Enter interest rate

2 Multiply 5 0.26 Obtain in

3 eX 1.30 Inverse In is e*

4 Multiply 500 650.09 Multiply by PV to
obtain FV

5 Recall and subtract 1[—_—__] 1.11 Difference between

two compounding rates



Mominal Rate Converted To Effective Annual Rate

The formula to convert nominal annual rate to effective annual rate (after
compounding) is:
EAR= (1+i)»-1 Where 1 = rate per period
= periods per year

EAR = effective annual rate

What is the effective annual rate equivalent to 5% compounded monthly?
Stack depth used = 2

STEP FUNCTION KEYSTROKES DISPLAY  COMMENTS

1 Clear and set display 4 0.0000

2 Data, store, divide .05 [eNT]12{sT0 1[{]0.0042 Enter annual rate,
convertio i

3 Add 1 1.0042 I+

4 Recall and power LR 1.0612 (1+i)»

5 Subtract U T 0.0512 5.129%

Adg-on Bate Converted To True Annual Percentage Rate {(APH)

The following formula provides an approximation for the true annual rate
equivalent to add-on rate:
600ni
APRE3( e [(m Py Where: n = number of payments
" n-tenigm m = payments per year
i add-on interest rate

What is the true APR on a 24 ronth, 5.5% loan?
Stack depth used = 4

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Clear and set display CLX [IDSP2  0.00

2 Data and store 24 |ENT|| STO|1 24.00 Enter and save n

3 Add 1 2500  n+l

4 Multiply 3 [x] 75.00  3in+1)

5 Recall and subtract REL |11 E 23.00 n-1

6 Data, recall, multiply -055 [RCL |1 1.32 ni

7 Store $TO |1 1.32 Save ni

8 Data and divide 12 E 0.1 Enter m; obtain ni/m

9 Multiply 253 Multiply by n-1

10 Add . 77.53 Obtain denominator

11 Data, recall, multiply 600 1 792.00 Enter constant; multiply

by ni

12 Exchange and divide 10.22 Approximate APR
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Annuity

The basic formula for an annuity is:

{14)" -1
FV =PV ~——"

if one saves $50.00 per month in a 5% annual rate compounded monthly

savings account, what will be the total amount in the account after 5 years?
Stack depth used =

STEP FUNCTLON KEYSTROKES DISPLAY COMMENTS

1 Data 50 [ENT] 50.00 Enter PV

2 Data 1 m 1.00 Enter constant

3 Data .05 0.05 Annual interest

4 Divide and store 12 Em 1 417-03 Convert to i, save

5 Add 1.00 (141}

6 Data 5 5,00 Enter years

7 Multiply 12 @. 50.00 Convert to n

8 Power 1.28 {(1+i)"

9 Subtract 1 E 0.28 Subtract constant
10 Multiply [x] 14.17 Multiply by PV
1 Recalt and divide ~ [RCL]1[%] 340030  FV
Loan Payment
A loan payment may be computed from:

PV- i where PV = present value or loan amount

PMT = 7= (1+i)" i = interest per period

n = number of periods
PMT = payment per period
What is the monthly payment required to pay off a $4250.00 loan in 48
months at an annual rate of 9.5%7?
Stack depth used =
STEPR FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data .095 0.10 Annual rate, display
rounded

2 Divide 12 [7] 7.92-03  Convertto i

3 Push 7.92- 03 Save for step 5*

4 Multiply 4250 [X] 33.65 PV- i

5 Exchange [YeX 7.92- 03 Save PV-i , recall i

6 Add 1 ] 1.01 1+i

7 Power 48 [cHs)v] o8 (1+1) 7"

8 Subtract 1 E]E] 0.32 1- (147

49 Divide 106.77 PMT

After step 3, i will be in X, Y and Z registers. In step 4, the X register is
overwritten by PV and the multiply will pop the stack, leaving i in the Y register.
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Remaining Palance

The formula to compute the balance remaining on a loan is:
DRAT

aal = pyp L1+
Dl-\Lj“rlvlu |

n
PMT

total number of payments
payment per period
i = interest per period
{ = current period
| BAL; = balance after jtb payment
What is the balance remaining after 32 months on a 48 month, $4250.00 0an
at 9.5% annual rate (monthly payments are $106.77)?

i

it

It

Stack depth used = 3

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Clear and set display pDsP [2 0.00

2 Dataand divide  .095[ENT]12[=] 7.92- 03 Enter annual rate;
convert to i

3 Store STO | 1 7.92 - 03 Save i

4 Add 1 [+] 1.01 1+

5 Data and subtract 32 ﬂ[_l 48 E - 16.00 i-n

6 Power 0.88 {1-§)n

7 Data, exchange, 1 E 0.12 Obtain numerator

8 ;L;‘z;rl?(:nd divide 1El 14,97 Divide by i

a Enter and multiply 706.77 1598.63 Enter PMT, muitiply

Depreciation ~ Straight Line Method

The formula for straight line depreciation Is:

PV

to obtain BAL;

D=—— and DVj=PV-iD Where PV = present value (initial value less
salvage value)
n = number of periods of life of asset
D = depreciation per year
DV; = value after j periods

A truck has an initial value (less salvage) of $3100.00 and an expected life of
5 years. What is the depreciation per year and what is the depreciated value
after 3 years?

i

Stack depth used = 3

STEP FUNCTION KEYSTROKES  DISPLAY  COMMENTS

1 Data 3100 l ENT 3100.00 Enter PV, save for
step 3

2 Divide 5 [+] 620.00 D

3 Multiply 3 [XI[=] 1240.00 DV, =PV -iD

and subtract
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4

Depreciation ~ Diminishing Balance Method

The formula for diminishing balance depreciation is:

D, = PV, (1—( _g._\lfn)and PV, = PV,; - D, Where
\P\/g/ PV, = initial value
S = Salvage value
PV, = Value at period j
D; = Depreciation at period j
n = periods of life

Using the example problem above, find the depreciation and value for the first
three years, using the diminishing balance method. (assume salvage value is
$500, thus PV, is $3600.00)

Stack depth used = 4

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Dataandpush 3600 3600.00  Fills stack with PV,

2 Divide 500 [vex][] 014 sV,

3 Reciprocal and pawer 5 @ 0.67  (S/PVy )N

4 Subtract and stare 1 @51 0.33 1~ (S/PVy )" and save
5 Multiply 1174.31 D4 {PV, in stack)

6 Subtract E] 2425.69 PV, (PV,in stack)

7 Push ENT]TENT] 242569  Save PV, ;"

8 Multiply RCL | 1[x]c 79125 Dy*

9 Subtract ::] 1634.44  PV*

* Sieps 7, 8 and 9 are repeated for each successive period desired. The

example shows only determining D, and PV, from PV,. After step 9, looping
back to step 7 would determine Dy and PV, from PV,. Each repetition of the
loop 7, 8, 9 would determine the values for another period. Thus D; = 533.15
and PV; = 1101.29.

55



Deprecistion — Sum of Years Digits Method

The formula tor Sum of Years Digits depreciation (SOD) is:
b = 2(n-j+1)

i nin+1)
! nin+1i}

PV and DVj =5+ (n-k) Di/2 Where
) PV = initial value
S = salvage value
n periods of life
D; = depreciation at period j
DV; = value at period j
Again we use the example problem from above. (PV = 3600, n=5, S= 500,
j=3)

i

It

i

Stack depth used = 4

STEP  FUNCTION KEYSTROKES DISPLAY  COMMENTS
1 Data and push 5 @] 5.00 Enter n, save for
step 6
2 Subtract and store 3 E STO | 1 2.00 n-j, save for step 1
3 Add 1 3.00 Add constant, (n-j+ 1)
4 Multiply 2 6.00 2n-j+1)
5 Multiply 3600[ X ] 21600.00 2n-i+ VPV
6 Exchange E 5.00 restore n, save
2{n~j+ 1PV for step 1
7 Push ﬁ-jﬂ@ 5.00 save n for step 9"
8 Add 1 + 6.00 Add constant, n+1
9 Multiply é 30.00 nin+l)
10 Divide [+] 720.00 D,
1 Multiply [rec]1[x] 1440.00 {n- D
12 Divide 2 [+] 720.00 {n-j)D,/2
13 Add 500 1220.00 DV,

After step 7, n wifl be in the X, Y and Z registers. The data entry in step 8
will overwrite X and the add will pop the stack, leaving n in the Y register.

23 SERIES AND PROGHESSIONS

Arithimetic Progressions

P

An arithmetic progression is

For our example, we will step through an arithmetic progression with a= 10
andi=7.
Stack depth used = 4*

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 7 7.00 Fill stack with i

2 Data and add 10 E] 17.00 Enter a ; add to
obtain second term

3 Add 24.00 Add i to obtain
next term

Repeat step 3 for each succeeding term,

The preceeding program fills the stack with i to utilize the automatic copy of
the bottom of the stack to insure an unending supply of i's for each step. If
there is data on the stack that must not be destroyed, the arithmetic progres-
sion can be computed with the following program:

Stack depth used = 2

STEP FUNCTION KEYSTROKES  DISPLAY COMMENTS

1 Data 7 1 7.00 Save i

2 Data and add 70 17.00 Entera ; add to
obtain second term

3 Recall and add [Red] 1 24.00 Add i to obtain
next term

Repeat step 3 for each succeeding term.

The ntt term of an arithmetic progression is given by
a+ (n-1)i
To obtain the 14t tarm of the progression above:

Stack depth used = 3

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 10 10.00 Enter a

2 Data and subtract 14 = 13.00 Obtainn~ 1
3 Data multiply, adg 7 101.00 nth term
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Sum of Arithmetic Progression

The sum of the terms of an arithmetic progression (given a and i) is:

' Where n = number of terms
n - . i
SUM = na + ——= to be summed
2 .
a first term
i interval
Compute the sum of the first 12 terms of the progression above.

Stack depth used = 4*

it

i

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 12 12.00 3n‘s on stack

2 Subtract 1 [j—_J 11.00 n-1

3 Data and multiply 7 77.00 (n-1)i

4 Multiply 924.00 Multiply by n

5 Divide 2 ] 462.00 Divide by 2

6 Exchange YeX 12.00 Bring n to top of stack
7 Data and multiply 70 120.00 Multiply by a

8 Add + 582,00 Obtain SUM

When only the first and last terms and the number of terms are known, the
following formula expresses the sum of an arithmetic progression:

5 Where n = number of terms
SUM=-2-(a+t) a = first term
t = last term

The 14t term of the above progression is 101.00, Find the sum of the first 14
terms.

Stack depth used = 3

STEP  FUNCTION KEYSTROKES DISPLAY ~COMMENTS

1 Data and divide 14 [ENT[2 [+ ] 700 n/2

2 Data 10 10.00 Enter a

3 Data and add 101 111.00  Addt

4 Multiply 777.00  Obtain SUM
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Geometric Progression
A geometric progression is defined by
a, ar, ar?, ..., arv!
For the example, we will step through a geometric progression with a =3 and
r=0.9

Stack depth used = 4*

STEP  FUNCTION KEYSTROKES ~ DISPLAY  COMMENTS
1 Data 9 0.90 Fill stack with r
2 Data and multiply 3 [Z} 2.70 Enter a ; multiply
to obtain second term
3 Multiply 2.43 Multiply by r to

obtain next term
Repeat step 3 for each succeeding term

As in the arithmetic progression, the program above uses the entire stack to
take advantage of the automatic copy into the bottom of the stack. A program
which uses only two levels of the stack is:

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 9 [stol1 0.90 Saver
2 Data and multiply 3 2.70 Enter a ; multiply

to obtain second term

3 Recall and multiply 1 @ 2.43 Multiply by r to

obtain next term

Repeat step 3 for each succeeding term.

The n'» term of a geometric progression is defined as
arri

To obtain the 11t term of the geometric progression above:

Stack depth used = 3

STER  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 3 [ENT 3.00 Enter a

2 Data and subtract 11 1[=] 10.00 Obtain n- 1
3 Data, power, multiply .9 @] 1.05 nth term
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Sum of Geometric Progression

The sum of a geometric progression to n terms is given by:
SUM =i'n_;1 Where a = initial term
r-1 r = ratio between terms
. n = number of terms
Compute the sum of the first 15 terms of the above progression,
Stack depth used = 4

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 3 [ENT 3.00 Enter a
2 Data 184 ENT 15.00 Enter n
3 Data and 9Tsto 0.90 Store r
store

if r is not negative, skip to step 5
4 Negate m * Base for a power must be

not be negative

5 Exchange and 0.21 "

power
If r is not negative, skip to step 7, if r is negative and n is even skip to step 7
*

6 Negate CHS Result of odd negative
power is negative
7 Subtract 1 -0.79 -1
8 Recall and geL |1 1 -0.10 Obtain r-1
Subtract B n
9 Divide (] 7.94 (M -1) 7 (e-1)
10 Multiply % 23.82 Multiply by a to
obtain SUM

Harmonic Progression * No display indicated because example has pasitive r.

A harmonic progression is defined b;é
d

b’ bt+c ' p+2e’ " b+n-1)
For our example, we will step through the Harmonic progression with d=2,
b=3,andc=5. Stack depth used = 4
STEP FUNCTION KEVYSTROKES  DISPLAY COMMENTS
1 Data and save 2{ 8101 2,00 Save d
2 Push 5 ENT 5.00 Push ¢ for step 6
3 Data and ; r—] 0.33 Save b; obtain 1/b
reciprocal S| ENTjDsP
4  Recall and [reL] 1 {X] 0.67 Obtain d/b, 1st term
muitiply —
5 Pop -CLX + 3.00 Throw away previous term;
move denominator to top of
stack

6  Addand push + -ENT 8.00 Add ¢ to previous denotminator,
save for next cycle; ¥

7  Reciprocal bsp 0.13 Reciprocal of denominator
8 Recall and RoLl 117x 0.25 muitiply by a to obtain next
multiply term

Repeat steps 5, 6, 7, and 8 for each succeeding term.

* ¢ was entered in step 2. Subsequent operations pushed it to the bottom of the
stack., Automatic copy of the bottom of the stack on a pop insures that ¢ will
always be on the stack.
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To obtain the nth term of a harmonic progression, we note that the general term
for a harmonic progression is simply d multiplied by the reciprocal of the nth
term of an arithmetic progression (a+ (n-1)i; where a=Db and i=c). To
calculate the 5t term of the example harmonic progression:

Stack depth used = 3

STEP  FUNCTION KEYSTROKES  DISPLAY  COMMENTS
1 Data 3 3.00 a {a=h) *
2 Data and subtract 5 [ENT|1[—] 4.00 Obtainn-1 *
3 Date, multiply, add 5 23.00 nt term {i=c) *
4 Reciprocal 0.04 Obtain denominator
Data and muitip! ' . i i
5 ata and muitiply 2 0.09 IV!('FJ‘ltvply by d to obtain

n-" term

%  Steps 1, 2, and 3 are the program to calculate nth term of an arithmetic
progression.

Fibonacci Series

A Fibonacci series Is defined by the following relation
f, = f, + f.o where {;is the it term

That is, each term is the sum of the two previous terms,

For our example, we will step through the sequence that begins with f, =1 and
fz = 1
Stack depth used = 3*

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data and save 11870 (1 1.00 Save f;
2 Data and push 1] ENT 1.00 Push f,
3 Exchange memory 1 1.00 Move ¥, » onto stack

save fi for next term

i
Obtain f; ; push f, for
next cycle

4 Add and push 2.00

Repeat steps 3 and 4 for each succeeding term.
(f; becomes f;, and f,, becomes f.)

, Note:"Stack depth used can be reduced to 2 if [cLX] is performed between

step 1 and step 2.
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The formula for nth Fibonacci number is:

Stack depth used = 2

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Clear and set 0 0.

display
2 Square root and 5 ‘ VX _|[sTo]t 2. Save+/5

store )
3 Add 1 3. (1++/5)
4 Divide 2[+] 2. (% (1 +/5)
5 Data and power 6 18. (% (1+4/5))"
6 Recall and divide 10+ 8. Divide by /5
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24 PROBABILITY AND STATISTICS

Means

The CORVUS provides direct calculation of arithmetic means. Two other
means can be easily obtained.

Geometric Mean

The geometric mean of a series (a,, ay, a3, . . . , a,) is defined as:

Geometric Mean =Q/a1 “aytayc t - a
The program below calculates the geametric mean. For this example the series
(5,10,3,6,9) is utilized.

Stack depth used = 2

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
i Data 5 @ 5.00 Enter a,
2 Data 10 10 Enter next a;
3 Muttiply 50.00 Obtaina; 11 a

Repeat steps 2 and 3 for all a
Note: the keystrokes and display for steps 2 and 3 apply to a; only

4 Data 5 5 Enter n
5 XY 6.05 Display geometric mean
Harmonic Mean
The harmonic mean of a series (a;,a;,* **,a_ }is defined as:
. ——!]_- )
Harmonic Mean = %(1/a) . The program below caiculates the harmonic
i= i
mean. The same series (5, 10, 3, 6, 9) is utilized in this example.
Stack depth used = 3
STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Clear stack 0.00 Reset statistical memori

clear entire stack

Data 5 5 Enter a,
Reciprocat @@ 0.20 Obtain 1/a,
42 0.20 Obtain £ 1/3,

=t
Repeat steps 2, 3 and 4 for entire set of values
note: the keystrokes and display for steps 2, 3 and 4 apply to a, only

Recall 7 5.00 Recall n
6 Recall RCL{ 9 0.91 Recall Z 1/a,
7 Divide =] 5.49 Obtain harmonic mean
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Permutations and Combinations

The set of permutations of n things taken k at a time is all the ways we can pick
an ordered sample of size k from n. For example, if five cards are pulled from a
deck one at a time, how many sequences can be drawn? The first card may be
any of 52, the second any of 51, etc. Thus the number of permutations in this
case is 52« 51 « 50 - 49 « 48. In general the number of permutations of n

things taken k at a time equals (_”k;)_'
n-Kj?
The set of combinations of n things taken k at a time is all the possible sets of

size k that can be selected from n things. The sample is no longer ordered.
Thus the five cards selected could have been selected in any order. From the
formula for permutations above, the & cards taken 5 at a time can be permuted

in(-g‘rg—)’ways or 5! ways. In general, the number of combinations of n things

taken k at a time (written (2} equals—"—
kl{n-k)! o

Example: Using the formula for permutations ——(*nj!.‘ind the number of 5 card

sequences which can be dealt from a 52 card deck.
Stack depth used = 3

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Data 52 52 Enter n

2 Factorial [ose][x]] 8.07 67 Find n!

3 Recall @ 62.00 Recover n

4 Data 5 5 Enter k

5 Subtract (-] 47.00 Obtain (n—k)

6 Factorial and [ose |1} =] 311875200.00 Obtain n!_

Divide (k)

Example: Using the formula for combinations, _"__ find the number of 5

card poker hands. kl{n-k)!

STEF  FUNCTION KEYSTROKES ~ DISPLAY  COMMENTS
i Data 52 52 Enter n
2 Factorial 8.07 67 Find n!
3 Recall 52.00 Recover n
4 Data 5 B Enter k
5 Subtract = 47.00 Obtain n—k
6  Fecall 5.00 Recover k
7 Factorial [osp ][] 120.00 Obtain k!
8 Exchangeand  [v=x[[psp][X1]  2.50 59 Obtain (n—k) !
Factorial
9 Multiply and xI=] 2598960.00 Obtain (%)
divide

|4

e

|

permutations and Combinations are very useful in simple probability calcula-
tions.

Example: What is the probability of receiving a bridge hand of 13 cards in
which no card is higher than a § and in which there are 4 spadss and 3 cards

in each of the other suits?

We know that the probability of choosing a sample with a particular composi-

tion is given by F1y (T2 fn where (%) represents the
1) () -

()

total available sample space and the (i&)'s represent the composition

specifications.

Stack depth uséd = 4

spades
i = 8y /8y /8y (8
Probability of hand = (3 &) (5 (3
652
(13)
STEP  FUNCTION KEYSTROKES  DISPLAY  COMMENTS
Data and SI DSPl X1 40320.00 Start calculating first part
k F:c?oa:'ri‘ai composite—8! :
2 Data and 4 2400 4!
Factorial
3 x? [ospj[mv][vx] 57600  4f 4l
Divide =] 7000  Obtain (§)
5 Data and 8 40320.00 8!
Factorial
6  Datand 3[osp | [x1] 600 3!
Factorial
7 Data and 5 12000 B!
Factorial
8  Multiply 72000 3 5!
9 Divide =] 56.00 (3!
X 5 8,888
10 y 3y 17561600 () (51515
i 8, (8,8, 8
11 Muttipty x] 12293120.60 7 S & & &
12 Data and 52 DSP% X! 8.07 67 521
Factorial 4—
13 Data and 73 6227020800.00 13!
Factortal
14 Dataand 39 [osp][x1] 2.04 46 39!
Factorial
15 Muttipty and [X][¥] 63501255959 { ?% )
Divide
16 Divide =] 1.94— 05 Probability of hand
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Binomial Distribution

Consider repeated independent trials of an experiment. The outcome of each
trial can be considered either a success or a failure. The probability of a
success is p - ihe probability of a failure is g = 1-p. The binomial probabiiity of
exactly k successes in n trials is: () pkg™*, where (¢) is the binomial coefficient
defined asy%’m,—. The probability of no success is g and the probability of at

least one success is therefore 1-gn.
A fair die is tossed 8 times. A success is defined as either a 1 or a 6. Thus
p =Y and q = %. What is the probability of no successes?

What is the probability of exactly two successes?

Stack depth used =

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data, reciprocal, 3 1 0.33 Store p
store
2 Data, divide, store 2 m SEm 0.67 Store q
3 Data, power 8 - 0.04 Obtain g"; Prob
of no success
4 Clear, recall [cLx][RreL]| LasT )q 8.00 Recover n
5 Factorial psp][xi] 40320.00  n!
5 Recall RCL ]m 8.00 Recover n
7 Data, subtract, 2 Jm 6.00 n-k,saven-k
store
8 Recall, stare RcL | LAST X |{sT0]3 2.00 Recover k, save k
9 Factorial psp |[x1] 200 k!
10 Exchange and YeX DSPJ 720,00 {n—k)!
Factorial
. L n
11 Multiply, divide -E] 28.00 (k)
12 Recall, power RCL [ReL]3[y?] o011 o
13 Multiply 31t ()
14 Recall, power EZE ﬂ 009 g"*
15 Multiply 027 ()pk g™ =prob
of k successes
Note: Steps 4 - 11 compute the combination (M) with some additional data stores
as required for the binomial formula.
66

Hypergeometric Distribution

The Hypergeometric probability function is used for selection without replace-
mernt from a population which consists of k elements of one type and n k

exactly x of them are of the first type is given by:
() (5:x) expressed as factorials this becomes
n
KLk S! ()t
%! {k-x)! (s-x)} [n-k-{s-x)]! n!

An urn contains 10 balls, 3 of which are red. If 5 balls are drawn, what is the
probability that exactly 2 are red?

Stack depth used = 4* (uses automatic
copy of bottom
of stack feature)

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Datapush 10 1000 Fills stack with n

2 Data, subtract, 3 B1 700 n—Kk,save
store
3 Recall, store [ReL [LasT x |[sT0]2 3.00  recall k, save
4 Factorial 800 k!
5 Exchange,factorial| YeX 5040.00  (n—k)!
8 Multiply [X] 3024000  (n—k)lk!
7 Exchange YeX 1000  Recovern
8 Data, subtract 5}~ 5.00 n—s
9 Recall, store RCL | LAST X ][STO ]3 5.00 recall s, save
10 Factorial psp | x!| 12000 s
11 Exchange, yex|[psp [ x! 12000  (n—s)!
Factorial I IL‘]
12 Multiply, 435456000.00 k! (n—k)!s! (n—s)!
multiply
13 Exchange, [rox][osp][xJ[=] 12000  klin—K)!s! (n—st/n!
factorial, divide
14 Store |sTO l9 120.00 Save
15 Data, push 2 [enT][EnT][EnT] 200  Fill stack with x
16 Recall, exchange [REL]|2[Yexi[—] 100 k—x
subtract
17 Factorial DsP 1.00 {k —x)!
18 Ff}E)(chrrlwangge recall, |Yex|[RcL]3]Y=x] 2.00 Recover s
19 EUbttracﬁ store, | — | STo]4|DsP | X! 6.00  (s—x)!, save s—x
actoria

20 Multiply 600  (s—x)!{k—x)!

21 Exchange, 12.00 (s—x)Hk—x}x!

Factorial, Multiply

22 Recall, recall,  [meL]1[Rec]4[-] 400  n-k—(s=x)

subtract
23 Factorial, [osp x1][X] 28800  {n—k-(s—x)){s—=x)!"
o multiply {(k—x)Ix1

Recall, exchange, [RcL YeX .
ol oxcnene, [ o[FH] o4

Probability of exactly
2 red balls
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Boisson Distribution

The Poission probabilities are defined as:

® -zt
pix) = e o0y, 2,

A common interpretation is that z = mean rate of occurrence of sgme event, t
= time interval, then P(x) is the probability of exactly x events in time interval
t. Customers arrive at a store at a rate of 45 per hour. What is the probability

that there are no customers arriving in a five minute period?
{(When x=0, P(x) =e?)

Stack depth = 2

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 45 45.00 Rate per hour
2 Data, divide 60 E] 0.75 Rate per minute
3 Data, multiply & [X] 3.75 Obtain zt
4 Push, negate [—_EE -3.75 Save zt for step 6;
obtain -zt
5 e*, store E:I $TO |1 0.02 Probability of no

customers for 5 min.
Save for step 7

If there is one clerk, what is the probability that in a five minute period more
customers will arrive than can be served? Note that the probability of more

than 1 customer arriving is 1-P(1)-P(0). Also note that Px=n) _ Plx=n-1} zt

Assume P(0) remains in X from previous problem.

Stack depth used = 2
STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS

Multiply 0.09 2t P{0) = P(1)
Recall, add [reL]1[+] 0.11 P(0) + P(1)
Data, exchange, 7 E] 0.89 Probability of more

subtract than one customer
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Normal Curve

The standard normal curve is defined by:
which has mean =0 and

4 -
X — X </2 4 L .
Pix) en variance = 1. x is in normalized

units,
This defines the probability density function. The associated distribution function
e‘x2/2 dx has no simple expression.

1 X
77 |
What is the value of ¢{1.7)?

Stack depth used = 4

STEP  FUNCTION KEYSTROKES DISPLAY  COMMENTS
1 Data 1.7 | ENT 1.70 Enter x

2 Square \/x_} 2.89 x?

3 Divide, negate 2 [+ || CHs] -1.45  -x%/2

4 e [invj{in ] 0.24 &2

5 Pi, multiply, 2 251 \/ET

root
6 Reciprocal 0.40 1/2
7 Multiply 0.09 Obtain ¢(x)
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Chi-Square Statistics

A statistic which is the sum of squares of independent standard normal random
variables is said to be Chi-square distributed. There are infinitely many Chi-
square distributions, one corresponding to each positive integer, called the
degree of freedom. The density function for a Chi-square is quite imposing,
and can be obtained from tables. The Chi-square is used in statistical
inference about population variances. If s is the observed sample variance of a

sample size n taken from a normal population with expected variance v, In-Ns

Chi-square with n-1 degrees of freedom., v

A manufacturing process for light bulbs is sampled and tested for bulb jife, A
sample of 20 bulbs has an acceptable sample mean, but the sample variance
is 300 hours. Specifications require a population variance of 250 hours or less.
ls this sample sufficient evidence to reject the lot of bulbs? The hypothesis
being tested ig that the population variance is 250 or less. The test statistic is Chi-
square =(—”'VZL’,5 where s =300, v=250, n=20, degree of freedom=19. The

tevel of significance is arbitrarily set as 0.05.

From a table of Chi-square values, we obtain the probability of a Chi-square of
19 degrees of freedom being greater than 30.14 is 0.05. Thus we accept the
hypothesis (and the fot of buibs) if the observed Chi-square is less than 30,14,
We reject the hypothesis if the observed Chi-square is greater than or equal to
30.14.

Stack depth used = 2

STEP  FUNCTION KEYSTROKES DISPLAY ~ COMMENTS
1 Data 20 20.00 Enter n

2 Subtract 1 [=] 19.00 Obtain n—1
3 Data, muitioly 300 x | 5700.00 {n—1)s

4 Data, divide 250 %] 22.80 th=1)s/v

Since the observed Chi-square is less than 30.14
the hypothesis is accepted, and this sampie is not
sufficient evidence to reject the lot of bulbs.

n

% o CRERREE THEE F i o s i e
- ~ - . w -1 o,
< =3 o y N

Least Squares Linear Regression

A least squares linear regression is a mechanism to find a *'straight line of best
fit" between a pair of independent variables (i.e., variables for which no known
dependence exists). Basically, this approach attempts to minimize the sum of
the squares of the deviations from a straight iine.

The line is given by: y = mx+Db

nZXy—~TXZIy - _
e andb =¥ - mX.

A primary output of a linear regression is a measure of the dependence of the
two variables. The correlation coefficient is given by:

where m =

a
r=m %
Oy

2yl 2 2
with n weighting — g, =\/§3—_’7%?’£ and o, 2y
n
. 2nx2 SvZ—ny2
with (n-1) weighting - o, =\/-—_§xn_:‘_’i- and o, :\/_XH:I%L

The weighting does not matter for calculating r as long as we are consistent,

correlation coefficient =

The program below calculates the slope and intercept of the least squares best
fit and the correlation coefficient. Two special features of the CORVUS are
utilized; exchange with memory and the unaltered x,y registers after
The program is valid for an arbitrary number of (x,y) pairs.

Example: find the linear least squares fit for:

X Y
5.01 6.52
9.98 11.34

16.21 17.48
19.88 15.08
24.98 18.30

Display is assumed to be set to [pse | 2.

In the program below the first two steps are preparatory and only necessary if
the stack and memory 1 have been used since the calculator was switched on.
Steps 3-13 are performed for each x,y pair. This part of the program is straight

forward and relatively short. Steps 14-37 are only executed once for each least
squares regression.
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STEP

-

W =N ;M W N

"
12
13

14
15
16

18
19
20

21

22

23
24
25

26
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Stack depth used = 3

FUNCTION KEYSTROKES
Clear @@
Store @1

Data 6.52

Push

Multiply

Recall ‘ LAST X ‘
Data 5.01
Summation

Multiply

Recall 1

Add and Store 1
Pop E

Add

Repeat steps 3 - 13 for ali x,y pairs.

DISPLAY

o
=]
S

6.52
6.52

42.51
6.62
5,01
5.01

32.67
0.00

32.67
42.51
42.51

COMMENTS

memories

Clear memory 1
Enter vy,

Copy v;

Obtain y? for step 13
Recall y,

Enter x,

Add (x, y) into total
Obtain xy,

Recall Zx,v,

Store Zx;y,

v on X register
find Zy;2

note: the values displayed and data entered in steps 3 - 13 are
for the first x,y pair only.

Store
Recall

Recall and
Muttiply

Recall and
Multiply

Subtract
Recall

Recall and
Multiply

Recall and

Divide
Store
Recall

[575]2
[RCL}7
[res) 1 [5]

(-]

RCL|7

[Ret]s (]

1038.95
5.00
5843.17

5168.12

685.04
5.00
6876.30

RCL [9| DSP || INV ] VX | B634.00
%
Subtract and EB

7o)

Recall, Mult. ax][=}

and subtract

Recall and
divide

(rer)7 (5]

0.55

0.55
75.06
27.33

5.47

Store Zy?
Recall n

Obtain nZxy
Obtain £xZy

Obtain nZxy-ZxZy
Recall n
Obtain nZx?

Obtain (Zx)?
Obtain m

Store m
Obtain Ix, Ty = nX, ny
Obtain n{y —mx)

Obtain b

STEP
27
28
29
30

31
32

33

34
35

36

37

FUNCTION

Store

Recall

Recall

xZ, Recall and
Divide
Subtract

Recall and '
Subtract

Divide and v/x

S. D.

Recall and
Multiply

Exchange and
Divide
Store

KEYSTROKES
sTC ! 4

2
CREEE

DISPLAY
5.47
1038.95
68.72

(osp JNV][V/X J(RcL] 944.49
7[+]

=
[rec]7 1(2]

[=J[osp V]

[Fet]

=E
Eaf

at the end, m is in memory 3
b is in memory 4
r is in memory 5

94.47
4.00

4.86

7.88
4.35

0.89

0.89

COMMENTS

Store b

Recover y*?

Recail Zx, Zy -- pop Zx
Obtain an

Obtain Zy?-ny?

Obtain n-1

Obtain g, with n~1
weighting

ObtainX, 8. D. pop X

Obtain mox

Obtainr

Store r

This same program can be used for other types of correlation. When a data
item is first entered, any of a number of operations can be performed on the
data items. A logarithmic or semi-logarithmic curve fit can be obtained by
taking the logarithm of both or one of the variables respectively. Other
functions which might be used include trigonometric, hyperbolic, powers and

roots.
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25 NUMERICAL METHODS
Guadratic Equation

The roots of the quadratic equation Ax2+Bx+C =0 are:

~-B/BZ-4AC 2
Ay S if D={B2-4AC)/4A% is positive, the roots are real.
. . . VvV AAC— 82
if D is negative, the roots are complex and expressed’as: 2A + _QA‘ -
B =82
That is, 2A is the real component and =57 isthei imaginary component,
Solve 3x2 +6x +4=0 Stack depth used = 4
STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data and Enter 3 3.00 Enter A and push
2 Multiply 4 12.00 Obtain 4A; A still on
stack
3 Data and store 6 1 -6.00 Enter and store ~B
4 Square DSP ’ 36.00 B?
) Exchange YeX 12,00 bring back 4A
6 Data and 4 48.00 Enter C, obtain 4AC
muitiply
7 Subtract =] -12.00 B?-4AC
8 Exchange LYeX 3.00 Bring back A
9 Square 9.00 A?
10 Multiply 4 36.00 4A2
11 Divide (=] -0.33 obtain D

Skip to step 13 if D not negative

12 Negate CHs 0.33 Make D positive forv/
13 Square root, pse [VX J[sT0]2 058 Imaginary component
save of complex root, if
14 Exchange l:] 3.00 Bri:gnflg'A
15 Maltiply 2[x] 6.00 2A
16 Recall [Ret] 1 ~6.00 -B
17 Exchange, r——]D ~1.00 Obtain ~B/2A, real
divide component if D neg
}f D was negative, done
18 Store I:] * Store -B/2A
19 Add [+] . -B + /B2 4AC
20 Recall @ RCL * Recall —2;}2A
VB2 -4AC
21 Subtract E * 8
* Example had no real roots “B- 2V/?2M4AC_
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Roots of Polynomials
The Newton-Raphson method may be used to compute a root of a polynomial

equation: flx) = apx® + ax™ + ... +aux +a, =0

The Newton-Raphson method is an iterative approximation method described

by: fix) where f'(x) is the derivative of f(x).
T X T YT F(x)

Recall that the derivative of a sum is the sum of the derivatives, and that the

derivative of a general term ax® is anxm!,

For the example, approximate a root of f(x) = 2x3-5x2 4+ 35x-15. Use the initial
value xg= 1. The program given here is applicable to a polynomial with 7 or
less coefficients. Coefficients are stored in memories 1-7, while f(x) and f'(x)
are developed in memories 8 and 9.

STEP  FUNCTION KEYSTROKES DiSPLAY COMMENTS
1 Data, store 2_@ 1 2.00 Store ag
2 Data, store 5 '&Elmz -5.00 Store a,
3 Data, store 35{s10]3 35.00 Store a,
4 Data, store 15 :c:HE] STO |4 -15.00 Store a;
Continue for any further coefficients, the example has none

Data, push 7| ENT

Clear and save

100
STO 89 0.00

Fill stack with X,
Initialize sums

Pop zero off stack; CLX
not needed first pass

7 Pop eux [+ ] 1.00

8 Data, power .3’ 1.00 Degree of term as power
9 Recall, multiply, [RCL]1 [mﬂ[_EEIJZOO Muiltiply by coefficient
push

10 Recall, add, store [RoL 8@8 2.00 Add to f (x)

12 Exchange, divide [y=xX 2.00 Obtain ax™’

13 Multiply 3 E 6.00 Mulnply by degree of

term
14 Recall, add, store 9 9 6.00 Add to f'(x)

Repeat steps 7~ 13 for each term in polynamial, using appropriate memory and power
each time, Skip steps 8 and 11 when degree = 1. Go on to step 13 after degree = 1

15 Pop, recal, add [CLX ][+ |[RcL]4[ReL]8[F]17.00  Add O degree term to f (x

16 Recall, divide {RCL QE 0.55 fix}/f (x)

17 Subtract - 0.45 xF0x)/ £ (x) = new x

18 Roll 1.00 Move new x to bottom
of stack

19 Pop CLX E] 1.00 Maove new x up in stack

20 Subtract - -0.55 Difference between
iterations

It difference is small enough, stop {pop stack to get x}. If difference is too large, return
to step 7.
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Guadrature (Simpson’s Rule)

Quadrature is the approximation of integrals by numerical methods. Simpson's
Rule approximates the area under & curve by summing the areas of parabolas
through selected points on the curve. Simpson’s Rule requires an even number
(2m) of intervals of constant size, h, over the dimension of integration. These
2m intervals define 2m + 1 points on the axis. If y;=f(x;) then Simpson's Rule
is:

Area = (1/3)bl{vo Yy b+ 4y +vs . yama ) P 2{ys tva + o vy s

We will illustrate by approximating the integral_ rOdx using 4 intervals (h=1)
)= )

Thus we have: Area =~ (1/3) [{(1/2+1/6)+4(1/3+1/5)+2(1/4))

Stack depth used = 4

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data, reciprocal 3 0.33 1/3 constant for
step 9
2 Data, reciprocal 2| DSP 0.50 Yo
3 Data, reci I, 6
adad reciproca 0.67 y0+ v,
4 Data, reciprocal 3 0.33 v,
5 Data, reciprocal 5 0.53 v, ty,
add
6 Multiply, add 2.80 adds 4(y1 ty,)
7 Data, reciprocal 4 0.25 Y,
8 Multiply, add 2 3.30 Adds 2y,
9 Multiply [xJ 1.10 Multiply by 1/3
10 Multiply 1 1.10 Muttiply by h = AREA
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Quadrature may also be used when the equation of the curve is not known, but
the values at equal sample points are known. Suppose you are considering
buying a piece of property that is bounded on one side by a straight road and

on the other side by a wandering stream. You are interested in finding the
approximate area of the parcel. You measure along the road at even 20 vard
intervals, at each interval you measure the distance to the stream. The
following table of measurements results:

x 0 20 40 60 80 100 120

y 022 41 563 38 17 0

What is the approximate area (in square yards)?
AREA = 20/3[{0+0) + 4(22+53+17) + 2(41 + 38)]

Stack depth used = 4

STEP FUNCTION KEYSTROKES DISPLAY  COMMENTS
1 Data 20 | ENT 20.00 Enter h
2 Divide 3 (=] 6.67 h/3
3 Data 22 22.00 (We skip 0+0)
4  Data, add 53 75.00
5 Data, add, multiply 77 [+]4 368.00
8 Data 41 41.00
7 Date, add, multiply 38 [+]2[X] 168,00
8 Add 526.00
9 Multipl i
tiply 3506.67 M u(l)té[:;yi/nbl\;éito
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26 COMPLEX NUMBERS

introduction

The concept of real numbers represented by a number tine is a familiar one.
The real number system has been extended by the addition of another number
line, calied the imaginary number line, which passes through zero and is
perpendicular to the real number line. The terms ‘real’ and ‘imaginary’ are
unfortunate, since ‘imaginary’ numbers are no less real than ‘real’ numbers.
Imaginary and complex numbers are not something mysterious; they are
simple logical extensions to the real number system. The entire plane defined
by the two number lines represents what are called complex numbers,

There are several forms which are used to represent complex numbers. The
first of these is rectangular form, Since a complex nuinber is a point in the
plane, we may represent it by the coordinates on the two axes (real and
imaginary). To distinguish the real coordinate from the imaginary one, we affix
an indicator to the imaginary one. Mathematicians use i as an indicator, while
electrical engineers use j (to distinguish it from the i used for current). Some
conventions use the indicator as a prefix and some use it as a suffix, Thus i2,
2i, j2, 2j all represent the same imaginary number. We will adopt the
convention of the indicator j used as a suffix (e.g. 2j). In rectangular form, we
express the complex number as the sum of its real and imaginary parts (e.g.,
2 + 3j).

Points in a plane may be represented in another form, called polar representa-
tion. in this form, the point is represented by a magnitude (distance) and by an
angle from the reference axis (positive real). The relationship between
rectangular and polar form is the following:a+bj = r COS8 + r SINgj =
r{COS86 + SINgj) where 1 = a?+h2 The polar form may be expressed as
rLe, meaning a magnitude of r at the angle 8.
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Another way of expressing the polar form is called the exponential form. The
exponential function e*is defined as the limit of the series:
X2 X3
T+x+g5+3r: - -

The trigonometric functions are defined as:

82 02 9 65 .
cosf = 1-5r YT SING = -y + 57 " " °
Remembering that the definition of imaginary numbers states that 1j-1j=-1,

when we substitute 8] for x in the exponential and collect terms we get:
g0 = COS 6 + SIN gj

Thus the polar form of a complex number can be expressed as refj . The r and
9 are exactly the same r and 6 in the other expression of polar form and thus
the actual numbers used in a calculator solution of a complex number problem
will be the same for polar and exponential form. The exponential form will be
useful in the problems illustrated below to derive simple forms for various
complex number operations.

Polar and rectangular forms are each best suited to particular applications.
Rectangular coordinates make addition and subtraction of complex numbers
quite easy, while multiplication, division, roots and powers are easier to
accomplish in polar form. The functions [~POL| and [NV ] [>roL] are used
to perform the conversion between coordinate forms. In the following problem
solutions the form most appropriate for the particular problem is the one
illustrated. However, due to the way the problems are set up and the way the
conversions work, if the numbers are desired in an alternate form, they can
simply be entered and the appropriate conversion performed before the next
program step.

Complex Addition and Subtraction

Complex addition and subtraction are done in rectangular mode. The sum (or
difference) of two complex numbers is simply the sum (or difference) of the
real parts plus the sum (or difference) of the imaginary parts.

(@+bj) + (c+dj) = (a+b) + (c-+d)j

To do sums and differences of complex numbers on the calculator, we make
use of the two coordinate summation feature. The imaginary component is
entered into Y, the real component into X and used for adding,

used for subtracting. To obtain the sum, [Rct]| 3 is used.
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Example:
(8+4j) + (6-3)) - (4 +8)) = (5-7))
Stack depth used = 2

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Clear 0.00

2 Enter 4 4.00 Enter imaginary

3 Enterand add 3 3.00 Enter real; add to sum

4 Enter 3 -3.00 Enter imaginary

5 Enter and 6 6.00 Enter real; add
add to sum

6 Enter 8 8.00 Enter imaginary

7 Enter and 4 4.00 Enter real; subtract
subtract from sum

8 Summation @ 5.00  Getreal component

9 Exchange YeX -7.00 Get imaginary component

Complex Multiply
The product of two complex numbers is defined as follows:
el geli = pge (0 TR
That is, the magnitude of the product of two complex numbers is the product of
the magnitudes of the factors, and the angie of the product is the sum of the
angle of the factors.
For our example, compute  5e *93l + 7,28¢ 2%

Stack depth used = 4

(angles in radians).

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Clear and 0.00. Sets mode and ciear
set mode
2 Enter .93 | ENT 0.93. Enterf
3 Enter 5 |ENT 5.00. Enterr
4  Enter .28 -0.28. Enter¢
5 Enter and 7.28 -0.28. Move r and s together
exchange on stack
6 Roll 7.28. @ and ¢ together
on bottom of stack
7 Multiply 36.40. Obtain rs
8  Roll 0.93. Moves # and ¢ up instack
9  Add 0.65. Obtain § + ¢
to convert result to rectangular form
10 Roll 36.40. Movesrs back to X

Real component

26,95
22.03.

11 —>Rectangular

12 Exchange Imaginary component
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To multiply a series of complex numbers, we can use the function if
we use logarithms to obtain the product of the magnitudes.

For our example we will use the same problem as above. Although the example
shows only two factors, the solution can be used for any number of factors,

Stack depth used = 2

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Clear and IDSP ] CLR! DSP |RAD| 0.00.
set mode )
Enter .93 0.93. Enter angle
Enterandin b5 KE 1.61. In of magnitude
Sum 1.61. Adds angles
multipties magnitudes
steps 2, 3, 4 are repeated for each factor, for the example
repeat once using ~.28 for the angle and 7.28 for the magnitude,
5 Recall Sum 3.59.  in of magnitude
6 e* Y; H]_,T_] 36.40.  Obtain magnitude
7 Exchange 0.65.  Obtain angle

Complex Divide

The quotient of two complex numbers in polar form is defined as follows:
redi _ 1 el6-9)
poc

That is, the magnitude of a quotient of two complex numbers is the

quotient of the magnitudes, and the angle of the quotient is the difference of

the angles. For our example, compute 6.4e‘79;' (alt angles in radians).
Stack depth used = 4 .2e7
STEP FUNCTION KEYSTROKES DISPLAY  COMMENTS
1 Clear and set mode psp || CLR | Dsp [RAD] 0.00.
2 Enter 9| ENT 0.90. Enter angle
3 Enter 6.4 | ENT 6.40. Enter magnitude
4  Enter .75 1ENT 0.75. Enter angle
5  Enter and exchange 7.2 | ENT [_Yf_)ﬂ 0.75. Enter magnitude, move it
down in stack
6 Roll 1.20. Moves magnitudes to top
of stack
7 Divide [] 5.33. Magnitude of guotient
8 Roll and exchange 0.75. Maove angles to top of stack,
in proper order
9 Subtract E 0.15. Angle of quotient
To convert to rectangular coordinates
0 Roll 5.33. Move magnitude to top of
stack
11 Convert Dsp || NV | —>POLI 5.27. Real component
12 Exchange YeX 0.80 Imaginary component
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As with complex multiply, we can do complex division using the summation
function. For division we use the [Inv function, again using logarithms
to obtain the quotient of the magnitudes,

For the example, we will use the same example as the previous complex
divide, but the problem solution can be extended to accomodate any number

of divisors. Stack depth used = 2
STEP FUNCTION  KEYSTROKES DISPLAY  COMMENTS
2 Enter EEN 0.90. Enter angle
3 Enter and In 6.4 @ 1.86. In of magnitude
4 Sum 1.86. First angle and
magnitude are added
5 Enter .75 0.75. Enter angle
6 Enter and In 1.2 E 0.18. In of magnitude
7 Minus sum 0.18. difference of angles,

quotient of magnitudes
magnitudes

steps 5, B, 7 are repeated for any other factors in denominator, For this example
there are no more factors.

8 Recall sum i RCL | 1.67. In of magnitude
9 & INV “E] 5.33. magnitude of
quotient
10 Exchange 0.16. Angle of quotient

Complex Reciprocal

From the definition of complex divide, it is easy {o find complex reciprocal.
1.1 -4
.- e
reli r
For our example, compute the reciprocal of 2.9e12 (angle in radians).
Stack depth used = 2

STEP  FUNCTION KEYSTROKES DISPLLAY COMMENTS
1 Clear and DSP I CLR|l DSP l RAD| 0.00
set mode
2 Enter and negate 7.2 @l ENT -1.20 Enter angle and negate
3 Enter and 2.9 0.34 Reciprocal of
reciprocal - magnitude

Coordinates are in proper locations for conversion to
rectangular form if desired,
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Complex Powers and Roots
From the exponential form for complex numbers, the following defines powers
of complex numbers:
(refi = rre"f
Since roots are simply fractional powers, this definition will serve for complex

roots as well. For our first example, compute (7.2e-7)3 Stack depth used = 4

STEP FUNCTION ~ KEYSTROKES DISPLAY COMMENTS

1 Clear and set mode[p_Sf_JEL_RJ[_l_)s_P] RAD] 0.00.

2  Enter 7 @Ej 0.70. Enter angle

3 Enter 7.2 7.20. Enter magnitude

4  Enter 3 Eﬁ} 3.00. Enter power

5 Roll E 3.00. Moves power to bottom
of stack

6 Power 373.25. Magnitude

7 Roll 0.70. Move angle up in stack,
power moves also

8 Multiply 2.10. Angle

To move the coordinates into position ta convert to
rectangular coordinates, do three Rolls.

To compute an nth root of a complex number, we use 1/n as

a power. For our example, compute the square root (n=2) of 2.3e-7i,
Stack depth used = 4

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Clear and psp |[cLr][ osP [RAD] 0.00
set mode (cHs [enT
Enter .7 |ENT ~0.70 Enter angle
Enter 2.3[ose |ix|[Ent] 230 Enter magnitude
4 Enter and 2 0.50 Obtain power from n
reciprocal
5 Roll 0.50 Moves power to bottom
of stack, also in top
Power 1.52 Magnitude
Roli R -0.70 Move angle up in stack,
power moves up also
8 Multiply x] -0.35 Angle

For rectangular coordinates, do three Rolls and then convert
The program above finds only the principal root. For nt roots, there are n-1
others. Each of the roots has the same magnitude and the angle may be
computed by 8+ 2w/k where @ is the angle of the principal root (in radians),
and k ranges from 1 to n-1.
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Compler Trigonometric Functions

£

. . e i SIN 0.14. SIN a
To compute the trigonometric functions of complex numbers we express the ‘ 8 Sine
. . .y T .29. SINH b
complex number in rectangular form. In the following definitions, all angles are 9 Exchange and E@ 21.29
in radiang oo yper oing
,,: - . . ‘ ke : cHS -3.85 {maginary component of
Complex Sing  SIN(@+bj) = SINax COSHb + (COS a x SINH b} | - 10 !r\]ﬂet;I;clsly and B complex cosine
For our example, compute SIN(3 +4j)  Stack depth used = 3 To convert result to polar form, exchange and convert.
STEP  FUNCTION KEYSTROKES DISPLAY  COMMENTS
1 Clear and DSP | [cLR DSP | 0.00, ‘ . SIN 2a SINH 2b
set mode RAD TR Complex Tangeﬂt TAN({a+ b]) = COS 2a + COSH 2b + COS ?2a + COSH 2b )
2 Enter and store 4{STO |1 4.00. Enter imaginary 5 e )
component; save for - For our example, compute TAN{S + 4]) Stack depth used = 3
step 7
3 Enter and store 3 sTO| 2 3.00, Enter real component; 2’ STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
save for step 7 ! Clear and ‘ DSP | CLR | DsP RAD 0.0000.
4 Sine SIN 0.14. SiNa set mode [osp] 4
5 mgr:rggj:: 27.31. COSH b ﬂ: 2 Enter, multiply 4[ENT] 2 [X][sT0]2  8.0000. Enterb, save 2b
— and store
6 Multiply 3.85. Rezl ri‘or;wzoqent of 3 Enter, multiply 3[EnT] 2 2 6.0000. Entera, save 2a
omplex sine S
i and store
f
; Ic::ec.all 1 2 3.00. Recall b, a ok Cosine 0.9602. COS?2a
osine Gos] ~0.98. oS a _
‘ Exchange, and -y.»x -Hyp -COS 1490.4393. COSH 2b
9 chhansge and @ 27.29. SINH b Hyper Cosine -
0 My’la‘:rl iné N Add and store 3 1491.4393, Save denominator
ulti X -27.02. i :
ply 27.02 lm:fglgjgp?:g?s:ent " Recalt and Sine 2 SIN -0.2794. SIN2a
8 Exchange and ~0.0002. Real component of
To convert result to polar form, Exchange and convert divide E complex tangent
Complex Cosine  COS(a+bj) = (COS a COSH b)-(SIN a SINH b) j “ 9 Recall and [ReL] 1[Avp[siN] 1490.4788  SINH2b
Hyper Sine
r j = ; :
For our example, compute COS(3 +4j) Stack depth used = 3 10 Recall and 3[+] 0.9994  imaginary component
STEP FUNCTION  KEYSTROKES DISPLAY ~ COMMENTS divide of complex tangent
1 Clear and psp " CLR | osp ] RAD| 0.00
set mode
2 Enter and Store 4|sT0 1 4.Q0. Enter b, save for step 7
3 Enter and Store 3| STO 2 3.00. Enter a, save for step 7
4 Cosine cos$ -0.99, COSa
5 Exchangeand  [v=X][nve][cos]  27.31. COSH b
Hyper Cosine
6 Multiply -27.03. Real component of
complex cosine
7 Recall 1 [rer]2 2.00. Recall b, a

To convert result to polar form, exchange and convert.
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27 VECTORS

Introduction

The concept of vectors has several interpretations and many useful and varied
applications. The more general characterization of a vector is an ordered
sequence of values, as (a,, @, . . ., a,). An algegraic interpretation of such a
sequence is as the coefficients of a linear equation of n variables. A geometric
interpretation is that the values are coordinates of a point in n-dimension
space. Another characterization of a vector is a quantity that is determined by
magnitude and a direction. Examples of such quantities are distance, force,
velocity, acceleration. For n= 2, both characterizations describe a point in a
plane, or a magnitude and direction in a plane. The relationship between
rectangular and polar coordinates describes the relationship between these
two characterizations of 2-dimension vectors.

In this section, we will describe some basic algebraic operations that are
performed on general veclors. Following that, we will illustrate the use of
2-dimensional vectors and solve problems of distance and force. The section
on complex numbers details another common and useful application of
2-dimension vectors.

In the illustration of 2-dimension vectors, we will describe three basic types of
operations. First, when dealing with vectors that represent physical dimen-
sions, we will illustrate determination of the vector coordinates when the
problem definition does not give a specification which is entirely in one vector
form or the other. For example, the statement of a problem may give the
magnitude and one rectangular coordinate. A second type of operation uses
the relationship between polar and rectangular form to find unknown dimen-
sions or angles, when the vector is defined in either polar or rectangular form.
A third operation will be iltustrated for force vectors. To determine net force
acting at a point, we will form the vector sum of all forces acting at that point.
To do this we convert the vector to rectangular coordinate form (called
resolving the force into X and Y, or horizontal and vertical, components) and
add the coordinates to obtain the rectangular form of the net vector. Then
conversion to polar form gives the net force as a magnitude and direction,

oo

Vector Addition

The sum of two vectors (&, g, 83, .. ., &,) and (b}, by, by, ..., by) is:
{a,+ by, ag+Dby, 83+bs .. .. 8, +Dby) For the summation of two-dimensional

vectors, see the program for addition of complex numbers in the complex
number section. For more than two dimensions, a different approach is
required, For our example, add the two vectors (3.1, 2.0, 5.3) and (.45, 6.2,
7.9).

Two basic approaches are possible. One method of computing the sum is to
sum the first coordinates, then sum the second coordinates, etc. This is a
straightforward way to compute the sum and is easily extended to the sum of
more than one vector and can accomodate vectors of any dimension. Using
this method on our example:

Stack depth used = 4*

STEP  FUNCTION KEYSTROKES DISPLAY  COMMENTS
1 Data 31 3.10 Enter a,
2 Dataandadd .45 3.55 Add b, first
coordinate of sum
Data 2 2.00 Enter a,
Data and add 6.2 8.20 Add b,, second
coordinate of sum
5 Data 5.3 | ENT 5.30 Enter a;
Dataand add 7.9 13.20 Add by, third

coordinate of sum

For vectors of greater dimension, the sequence is extended
for each additional coordinate. For the sum of more
than two vectors, the sum for each coordinate (e.g. step 1,2)

is extended to sum the corresponding coordinates for each
vector.

* Stack depth used can be reduced to 2 by pressing CLX
after each coordinate is determined.
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Another approach, applicable only 1o vectors of dimension nine or less, is to
use the memories to store the sum of corresponding coordinates. The sum is
then developed by entering and summing data on a vector-by-vector basis,

rather than on a coordinate by coordinate basis, as above. For our example:
Stack depth used = 4%
STEP  FUNCTION KEYSTROKES DISPLAY

1 Data and store 3.7 1 3.10

COMMENTS

Store first coordinate
of first vector

2 Data and store 2 |[8TO |2 2.00 Store second
coordinate of first
vector

3 Data and store  5.3{$T0]3 5.30 Store third coordinate

of first vector

Continue for each coordinate; the example has three
coordinates.

q Data and recall .45[RcL} 1 3.10 Enter first coordinate
of next vector, recall
previous coordinate
sum
5] Add and store 1 3.55 Store new sum

Enter second coordinate
of next vector, recall
precious coordinate sum

6 Data and recall 6.2 2 2.00

Store new sum

7 Addand store 2 8.20
Data and recall 7.9 3 13.20

Enter third coordinate
of next vector, recall
previous coordinate sum

Continue for each coordinate; the example has three coordinates.

Repeat steps 4 through 8 for any additional vectors.

* Stack depth used can be reduced to 2 if CLX is pressed after each store.
fnner (or Dot} Product

a scalar defined @s: g b, + ab, + aby + ... + a,b,
For example, compute the Inner Product of (3.1, 2.0, 5.3) and (.45, 6.2, 7.9).
Stack depth used = 3

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Clear 0.00 Clear stack, initialize to zeroes

2 Dt 3.1 3.10 Entera

3  Dataand .45 1.40 Enter b, and multiply
multiply

Add ta previous result

4 Add E 1.40
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For two vectors (ay, 8z, as, . . - , 8y}, and(D1: Da, Bg, ..., by), the Inner Product is "

Repeat steps 2, 3, 4 for each coordinate, In this example
repeat two more times first with a= 2.0, b = 6.2, then with
a=5.3,b=7.9.

b5.67 Inner product

Veptor Cross Froduct

The vector cross product of two vectors (a,, a,, as) and (by, by, by) is defined

as: (ayby-asbg, asbi-a by, ajby-ayby)

For example, compute the cross product of (3.1, 2.0, 5.3) and (.45, 6.2, 7.9).
Stack depth used = 4

KEYSTROKES DISPLAY COMMENTS

STEP  FUNCTION

1 Data, store 2 STO! 2 2.00 Enter a; and save
2 Data, store, 7.9 6 16.80 Enter and save bj;
multiply da,by on stack
3 Data, store 53 3 5.30 Enter a3 and save
Data, store, 6.2|8TO|( 5 32.86 Enter and save b, ;
muttiply azb, on stack
5 Subtract E -17.06 First coordinate of
cross product
Data, store 45 4 0.45 Enter b, and save
7 Recall, multiply 3[x] 2.39 Recall a;, asb, on
stack
Data, store 3.7 1 3.1 Enter a; and save

Recall, multiply 6 24.49

10 Subtract E -22.11

Recall by, a;b; on stack

Second coordinate of
cross product

M Recall, recall 15 19.22 a, b, on stack
muttiply

12 Recall, recall 2[ReL]4[x] 080 a;by on stack
multiply

13 Subtract [3 18.32 Third coordinate of

cross product
A Simple Boom

Many considerations involving vectors will be iliustrated by this simple boom
problem. It is called simple not because the problem is simple but because the
boom is. The problem will be presented in three parts. The first part will
illustrate determination of distance vector coordinates when the problem
specification is not completely in either rectangular or polar form. We solve a
side-side-side triangle to determine the dimension vectors, and then use
conversion to polar form to obtain angles. Part il uses trigonometry to resolve

forc1e vectors. Part lil uses polar to rectangular conversion to determine force
vectors,
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PART |

A boom is supported by a guy wire. The length of the boom is A, the length of
the guy is B, and the guy is attached a distance C from the base of the boom,
What is the height of the end of the boom, and at what angies are the boom
and the guy?

Construct the right Manle: he 4+ d2 = A2
h? + (C+d)2 = B2
B2- A2~ ¢?

2C

then h = /A2 - d?
(C+d, h) are rectangular coordinates that correspond to polar coordinates B8
Similarly, (d,h) corresponds to A %0

solve ford: d=

For the example, assume A =8 B =15 cC=9
STEP FUNCTION  KEYSTROKES  DISPLAY COMMENTS
1 Data, square 15 225.00 Square B
2 Data, square 8 64.00 Square A (B? still an stack)
3 Store 1 64.00 Save A?
4 Subtract -] 161.00  Obtain 8%~ A?
5 Data, store 9 2 9.00 SaveC
6  Square 81.00 Square C
7 Subtract (-] 80.00 Obtain B2-AZ-C?
8  Recall, multiply  [RCL]2 2 18.00 Obtain 2C
S Divide =] 4.44  Obtaind = Bz‘zf"cz
10 Store [sT0]3 4.44 Saved
11 Square 19.75  Obtain d?
12 Recall, subtract 1[=][chs] 4425 Obtain A*~d? as -(d?-A?)
13 Square root 6.65 Obtain h (height of boom)
14 Push E@ 6.65 Push h onto stack for
step 18
15 Recall, add [Retis[Ret] 2(+] 1344  Recall d, C; Obtain C+d
16 Convert to polar 15.00 Obtain BL¢ from
{C+dh)
17 Rotl 26.32  Get ¢ (angle of guy)
18 Roli 6.65 Get h from stack
from step 14}
19 Recall [Rei]; 4.44 Recall d
20 Convert to polar 15.00 Obtain A0 from (d, h}
21 Exchange =X 56.25 Get 0 (angle of boom)
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PART U
In the first part of this problem, the angles ¢ and 6 were determined. If a weight

W hangs from the end of the boom, what is the tension in the guy?

7

The forces at the end of the boom are compression of the boom, tension in the

guy, and the weight.
The compression, F, resolves into force vectors HF and VF.

HF = FCOS 8
VF = FSING

HT=TCOS¢
VT=TSINS

Since the boom does not move, the forces must be balanced. Thus
W + VT = VFand HT = HF

Solving for F:  F = ICCTOSS‘OQ
Then w+Tsn\1¢>=1C—C-O%S—e~¢i SING =T COS¢ TAN§
w
T= COS¢ TANG - SINg  For the example, assume W =500

STEP  FUNCTION KEYSTROKES DISPLAY ~ COMMENTS

1 Enter 500 [ENT] 500.00 Enter) weight {for step

10

2 Enter 26.32 1 26.32 Enter ¢ (from part i)
3 cos 0.90 cos ¢

4 Enter 56.25 2 56.25 Enter & (from part |}
5  TAN 1.50 TAN 0

6 Multiply 1.34 TAN 0 COS ¢

7 Recall [RreL] 26.32 Recall ¢

8 SIN [siv] 0.44 SIN ¢

9 Subtract =] 0.90 COS ¢ TAN §-SIN 6
10 Divide (-] 566.75 Obtain T

To find compression in boom:

1 Recall and COS RCL 1 0.90 COS ¢

12 Multiply 499.03 TCOS¢

13 Recall [ReL]2 0.56 COoS 6

14 Divide (=] 898.23 Obtain F
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PART NI

If the guy has a maximum safe tension load of 1000 Ibs., what is the maximum
weight that may be supported? In the first section of this problem, we used
rectangular to polar coordinate conversion to determine iengths and angles.
We may use the relationship between polar and rectangular coordinates to
resolve force vectors as well. We know the maximum tension is 1000 Ibs. at
angle ¢ (determined in part 1). This represents a polar force vector that can be
converted to rectanguiar form to give HT and VT. We know that HT = HC. Thus
we can easily determine C(C=HC/CQS 8) and from C we can obtain VC. The
maximum safe weight is VC-VT.

Stack depth used = 3

STEP  FUNCTION KEYSTROKES DISPLAY  COMMENTS
1 Enter 26,32 |ENT 26.32 Enter ¢
2 Enter and 7000 | DSP | INV ] 896.33 Obtain HT, VT on stack
convert
3 ég‘téar, Store, 56.25 1 0.56 COS 8; HT, VT pushed
Divide =] 1613.35 Obtain C
5 Recall 1 56.25 Recall 8

Obtain HC (=HC), VC

Exchange and 896.33
convert

7 Roll 1341.46 Move VC to top of stack,
VT in stack from
step 3

8 Subtract =] 898.07 Obtain VC-VT as
-{VT-VC) =
max weight
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28  ENGINEERING/SCIENTIFIC APPLICATIONS

Skin Diving Depth
We are intsrested
descend without underwater breathing apparatus. This limit is based on the
mechanical effects of pressure on the body — specifically the minimum volume
that the lungs may be compressed to by the increased pressure (underwater
breathing apparatus compensates for this by providing air at higher pressure to
prevent excessive compressian). To find the limit of compression, we assume
that air behaves as a perfect gas and thus follows the ideal gas laws. We will
use Boyle's Law, which states that at a constant temperature, PV =k, where
P = pressure, V=volume, and k is a constant. Thus volume is inversely
proportional to pressure. To reduce volume to 1/n of original, pressure must be
increased n times.

The capacity of human lungs when full is about 12 pints. The minimum
capacity is about 3 pints. Thus the safe reduction in volume is about 1/4,
which implies that the safe diving depth is limited to about four times pressure
increase.

To determine what this depth is in sea water, we note that at the surface, air
pressure is about 14.7 |b/in? (called one atmosphere or atm). Thus the diving
depth is where the pressure is about 4 atm. Since the air at the surface is
already 1 atm, we need to determine the depth of water that corresponds to 3
atm of pressure (sea water weighs about 64.2 b3},

Stack depth used = 3

n detarmining the maximum safe depth that a diver may

i
i

STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data 14.7 14.70 Enter atm in psi
2 Data, square, 12 E 2116.80 Convert atm to Ib/ft?
multiply
3 Data and divide 64.2 [ 7] 32.97 Enter weight of sea

water in |b/ft® ; divide
to get atm in feet of
water

4 Multiply 3 98,92 Depth for 3 atm
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Parallel Resistance — D.C. Circult

S Decibels
The formula for total effective resistance of a parallel circuit of resistors (for e miven i ios:
D.C. current) is: 1 ; The definition of decibel, db, is given in terms of power ratios:
o &y —r!T" < 'lla_' 1 5 L!) Al = 10 1na P2 Where Pl = 'nPUt power
Rr=R+ R+ ...+ K, R wee e '”“?1 P, = output power
Find the effective resistance of a 5 ohm, 10 ohm, and 30 ohm resistor When power is expressed as V2/R, where V =voltage and R=resistance, we
connected in parallel. ' get 2/Ry V. R
- 1
Stack depth used = 2 - db = 10 log -5~ 4 2 1097? #1010 R,

/R
For additional resistors, repeat step 3. 1

Y
=R, db = 20log2
STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS When Ry > Vs

Data and reciprocal & 0.20 1/Ry
Data, reciprocal, add 10 [ DSP] 0.30  Add 1/R,

You have an amplifier that has an mput impedance of 50,000 ohms and an
output impedance of 600 ohms. If an input signal of 4.5 mvolts resuits in an

Data, reciprocal, add 30 0.33  Add 1/R, output of 3.5 volts, what is the gain in db? Stack depth used =
For additional resistors, repeat step 3 STEP  FUNCTION KEYSTROKES DISPLAY COMMVENTS
4 Reciprocal 3.00  Effective total resistance 1 Data 35 3.50 Enter Vs

2 Data and divide 4.5 @3@ 777.78 Enter V,; obtain voltage
ratio log of voltage

l.og 2.89 fog of voltage ratio

Impedance in a Series Circuit — AL, Current

The A.C. impedance of a series resistance and inductance circuit is given by:

3
V=2 Where V is the transform of the voltage 4 Multiply 20 57.82
| is the transform of current 5 Data 50 @3 50000.00 Enter R,
Zis the complex impedance . )
6  Dataanddivide 600[%] 83.33 Enter R, obtain
If the voltage function is v=v,, COS{wt + 8) then V—\/w efl similarly, for Resistance ratio
the current function i =i, COS(wt+ ¢) then | == % log 1.92 log of resistance ratio
gr?gxlilemﬁgdagss Z=R+wlLj where R is resistance and L is inductance, 8 Multipty 10 19.21
— e requency. 9 Add 77.03 Gain in db

The resistance of a coil of wire is 1.75 ohms, and the inductance is 5.5

illih s. What i i le ¢ ? i voltage if
millihenry: hat is the impedance to 60 cycle current? What is the voltage i Scaling Factor

9 > & t > ;
vz e i i, vl bioer g i - - y .. . .

the current is i = 5.35 COS wt? Stack depth used = . .
STEP  FUNGTION KEYSTROKES DISPLAY  COMMENTS You are constructing a piece of digital electronic equipment. The basic |nierpal
clock is 18.432 MHz. You require a clock of 76.8 KHz, What is the division
1 Data and 60 [ENT] o[ X ][05P] 376.90 Obtain w factor necessary, and is it an integer (you want the result in business display
multiply 2.07 Obtain wl.; imaginary mode)?
2 Data and 5.5 3 2.07 Obtain wl ; imaginary
multiply component of Z Stack depth used = 2
3 Data, convert  1.75 [DSP ][ +poL] 2.7 Enter real component;
polar convert to polar form STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
4 Data 535 5.35 Enter i__ { Clear and set 0
5 Divide 2 E 3.78 Magnitude of |; r%ference display
phase angle of =106 -
i Magnitude Z) = . 2 Data 18.432 [EE] 6[ENT] 18432000,  Mega- =10°; auto
6 Multiply 10.26 magnitude V conversion tQ
Multiply 2 [ose][xJ[x] 1482 Obtain v,, - business mode
8 Exchange 49 .84 Angte 8 of voltage 3 Divide 76.8@3 E 240, Obtain scaling factor
Voltage function is v = 14.52 COS (wt + 49.84°) fangle of Z + 0) ¢ It is an integer It is an integer
94
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Straight Line Motion — Constant Acceleration

An automobile is traveling at a speed of 55 miles per hour.
(negative acceleration) at a rate of 6 ft/sec2 when the brakes are

will be the stopping distance?
The applicable equation of linear motion is:
%2 = Vo2 + 2a(x-xg) where Vo
VX
Xo
X

0 (automobile is stopped),

i

Il

For this problem, v, =

Stack depth used = 3

STEP  FUNCTION  KEYSTROKES DISPLAY
1 Data 55 55,00

2 Multiply 5280[ X | 290400.00
3 Square 60 3600.00

4 Divide (=] 80.67

5 Square, negate —6507.11

8  Data 6 -6.00

7 Multiply, divide 2 [X][*] 542.26

9

Xp
to be determined, and a = -6.00. We rewrite the equation as: L".%,
2

It decelerates
applied. What

initial velogity
velocity at point x
initial position
final position

= 0, Vp = 45 mph, x is

P
COMMENTS
Enter V,
Convert miles to feet
Convert hours to seconds
Vg in feet per second
Obtain -V3

Enter a

Stopping distance in feet
(not very good brakes)

. CHEMISTRY

toichiometry

Mass-mass type stoichiometr ms can be computed utilizing the

foliowing format:

Using a balanced chemical reaction equation, identify the given substance,
called the limiting reagent. Calculate the number of moles of limiting reagent
involved. identify the desired substance and multiply the number of moles of
limiting reagent by the stoichiometric ratio which will give you the number of
moles of desired substance involved in the reaction. The stoichiomeitric ratio is
the ratio of moles of desired substance per mole of limiting reagent (obtained
from the coefficients shown in the balanced equation). The mass {in grams) of
the desired substance can then be computed.

If 51.00 grams of ammonia, NH;, decomposes to form hydrogen

Example:
gas and nitrogen gas, find the amount (in grams) of nitrogen gas formed.

2NH; - 3H, + N,
1

i
|
S
? 51.00 g, NHs 1 mole NH, % [1 mole N, ;] % M
3 mol. wt, NH; {ing.) 2 moles NH mole Ny
' Atomic weight of:
stoichiometric ratio Hydrogen = 1.01
. Nitrogen =14.0
. Stack depth used = 3
H STEP  FUNCTION KEYSTROKES DISPLAY COMMENTS
% 1 Data 51.0 51.0 mass of limiting reagent
, 2 Data 1.01 1.01 atomic wt. of Hydrogen
- 3 Muitiply 3 3.03 wt. of one mole of Hy
4 Add 14.0[+] 17.03  molecular wt. of NH (g./mole)
.k 5 Reciprocal 0.06  moles per gram NH;
- 6 Multiply 299  moles of limiting reagent
invoived in reaction
7 Data 7 1 coefficient of N,
8  Divide 2[+] 050  stoichiometric ratio
9 Multiply 1.50 moles of desired substance
; 10 Data 14.0 14.0 atomic wt. of Nitrogen
H " Multiply 2 28.00  grams N, per mole
’ 12 Multiply 41.93  mass of desired substance
y involved (in grams)
) 5
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General Gas Equalion

A general gas equation problem can be computed utilizing the following
formula and its corollaries: P-V = n.R-T

P = pressure (in atmospheras)*
PrVv=n:R-T V = volume (in liters)

n=g/mol. wt, T = temperature (in degrees Kelvin —
] see section 8.2.2.1)

PeVsorime *R-T g = number of grams in sample

CReT R - General Gas Constant = 0.082

mol. wt, = ‘g—-m— mot. wi. = number of grams per mole

Example: If 0.20 g of a gas occupies a volume of .82 liters at 2.0 atmo-

spheres of pressure at 27°C, what is the melecular weight of the gas?
Stack depth used = 4

STEP  FUNCTION KEYSTROKES DISPLAY ~ COMMENTS
1 Data .20 |ENT 0.20 grams of sampie
2 Data .082 .08 R entered; display
rounded
3 Data 27 27.00 Degrees Celsius
4 Add 273.16+ | 300.16 Obtain T
5 Multiply 24,61 Compute B + T
6 Multipiy 4.92 Computeg * R - T
7 Data 2.0 ENT 2,00 Atmospheres of pressure
8 Multiply 82 1.64 Compute P + V
9 Divide E 3.00 Obtain mol. wt. (grams

per mole)

* Solutions can be calculated if pressure is given in torrs, or mmHg simply by
using 62.4 as the value for R.
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29 SPEERCMETER-ODOMETER CALCULATIONS

Presuming that your automobile speedometer and odometer are not precisely
accurate, there are four corrections that are needed:
1. Find true speed from indicated speed.
2. Find indicated speed from a specified true speed (e.g. posted speed
limit).
3. Find actual distance traveled from indicated distance.
4. Find indicated distance to travel a specified true distance.

For simplicity, we assume that the speedometer error is the same as the
odometer error, and thus we need only one correction factor based on
traveling a measured test distance.

First, we determine the correction factor:
S = mileage at start of test section = 3179.1
T = mileage at end of test section = 3183.9
The test section is true 5 miles long.

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

1 Enter 3179.1 3179.10  EnterS

2 Enter and 3183.9 3179.10 Enter T, exchange
Exchange

3 Subtract B 4.80 T-8

4 Enter and 5 E] E] 0.96 Save correction factor
Divide

The conversion factor is now in memory 1. To compute true speed from
indicated 60 MPH:

5 Clear LLX 0.00
6 Enter and 60 [RcL |1 57.60 True speed
Note: RGL causes auto-
matic push of data

To calculate indicated speed at true 55 MPH;: entered.

7 Clear CLX

8 Enter and 55 [ReLfi[+] - 57.29 fndicated speed
divide

To find actual distance traveled when start at 41291.2 and go to 41351.7:

9 Clear 1 0.0 Set display

10 Enter 41291.2 41291.2 Enter Start

11 Enter and 41351.7 41291.2 Enter End

12 exchange

12 Subtract E 60.5 Indicated distance

13 Recall and 1] 63.0 Actual distance
divide
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To find indicated odometer reading after traveling 32.7 miles from 41792.3:

14 Clear 1 0.0 Set display

15 Enter and 32.7 1 314 Indicated distance
multiply
16 Enter and add  41792.3 41823.7 Odometer reading at
destination

We assumed that the error in the speedometer was the same as in the
odometer. This may not be strictly true. However, it is more difficult to make
the measurements needed to determine the correction factor for the speedom-
eter. To do s0 requires measuring elapsed time to travel a known distance at a
constant indicated speed.

Assume that 3 min, and 7.2 sec. are required to travel a measured miles at an
indicated speed of 62 MPH.

STEP  FUNCTICON KEYSTROKES DISPLAY COMMENTS
1 Clear [cx][osp]2 0.00 Set display
2 Enter 3 3.00 Enter distance
3 Enter 7.2 7.20 Enter seconds
4 Divide 60 [+] 0.12 Convert to min.
5 Enter and add 3 3.12 minutes
6 Divide 60 [+] 0.05 convert to hrs,
7 Divide (=] 57.69 get actual MPH
8 Divide 62 El .93 correction factor
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APPENDIX A - CORVUS 500 CORVUS FUNCTION SUMMARY

This section presents a tabular summary of all functions available on ti
CORVUS 500. Functions are organized in this section by calculator keys
stepping through them as if reading a book. For each function, a list of a
affected stack registers or memories is included. The eftect of each operatio
the keystrokes to cause the function to be performed and any undefine
operands are also listed. Except as noted, each function leaves a ‘‘put
pending"' (see section 3).

A single keystroke sequence is illustrated for each operation. Actually, sever
sequences may cause the same operation to be executed. These options a

available because the keystrokes , , and may (if th

occur in the sequence) be rearranged.

R g

The main purpose of this key is to shift to second functions. Each of thes
functions will be described in turn. All that remains is control of round-c
and display mode control.
Round-off Control
Keystrokes: [DsP | followed by any single digit
Effect: The display is rounded to the indicated number of decim
places
Risplay Mode Control

See key.

v

The inverse key is described with the applicable function.

[sre]
#Memory Store
Keystrokes: | STO ] followed by single digit

Effect: X reg » Mem n where n is indicated digit
Stack unchanged

Memory Exchange

Keystrokes: [s70] [RreL] or [reL] [sT0] followed by single digit
Effect: X reg— Mem n
Mem n— X reg
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ACL

iRermory Recail

Keystrokes: followed by any single digit
Effect: Mem n— X reg

Xreg— Y reg

Y reg— Z 1eg

Zreg—> Wreg

W reg- lost

Memory Exchange

Same as for key.

Recall Summation

Keystrokes:
Effect: Mem 9 reg = 3x
Ty Mem- Y reg = 3y

X reg-+ Z reg
Z reg-> lost
Wreg- lost
HYP
Hyperbotic Sine Hyperbolic Cosine
Keystrokes: @E Keystrokes:
Effect: SINH(X reg)» X reg Effect: COSH(X reg) > X reg
Hyperboiic Tangent Inverse Hyperbolic Sine
Keystrokes: [HYP] [7an] Keystrokes: (hve] [sin]
Effect: TANH(X reg)— X reg Effect: SINH-'(X reg) —> X reg
inverse Hyperbolic Cosine Inverse Hyperbolic Tangent
Keystrokes: [INV | [HYP] [cos] Keystrokes:
Effect: COSH/(X reg)— X reg Effect: TANH-1(X reg)—~> X reg
Rectangular - Hyperbolic Polar -1<value in X reg<t

Keystrokes: | HYp [DSP| {—»POL[

Effect: V(X reg)? -(Y reg)?—+ X reg
TANH X reg —Y reg
Xreg > Yreg

Hyperbolic Polar > Rectangular

Keystrokes: [V ] [Hve] [DsP

Effect: (X reg) COSH(Y reg) - X reg
(X reg) SINH(Y reg)~ Y reg

4
L g )
4
!
!
b
',, i i

SCLXl

Clear

3.

This operation performs three distinct functions

If the display is flashing indicating an invalid operand or out of range
result, will stop the flashing and "'unlock’* the calculator,

If you are in the middle of a multi-keystroke function entry and have
keyed-in a portion of the function entry except (or in addition to)
: will undo the keystrokes.

if neither 1 or 2 above, then will zero the display, zero the X
reg and kill any pending push.

‘cm!

Clear Stack

Keystrokes:

Effect: 0-»X reg
0-Y reg
0->Z reg
0->W reg
resets summation memories (see Part |, Section 20.2)

=]

Summation Plus Summation Minus

Keystrokes: Keystrokes:

Effect: Stack unaffected Effect: Stack unaffected
((mem 7)+ 1)> mem 7 ({mem 7)- 1)»> mem 7

mem 8 + (X reg)2- mem 8 mem 8 - (X reg)2—~ mem 8

mem 9 + (X reg)-» mem 9 mem 9 - (X reg)—»> mem 9

Ty mem + (Y reg)— Zy mem Sy mem - (Y reg) >y mem

no push left pending no push left pending

Recall Summation

Seekey

M@an and Standard Deviation

Keystrokes:

Effect: %2%.5_73_) Xreg = x

{mem 9)2 i~
mem 8 - “mem7 Y reg = standard deviation

{mem 7)- 1
Xreg—~ Zreg Z reg— lost
Y reg—» W reg W reg— lost
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(i
Matural Logarithm
Keystrokes:
Effect: In(X reg)—» X 7eg
valuein Xreg > 0

log

Commaon Logarithm

Keystrokes:

Effect: log(X reg)—> X reg

@
=

Sine
Keystrokes: @
Effect; SIN(X reg)—> X reg
value in X reg is interpreted as
degrees or radians depending
on mode

Hyperboiic Sine

See [HYP; key.

~ POL
Hectangular - Polar

Keystrokes:

Exponentiation ()

Keystrokes: | INV_

HoUL,

Power of Ten
Keystrokes: |DSP

Effect: 10X re8) — X reg

Inverse Sine
Keystrokes: @j
Effect: SIN{(X reg) > X reg
-1<value in X reg before operation=1
value in X reg after operation is
expressed in either degrees or
radians depending on mode

inverse Hyperbolic Sine

See [HYP] Key.

Effect: (X reg)? + (Y reg)? > Xreg =T

Y reg
Xreg

TAN-! (Y reg) -

g is expressed in either degrees or radians depending on mode.

Polar —+ Rectangular

Keystrokes:

Effect: (X reg) COS(Y reg)— X reg

(X reg) SIN(Y reg)— Y reg

value in Y reg before operation is

interpreted as either degrees

or radians depending on mode
Rectangular - Hyperbotic Polar

See key

Hyperpolic Polar Rectangular

See [HYP] key
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[cos |

Inverse Cosine

Cosine Keystrokes:
Keystrokes: {C€OS Effect: COSI(X reg)—> X reg

Hyperbolic Cosine

-1=value in X reg before operation<1
value in X reg after operation is in
degrees or radians depending on moc

Effect: COS(X reg)— X reg
value in X reg before operation
is interpreted as degrees or
radians depending on mode

Inverse Hyperbolic Cosine

See key. See [HYP] key

- RAD

- Degress

-

Keystrokes: ESE

TAN

Tangent

Hyperbolic Tangent

D |

Radian Mode

Keystrokes: [inv] [psp] [>RaD]
Effect: 180 (X reg)> X reg
regardless of mode,

X reg value assumed to be radians,

Radians

Effect: = (X reg)-+ X reg
regardless of mode, X reg
value assumed to be degrees,
converted to radians

inverse Tangent
Keystrokes:
Effect: TAN-}(X reg)-+ X reg
value in X reg after operation is
expressed in degrees or radians
depending on mode

Keystrokes: Effect:
TAN(X reg) > X reg

value in X reg before operation
7= 0 + 180n° (where n is any
integer). Value in X reg before
operation is interpreted as
degrees or radians depending on
mode

Inverse Hyperbolic Tangent

See key.

Degree Mode
Keystrokes:
Effect: Stack unaffected
all angles are subsequently
expressed and interpreted
in degrees

See key

Keystrokes:

Effect: Stack unaffected
All angles are
subsequently expressed

and interpreted in
radians
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]
o Powel

Keystrokes: [y

Effect: o reg)(x regl) X reg
Zreg —» Y reg
Wreg - Zreg

Wreg - Wreg
value in Y reg before operation> 0

VX

Sguare Root

Keystrokes:

Effect: v/ (X reg)—> X reg
value in X reg before operation> 0

YeX

Exchange Registers
Keystrokes: [YeX
Effect: Y reg— X reg

Xreg- Y reg

Y%

Percentage

Keystrokes:

Effect: (X reg) (Y reg) -Xreg

7]
Floll Stack
Keystrokes:
Effect: Y reg—» X reg
Zreg-> Y reg
Wreg— Z reg

=]

Percentage Difference

Keystrokes:

Effect: 100 (X reg - Y reg) - X reg
value in Y reg before operation0

106

Hoot
Keystrokes: [inv] [v7]
Effect: (X reg)
(Y reg) > X reg
Zreg - Yreg
Wreg - Zreg
Wreg - W reg

Value in Y reg before operation>0

Square

Keystrokes: | INV] {DsP| (VX

Effect: (X reg)? - X reg

Gross Profit Margin
Keystrokes:
Effect: 100 (Y reg) -X reg
value in X reg before
operation#100

EEB

psmmnasgmi

[ons |

Change Sign
This operation performs three distinct functions defined by context:
After the first digit of a mantissa is entered, but before any key {except
digit or E] keys) is pressed, negates the mantissa.
After IE—E[ is pressed but before any other key {except digit keys or
[::] key, which is ignored) is pressed, negates the exponent
part of a number.
After any operation is complete,
reg.

CHS | negates the value in the X

Factorial

Keystrokes:

Effect: (X reg)! -+ X reg

value in X reg before operation must be integer=<0

value in X reg before operation>69; result out of normal range
value in X reg before operation>120; result out of extended range

Enter Exponent

This operation performs two distinct functions based on context:
Immediately after keying-in a mantissa, @ will indicate the start of
keying-in an exponent (i.e. power of ten).

Any other time, @ will cause a 1 to be placed into the X reg as a
mantissa and will indicate the start of keying-in an Exponent. if a push
is pending, the stack will be pushed.

Reciprocal

Keystroke?:

Effect: (3*(@ - X reg

value in X reg before operations 0

Oivide
Keystrokes: B

Effect: _XT€3__; X reg
(Y reg)

Zreg > Yreg

Wreg -+ Zreg

Wreg - W reg

value in X reg before operations=0
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[KG—% E_Bi

Kilograms to Pounds Pounds to Kilograms - emigrad@ - Fahrenheit Fahmnﬁi@izk—-s» .Cﬁ:\ﬁi/@mdi -
Keystrokes: KG~LB | Keystrokes: Keystrokes - Keystro gs- y q['EIQ y fc=F]
Effect: Effect: L Effects: < 3 S.(Xreg) + 32> Xieg Effect: 3 (X reg - 32)-> Xreg
2.20462262185 x (X reg)—+X reg 0.45359237 x (X reg)—~>Xreg ‘
X
LAST X Rultiply
Last X Keystrokes:

The key is used to access a special purpose memory. Effect: (X reg) X (Y reg)—> X reg

RCL recalls the X reg operand from the last operation Zreg —+ Y reg
performed and piaces it in the X reg. W reg - Zreg
Wreg - Wreg
w
[ iLTR»@A‘ g
~ : Liters to Galions Gallons to Liters
Keystrokes: |DSP | e
" - kes: INV [Dsp] [LTR-GAL
Effect: 3.14159265359 - X reg Keystrokes: (D] [LTA-GAL]  Keystroke
Xreg - Yre A Effect: Effect:
; ; 0.264179449175 X (X reg)>Xreg 3,7830579544 x (X reg)-+X reg
Y reg » Z reg
Zreg - Wreg ~
w lost
09 o8 Subiract
Keystrokes: B
Effect: (Y reg) - (X reg) » X reg
ENT Zreg — Y reg
Enter (or Modified Push) Wreg - Zreg
Keystrokes: W reg - W reg

Effect: X reg - X reg
Xreg - Yreg
Y reg - Z reg
Zreg - Wreg
W reg -» lost

Cetamasws o Enf‘hes inches to Tentimeters

Keystrokes: [DsP | [CM~IN | Keystrokes: [bsp] [cm-iN

Effect: Effect:
9.39370078702 X (X reg)~>X reg 2.54 x (X reg)—X reg

ﬁsca | il |
' + E
Set Display Format L Ad
In conjunction with , is utitized to control the format of d

the display. causes the display to show results in " Keystrokes: [ +]

scientific notation without roundoff and with zeroes suppressed. Effect: (X reg) + (Y reg)- Xreg

[ﬂ] tinv]  [scr, causes the display to show resuits in business \%Vreg - Y reg
notation without roundoff and with zeroes suppressed. (see also reg > Zreg
Wreg - W reg

[ose])
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APPENDIX B — USING THIS BOOK WITH OTHER

CALCULATORS
All functional descriptions of calculator fealures and all solution programs
which appear in this book are oriented toward the CORVUS 500. That fact

does not necessarily imply that the book is only valuable to CORVUS 500
owners. It does imply that the differences between the CORVUS 500 and your
own scientific calculator need to be carefully catalogued. As long as your
calculator utilizes RPN, most of the material in this book should be useful.

Some of the main features which may be different include the stack depth and
the number of memories. In addition each manufacturer seems to have his own
unique set of idiosyncracies. On the CORVUS 500, for example, the bottom of
the stack is copied when the stack is popped. Each calculator also seems to
have its own mechanism for summation sequences.

Whenever an identified, and seemingly unique, characteristic of the CORVUS
500 is utilized in a program in part ll, that feature is mentioned in the problem
introduction. Furthermore, each application problem lists the stack depth
required. An asterisk by the stack depth indicates that a special CORVUS
feature is utilized in the solution program.

Each calculator will have some functions in common with the CORVUS 500
and other functions which are not in common. The specific keystrokes to cause
each function to be performed are sure to be different.

The best way to identify the calculator differences is to create a version of
Appendix A for your calculator. That table will provide an equivatent keystroke
sequence for each function. More importantly, the table will indicate those
functions where the calculators differ. In this way, nearly every solution
program can be adjusted by substituting new function keystroke sequences
where appropriate. The program logic, including data entry and the arrange-
ment of functions to be performed, remains unchanged.
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APPENDN € — SOME USEFUL CONSTANTS AND FORMULAS

ENGLISH UMITS

12 inches = 1 foot 3 feet = 1 yard

5280 feet = 1 statute mile 1 nautical mile = 1.151 statute miles
1 degree latitude = 69 statute miles (at 40 degree latitude)

1 acre = 43560.0 square feet 1 hectare = 2.471054 acres
1 f18 = 0.80357 bushels - 7.84 U.S. gallons

1 Imperial gallon - 1.256 U.S. gallons

1 cup = 8 fluid oz. 1 fluid oz. = 1.80469 in.?3

1 pint = 2 cups 1 quart = 2 pints

1 gallon = 4 quarts

11b. = 32 oz 1 ton = 2000 Ib.

1 grain = 0.002285 oz.

MISCELLANEQUS CONSTANTS

Plank's constant = {6.62554 £ 0.00015) x 10?7 erg sec.

Avogadro’s number = (6.02257 + 0.00009) X 10% mole?!

Mass of hydrogen atom = (1.67339 x 0.00031) x 1024 gram
Acceleration of gravity at sea level = 9$80.621 cm/sec.2=32.1725 ft./sec.?
Velocity of sound in air = 331.36 m./sec. = 1087.1 ft./sec.

Velocity of light in a vacuum = 2.867925 x 10 cm./sec. =

9.83514 x 1-8 ft./sec.

AREAS, SURFACES, AND VOLUMES

Triangles

with base b and altitude h: area = hb
2
with sides A,B,C and opposite angles a,b,c
area = 1 AB SIN ¢

radius of inscribed circle = AB SIN ¢ .
at+b+c

abc

radius of circumscri i =g
scribed circle 8 AB SIN ¢
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Rectangle with sides a,b

area = ab
Paralleogram with parallel sides a, b and included angle 8

area = ab SIN @

Trapezoid with parallel sides a, b and altitude h
area ='%(a+b)h

Any quadrilateral with diagonals a,b and angle 8 between them
area = % ab SIN @

Regular polygon with n sides of length L

area = Y% nL? COT —1—%0—0

radius of inscribed circle = —%COT k%o

radius of circumscribed circle = %CSC %

Circle with radius r
circumference = 2mr
area = 7rd wre
length of arc subtended by angle 8 =785
length of chord subtended by angle 8 = 2r SIN % 8

area of sector subtended by angle 8 = %sr, where s is arc length

Ellipse with semi-axes a,b
circumference = approx 2m ‘[ a%+b?
area = wab 2

Pyramid (right)
volume = v, area-of-base X altitude

Regular polyhedra with edge length L, and n is the number of surfaces

n Surface Volume

4 1.73205 (2 0.11785 L3
6 cube  6.00000 L2 1,00000 L3
8 3.46410 L2 0.47140 L3
12 20.6457 L2 7.66312 L3

Sphere with radius r
surface = 4mre
volume = 47

Cylinder {right) with radius of base r and altitude h

curved surface = 2urh
volume = #r2h

Cone (right) with radius of base r and altitude h

curved surface = Ve + h?

volume = w/3r2 h

ﬁ

|
;
g
|
ﬁ;
gk -
i
;

TRIGONOMETRIC RELATIONS
For any triangle with vsides A,B,C and oppoAsite angle g,b,C:

C

SIN a SIN b SIN ¢

SIN 2X = 2 SIN X COS X .
COS 2X + COS2X-SIN2X = 2 COS$2X -1 =1 -2 SIN“X

2TAN X
TAN 2X = 1 - T-ANZ X
SIN X = * _L:_%_QS,L

COS X = iv 1—+~§QQ§—)S

TANY X = il}‘l- COS X = 1- COS X = SIN X
1+ COS X SIN X 1 + COS X

SIN X SIN Y =2 SIN %(X Y) COS%(X Y)

COS X + COSY =2 COS %(X+Y) COS % (X-Y]
COS X —COS Y = —=2SIN %(X+Y} +COS%(X-Y)
SIN X COS Y =" ( SIN(X+Y} +SIN (X~Y}}
COS X SIN Y =%( SIN (X+Y} — SIN (X~Y) |}
COS X COS Y = %( COS {X+Y} + COS (X=Y))
SIN X SIN Y = %( COS (X-Y) — COS (X+Y})
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Division ., .., ... T 10, 11
Change-sign . . . .. e e e ... 4,20 Dotproduct.............. . 88, 89
Chemistry:
general gasequation ... .........,98 eandeX ., ., ., ...,..,..... 32,34
stoichiometry . . . . . ... .. oL, 97 Effectiveannualrate . . ... ... ... ... . 52
Chi-square . . . v v v v s v v v o .. .....70 Engineering/scientific applications:
Clearing data: chemistry
changing exponent:. .. .. .. ... co., 4 general gas equation ., .. ... .... a8
clearing thedisplay . . ., ......... . 4 stoichiometry . . . e ., 97
clearing the memories . . ... ....... 4 decibels, . .. ..., ............. a5
clearingthestack . . . .., ...... ... .18 impedence in a series circuit—
Clearx . ... . e e e P 4,14 ac.current, , .., ... .. PEPE . 94
Combinations . . . . .. .. ... ..... 64,65 paraliel resistence—d.c.circuit , . . ..., 94
Commontogarithm. . . . ... ... ...... 32 scalingfactor ... .............,95
Complex numbers: skindivingdepth ., ., ... ........ 93
addition and subtraction. . . ... ... . .79 straight line motion—constant
division. . .. ..o e 81 acceleration . . ... ... ... ...., 96
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multiplication, . . ., .. P = 0] English conversions)
powers and roots . . . . . e .83 Enter. Lo 13
reciprocals, . ... ... e e .82 Enter exponent . e e 4
trigonometric functions . . . ... .. 84,85 Entering data:
cosine. . . . ... . s a.... 84,85 entering adecimalpoint , , . ... ..... 4
SINE . v v e e e . .....84 entering negative numbers., . . . ... ... 4
tangent. . . . . e e n....85 for statistical operations , . . . .. .., .. 45
Compound interest: in business mode . ., ., ., e 4
basic compound interest , ... ... ..., 50 in scientific notation . ., . . ... ... .. 4
continuous compounding . ., ., ... ..51 Errorindieation, .. ... ... .. e 7
nominal rate converted to effective Exchenge, . ... ................ 16
annual rate. . .. . . e 52 Exchanging registers . . .., .. e 16
add-on rate converted to true Exponent part:
annual percentage rate . , . ..., ... 52 changing improper . . ., - R 4
Constants: entering . .. ...... v e 4
B v e, e e , .. 32,34 Extendedcaiculatorrange, .., ... ..... 7
for metric conversions . . . . ., , . 22-26
T, e e e e e , .20 Faetorial . ..o L L 29
Continuous compoundlng. e e e 51 Fibonacciseries. , . .. .. e e e 61,62

Financial applications:

ANNUIY. « v v v v e e e s e 53
compound interest . . .0 o 50-52
add-on rate converted to true
annual percentage rate . . . . . . . .52
basic compound interest, . . . . ... . 50
continuous compounding . . .. . .. , 51
nominal rate converted to effective
annual rate. . . . ..o e e e 52
depreciation, .. .. ... .. ..... b4,85
diminishing balance method . . . . . . . 55
loan payments. . . . . . . e e e 53
remaining balance. . . . . ... ... .. 54
simpleinterest. . .. . . . .o 49
General gas equation . . . . . PN 98
Geometric progression . . . . ... ... 59, 60
Gross profit margin. . . ... .. PR .29
Harmonic progression . . . . ... ... ... 60
Hyperbolic functions, . .. ... .. .. ... 44
Hyperbolic polar*rrectangutar
coordinate conversions. . . . ... ... .. 43
Hypergeometric distribution. . . .. ... ... 69
Impedence in 8 series circuit—a.c, current, , . 94
Inner {(ordot) product . . ., .. .. ... 88, 89
Kelvinscale . .. ..... ... ... 24
fast X. .. .. ... e N 19
fimitationsonmemory . . ... .. . ... .. 19
Linear regression . ... ... ... ... .. 71-73
Loanpayments . . ... ... . ... ... 53
Logarithmic functions . . . . . Ve 32-35
L.ogarithms:
antilogs. . .. ... e e e e e 32-3%5
COMMOM \ . v . i w v e e n e o 32-34
introductionto . ., ... ....... ... 32
natural ., ., .. ..., e e s 32-34
toanybase. . . ... ... L L L 35
Means:
arithmetic ., .. ...... e e 46
harmonic. .. ..., . ... . ..., L. 63
geomettic .. .. .. ......... ..., 63
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clearing. ... .................19
exchange. . . ........... s, .18
last X, . v v i i e R ]
limitations , , . ., . e 19
recalling . . ... ... ..., ..., R Vi
storing .. .. L. 17
Metric*English conversions:
English=metric, ., . ........ .. 24-26
length. . ... ... L 23,25

MBSS & v o v e e e ;. 24,25
metric>English, . . ........... 22-.24
temperature . . ... ... L. L. 23,24
VOIME . . . v v v v e e e e 23,25
Metric system:
basicunitsof . . ... ... L L 21
prefixesfor .. ... ... .. ... ... .. 22
Modifiedpop .. . ... . oL 15
Modifiedpush. . . .. ... ... ... .. .. 13
Muttiplication . . ., . .. .. .. ... .. 10, 11
Natural Jogarithm. .. ... ... .. ... .. 23
Normaleurve .. .. v o v v e 67
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guadratic equation . . . . .. ... L 74
roots of polynomials . . . .. ... ... .. 75
quadrature (Simpson'srule) . . ., .. 76,77
Parallel resistance—d.c. eircuit . . .. ... .. 94
Percent. . . .. e e s 28
Percentage calculatnons
gross profitmargin . . . ... ... ... .. 29
percentage differences . . . . .. . ... .. 28
simple percentages . . . .. . .0 28
Permutations . . .. ... ... e 64
Piv .o e e e 20
Poisson distribution, . . . . ... ... ... . 68
Polar coordinates , . . . . . e e ....38
Polar<rrectangular coordlnate
conVersions . . . .. ... e ... 38,39
Polynomials, reatsof, . . .. .. .. .. . .75
Popping thestack. . . . ... .. .... ....15
Postfix notation. ., .. ... ... ...... 8-11
Powers:
complex , . ....... e e s 83
ofe. . .. e . 32,34
of 10 . e e 33
real ... ... P 31
Prefix notation . . ... ....... .....8,9
Probability and statistics:
binomial distribution. , . .. .. .. .. .. 66
chi-sguare , . .. .o vv v v ., 70
combinations , . ... .. P 64, 65
geomMetric mean . . . . . . ... e e s 63
harmonicmean . . . ... .. ... ... .. 63
hypergeometric distribution. . ., . ... . . 69
lingar regression. , . .. ... e 71-73
MEANS, « . o v o e e s 63
normalcurve. . ... .. ... ... L 67
permutations . . .. ... ... oL 64
poission distribution . . . ... .. ... .. 68
Pushingthestack . ., . .. ... .... ... .. 14
Push-pending leftonstack. . . . ... ... .. 14
Quadratic equation. .. ... B 2]
Quadrature (Simpson’srule}. . . ... .. 76,77
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sum of geometric progressions, . , . . . . .59
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Sine:
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inverse . . . ., e e e 42
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Toradians . .. . .. .. e 36
Trigonometric functlons ........... 40-42
True annual percentage rate, conversion
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simple boom. ., . ... . .. PN 89-92
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parttl . ... 91
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