
Everything you've '
 
always wanted to
 
know about RPN
 
but were afraid to pursue
 
COMPREHENSIVE MANUAL
 
FOR SCIENTIFIC CALCULATORS·
 



Everything yuu've
 
always wanted to
 
know about RPN 

but were afraid tC) pllrsue 

COMPREHENSIVE MANUAL FOR
 
SCIENTIFIC CALCULATORS
 

Published by 

[f1J~~[f@[(~~~~ 
BETTER BUSINESS PRODUCTS 

U 

16611 Hawthorne Blvd., Lawndale, CA. 90260 



All rights reserved
 
No reproduction permitted without written consent by T. K. Enterprises
 

Copyright © 1976 TK Enterprises 

All contents contained herein are provided witholit representation or warranty of any kind. TI< 
Enterprises therefore assumes no responsibility and shall have no liability, consequential or other· 
wise, of any kind arising from the use of formulas or keystroke procedures or any other part 
thereof. 

TAB LE OF CONTENTS 

INTRODUCTION-About The Book 1
 
About the Corvus 500 2
 

PART I-HOW TO USE YOUR CALCULATOR , 3
 
1 Usina Part I " 3
 
2 Ente~ing & Displaying Data 3
 

2.1 Display Formats 3
 
2.2 Entering Data 4
 

2.2.1 Entering Data In Business Mode 4
 
2.2.2 Enteriog Data In Scientific Notation 4
 

2.3 Clear'lng Data. , .. , . . . . . . . . . . . . . . . . . . . .. . 4
 
2.4 Display Control 4
 

2.4.1 Basic Display Control , 4
 
2.4.2 Rounding Options 5
 
[2.4.2.1] Predefined Format 6
 
2.4.3 Automatic Conversions , 6
 

2.5 Error Indication 7
 
2.6 Extended Calculated Range 7
 

3 RPN BASICS , . . . . . . . . . . . . . . . . . . . . . . . .. 8
 
3.1 Why RPN? , 8
 
3.2 RPN and YOUI' Calculator 9
 
3.3 RPN and Foul' Basic Arithmetic Operations 10
 

4 THE STACK , , 12
 
4.1 The Stack Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12
 
4.2 Calculator Stack Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12
 

4.2.1 Modified Push (01' Enter) , .. , 13
 
4.2.2 Push . .. 14
 
4.2.3 Modified Pop (or Clear Xl and Pop .. . . . . . . . . . . . . . . . . . . . .. 14
 
4.2.4 Rolling the Stack " 15
 
4.2.5 Exchange Registers " 16
 

5 MEMORY 17
 
5.1 Storing and Recalling Data , 17
 
5.2 Exchange with Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18
 
5.3 Limitations on Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19
 
5.4 Clearing Memory '. . .. 19
 
5.5 Last X , 19
 

6 CHANGE SIGN 20
 
7 PI 20
 
8 METRIC TO ENGLISH CONVERSIONS , 21
 

8.1 The Metric System , 21
 
8.1.1 Basic Un its of the Metric System. . . . . . . . . . . . . . . . . . . . . . . .. 2'j
 
8.1.2 Prefixes Ut il ized in the Metr ic System , . .. 22
 

8.2 Conversions on the Calculator , , 22
 
8.2.1 Metric to English Conversions, . , , 22
 
[8.2.1.1] MeHic to English Conversions of Temperature 23
 
(8.2.1.2] Metric to English Conversions of Volume . . . . . . . . . . . . . . .. 23
 
[8.2.1.3] Metric to English Conversion of Length , 23
 
[8.2.1.4] Metric to English Conversions of Mass 24
 
8.2.2 English to Metric Conversions 24
 
[8.2.2.1] English to Metric Conversion of Temperature 24
 
[8.2.2.2) English to Metric Conversions of Volume , , 25
 

..
 



..­(8.2.2.3J English to Metric Conversions of Length 25 I[8.2.2.4J English to Metric Conversions of Mass 25 Sum of Arithmetic Progression .... . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59 
8.3 A Multi·Step Conversion 26 Geometric Progression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59 

9 RECIPROCALS 27 Sum of Geometric Progression 60 
10 FACTORIALS 27 Harmonic Progression " 60 
11 PERCENTAGE CALCULATiONS 28 Fibonacci Serles ,. ., " . 61 

11.1 Simple Perc~ntages 28 24 PROBABILITY AND STATISTICS ' 63 

11.2 Percentag~ Difference . . . . . . . . . . . . . . . .. 28 Means . 63
 

11.3 Gross Profit Margin " 29 Geometric Mean . 63 
12 SQUARE AND SQUARE ROOT 30 Harmonic Mean . 63 

13 POWERS AND ROOTS 31 Permutations and Combinations . 64 

14 LOGARITHMIC FUNCTIONS 32 Binomial Distribution , . 66 
14.1 Logarithms '............................... 32 Hypergeometric Distribution . 67
 
14.2 Logarithmic Functions on the Corvus 32 Poisson Distribution , , . 68 
14.3 Logarithms to any Base . . . . . . . . . . . . . . . . . . . . . . . . .. 35 Normal Curve . 69
 

15 ANGULAR UNITS " 36 Chi·Square Statistics .....................•................. 70
 
15.1 Angle Modes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 Least Squares Linear Regression . 71
 
15.2 Degrees to Radians .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 25 NUMERiCAL METHODS . 74 

16 POLAR TO RECTANGULAR COORDINATE CONVERSIONS 38 Quadratic Equation . 74 
16.2 Polar Coordinate Basics 38 Roots of Polynomials . 75 
16.2 Conversion Operations , 38 Quadrature (Simpson's Rule) . 76 
16.3 Rectangular to Spherical Conversions 39 26 COMPLEX NUMBERS , , . 78 

17 TRIGONOMETRIC FUNCTIONS , , 40 Introduction . 78 
17.1 Trigonometric Function Basics ., _.. 40 Complex Addition and Subtraction . 79 
17.2 Trigonometric Functions on the Corvus , 41 Complex Multiply , . 80 
17.3 Inverse Trigonometric Functions on the Corvus , 42 Complex Divide , . 81 

18 HYPERBOLIC POLAR TO RECTANGULAR COORDINATE Complex Reciprocal , . 82 
CONVERSIONS , , , , 43 Complex Powers and Roots . 83 

19 HYPERBOLIC FUNCTIONS 44 Complex Trigonometric Functions . 84 
20 SUMMATION, MEAN, AND STANDARD DEVIATION 45 Complex Sine , . 84 

20.1 Entering Data for Statistical Operations 45 Complex Cosine , , , .. , . 84 
20.2 Memory Manipulations and Restrictions . . . . . . . . . . . . . . . . . . . . .. 46 Complex Tangent . 85
 
20.3 Statistical Operations _. 46 27 VECTORS , , . 86 

20.3.1 Recall Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 Introduction ., . 86 
20,3.2 Mean and Standard Deviation. . . . . . . . . . . . . . . . . . . . . . . . .. 46 Vector Addition. , . 87 

Inner (or Dot) Prod uct . 88PART II-APPLICATION PROBLEMS 48 
Vector Cross Product . 89

21 USING PART" , .. , , , ,. 48 
A Simple Boom , . 89

22 FINANCIAL APPLICATIONS , , 49 
Part I . 90Simple Interest , . . . . . . . . . . . . . . . .. 49
 
Part II . 91Compound Interest , 50 
Part III , . 92Continuous Compounding , 51 

Nominal Rate Converted to Effective Annual Rate " 52 28 ENGINEERING/SCIENTIFIC APPLICATIONS , .. , , . 93 

Add-on Rate Converted to True Annual Percentage Rate (APR) 52 Skin Diving Depth . 93 
Annuity 53 Parallel Resistance-D.C. Circuit . 94 

Loan Payment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53 Impedance in a Series Circuit-A.C. Current , 94 

Remaining Balance , 54 Decibels .. , . 95 
Depreciation-Straight Line Method. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54 Scaling Factor , , . 95 

Depreciation-Diminishing Balance Method , 55 Straight-Line Motion-Constant Acceleration . 96 

Depreciation-Sum of Years Digits Method , .. , , , . . . . . . .. 56 CHEMISTRY . 97 
23 SERIES AND PROGRESSIONS , 57 Stoich iometry " . 97 

Arithmetic Progressions , 57 General Gas Equation . 98 
29 SPEEDOMETER·ODOMETER CALCULATIONS . 99 



APPENDIX A-CORVUS 500 CORVUS FUNCTION SUMMARY 101 
APPENDIX B-USING THIS BOOK WITH OTHER CALCULATOr~S , .. ,110 
APPENDIX C-SOME USEFUL CONSTANTS AND FORMULAS ,111 

English Units ,., .. 111 
Miscellaneous Constants 11'\ 
Areas, Surfaces, and Volumes , , '111 
Trigonometric Relations ,.,. 113 

INDEX , 114 

INTRODUCTiON 

ABOUT THE 600K 

The primary purpose of this book is to help you get the most out of your 
scientific calculator. In particular, we have oriented this book io ihe use of the 
CORVUS 500 because of the large number of functions it offers and because it 
makes use of Reverse Polish Notation (RPN). RPN is the most efficient means 
for expressing complex calculations - an entire section of this book is devoted 
to a discussion of this important technique. 

This book Is divided into two main parts, The fi rst part describes the basic 
operation of the CORVUS 500. This description also applies to the APF Mark 
55 and the OMRON 12SR calculators which are functionally identical to the 
CORVUS. Furthermore, the discussion of RPN is generally applicable and 
should provide the reader with a thorough understanding of RPN and an 
appreciation for its simplicity, 

The second part of this book presents a selection of application problems and 
their accompanying solution programs. These sample problems are organized 
by application area. These areas include financial, statistical and simple 
algebraic calculations. 

Every effort has been made to select problems which do not require substantial 
background in a specific application area. Instead, understanding the prob­
lems we have selected ca!!s for minima! effort. in that way, the reader can 
concentrate on understanding the solution approach and the solution program. 
For anyone who uses a scientific calculator, the problems in the appl ications 
portion of this book should be both useful and easily understood. 

It should be noted that all sample problems have been performed On a 
CORVUS 500. The APF and OMRON calculators should perform identically, 
Other RPN calculators will not behave in precisely the same way. However, 
sufficient similarity does exist between all RPN calculators to render most of 
the solution programs useful. Appendix B describes a technique to adapt the 
solution programs to other RPN calculators. 



ABOUT THE CORVUS 500 

The CORVUS provides a large number of calculating functions with a minimum 
number of keys. Some of the features of this powerful calculating instrument 
are listed belo\AJ. 

Display Control - Calculated results may be dispiayed in either of two modes: 

business mode and scientific notation mode. Floating point and fixed point is 

available in both modes. 

Accuracy - Regardless of the number of digits displayed, the CORVUS 

internally maintains 12 significant digits. For certain calculations, such as 

powers, roots and trigonometric functions, the 2 or 3 least significant digits 

may be incorrect. Even if such "inaccuracies" are encountered, the precision 

of the CORVUS will almost certainly exceed the precision of the data entered. 

Range - The CORVUS will accept entry of values between ±9.99999999999 x 

1099 and ±0.1 x 10.99• However, some functions are only defined for certain 

values and other functions utilize approximations that are relatively inaccurate 

in certain ranges. These restrictions are summarized in Appendix A. 

The CORVUS offers an expanded range for displaying results. Calculations 
generating results that are not within the normal operating range of the 
CORVUS can be obtained if they fall between ±9.99999999999 )( 1099 and 
±9.99999999999 x or between ±0.1 x 10-99 and ±0.1 x 10 .199. The10 199 

effective range for calculated results on the CORVUS is therefore ±10.200 to 
10199±9.99999999999 x . Althoughcalculated results are valid for this entire 

range, a result out of normal range (0.1 x 10.99 to 9.99999999999 x 1099) will 
not be valid for use in further calculations. 

!Error li"idic~tion - The display will flash to indicate out of range results or 
undefined function arguments. 

Memories - The CORVUS has 10 addressable memories plus a special 

purpose memory. Additiona!!y, the CORVUS has a 4 leve! memory stack for 

temporarily storing operands during calculation sequences. 

[Jisplay - This key, marked IDSP I , serves two purposes. First, it is used 

in all display control sequences. Second, it serves as a second function or shift 

key. Over many of the keys a second function appears in gold letters. The 

display key is utilized to perform these functions. 

!nvers,$ - The utility of each key is further increased through the use of 

the inverse key. The inverse of nearly every function is available. 
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PAR1~ I: HOW TO USE YOUR CALCULATOR 

"I USING PART I 

This first part of the book is intended to introduce you to your calculator. Each 
ca!culator function is described and simple examples are presented. 

The examples employed in Part 1 are straightforward function applications. 
They are constructed in simple steps with each keystroke outlined, as well as 
indicating the accompanying display. 

Keystrokes for these examples are shown as I FUNCTION j. For example, the 
key labeled y' is shown as ~. Shifted keystrokes are shown in the same 
manner. Thus v'X becomes 151 and the function vx is indicated by 

[DSP I 15j. 
All of the problems in Part 1, unless otherwise noted, will assume that the 
calculator has just been turned on. That is, all entries are displayed to the 
nearest hundredth and all memories are zeroed. 

Use of the calculator is carefully developed in this part of the book. Our goal is 
to enable you to build upon these basic operating instructions and, with the aid 
of the application problems, to enable you to extend the calculator's powerful 
features to suit your own calculating requirements. 

Even those who are already familiar with the basic operation of the calculator 
should not ignore this part of the book. We think there may be a few features 
that will come as a pleasant surprise. 

2 EINTER~ING #~f\!D DiSPlAVIIIlG DATA 

2. 1 [mr,p!~y lFonnats 

The CORVUS 500 has two basic display formats - business and scientific. 
Business format displays 12 digits and sign (-). Scientific notation displays a 
10 digit number part, or mantissa, which is multiplied by a power of ten, or 
exponent part. Both the mantissa and the exponent can be negative (-). 

3 
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l 2.2 Ei1Itering Data 

Data can also be entered in either a business or scientific format. 

2~2,.1 Entering Data in Bush"tess M()de 

In business mode, positive numbers are merely keyed-in. Twelve digits can be 
entered and any digit key pressed after the twelfth digit is ignored, To enter 
negative numbers, the CHANGE-SIGN key ( ICHS I ) is utilized. ICHS) is 
effective at anytime after the first digit of the number has been keyed. The 
DECIMAL POINT key (0) can be depressed at any spot desired in order to 
enter a decimal point. 

2.2.2 Entering Data in ScientiHc Notation 

In scientific mode, the mantissa part is entered in the same manner as a 
number in business mode. The exponent part is inserted by depressing the 

ENTER EXPONENT key ( §] ). Up to a 10 digit mantissa can be displayed in 
scientific notation mode. If an 11 or 12 digit mantissa has been entered, the 
last digits are internally maintained, but not displayed. To enter a negative 
exponent, ICHS I is pressed at any point after ~ has been depressed. 

Only a 2 digit exponent can be entered. If more than 2 digits are keyed-in, the 
last 2 digits are retained (i.e., key-in: 3.69 [ill 963; the mantissi'l is 3.69, the 
exponent is 63). If no mantissa has been entered, then when [ill is pressed 
the calculator automatically assumes a mantissa value of one. 

2.3 Clearing Data 

The CLEAR X button ( ICLX I)automatically zeroes the display. However, if you 
have keyed-in an improper exponent in scientific notation, and do not wish to 
clear the entire entry, merely continue to key-in the digits desired. Only the last 
two digits of the exponent inserted are maintained (see 2.2.2). Clearing the 
calculator's stack and memories is discussed in sections 4 and 5, respectively. 

2.4 Display Control 

The CORVUS 500 can be formatted to display entered data and calcUlated 
results in two modes, business and scientific. Display controls do not impact 
data as keyed. In the examples to be given, one value (1234.56789123) is 
entered and merely reformatted in each example. 

2.4.1 Basic Display Contl'ol 

There are two basic display control sequences - [ DSP I ~ for scientific 
notation and IDSP I [J.@ [@ for business mode. In scientific mode, up to a 
10 digit mantissa can be displayed, but extraneous zeroes are suppressed. In 

4 

business mode 12 digits can be displayed, but once again, extraneous zeroes 
are suppressed. 

Exampies: (refonnatting 1234.56789123) 

KEY DISPLAY COMMENT 

. 1.234567891 03 Scientific mode
 

[Dspl~@] 1234.56789123 Business mode
 
~Q£] 

2.4.2 Rounding Options 

In both modes, the mantissa can be rounded to a fixed number of decimal 
places by keying-in IDSP I and then the number of decimal places to be 
displayed. In business mode with round-off, no number can be displayed to 
more than nine decimal places. For large numbers the calculator can display 
as many decimal places as will fit on the 12 digit display. Thus the number of 
decimal places displayed may be limited to the number of digits remaining 
after displaying the digits of the integer (non-fraction) part of the number. In 
scientific mode, the calculator can always display up to nine decimal places. 

The calculator rounds up one if the first digit not being displayed is greater 
than or equal to 5. It is important to note that although the display is rounded 
to the desired number of decimal places, the calculator still internally maintains 
all 12 digits. 

Examples: (reformatting 1234,56789123) 

KEY DISPLAY COMMENT 

[Dspl~Qill 1234,56789123 Business mode 

IDSP 13 1234.568 Rounds up one in last digit 
[DSP ] 9 1234.56789123 Only able to display 8 decimal place 

1.23456789 03 Scientific Notation ~~ 
IDSP 13 1.235 03 Rounds up one in last digit 

~9 1.234567891 03 Rounds to 9 decimal places 

5 
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2.4.2. i Pre{~e'iil1od F!.}rm,~t 

When a CORVUS 500 is switched "on", it automatically displays in business 
mode with 2 decimal places shown. This is equivalent to the display format 

. ,....---,..-------. ,....--., r--:-:l 
caused by keying ~~~ I DS" I 2. 

2.4.3 Aui:omatic Conversions 

Regardless of the display mode, numbers may be entered in either format. 
When in business display mode, a number may be entered in scientific form 
and it will be automatically converted to business form during the calculation 
sequence. If in scientific display mode, a number entered in business mode will 
be automatically converted to scientific form. In the course of a problem, the 
form of the operands may be intermixed; each operand may be entered in the 
most convenient form, with any necessary conversion being performed 
automatically. 

When the calculator is set in business mode, certain automatic display format 
conversions occur. When calculated answers or data entered fall outside of a 
predefined range the display converts to scientific mode. Only numbers 
between ±.000000000001 and ±999999999999 can be displayed in busi· 
ness mode. Any data out of that range (which is still within the calculator's 
range. See section 2.6) will be displayed in scientific notation. It will continue 
to be rounded to the same number of decimal places as previously formatted. 
When the magnitude of the value to be displayed is too small to be displayed 
in the formatted number of decimal places, the data will be displayed in 
scientific notation. As long as the display hasn't been reformatted to scientific 
mode, the calculator will convert back to business mode should the data once 
again fall within the given range. It should also be noted that while the 
calculator is formatted to scientific notation, no conversions to business mode 
are required and none will occur. The example given below illustrates this 
automatic conversion feature. The ENTER key ( IENT I ) can be viewed as part 
of the mechanism for effecting formatting of data. 

Example: 

KEY DISPLAY COMMENT 

o. Business mode 

IDSP I 2 0.00 2 decimal place format 

Automatic conversion because value 

IDSpl~@] 

.003 IENT I 3.00 -03 
too small for display format 

Back to business mode with round .03 IENTJ 0.03 
off to two decimal places 
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2.5 EH'ror indication 

Under certain circumstances, such as dividing by zero or a calculated result 
being out of the calculator's normal range, the calculator indicates an error. 
...... e ,",~f"r'\'"ti'IJVI it:" C'h(",\\~Jn h\J .....:!:l ' ......... ,I'J'~ 

rH~nlay 
~ ...... ,...., ,::'I ~@I";~~-I 

~tnnt:: thA., ..... fl~~hinn
III 1..;1 .... 'IV ...... I' OJ, fl~~hinn .......... t"'''...... n~nrt:lC:Qinn ............... .'''' ...... r-;,.,. ', ........... " .. ;",:3
 

and a second depression clears the display. While the display is flashing, the 
calculator is, in effect, locked. In order to "uniock" the calculator lCLX I must 
be pushed. Appendix A summarizes error conditions. 

2.6 Elaended Calculated Range 

The normal range of the CORVUS 500 is from ±.1 X1 0-99 to ±9.99999999999 
x 1099. However, calculated results can be obtained between ±1 X 10100 and 
±9.99999999999 X 10199 and between ±. 

1 x 10.199 and ±.1 X 10-99 and ±.1 X 10·]99. 

Therefore, the effective range of the calculator is between ±.1 x 10 -199 

and ±9.99999999999 x 10199• 

If the result is outside the normal range yet within the extended range, the 
display will flash. Upon depression of ICLX I , however, the flashing ceases 
and a valid result is displayed. In these extended range results the most 
significant digit of the exponent part is not displayed. That is, the exponent is 
really between either 100 and 199 or -100 and -199 although only the last two 
digits and sign (-) are shown (e.g., when a flashing 6.721354687 27 is 

10127displayed, the result is actually 6.721354687 x . The mantissa part of 
results which are out of normal range is valid for use in further calculations. The 
exponent part of these results, however, is off by 100 (i.e., the value displayed 
is the value now internally maintained by the calculator.). If ±10.00 x 1099 

(±9.99999999999 with no round-off) or ±0.10-99 is displayed flashing, the 
result is out of the extended range, too large' or too small, respectively. 

7 
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RPN BASICS below shows the expression 2 x 3 + 4 x 5 in infix, postfix and prefix 

notations. 
, 

INFIX	 POSTFIX PREFIX•

3. i Why RPN? 

Three forms of representation for arithmetic expressions have come into 
common use. We are all familiar with one of these notations - ordinary 
notation, which is called algebraic by calculator manufacturers and called infix 
by mathematicians and computer scientists. The term infix refers to the 
position of the operator in relation to the operands. For example, in the 
expression a + b, the operator + is fixed between the operands a and b. 

Its familiarity would seemingly make infix notation an ideal choice for all 
calculators. Unfortunately, infix has certain inadequacies. Consider the expres­
sion 2 x 3 + 4 x 5. Is this expression equivalent to 2 x 7 X 5 = 70 or to 6 
+ 20 = 26?
 

The ambiguity could be resolved with parentheses. Thus the original expres­

sion might be written as 2 x (3 + 4) X 5 or as (2 x 3) + (4 x 5). A little
 
experience with a parentheses-dependent notation should be sufficient to
 
indicate how error prone such an approach is. Both missing and extraneous 
parentheses are sure to be annoyingly frequent. 

Alternatively, the ambiguity could be resolved by defi ning an operator hierar­
chy. For example, we could define a hierarchy in which mUltiplications are 
performed before additions. Thus the original expression would be interpreted 
such that 2 x 3 + 4 x 5 ::: 6 + 20 ::: 26. For expressions involving sum-of­
products, this hierarchy works very well. If the expression to be evaluated is not 
a sum-of-products however, we are forced to use parentheses or to reformat 
the expression. Therefore to override the sum of products hierarchy, we could 
do 2 x (3 + 4) x 5 or 2 x 3 x 5 + 2 x 4 x 5 or 3 + 4 = 7 and 7 x 2 x 5. 

The inadequacies of infix (or algebraic) notation become more severe as the 
complexity of the expression increases and are sufficient to cause considera­
tion of two other expression notations. These notations are known as "Polish" 
because they were first described by the Polish mathematician Lukasiewisz. 
Fortunately (and understandably) these notations are not known as 
Lukasiewisz notations. The two varieties of Polish notation are called postfix (or 
reverse) and prefix Polish. Both permit parentheses-free, unambiguous repre­
sentation of arithmetic expressions. In postfix notation the operator follows its 
operands, thus the infix expression 2 + 3 is written as 2 3 +. In prefiX 
notation, the operator precedes its operand thus we have + 2 3. The table 

(2 X 3) + (4 X 5) 2 3 X 4 5 X + +X23X45 

2 X (3 + 4) X 5 234+X5X XX 2+345 

Both prefix and postfix notation eliminate the ambiguity of infix without 
parentheses. Typically however, expressions are written in infix notation. 
Fortunately the conversion from infix to postfix (RPN) is very simple. 

1.	 Start at the left of the expression. 

2.	 Record next operand. 

3,	 If an operation can be performed (i.e., if all necessary operands have been 
recorded), record the operator. 

4.	 If another operation remains which can be performed, repeat steps 3 and 4. 

5.	 If more operands and operators remain in the expression, then repeat steps 
2, 3,4, and 5. 

The conversion from infix notation to prefix notation is not nearly so simple: 

1.	 Locate the operation to be performed last, record the operator. 

2.	 Locate the leftmost operand of the operator in 1. 

3.	 If the operand is itself an expression, follow all steps in this procedure for 
that sub-expression. 

4.	 If the operand is instead a data item, record it. 

5. If there exists a next leftmost operand, repeat steps 3, 4 and 5. 

RPN offers the advantage of unambiguous representation of complex expres­
sions. Furthermore, as one would suspect from the simple conversion between 
infix and RPN, RPN is easily mastered. RPN is therefore best suited to meet 
your calculation requirements. The next two subsections should help you to feel 
comfortable with RPN and to lay the groundwork for effective utilization of your 
calculator. 

3.2 RPN and Your Calculator 

To perform calculations on your FWN calculator, operands must be keyed-in 
before the operator. Thus the calculator requires some internal means for 
storing operands pending operator entry. In the calculator, this is accom­
plished by a set of registers called the stack. A register is an electronic 
element utilized for temporary data storage. Since mUltiple operands may be 
keyed in before the operator, some means to indicate the end of an operand is 
needed (infix uses the operator itself to separate operands). The ENTER key 

8 9 



provides this means. The stack and operations on the stack will be discussed Example: The other variety of our familiar example 2 x (3 + 4) x 5 ,£ 
in section 4. For purposes of this section we will disregard the potential for 

exceeding the stack's capacity and will delay discussion of the "internal" 
FUNCTION KEYSTROKES DISPLAY COMMENTS

workings of the stack. In essence we can conceive of the stack as a place to	 STEP 
2 Kev·in first operand temporarily store operands - a storage facility with the special property that 1 Data 2 

IENTI 2.00 Store operand on stack the last operand stored is the first operand returned.	 2 Enter 

3 Data 3 3 Key-in next operand 

3.3	 RPN and Four Basic Arithmetic Operations 4 Enter IENTj 3,00 Store operand on stack 

5 Data 4 4 Key-in rrext operand 
This subsection presents a series of examples illustrating calculations involving 

3 + 4 is displayedaddition, subtraction, mUltiplication and division. After keying in each number, 6 Add GJ 7.00 

either the ENTER key ( IENT I )or the appropriate operator key ( + , - , x , -;- ) 7 Multiply 0 14.00 2 X (3 + 4) is displayed 

is depressed. For now, the ENTER key can be thought of simply as a 8 Data 5 5 Key-in next operand 

mechanism for indicating the end of a number entry which is to be stored in 9 Multiply 70.00 2 X (3 + 4) X 5 is displayed0 
the stack. 

Example:	 Turn your calculator on and let's try one variety of our
 

familiar example. - (2 x 3) + (4 x 5) l, Example: [(16+ 4) - 1.5J + 15-3
 
~ 

17 -(1.5 X 9.8) 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 2 2 Key in first operand STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
 

2 Enter [ENTI 2.00 Store operand (2) on stack
 
Key-in first operand
 3 Data 3 3 Key in next operand 1 Data 16 16
 
Store operand on stack
 4 Multiply 8] 6.00 2 X 3 is displayed 2 Enter IENT I 16.00
 

Key-in next operand
 5 Data 4 4 Key in next operand 3 Data 4 4
 
16 -+- 4 is displayed
6 Enter rENT I 4.00 (2 X 3 and 4 are now on 4 Divide 0 4.00
 

stack Data 1.5 1.5 Key-in next operand •
5 
7 Data 5 5 Key in last operand 6 Subtract G 2,50 [(16+ 4) - 1.5J displayed 

8 Multiply 0 20.00 4 X 5 is displayed 7 Data 15 15 Key-in next operand 
9 Add 0 26.00 (2 X 3) and (4 X 5) were on 8 Add 17.50 [( 16+4)-1.5J +15 displayedGJstack and are now added, 

9 Data 3 3 Key-in next operand displaying results. 
10 Subtract 14.50 [16+4)-1.5] +15- 3 displayedEJ 
11 Data 17 17 Key-in next operand 

~ 

12 Enter I ENT I 17,00 Store operand orr stack 

13 Data 1.5 1,5 Key-in next operand 

14 Enter IENTI 1.50 Store operand orr stack 

15 Data 9.8 9,B Key-in next operand 

16 Multiply 14.70 1.5 X 9.8 displayed0 
17 Subtract 2,30 17 - (1.5 X 9,8) displayed 

1B Divide 6,30 [(16+4)-1.5J +15-3 andffi 
17-(1.5 X 9.8) were on 
stack. Result of division 
rrow displayed " Notice that we have not used any memories yet. 
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4 THE STACK 

4.1 The Stack Concept 

The stack is a stoiage structure whose application is not Iirniled to RPN 
calculators. To be more precise, the stack is a well-developed conceptual 
structure which is frequently encountered in data processing and which 
appears in a somewhat modified form in calculators. We feel that the 
peculiarities of the calculator's stack are more easily understood if viewed in 
the context of a "true" stack. 

A stack is a set of storage registers forming a linear list (see Figure 4-1). 
Insertions and deletions are made at only one end of this list. Thus, the stack is 
called a fast-in-first-out or LIFO list because the last item added to the list is 
always the first item removed from the list. 

Data-in -" /- Data-out 

\ ( 

~ 
___ storage elements 

L...-..---1 ~--~---­
Special terminology is utilized in referring to the stack. Data is inserted onto 
the top of the stack and removed from the top of the stack. The bottom of the 
stack is not immediately accessible - all other items must first be removed. 
When an item is added to the stack, we push the stack. The top remains in the 
same location but its contents are changed. The old top is moved down one 
location. When an item is removed from the stack, we pop the stack. 

Stack terminology comes from an analogy with the spring-loaded stack of 
plates frequently found in cafeterias, When an additional plate is added to the 
stack, the weight of the new plate pushes the rest of the stack downward. The 
new plate is at the same leve! as the previous top plate, When a plate is 
removed from the stack, the rest of the stack pops upward. The top of the 
stack always remains at the same level. 

4.2 Calculator Stack Operations 

The CORVUS 500 stack consists of four storage registers. These registers are 
labeled X, Y, Z, and W, Where X is the top of the stack and W is the bottom of 
the staCk. Register W (the bottom of the stack) is sometimes called register T. 
After each operation is completed and as new data is being keyed-in, the value 
stored in X and the value displayed are the same, 

12 

Each function performed by the CORVUS reqUires either one or two ope rands. 
When a function is entered, these operands are found on the top of the stack. 
Each function performed by the CORVUS produces one or two results. The 
net effect of each function is to pop operands off the stack and push results 
onto the stack. The description of each function will include the effect of the 
function on the stack. 

The subsections which follow describe the stack operations provided by the 
CORVUS. Each op~ration is described and the keystrokes to perform the 
operation are specffied. Each subsection also presents an example of the use 
of the operation in tabular torm, Rows in these tables represent the content of 
the register indicated in the leftmost column. Columns in these tables represent 
the content of the registers after the keystroke sequence heading the column 
has been completed. The values in the tables are all integers. 
(~ ~ @] [osp' 0 will cause the display to show only integers.) The 
tables are sequential; each proceeding from the state of the previous table. 

4.2.1 Modified Push (Of Enter) 

This operation causes the X register to be copied and pushed into the Y 
register. The value in the X register remains the same. The previous value in 
the Y register is placed in the Z register and the previous value in the Z register 
is placed into the W register. If a value was in the W register before the 
modified push operation, the value is lost. The modified push operation is 
performed by depressing the ENTER key ( IENT I ). 
Example Sequence: 

~ 1 IENT I 2 IENT I 3 [E]iiTl 4 lENT I 5 

X 1. 1. 2. 2. 3. 3. 4. 4. 5" 

Y O. 1" 1. 2. 2. 3. 3. 4. 4~ 
I 

3"Z O. O. O. 1. 1. 2. 2. 3. 

W O. O. O. O. O. 1.. 1. 2. 2" 

It is important to note that after the ENTER key is depressed, the data item next 
keyed in will write over the old X register value, 
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4.2.2 Push 

Two variations of the "true" stack push operation occur on the CORVUS. First, 
the combination of a modified push and a data value being keyed in is 
equivalent to a push. This form of push is obviously the purpose of the ENTER 
key. As was discussed in Section 3, some means is necessary to distinguish 
between the continuation of a data entry and the beginning of a new data 
entry. 

The second variation of the push operation does not require a keystroke. 
Virtually every operation leaves a push pending. When a number is entered 
following an operation, it is pushed onto the stack. The ENTER key is not 
required. The only function key which does not cause a push on the next 
number entry is the summation key ~ ,whose use is discussed in Section 
20. 

Example Sequence: 

x Previous 

Values 

* 
0 

*** 
10 IENTI2 

* 
D 

',' 

B 
*** 
6 IENTJ5 

'* 
[}J 

X 5. 9. 10. 2. 5. 4. 6. 5. 30. 

Y 4. 3. 9. 10. 9. 3. 4. 6. 4. 

Z 3. 2. 3. 9. 3. 3. 3. 4. 3. 

W 2. 
** 

2. 2. 3. 
** 

3. 
** 

3 3. 3. 
** 

3. 

"The four basic arithmetic operations all have an identical effect upon the
 
stack. The two operands are popped off the stack and the result is pushed onto
 
the stack.
 

"':'The CORVUS stack has a special property. Whenever the stack is popped, a
 
copy of the W register value remains in the W register.
 

'~':' "The value is pushed onto the stack since the operation was performed
 
immediately before the number entry.
 

4.2.3. Modified Pop (or Clear X) and Pop 

The modified pop operation causes the X register to be zeroed and causes the 
next value entered to be placed in the X register without affecting the rest of 
the stack. Naturally, this operation is most useful for eliminating erroneous 
entries. A modified pop is caused by depressing the CLEAR X key [CLX) . 

A true pop operation can be caused by either ICLX I G or ICLX I[J. In 
both cases the X register is first zeroed and the value in the Y register is not 
changed (but is moved to the X register) by the operation that follows. The net 
result of the two keystrokes is to pop the stack. 

Example Sequence: 

~ 
Previous 

Values 
@2U 2 IENTj5 [CLX I * 

GJ @Lxl * 
[J 

** 
5 

X 30. o. 2. 5. o. 2. o. 4. 5. 

Y 4. 4. 4. 2. 2. 4. 4. 3. 4. 

f-i""ii 
L 3. 3.. 3. 4. 4. 3. 3. 3. 3. 

Ww 3. 3. 3. 3. 3. 3. 3. 3. 3. 

>:<The sequences lI'iJ 0 and ICLX IG pop the stack. 

'" ':'The sequence shown (j CLX I[J followed by data entry) and the equivalent 
sequence with ICLX I GJ followed by data entry have the same net effect 
upon the stack as simply 1CLX I followed by data entry. 

The clear key, ICLR I , is used to zero the entire stack. The appropriate 
keystroke sequence is Iasp 1 [ClRJ . 

'Ut4. Ro!Hll1g the Stack 

At times, one may need to review the contents of the entire stack or to shift 
data within the stack. The ROLL key ( §] ) provides these capabilities. The 
roll operation causes the top of the stack to be inserted on the bottom of the 
stack and causes the stack to be popped. That is, after depressing [@) the 
contents of the X register are moved to the W register, the contents of the Y 
register are moved to the X register, the contents of the Z register are moved to 
the Y register, and the contents of the W register are moved to the Z register. 
In this operation the stack can be viewed as a circularly connected list in which 
the top "rolls" around to the bottom slot and each of the other positions "roll" 
up one slot. Since the stack has four registers, depressing the ~ four times 
will return the stack to its original position. The roll operation leaves a push 
pending for the next number entry. 
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The following table illustrates the roll operation. The stack is first cleared and 
then four new values are pushed onto the stack. Four roll operations are then 

performed. 

Example Sequence: 

rENT]IENTI~ ~iJ
~ §J @J §J1 rEDICLRJ 3 4
 

X
 

2 

2.o. 3. 4.1e 3. 1.2. 48 

y 2.1.o. 2.3. 400.. 1. 3. 

Z
 o.
 o.
 o.
 ~
 2.I. 1. 4. 3. 2. 

W o. o. o.o. 4.1. 1.3. 2. 

4.2.5 Exchange Registers 

When coupled with the ROLL key, the EXCHANGE key ( Iy~x I ) proVides the 
capability of completely reorganizing data stored in the stack. The exchange 
operation moves the contents of the X register into the Y register and the 
contents of the Y register into the X register. This operation is particularly 
useful when operands have inadvertently been entered out of order. For 
example, a divisor may be in the Y rather than the X register.
 

The following table illustrates the exchange operation. The registers are
 
initialized with the values from sub-section 4.2.4. The keystroke sequence
 
utilizes the roll and eXchange operations to reverse the order of the registers'
 

contents.
 

Example Sequence:
 ~ 
PreviOllS 

v al~H~S 

]Y«>x I §J §1 IY<>x] 

X 11
•• ~-. 4. 2. 1. 

y 3. 4. 2. 1. 2. 

'1 
&­ 2. 2. 1. 3. 3. 

W 1. 1. 3. 4. 4. 

-

5 MEMORY 

The CORVUS 500 has several electronic storage registers called memories. 

The stack is actually four tYlelTlories. There are also a number of memories 
which are completely invisible to the user of the calculator. For example. the X 
register and the display register are physically distinct although they appear 
logically as a single register. Other "invisible" memories are utilized as a 
scratchpad during' calculations. These "invisible" memories are termed not 

addressable since there is no way for the calculator user to access them. In 
addition to the four stack memories, the calculator has 11 other addressable 
memories. Ten of these are called named memory, and one is a special, 

unnamed memory used during calculation sequences involVing the summation 
function (see Part I, Section 20). The named memories are memory 0, 1, 2, 3, 
4, 5, 6, 7, 8, or 9. Memory 0 is also called LAST X. The appropriate digit key is 
used in accessing these memories. The following five subsections describe the 
operations available for the ten named memories. Section 20 of Part I 
describes operation of the unnamed memory. 

5. i Storing and Recalling Data 

The STORE and RECALL. keys are used in manipulating the named memories. 

The INVERSE key doubles as the STORE key. This multiplicity of purpose is 
indicated by the gold letters STO. Operations involVing the STORE key do not 
involve the INVERSE key. Therefore the DISPLAY key ( I asp! ) is not needed 

to distinguish between the two uses of the INVERSE/STORE key. The "little 
gold box" enclosing the gold letters indicates that no shifting via a IDSP I is 
needed. Similarly, the RECALL key ( I RCL I ) requires no shifting. 

Values are stored by depressing I STO I followed by the memory name (also 

called address). Values are recalled from memory by depressing IRCL I 
followed by the memory name. This example should clarify the storing and 
recalling operations - SWitch on your calculator and try a few simple memory 
operations. 
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STEP FUNCTION I<EYSTROI<ES DISPLAY COMMENTS 

Data 3.55 3.55 Put in a data entry. 

"<- Store [SIC] 7 3.55 Store 3.55 in memory 7­
leave a push pending. 

3 Data 6,15 6.15 Put in a second data entry. 
4 Store @0]4 6.15 Store 6.15 in memory 4. 

5 MUltiply [8] 21.83 Calculate 3.55 x 6.15. 

6 Recall IRCL] 7 3.55 Recall operand from memory-· 
leave a push pending. 

7 Recall CR0]4 6.15 Recall other operand. 

8 Multiply 0 21.83 Repeat multiply. 

9 Store ~§J4 21.83 Store product over old operand. 
10 Clear Icu<j 0.00 Clear display. 

11 Recall IRCLj 4 21,83 To no one's surprise, the product 
we stored is still there! 

5.2 Exchange with Memory 

The CORVUS provides an additional memory operation. Depressing either 

[iTO 1 ~ or I RCL] ISTOJ followed by a memory name causes the 
contents of the X register to be exchanged with the indicated memory. The 
following example illustrates this application. 

STEP FUNCTION I<EYSTROI<ES DISPLAY COMMENTS 

1 Data 3. 74 3.14 Enter a number. 

2 

3 

Store 

Clear stack 
/ST61 3 

IDspjl CLR I 
3.14 

0.00 

Store the number. 

Clear all values in the stack. 

4 Data 7.93 7.93 Enter another nllmber, 

5 Exchange 
memo [§]!RCLI 3.14 Exchange display and 

memory 3. 

6 Clear stack ~PJ§J 0.00 Clear stack. 

7 Recall IRCLI 3 7.93 Yes, it was really exchanged! 

8 Clear stack [Ds~1 CLR! 0.00 Clear stack again. 

9 Data 4.56 4,56 Enter another number. 

10 Exchange 
memo 

IRCL1@~ 3 7.93 Try another combination for 
exchange command. 

11 Recall IRCL! 3 4.56 Yes, it was really exchanged! 

-
... ' ..... 5.3 Limitations on Memory 

••
Although the store, recall and exchange memory operations are valid for each 
of the ten memories, there are certain restrictions to the full use of memories 7, 
8, g, and 0, Memories 7, 8, and 9 are utilized during calculation sequences 
involving the summation function, If the summation function is not involved in 
the calculation, then memories 7, 8 and 9 can be treated identically to 
memories 1 through 6, Section 20 of Part I will describe restrictions to trle use 

•"", '. ~ 

of memories 7, 8 and 9 during summation calculations. 

•
Memory 0 is a special memory also called LAST X. Hils memory is used in 

, nearly every calculation sequence. The LAST X memory is further described in 
Section 5.5. 

•
I 5.4 Clearing Memory 

A clear memory instruction is neither prOVided on the CORVUS 500 nor is such 
an instruction necessary. When a new value is stored in memory, any trace of 

·'1'""; 
the value previously stored in that memory Is lost. Thus memories are 
effectively cleared before being stored into. Naturally, you can always clear all 
memories by switching the calculator off and then on again. 

5.5 LAST)( 

Memory 0 (or LAST Xl is a special purpose memory, Although the store, recall 
and exchange operations are valid for this memory, the value stored in memory°is changed throughout calculation sequences, Each time an operation is 
performed, Hle last operand to that operation is stored in memory O. Thus the 
term LAST X, 

The LAST X memory is a useful feature for correcting errors. An incorrect 
operation can be undone with the aid of LAST X, For example, if you 
inadvertently mUltiply by 5 you could correct this error by depressing 

~ [LASTX I D, 

STEP FUIIJCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 4.35 4.35 Enter an operand. 
2 Push [fNIJ 5 5. Enter second operand. 
3 Multiply IT] 21.75 Multiply 
4 Stop 21.75 Realize that a mistake has been 

made--should have divided, 
not multiplied. 

5 Recover [§ill~XJ 5.00 Recover the last operand. 
6 Divide GJ 4.35 Undo the erroneous operation. 
7 Recall 1RCLI~AS~J 0.00 Retrieve operand again. 
8 Divide [J 0.87 Now we've got the desired result! 
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ifi CHANGE SIGN 

8 METRIC=-ENGLISH CONVERSIONS 
The CHANGE SIGN key has already been introduced in Section 2. The 
purpose of the key as described in that section was to enter negative numbers 
and negative exponents. The CHANGE SIGN key also provides an unary-minus 
function. Unary-minus permits the change of sign for calculated results. 

The operation is referred to as unary because it requires only one operand. The 
four basic arithmetic operations already discussed ( +, ., x, ..;- ) are termed 
binary functions because they require two operands. All operations available 
on the CORVUS are either unary or binary. 

Example: _ (9.67 X (·1.45) ) 1 
3.42 X 10 6 ­

STEP r::UNCTION KEYSTROKES DISPLAY COMMENTS 

1 Format Display [ DSP I§]~ 0.0000 Set display for scientific
 
notation.
2 Data 9.67 9.67
 

3 PUSH lENT 11.45 [ CHS I -1.45 Enter negative operand.
 

4 Multiply W ·1.4001 Obtain 9.67 x ( -1.45)
 

5 Data 3.42@]6IcHSI 3.42-06 Enter operand with negative
 
exponent.
 

6 Divide [J -4.1006 Obtaih 9.67 x (·1.45)
 
3.42 x 10·6
 

7 Unary-Minus [CHS I 4.1006
 

7 PI 

Constants are extremely usefuf in many calculation sequences. Appendix C 
contains a number of frequently used constants. 

Pi may very well be the most commonly used constant. For convenience, the 
CORVUS supplies a PI key for entering this constant. The value used is 
3.14159265359. By depressing I DSP 10 this value is pushed onto the 
stack. The following simple example calculates the circumference of a circle to 
illustrate the use of the PI key. 

Example: Find the circumference of a circle of radius 3,5 feet. The formula 
circumference = 2m is used. 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 2 2 Enter constant 2.
 

2 Pi 3.14 Enter constant 11
lE~0 
3 Multiply 0 6.28 Find 211
 

4 Data 3.5 3.5 Enter r
 

5 Multiply [3] 21.99 Obtain 2m.
 

The metric system of units is a concise and consistent way of exp ressing ... 
amounts of length, volume, mass (weight), and temperature. The system 
employed most often in the United States is called "English" although it is so 
outmoded even the English no longer use it. The metric system, now in use 
throughout most of the world, employs a system of basic units (e.g., liters is the 
basic unit of volume) and a series of prefixes which represent powers of ten 
(listed in Section 8.1.2). The United States is currently in the process of 
switching to the metric system and for that reason, many measurements are 
only given in one system or the other. Thus a simple method of conversion 
between metric and English systems is reqUired. The CORVUS 500 prOVides 
this method. Length, volume, mass, and temperature conversions can be easily 
accomplished with the calculator. 

8.11 The Metric System 

8.1.1 Basic Units of the Metric:: System 

In any system of measurement it is necessary to begin with some quantities 
that are considered to be elemental, or basic, The choice of these particular 
quantities is arbitrary. 

The four elemental units of the metric system" which we are concerned with 
are: 

UNIT ABBR E\!IATION UNITS OF CONVERSIOf\J TO ENGLISH 
Meter m length 1m = 39.37000787402 inches 
Gram g mass 19 = .002204622622 pounds 
Degree Centigrade °c temperature temperature C= temperature 

(F -32) x 5/9.
 
Liter Q volume 1£=.264179449175 gallon
 

" Not to be confused with the SI system of units, which includes units for time, 
amount of a sUbstance, electrical current, and luminence of light. 
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13.1.2 PrEj~hleS U'liIi:i2ed ir. the ~Jett!c Sl!s~e.n 

In the metric system, all measurements which need to be expressed in units 
larger or smaller than the basic unit are expressed in a unit that is formed from 
the basic unit A prefix wilierl represents a power 01 ten (positive or negative) is 
affixed to the basic unit. (e.g., kilo represents 103; a kilogram is equivalent to 
1000 grams). Through this method, any amount, no matter the size, can be 
easily expressed. The same prefixes are used for all of the basic units. 
Following is a list of the metric prefixes, and their corresponding value and 
abbreviation. 

8,,2.1. -I Met,ic->-IE':rlgiis(il Comf@i'sions of Temper@ture 

The calculator automatically converts degrees Centigrade. or Celsius, to 
degrees Fahrenheit. The values are computed utilizing the formula OF = (9/5 
°e) + 32- The value to be converted is keyed into the X-register and followed 
by the keystroke sequence Iosp 1 IC->F I . It should be noted that a third scale 
of temperature is often employed in the scientific world, the Kelvin, or absolute, 
temperature scale. The conversion from degrees Kelvin to degrees Centigrade 
is accomplished by subtracting 273.16. 

Example: Convert 267,83 OK. to OF. 

STEP FUNCTION KEYSTROKES DISPLAY COI\Mv1 fl\JTSPREFIX ABBREVIATION VALUE 

10 12tera' T 1 Data 267.83 267.83 Enter data °K 
giga- G 10 9 

2 Subtract IENT1273.16 B -5.33 Obtain °c 
mega- M	 106 

3 Degree C to ~ IC-+F! 22.41 Compute value °F 
kilo· k	 10 3 

Degree F 
hecto· h 10 2
 

deca· de 10 1
 

deci· d 10'1 8.2.1.2 fJletric-+English Conversions of \J'o!um®
 
centi· c
 10'2 

The calculator automatically converts liters to gallons using the constant 1Q10-3milli· m 
.264179449175 gallon. The constant util ized by any of the conversion10-6micro' J1 

10-9	 functions (excluding temperature, which uses a formula) can be found bynano· n 
keying 1 and then the conversion function key sequence. pico- p 10-12 

Another excellent feature of the metric system is that volume units are derived 
from the length measurements. Using the formula which states that one cubic 

3.2	 Convl.m,iomi 011 the Cs!cul!litor centimeter (cm3 or cc) Is equal to one milliliter (ml), the dimensions of a 
container can be easily converted to a volume unit. 

The CORVUS 500 can perform conversions of temperature, volume, length, 
and weight between the English and metric systems. Specifically, the calcula­ The keystroke sequence for the conversion from liters to gallons is 

tor is programmed for conversions between degrees Centigrade and degrees IDSP I[LTR-"GAL I· 
Fahrenheit, between liters and gallons, between centimeters and inches and Example: Convert 8138.41 cm3 to gallons 
between kilograms and pounds. Because of the simplicity of the metric system. 
any metric unit can be easily converted to the units provided by the calculator STEP FUf'JCTION KEYSTROKES DISPLAY COMMENTS 
(e.g., convert milliliters to liters merely by mUltiplying by 10-3). However,
 
conversions between English units are more complicated, and a table of units Data 8138.41 lENT! 8138.41 Enter cm3 (same as milliliters)
 
is required. A table of English equivalents can be found in Appendix C.
 2 Multiply ~[§30 8.14 Convert to liters 

3 Lit .....Gal. IDSP II LTR-+GAL I 2.15 Compute value in gallons a. 2. 'ij MGtric --+ lEL'lgiis!l Con'1<:ll'sil:ms 

The four metric-+English conversion keys are lOcated on the shift of the four 8.2. '1.3 Metl'ic-,El'Iglish Conversion Of length 
basic arithmetic function keys ( + , x , - , + ). The keystroke sequence for 

The calculator automatically converts centimeters to Inches using the constant 
these conversions;s IDSP I ?:;::J-f,~~N. This sequence converts the 

1 cm = .393700787402 inches. The keystroke sequence for conversions value in the X-register and leaves the new value in the X-register with 
from centimeters to inches is [£~ I CM-+IN I . 

a push pending. •
..l.-..,,','," ,', ' 23
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Example: How long is a 100 meter dash (in yards)?	 -',., 8.2.2.2 El1Ig!ist'H·Melric Conversions of Volume 
STEP	 FUNCTION KEYSTROKES DISPLAY COMMENTS 

The calculator automatically converts gallons to liters using the constant 1 gal. 
..., .•...-, '1 Data 100 IENT I 100.00 Enter data in meters •

•

= 3.78530579544 liters. The key sequence for conversion from liters to 
2 Divide [IT] ~ 2 Q 10000.00 Convert to em. 

11~II()1l!,; is rDSPl fINVll LTR-->GAL I . It should be remembered that 1 mi. = 1 cm1.
>::J-- _.,- L..-...--.---.J-~'-----'

3 CM-->IN IDSP II CM-->/N I 3937.01 Obtain value in inches 
Example: If a container has a 19.25 gallon capacity, what is its volume (in

4 Divide 36 LJ 109.36 Compute value in yards l ~ , 

cm3)? 

8.2.1.4 Metric.-+English Conversions of Mass	 STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 19.25	 19.25 Volume in gallonsThe calculator automatically converts kilograms to pounds using the constant 1 
kg = 2.20462262185 lb. The keystroke sequence for qonversion from 2 Gallons to IDSP 1~[Cfii?GAD 72.87 Obtain volume in liters 

literskilograms to pounds is ~ I KG-->LB I. 
33 Divide [ill [CBS] 3 D 72867.14 Obtain volume in cm

Example: Upon leaving the United States for Europe, Ron weighed 160 
pounds. When he weighed himself in Europe, he found that he weighed 78.30 
kilograms. How much weight did Ron gain (in pounds)? 

6.2.2.3 English--;- MeUic Conversions of LengthSTEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Enter 160 160.00 Original weight in x and y The CORVUS 500 provides automatic conversions from inches to centimeters 
2 Kilograms 78.30 [OSP] I KG-*LB 1 172.62 Weight in Europe using the constant 1 in. = 2.54 em. The keystroke sequence utilized is 

to Pounds ~~I CM-->IN ,. 
3 Exchange Iv<>x! 160.00 Weight in Europe is in Y-register Example: 50 meter pools are normally used in competition. In an old sports

Original weight is in X-register 
arena, a 50 yard pool is in use; what is the difference between the two pools

4 Subtract 0	 12.62 Compute Ron's weight gain 
(in decimeters)? 

6.2.2 English.-+Metric Conversions 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

The four English metric conversions on the calculator utilize the INVERSE key 
1 Data 501 ENTI 50.00 Data in metersand the conversion keys. The keystroke sequence for these conversions is 

f[)SPl rtiiNl CONVERSION or fINVll DSP I CONVERSION This sequence converts 2 Data 501 ENT I 50.00 Data in yards 
~~ FUNCTION ~ FUNCTION' 

3 Multiply 36[3] 1800.00 Convert to inchesthe value in the X-register and leaves the new value in the X-register with a 

push pending. 4 Inches to cm ~Q§]I CM-->IN 1 4572.00 Convert to centimeters 

45.72 Convert to meters8.2.2.1 English-:>-Metric Conversion of Temperature 5 Multiply [ill[§] 2 CD 
The calculator automatically converts degrees Fahrenheit to degrees Centi ­ 6 Subtract G 4.28 Difference in meters 

grade utilizing the formula "C. = 5/9 (OF -32). The keystrokes used for this 7 Divide [JI CHS 11 [J 42.80 Difference in decimeters 

conversion are IDSP I~ [C.... F,. To convert degrees Centigrade to 

deg rees Kelvin add 273.16. 

Example: Sven is planning a trip to Los Angeles. He checks the L.A. Times and 

finds that the temperature is running around 80 degrees. After a brief moment 8.2.2.4 English.-+Metric Conversions of Mass 
of panic (80 degrees Centigrade is eqUivalent to 176° F.), Sven realizes that 

The conversion from pounds to kilograms is provided on the CORVUS 500. 
the temperature is expressed in Fahrenheit. What is the temperature in 

This conversion utilizes the constant 1 lb. = .45359237 kg. The keystroke
Centigrade? 

sequence for this conversion is [DSP I~ [ KG....LB [ . 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

Example: One store (A) advertises 5 pounds of rice tor $2.19. Another store 
80 Data OF1 Data 80 (8) is selling the same type of rice at 2 kilograms for $1.69, Which store has 

2 °F to °c ~~IC""FI 26.67 Compute value in °c the better buy? 

24	 25II.
 



STEP FUNCTION /CEYSTROI<ES DISPLAY COMMENTS 

1 

2 

Data 

Divide 

2.19 

IENTI5 U 
2.19 

0.44 

Store A data 

Store A price per pound 

3 1.69 1.69 IENT I 1.69 Store B data 

4 Data 2 2.00 Store B data 

5 I<ilograms 
to Pounds 

[iiS"P] I KG-+LB I 4.41 Number of pounds of rice 

6 Divide U 0.38 Obtain Store B price per Pound 

7 Subtract c:J 0.05 Compute difference between 
Store A and Store B 

Conclusion: Store B sells rice for 5¢ per pound less than Store A. Therefore, 
Store B has the better buy. 

B.3 A MUlti~Step Conversion 

Example: An aquarium measures 72 inches in length, is 24 inches wide and 
is 20 inches high. Assuming that the aquarium is built of materials with density 
equal to water, what is the capacity (in gallons) and weight (in pounds) of the 
filled aquarium? 

Approach: This problem can be solved by determining the volume of the 
aquarium and expressing the volume in cubic centimeters. The volume can 
then be translated to liters and then to gallons. The volume can also be 
translated to kilograms (recall that 1 cc (or ml) of water weighs 1 gram) and 
then to pounds. 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 
1 Data 72 72 Length in inches 
2 Data [ ENTI24 24 Width in inches 
3 Data IENT!20 20 Height in inches 
4 Multiply 34560.00 Volume in cubic inches 00
 
5 Data 1 '1 

6 In-+Cm [DSP IQ@I CM-+IN I 2.54 Conversion factor em/in 
7 Multiply lENTil ENTI00 16.39 Obtain cc/in3 

8 Multiply 0 566336.93 Obtain volume in cc 

9 Divide ~3Q 566.34 Obtain volume ;n liters 
10 Store I STO 11 566.34 Store a copy for Step 12 
11 Lit-+Gal IDSP II LTR-+GAL I 149.61 Obtain aquarium capacity in gals. 

12 Recall I RCL 1 1 566.34 Recall volume in liters = weight 
in kilograms. 

13 KG-+LB IDSP II KG->LB I 1248.56 Obtain weight in pounds 

9 RECIPROCALS 

The RECIPROCAL key is used to calculate the reciprocal of any value in the X 
register. A reciprocal, or multiplicative inverse, is the value which is found when 
one is divided by a particular number, hence the symbol 1IX. The RECIPRO­

CAL. key is located on the shift of [ill. 
The reciprocal of any value in the X register can be found by keying the 
sequence IDSP I OEJ . However, the sequence ~ QE] will cause the 
display to flash, indicating an error, if the value in the X register is O. This 
operation (1 10) results in the display flashing the maximum value (Le., 10.00 

99 with round-off and 9.999999999 99 without round-off). 

Example: 

? 

l + J..... 
3 -8 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Reciprocal 3~~ 0.33 Obtain 1/3 

Reciprocal 8 r CHS 1[§J [GJ -0.13 Obtain 1/·8 

3 Add 0.21 Obtain 1/3 + 1/·8 
2 

GJ 
4 Reciprocal IDSP 1!I8 4.80 Compute __1_ 

1/3 + 1/_ 8 

10 FACTORIAL.S 

Factorials are used in a variety of application areas. In Part 11 of this book, for 
example, factorials appear in the probability section. The factorial of X (written 
X!) is defined as the product of the integers from 1 to X (Le., 1x2x ... xX). 
Thus 4! equals 1 x 2 x 3 x 4 = 24. In addition, O! is defined as equal to 1. 

Factorials are only defined for non-negative integers. 

The factorial of X is obtained on the CORVUS with the keystroke sequence 
IDSP I ~ . 69 is the largest integer whose factorial lies within the normal 
range of the CORVUS. 1201 is within the extended range. 

Example: 10! 1 

STEP F UNCTION KEYSTROKES DISPLAY COMMENTS 

Aquarium weighs 1248.56 pounds when filled with water and holds 149.61 1 Data 10 10 
gallons. 2 Factorial IDSpl~ 3628800.00 10! is displayedIII
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11 PERCENTAGE CALCIJlATIONS 

Three percentage calculations are available on the CORVUS. 

11.. 1 Simple Percent~ges 

The percentage of a fixed amount can be obtained with the keystroke 
sequence lE~ BJ . The amount is placed in the Y register and the 
percentage desired is placed in ttle X register. The keystrokes ~ ~ 
leave the Y register unaffected and replace the original value in the X register 
(call it xo%) with xo% of the value in the Y register. 

Example: The price per pound of rice was 40¢ but has since been increased 
by 12.5% What is the new price per pound of rice? 

STEP FUNCTION KEYSTROKES 
1 Data .40 [ENT] 

2 Data 12.5 

3 Percent IDSP I[!J 
4 Add 8 

11.2 Percentage Difference 

The percentage difference between two amounts can be obtained with the 
keystroke sequence LPiiJ ~ . The amount in the Y register is used as a 
base. The percentage difference between the amount in the Y register and the 
amount in the X register is calculated by depressing ~~ . The inverse 
button (~) is ignored if pressed. The calculated value (~.1. 100) replaces 
the old value in the X register. Y 

Example: A runner accustomed to competing in the mile, must now compete 
in 1500 meter races. What is the percentage difference between the two 
distances? 

STEP FUNCTION KEYSTROI<ES DISPLAY 

1 Data 5280 5280 

2 Data !ENT 11500 1500 

3 Multiply 150000.00IENTI§]20 

4 CM-HN 59055.12IDSP&r->IN I 
5 Divide 12 -;. 4921.26 

6 % difference los? I~ -6.79 

DISPLAY COMMENTS 
DAD Original price per pound 

12.5 Enter % 

0.05 Find 12.5% of .40 

0.45 New price is displayed 

COMMENTS 

Enter mile in feet 

Enter 1500 meters 

Convert 1500 meters to 
centimeters 

Convert to inches 

1500 meters in feet 

1500 meters is 6.79% shorter 
than mile 

•
i

11.3 Gross Profit Margin 

The CORVUS provides a direct means for computing gross profit margin. 
Gross profit margin is given by: 

Let C '" cost 

P '" Gross profit margin (amount) P= 10~~ R 

R = Gross profit percentage or markup % based on selling price 

Selling price is equal to C + P. 

Gross profit margin is obtained with the keystroke sequence IDSP I ~ QD 
or with ~ [@ [!] . The value in the Y register is assumed to be cost, 
C, and is unchanged by the gross profit margin operation. The value in the X 
register is interpreted as the markup percentage based on selling price, R, and 
is replaced by the gross profit amount R. The selling price C + P can be 
obtained by pressing GJ after the gross profit margin operation is complete. 

Example: A coffee merchant receives notice that the wholesale price of Java 
beans is being increased to $2.10 per pound. If the merchant sells coffee at 
only a 25% markup based on selling price, what will be the new selling price 
of the Java? 

STEP FUNCTION KEYSTROKES DISPLAY 

1 Data 2.10 2.10 
2 Data lENT 125 25 
3 GPM [5s!J~~ 0.70 
4 Add GJ 2.80 

COMMENTS 

Enter price per lb. of coffee 

Enter % markup 

Obtain gross profit margin 

Obtain new selling price 

.L­il~.
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12 SQUARE AND SQUARE ROOT 

The SQUARE ROOT key can be used to calculate either the square or square 
root of the value in the X register. The calculator can only find the square root 
of positive numbers. The SQU.ARE ROOT key is located on the shift of [!j. 

Both of the operations performed by the SQUARE ROOT key, sqaare and 
square root, can also be performed by the POWER key, whose functions are 
described in the following section. The square of a number can also be found 
by keying the number and then lENT10 .These alternate operations require 
2 stack levels. The square root of any positive value in the X register can be 
found by keying the sequence ~£J Iv'X I. The sequence to find the square 
of any value in the X register is Iasp I ~ I-Ix I. It is advantageous to 
follow those sequences, not only because it requires fewer keystrokes than are 
necessary with the POWER button, but also because only the X register is 
required. 

Example: )17.22 
- 217.23 1 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Square 17.2~~rm 295.84 Obtain 17.22 

2 Subtract 217.23 [J 78.61 Obtain 17.22 ·217.23 
3 Square Root Iasp 11 v'X1 8.87 Compute y!17. 2 2 ·217.23 

The area of a circle is computed with the formula: 1Tf2 

Example: If the radius of a circle is 4.925 inches, what is the the area of the 
circle? (in square inches) 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

F?rmat ~~[§]3 0.000 Set 3 decimal places display. 
Display
 

2 Pi I asp 101 DSP I 3.142 Constant Pi
 

3 Square 4.925§]~1v'X124.256 Obtain r2
 

4 Multiply 0 76.201 Compute 1f r 2
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13 POWERS AND FlOOTS 

The POWER key can be used to raise a positive number to any finite power or 
to find any root of a positive numbei. The calculator Gannot find powers or; 
roots of negative numbers or zero and the display will flash zero when 
calculations are attempted with such values. 

To find the power of a number, the number should be pushed into the Y 
register and the power should be keyed into the X register. The POWER key 
( ~ ) is then depressed to complete the operation. The keystrokes for roots 
are similar. The number is keyed and pushed into the Y register. The root to be 
taken is then keyed into the X register. The root operation is concluded with 
the sequence [iliYJ [d . 

? 
4Example: (R3l 3 . _ 2 '~243.61 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 8.3 8.3 

2 Push IENTI3.4 3.4 Y and X values in place. 

3 Power ~ 1333.11 (8.3)3.4 obtained. 

4 Data 243.61 243.61 Number whose root is to 
be taken. 

5 Push IENTI2.7 2.7 Y and X values in place. 

6 Root ~~ 7.66 Obtain 2.7y'243.61 

7 Subtract G 1325.45 Compute (8.3)3.4 - 2·~h43.61 



14. LOGARITHMIC FUNCTIONS 

The CORVUS offers four basic logarithmic functions. These functions are 
common logarithm, natural logarithm (or L on), powers of ten (1 Ox), and powers 
of e (exj. The following brief review of logarithms should help to clarify the 
relationship of these four functions. 

14.1 Logarithms 

The logarithm to the base b of a number x is given by:
 

if 10gb x = y then by = x.
 

Where y is the logarithm, to the base b, of x and x is the antilogarithm of y.
 
Logarithms are useful for multiplication and division and for finding powers and
 
roots. Recall that bx x bY = bX+Y,B: = bX'~ (bx)y = bxy, and W = bx1y


bY 

Logarithms provide a means to express problems in these expotential forms. 
For example, if a = 10gb c (i.e" c = b') and d = 10gb f (i.e., f = bd) then cf 
== b' x btl = b·+d and the antilogarithm to the base b of a + d equals cf. 
Similarly, elf !l: antil09b (a - d), cf = antil09b (fa) and .yc = anti 10gb (t). 
Subsection 14.2 will illustrate these applications of the logarithmic functions. 
Thus with the aid of a table of logarithms, problems involving multiplications 
and divisions are reduced to additions and subtractions. Problems requiring 
calculation of powers and roots are simplified to multiplications and divisions. 
Naturally, the CORVUS makes the multiplication, division, power and root 
operations extremely easy. However, due to their special properiies, logarithms 
are frequently encountered in a variety of applications. 

14.2 Logarithmic Functions on the Corvus 

The CORVUS provides a means for direct calculation of logarithms to the two 
most commonly used bases. Common logarithms (or logarithms to the base 
10) are Obtained with the keystrokes IDSp I @ . Natural logarithms (or 
logarithms to the base e) are obtained with the keystroke [GJ. In both cases 
the value in the X register is replaced with its logarithm. These operations are 
only valid for positive values. Either a zero or a negative value in the X register 
when a logarithm operation is performed will cause the display to flash zeroes. 

The antilogarithm of the value in the X register can also be obtained. The 
keystroke sequence IoSP I ~~ or the sequence ~ ID~P I @ 
will cause the value in the X register to be replaced by its common antiloga­
rithm. The common antilogarithm of a value a is equal to 1D', The keystrokes 
~~ will calculate the natura) antilogarithm of the value in the X register. 

The natural antilogarithm of a value is equal to e". 

-.­
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Antilogarithm operations are defined for positive and negative values. However, 
these operations can easily result in out of range values. For example, the 

10201common antilog of 201 is equal to Which is outside the calculator's 

range. 

The following example illustrates the use of logarithms to perform multiplication 
and division, and to find powers and roots. 

6.93 X 54 ,01 ? 
Example: 3 '\I9.1X1Q3O ~ 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Format 
Display 1oSP I mIJ [DSP 19 0.000000000 00 

2 Data 6.93 6,93 

3 log lospl@ 8.407332346-01 log (6.93) 

4 Data 5 5 

5 log !Dspl~ 6.989700043-01 log 5 

6 Multiply 4. 01 0 2.802869717 00 log (5 4 ,01 ) 

7 Add G 3.643602952 00 log (6.93 X 54 ,01) 

8 Data 9.1 EE 30 9.1 30 

9 fog IDSP] [§] 3.095904139 01 log (9.1 X 1030) 

10 Divide 3.4 [J 9.105600410 00 log C·V9.1 X 10
30 

) 

11 Subtract [] -5.46199745800 log (6.93 X 5
4

•
01 

) 
3·V9 .1 X 1030 

12 Antilog IDSpl~~ 3.451457599-06 6.93 X 54 ,01 

3'V"9. 1 X 103 ° 

The same result (to the 10 digits displayed) is obtained when the calculation is 
performed without logarithmic functions. 

3332 
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Logarithms are useful in a variety of calculations. One of these is radioactive 
decay. The following example calculates the half-life of radium. The half-life of 
a radioactive substance is defined as the time it takes for 50% of the 
substance to disappear. 

Example: If 1% of a quantity of radium disappears in 24 years, then what is 
the half-life of radium? 
The amount present at any time is given by: 

A 
t = ~Ln (A;l where t "time elapsed 

Ln (1· 1') n '" un its of time 
A o = initial amount of substance 
A = amount at time t 

I' =percent loss 
Ln of course is natural logarithm 

For half·life, A'" 1/2 Ao and in this case ,. = .01. The result will be displayed in 

scientific notation with 4 digits. 

STEP FUNCTION 

F?rmat 
Display 

KEYSTROKES 

lOS? ICillJI OS? I3 

DISPLAY 

0.00000 

COMMENTS 

2 Data 24 24 Enter n, 

In IENTI·5 [EJ -6.931-01 Enter In( ~ci) = In (.5) 

Multiply o -1.66401 Obtain n In(.t) 

5 Data 1 1 Enter constant 1 

6 Data l!!liJ 1 ~[cHs12 1.-02 Enter r 
7 Subtract G 9.900-01 Obtain 1- I' 

8 In [G] -1.005-02 Obtain In (1-1') 

9 Divide GJ 1.65503 Obtain t 

It should also be noted that the keystroke sequence 1 
[ INV I[G] will leave the value e in the X register. The number e is, of course, 
one of the most important and useful mathematical constants. e is given by the 
formula e = lim (1 + Z) %. 

Z-+O 

14.3 Logarithms to alJ1Y Base 

Logarithms to any base can be obtained on the CORVUS using either the 
natural or the common logarithm functions. The simple derivation of a formula 
for logarithm to any base and antilogarithm to any base is shown below, 

Let Logb X = Y Then bY = X by definition.
 

We take the common logarithm of both sides of bY = X and obtain Y 10glOb
 

109 X

10gJOX. Thus y" .logbX = __'_0_ 

10910 b 

From Y 10gJOb = 10glOX we obtain X = antilog 1o (Y 1091Ob) 

The same derivation applies to the natural logarithm function. 
log X In X

Thus log X ",..:.:.::.lJL:. = - ­
b 10910b In b 

antilogb Y = antilog1o (Y log lOb) = anti In (Y Inb) 

To illustrate the use of logarithms to any base, the folloWing example is 
presented. Ten digits accuracy can be obtained. 

Example: Using logarithms to base 6, find 34 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Format I Ds?I~IDs?19 0.00000000000 

2 In 6~ 1.79175946900 Find In6 

3 Store ISTO 1 1 1.791759469 00 Store for future use 

4 in 3~ 1.09861228900 Find In 3 
5 Multiply 40 4.39444915500 Obtain In (34

) 

6 Recall [RCL 11 1.791759469 00 Recover In 6 

7 Divide 0 2.452588771 00 Obtain 1096 34 

8 Recall IRCL 11 1.79175946900 Recover In 6 
9 Multiply m 4.394449155 00 Obtain In 6 

( 1096 34
)
 

10 anti In IINVllB 8. 100000000 01 Obtain 34
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15. ANGUl.AR UNITS 

The CORVUS provides two distinct systems for expressing the measure of an 
angle - degrees and radians. We are all familiar with degrees as a unit of 
angle. Each degree represents ~ of the total angie about a point. Radians are 
also frequently encountered as a unit of angle. Each radian represents the 
angle subtended by an arc equal to the radius (see figure below) 

Circle with radius r 

t! = 1 radian '= 32~0 degrees -
Z1T radians = 3600 

15.1 Angle Modes 

The CORVUS operates in two angUlar unit modes. When the calculator is first 
switched on, it is in degree mode. In degree mode all functions with angular 
measure inputs will interpret those inputs as degrees. All angular measure 
outputs are given in degrees. The calculator can also be put into radian mode 
in which all angular measure inputs and outputs are in radians. 

The RADIAN key ([ RAD]) is utilized to switch between degree mode and 
radian mode. The calculator can be placed in radian mode with the keystroke 
sequence [OS?] [RAO] . The calculator will return to degree mode with either 
I asp I ~ IRAa I or llNV II oSP I [RAO I .The angle mode is indicated by a 

small dot in the lower right hand corner of the display. When the calculator is in 
radian mode, the small dot is present. In degree mode, no dot appears. 

15.2 Degrees"'"Radians 

The CORVUS provides functions to convert between radians and degrees. The 
TO-RADIAN key ( l .....RAD 1 ) is utilized to perform these conversions. The 
keystroke sequence ~ l->RAD I will interpret the value in the X register .as 
a degree measure and convert it to radians. A radian value Is converted with 

either Iasp II'Nvll .....RAD 1 or ~ I OSP II ..... RAD 1 . 
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The following simple example illustrates conversion between degrees and
 
radians.
 

Example: 27T radians -
? 

(in degrees)
 
?90 degrees (in radians) 

STEP FUNCTION KEYSTROKES DISPLAY COMMENT 

1 Data 2 2 

2 Pi jENTI[§0 3.14 
3 

4 

Multiply 

...... Degrees 
CD 
IDSP I~I ~RAD I 

6.28 

360.00 

Obtain 211 

Obtain degree value 
5 Clear [CLX I 0.00 
6 Data 90 90 
7 ...... Radians IDSP I[.....RAD I 1.57 Obtain radian value-

should be 11/2 
8 Pi !ospl0 3.14 
9 Divide GJ 0.50 yes, it was 11 /2 

37 



.­
itJ 

'115 POlAR±rRECTANGULAR COORDiNATE CONVERSIONS 

Polar coordinates provide a more natural means for specifying points in a 
plane than the more familiar "x,y" or rectangular coordinate system. Thus 
polar coordinates are frequently a more useful way of describing points in a 
plane. The CORVUS offers operations to convert between polar and rectangu­
lar coordinates in two dimensions. 

16.1 Polar Coordinate Basics 

Given a point described by the rectangular coordinates (x,y), we can specify 
the same point by the polar coordinates (r,O). The value r is the distance of the 
point from the origin (i.e., r = y'x 2 + y2 ). e is the angle between the x axis 
and the segment connecting (x.y) with the origin (i.e., e = tan- l *) as in figure 
16-1 below. 

(x,y)=(r,O) 
=(r,0+3600, 
= (-r,O + 180°) 

f) 
= (-r,8 + 180° + 360no) 

"-.. (8-180°) =(- r, 8 - 180° ) 
-.. , = (-r,8 _180° -360no) 

"- = (r,O -360no)
,..-.." , , 

Figure 16-1 

16.2 COlflversiofl Operations 

The CORVUS will convert from rectangular to polar coordinates with the 
keystroke sequence IDSP ]1 ""POL I .The y coordinate is in the Y register and 
the x coordinate is in the X register before the conversion. After the conversion, 
r is in the X register and e is in the Y register. e is expressed in either degrees 
or radians as defined by the calculator mode. The value of 0 falls between 0° 
and 180° (0 and 'IT radians) for positive y values and between 0° and -180° (0 
and -'IT radians) for negative y values. This operation will not accept x = 0, 
y = O. Furthermore, some conversions may cause out of range results. 

The CORVUS will convert from polar to rectangular coordinates with the 
keystroke sequence lDSP I IlNV I 1....po£] or with the sequen,ce 
~ IDSP I I ....POL I .The r value is assumed to be in the X register and 01 in 
the Y register. After the conversion operation, the x coordinate is in the X 
register and the y coordinate is in the Y register. This operation is defined for 
all values for rand e. but as e becomes large the accuracy of the operaHon 
gradually decreases. Even at 100,000 revolutions (i.e., 3.6 x 107 degrees), six 
digits accuracy is maintained. 
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Example: To illustrate the use of polar - rectangular conversions, the point (5, 
29°) is converted to rectangUlar coordinates and then back to polar coordi­
nates. We will round the calculations to 9 places. 

STEP FUNCTION KEYSTROi<ES DISPLAY COMMENTS 
Format [D--sP]~1 DSP I 9 0.000000000 00. 
Display 

292 Data 29. 29° = e 
3 Data J]N:.!J 5 5. 5 = r 

4 -!>Rectangular Iasp I[I§J~~ 4.37309853600 Display x coordinate 

5 Radians IDSP II RAD) 4.373098536 00. We will convert back to 
Polar in radian mode 

IDSP Ie....~OL I6 -+Polar 5.00000000000. Same r 

5.061454831-01.8 in radians 7 Exchange [Y"xl 
8 .....Degrees 2.90000000001. 8 in degrees-same 0IDSP J~[""RAD I 

16.3 Rectangula!'±rSplie~icai COliversioils 

The CORVUS can make use of its rectangular±rpolar conversion capability, to 
convert between rectangular coordinates in three dimensions (x,y,z) and 
spherical coordinates (r,O,If». Figure 16-2 below illustrates spherical coordi­
nates. AI (r, 0, l' ) 

I /1
Z /.

I 
I 
I, 
I 

~-" - ---- - -"'.;~-- Figure 16 - 2 
(r, cP,) 

To convert from rectangular to spherical coordinates, the polar coordinates for 
the projection of the point into the x-y plane are determined (Le., (x,y) -!>(ro.e)). 
The angle is If> coordinate in spherical coordinates. The polar coordinates for 
the point (ro,z) will be equivalent to (r,O) for the desired point (x,y,z). 

Example: Given the point (5, 12, 25) find its spherical coordinates. 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 12 12 Enter y coordinate
 
2 Data lENT 15
 5 Enter x coord inate
 
3 .....Pola r
 IDSP II ....POL I 13.00 (x,y)-!>(r,.,o) 
4 Data 25 25 Enter z coordinate
 
5 Exchange [y..xJ 13.00
 

6 .....Polar IDSP I[ ....POL I 28.18 r is displayed'; (r, z) ..... (r, 0 ) 
7 Roll [§] 62.53 ( r, 8,¢) on stack 
8 Roll §] 67.38 Display ¢ 
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11 TRIGONOMETRIC FUNCTIONS 
17.:2 Trigonometric Functions on the CORVUS 

Trigonometric functions are useful in describing the periodic nature of various 
phenomena such as pendulums and waves. Trigonometric functions are 
therefore encountered in many areas of scientific and engineering endeavour. 
The CORVUS provides operations for calculating the trig functions. 

17.1 Trigonometric Function Basics 

The trig functions can be defined in terms of the ratio of the sides of a right 
triangle: 

c~a2+b2 

sine I) (written sin O) '" a/c 

cosine I) (written cos 0) '" bl c 

tangent 0 (written tan 0 ) = al b 

cosecant 0 (written csc 0) = 11 sin I) = cl a 

90 0 
~ secant 0 (written sec 0 ) = 1I cos 0 = cl b 

j.. & - ':8 --'~ cotangent I) (writtencotO)=1/tan=b/a 
., Figure 17 ­

Inverse trig functions are similarly defined: 

sin -1 aIc =I) csc -1 cIa=0 
cos -1 bIc = I) sec -1 cIb = 0 
ta n -1 aIb = 0 cot -1 bIa = 0 

These definitions are only adequate for a" s fJ s 90°. Naturally the trig 
functions are defined' for angles greater than 90° and less than 0°. These 
definitions are obtained by considering a point (x,y) with polar coordinates 
(r,fJ) with r ;:;>: O. The triangle is formed by the segments connecting (x,y), (x, 0) 
and (0,0). Thus a becomes 'L b becomes x, c becomes r

1 
and.!! becomes the 

coordinate 8. The following table summarizes the trig function values bY 
(juadrant in the x-y plane.

I ]I ill- :r:sz:~ 

0° -+90° 90° ..... 180° 180° -+270° 270° ..... 360° 

sin I) sin 0 
0->1 

sin(1800-0) 
1-+0 

-sin (0-180°) 

~-1 

-sin (360° --f) l 
-1.....0 

cos I) cos 0 
1-+0 

-cos (180° -8 ) 
04--1 

-cos (0-180°) 
-1-+0 

cos ( 360° -0 ) 
G-+1 

tan 0 tan 0 
Q-+<>o 

-tan (180° -0 ) 
-00-+0 

tan ({)-1800) 
Q-+<>o 

-tan (360° -0 ) 
-00-+0 

csc 0 csc I) 

00-+1 
csc (180° -0 l 

1-~ 

-csc (0-1800) 
-00-+-1 

-csc (360° -0 ) 
-1--"-00 

sec 0 sec 0 
1-+= 

sec (180° -0) 
-00-+-1 

sec (0-180°) 
-1-+-00 

sec (3600 -0) 
00-+1 

cot 0 cot 0 
00-+1 

cot (180° -0 ) 
(}-+-oo 

cot (0-180°) 
00-+0 

cot (360° -0) 
0-+-00 

The CORVUS provides direct calculation of sin x, cos x, and tan xwhere the 

angle x may be expressed in degrees or radians. These functions are obtained 
..,;+ ...... -I-h ..... 1.... "uC"'t,..,,(.,.L}C" ~ I f"n<:o: I !:/,nn ~ "ec..r"\o,...tiuo.h.r Tho. \I~lua in tho Y 
WILli UIC:;: f'l,vy.:>Ll ....n'U...JI ~J I ~ I U.II",~ ~ I ......... ""v",,,\"OO.y. IIIV "'CA.l \..- t 1.11,-""
 

register is interpreted as an angle and is replaced by sin x, cos x, or tan x as is 

appropriate. The angular mode determines whether the angle is interpreted as 
degrees or radians. The values csc x, sec x, and cot x can be obtained by 
following @EJ, Icos I ,or [TAN I respectively by IDSP I I2B . 
If the angle entered has a tangent of±o:: (e.g., tan 90° and tan 270°), the 
tangent operation will cause the display to flash ±10.00 99 when the display is 
rounded and 9.999999999 99 when the display is not rounded. Otherwise all 
operand values are acceptable for all three operdtions. Accuracy does 
gradually degrade with the size of the angle. Even at 100,000 revolutions (e.g., 
3.60 x 107 degrees), however, 6 digit accuracy is still maintained. 

Example: Verify that the fundamental trig identity sin2x + cos2x = 1 holds 
for 29°. For this problem, ten digit accuracy is desired. 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

Format IDSP I[§JI DSP )9 0.00000000000 
Display 

2 

3 

Data 

Push 
29 
[ENT I 

29 

2.90000000001 

Enter angle 

Copy angle into Y register 
for conven ience 

4 

5 

Sin 

X2 
[@ 
IDspl~cm 

4.848096202 -01 

2.350403679 -01 

Obtain sin (29° l 
Obtain sin2 (29°) 

6 Exchange [v<>x] 2.900000000 01 Recover angle: pu t si n2 
(290 

) in Y register 
7 

8 

Cos 

X2 
Icos I 
IDSP IIINV IhlX I 

8.746197071-01 

7.649596321 -01 

Obtain cos (29° ) 

Obtain cos 2 (29°) 
9 Add 0 1.000000000 00 Obtain cos Z (29°) + 

sin 2 (29°) 
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17'.3 inverse Trigonometric Functions on the CORVUS 

The CORVUS provides for direct calculation of sin-Ix, COS-IX and tan-Ix. These 
functions are obtained by depressing the INVERSE key (~) followed by
iSiN I , \cos i )or [§~ respectively. In these operations, the content of the 
X register is replaced by an angle expressed in the units dictated by the 
angular mode. The values esc-Ix, sec-Ix and cot-Ix can be obtained by pressing 
[ DSP I ~ and then finding sin-Ix, cos·lx or tan-Ix, as appropriate. 

Sin x and cos x always fait in the range -1 to + 1. Thus sin-Ix and cos·lx are 
undefined if x>1 or x<-1. If the value in the X register is not in the range -1 to 
+ 1, the keystroke sequence ~~ or ~ [COS I will cause the 
calculator to flash zeroes. 

Example: Given a right triangle with legs of length 5 and 13 find the size of 
J,IJe= acute angles in radians. (8 digits accuracy desired) ­

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

Format IDS? I@!][DSP I 7 0.0000000 00 
Display 

2 Radians rosp]1 RAO) 0.0000000 DO. We want angles in 
radians 

3 Data 5 5 Length of side a 

4 Data 13 Length of side b [I{113
5 Divide 3,8461538 -01. Obtain alb eo tan q 

~ 

ENT 

TAN I 

l/x I 
TAfIlJ 

INV 

y.-x 

osp 
INV 

3.8461538 -01. Copy alb6 Push 
Tan-Ix 3.6717383 -01. Obtain 07 

3.8461538 -01. Reattain alb'" cot ¢8 Exchange 
2.6000000 00· Obtain bla '" tan r/>9 Reciprocal ,.. 
1.2036225 00. Obtain t10 Tan-'x 

~J] --...... below depicts a point in polar hyperbolic coordinates. •
18 HYPERBOLIC FlOlAR.-RECTANGULAR COORDiNATE CONVERSIONS 

The hyperbolic polar coordinate system is a means for describing a point in 
terms of its position on a rectangular hyperbola about the origin. The figure 

~~ 

2 2 ,
X - Y =r 

V_.v= OJ _l I! x __ 

(x. yj in rectangular system 
X 2 _ y 2 '" r2 

(r, OJ in hyperbolic polar system t­ ois expressed in hyperbolic radians 

Figure 18 

2 2note: rectangular hyperbola is given by x - y2 = r

.. hyperbolic polar coordinates can only be applied to (x,y) with Ixl > Iyl 

In hyperbolic polar coordinates: 

x > 0, Y > 0 "" r > 0, e < 0 

x >0, Y<0 "" r > 0, e > 0 

x < 0, Y> 0 "" r < 0, e< 0 

x <0, Y <0 "" r < 0, e>a 
The CORVUS provides a direct means for converting from rectangular to 
hyperbolic polar coordinates. Simply press etther [os€] [Hypi or 
IHypl ~ followed by [ ....POL I . The content of the X register is inter­
preted as the x coordinate and the content of the Y register is interpreted as 
the y coordinate. After the conversion is complete r is in the X register and 8 is 
in the Y register. Unfortunately, the CORVUS will always return a positive value 
for r. Therefore the sign, which \s the same as the sign of the x coordinate must 

be remembered. 

•
I The CORVUS also provides a direct means to convert from hyperbolic polar to 

rectangular coordinates. The keystroke sequence reqUires pressing 
IDsp I ' ~ and IHYP I in any order followed by I ....POL I . The translation 
described above is reversed. This operation Will, as appropriate, convert to• (x,y) in all four quadrants. The relationship Ixl > Iyl is maintained. The example 
in section 19 will illustrate these conversions. 

,.} . 
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19 HVPERBOLIC FUNCnONS STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

Hyperbolic functions are encountered in a variety of application areas includ­
8 Recall IRCl![CASTX] 0.97 Recover 0ing physics and electrical engineering. The hyperbolic functions represent 
9 SinhfJ [Hypl~ 1.13 Display sinhfJ relations bet\.veen the coordjnates of a point en a rectangular hyperbola (Le" 

x2_y2 = r2). The hyperbolic functions are given by: 20 SUMMATION, MEAN, AND STANDARD DEViATiON 

lJ "'ue - e 1hyperbolic sine of u sinh u ,.y- ,. 
r 2 csch'u 
x eU + e-u

hyperbol ic cosine of u cosh u 1
 
r 2 seeh u
eU _ e-u 

hyperbolic tangent of u = tanh u =--'!.....,. 1 
;U~-:;=ux eoth u 

The u in the formula above is equivalent to 8 in the hyperbolic polar coordinate 
system. 0 is therefore said to be expressed in hyperbolic radians (0 = tanh .Iy). 

The hyperbolic functions sinh x, cosh x and tanh x can be directly obtained on 
the CORVUS by pressing IHypl followed by either l2§J, [soI) ,or [TMD 
respectively. The value in the X register is replaced by the appropriate 
hyperbolic function. If the value in the X register is of large magnitUde the sinh x 
and cosh x operations Will result in the display flashing ±S and 1099 indicating 
an out-of-range result. Tanh x will be 1 for any large positive x and 1 for any 
large negative X. The other hyperbolic functions can be obtained with the 
RECIPROCAL key and the appropriate hyperbolic function. 

The inverse hyperbolic functions sinh-Ix, COSh-IX, and tanh·lx can also be 
directly calculated on the CORVUS. The inverse hyperbolic functions are 
obtained by pressing either [!NV I 1HYP I or IHYP I~ followed by either 
~, Icos] or [TA~ 

Tanh-Ix is not defined for x~1 or X:5-1 and the display will flash zeroes for such 
operands. The inverse hyperbolic functions replace the content of the X 
register with the appropriate value for 6. 

Example: Given a point with x,y coordinates (4, 3), find the hyperbolic polar 
coordinates of the point, sinh 8 ~d cosh-I X.'" . 

STEP FUNCTION KEYSTROKES DISPLAY 

1 Data 
2 Data 

3 -+Hyp. 
Pol. 

4 Data 

5 Exchange 
and divide 

6 Cosh-I" 

7 Subtract 

~ lENT] 3.00 
4 4.00 

Ios!]1 HYPll ....pol I 2.65 

4 4 

1.51[i<>xJD . ­

~LHYP I[ cos I 0.97 

[J 0.00 

COMMENTS 

Vcpr,djogte 
,. x cordinate 

r coordinate 

Reenter x coordinate 

Obtain x/r-
Obtain fJ 

fJ from coordinate
 
conversion is the same
 •
hopefu Ily not a
 
surprise.
 

The CORVUS provides a set of statistical operations which are invaluable in 
calculation programs for many application areas. The operations provided are 
the sum of entries,sum of the squares of entries and number of entries, as well 
as the arithmetic mean and the standard deviation of data entered. In addition 
the sum of entries in two dimensions is mechanized. 

20. '1 Entering Data for Statistical Operations 

Whenever the SUMMATION key ( Q8 ) is pressed, a series of calculations 
and store operations are initiated. These operations correspond to the entering 
of statistical data, 

Pressing [B causes the value in memory 7 to be incremented by 1. 
Memory 7 therefore contains the data entries in the current sequence. 

Pressing [EJ also causes memory 8 to be increased by the square of the 
value in the X register and causes memory 9 to be increased by the value in 
the X register. Memory 8 therefore contains the sum of the squares of the X 
data entries and memory 9 contains the sum of the X data entries. 

Additionally, the sum of the values in the Y register is maintained. Each time 
lI£1 is pressed a special memory is incremented by the value in the Y 
register. This special memory is called the !y memory. It can only be 
accessed by the keystroke sequence IRCL] [B as will be described in 
subsections 20.2 and 20.3. Naturally, the !y memory can be ignored if not 
needed. 

The CORVUS also provides a means for correcting data entries. The keystroke 
sequence ~ [B causes memory I to be decremented by 1, memory 8 
to be decreased by the square of the value in the X register, memory 9 to be 
decreased by the value in the X register and the ly memory to be decreased 
by the value in the Y register. 

It is important to note that neither [E] nor ~ [B has any effect upon 
the staCk. Unlike other functions, no push is left pending. Most significantly, the 
X and Y values remain unchanged. This "residue" is a particularly convenient 
feature since two dimensional calculation sequences frequently require the X 
and Y values for further computation (e.g., this feature greatly simplifies 
calculation of !xy). 
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20.2 Memory Manipulations and Restrictions 

The summation operation utilizes memories 7, 8, and 9 (in addition to the Iy 
memory) as accumulating memories for its various calculations. Since these 
memories	 are treated as accumulative, it is essential that they be handled 
carefully so as not to destroy their validity. The CORVUS does a part of this job 
automatically. The first time ~ is pressed after the calculator is switched 
on and after the keystroke sequence IDSP I [£0iJ ,the summation memories 
are cleared. The clearing occurs only when the summation key is actually 
punched. With the singular exclusion of IDSP I [cl~l any function may be 
keyed in without interrupting the accumulation of the summation memories. 
Thus, even if the summation memories are "stored over", when the summation 
sequence is continued, the memories will continue to accumulate despite their 
invalid contents. 

20.3 Siatistical Operations 

20.S.1 Recall Summation 

The keystroke sequence [BCl I ~ causes the stack to be pushed twice. 
The value stored in memory 9 is placed in the X register and the value stored 
in the Iy memory is placed in the Y register. Thus, after a series of data 
entries, IRCl I ~ puts Iy in the Y register and Ix in the X register. 

20.3.2 Mean and Standard Deviation 

The keystroke sequence IDSP II Ks I causes the stack to be pushed twice. 
The arithmetic mean of the X data entries is placed in the X register and the 
standard deviation of the X data entries is placed in the Y register. To be more 
correct, the value placed in the X register is equal to value in memory 9 

value in memory 7 

This value should be :x = arithmetic mean. If both memory 7 and memory 9 
are "tampered with" the display will flash zeroes, 

The standard deviation on the CORVUS uses n-1 weighting and thus is given 
by ~ ~x2_~~. Obviously this value can be obtained via calculations with 

n-1 

memories 7, 8 and 9. 

1." 
Example: Given the set of points ((10,3), (5, 4), (6,8),
 
(9,7)) find Iy, ~x, Y, and the standard deviation of x. Additionally, find the
 

• -,,-, !':-..<; '>''',;'''''' 

• 
variance of x using n weighting without using the mean and standard deviation 
function. Variance with n ~veighting: LX 2w nX- 2 ,A,ssume the calculator \·vas just 

switched on.	 n 

- DISPLAY COMMENTSFUNCTION KEYSTROKESSTEP 

Enter Xi1	 Data 3 3 

Data §T]1O 10 Enter Yi2 
10.00 - 3 Summations [B 

Repeat steps 1,2 and 3 for all data.
 
Note that the display column for 1.2 and 3 is val id
 
only for the first point.
 

RCL 30.00 Display LX4 Recall [B 
nOD Display ~y5	 Pop IClxl8 
7.50 DisplaY x6	 Mean and S.D. IDSP I[ x,s I 

Pop	 2.38 Display Standard 7 IClXI GJ Deviation 

8 Recall IRCl I 8 242.00 Recall Lx2 

7 Recall n 9	 Recall IRCll 4.00 

10	 Divide 60.50 LX2 
/ nGJ 

11	 Recall IRCll 9 30.00 Recall LX 

(k X )2900.0012 x2 
~~Ivxj 

13 Recall IRCll 7 4.00 Recall n 

14 16.00 nx2 
IDSpl~lvxl 

2 

(Lx)2 / n2 = X 215	 Divide 56.25 

Variance16	 Subtract 4.25..	 0
G 

•f 
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PART II: APPLICATION PROBLEMS 

21 USING PART II 

The purpose oLthe second part of this book is to help extrapolate your basic 
knowledge of your calculator's operation into a variety of. application areas. 
Each problem is accompanied by a description of the solution approach. The 
comments are geared toward that description. Thus the motivation for each 
step in the solution programs should be apparent. 

The sections of Part II are almost completely independent. It is not necessary 
to slowly work through each section in order. Particular areas of interest can be 
selected or this entire part of the book can simply be used as a reference - a 
source of solutions and solution programs to problems as they are encoun­
tered. An index into Part II by SUbject is incorporated into the index at the back 
of the book. The auxiliary formulas and constants in Appendix C should 
complement the solution program set for use as a reference. 

As in Part I, each solution program is laid out in tabular form with step-by-step 
comments. The format for the problems is virtually identical to Part I. Variable 
data items are in italics in the programs of Part II. Furthermore the program 
steps frequently consist of mUltiple operations. The basic step-by-step solution 
format is still maintained though. 

48 

22 FiNANCiAL APPLICATIONS 
Simple interest 

The basic formula for compound interest is: 

FV = PVC; + nil Vvhere FV =- Fu1ui6 Value 
PV = Present Value 

n = number of periods 
j = interest per period 

What will be the value (FV) of $1200 (PV) invested at 5% (i = .05) simple 

interest for 6 years? 

Stack depth used = 4 

STEP FUNCTION KEYSTROI<ES DISPLAY COMMENTS 

1 Data 1200 CENT] 1200.00 Enter PV 

2 Data 1 IENTI 6.00 Enter constant 

3 Data 6 IENTI 10.00 Enter n 

4 Multiply .05 0 0.30 Obtain ni 

5 Add 0 1.30 (1+ni) 

6 Multiply 0 1560.00 FV 

How much must be invested (PV) at 6% (i-.06) simple interest to resuit in 

$2500(FV) after 10 years (n)? 

Stack depth used = 4 

STEP FUNCTION KEYSTROKeS DISPLAY COMMENTS 

1 Data 2500 [~iJ 2500.00 Enter FV 

2 Data 1 IENTI 1.00 Enter constant 

3 Data 10 lENTJ 10.00 Enter n 

4 Mulitply .06 0 0.60 Obtain ni 
5 Add [£] 1.60 (1+nil 
6 0Divide 1562.50 PV (arnount invested) 
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Compound Interest
 
The basic formula for compound interest is:
 

FV = PV( 1 + i)" using the same notation as above. 

What will be the value of $750 placed in a 5.25% compounded quarterly 
savings account for 11/2 years? Note that although the interest has finer 

resolution, leaving the display mode at 2 decimal places does not reduce the 

accuracy. The calculator maintains full internal accuracy at all times. Since the 

final result we desire is simply a dollars and cents result, the 2 decimal place 
display is appropriate. 

Stack depth used = 4
 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
 

1 Data 750 IENT[ 7500.00	 Enter PV 
2 Data 1 IENTI 1.00	 Enter constant 
3 Data .05251 ENT I 0.05 Annual interest 
4 Divide 4 0 0.01 Convert to i 
5 Add GJ 1.01 (l+i) 

6 Data 15 IENTI 1.50 Enter years 
7 Multiply 4 [8] 6.00 Convert to n 
8 Power 1.08 (Hi)nEJ 
9 Multiply [8] 811.03 FV 

Rewriting the basic formula for compound interest 
_ FV 

PV - (1 +il n 

How much must be placed in a 5% annual interest rate compounded monthly 
savings account to yield $1500 after 1 year? 

Stack depth used = 4 

STEP FUNCTION KEYSTROKES DISPL/\Y	 COMMENTS 

1 Data 1500lENTI 1500.00 Enter FV 

2 Data 1 IENTI 1.00 Enter constant 

3 Data .05 IENTI 0.05 Enter annual interest ilia.' i . 
4 Divide 12 Q 4.17-03 Convert to i 

5 Add GJ 1.00 (Hi) 

6 Data 1 IENTl 1.00 Enter years ..
.1 ,.7 MultiplY 12 12.00	 Convert to n0 

Power	 1.05 (1 +i)n~ 

From the basic compound interest formula, we get 

lnt FV)n ~ PV
 
in (I+i)
 

How long does it take to double your money at 6% annual interest rate 

compounded monthly? We know that FV is 2. 
PV 

Stack depth used = 4 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 In 2[G] 0.69 Obtain In 2 

2 Data 1 IENTI 1.00 Enter constant 

3 Data .06 IENT I 0.06 Enter annual interest 

4 Divide 12 [] 5.00 -03 Convert to i 

5 Add, In 002] 4.99'03 In(l+i) 

6 Divide 138.98	 nGJ 
7 Divide 12 o 11.58 convert to years 

Continuous Compounding 

The formula ior continuous compounding is: 

FV = PVein 

In the competition for customers, the new savings and loan in town is trying to 

attract customers away from other Institutions by offering continuous com­

pounding of interest. You currently have $500.00 in a 5.25% compounded 

quarterly savings account. The other savings and loan offers the same interest 

rate, but compounds continuously, What would be the difference in the two 

accounts after 5 years? 

Stack depth used = 2 

First perform the program for compound interest to obtain the result for the 

quarterly compounding, and store that result in memory 1. (648.98) 

STEP FUr--ICTION KEYSTROKES DISPLAY	 COMMENTS 

1 Data 0525 ( ENT I 0.05	 Enter interest rate 

2 Multiply 5 0.26	 OlJtain in0 
3 eX ~GJ 1.30	 Inverse In is eX 
4 Multiply 500 [8] 650.09	 Multiply by PV to 

obtain FV 
5 Recall and subtract IRCL 11 [J 1.11 Difference between 

two compounding rates
Divide	 1426.99 PV (amount saved)9	 GJ 
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Nominal Ralte Converted To Ei'fective Al1Inuol Rate Annuity 

The formula to convert nominal annual rate to effective annual rate (after The basic formula for an annuity is: ...compounding) is:	 (Hi)n -1~'f 

}~ FV = PV :,EAR == (1 + i)n - 1 Where i == rate per period ~".~_. If one saves $50.00 per month in a 5% annual rate compounded monthly 
n == periods per year, savings account, what will be the total amount in the account after 5 years?

EAR == effE'ctive annual rate 'f .' 
Stack depth used == 4 

What is the effective annual rate equivalent to 5% compounded monthly? /.'''.'' . 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

Stack depth used == 2 .. 
1 Data 50 I ENT I 50.00	 Enter PV 

Enter constant STEP FUNCTION KEYSTROI(ES DISPLAY COMMENTS ~ 2 Data 1 IENT I 1.00 

Annual interest 1 Clear and set display [ ClXJ IDSP 14 0.0000 -- ;'l:~ 3 Data .05 lENT 1 0.05 

2 Data, store, divide .05 [ENT 112 [SID] 1[J 0.0042 Enter annual rate" 4 Divide and store 12 CDI STO 11 4.17 - 03 Convert to i, save
 
convert to i
 5 Add GJ 1.00 (Hi)
 

3 Add 1.0042 I+i
 6 Data 5 IENT I 5.00 Enter years
 

4 Recall and power IRCl!1!v'l 1.0512 (I+i)n
 
GJ 

7 Multiply 12 [8J 60.00	 Convert to n 
0.0512 5.12%5	 [::r -­Subtract (1+i)n8 Power ~ 1.28 

',' 9 Subtract 1 G 0.28 Subtract constant 
Add-on RO?lte Converted To True Annual Percentage Rate (APR) 

10 Multiply 0 14.17 Multiply by PV 
The following formula provides an approximation for the true annual rate 11 Recall and divide IRCll1 G 3400.30 FV 
equivalent to add-on rate: 

Loan Payment 
600ni 

APR ~ --,.;-.---­ Where: n == number of payments A loan payment may be computed from:
 
3(n+1) + [(n-1) nilml
 

m == payments per year 
PV· i where PV == present value or loan amount 

i == add-on interest rate 
PMT'" 1- (1 +Wn	 

i == interest per period 
n == number of periodsWhat is the true APR on a 24 month, 5.5% loan?
 

PMT = payment per period
 
Stack depth used == 4 

What is the monthly payment required to payoff a $4250.00 loan in 48
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

months at an annual rate of 9.5%? 
1 Clear and set display IClX It DSP 12 0.00 

Stack depth used = 3 
2 Data and store 24 lENTJ[ STOl1 24.00	 Enter and save n 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 
3 Add 1 GJ 25.00 n+1 

1 Data .095 IENT I 0.10 Annual rate, display 
4 Multiply 3 m 75.00 3(n+1 ) rounded 

5 Recall and subtract	 n·1IRCt. /11 L:J 23.00	 2 Divide 12 G 7.92 - 03 Convert to i 

6 Data, recall, multiply .055 RCl 1 [3] 1.32	 ni 3 Push IENT II ENT I 7.92 - 03 Save for step 5* 
Save ni7 Store ISTO 11 1.32 4 Multiply 4250 []] 33.65 PV· i 

8 Data and divide 12 GJ 0.11 Enter m; obtain ni/m 5 Exchange Iy<>X1 7.92 - 03 Save pv, i , recall i 
9 Multiply m Multiply by n-12.53 6 Add	 1.01 1+i1 GJ 

GJ	 Obtain denominator 10 Add	 77.53 7 Power 48 ICHS I~ 0.68 (1+ij-n 

8 Subtract 1 ly<>xlCJ 0.32 1 - (1+ifn 
by ni 

11 Data, recall, multiply 600 rRCl]10 792.00	 Enter constant; multiply 

9 Divide 106.77	 PMT0 
'" After step 3, i will be in X, Y, and Z registers. In step 4, the X register is 
overwritten by PV and the mUltiply will pop the stack, leaving i in the Y register. 

12 Exchange and divide !y<>x!GJ 10.22	 Approximate APR 
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Bemainil19 !Balance 

The formula to compute the balance remaining on a loan is: 

SAL = ,,,.n-r [1-(1 +Iji-nJ 
j IVI I 

I 
n = total number of payments 

PMT = payment per period 
i = interest per period 
j = current period 

BALj = balance after jib payment 
What is the balance remaining after 32 months on a 48 month, $4250.00 loan 
at 9.5% annual rate (monthly payments are $1 06.77)? 

Stack depth used = 3 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
 
1 Clear and set display ICLX 1I DSP 12 0.00
 
2 Data and divide
 .0951 ENT )12 GJ 7.92 - 03 Enter annual rate;
 

convert to i
 
3 Store [STO 11 7.92 - 03 Save i
 
4 Add 1 ~ 1.01 l+i
 
5 Data and subtract 32 IENT!48B - 16.00 j- n
 
6 Power ~ 0.88 (1 - ijr- n 

7 Data, exchange, ll y<>xlB 0.12 Obtain numerator 
subtract IRCL 11[~J8 Recall and divide 14.97 Divide by i 

9 Enter and multiply 106.770 1598.63 Enter PMT, multiply 
to obtain BALj 

Depreciatiol1 - Straight Line Method 

The formula for straight line depreciation is: 

D=PV and DVJ' = PV-jD Where PV = present value (initial value le:ss
11 

salvage value) 
n = number of periods of life of asset 
D = depreciation per year 

DYj = value after j periods 
A truck has an initial value (less salvage) of $3100.00 and an expected life of 
5 years. What is the depreciation per year and what is the depreciated value 
after 3 years? 

Stack depth used = 3 

STEP FUf\JCTION KEYSTROKES DISPLAY COMMENTS 
1 Data 3100 li@l ENT I 3100.00 Enter PV, save for 

step 3 
2 Divide 50 620.00 0 

Depreci~U(Jl11 .- Diminishing Balance Method 

The formula for diminishing balance depreciation is: 

o = PY'-J (1-1 S \lIn)and py. = PY'- l - D· Where 
J J (-,--.1 J J J 

-(VOl PYo = initial value 
S = Salvage value 

PVj = Yalue at period j 
Dj = Depreciation at period j 
n = periods of life 

Using the example problem above, find the depreciation and value for the first 
three years, using the diminishing balance method. (assume salvage value is 
$500, thus PYo is $3600.00) 

Stack depth used = 4 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 
1 Data and push 3600 lENT I[ENT II EN}] 3600.00 Fills stack with PV 0 

2 Divide 500 !Y"'xIG 0.14 S!PV 0 

3 Reciprocal and power 5 0.67 (S!PV o )I/n§J~0 
4 Subtract and store 1 IY"'x IBI STO 11 0.33 1- (S!PV 0 )1/" and save 
5 Multiply 1174.31 0 1 (PV o in stack)0 
6 Subtract 2425.69 PV 1 (PV 0 in stack)G .,7 Push 2425.69 Save PV j . 1IENiJ! ENT I 
S Multiply 

JIRCL 11Glc 791.25 D·'
9 Subtract 1634.44 PV j 'G 

~, Steps 7, 8 and 9 are repeated for each successive period desired. The 
example shows only determining D2 and PY2 from PVl' After step 9, looping 
back to step 7 would determine D3 and PY3 from PY2. Each repetition of the 
loop 7, 8, 9 would determine the values for another period. Thus D3 = 533.15 
and PV3 = 1101.29. 

3 Multiply 1240.00 DVj = PV - jD3IZJB 
~I;and subtract 
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Depreciation - Sum of Years Digits Method ..
23 SERIES AND PROGr-1IESSiONS
 
'.',"',.. 'The formula for Sum of Years Digits depreciation (SOD) is: 

',;~)2(n-j+ 1) 11 Aritlul"Ietic Progressions D. I 1\ PV and DV.=S+(n-k)DJ2 Where 
! n,n+ 'I J J An arithmetic progression is defined byPV == initial value 

S == salvage value a, a+i, a+2i, a+3i" .. a+ (n-1)i..
n == periods of life For our example, we will step through an arithmetic progression with a=10 
OJ == depreciation at period j and i = 7. 

.,1.:DVj == value at period j 
Stack depth used = 4" 

;'-:-:'-,Again we use the example problem from above, (PV == 3600. n == 5, S == 500, •.. 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

j == 3)
 
1 Data 7 lENTil ENTII ENTI 7.00 Fill stack with i
 

....iL '...J 
2 Data and add to 8 17.00 Enter a ; add to 

""..';',.. ,",,­•	 obtain second term 

Add	 24.00 Add i to obtain GJ 
next term 

Stack depth used = 4 Repeat step 3 for each succeeding term. .'

.. '.' ....'..'.~ .. '	 The preceeding program fills the stack with i to utilize the automatic copy of 

the bottom of the stack to insure an unending supply of i's for each step. If 

there is data on the stack tMat must not be destroyed, the arithmetic progres-
STEP FUNCTION I<EVSTROKES DISPLAY	 COMMENTS .. 

• sloo cao be computed with the follow'09 pcogcam' 
1	 Data and push 5 [ENTJ[ ENT 1 5.00 Enter n, save for
 

step 6
 Stack depth used == 2 
2 Subtract and store 3 GLSTOj1 2.00 11 -- L save for step 1
 

"': STEP FUNCTION KEVSTROKES DISPLAY COMMENTS
3 Add 1 8 3.00	 Add constant, (n - j + 1) 
1 Data 7 [STO I 1 7.00 Save i .. 4 Multiply 2 W 6.00 2(n-j+1)
 
2 Data and add tOG] 17.00 Enter a ; add to
5 Multiply 36000 21600.00	 2(n-j+1)PV obtain second term 

6 Exchange [V<o>X] 5.00	 restore n, save -~ 3 Recall and add CRC"i] 10 24,00 Add i to obtai n 
2(n- j + 1)PV for step 1 next term 

7 Push 5.00	 save n for step 9' Repeat step 3 for each succeeding term.ffirENTI III
8 Add 1 6.00 Add constant, n+1
 
9 Multiply n(n+1 ) The nIh term of an arithmetic progression is given by
30.00 J"..
ti.& ..10 Divide 8 720.00 OJ a+(n-1)i• , •..... ". ',' ..11 Multiply LB:ill 10 1440.00 (n- j)D j To obtain the 14 th term of the progression above: 

12 Divide 2 D 720.00 (n- jlDj /2 
13 Add 500 GJ 1220.00 DV, 

Stack depth used 3• ..", , 

...•......•.','... '.•..'." ..-.'.. 
STEP FUNCTION I<EVSTROKES DISPLAY	 COMMENTS 

, ... 1 1 Data	 10.00 Enter a 
;,,''if;,;	 10~2':' After step 7, n will be in the X, Y and Z registers. The data entry in step 8	 Data and subtract 14 ENT G 13.00 - 1Obtain n 

will overwrite X and the add will pop the stack, leaving n in the Y register.	 3 Data multiply, add 7 X + 101.00 nth term 
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Sum of Arithmetic Progression 
Geometric Progression 

The sum of the terms of an arithmetic progression (given a and i) is: A geometric progression is defined by.,.­
Where n = number of terms - l

n(n.11i a, ar, ar2 , ... , aro.
 

SUM = na+~ to be summed
 
For the example, we will step through a geometric progression with a = 3 and 

a = fi rst term .,.
 
r= 0.9i = interval 

Compute the sum of the first 12 terms of the progression above. Stack depth used = 4* 

Stack depth used = 4~' 

FUNCTION KEYSTROKES DISPLAY COMMENTSSTEP FUNCTION KEYSTROKES DISPLAY COMMENTS STEP
 

1 Data 72 !ENTJIENTJIENTI12.00 3 n's on stack 1 Data .9 [ENT![ ENT![ ENT I0.90 Fill stack with r
 

Data and multiply 3 CD Enter a ; multi ply
 2 Subtract 1 B 11.00 n - 1 2 2.70 
to obtain seco nd term 

3 Data and multiply 70 77.00 (n - 1) i 3 Multiply 00 2.43 Multiply by r to 
4 Multiply 924.00 Multiply by n obtain next term 0 
5 Divide 20 462.00 Divide by 2 Repeat step 3 for each succeeding term 
6 Exchange !y,»X! 12.00 Bring n to top of stack 

As in the arithmetic progression, the program above uses the entire stack to
7 Data and multiply 120.00 Multiply by a 

70 take advantage of the automatic copy into the bottom of the stack. A programtB 
8 Add 582.00 Obtain SUM 

which uses only two levels of'the stack is: 

When only the first and last terms and the number of terms are known, the STEP FUNCTION KEYSTROI<ES DISPLAY COMMENTS 

following formula expresses the sum of an arithmetic progression: 1 Data .9 ISTD 11 0.90 Save r 

Where n = number of terms 2 Data and multiply 30 2.70 Enter a ; multiply 
n to Obtai n second term

SUM =2'(a+t) a =- first term 
3 Recall and multiply 2.43 Multiply by r tot = last term IRCLI1 W 

obtain next term 

The 14 th term of the above progression is 101.00. Find the sum of the first 14 

terms. 
Repeat step 3 for each succeeding term.

Stack depth used = 3 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS The nIh term of a geometric progression is defined as 

1 Data and divide 141ENTI2LJ 7.00 n/2 arn-l 

2 Data 10 1ENT I 10.00 Enter a To obtain the 11 th term of the geometric progression above:
 
3 Data and add 101 GJ 111.00 Add t
 

4 Multiply 0 777.00 Obtain SUM
 
Stack depth used = 3
 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 
1 Data 3 lENT 1 3.00 Enter a 
2 Data and subtract 11 lENT 11 G 10.00 Obtain n - 1 
3 Data, power, multiply .9 IY'»xJ~0 1.05 nth term 
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To obtain the nth term of a harmonic progression, we note that the general term 
SiAm of GG>om<BUic Progression 

for a harmonic progression is simply d mUltiplied by the reciprocal of the nth 
The sum of a geometric progression to n terms is given by: term of an arithmetic progression (a + (n-l )i; where a = band i = c). To 

calcUlate the 5 th term of the example harmonic progression: 
r-', r = ratio between terms 

SUM '" a(r~.l) Where a = initial term 

Stack depth used = 3n = number of terms 
Compute the sum of the first 15 terms of the above progression. 

Stack depth used = 4 
STEP FUhlCTION KEYSTROKES DISPl.AY COMMENTS 

1 Data 31 ENTi 3.00 Enter a STEP FUNCTiON KEYSTROKES DISPL.AY COMMENTS
 
2 Data 15 ENT 15.00 Enter n
 
3 Data and .91 STO 11 0.90 Store r
 1 Data 31 ENTI 3.00 a (a~b) * 

sto re 2 Data and subtract 51 ENT j1 [J 4.00 Obtainn-l " If r is not negative, skip to step 5
 
4 Negate [ CHS I '. Base for a power must be 3 Data, multiply, add 5 []]GJ 23.00 nth term (j~c)'
 

not be negative	 4 Reciprocal [ DSP I[!E] 0.04 Obtain denomi nator 
n

5 Exchange and Iy<.>x 1l!3 0.21 r
5 Data and multiply 2[3] 0.09 M~ltiplY by d to obtain 

power nt term
If i is not negative, skip to step 7; if r is negative and n is even skip to step 7
 

6 Negate ICHS I * Result ?f odd ~egative
 
po wer IS negative
 

.~ Steps 1, 2, and 3 are the program to calculate nth term of an arithmetic 
7 Subtract 1[J -0.79 rn -1 
8 Recall and IRCL 11 1[J -0.10 Obtain r-l progression. 

Subtract Cl 
9 Divide LJ 7.94 (rn -1 ) I (r -1 ) 

10 Multiply 0 23.82 Multiply by a to Fibonacci Series 
obtain SUM 

.. No display indicated because example has positive r. A Fibonacci series is defined by the following relation 
I''ial'monuc Progression 
A harmonic progression is defined by f j = fj _1 + fi_2 where f j is the ith term 

d d d d That is, each term is the sum of the two preVious terms. 
b' b+c' b+2c' ... , b+(n-l)c 

For our example, we will step through the sequence that begins with f l = 1 andFor our example, we will step through the Harmonic progression with d=2, 
f2 = 1b=3, and c=5. Stack depth used = 4 

Stack depth used = 3*
 
STEP FUNCTION I<EYSTROKES DISPl.AY COMMENTS
 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
1 Data and save 2[ !iTO] 1 2.00 Save d
 
2 Push 5/ ENT I 5.00 Push c for step 6 1 Data and save 1!STO 11 1.00 Save f]
 
3 Data and 3 ENT IDSP IGEl 0.33 Save b; obtain lib 2 Data an d push 'I ENT I 1.00 Push f 2
reciprocal 3 Exchan ge memory ISTO II RCL ]1 1.00 Move f p onto stack4	 Recall and (~C!:] 1m 0.67 Obtain dlb, 1st term 

multiply -- -- save fi- for next term 
5	 Pop [CLX Ie£] 3.00 Throwaway previous term; 4 Add and push 01 ENT I 2.00 Obtain 

I 
f] ; push f] for 

move denominator to top of next cycle 
stack
 

6 Add and push 8.00 Add c to previous denominator,
 
GJIENTI 

save for next cycle; *
 
7 Reciprocal IDSP I~ 0.13 Reciprocal of denominator
 Repeat steps 3 and 4 for each succeeding term.
 
8 Recall and 0.25 multiply by a to obtain next
 (f; becomes fj _1 and fj_1 becomes fj _2)IRCLl 10

multiply	 term 

Repeat steps 5, 6, 7, and 8 for each succeeding term. 
Note: *Stack depth used can be reduced to 2 if ICLX I is performed between

* c was entered in step 2. SUbsequent operations pushed it to the bottom of the
 
stack. Automatic copy of the bottom of the stack on a pop insures that c will
 step 1 and step 2.
 
always be on the stack.
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The formula for nth Fibonacci number is: 
24 PROBABILITY AND STATISTICS 

_ [1/2 (1 ty!5)] n
 
F ~-~-

n y5 

•
Means 

For our example, compute the 6th Fibonacci number. • 
The CORVUS provides direct calculation of arithmetic means. Two other 

Stack depth used = 2 means can be easily obtained. 

STEP FUNCTION I<EYSTROKES DISPLAY COMMENTS 
Geometric Mean 1	 Clear and set IClX Il DSP 10 O.
 

display
 
The geometric mean of a series (a], a2' a3' ... , an) is defined as:
 

2 Square root anci 5 ~@J[ STO 11 2. SaveV5
 

• 
Geometric Mean = VIa • a • a • • • astore	 1 2 3 n•

3	 Add 3. The program below calculates the geometric mean. For this example the series1[~ (1+v'sl
 
4 Divide 2. (5,10,3,6,9) is utilized.
2[J ('h (1 +Y5l
 
5 Data and power 6~ 18. (Y2(1+Y5ll n Stack depth used = 2
 

6 Recall and divide IRell, [J 8. Divide byV5 STEP FUNCTiON KEYSTROKES DISPLAY COMMENTS
 

Data 51 ENT I 5.00 Enter aj
 

2 Data 10 10 Enter next a1
 -
"C';"'. 3 Multiply o 50.00 Obtain al : : : ai 

•	 ':\.j"."",.",-;,. Repeat steps 2 and 3 for all aj 
Note: the keystrokes and display for steps 2 and 3 apply to a2 only 

4 Data 5 5 Enter n 

5 x...;y IINV I~ 6.05 Display geometric mean-
Harmonic Mean 

•... <N" ....••. 

• '";,',.,-,~.... .. The harmonic mean of a series (ai, a2,' • " a ) is defined as:
-!I.-- . n 

Harmonic Mean = ~ (l/a.)' The program below calculates the harmonic 
i=1 I _'....•..../'~....•.."... mean. The same series (5, 10, 3,6, 9) is utilized in this example. 

".-,»,;,,:..-;"'._.;c' 

Stack depth used = 3 
L STEP FUNCTION KEYSTROKES DISPLAY COMMENTS

.•..'....,...4.·.... ..... 
1	 Clear stack IDSp 11 ClR ) 0.00 Reset statistical memori, 

.. "'," ,,- 'J'.. , ..•	 clear entire stack 

2 Data 5 5 Enter a
j 

3 Reciprocal 0.20 Obtain 11 a
j~~ 

jI 4	 L [B 0.20 Obtain~ l/a. -	 j~j I 

Repeat steps 2, 3 and 4 for entire set of values 
note: the keystrokes and display for steps 2, 3 and 4 apply to a

j 
only 

5 Recall IRell7 5.00 Recall n 
6 Recall IRCl 19 0.91 Recall 2: 1/a 

j 

7	 Divide [J 5.49 Obtain harmonic mean 
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Permutations and Combinations 

The set of permutations of n things taken k at a time is all the ways we can pick 
an ordered sample of size k from n. For example, if five cards are pulled from a 
deck one at a time, how many sequences can be drawn? The first card may be 
any of 52, the second any of 51, etc. Thus the number of permutations in this 
case is 52. 51 • 50 . 49 • 48. In general the number of permutations of n 

things taken k at a time equals -(~~
n-k) I 

The set of combinations of n things taken k at a time is all the possible sets of 

size k that can be selected from n things. The sample is no longer ordered. 
Thus the five cards selected could have been selected in any order. From the 
formula for permutations above, the 5 cards taken 5 at a time can be permuted 

in -~ways or 5! ways. In general, the number of combinations of n things 
(5-5)! 

taken k at a time (written (~) equals-(n_l­
k! n-k)! nl 

Example: Using the formula for permutations -(n.kl!find the number of 5 card 
sequences which can be dealt from a 52 card deck. 

Stack depth used = 3 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 52 52 Enter n 

2 

3 

Factorial 

Recall 

IOSP J[g
Li<iJt LAST X I 

8.07 67 

52.00 

Find n! 

Recover n 
4 Data 5 5 Enter k 

5 Subtract [J 47.00 Obtain (n-kl 

6 Factorial and [OSP]@][£] 311875200.000btain_n!_ 
Divide (n-k) ! 

Example: Using the formula for combinations, _~ find the number of 5 
card poker hands. k! (n-k)! 

STEF	 FUNCTION KEYSTROKES DISPLAY COMMENTS 
". ...Data	 52 Entei n"" 

2 Factorial IDSpl~ 8.07 67 Find n! 

3 Recall IRCL 11 LAST X I 52.00 Recover n 

4 Data 5 5 Enter k 

5 Subtract G 47.00 Obtainn-k 

6 Recall IRCLII LASTX I 5.00 Recover k 

7 Factorial IOSP IrBD 120.00 Obtain k! 

8 Exchange 'an d Iy"xl~@] 2.59 59 Obtain (n-kl! 
Factorial 

9 Multiply and @LJ 2598960.00 Obtain (5th 
divide 

Permutations and Combinations are very useful in simple probability calcula­

tions. 

Example: What is the probability of receiving a bridge hand of 13 cards in 
which no card is higller than a 9 and in 'vvhlch there are 4 spades and ,3 cards 

in each of the other suits? 

We know that the probability of choosing a sample with a particular composi­

tion is given by (r ) (r2 ) (rm) where (-If) represents the 
k' k ... k
12m 

( ~) 

total available sample space and the (k~)'S represent the composition 

specifications. 

Stack depth us~d = 4
 
spades
 

Probability of hand '" d) (~) d) d)
 
(~~ ) 

COMMENTSKEYSTROKES	 DISPLAY 

40320.00 Start calculating first pari 
STEP	 FUNCTION 

1	 Data and 8@~@] 
composite-8!Factorial 

2 Data and 41 DSP I~ 24.00 4! 

Factorial 
2 576.00 4! 4! 3	 x [§~J IT@IVX-] 

4	 Divide GJ 70.00 Obtain (~) 

5	 Data and 8~§J 40320.00 8! 
Factorial 

6 Data and 3~@] 6.00 3! 
Factorial 

7 Data and 51 Dsp]@I 120.00 5! 
Factorial 

8 Multiply [8] 720.00 31 51 
(8 )

9	 Divide n 56.00 3'--' 

10	 yX 175616.00 (8 ) (8 ) (8)( 8 1 3~ 3 3 3 4 

11 Multiply 12293120.00 (8) (8) (8) (8)0 3 3 3 3 
12 Data and 52 [DsplrBD 

"'L

8.0767 52! 
Factorial 

13 Data and 13 [ DSP lIE] 6227020800.00 13! 
Factorial 

14	 Data and 391 OSP 1@1 2.0446 39! 
Factorial 

15	 Multiplv and Q]GJ 635013559596. (52 ) 
13

Divide 

16 Divide [J 1.94 - 05 Probability of hand - 65 



Binomial Distribution	 l-lypergeomeMc Distribution•
Consider repeated independent trials of an experiment. The outcome of each	 The Hypergeometric probability function is used for selection without replace-­III

trial can be considered either a success or a failure. The probability of a	 t ment from a population which consists of k elements of one type and n-k 

! elements of another type. When s eiements are selected, the probabiiity that 

exactly k successes in n trials is: (~) pkqn-k, where (n is the binomial coefficient 

success is p - the probability of a failure is q = l-p. The binomial probabiiiiy of 

exactly x of them are of the first type is given by: 

defined as k! ?~-k)l . The probability of no success is qn and the probability of at (~) (~:: ) expressed as factorials this becomes 
least one success is therefore l-qn. ( ~) 

k! (n-kl! sl (n-s)!••

"xTkx)! (s-x)! [n·k·(s-x)]! n!
 

A fair die is tossed 8 times. A success is defined as either a 1 or a 6. Thus 
An urn contains 10 balls, 3 of which are red. If 5 balls are drawn, what is thep = Yl and q = ¥l. What is the probability of no successes? .. ~-

probability that exactly 2 are red?
What is the probability of exactly two successes?	 Stack depth used = 4'~ (uses automatic 

..... ",.\'y"'" copy of bottom 

of stack feature) 

-Stack depth used = 4 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS	 1 Data, push 10 [EN::±J lENT II ENT I 10.00 Fills stack with n 

1 Data, reciprocal, 31 DSP IGBI STO 11 0.33 Store p	 2 Data, subtract, 3 G! STO 1 1 7.00 n - k, save 
store	 store 

3.00 recall k, save2 Data, divide, store 21 ENT 13[:]1 STO I 0.67 Store q 3 Recall,store IRCLIILASTX IISTol2
 

3 Data, power BE] 0.04 Obtain qn; Prob 4 Factorial IDSP I~ 6.00 k!
 

of no success	 I 5 Exchange,factorial'[Ifl DSP I~ 5040.00 (n-k)!•
6 Multiply X	 30240.00 (n-k)!k!

4 Clear, recall [CLX 11 RCL II LAST x I 8.00 Recover n 
7 Exchange 10.00 Recover n
 

5 Factorial IDSpl@] 40320.00 nl
 5.00 n-s
 
6 Recall IRCL II LAST x 1 8.00 Recover n
 

8 Data, subtract 

5.00 recall s, save
 
7 Data, subtract, 2 81 STO ]4 6.00 n - k, save n - k
 

9 Recall, store 

120.00 s!10 Factorial 
store 11 Exchange, 120.00 (n-s)! 

8 Recall, store I RCL II LAST X I[ STO 13 2.00 Recover k, save k Factorial
 
12 Multiply, 

Iy~xl 

435456000,00 k! (n-k)ls! (n-s)!

9 Factorial I DSP 1[8] 2.00 k! 

mUltiply 
10 Exchange and IY"'XIIDsp]C8D 720.00 (n-k)! 13 Exchange, 120.00 k! (n-k)lsl (n-s}!/n! 

Factorial factorial, divide 
(n)11 Multiply, divide 28.00	 14 Store 120.00 Save0CJ	 k 

1 2 Recall, power 1RCLlll RCL\38 0.11 pk 15 Data, push 2 iENT II ENT II ENT I 2.00 Fill stack with x 

13 Multiply q 11.. In) nk 16 Recall, exchange IRCL 121 Y"'x IR 1.00 k-xrxl	 -_ 'k' r subtract -- -- ­
qn'k14 Recall, power t®\12[RCLI4[j 0.09	 17 Factorial [§i'J@] 1.00 (k-x)! 
(n) pk qn-k = prob15 Multiply 0 0.27	 18 Exchange, recall, Iy""X II RCL 131 y""x! 2.00 Recover sk exchange 
of k successes 19 Subtract, store, 01 STO 14 ~ 6.00 (s-x) I, save s-x 

FactOrial 

Note: Steps 4·11 compute the combination (~ ) with some additional data stores 20 Multiply 0 6.00 (s-x)1 (k--xl! 

as required for the binomial fOI'mula. 21 Exchange, Iy""X 1~0 (s-xl!(k-x)!xl12.00 
Factorial, Multiply 

22 Recall, recall, IRCL I1[R:gj4[J 4.00 n-k-(s-xl 
subtract ­

23 Fact?rial, IDsp 1C8.D0 288.00 (n-k-(s-x))! (s-x)!· 
multiply (k-xl!x!

24 Re~all, exchange, [Eg 91 y~X ICJ 0.42 Probability of exactly
diVide 2 red ball s 

6766 



P(;isson Distribution 
Normal Curve 

The Poission probabilities are defined as: 
(zt)X e,zt The standard normal curve is defined by: 

P(x) =----x!--- , x = 0, 1, 2, ... 
which has mean == 0 and1 ~X 2/2¢(x)=$e 
variance == 1. x is in no rmalized 

A common interpretation is that z == mean rate of occurrence of some event, t 
units. 

time interval, then P(x) is the probability of exactly x events in time interval 
This defines the probability density function. The associated distribution function t. Customers arrive at a store at a rate of 45 per hour. What is the probability
 

that there are no customers arriving in a five minute period? ~1~ JX e'x 2/ 2 dx has no simple expression.
 

(When x == 0, P(x) == e-zt)	 Y2rr _~ 

What is the value of ~(1.7)? 
Stack depth == 2 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

Stack depth used == 4
 
1 Data 45 [ENTI 45.00 Rate per hour
 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
 
2 Data, div ide 60 GJ 0.75 Rate per minute
 

3 Data, multiply 50 3.75	 Obtain zt 
Data 1.7 1ENT!	 1.70 Enter x 

4 Push, negate ~iJ[CHS] -3.75 Save zt for step 6;
 
2 Square 2.89 x2


obtain - zt	 lospl~lEJ 
5 eX, store ~~[STO]1 0.02	 Probability of no 3 Divide, negate 2 01 CHS! -1.45 -x 2 /2
 

customers for 5 min. eX e- x2 /2
4 ~[E] 0.24
 
Save for step 7
 

5 Pi, multiply, [Osp 1020QIJ 2.51 V2ir
 
root
 

If there is one clerk, what is the probability that in a five minute period more
 
6 Reciprocal [OSP f[ili] 0.40	 1/2customers will arrive than can be served? Note that the probability of more 

than 1 customer arriving is 1-P( 1)-P(O). Also note that P(x=n) = ~=n.1) zt 7 Multiply 0 0.09 Obtain ¢(x) 

n 
Assume P(O) remains in X from previous problem. 

Stack depth used == 2 

STEP FUNCTION I<EYSTROKES DISPLAY COMMENTS ,J4I 
6 Multiply 0.09	 zt prO) =P( 1)0	 

1 

7 Recall, add [RZiJ1G 0.11	 P{O) + PO) III
8 Data, exchange, I!Y<>X IG 0.89	 Probability of more 
subtract	 than one customer 
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Chi··Square Statistics 

A statistic which is the sum of squares of independent standard normal random 
variables is said to be Chi-square distributed. There are infinitely many Chi­
square distributions, one corresponding to each positive integer, called the 
degree of freedom, The density function for a Chi-square is quite imposing, 
and can be obtained from tables. The Chi-square is used in statistical 
inference about population variances. If s is the observed sample variance of a 
sample size n taken from a normal population with expected variance v, (n-ll s 

Chi-square with n-1 degrees of freedom. v 

A manufacturing process for light bulbs is sampled and tested for bulb life, A 
sample of 20 bUlbs has an acceptable sample mean, but the sample variance 
is 300 hours. Specifications require a population variance of 250 hours or less. 
Is this sample sufficient evidence to reject the lot of bulbs? The hypothesis 
being tested Is that the population variance is 250 or less, The test statistic is Chi­

square = (n:-i) ~ where s = 300, v = 250, n =20, degree of freedom = 19. The 

level of significance is arbitrarily set as 0,05. 

From a table of Chi-square values, we obtain the probability of a Chi-square of 
19 degrees of freedom being greater than 30,14 is 0,05, Thus we accept the 
hypothesis (and the lot of bUlbs) if the observed Chi-square is less than 30,14. 
We reject the hypothesis if the observed Chi-square is greater than or equal to 
30.14, 

Stack depth used = 2 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 20 IENT I 20,00 Enter n 

2 Subtract 1 19.00 Obtain n--lEJ 
3 Data, multiply 300rxl 5700,00 (n -1) s 

L...:.-J 

4 Data, divide 250GJ 22,80 {n-1)s!v 

Since the observed Chi-square is less than 30.14 
the hypothesis is accepted, and this sample is not 
sufficient evidence to reject the lot of bulbs. 

7n 

least Squares linear Regression 

A least squares linear regression is a mechanism to find a "straight line of best 
fit" between a pair of independent variables (i.e., variables for Which no known 
dependence exists), Basically, this approach attempts to minimize the sum of 
the squares of the deviations from a straight line, 

The line is given by: y = mx +b 

n~xy-~x~y - ­
where m ~ n~x2-(~x)2 and b = Y - mx,
 
A primary output of a linear regression is a measure of the dependence of the
 
two variables. The correlation coefficient is given by:
 

correlation coefficient = r ~ m ax 
Oy 

~x;r::'nx2 lJ =J'Ly2 _-ny 2with n weighting - a =v::::.=-_- and yx n n 

with (n-1) weighting - ax =/!:-x2
-~: and Oy =J"i:"y2_-ny2 

n-l n-l 

The weighting does not matter for calculating r as long as we are consistent. 

The program below calculates the slope and intercept of the least squares best 
fit and the correlation coefficient. Two special features of the CORVUS are 
utilized; exchange with memory and the unaltered x,y registers after [0 
The program is valid for an arbitrary number of (x,y) pairs, 

Example: find the linear least squares fit for: 

x Y 

5,01 6.52 
9.98 11.34 

15,21 17.48 
19,88 15.08 
24,98 18,30 

Display is assumed to be set to IDSP 1~ lliD IDSP I 2.
 

In the program below the fi rst two steps are preparatory and only necessary if
 
the stack and memory 1 have been used since the calculator was switched on,
 
Steps 3-13 are performed for each x,y pair, This part of the program is straight
 
forward and relatively short. Steps 14-37 are only executed once for each least
 
squares regression.
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Stack depth used = 3 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 
5.47	 Store b 27 Store L~i<iJ 4 

1038.95 Recover y2 28	 Recall IRCL!2 
Clear IDSP II CLRJ 0.00 Clear stack; reset Recall ~x, ~y .. pop Lx29	 Recall I RCL iLBfCLXlGJ 68.72memories 

944.49 Obtain ny2 30	 x2, Recall and IDSP 1~1.jX IL€SiJ
2 Store ITiOJ 1	 0.00 Clear memory 1 

Divide 7[]
 
Data 6.52 6.52 Enter Yi
 94.47 Obtain ~y2_ny231	 Subtract3	 EJ 

4 Push lENTJ 6.52 Copy Yj
 
32 Recall and IRCLI7 1 EJ
 4.00 Obtain n-1
 

5 Multiply 42.51 Obtain yt for step 13 Subtract
0 
6 Recall IRCllli§] 6.52 Recall Yj 33 Divide and..;x GIDspllV'X1 4.86 Obtain ay with n-1
 

weighting

7 Data 5.01	 5.01 Enter xi 

S. D. IDSP ]L~I CLX 10 7.88 Obtain X, S. D. pop x 
8 Summation	 5.01 Add (x, y) into totalCB	 34 

35	 Recall and j RCll3 0 4.35 Obtain max 
9 Multiply	 32.67 Obtain xjYj 0 Multiply 

10 Recall IRCL 11 0.00 Recall ~XiYi 
36 Exchange and [y~xl[J 0.89 Obtain r 

11 Add and Store 8! STO 1 32.67 Store ~XjYj Divide1 

12 Pop ICLxI0 42.51 yj2 on X register 37 Store Ism15 0.S9 Stol'e r 

13 Add GJ 42.51 find ~Yj2 

Repeat steps 3 . 13 for all X,Y pairs. 

note: the val ues displayed and data entered in steps 3 . 13 are at the end, m is in memory 3
 
for the first X,Y pair only.
 b is in memory 4 

r is in memory 514 Store ISTO 12 1038.95 Store ~y2 

15 Recall IRCL 17 5.00 Recall n 

5843.17 Obtain n~xy This same program can be used for other types of correlation. When a data 

Multiply item is first entered, any of a number of operations can be performed on the 

Recall and 515S.12 Obtain ~XLY data items. A logarithmic or semi-logarithmic curve fit can be obtained by 

16	 Recall and [RCLI1[:zJ 

17 IRCL1~0 
Multiply taking the logarithm of both or one of the variables respectively. Other 

18 Su btract G 685.04 Obtain n~xy-~x~y functions which might be used include trigonometric, hyperbolic, powers and 

roots.19 Recall [RCL] 7 5.00 Recall n 

20 Recall and IRClis 0 6876.30 Obtain n~x2 
Multiply 

21 Recall and [§g 9[ DSP I~I V'X I 5634.00 Obtain (~X)2 
2	 ­x 

22 Subtract and GG 0.55 Obtain m 

Divide 

23 Store ISTO 13 0.55 Store m 

Obtain ~x, ~y = nx, ny 24 Recall IRCLI~ 75.06 

25 Recall, Mult.I RCl 1300 27.33 Obtain n(y-mx)
 
and subtract
 

26	 Recall and !RClP[J 5.47 Obtain b 

divide 
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25 NUMERICAL METHODS 

Quadratic Equation 

The roots of the quadratic equation Ax2 + Bx + C = 0 are:
 

-B tv B2_4AC
 
2A if 0 = (B2 -4AC)/4A2 is positive, the roots are real.
 

-B v'4AC-B2" . 
if D is negative, the roots are complex and expressed as: 2A ± ~~2A-- J 

-B v'4AC-B2 ­
That is, 2A is the real component and --;;;;:--- is the imaginary component.
 

Solve 3 x2 + 6x + 4 =0 Stack depth used = 4
 
STEP FUNCTION KEYSTROKES DISPLAY
 COMMENTS
 

1 Data and Enter 3 [ ENT II ENT I 3.00 Enter A and push
 

2	 12.00Multiply 4 [8] Obtain 4A; A still on 
stack 

3 Data and store 61 CHS I[STO 11 - 6.00 Enter and store _. B 

4 Square IDSP 1~151 36.00 82
 

5 Exchange IY~X ] 12.00 bring back 4A
 

6	 48.00Data and 4 0 Enter C, obtain 4AC 
multiply 

7 Subtract G	 B2-4AC-12.00 

8 Exchange Iy~X 1 3.00 Bring back A
 

9 Square [Dspl~151 9.00 A2
 

10	 Multiply 40 36.00 4A2
 

11 Divide
 QJ -0.33 obtain 0 
Skip to step 13 if D not negative 

12	 Negate ICHS I 0.33 Make D positive for vi 
13	 Square root, 1 DSP lQRJI STO 12 0.58 Imaginary component 

save of complex root, if 
D neg. 

14 Exchange IY~XJ 3.00 Bring up A 
15 Multiply dKJ 6.00 2A 
16 Recall IRCL \1 -6.00 -B 
17	 Exchange, rY~GJ -1.00 Obtain - B/2A, real 

divide component if 0 neg 
If 0 was negative, done 

18 Store ISTOJ 1 * Store - B/2A 
19 Add GJ	 -B+~AC 

2A
20 Recall IRCLJ 1 [B.Qg 2 * Recall - B/2A, 

y'B2-4AC ­

o --~ 

21 Subtract 

- B - v'B 2 -4AC* Example had no real roots 

Roots	 of polynomials 

The Newton-Raphson method may be used to compute a root of a polynomial 
1equation: f(x} = aoXn + a1xn

- + .. - + an_Ix + an = 0 

The NSlfy'!:on-Raphson method is an iterative approximation method described 
by: _ _ fix) where f' (x} is the derivative of f(x}. 

Xi +1 - Xi f'(x) 

Recall that the derivative of a sum is the sum of the derivatives, and that the 

derivative of a general term axn is anxn-1. 

For the example, approximate a root of f(x} = 2x3-5x2 + 35x-15. Use the initial 

value Xo = 1. The program given here is applicable to a polynomial With 7 or 

less coefficients. Coefficients are stored in memories 1-7, while f(x} and f' (x} 

are developed in memories 8 and 9. 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data, store 2[ ST2J 1 2.00 Store ao 

2 Data, store 5 [ [HS JI) STO 12 -5.00 Store a1
 

3 Data, store 35 STO 3 35.00 Store a2
 

4 Data, store 15 [ CHS 1@:i]4 -15.00 Store a3
 

Continue for any further coefficients, the example has none
 

5 Data, push 11 ENT II ENT II ENT I 1.00 Fill stack wit!l xi 

6 Clear and save ICLX JLSTO lsi STO ]9 0.00 Initial ize sums 
7 Pop ICLX IGJ 1.00 Pop zero off stack; CLX 

not needed fi rst pass 

8 Data, power 3 ~ 1.00 Degree of term as power 

9 Recall, multiply, IRCLll Q][ENlJr ENT 12.00 Multiply by coefficient 
push 

10	 Recall, add, store Add to f (x)[RCL j8GJli:§ 8 2.00 
112	 Exchange, divide Y~X [j 2.00 Obtain ax n ­

13 Multiply 3 ~ 6.00 Multiply by degree of
 
L:::.J te rrn
 

14	 Recall, add, store IRCL 191 STO 19 6.00 Add to f' (x) 

Repeat steps 7-13 for each term in polynomial, using appropriate memory and power 
each time. Skip steps 8 and 11 when degree = 1. Go on to step 13 after degree = 1. 

15 Pop, recall, add ICLX IGJI RCL 141 RCL 18 GJ 17.00 Add 0 degree term to f (x 

16 Recall,divide 0.55 f(x)/f'(x)tJL 19[] 
17	 Subtract - 0.45 x.-f(x)/f' (x) = new x 

18 Roll [§JJ 1.00 Move new x to bottom 
of stack 

19 Pop tjXIGJlcLX )GJ 1.00 Move new x up in stack 
20 Subtract - -0.55 Difference between 

iterations 
If difference is small enough, stop (pop stack to get x). If difference is too large, return 
to step 7. 

2A 
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o.l.ladraWire (Simpson's HUla) 

Quadrature is the approximation of integrals by numerical methods. Simpson's 
Rule approximates the area under a curve by summing the areas of parabolas 
through selected points on the curve. Simpson's Rule requires an even number 
(2m) of intervals of constant size, h, over the dimension of integration. These 

2m intervals define 2m + 1 points on the axis. If Yi = f(x,) then Simpson's Rule 
is: 

Area "'" (1 /3 ) h [ (y 0 + Y2 m ) + 4 (y I + Y3 ... Y2 m, I l + 2(y 2 + Y4 + ... + Y2 rn -2 )] 

We will illustrate by approximating the integral J6 d: using 4 intel'vals (h=1). 
2 

Thus we have: Area"" (1/3) [(1/2+1/6)+4(1/3+ 1/5)+2(1/4)] 

Stack depth used = 4 

STEP FUNCTION KEYSTROKES DISPLAY COMMEf\JTS 

Data, rf!ciprocal 31 DSP 1C0J 0,33 1/3 constant for
 
step 9
 

2 Data, reciprocal 2[@~ 0.50
 Yo 

3 Data, reciprocal. 61 DSP II~GJ 0.67 Yo+ Y4 
add 

4 Data, I'eciprocal 31 DSP 1l2B 0.33 y,
 
5 Data, I'eciprocal 5 1DSP J@BG] 0.53 y, + Y3
 

add
 

6 Multiply, add 2.804[Z}GJ adds 4(y, + Y3)
 
7 Data, reciprocal 41 DSP J[]B 0.25
 Y2
 
8 Multiply, add
 200 3.30 Adds 2Y2 
9 Multiply @ 1.10 Multiply by 1/3 

10 Multiply 10 1.10 Multiply by h = AREA 

Quadrature may also be used when the equation of the curve is not known, but 
the values at equal sample points are known. Suppose you are considering 
buying a piece of property that is bounded on one side by a straight road and 
on the other side by a wandering stream. You are interested in finding the 
approximate aiea of the parce!. You measure along the road at even 20 yard 
intervals, at each interval you measure the distance to the stream. The 

following table of measurements results: 

x 0 20 40 60 80 100 120 
V 0 22 41 53 38 17 0 

What is the approximate area (in square yards)? 

AREA = 20/3[(0+0) + 4(22+53+17) + 2(41 +38)] 

Stack depth used = 4 

STEP FUNCTION KEYSTROI(ES DISPLAY COMMENTS 

1 Data 20 IENTI 20.00 Enter h 

2 Divide 3D 6.67 h/3 

3 Data 221 ENTI 22.00 (We skip 0+0) 

4 Data, add 53 [!] 75.00 

5 Data, add, multiply 17040 368.00 

6 Data 411ENTI 41,00 

7 Data, add, multiply 38 G 20 158.00 

8 Add 0 526.00 

9 Multiply 0 3506.67 Multiply by h/3 to 
obtain AREA 
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f'26 COMPLEX NUMBIERS 

Introduction 

The concept of real numbers represented by a number line is a familiar one, 
The real number system has been extended by the addition of another number 
line, called the imaginary number line, which passes through zero and is 
perpendicular to the real number line, The terms 'real' and 'imaginary' are 
unfortunate, since 'imaginary' numbers are no less real than 'real' numbers, 
Imaginary and complex numbers are not something mysterious; they are 
simple logical extensions to the real number system. The entire plane defined 
by the two number lines represents what are called complex numbers. 

There are several forms which are used to represent complex numbers, The 
first of these is rectangular form. Since a complex number is a point in the 
plane, we may represent it by the coordinates on the two axes (real and 
imaginary), To distinguish the real coordinate from the imaginary one, we affix 
an indicator to the imaginary one, Mathematicians use i as an indicator, while 
electrical engineers use j (to distinguish it from the i used for current). Some 
conventions use the indicator as a prefix and some use .it as a suffix, Thus i2, 
21, j2, 2j all represent the same imaginary number. We will adopt the 
convention of the indicator j used as a suffix (e,g, 2j), In rectangular form, we 
express the complex number as the sum of its real and imaginary parts (e,g., 
2 + 3j). 

Points in a plane may be represented in another form, called polar representa­
tion, In this form, the point is represented by a magnitude (distance) and by an 
angle from the reference axis (positive real). The relationship between 
rectangular and polar form is the following:a + bj = r COSO + r SINOj 
r(COSe + SIN8j) where i = a2 + b2, The polar form may be expressed as 
rLO, meaning a magnitude of r at the angle (J, 

Another way of expressing the polar form is called the exponential form, The 
exponential function ex is defined as the limit of the series: ... , ... r,c;:'"• 

2 3x x
L"= 1 + x + 2! +31' 

The trigonometric functions are defined as: 

(J2 (J2 (J3 eS 
~ 1-- + - . . . SIN (J ~ (J -_. + -' .•.COS II 

o 2! 4! 3! 51 
Remembering that the definition of imaginary numbers states that 1j·1 j = -1, 
when we substitute OJ for x in the exponential and collect terms we get: 

e(Jj = COS 0 + SIN OJ 

Thus the polar form of a complex number can be expressed as reej , The rand 
(J are exactly the same rand 0 in the other expression of polar form and thus 
the actual numbers used in a calculator solution of a complex number problem 
will be the same for polar and exponential form, The exponential form will be 
useful in the problems illustrated below to derive simple forms for various 

complex number operations, 

Polar and rectangular forms are each best suited to particular applications. 
Rectangular coordinates make addition and subtraction of complex numbers 
quite easy, while multiplication, division, roots and powers are easier to 
accomplish in polar form. The functions I -+POL I and ~ I .....POL I are used 
to perform the conversion between coordinate forms. In the following problem 
solutions the form most appropriate for the particular problem is the one 
illustrated, However, due to the way the problems are set up and the way the 
conversions work, if the numbers are desired in an altemate form, they can 
simply be entered and the appropriate conversion performed before the next 

program step. 

Complex Addition and Subtraction 

Complex addition and subtraction are done in rectangular mode, The sum (or 
difference) of two complex numbers is simply the sum (or difference) of the 
real parts plus the sum (or difference) of the imaginary parts, 

(a+bj) + (c+dj) = (a+b) + (c+d)j 

To do sums and differences of complex numbers on the calculator, we make 
use of the two coordinate summation feature. The imaginary component is 
entered into Y, the real component into X and ~ used for adding, 
[INV I ~ used for subtracting. To obtain the sum, IRCL I ! is used, 
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To multiply a series of complex numbers, we can use the ~ function ifExample: 
we use logarithms to obtain the product of the magnitudes.(3+4j) + (6-3j) - (4 + 8j) = (5-7j) 
For our example we will use the same problem as above. Although the example

Stack depth used = 2 shows only two factors, the solution can be used for any number of factors. 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS Stack depth used = 2
 
1 Clear Iosp II ClR I 0.00 STEP FUNCTION KEYSTROI<ES DISPLAY COMMENTS
 

2 Enter 4 IENTI 4.00 Enter imaginary 1	 Clear and Iasp ][CLR Ieosp II RAOI 0.00.
 
set mode


3 Enter and add 3 ~ 3.00 Enter real; add to sum
 
2 Enter .93 IENT I 0.93. Enter angle


4 Enter 3 @H~I ENT I -3.00 Enter imaginary
 
3 Enter and In 5 ~ 1.61. In of magnitude


5 Enter and 6 lB 6.00 Enter real; add 
add to sum 4 Sum GJ 1.61. Adds angles 

multiplies magnitudes 6 Enter 8 IENTI 8.00 Enter imaginary
 
steps 2, 3,4 are repeated for each factor, for the example
 

7 Enter and 4~[EJ 4.00 Enter real; su btract repeat once using - .28 for the angle and 7.28 for the magnitude. 
subtract	 from sum 5 Recall Sum IRCl/CE] 3.59. In of magnitude
 

8 Summation IRCLI~ 5.00 Get real component 6 eX
 !INV I~ 36.40. Obtain magnitude
 
9 Exchange [v<>xl -7.00 Get imaginary component
 7 Exchange Iv<>xl	 0.65. Obtain angle

Complex Multiply 
Complex Divide The product of two complex numbers is defined as follows: 
The quotient of two complex numbers in polar form is defined as follows: reej • see j = rse ( e + ¢ )j 

That is, the ma(;jnitude of the product of two complex numbers is the product 01 re81 _ r e(8-¢) j
-;rt5J - 5

the magnitudes of the factors, and the angle of the product is the sum of the 
That is, the magnitude of a quotient of two complex numbers is theangle of the 1actors. 

For our example, compute 5e .93j • 7.28e .28j (angles in radians). quotient of the magnitudes, and the angle 01 the quotient is the difference of 

Stack depth used = 4 the angles. For our example, compute 6.4e· 9 
;. (all angles in radians). 

1 2 .75)
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS Stack depth used = 4 . e 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTSClear and ~I CLR II osp II RAoj 0.00. Sets mode and clear 
set mode 1 Clear and set mode I osp II CLH II DSP II HAD I 0.00. 

2 Enter .93 lENT 1 0.93. Enter e 2 Enter .91 ENT I D.90. Enter angle 
3 Enter 6.4 lENT 1 6.40. Enter magnitude 3 Enter 5 IENT I 5.00. Enter r 
4 Enter .751 ENT I 0.75. Enter angle

4 Enter .28 ICHS II ENT I -0.28. Enter if> 
5 Enter and exchange 1.21 ENT I[Y~x I 0.75. Enter magnitude, move it 

5 Enter and 7.28 Iv<>xl -0.28. Move rand s together down in stack
 
exchange on stack
 6 Roll [§J 1.20. Moves magnitudes to top 

6 Roll @] 7.28. eand if> together of stack 
on bottom of stack 7 Divide IT] 5.33. Magnitude of quotient 

7 Multiply 36.40. Obtain rs 8 Roll and exchange @]Iv<>x! 0.75. Mqve angles to top of stack,0	 
~ 

8 Roll §J 0.93. Moves {j and if! up in stack in proper order 
9 Subtract EJ	 0.15. Angle of quotient9 Add	 0 0.65. Obtain e+ ¢ 

To convert to I"ectangular coordinates 
to convert result to rectangular form 10 Roll. ­ ~[[[j 5.33. Move magnitude to top of 

10 Roll §]§]§} 36.40. Moves rs back to X stack 
11 Convert11 -+Rectangu Iar I asp II INV B --POL I 28.98. Real component [DSP ~ INV II --POL I 5.27. Real component 
12 Exchange

12 Exchange [v<>xl Imaginary component	 Iv<>x/ 0.80 Imaginary component 22.03. ..
 
...~ 

..•.•..........
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AS with complex multiply, we can do complex division using the summation 
function, For division we use the ~ ~ function, again using logarithms 
to obtain the quotient of the magnitudes, 

For the example, we will use the same example as the previous complex 
divide, but the problem solution can be extended to accomodate any number 
of divisors. Stack depth used == 2 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Clear and I DSP II CLR ] I DSP I[RAD 10.00
set mode
 

2 Enter .91 ENT I 0.90. Enter angle
 

3	 Enter and In 6.4 ~ 1.86. In of magnitude 

4 Sum ~ 1.86. First angle and 
magnitude are added 

5	 Enter .75 lENT] 0.75. Enter angle 

6	 Enter and In 1.2 [E] 0.18. In of magnitllde 
, 
I Minus sum IINV!rB 0.18.	 difference of angles, 

quotient of magnitudes 
magnitudes 

steps 5. 6, 7 are repeated for any other factors in denominator. For this example 
there are no more factors,
 

8 Recall sum IRcglB 1,67. In of magnitude
 

9 eX [!@[8 5.33. magnitude of
 
quotient 

10 Exchange	 0.15. Angle of quotient Iv*xl 
Complex Reciprocal 

From the definition of complex divide, it is easy to find complex reciprocal. 
~ _ 1 -OJ 

- e 
rii r 

For our example, compute the reciprocal of 2.ge1.2j (angle in radians). 

Stack depth used = 2 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

Clear and l DSP II CLR][DSP ][RAD] 0.00
 
set mode
 

2	 Enter and negate 1.21 CHS II ENTJ -1.20 Enter angle and negate 

3	 Enter and 2.9§J~ 0.34 Reciprocal of
 
reciprocal· magnitude
 

Coordinates are in proper locations for conversion to 
rectangular form if desired. 

• Complex Powers and Roots 

From the exponential form for complex numbers, the following defines powers 

of complex numbers: 
{rAOj )n	 == rnenOj 
\'- I.....' ...,. r 

•
.."' Since roots are simply fractional powers, this definition will serve for complex 

roots as well. For our first example, compute (7.2e·7j)3 Stack depth used == 4 

STEP FUNCTiON KEYSTROKES DISPLAY COMMENTS 

1 Clear and set modeI asp ]@:QiJI asp II HAD I0,00. 
t~ 

2 Enter .7 IENT I 0.70. Enter angle 

3 Enter 7.21 ENTI 7.20. Enter magnitude 

4 Enter 3 IENT I 3,00. Enter power •[' 5 @]	 Moves power to bottom 

•
Roll 3,00. 

of stack 

373.25. Magnitude6 Power La 
7 §] 0.70, Move angle liP in stack, 

•
Roll 

power moves also 

8 Multiply o 2.10. Angle 

To move the coordinates into position to convert to 
rectangular coordinates, do three Rolls. 

•
To compute an nth root of a complex number, we use 1In as 

a power. For our example, compute the square root (n == 2) of 2.3e-.7j . 
Stack depth used == 4 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

Clear and 1DSP I[C"LR][§l'J HADI 0.00 •~p set mode ICHS It ENT I 
2 Enter -0.70 Enter angle .7 lENT)...
3 Enter 2.3 [DSP l~l ENT I 2,30 Enter magnitude ... 

.­ 4 Enter and 2 0.50 Obtain power from n 
reciprocal 

5	 Roll @] 0.50 Moves power to bottom 

of stack, also in top 

6 Power 1.52 Magnitude.J. 7 Roll §] -0,70 Move angle up in stack, 
power moves up also...	 ~ 

~f 8 Multiply [8] -0.35 Angle 

For rectangular coordinates, do three Rolls and then convert 

The program above finds only the principal root. For nth roots, there are n-1 
others. Each of the roots has the same magnitude and the angle may be 
computed by (I + 21T/k where (J is the angle of the principal root (in radians), 
and k ranges from 1 to n-1. 
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Ci(jmp~e}.1 "frigoi10meli,ic Fi.lilctnons 
0.14. SIN a SIN 

To compute the trigonometric functions of complex numbers we express the 8 Sine 
27.29. SINH b 

9 Exchange and ly"x]IHypl~ 
complex number in rectangular form. In the following definitions, all angles are 

Hyper Sine 
in t'~rH~n~u, IU\.<IIUIIU, -3.85 Imaginary component of 

Multiply and o [CHS I 
Comple}( Slne SIN(a + bj) = SIN a x COSH b + (COS a x SINH b) j 10 complex cosine 

negate 

For our example, compute SIN(3 + 4j) Stack depth used = 3 To convert result to polar form, exchange and convert. 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
 
SIN 2a SINH 2b
 

1 CI"md IIDSP I[CLR !asp I 0.00. Complex Tangent TAN(a + bj) ~ COS 2a + COSH 2b + COS 2-a-+~C-O--cS--cH-2-bset mode RAD 

2 Enter and store 4 STO I 1 4.00. Enter imaginary Stack depth used = 3For our example, compute TAN(3 + 4j)component; save for 
step 7 

FUNCTION KEYSTROKES DISPLAY COMMENTS
 
3 Enter and store 3.00. Enter real component;
3liiil 2 

STEP 

save for step 7 I DSP 1[cJ;F11 DSP II RAD I 0.0000.Clear and
 
4 Sine [@ 0.14. SIN a IDSP I 4
set mode
 
5 Exchange and !y<>x Il HYP 1I cos 1 27.31. COSH b Enter, multiply 41 ENT I 2 OJ! STO 12 8.0000. Enter b, save 2b
2
 

Hyper Cosine
 and store
 

6 Multiply 3.85. Real component of 3 Enter, multiply 31ENT 1201 STO 12 6.0000. Enter a, save 2a
[8] 
complex sine and store
 

7 Recall IRCL 11 IRCL 12 3.00. Recall b, a 0.9602. COS 2a
4 Cosine Icos I
 
8 Cosine -0.99. COS a 1490.4393. COSH 2b
Icosl 5 Exchange, and [Y",xll HYP HCOS]
 
9 Exchange and ly.,.xIIHypl[@ 27.29. SINH b Hyper Cosine
 

Hyper Sine Save denominator
6 Add and store GJrsTOJ3 1491.4393. 

10 Multiply [8] -27.02. Imaginary component SIN 2a7 Recall and Sine IRCLI2~ -0.2794. 
of complex sine 

8 Exchange and Iy.,.xj LJ -0.0002. Real component of 
To convert result to polar form, Exchan~e and convert complex tangent divide 

Complell1 Cosina COS(a + bj) = (COS a COSH b)-(SIN a SINH b) j 9 Recall and 1RCL] 1 [ HYP IITiRJ 1490.4788 SINH 2b 

Hyper Sine 
For our example, compute COS(3 + 4j) Stack depth used = 3 10 Recall and IRCLI3D 0.9994 Imaginary component 

of complex tangent 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

divide 

Clear and IDSP II CLR II DSP II RAD10.00
 
set mode
 

2 Enter and Store 1 4.00. Enter b, save for step 74 [STO] 

3 Enter and Store 31 STO I 2 3.00. Enter a, save for step 7 

4 Cosine l COS 1 ~0.99. COS a 

5 27.31. COSH bExchange and Iy.,.x ILHYP I[ cos I
 
Hyper Cosine
 

6 Multiply -27.03. Real component of0 
complex cosine 

Recall ) RCll1 I RCL]2 2.00. Recall b, a To convert result to polar form, exchange and convert. 

_.;'''..·;;k~" .....
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27 VECTORS 

Introduction 

The concept of vectors has several interpretations and many useful and varied 
applications. The more general characterization of a vector is an ordered 
sequence of values, as (a], a2' ... , a,.). An algegraic interpretation of such a 
sequence is as the coefficients of a linear equation of n variables. A geometric 
interpretation is that the values are coordinates of a point in n-dimension 
space. Another characterization of a vector is a quantity that is determined by 
magnitude and a direction. Examples of such quantities are distance, force, 
velocity, acceleration. For n = 2, both characterizations describe a point in a 
plane, or a magnitude and direction in a plane. The relationship between 
rectangular and polar coordinates describes the relationship between these 
two characterizations of 2-dimension vectors. 

In this section, we will describe some basic algebraic operations that are 
performed on general vectors. Following that, we will illustrate the use of 
2-dimensional vectors and solve problems of distance and force. The section 
on complex numbers details another common and useful application of 
2-dimension vectors. 

In the illustration of 2-dimension vectors, we will describe three basic types of 
operations. First, when dealing with vectors that represent physical dimen­
sions, we will illustrate determination of the vector coordinates when the 
problem definition does not give a specification which is entirely in one vector 
form or the other. For example, the statement of a problem may give the 
magnitude and one rectangular. coordinate. A second type of operation uses 
the relationship between polar and rectangular form to find unknown dimen­
sions or angles, when the vector is defined in either polar or rectangular form. 
A third operation will be illustrated for force vectors. To determine net force 
acting at a point, we will form the vector sum of all forces acting at that point. 
To do this we convert the vector to rectangular coordinate form (called 
resolving the force into X and Y, or horizontal and vertical, components) and 
add the coordinates to obtain the rectangular form of the net vector. Then 
conversion to polar form gives the net force as a magnitude and direction. 

0" 

Vector Addition 

The sum of two vectors (a[, a2' a3' ... , an) and (b l , b2, b3, ••• , bn) is: 

(8. + b
i
, a2 + b2, a3 + b3•...• an + bn) For the summation 01 two-dimensional 

J 
vectors, see the program for addition of complex numbers in the complex 
number section. For more than two dimensions, a different approach is 
reqUired. For our example, add the two vectors (3.1, 2.0, 5,3) and (.45, 6.2, 

7.9). 

Two basic approaches are possible. One method of computing the sum is to 
sum the first coordinates, then sum the second coordinates, etc. This is a 
straightforward way to compute the sum and is easily extended to the sum of 
more than one vector and can accomodate vectors of any dimension. Using 
this method on our example: 

Stack depth used = 4* 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 3.1 lENT] 3.10 Enter a I 

2 Data and add .45~ 3.55 Add b], first 
coordinate of surn 

3 Data 2 IENTI 2.00 Ent€r a2 

4 Data and add 6.20 8.20 Add b2 , second 
coordina-te of sum 

5 Data 5.3 @Ii] 5.30 Enter a3 

6 Data and add 7.90 13.20 Add b3, third 
coordinate of surn 

For vectors of greater dimension, the sequence is extended 
for each additional coordinate. For the sum of more 
than two vectors, the sum for each coordinate (e.g. step 1,2) 
is extended to sum the corresponding coordinates for each 
vector. 

~' Stack depth used can be reduced to 2 by pressing CLX 
after each coordinate is determined. 
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Another approach, applicable only to vectors of dimension nine or less, is to 
Repeat steps 2, 3, 4 for each coordinate. In this exampleuse the memories to store the sum of corresponding coordinates. The sum is 
repeat two more times first with a = 2.0, b = 6.2, then withthen developed by entering and summing data on a vector-by-vector basis,
 
a == 5.3, b = 7.9.
rather than on a coordinate by coordinate basis, as above. For our example: 

55.67 Inner product 
Stack depth used == 4~' 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS	 Vector Cross Product 
The vector cross product of two vectors (a], a2 , a3) and (b], b2, b3) is defined1 Data and store 3.1 ISTO 11 3.10 Store first coordinate
 

of first vector as: (azb3-a3b2' a3b I-a tb3' a]b2 -azb])
 

2 Data and store 2 ISTO]2 2.00 Store second	 For example, compute the cross product of (3.1,2.0,5,3) and (.45, 6.2, 7.9). 
coordinate of first Stack depth used == 4
 
vector
 

STEP FUI\ICTION KEYSTROKES DISPLAY COMMENTS
 
3 Data and store 5.3l sTo 13 5.30 Store third coordinate ,
 

, .... 1 ... ,I 1 Data, store 21 STO] 2	 2.00 Enter a2 and save
of first vector • 

"'l'''~'< 

2 Data, store, 7.9\ STO!60 15.80 Enter and save b3 ;
Continue for each coordinate; the example has three multiply	 a2 b3 on sta ck
coordinates. 

3 Data, store 5.31 STO 13 5.30 Enter 33 and save 
4 Data and recall .45§jJ 1 3.10 Enter first coordinate l1li


of next vector, recall i 4	 Data, store, 6.2 1STOJ 5 32.86 Enter and save b2 ; 

multiplyprevious coordinate a3 b2 on stack
 

sum 5 Subtract LJ -17.06 First coordinate of
 

5 Add and store 01 STO 11 3.55 Store new sum cross product
 

6 Data, store .45 [STO 14 0.45 Enter b 1 and save

6 Data and recall 6.21 RCL!2 2.00	 Enter second coordinate ­

of next vector, recall 7 Recall, multiply ! RCL! 3[IJ 2.39 Recall a3, a3b 1 on
 
precious coordinate sum
 stack 

7 Add and store 81 STol2 8.20 Store new sum	 8 Data, store 3.1 ISTO 11 3.1 Enter al and save
 

9 Recall, multiply
 8 Data and recall 7.9!RCL!3 13.20 Enter third coordinate IRCL!6[Zj 24.49 Recall b3 , a I b 3 on stack 

of next vector, recall 10 Subtract -22.11 Second coordinate of Gprevious coordinate sum	 cross product 

11Continue for each coordinate; the example has three coordinates. Recall, recall IRCL 111 RCL 15 0 19.22 a1 b2 on stack
 
multiply
 

Repeat steps 4 through 8 for any additional vectors.
 
12 Recall, recall IRCLI2! RCL!4@ 0.90 a2 b l on stack
 

':' Stack depth used can be reduced to 2 if CLX is pressed after each store. multiply
 

Inner (or Dot) Product	 13 Su btract 18.32 Third coordinate of G 
1-01' two vectors (a" a2, a3' ... , an), and(b j , b2, b3, , bn), the Inner Product is cross product
 

A Simple Boom
 a scalar defined as: alb! + a2b2 + a,3b,1 + + anbn 
For example, compute the Inner Product of (3.1, 2.0, 5.3) and (.45, 6.2, 7.9).	 Many considerations involVing vectors will be illustrated by this simple boom 

Stack depth used = 3 problem. It is called simple not because the problem is simple but because the 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS boom is. The problem will be presented in three parts. The first part will 

1 Clear §J ICLR I 0.00 Clear stack, initial ize to zeroes illustrate determination of distance vector coordinates when the problem 

2 Data 3. 1 IENT I 3.10 Enter a, specification is not completely in either rectangular or polar form. We solve a 

side-side-side triangle to determine the dimension vectors, and then use3 Data and .45 0 1.40 Enter b, and multiply 
conversion to polar form to obtain angles. Part II uses trigonometry to resolvemultiply 
force vectors. Part III uses polar to rectangular conversion to determine force

4 Add	 1.40 Add to previous result GJ	 vectors. 

Ret 
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PART I PART II 
In the first part of this problem, the angles ep and (J were determined. If a weight

A boom is supported by a guy wire. The length of the boom is A, the length of W hangs from the end of the boom, what is the tension in the guy?
the guy is 8, and the guy is attached a distance C from the base of the boom. 

h: 
"....­ 1" /-r!,-----J 

What is the height of the end of the boom, and at what angles are the boom 
and the guy? dConstruct the right triangle: h2 + d2 = A2 

The forces at the end of the boom are compression of the boom, tension in the 
I h2 + (C + d)2 = 82
I guy, and the weight. 
I B2 - A2 - C2 
I solve for d: d=-- The compression, F, resolves into force vectors HF and VF. 
I 

¢ c;r e d'" then h = JA2 _ d2 VF
",If F HF = F COS (J

(C+d, h) are rectangular coordinates that correspond to polar coordinates B48 d""'HF VF = F SIN ()Similarly, (d, h) corresponds to A 461 
For the example, assume A = 8 B = 15 C = 9 The tension, T, resolves into force vectors HT and VT.
 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
 HT"'---/~--i HT=T~ose 

1 Data, square 151 ENTJ0 225.00 Squal'e B / I VT= T ::>IN 8 

2 Data, square 8 IENTI0 64,00 Square A (B2 still on stack) 
T VT 

Since the boom does not move, the forces must be balanced. Thus
 
3 Store [ STO [1 64,00 Save A 2
 

· f F' F - T COS r/> W + VT = VF and HT = HF 
4 Subtract 161.00 Obtain B2 -A 2 SoIvmg or. - COSoG 
5 Data, store 9.00 Save C9 IENTIISTol2 Then W+ T SIN ¢ '" T COS r/> SIN e= T COS ¢ TAN 8 

COS 616 Square [8] 81.00 Square C
 

7 Subtract 0 80.00 Obtain B2 -A 2 -C 2 T = 
W
 

COS¢ TANa - SIN¢ For the example, assume W = 500 
8 Recall, multiply IRCLI220 18.00 Obtain 2C 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTSB2-A 2 -C 2

G 1 Enter 500 [EiliT] 500.00 Enter weight (for step 9 Divide 4.44 Obtain d 
2C 

10)

10 Store ISTO l3 4.44 Save d
 

2 Enter 26.321 STO \1 26.32 Enterr/> (from part I)
11 Square [ENT!0 19.75 Obtain d2
 

3 COS Icos/ 0.90 COS¢

12 Recall, subtract IRCL11 G ICHS I 44.25 Obtain A2_d2 as - (d2 - A2 )
 

4 Enter 56.251 STO 1 2 56.25 Enter 61 (from part I)

13 Square root lasp Ilvx! 6.65 Obtain h (height of boom) 

5 TAN [TANI 1.50 TAN e
14 Push IENT II ENT I 6.65 Push h onto stack for 

6 Multiply 1.34 TAN 0 COS ¢step 18 0 
7 Recall IRCL 11 26.32 Recall r/>15 Recall, add [ RCL 131 RCL I 2~ 13.44 Recall d, C; Obtain C+d 
8 SIN 0.44 SIN ¢ 16 Convert to polar Iasp II :-07POL I 15.00 Obtain BLr/> from ~ 

(C + d, h) 9 Subtract 0 0.90 COS r/> TAN 8-SI NO 
17 Roll [@ 26.32 Get r/> (angle of guy) 10 Divide 0 556.75 Obtain T 
18 Roll @J 6.65 Get h from stack To find compression in boom: 

from step 14) 11 Recall and COS [RC)J 1 Icos I 0.90 COSr/> 
.,19 Recall [RCL 13 124.44 Recall d Multiply I£] 499.03 TCOS¢ 

20 Convert to polar [asp 1!-07POL I 15.00 Obtain ALe from (d, h) 13 Recall IRCL 12 leos I 0.56 COS a 
21 Exchange Iy<>x] 56.25 Get 0 (angle of boom) 14 Divide GJ 898.23 Obtain F 
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PART III 

If the guy has a maximum safe tension load of 1000 Ibs., what is the maximum 
weight that may be supported? In the first section of this problem, we used 
rectangular to polar coordinate conversion to determine iengths and angles. 
We may use the relationship between polar and rectangular coordinates to 
resolve force vectors as well. We know the maximum tension is 1000 Ibs. at 
angle cf> (determined in part I), This represents a polar force vector that can be 
converted to rectangular form to give HT and VT. We know that HT = HC. Thus 
we can easily determine C(C=HC/COS (J) and from C we can obtain VC. The 
maximum safe weight is VC-VT. 

Stack depth used = 3 

STEP FUf\lCTIOI\J I<EYSTRO KES DISPLAY COMMENTS 

1 Enter 26.321 ENTI 26.32 Enter if; 

2 Enter and 
convert 

1000 IDSP lIT§] 
I"'POL I 

896.33 Obtain HT, VT on stack 

3 Enter, Store, 
COS 

56.25/ STO 111cos I 0.56 COS 6; HT, VT pushp.d 

4 Divide 0 1613.35 Obtain C 

5 Recall IRCL 11 56.25 Recall e 
6 Exchange and 

convert 
IY"'XIlDSpl~ 
l--POL I 

896.33 Obtain HC (=HC). VC 

7 Roll @] 1341.46 Move VC to top of stack, 
VT in stack from 
step 3 

8 Subtract EJ 898.07 Obtain VC- VT as 
-(VT-VC) = 

max weight 

28 ENGiNEERiNGI SCIEi\i'rlFiC APPUCATiONS 

Skin Diving Depth 

We are intsrested in determining the maximum safe depth that a diver may 
descend without underwater breathing apparatus. This limit is based on the 
mechanical effects of pressure on the body - specifically the minimum volume 
that the lungs may be compressed to by the increased pressure (underwater 
breathing apparatus compensates for this by providing air at higher pressure to 
prevent excessive compression). To find the limit of compression, we assume 
that air behaves as a perfect gas and thus follows the ideal gas laws. We will 
use Boyle's Law, Which states that at a constant temperature, PV = k, where 
P =pressure, V = volume, and k is a constant. Thus volume is inversely 
proportional to pressure. To reduce volume to 1ln of original, pressure must be 
increased n times. 

The capacity of human lungs when fUll is about 12 pints. The minimum 
capacity is about 3 pints. Thus the safe reduction in volume is about 1/4, 
Which implies that the safe diving depth is limited to about four times pressure 
increase. 

To determine what this depth is in sea water, we note that at the surface, air 
pressure is about 14.7 Ib/in2 (called one atmosphere or atm). Thus the diving 
depth is where the pressure is about 4 atm. Since the air at the surface is 
already 1 atm, we need to determine the depth of water that corresponds to 3 
atm of pressure (sea water weighs about 64.2 Ib/ft 3 ). 

Stack depth used = 3 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 14.7 IENT I 14.70 Enter atm in psi 

2 Data, square, 
multiply 

12 [ ENT I00 2116.80 Convert atm to Ib/fl2 

3 Data and divide 64.2 [J 32,97 Enter weight ot sea 
water in Ib/te ; divide 
to get aIm in feet of 
water 

4 Multiply 3 IT] 98.92 Depth tor 3 atm 
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Pari!llHel Res;istance - D.C. Circuut 

The formula for fotal effective resistance of a parallel circuit of resistors (for 
D.C. current) is: -:-_-:-._1 ~ 

_1_	 _1_ _1_ 
r-"1	 n. n,l n
nT =	 nl"1" nZ""" ... ..,... no 

Find the effective resistance of a 5 ohm, 10 ohm, and 30 ohm resistor 
connected in parallel. 

Stack depth used = 2 

For additional resistors, repeat step 3. 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1	 Data and reciprocal 5 [osP I ~ 0.20 1/R 1 

2	 Data, reciprocal, add 10 ~~ 8 0.30 Add 1/R2 

3	 Data, reciprocal, add 30 1 oSP I ~ GJ 0.33 Add 1/R3 

For additional resistors, repeat step 3 

4 Reciprocal [!E] 3.00 Effective total resistance 

Impedance in 81 Sel'ias Circuit -- A.C. Current 

The A.C. impedance of a series resistance and inductance circuit is given by: 

V = 21 Where V is the transform of the voltage 
I is the transform of current 
2 is the complex impedance 

v 
If the voltage function is v =Vm COS(wt + 8) t~en V =h- eOI similarly, for 

the current function i = im COS(wt + <!» then 1=~ e ¢j 

Complex impedance Z =R+ wLj where R is resistance and L is inductance, 
and w = 2'11' frequency. 

The resistance of a coil of wire is 1.75 ohms, and the inductance is 5.5 
millihenrys. What is the impedance to 60 cycle L'urrent? What is the voltage if 
the current is i = 5.35 COS wt? Stack depth used = 4 
STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

Data and 60 IENT I~0[ osP] 376.99 Obtain w 
multiply 2.07 Obtain wL; imaginary00
 

2 Data and 5.5~ 31 CHS 10 2.07 Obtain wL; imaginary
 
multiply component of 2
 

3	 Data, convert 1.75 CO?] "'POL I 2.71 Enter real component;
 
polar convert to polar form
 

4	 Data 5.35 IENT I 5.35 Enter i 
m 

5 Divide 2 loSp 1[,;xIG 3.78 Magnitude of I; reference
 
phase angle of 0
 

Magnitude 21 =
 6	 Multiply 10.260 magnitude V
 
7 Multiply 2 losplRX10 14.52 Obtain v


8	 Exchange Iy<>xl 49.84 Angle 8 of voltage 
m ..(angle of 2 + 0)Voltage function is v = 14.52 COS (wt + 49.84°) 

Decibels 

The definition of decibel, db, is given in terms of power ratios: 

rlh = 1(1 Inn P2 Where PI = input power 
U~ • ~ .~" ~ Pz = output power 

When power is expressed as VZIR, where V= voltage and R= resistance, we 

get V2 jR V R
db = 10 log	 _2_...2- = 20 10g....--1 + 10 10g •.....1 

V2/R V, R2 
1 1 

When RI =Rz db = 20 log V
V2 

1 

You have an amplifier that has an input impedance of 50,000 ohms and an 
output impedance of 600 ohms. If an input signal of 4.5 mvolts results in an 
output of 3.5 volts, what is the gain in db? Stack depth used = 3 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 3.5\ ENT] 3.50 Enter V2 

2 Data and divide 4.5 ~31 CHS IG 777.78 Enter V1; obtain voltage 
ratio log of voltage 

3 Log IDS~~ 2.89 log of voltage ratio 

4 Multiply 20 [8 57.82 

5 Data 50 [gJ3\ ENT ] 50000.00 Enter R1 

Data and divide 600G] 83.33 Enter R2 ; obtain6 
Resistance rati 0 

7 log IDSpl~ 1.92 log of resistance ratio 

19.218	 Multiply 10 0 
77.03 Gain in db 9	 Add GJ 

Scaling Factor 

You are constructing a piece of digital electronic equipment. The basic internal 
clock is 18.432 MHz. You require a clock of 76.8 KHz. What is the division 
factor necessary, and is it an integer (you want the result in business display 

mode)? 

Stack depth used = 2 

COMMENTSSTEP FUNCTION KEYSTROKES DISPLAY 

Clear and set ICLX Jl DS~~§] O.
 
display
 

2 Data 18.432 ~ 6\ ENTJ 18432000. Mega· = 106 ; auto 
conversion to 
busi ness mode 

3	 Divide 76.8[@3Q 240. Obtain scaling factor 

It is an integer	 It is an integer 
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Streight line i\!ifJtiOI'l - CO!"!$tar!'~ Ac©e!eraU<tlil 

An automobile is traveling at a speed of 55 miles per hour. It decelerates 
(negative acceleration) at a rate of 6 ftlsec2 when the brakes are applied. What 
will be the stopping distance? 

The applicable equation of linear motion is: 
2 vx == voz+ 2a(x-xo) where Vo	 = initial velocity 

v. = velocity at point x 
Xo = initial position 
x = fi nal position 

For this problem, v. = 0 (automobile is stopped), Xo = 0, Vo = 45 mph, x is 
zto be determined, and a = -6.00. We rewrite the equation as: ;v: = x
 

Stack depth used == 3
 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS
 
1
 Data 551 ENT I 55.00 Enter V o
 
2
 Multiply 5280[3] 290400.00 Convert miles to feet 
3 Square 60 lENT lG] 3600.00 Convert hours to seconds 
4 Divide	 80.670 V0 in feet per second
 
5
 Square, negate [osp I~I YX II CHS ]-6507.11 Obtain -V5 
6 Data 6 ICHS] [ENT ) -6.00 Enter a
 
7
 Multiply, divide 2 [2] [£] 542.26 Stopping distance in feet 

(not very good brakes) 

CHEMISTRV 

Stoichiometry 

Mass-mass type stoichiometry problems can be computed utilizing the 
following format: 

Using a balanced chemical reaction equation, identify the given SUbstance, 
called the limiting reagent. Calculate the number of moles of limiting reagent 
involved. Identify the desired substance and mUltiply the number of moles of 
limiting reagent by the stoichiometric ratio Which will give you the number of 
moles of desired substance involved in the reaction. The stoichiometric ratio is 
the ratio of moles of desired SUbstance per mole of limiting reagent (obtained 
from the coefficients shown in the balanced equation). The mass (in grams) of 
the desired substance can then be computed. 

Example: If 51.00 grams of ammonia, NH3, decomposes to form hydrogen 
gas and nitrogen gas, find the amount (in grams) of nitrogen gas formed. 

2NH3 -+ 3Hz + Nz 

51.00g. NH 3 1 mole NH3 [1 mole N2 .1 X mol. wt. N2x 
1 mol. wt. NH 3 (in g.) X L2 moles NHJ mole Nz 

Atomic weight of: 
stoichiometric ratio/ 

Hydrogen = 1.01 
Nitrogen = 14.0 

Stack depth used = 3 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Data 51.0 51.0 mass of limiting reagent 

2 Data [INT) 1.01 1.01 atomic wt. of Hydrogen 

3 Multiply IENTI30 3.03 wt. of one mole of H3 

4 Add 14.00 17.03 molecular wt. of NH 3 (g.lmolel 

5 Reciprocal losp l~ 0.06 moles per gram NH 3 

6 Multiply 2.99 moles of limiting reagent0 
involved in reaction
 

7 Data 1 1
 coefficient of Nz
 
8 Divide [ENTI2[J 0.50 stoichiometric ratio
 
9 Multiply
 1.50 moles of desired substance 

10 Data 
ill 
14.0 14.0 atom ic wt. of Nitrogen 

11 Multiply [ENT!2[]J 28.00 grams N2 per mole 
12 Multiply 0	 41.93 mass of desired substance 

involved (in grams) 

9R 
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Gell1en~i GOIS Eqll,liloil 

A general gas equation problem can be computed utilizing the following 
formula and its corollaries: p·V = n·R·T 

P = pressure (in atmospheres)* 
P'V=n'R'T V = volume (in liters) 
n = g/mol. wt. T = temperature (in degrees Kelvin ­

see section 8.2.2.1) 
P • V = --g- . R • T mol. wt.	 g = number of grams in sample 

R .. General Gas Constant = 0.082 
mol. wt = g' R • T mol. wt. = number of grams per mole . P' V 

Example: If 0.20 g of a gas occupies a volume of .82 liters at 2.0 atmo­
spheres of pressure at 2rc, what is the molecular weight of the gas? 

Stack depth used = 4 

STEP FU~'JCTION KEYSTROKES DISPLAY COMMENTS 

1 Data .20 IENT I 0.20 grams of sample 

2 Data .0821 ENTI .08 R entered; display 
rounded 

3 Data 27 lENT] 27.00 Degrees Celsius 

4 Add 273.160 300.16 Obtain T 

5 Multiply ex] 24.61 Compute R • T 

6 Multiply GJ 4.92 Compute 9 • R • T 

7 Data 2.0 £NT 2.00 Atmospheres of pressure 

8 MultiplY .82 []] 1.64 Compute P • V 

9 Divide U 3.00 Obtain mol. wt. (grams 
per mole) 

29	 SPEIEOOME'rEfH)[)OMETE!1 CAI.CLn.,1),Tl:mllS 

Presuming that your automobile speedometer and odometer are not precisely 

accurate, there are four corrections that are needed: 

1.	 Find true speed from indicated speed. 

2.	 Find indicated speed from a specified true speed (e.g. posted speed 

limit). 
3.	 Find actual distance traveled from indicated distance. 

4.	 Find indicated distance to travel a specified true distance. 

For simplicity, we assume that the speedometer error is the same as the 
odometer error, and thus we need only one correction factor based on 
traveling a measured test distance. 

First, we determine the correction factor: 
S ::= mileage at start of test section ::= 3179.1 
T = mileage at end of test section = 31 83.9 
The test section is true 5 miles long. 

STEP FUNCTION KEYSTROKES DISPUW COMMENTS 

1 Enter 3179.1 IENT I 3179.10 Enter S 

2 Enter and 3183.9 !v«>x] 3179.10 Enter T, exchange 
Exchange 

3 Subtract G 4.80 T-8 

4 Enter and 5 0.96 Save correction factor 81 5To \12]
Divide 

The conversion factor is now in memory 1. To compute true speed from 
indicated 60 MPH: 
5 Clear !CLX I 0.00 

6 Enter and 60 IRCL!10 57.60 True speed 
Note: RCL causes auto­

matic push of data 
entered.To calculate indicated speed at true 55 MPH: 

7 Clear [ CLXI 
8 Enter and 55 I RCL 11 GJ ' 57.29 'ndicated speed 

divide 

To find actual distance traveled when start at 41291.2 and go to 41351.7: 

9 Clear ICLX '~1 0.0 Set display 

10 Enter 41291.2 [ENT\ 41291.2 Enter Start 

11 Enter and 41351.7 [v«>xl 41291.2 Enter End 
12 exchange 

" Solutions can be calcUlated if pressure is given in torrs, or mmHg simply by 12 Subtract G 60.5 Indicated distance 
using 62.4 as the value for R. 13 Recall and [RCLI1 G 63.0 Actual distance11(1
 divide 
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It>To find indicated odometer reading after traveling 32.7 miles from 41792.3: 

APPENDIX A - CORVUS 500 CORVUS FUNCTION SUMMAR' 
14 Clear [CLX II DSP 11 0.0 Set display 

This section presents a tabular summary of all functions available on tl 
15 Enter and 32.7[ HCl 11 [8] 31.4 Indicated distance 

CORVUS 500. Functions are organized in this section by calculator keys 
multiply 

stepping through them as if reading a book. For each function, a list of al 
16 Enter and add 41792.3 ~ 41823.7 Odometer reading at 

affected stack registers or memories is included. The effect of each operatio destination 
the keystrol<es to cause the function to be performed and any undefin! 

We assumed that the error in the speedometer was the same as in the operands are also listed, Except as noted, each function leaves a "PUi 

odometer. This may n01 be strictly true. However, it is more difficul1 to make pending" (see section 3). 
the measurements needed to determine the correction factor for the speedom­ A single keystroke sequence is illustrated for each operation. Actually, sever 
eter. To do so requires measuring elapsed time to travel a known distance at a sequences may cause the same operation to be executed. These options a 
constant indicated speed. available because the keystrokes I DSP I ' ~ ,and 1Hypi may (if thl 
Assume that 3 min, and 7.2 sec. are required to travel a measured miles at an occur in the sequence) be rearranged, 

indicated speed of 62 MPH. 

STEP FUNCTION KEYSTROKES DISPLAY COMMENTS 

1 Clear ICLX II DSP 12 0.00 Set display 
The main purpose of this key is to shift to second functions. Each of thel 

2 Enter 3 IENTI 3.00 Enter distance 
functions will be described in 1urn. All that remains is control of round-c 

3 Enter 7.2 lENT J 7.20 Enter seconds 
and display mode control. 

4 Divide 60 0 0.12 Convert to min. 
Rm.mel-off Control 

5 Enter and add 3 3.12 minutes0 Keystrokes: ~ followed by any single digit 
6 Divide 60 [] 0.05 convert to hrs. Effect: The display is rounded to the indicated number of decim 
7 Divide G 57.69 get actual MPH places 

8 Divide 62 rl ,93 correction factor Di$j,:Iiay Mode Control 

See ~ key. 

~~ 
The inverse key is described with the applicable function. 

r~_~~ 
Me'mory Store 

Keystrokes: [STOJ followed by single digit 

Effect: X reg -+ Mem n where n is indicated digit 
Stack unchanged 

Hl!emory EXChange 

Keystrokes: I5ro I IRCl I or IRCL I ISTO I followed by single digit 
Effect: X reg-> Mem n 

Mem n-> X reg 
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Memory Recall
 

Keystrokes: (RCL I followed by any single digit
 

Effect: Mem n-.. X reg
 

X reg -.. Y reg
 

Y reg -.. Z reg
 

Z reg -.. W reg
 

W reg-+- lost
 

Memory Exchange
 

Same as for ISTO I key.
 

Recall Summation
 
Keystrokes: IRCL I [E]
 
Effect: Mem 9-.. reg = !x
 
I.y Mem-.. Y reg = "5:.y
 

X reg-+ Z reg
 

Z reg-+- lost
 

W reg -.. lost
 

[~yp] 
t-.yperbolic Sine Hyperbolic Cosine 

Keystrokes: IHYP I ~ Keystrokes: IHYPJ ICOS I 
Effect: SINH (X reg) -+ X reg Effect: COSH(X reg) -+ X reg 

Hyperbolic Tangent Inverse Hyperbolic Sine 
Keystrokes: IHYP I ITAN I Keystrokes: IINV I iHYP i [1@ 
Effect: TANH(X regh X reg Effect: SINH-!(X reg)-.. X reg 

Inverse Hyperbolic Cosine Inverse Hyperbolic Tangent 
Keystrokes: [INV I IHYP I [cos I Keystrokes: ~ IHYP I ITAN I 
Effect: COSH-)(X reg)-.. X reg Effect: TANH-)(X reg) -.. X reg 

Rectangular -+ Hyperbolic Polar -1 <value in X reg<1
 

Keystrokes: [HYP I losp II --POL I
 
Effect: V (X reg)2 -(Y reg)2-+ X reg
 

TANH-l X reg -..Y reg
 

X reg > Y reg 

Hyperbolic Polar -+ Rectangular
 

Keystrokes: ~ IHYP I I DSP I I"'POL ]
 

Effect: (X reg) COSH(Y reg)-+ X reg
 

(X reg) SINH(Y reg) -+ Y reg
 

Clear
 
This operation performs three distinct functions
 

1.	 If the display is flashing indicating an invalid operand or out of range 

result, ICLX I will stop the flashing and "unlock" the calculator. 

2.	 If you are in the middle of a multi-keystroke function entry and have 

keyed-in a portion of the function entry except (or in addition to) 

[§] , [CLX J will undo the keystrokes. 

3.	 If neither 1 or 2 above, then [CLX I will zero the display, zero the X 
reg and kill any pending push. 

§J 
Clear Stack 

Keystrokes: losp I ICLR I 
Effect: O-i>X reg 

0-..Y reg 

O-+Z reg 

O-+W reg 

resets summation memories (see Part I, Section 20.2)

[B 
Summation Plus Summation Minus 

Keystrokes: CEJ Keystrokes: ~ [E] 
Effect: Stack unaffected Effect: Stack unaffected 

((mem 7) + 1)-.. mem 7 «mem 7)- 1)-+ mem 7 

mem 8 + (X reg)2--+ mem 8 mem 8 - (X reg)2-+ mem 8 

mem 9 + (X reg) -+ mem 9 mem 9 - (X reg) -.. mem 9 
'J..y mem + (Y reg) -+ 'J..y mem "5:.y mem - (Y reg)-..ky mem 

no push left pending no push left pending 

Recall Summation 

Seal RCL Ikey 

[~'S ] 
Mean and Standard Deviation
 

Keystrokes: [osp I I x,s I
 
Effect: mem 9 -+ X reg = x 

mem 7 

F (mem 9)2 
mem 8 - mem 7 -+ Y reg = standard deviation 

(mem 7)- 1 

X reg -.. Z reg Z reg -+ lost
 

Y reg-.. W reg W reg-+ lost
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[~ 
Elilponeil~iat!on (eX)&'olatural logarithm 

Keystrokes: IINV] [8Keystrokes: ~ 
Effect: e(x reg) -+ X regEffect: in (X reg) -+ X reg
 

value in X reg> 0
 

E~i] 
Power of TenCromrnon Logarithm 

Keystrokes: ~ [DSP I [§iJKeystrokes: ~ @ 
Effect: 1O(X reg) -+ X reg Effect: 10g(X reg) -+ X reg 

Inverse SineSine 
Keystrokes: ~ Q"§]Keystrokes: ~ 
Effect: SIN'!(X reg)-+ X reg Effect: SIN (X reg) -+ X reg 
-1:;;value in X reg before operation:;;1 value in X reg is interpreted as 
value in X reg after operation is degrees or radians depending 
expressed in either degrees or 

on mode 
radians depending on mode 

Inverse Hyperbolic Sine Hyperbolic Sine 
See §Pl key.See IHYP i key, 

Ei~ 
Rectangular -+ Polar
 

Keystrokes: IDSP I [---POL]
 

Effect: (X reg)2 + (Y reg)2 -+ X reg = I'
 

Y reg
TAN·l (Y reg) -+--= (J

X reg 

(J is expressed in either degrees or radians depending on mode. 

Polar .+ Rectangular 
Keystrokes: ~ [DSP I [+POL] 
Effect: (X reg) COS(Y reg) --+ X reg 

(X reg) SIN(Y reg)--+ Y reg 

value in Y reg before operation is
 

interpreted as either degrees
 

or radians depending on mode
 

Rectangular -,. Hyperbo!ic Polar
 

See [HYP! key
 
Hyperbolic Polar-)- Rectangular
 

See rHYP I key
 

•'-"§J
..,.. CO$ine 

i . _-, Keystrokes: Icos I 
Effect: COS(X reg) -~ X reg 

•
value in X reg before operation 

is interpreted as degrees or 

radians depending on mode 
. ' .....~ .. 

" ", .._, ~. 

'" Hyperbolic Cosine
 

See IHYP I key.
 

~@ 
-+ Radians 
Keystrokes: [DSP I ]---RAD I 

Effect: '1T (X reg) -+ X reg 

regardless of mode, X reg 

value assumed to be degrees, 

converted to radians 

~ 
Tangent 

Keystrokes: ITAN I Effect: 

TAN(X reg)-+ X reg 

value in X reg before operation 

~ 0 + 180n° (Where n is any 

integer). Value in X reg before 

operation is interpreted as 

degrees or radians depending on 

mode 

Hyperbolic Tai1gen~
 

See IHYP I key
 

[~~ 
Radian Mode 

Keystrokes: IDSP I [RADJ 

Effect: Stack unaffected 

All angles are 

subsequel)tly expressed 

and interpreted in 
radians 

Imf€lI'Se Cosine 

Keystrokes: ~ Icos I 
Effect: COSo! (X reg) -+ X reg 

·'I:;;value in X reg before operation:;;1 

value in X reg after operation is in 

degrees or radians depending on moc 

Inverse Hyperbolic Cosine 

See LH:s±l key 

--+	 Degrees 

Keystrokes: ~ [DSP I EA~ 
Effect: 180 (X reg) -+ X reg 

regardless of mode, 

X reg value assumed to be radians, 

inverse Tangent 

Keystrokes: ~ lTAN I 
Effect: TAN-! (X reg)-+ X reg 

value in X reg after operation is 

expressed in degrees or radians 

depending on mode 

inverse iiyperbolic Tangent 

See IHYP I key. 

Degree Mode 
Keystrokes: Q§] ~ IRAD I 
Effect: Stack unaffected 

all angles are subsequently 

expressed and interpreted 

in degrees 
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[!~J 
Powe!'
 

Keystrokes: Ej
 
Effect: (Y reg) (X regl X reg 

Z reg -+ Y reg 
W reg -+ Z reg 
W reg -+ W reg 

value in Y reg before operation> 0 

[~ 
Square Root 

Keystrokes: ~ Ivx\ 
Effect: v (X reg) -+ X reg 
value in X reg before operation> 0 

~::J 
Exchange Registers
 

Keystrokes: IY<>X I
 
Effect: Y reg -+ X reg
 

X reg-+ Y reg 

~ 
Percentage 

Keystrokes: IDSP I ~ 
Effect: (X reg) (Y reg) -~X reg 

lEJ 
Roil Stack
 

Keystrokes: §J
 
Effect: Y reg -+ X reg
 

Z reg-+ Y reg
 

W reg-+ Z reg
 

El 
Percentage Difference 

Keystrokes: [DSP I ~ 
Effect: 100 (X reg - Y reg) -+ X reg 

value in Y reg before operation,.=O 

Root 
Keystrokes: !INV I ~ 

Effect: (X reg) 
~(Y reg) -+ X reg 

Z reg -+ Y reg 

W reg -+ Z reg 
W reg -~ W reg 

Value in Y reg before operation>O 

Square 
Keystrokes: ~ IDSP I Ivx I 
Effect: (X reg)2 -+ X reg 

Gmss Profit Margin 

Keystrokes: ~ IDSP I ~ 
Effect: 100 (Y reg) -+X reg 

value in X reg before 
operation,.. 100 

@H~~J 
Change Sign 

This operation performs three distinct functions defined by context: 
1, After the first digit of a mantissa is entered, but before any key (except 

digit or 0 keys) is pressed, [CHS I negates the mantissa. 

2: After ~ is pressed but before any other key (except digit keys or 
[J key, which is ignored) is pressed, ICHS I negates the exponent 

3. 
part of a number. 
After any operation is complete, ICHS I negates the value in the X 

reg. 

[iCJ 
F2Ictoria! 

Keystrokes: IDSP I ~ 
Effect: (X reg)! -+ X reg 
value in X reg before operation must be integer"'O 
value in X reg before operation>69; result out of normal range 

value in X reg before operation>120; result out of extended range 

~
 
Enter Exponent 

This operation performs two distinct functions based on context: 
1.	 Immediately after keying-in a mantissa, ~ will indicate the start of 

keying-in an exponent (Le. power of ten). 
2.	 Any other time, §] will cause a 1 to be placed into the X reg as a 

mantissa and will indicate the start of keying-in an Exponent. If a push 

is pending, the stack will be pushed. 

~
 
Reciprocal 

Keystrokes: IDSP I GB 
1 

Effect: (X reg) -+ X reg 
value in X reg before operation,.. 0 

[:]
 
Divide 

Keystrokes: 0 
Effect: X reg -+ X reg 

(Y reg) 

Z reg -+ Y reg 

W reg -+ Z reg 
W reg -+ W reg 

value in X reg before operation"'O 
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ii'....i': r:-=;l

[~	 ~ fahrenheit -~. Centigil'ade
Kilograms to Pounds	 Pounds to Kilograms ~. Cen~igrade -, fahrenheit 

Keystrokes: INV IDSP I [C..... F! 
Keystrokes: ~ [~ Keystrokes: ~ ~ I KG ..... LB I i· Keystrokes: [?SP] IC..... FJ 

Cff ... ~+· l'i_ I" rO(1 _ q?, ---' )( rO(1
l,...,II'1:;;;;V\. 9 \J'\ ...... ::::1 ..... -/'..-~ , ..... t:!

Effect: 
.,·',.··,.·...E~.:~~59237 x IX "g)~X "g .. ir:\ Effects, ~ IX 'eg) + 32~> X ,eg 2.20462262185 x (X reg)-+X reg 

\~ ~ 
"i ..... Multiply 

Keystrokes: 0Last X 

The ILAST X J key is used to access a special purpose memory. • ') • Effect: (X reg) x (Y reg) -+ X reg
 
Z reg -+ Y reg
IRCL I [LAST X I recalls the X reg operand from the last operation
 

:'1' :'. W reg -+ Z reg

performed and places it in the X reg. 

• .	 W reg -+ W reg 

ID' , i •
G	 

Liters to Gallons Gallons to Liters 
Keystrokes: LQiP.J 0 

Keystrokes: ~ I LTR ..... GAL I Keystrokes: INV ~ I LTR.....GAL 
Effect: 3.14159265359 -t- X reg 

Effect:	 Effect:
X reg -+ Y reg 

0.264179449175 x (X reg)-+X reg 3.7830579544 x (X reg)-+X reg 
Y reg -+ Z reg ..
 
Z reg -+ W reg
 

W reg -+ lost .... ~:EJ
 
'. Subtract 

. ,~.	 Keystrokes: G 
Effect: (Y reg) - (X reg) -+ X reg 

•
'.'i.'." :~~T]	 Z reg -+ Y regIII·,·
 

Enter (or Modified Push) .' W reg -+ Z reg
 

Keystrokes: lENT] , W reg -+ W reg
 

Effect: X reg -+ X reg
 

X reg -+ Y reg	 .. [£M-+~ 
Y reg -+ Z reg Centimeters to Inches Inches to Centimeters 

Z reg -+ W reg Keystrokes: Wsp] rl""C':'.....-Ic:c Keystrokes: ~ [CM..... INCM N:-11	 ~il 

W reg -t- lost	 Effect: Effect:..

~; 

9.39370078702 x (X reg)-+X reg 2.54 x (X reg) -+X reg 

[50J 
Set Display Faunat IIJIG::td

..-
;M 

In conjunction with IDSP I ,~ is utilized to control the format of 
Keystrokes: GJ

the display. ~ @] causes the display to show results in ..........
 Effect: (X reg) + (Y reg) -+ X reg 
scientific notation without roundoff and with zeroes suppressed. 

;j Z reg -+ Y reg IDSP I §J ~ causes the display to show results in business
 
W reg -+ Z reg
 notation without roundoff and with zeroes suppressed. (see also
 
W reg -+ W reg
IDSP!)	 .. 
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APPENDIX B - USING THIS BOOK Wlnl OTI-iER
 
CALCULATORS
 

All functional descriptions of calculator features and all solution programs
 
which appear in this book are oriented to\vard the CORVUS 500. That tact 
does not necessarily imply that the book is only valuable to CORVUS 500 
owners. It does imply that the differences between the CORVUS 500 and your 
own scientific calculator need to be carefully catalogued. As long as your 
calculator utilizes RPN, most of the ma1erial in this book should be useful. 

Some of the main features which may be different include the stack depth and 
the number of memories. In addition each manufacturer seems to have his own 
unique set of idiosyncracies. On the CORVUS 500, for example, the bottom of 
the stack is copied when the stack is popped. Each calculator also seems to 
have its own mechanism for summation sequences. 

Whenever an identified, and seemingly unique, characteristic of the CORVUS 
500 is utilized in a program in part II, that feature is mentioned in the problem 
introduction. Furthermore, each application problem lists the stack dep1h 
required. An asterisk by the stack depth indicates that a special CORVUS 
feature is utilized in the solution piogram. 

Each calculator will have some functions in common With the CORVUS 500 
and other functions which are not in common. The specific keystrokes to cause 
each function to be performed are sure to be different. 

The best way to identify the calculator differences is to create a version of 
Appendix A for your calCUlator. That table will provide an equivalent keystroke 
sequence for each function. More importantly, 1he table will indicate those 
functions where the calculators differ. In this way, nearly every solution 
program can be adjusted by substituting new function keystroke sequences 
where appropriate. The program logic, including data entry and the arrange­
ment of functions to be performed, remains unchanged. 

APPENDiX C - SOME USEFUL CONSTAf'\lTS .i!\[\lD FORMULAS 

ENGliSH UNITS 

12 inches = 1 foot 3 feet = 1 yard 
5280 feet = 1 statute mile 1 nautical mile = 1.151 statute miles 

1 degree latitude = 69 statute miles (at 40 degree latitude) 

1 acre = 43560.0 square feet 1 hectare = 2.471054 acres 

1 ft3 = 0.80357 bushels - 7.84 U.S. gallons 

1 Imperial gallon - 1.25 U.S. gallons 

1 cup = 8 fluid oz. 1 fluid oz. = 1.80469 in.3 

1 pint = 2 cups 1 quart = 2 pints 

1 gallon = 4 quarts 
1 lb. = 32 oz. 1 ton = 2000 lb. 

1 grain = 0.002285 oz. 

MISCELLANEOUS CONSTANTS 

Plank's constant = (6.62554 ± 0.00015) x 10-27 erg sec.
 

Avogadro's number = (6.02257 ± 0.00009) x 1023 mole-1
 

Mass of hydrogen atom = (1.67339 ± 0.00031) x 10-24 gram
 

Acceleration of gravity at sea level =980.621 cm/sec.2 = 32.1725 ft./sec. 2
 

Veloci1y of sound in air = 331.36 m.lsec. = 1087.1 fUsee.
 

Velocity of light in a vacuum = 2.997925 x 1010 cm.lsec. =
 
9.83514 x 1-8 fUsec.
 

AREAS, SURfACES, AND VOLUMES 

Triangles 

with base band alti1ude h: area = bb 
2 

with sides A,B,C and opposite angles a,b,c 

area = 1 AS SIN c 

radius of inscribed circle = AB SIN c 
a+b+c 

r d· f' 'b d . I abca IUS 0 ClrCUmSCri e clrc e = 8 AB SIN c 
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Rectangle with sides a,b 

area == ab 
Paralleogram with parallel sides a, b and included angle e 

area = ab SIN e 
Trapezoid with parallel sides a, b and altitude h 

area == 1/2 (a + b)h 

Any quadrilateral with diagonals a,b and angle ebetween them 

area == III ab SIN e 
Regular polygon with n sides ot length L 

area == '14 n L2 COT 180 
0 

n 
radius of inscribed circle = 1-COT J~Oo 

radius of circumscribed circle =tesc 1~Oo 

Circle with radius r 
circumference == 21Tr 
area = 1Tr2 1Tr(J 
length of arc subtended by angle e== 1800 

length of chord subtended by angle e =2r SI N %e 
area of sector subtended by angle e = 'l2sr I where s is arc length 

Ellipse with semi-axes a,b 
2 2

circumference == approx 21T ~ a + b
area == 1Tab 2 

Pyramid (right) 

volume = % area-at-base x altitude 

Regular polyhedra with edge length L, and n is the number of surfaces 

n Surface Volume 

4 1. 73205 L2 0.11785 L3 

6 cube 6.00000 L2 1.00000 L3 

8 3.46410 L2 0.47140 L3 

12 20.6457 L2 7.66312 L3 

Sphere with radius r 

surface == 411'r2 

volume == %1Tr3 

Cylinder (right) with radius of base r and altitude h 

curved surface == 2mh 

volume == 11'r2h 

Cone (right) with radius at base r and altitude h 

curved surface = 11'rV'r2+h-z 

volume == 11'/3 r2 h 

11 ? 

TRiGONOMETRIC RELATIONS 

For any triangle with sides A,B,C and opposite angle a,b,c: 
. A = B == C 

SIN a SINb STNC 

SIN 2X == 2 SIN X COS X 2 
COS 2X + COS2X-SIN2X == 2 COS2X - 1 == 1 - 2 SIN X 

.J 2TAN X 
TAN 2X = f - TAN2 X 

SIN %X == +t1 - COS X - 2 

COS
COS %X = ±{L + 2 X 

Lf1- COS X == 1- COS X == SIN X__TAN% X 
"4·1+ COS X SIN X 1 + COS X 

SIN X SIN Y = 2 SIN %(X Y) COS'I2(X Y)
 

COS X + COS Y = 2 COS %(X+Y) COS % (X-Y)
 

COS X-COS Y = -2SIN %(X+Y) +COS%(X-Y)
 

SIN X COS Y = % (S!N(X+Y) + SIN (X-Y) )
 

COS X SIN Y = %( SIN (X+Y) - SIN (X-Y))
 

COS X COS Y = %( COS (X+Y) + COS (X-Y) )
 

SIN X SIN Y = %( COS (X-Y) - COS (X+Y) ) 
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INDEX INDEX .. mass, ..... , 24,25

Cosine: Financial applications:
Addition .... 10, 11 metric-+English . .22-24 

complex 84,85 annuity . · .. 53 
temperature . 23.24Add-on rate .. . 52 .50-52hyperbolic. . 44 compound interest . , , .. volume . . 23,25Angular units: inverse . .42 add-on rate converted to true
 

angle unit modes .36
 Metric system:
real . . 41 annual percentage rate . .52 

degree<+radian conversions 36,37 · 21basic units of.,
Cross product. . 94 basic compound Interest . .50 
prefixes for .22radians ......•. ... 36 continuous compounding . .51 

Modified pop ..Annuity . .53 · 15 

III
nominal rate converted to effective 

A rlthmetlc progressions 57, 58 Decibels ..... . .... 95 ,52 Mod ified push. · 13annual rate .
Degrees*radlans 36,37 Multiplication .. 10,11

depreciation , . 54.55 
Binomial distribution. .. .66 Depreciation: diminishing balance method. .55 
Boom, simple . .89-92 diminishing balance method. .55 Natural logarithm. .23 

:~ loan payments... .53 
Business mode: straight-line method .... Normal curve ... .67.54 remaining balance. .54 

display ... 3,4,5 sum of years digit method. .56 Numerical methods:
simple interest ... .49 

quadratic equation .74 

keystroke sequence for. 4 
entering data in . 4 Display: '1<"

automatic conversions '~ roots of polynomials. .75 · 6 General gas equation. .98 
range of . 6 basic modes ... 4,5 .. quadrature (Simpson's rule) . 76,77

Geometric progression 59,60 .-"rounding options ...• 5 error Indication. 7 Gross profit margin .. .29 
with full-floating decimal point. 5 initial format Parallel resistance-d.c. circuit ,94

· 6 
.28with round-off. 5 rounding. Percent . · 5 Harmonic progression .60 

Division ... Percentage calculations:10,11 .44Hyperbolic functions. 
Change-sign .... 4,20 Dot product. 88,89 gross profit margi n . .29

Hyperbolic polar+>rectangular
Chemistry: percentage differences .28coordinate conversions . . .43 

e and eX ... simple percentages .28general gas equation .98 32.34 .69Hypergeometrlc distribution.. 
stoichiometry. .97 Effective annual rate. .52 Permutations . .64 

Pi . .20Chi-square . .70 Engineering/scientific applicatio ns: Impedence In a seriescircuit-a.c. current. , .94 
Clearing data: che'mistrY \( Poisson distribution, .68 

: Inner (or dot) product. . . . . . . . 88.89 
changing exponent:. 4 general gas equation .98 Polar coordinates .. .38 
clearing the display. 4 stoichiometry .... .97 PolarHrectangular coordinate•
 Kelvin scale • .24 
clearing the memories 4 decibels.......•.. .95 conversions .... 38,39 
clearing the stack. 19 impedence in a series circuit- Polynomials. roots of. · .75Last x..... · 19 

Clear x . 4,14 a.c. current, . .94 Limitations on memory · 19 Popping the stack. · . 15 
Combinations . 64,65 parallel resistence- d.c. circuit .94 Linear regression . .71-73 Postfix notation. 8-11 

Common logarith m . .32 scaling factor .....•.... .95 Loan payments . · .. 53 Powers: 
Complex numbers: skin diving depth . .93 complex · .83 

Logarithmic functions .32-35addition and sUbtraction. .79 straight line motion -constant of e .. 32,34 
Logarithms: of 10 .. .33 

antilogs . .32-35 real ... ,31 
division ..... .81 acceleration ....••... ,96 
introduction to .. .78 English#metric conversions Isee Metric#
 
multiplication ... .80 English conversions)
 common . .32-34 Prefix notation 8,9 

powers and roots . .. .. 83 Enter . 13 introduction to · .. 32 Probability and statistics: 
natural ... .32-34 binomial distribution. .W 

trigonometric functions 84,85 Entering data: to any base. · .. 35 chi-square .... .ro 
cosine.• 84,85 entering a decimal point. 4 

reciprocals ..... .... 82 Enter exponent . 4 

combinations .. 64,65 
Means: geometric mean. .~ 

arithmetic
sine . .84 entering negative numbe"s . 4 
tangent . . 85 for statistical operations. .45 .46 harmonic mean . ... ~ 

harmonic. .63 hypergeometric distribution. , .. ~ 
geometric

Compound Interest: in business mode ... 4 
basic compound interest . .50 in scientific notation. 4 .63 linear regression. .71-73 

Memory;
continuous compounding . 51 Error indication ••. 7 means . .~ 

clearing .. .19 normal curve . .~ 
exchange.

nominal rate converted to effective Exchange..•.•.. 16 
annual rate . .52 Exchanging registers ,16 .18 permutations .. .~ 

last x ...
add-on rate converted to true Exponent part: .19 poisslon distribution .~ 

limitations.
annual percentage rate .•. .52 changing Improper ... 4 · 19 Pushing the stack .... · 14 

recalling .. 17 Push·pending left on stack. · 14 
stori ng . 

Constants; entering ..•...... 4 
· 17e . 32,34 Extended calculator range. 7 MetricHEnglish conversions:

for metric conversions. .22-26 Quadratic eqlJation ..... .74 
English-+metric . 

'If . . 20 Factorial ..... .29 .24-26 Quadrature (Simpson's rule). 76,77
length . 23,2!;Continuous compounding. . . . 51 Fibonacci series . 61,62 
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INDEX NOTES 

Radians'->degrees .. 36,37 modified push (enter) · 13 
Range of calculator: push . .14 .. 

extended . 7 pop . .15 
roiii ng the stack. · 15 "1.normal . 7 

Standard deviation . .46Recall . 17 
Statistical operations, built-in:

Recalling data. · 17 
correcting data entries .•. .45 • ,Reciprocal. . . .27 I';, 

entering data for _ ..... .45Rectangular-<-'polar coordinate 
mean and standard deviation . .46

conversions . .39 
memory manipulations and restrictions .46Rectangular ....spherical coordinate 
recall summation , . .46

conversions . . 38.39 
Statistics, (see 'probability and statistics)

Registers of stack . .12-16 
Stoichiometry .. .97

Remaining balance . . 54 
Store _ , . .17 •Reverse polish notation: 
Storing data . · 17conversion from algebraic to RPN · 9 Straight line method depreciation. .54

four basic arithmetic operations. .10 
Straight line motion-constant

general background. · 8 

•
acceleration .96 

vs. algebraic 8,9 
Subtraction . 10,11 •vs. prefix . 8,9 
Summation:

Roll.. . . .15 
correcting data entries .45

Rolling the stack · 15 
mean . .46

Roots: 
memory and . .46

complex. . 83 
recall summation . .46of polynomials . 75 
standard deviation .46real .. .31 
variance . . . . .. . .... .47Rounding options. · 5 Sum of arithmetic progressions. .58 

Sum of geometric progressions . , ... , .60Scaling factor. . . . . . . .. . .... .95 
Sum of years digits method depreciation. .56Scientific/engineering applications (see 

engineering/scientific appl icationsl 
Tangent:Scientific notation: 

compiex ... 85
displaying data in . 3 

hyperbolic. 84,85
entering data in . 4 

inverse .. , ,42
keystroke sequence for. 5 

reai ..... · 41 rounding options ... 5 
To-polar coordinates. .38

Series and progressions: 
To-radians .....•. · 36arithmetic progression . 57 
Trigonometric functions . .40-42 

fibonacci series .... . 61 
True annual percentage rate, conversion

geometric progression .59 
from add-on rata · 52harmonic progression. .60
 

nth fibonacci number. .62
 
Unary-minus . .20 

sum of arithmetic progressions . 58
 
sum of geometric progressions. .59
 

Variance ... .47 
Simple boom (see vectors) Vectors:
Simple interest .49 

inner (or dot) product 88,89
Simpson's rule. 76,77 

introduction. ... 86 
Sine: simple boom . .89-92 

complex .. . 84 
part I .. .90 

hyperbolic. . 44 
part II .. · 91

inverse .. , . 42 
part III ... .92 

real . . 41 vector add ition .87 
Speedometer-odometer calculations .99,100 vector cross product .89 
Sphericai coordinates .... _ .... .39 
Square ... .30 W-register · 12 
Square root ... .30 
Stack: X· register · 12

basic co ncept · 12
 
clearing the stack. · 15
 Y -register 12 
exchanging registers. .16
 
mOdified pop (clear x) 14
 

Z - register '12 
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