SWITCHES FOR SPECIAL PANELS

Standard switches can be mounted on any thickness of panel up to the maximum specified. Swithes can be had at somewhat increased cost with shafts or bushings made for mounting on any one of the following panel thichnesses: $1 / 6^{\prime \prime}, 1 / 8^{\prime \prime}, 1 / 2^{\prime \prime}, 34^{\prime \prime}, 1^{\prime \prime}, 11 / 2^{\prime \prime}$ and $2^{\prime \prime}$.

SWITCHES WITH SPECIAL ROTATION OR OFF POSITION

Switchen with less than the maximum number of taps are furnished ordinarily with the standard contact spacing of 30° (40° for Model 608). However, switches of linited number of taps, as shown in the table, can be supplied (at increased cost) with the contacts spaced 2 or 3 times standard. Switches can be made, also, without a stop so that there are no end positions to the shaft rotation. Switches with less than the maximum number of taps can be made with an off position.

Model	Tap;	$\begin{gathered} \text { Tap } \\ \text { Spacing } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Rotation } \\ \text { (Maximum) } \end{gathered}$
212.312, 41.		60°	300°
212.312.412	4.	90°	$270{ }^{\circ}$
608	4	80°	240
6,188	,	120°	240°

ELECTRICAL RATINGS

The ratinge given for Ohmite Power Tap Switches are interrupting (and standstill) ratings for use only on alternating current circnits, either inductive or non-inductive, i.e., at any power factor. Switches may he used on voltages up to 600 , and current ratings between 300 volts and 600 volts are proportional to the difference in voltage with the current reduced to 50% at 600 volts. The switches may be used on direct current non-inductive circuits up to 20 volts at full current ratings: recommendations for other conditions will he supplied on regnest.

Fig. 138-Cat. No. 608-4 and No. 412.3 Suitches

SWITCH INSULATION

All models of these switches withstand testing at 3000 volts A.C. with the voltage applied either between taps or to ground (between contacts and shaft), but such voltages should not be considered as the working voltage. The ceramic insulation is permanemt in nature. unaffected by age and resistant to arcing.

TAP SWITCHKNOBS

Fig. 139 Knobs for Tap Suitches (see table for details)
These knobs are made of black bakelite. They fasten by means of two set screws except No. 4500 which has only one, and No. 4515 which requires a tapped hole and a driving pin as illustrated on the shaft of the Model 608 Tandem Assembly (Fig. 127). Pointers are nickel-plated. Numbers $4500,4509,4510$ and 4516 are for use with Models 111, 212 and 312; the larger knobs are preferred for Model 412.

ORDERING: When ordering tap switches always specify: "With Knob Cat. No. -", or if none is wanted specify: "Without Knob". If the order does not state whether or not knobs are wanted, our standard knobs will be shipped on orders for tap switches up to 25 in quantity, and billed as a separate item.

Description	Knob Dia.	Hole Dia.	$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$
Kmurled Knob	11/2"	$1 /{ }^{\prime \prime}$	4500
Handwheel with Pointer	31/"	3/	4508
Finger-Grip with Pointer	15/8	14"	4509
Finger-Grip withont Pointer.	15/8'	$1 / 4{ }^{\prime \prime}$	4510
Finger-Grip with Pointer,	$23 / 8{ }^{\prime \prime}$	1/4"	4511
Finger-Grip without Pointe	$238^{\prime \prime}$	14"	4512
Haudwheel with Pointer.	314"	1/4"	4513
Handwheel without Pointer	31/4	1/4*	4514
Bar K nob, 4344 ${ }^{\prime \prime}$ long		$38^{\prime \prime}$	4515
Bar Knob, $11 /{ }^{\prime \prime}$ long		1/4 ${ }^{\prime \prime}$	4516
Handwheel without Pointer	31/4'	3/8*	4517

ALL PORCELAIN OPEN-TYPE TAP SWITCHES

IHg. 140-A Non-shorting Switch (T-508)

Fig. 141
A Shorting Type Switch (T-1000-S)

Fig. 142-Ruthel Action Mechnuism in Place on a Tap Suitch

These selector tap switches are designed to transfer currents of several amperes in circuits requiring bigh voltage inculation. They are ordinarily of the shorting type lut non-shorting type switches are available also.
DESCRIPTION: The same type of all ceramic, vitreous enameled construction is used as in Ohmite Rheostats Models J and K, described on pages 38, 46 and 47. The bushing and shaft are insulated from the electrical circuit by ceramie parts which will withstand a test whoge of 3000 Volts A.C. Contact is made to the monel metal taps by a silver-graphite contact brush of very low resistance.
SHORTING TYPL SWITCH: The taps are set close together so that the contact brush smoothly bridges or shorts from one tap to the next as it is rotated. Thus the circuit is made with each sncceeding tap before it is broken with the previons one. The switch arm is not indexed in any way and is free to stop in any position.
NON-SHORTING TYPE SWITCH: The circuit is opened as the moving contact leaves the tap. There is a modified snap action due to an indexing feature.
RATCHET ACTION: A ratchet action indexing mechanism for shorting type switches definitely positions the contact over each tap. The mechanism adds $92^{\prime \prime}$ to the depth behind the panel. The switch then mounts by two No. $10-32$ screws located $34^{\prime \prime}$ on each side of the shaft (see Fig. 142). The mechanism can be ordered so that the contact stops in position to bridge between pairs of contact.
Ratchet Action-Stopping on
lags..
Code Word: RATAP
Ratchet Action-Bridging
between Lugs.
Code Word: RATEB
'TANDEM MOUNTINGS: Two, three, or more switches can be ganged by means of frames similar to those used for theostats and illustrated on pages 52 and 53. Details on request.

MOUNTING: Single hole monnting by means of $3 / 8^{n}$ diameter hushing. accommodating panels up to 1/4" thick (maximum). See page 49 for bushings for special panel thicknesses.

KNOB: Black bakelite knob Stock No. 4500. page 83. supplied with stock units. Other knobs with 1/4" hole, as listed on page 83 , can be used if desired.

SPECIAL SWITCHES: Switehes with solid silver contact points, special angles between taps, larger switches with as many as 25 conlact points. and switches with other special features can be furnished.

CURRENT AND VOLTAGE RATINGS: Maximmn standstill current is 7 amperes. Maximum current which should be interrupted is 3 amperes at 120 V ., Alternating Current. Current ratings are less for all direct current circuits above 20 volts, for inductive circuits and for high voltages. Recommendations given on receipt of details. The rating is also dependent upon the expected frequency of operation of the switch. Arcing in inductive circuits can often be greatly diminished by suitable condensers bridged across the contacts.

DIMENSIONS: Switches up to and including 8 points have the same dimensions as Fig. 79, Page 47; switches up to 12 points are similar to Fig. 75. Page 46.

SHORTING TYPE			NON-SHORTING TYPE		
No. of Contacts	Approx. Degrees Rotation	Cat. No.	No. of Contacts	$\left\|\begin{array}{l} \text { Approx. } \\ \text { Degrees } \\ \text { Rotation } \end{array}\right\|$	$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$
4	90	T-504-S	4	180	T-504-A
5	120	T-505-S	5	180	T-503
6	1.50	T-506.S	6	296	T-506
$?$	180	T-507-S	7	270	T-507
8	${ }_{2} 10$	T-508-S	8	296	T. 508
9	210	T-1009-S	9	288	T-1009
10	236	T-10010-S	10	288	T-10010
11	262	T-10011-S	11	288	T. 10011
12	288	T-10012-S	12	288	T. 10012

See Page 33 for Band Change Switch for Radio Usé.

GEORGSIMONOHM 1789-1854

In 1827, Dr. Gearg Simon Ohm mathematically demonstrated the relation between resistance, volfage and current in electrical circuits. Ohm's Law is fundemental in all resistance calculations, and is the bosis for much of the computation in the pages which follow.

MANUAL

of Resistance Measurements and Engineering Information

Ohm's Law	$\begin{array}{r} \text { Page } \\ .86-87 \end{array}$
Resistance of Series Connections	
Resistance of Parallel Connertions	88-89
Kirchhoff's Laws	89
How to Determine the Resistance Req for Your Application	
Section I-By Calculation	89-90
Section II-By Trial or Substitution.	91-93
Data	94
Temperature Conversion	
Conversion of Inches to Millimeters	
Properties of Various Metals and Alloys	
Table of Wire Sizes	
Allowable Current for Copper Wire	
Nomenclature .	95

HOW TO MAKE RESISTANCE CALCULATIONS

OHM'S LAW

The fundamental law of the electric circuit is Ohm's Law which has been stated as follows: The current in a circuit is directly proportional to the E.M.F. (Electromotive Force) in the circuit and inversely proportional to the resistance. In formula form it is:

$$
I=\frac{E}{R} \text { or } R=\frac{E}{I} \text { or } E=I R
$$

The following formula, also used in connection with resistor calculations, expresses the basic fact that the power in watts is equal to the product of the volts and amperes:

$$
W=I E
$$

Because $E=I R$ this can be written:

$$
W=I \times I R \text { or } W=I^{s} R \text { or } W=\frac{E^{2}}{R}
$$

Ohm's Law can be expressed in several different forms, all of which are conveniently tabulated below. Note that in working out any problem, all terms must be reduced to volts, amperes and watts when used in any of the formulae. For example, 30 milliamperes must be written as 0.030 amperes, $2.5 \mathrm{~K} . \mathrm{W}$. must be written as 2500 watts, 1 megohm as $1,000,000$ ohms, and so forth.

$W=$ Watts	$E I$	$I^{2} R$	$\frac{E^{*}}{R}$			
$E=$ Volts		$I R$		$V \overline{W R}$		$\frac{W}{l}$
$I=$ Amperes			$\frac{E}{R}$	$\sqrt{\frac{W}{R}}$	$\frac{W}{E}$	
$R=$ Olums	$\frac{E}{l}$				$\frac{W^{e}}{W}$	$\frac{W}{I^{2}}$

Fig. 143-Table of Ohm's Law Formulae for Direct Current Circuits

Ohm's Law for Alternating Current

Ohm's Law in the forms given in Fig. 143 applies to direct current circuits. However, the same formulae can be used for alternating current circuits, provided the amount of inductance (because of coils) or capacity (because of condensers or distributed capacity) in the circuit is negligible. Thus, for commercial frequencies (25 or 60 cycles) Ohm's Law can be used for the calculation of circuits involving heaters, lamps, vacuum tube filaments, etc., which for all practical purposes may be considered as pure resistances.

Even in circuits which have reactance, the direct current form of Ohm's Law still applies so far as the resistor itself is concerned (even at frequencies at the high end of the audio frequency range), because the reactance of the resistor, in that frequency range, is generally negligible when compared to the resistance. This is not true, however, at radio frequencies. Noninductive type resistors are used at the radio-frequencies in order to minimize the changes due to frequency (see page 30).

The formulae given in Fig. 144 apply to single-phase alternating circuits containing reactance, such as circuits involving relays, magnets, solenoids, motors, chokes and filter circuits. It can be noted that these formulae reduce to the same form as the direct current formulae when the reactance is zero and cosine Θ thereupon becomes equal to 1 .

$\begin{aligned} & E_{i}^{\prime}= \\ & \text { Volis } \end{aligned}$		$\frac{W}{I \cos \Theta}$	$1 Z$	$\frac{V \bar{F} R}{\cos \theta}$	$\sqrt{\frac{H Z}{\cos \theta}}$	
$\begin{gathered} I= \\ \text { Amperes } \end{gathered}$	$\frac{W}{E \cos \Theta}$		$\frac{E}{Z}$	$\sqrt{\frac{W}{R}}$	$\sqrt{\frac{W}{Z \cos \theta}}$	
$\begin{aligned} & Z= \\ & \text { Ohms } \end{aligned}$	$\frac{E}{I}$	$\frac{W^{*}}{I^{2} \cos \theta}$		$\frac{h}{\cos \theta}$	$\frac{E^{2} \cos \theta}{W}$	$\sqrt{R^{t}+X^{t}}$
$R=$ Ohms	$\frac{E^{\prime} \cos ^{s} \Theta}{W^{\prime}}$	$\frac{E}{I} \cos \theta$	$Z \cos \Theta$		$\frac{W}{1 /}$	$\sqrt{72-X^{3}}$
$\underset{\text { Watts }}{W=}$	$\frac{E^{*} \cos \Theta}{Z}$	$E I \cos \Theta$	$I^{\prime} Z \cos \Theta$	$I^{*} R$		
$\left.\begin{array}{l} \cos \Theta= \\ \text { Power } \\ \text { Factor } \end{array}\right)$	$\frac{I R}{E}$	$\frac{W}{I^{\prime} Z}$	$\frac{W Z}{E^{\prime}}$	$\frac{R}{Z}$	$\frac{W}{E I}$	$\frac{n}{\sqrt{R^{2}+X^{2}}}$
$\underset{\text { Ohms }}{X=}$	$\left(X_{L}\right.$	- $\boldsymbol{X}_{\text {c }}$)	($2 \pi / L$	$\left.\frac{1}{2 \pi f C}\right)$		$17^{\prime}-R^{2}$

$$
\begin{array}{rlrl}
Z & =\text { Impedance } & L & =\text { Inductance in Lenries } \\
X_{L} & =\text { Inductive Reactance } & C & =\text { Capacity in farads } \\
\mathbf{X}_{c} & =\text { Capacitive Reactance } & \Theta & =\text { Angle of lead or lag } \\
& f=\text { Frequency in cycles per second }
\end{array}
$$

Fig. 144 --Table of Ohm's Law Formulae Modified for Altertating Current Single Phase Circuits

Resistance of Series Connections

Total Resistance $R_{T}=R_{i}+R_{g}+R_{s} \cdots+R_{n}$ Ohms

HOW TO USE THIS
This alignment chart enables graphical solution of Ohm's Law problems. To use. place a ruler across any two known values on the chart; the points at which the ruler crosses the other scales will show the unknown values. The italie figures (on the left of the scales) cover one range of values and the roman figures cover another range. For a given problem, all values must be read either in the italic numbers or in the roman numbers.

OHM'S LAW CHART
EXAMPLE No. 1: The current through a 12.5 ohm resistor is 1.8 amperes. What is the voltage across it? The wattage? Answer: Dotted line No. I through $R=12.5$ and $I=1.8$ shows E to be 22.5 volts and W to be 40.5 watts.
EXAMPLE No. 2: What is the maximum permissible current through a 10 watt resistor of 2000 ohms? Answer: Dotted line No. 2 through $W=10$ and $R=2000$ shows I to be 70 milliamperes.

OHMITE

PARALLEL RESISTOR CHART

For graphical determination of the resistance of resistors in parallel.

Formulae:

HOW TO USE THIS PARALLEL RESISTOR CHART

This alignment chart enables graphical solution of problems involving resistances connected in parallel. The values of the parallel resistors r_{1} and r_{g} and of the total effective resistance R_{T} must be read on the scales marked with the corresponding letters. To use, place a ruler across the two known values; the point at which the ruler crosses the third scale will show the unknown value. Pairs of resistances which will produce a given parallel resistance can be obtained by rotating a ruler around the desired value on scale R_{r}. The range of the chart can be increased by multiplying the values on all the scales by 10,100 , 1000 , etc., as required. Scales $r_{8 A}$ and $R_{T A}$ are used with scale r_{i} when the values of r_{i} and r_{2} differ greatly.
EXAMPLE No. 1: What is the total resistance of a 75 ohm resistor and a 150 ohm resistor connected in
parallel? Answer: From dotted line No. I. R_{T} is 50 ohms.

EXAMPLE No. 2: What resistance in parallel with 750 ohms will give a combined value of 500 ohms? Answer: From dotted line No. 1, r_{g} is 1500 ohms.

EXAMPLE No. 3: What is the combined resistance of 1750 ohms and 12,500 ohms? Answer: Scales $r_{\text {, }}$ and $\mathrm{r}_{2 A}$ are used and from dotted line No. $3, \boldsymbol{R}_{T A}$ is 1535 ohms.

EXAMPLE No. 4: What is the combined resistance of 400,600 and 800 ohm resistors in parallel? Answer: First find \boldsymbol{R}_{T} for 400 ohms and 600 ohms. Then set the 240 ohms thus found as a new r_{1} and 800 ohms as r_{2} and the final answer is found to be 185 ohms.

Resistance of Parallel Connections

For resistances in parallel:

$$
\text { Total Resistance } R_{T}=\frac{1}{\frac{l}{R_{1}}+\frac{l}{R_{2}}+\frac{l}{R_{3}}+\frac{l}{R_{n}}} 0 \mathrm{hms}
$$

For two resistances in parallel:

$$
\text { Total resistance } R_{T}=\frac{R_{i} \times R_{q}}{R_{t}+R_{g}}
$$

When one of the resistances and the total are known the formulae is conveniently written:

$$
R_{2}=\frac{R_{T} \times R_{1}}{\boldsymbol{R}_{1}-R_{T}}
$$

When the resistances are all equal. the total parallel resistance is equal to the value of one resistance divided by the number of units. For example. the total resistance of two equal resistances in parallet is one-half that of one, the parallel resistance of three equal resistances is one-third that of one.

The handy chart on page 88 can be used for quickly determining the approximate resistance of two mits in parallel.

KIRCHHOFF'S LAWS

Kirchhoff's laws are extremely useful for the calculation of circuits comtaining more than one source of voltage or containing parallel paths.

FIRST LAW: "The algebraic sum of the potential drops around every closed circuit is always equal to zero."

Note that one direction is assumed positive for voltages and currents, and that opposing voltages, or circnits which are traversed in the opposite direction, take negative signs. A resistance drop is always negative with respect to the direction of the impressed voltage.

$$
\begin{gathered}
E_{t} \pm E_{q} \cdots \pm E_{n}-I R_{t}-I R_{q} \cdots-I R_{n}=0 \\
\text { or } E=\Sigma I R
\end{gathered}
$$

SECOND LAW: "The algebraic sum of the currents at any junction of the conductors is aluaves zero."

That is. the total current flowing towards a junction point of several conductors must be equal to the sum of the currents flowing away from the point.

HOW TO DETERMINE THE RESISTANCE REQUIRED FOR YOUR APPLICATION

Section I. By Calculation

When the current throngh, and the voltage across a resistor are known from the given conditions of a circuit. the resistance can be readily calculated by Ohm's Law. Cases which are calculable, rather than determinable only by test, are most often those in which the resistance is used as a voltage dropper to operate a low voltage device from a higher voltage source, or to limit the amount of current passing. Typical cases are: operation of low-voltage lamps or devices from 110 or 220 volt lines; dropping or hias resistors in radio circuits; current limiting heater control.

EXAMPLE t : It is desired to operate a 6 volt, 15 C.P. lamp drawing 2.02 amperes from the 115 volt power line. What resistance is required?

Melhod: I olts across resistor $=(115-6)=109$
By Ohm's Law: $R=\frac{E}{l}=\frac{109}{2.02}=51$ ohms

$$
\text { Also Watts }=E t=109 \times 2.02=220, ~ \mu \mathrm{mats}
$$

Note: If the lamp were to be operated at less than 6 volts. the fact that the lamp resistance is not a constant would have to be taken into accomin. While the variation of lamp resistance with current follows certain definite curves, the resistance variation is often most readily determined by test.

Selecting a Resistor: (a) I sing Soock Iuits. A total resistance of 54 ohms can be made up of two Catalog No. 0701 (page 10) fixed resistors of 25 ohms each, connected in series with a Catalog No. 0362 (page 15) Dividohm Adjustable Resistor of 5 olms. which is to have the adjustable lug set at 4 olms. Note that all units selected have a current rating greater than 2.02 amperes. The percentage of full load is

$$
\frac{2.02^{9} \times 2.5}{160} \times 100=61 \%
$$

for the two fixed umits. The percentage load for the

$$
\text { Dividohm is } \frac{2.02^{2} \times 4}{4 / 5 \times 25} \times 100=81 \%
$$

(b) I'sing Made-To-Order Vnits. A single unit $11 / 8 \times 11 \frac{1}{4}$ ". Code Word AAVOR, page 18. of 54 ohms and operating at 100% load could be used: or two units $11 / 8 \times 81 / 2^{\prime \prime}$, Code Word: ABABI, each of 27 ohms and connected in series to operate at 69% might be chosen.

EXAMPIE 2: It is desired to control a 500 watt, 115 voll heater by means of a rheostat so that the amount of heat (number of B.T.U. per hour) may be reduced 50%. What rheostat resistance is required?

Calculation:
Maximum current $I=\frac{W}{E}=\frac{500}{115}=4.35$ amperes
Heater resistance is $\frac{E}{I}=\frac{115}{4.35}=26.4 \mathrm{ohms}$
Because the amount of heat produced is directly proportional to the watts, the heater watts must be reduced to 250 . The current is then:

$$
\begin{gathered}
I=\sqrt{\frac{W}{R}}=\sqrt{\frac{250}{26.4}}=\sqrt{9.47}=3.08 \mathrm{amps} \\
R_{\text {Tatat }}=\frac{115}{3.08}=37.4 \mathrm{ohms} \\
R_{\text {Rheostat }=}=R_{\text {Toal }}-R_{\text {Hester }}=37.4-26.4=11.0 \mathrm{ohms} .
\end{gathered}
$$

Selecting a Rheostat: (a) From Stock.
The smallest rheostat available from stock for this particular case (see pages 43 to 47) is a Model N, 300 watt unit of 15 ohms, Catalog No. 0657. This rheostat is selected because it is the nearest stock unit that has a current rating (4.47 amps .) greater than the 4.35 amperes maximum required for this application.
(b) Made-to-Order

A Model P with uniform winding can be used for this application.

TAPPEDRESISTORS-VOLTAGE DIVIDERS-POTENTIOMETERS

The procedure for calculating a typical voltage divider is given in Exanıple 3. The same method can be extended to cover a voltage divider of any number of sections. When a rheostat or "Dividohm" adjustable resistor is used as a potentiometer, it is in effect a voltage divider with variable sections and can he calculated in the same way.
EXAMPLE 3: To find the resistance and wattage of each section of a voltage divider for a radio transmitter. Conditions: Rectifier voltage (maximum across bleeder) $=1000$ volts. To be provided with taps at 750 volts, 40 milliamperes, and 500 volts, 20 milliamperes. Blecder current to be 40 milliamperes.
Method: The first step is to make a sketch similar to Fig. 145 showing the voltages and currents. Commence with Section A, which carries only the bleeder current I_{A}. By Ohm's Law:

$$
\begin{aligned}
& R_{A}=\frac{500}{.040}=12,500 \text { ohms } \\
& W_{A}=500 \times .040=20 \mathrm{watts}
\end{aligned}
$$

Fig. 145-Voltage Divider Diagram for Example 3
Section B carries the bleeder current I_{A} plus the current I_{1} drawn at the 500 volt tap or

$$
\begin{aligned}
& I_{B}=40+20=60 \text { milliamperes } \\
& R_{B}=\frac{250}{.060}=4,166 \mathrm{ohms} \\
& W_{B}=250 \times .060=15 \text { watts }
\end{aligned}
$$

Section C carries the current in Section 13 plus the current drawn at the 750 volt tap.
$I_{C}=I_{B}+I_{g}$ or $I_{C}=60+40=100$ milliamps. or 0.1 amp .

$$
\begin{gathered}
R_{C}=\frac{250}{.1}=2500 \text { ohms } \\
W_{C}=250 \times .1=25 \text { watls } \\
R_{\text {Tatal }}=12500+4166+2500=19,166 \mathrm{ohms} \\
W_{\text {totai }}=20+15+25=60 \text { watts }
\end{gathered}
$$

Note that the voltage between the taps of a voltage divider will change if the currents drawn from the various taps change, and that the bleeder current (section A) is increased under no-load conditions and is then equal to supply voltage divided by total bleeder resistance. All sections should be designed to carry the maximum current which would occur under the different conditions of use.
Selecting the Resistor (A) From Stock.
The total resistance required is 19,166 ohms; hence a Dividohm adjustable resistor of $20,000 \mathrm{ohms}$ can be used. Three adjustable lugs will be needed to form the divider. The current rating of the Dividohm must not be exceeded in any section regardless of the watts to be dissipated in that section. Hence, a Dividohm with a rating equal to, or larger than, the maximum current (0.1 amp.) must be selected. This is Stock No. 1367, page 13 , equipped with two lugs No. 2158 in addition to the one regularly supplied with the resistor.

The divider could be assembled also by using one of No. 0208. No. 0382 and No. 0583 resistors in series.
(b) From Made-To-Order Sizes. A tapped resistor on a $34^{\prime \prime} \times 612^{\prime \prime}$ core would be suitable (see page 18). The winding space allowed for each section and the wire size would be determined by us according to the wattage and resistance.

HOW TO DETERMINE THE RESISTANCE REQUIRED FOR YOUR APPLICATION

Section II. By Trial or Substitution

When the amount of control or change to be produced by a resistance unit is not or cannot be known without trial. a temporary or substitute resistance and suitable meters must be connected in the actual circuit; then the resistance is varied until the desired results are secured and the amount of resistance and current noted.

Fig. 146--Typical Test Circuit for Use in Determining Resistance and Current
CIRCUIT: lig. 146 illustrates a typical test circuit (which may be only part of a larger circuit). The power supply may be the commercial 115 V . or 230 V . oulet, batteries or a generator. The load may be any device such as a motor, generator field, lamp, or heater. The adjustable trial resistance may be an Ohmite rheostat, or it may consist of a number of Olimite fixed resistors, or one or more Ohmite adjustable Dividohm resistors. Fig. 147 illustrates a convenient way of inserting the trial resistance and ammeter by means of a series plug (such as Hubbell No. 7772).

Fig. 147. Typical Trst Cirmil Usimga Series Ihag for Comnertion

Practical Points on Selecting Meters and Wiring

Before connecting any meter to a circuit. the meter range should be compared with the maximum current or voltage expected, to make sure that the meter range exceeds the values which are to be measured. The expected values can be obtained from the name plate
data of the apparatus under test or by calculation from the wattage and voltage. It is well to include a fuse in the circuit to protect the meters and apparatus against accidental overload.

When possible, select meters on which the indications will occur in the upper half of the scale in order to obtain the most accurate reading. When the range between maximum and minimum current is very great, it may be necessary to substitute a lower range amneter for the minimum values. Because of the nonuniform calibration of the scale, alternating current instruments generally cannot be used below approximately 20% of full scale value (except for rectifier type instruments). Small direct current meters commonly have an accuracy of 2% of full scale readings. Alternating current meter accuracy varies. (in descending order), according to the type as follows: electrodynamometer, iron vane and rectifier (5%).

When the load current amounts to several amperes, as in most power applications, the effect of the current drawn by the voltmeter (when connected across the resistance or the load) generally can be ignored. But as alternating current voltmeters are quite generally of low resistance, the amount of current drawn by the meter should be considered whenever the load currents are small. In the case of high resistance, low current circuits (as in radio apparatus), high resistance rectifier type voltmeters or vacuum tube voltmeters must be used to avoid upsetting circuit conditions.
PULSATING DIRECT CURRENT: Conventional permanent magnet (D'Arsonval) direct current meters real average values. When used on pulsating D.C., the average value indicated is not the true measure of the heating effect or power. For battery charging circuits, the average values are used, but for lighting or heating circuits, the R.M.S. (root-mean-square) value must be used. For unfiltered half-wave rectification, this is 1.57 times the average value; for unfiltered fullwave rectification, it is 1.11 times the average. For filtered circuits where the amount of ripple is less than one-third of the maximum, the difference between the average and R.M.S. is less than 1%.
WIRING: Copper wire of large enough gauge to carry the current without appreciable heating should be used so that the resistance of the connecting wires can be neglected.

Measurements Required

The number of measurements necessary to determine the required resistor depends upon whether the control resistance is to be fixed or adjustable and upon the nature of the load (i.e.. of constant or varying resistance). Fig. 148 shows the measurements to he

'Type of Control and Load			Conlitions for Each Test		Measure Any Two (or Three to Provide a Check)			Meanur: in Each Case	$\begin{array}{\|c\|} \hline \text { Measure } \\ \text { or } \\ \text { Calculate } \\ \hline \end{array}$
Type 1	*Type 2	*Type 3							
Pixed Resintance ControlAny Load	Rheostat ControlConctant	Rheostat ControlVarying			H_{F}	F_{k}	E_{L}	I	R
	Resistance Load	Resistance Load		Than 5 Tests Are Often Taken to Obtain More Detailed Information.	Line	Volts Acros:	Volts Aeross	Amps.	Olims Control
Minimum Tests Required						Resistance	Load		Resistance
	\checkmark	\checkmark	1	Resistance $=0$ Current $=\mathrm{I}_{\text {max. }}=$ Maximum					
\checkmark	\checkmark	\checkmark	2	Res. = Max. Value Used. Current $=I_{\text {min. }}=$ Minimum		Vour test data may be arranged in tubular form similar to this.			
		\checkmark	3	Resistance $=25 \%$ of Maximum (Approximately)					
		\checkmark	4	Resistance $=50 \%$ of Maximum (Approximately)					
		\checkmark	5	$\begin{gathered} \text { Resistance }=75 \% \text { of } \\ \text { Maximum (Approximately) } \end{gathered}$					

*Measurements for Type 2 Loads are sufficient for Type 3 Loads if a uniformly wound rheostat is to lo used. Fig. 1H-Table of Tests and Data Required for Different Types of Controls and Loads
taken for each of the different possibilities. The intermediate tests for Type 3 Control are taken to obtain a curve showing how the current varies between the maximum and minimum. The table given on page 42 presents in another form the combinations of circuit constants which must be known.
OVER VOLTAGE: If there is any possibility of operating voltages exceeding the test voltages, it is well to consider the effect on the current rating and resist. ance required to be certain of obtaining the desired amount of control under the most adverse operating conditions.

Type 1. Fixed Resistor Control

FXAMPLE 4. An A.C. relay intended for operation on $\rfloor 10$ volts is to be operated from a 220 volt line. The operating current is unknown. What resistance is required?
Method: The relay, a trial resistance (Ohmite "Dividohm') and a meter, 0.500 milliamperes (0.5 amperes), are comnected in series as in Fig. 146. As A.C. relays of the type at hand, rarely draw over . 250 amperes, a "Dividohm" with this ampere rating will be satisfactory for trial use. A preliminary calculation is helpful in selecting the trial resistance. If the current required is as high as .250 amperes, the resistance required would be:

$$
\frac{110}{.250}=440 \mathrm{ohms}
$$

But, if the current should be as little as 50 milliamperes (also a possibility), the resistance required would be $\frac{110}{.050}$ or 2200 ohms. Hence a safe trial resistor would be one of more than 2200 ohms and capable of
carrying . 250 amperes. Turning to page 13, we note that Cat. No. 1163 "Dividohm" (2500 ohms, 0.253 amperes) would be satisfactory (or any other Ohmite adjustable resistance of greater or equivalent rating).

With the "Dividohm" adjustable lug set at the maximum resistance, the current is turned on. Assum. ing that the relay fails to operate, the voltage is then turned off, the adjustable lug is loosened, moved to a new position and retightened, and the relay operation again tested. For greater convenience an Ohmite rheostat may be used. This process is repeated until the relay operation is satisfactory, at which time the voltage across the relay should be 110 volts.

As indicated in Fig. 148, only the current at the operating condition and the control resistance ohms are required. The control resistance can be obtained as follows: approximately, from the scale on the Dividohm;" or accurately, by measuring the resistance with a Wheatstone bridge or an Ohmmeter; or by calculation from the voltage and current measurements.

Measured Data for Example 4

1	E_{P}	E_{R}	$R_{\text {hes }}$
.10 .5 imp.	220 V.	110 V.	$\frac{110}{.105}=10.5$, ilms

II attage in Resistor $=E I=110 \times .105=11.55$ watts.
Selection of Resistor: A Stock No. 0375B, 1250 ohm "Dividohm" or 1000 ohm 20 watt Brown Devil.

Type 2. Rheostat Control of a Constant Resistance Load

TYPICAL APPLICATIONS: The temperature control of heaters, such as drying ovens, solder pots, glue
pots, electric furnaces, machine spot-heaters. soldering irons, etc.; field control of generators, balancing of control circuits; etc.

EXAMPLE 5. A drying oven of 500 watts. 115 volt rating, is to be controlled between its maximum temperature and some lower value (to be determined during the test).
Method: From $I=\frac{W}{E}=\frac{500}{115}=4.35$ amperes, it can be seen that a 5 ampere meter will handle the maximum current. The trial rheostat, of course, should be rated to carry this current or more.

Assuming that the temperature will fall at a somewhat lesser rate than the watlage. and that the desired minimum temperature is approximately 75% of the maximmm, select a trial rheostat which will reduce the wattage by about one half.

Calculations similar to those given in Example 2, page 90 , show that approximately 10 ohms will be needed. The circuit in Fig. 146 or Fig. 147 can be nsed. The trial resistance is increased step by step and time allowed for the oven temperature to stabilize itself until the desired operating temperature is reached.

Data as called for in Fig. 148, Conditions 1 and 2, are taken.

Condition:	$\stackrel{I}{\text { Amp }}$	IF Volts	$\begin{gathered} \lim _{H} \\ \text { Olims } \end{gathered}$	$\begin{gathered} R \\ \text { Ohmox } \end{gathered}$
Maximum	1.35	11.5	1	0
At desired temperature	3.5	115		$\frac{29.4}{3.5}=6.4$

Selecting a Rheostat: Proceed as given under Example 2. Stock Rheostat: Model L, Cat. No. 0529. 7.5 ohms, 150 watts, 4.47 amps . maximum current.

Type 3. Rheostat Control for a Varying Resistance Load

TYPICAL APPIICATIONS: Lamp dimming, motor speed control, etc.

EXAMPLE 6: A ventilating fan is directly driven by a I/6 II.P., 115 Volt D.C. series motor. It is desired to control the speed of the fan from the maximum down to a value determined by trial. From the data on page 61, it is ascertained that a series rheostat will provide satisfactory control.

Test Must Be Made With Motor Loaded: All tests on motors must be run while they are connected to their normal loads.

Circuit: Fig. 146 or 147. Meters: From the name plate data on the motor, it is found that the full load current is 1.5 amperes. Hence, a 0.3 ampere meter is the smallest standard range instrument which should be used. The ammeter should be shorted while the motor is being started so as to protect the meter against the starting surge. A $0-150$ Volt II.C. voltmeter is also required.

Procedure: From Fig. 148 it can be seen that for complete data, measurements must be taken under at least five different conditions. The first condition is that of full speed, when the load current is at maximum and the control resistance is at zero.

The temporary resistances for the test should be selected so that their maximum current ratings are equal to, or greater than, the load current when they are in the circuit. Therefore, the first adjustable resistance to be inserted in the circuit shonld have a current rating of more than 1.5 amps . If the control resistance can be adjusted easily, condition No. 2 for maximum resistance should be determined next by adjusting the resistance until the speed of the fan has been reduced to give the least amount of ventilation desired (rarely over 50% reduction in speed). Then the intermediate conditions, 5,4 and 3 should be ohtained. If the adjustment of the test resistance is not easy, time may be saved by taking the readings in the order. 1, 3, 4, 5 and 2 , spacing the readings as best as possible to divide the total range into approximately equal intervals; or the readings may be spaced at equal intervals of amperes change in current or ohms change in resistance. It may be desirable. also, to take more than three intermediate values.

Measured Data for Example 6

Condition	Speed R.P.M.	E_{F} Line Volts	$E_{\text {R }}$ Volts Across Rheostat	1 Amps.
1	1725	115	0	1.50
2	1500	115	22.0	1.29
Calcu- lated) Ohms				
3	1300	115	39.0	1.11
4	1100	115	51.8	0.96
5	900	115	66.7	0.82

Your test data, including complete name plate description of the motor should be sent to us to permit calculation of the taper-wound rheostat best suited for the application.

Selecting a Rheostat: Proceed as given under Example 2. Stock Rheostat: Model N, Stock No. 0661, 100 ohms, 1.73 amps. maximum current. Tapered Rheostat: A Model L of 82 ohms can be used.

REFERENCE DATA

TEMPERATURE CONVERSION
To convert degrees Fahrenheit $\left(\mathrm{F}^{\circ}\right)$ into degrees Centigrade (C°):

$$
C^{\circ}=\frac{5}{9}\left(F^{\circ}-32\right) \quad \text { or } C^{\circ}=.555\left(F^{\circ}-32\right)
$$

To convert degrees Centigrade into degrees Fahrenheit:

$$
F^{\circ}=\frac{9}{5} C^{\circ}+32 \quad \text { or } F^{\circ}=1.8 C^{\circ}+32
$$

When a temperature rise (not the temperature attained) is to be ronverted from one system to the other, the 32° terms in the above formulae are omitted.

INCHES TO MILLIMETERS

Inches	mm	Inches	mm	Inches	mm
1/64	. 397	2564	9.922	4964	19.447
$1 / 2$. 794	13.8	10.319	$2 \mathrm{2} / 3$	19.844
3.4	1.191	2764	10.716	5164	20.241
1/6	1.588	7/6	11.113	1316	20.638
56	1.984	296	11.509	5364	21.034
83	2.381	158	11.906	27.82	21.431
764	2,778	316	12.303	5364	21.828
1/8	3.175	1/2	12.700	7/8	22.225
964	3.572	83.6	13.097	57/64	22.622
5	3.969	17.3	13.494	29.6	23.019
11.64	4.366	3.64	13.891	5964	23.416
3616	4.763	96	14.288	15,66	23.813
13/64	5.159	36	14.684	6164	24.209
7/32	5.556	192	15.081	$31 / 32$	24.606
156	5.953	3964	15.478	63/64	25.003
$1 / 4$	6.350	5/8	15.875	1	25.400
17/64	6.747	$41 / 4$	16.279	2	50.8
93	7.144	21%	16.669	3	76.2
196	7.541	4364	17.066	4	101.6
5%	7.938	$11 / 6$	17.463	5	127.0
216	8.334		17.859	6	152.4
$11 / 32$	8.731	23.32	18.256	7	177.8
24	9.128	4764	18.653	8	203.2
3%	9.525	$3 / 4$	19.050	9	228.6

TABLE OF WIRE SIZES American Wire Gauge (B\&S)

Gange A.IV. $:$ (B\&S)	Diameter Inches	Area Cirenlar Mils	Gauge A.W.C (BXS)	Diameter Inches	Area Circular Mil.
I	. 28830	83,700.0	21	.02016	810.0
2	. 25763	66,400.0	22	. 02.335	642.0
3	. 22912	52,600.0	23	. 02257	510.0
4	. 20131	41,700.0	24	. 02010	404.0
5	. 18194	33,100.0	25	.01790	320.0
6	.16202	26,300.0	26	. 01594	954.0
7	. 11128	20,8000.0	27	. 01420	202.0
8	.12819	16,500.0	28	. 01264	160.0
9	. 11443	13,100.0	29	. 011126	127.0
10	. 10189	10,400.0	30	. 01003	101.0
11	. 09074	8.230 .0	31	. 00893	79.7
12	. 08081	6,530.0	32	. 00795	63.2
13	. 07196	5,180.0	33	. 00708	50.1
14.	. 06408	1.110 .0	34	. 000630	39.8
15	.05707	3,260.0	35	. 090561	31.5
16	.03082	2,580,0	36	. 00500	25.0
17	. 04526	2,050.0	37	. 00145	19.8
18	. 01030	1,620.0	38	. 00397	15.7
19	.03589	1,290.0	39	.00353	12.5
20	. 03196	1,020.0	40	.00315	9.9

To find the resistance per foot of any size wire of any metal or alloy divide the ohms per circolar mil foot by the area, in ciroular mils, of the gange chosen. Sec table at buitom of page.

ALLOWABLE CURRENT FOR COPPER WIRE

From National Electric Code

A. W.C. BRS	Rubber Insulated	Asbestom Insulated	$\begin{gathered} \text { A.W.G. } \\ \text { or } \\ \text { B\$S } \end{gathered}$	Rubber Insulated	Ashestos Insulated
	Amperes	Amperes		Amperes	Anperes
18	3	* 6	6	30	70
16	6	*10	5	55	80
14	15	20	4	70	90
12	20	30	3	80	100
10	25	35	2	90	125
8	35	50	1	100	150

*No. 18 is rated at 10 amperes and No. 16 at 15 amperes when in cords for portable heature, LI.L. Type Nos. HC: and IIPD.

PROPERTIES OF VARIOUS METALS AND ALLOYS

THE OHMITE NEWS

"The Ohmite News", our monthly publication contains technical data on the use of resistors, rheostats, tap switches and other products; descriptions of interesting applications; historical and biographical accounts pertaining to electricity and to its pioneers; and announcements of our new developments. Upon request (please use your company letterhead), we will be glad to enter your name on the circulation list.

EXPORT DEPARTMENT

Shipments to other conntries are handled by a capable export department. Advice may also be obtained from our agents who are located in many countries.

OHM'S LAW CALCULATOR

 mal points to cause confusion-all values are direct reading. Requires no slide rule knowledge. Scales cover both the range of currents, resistances, wattages, and voltages conmonly used in the radio and electronic fields and the higher eurrent industrial range up 10100 amperes or 1000 watts. Price 25 c .

OTHER LITERATURE

Bulletins on the following subjects are available upon request by specifying the bulletin number: Power Line Chokes-No. 105; Dummy Antenna Resistors--No. 111; Heat Control of Soldering Irons and Melting Pots-No. 116; Rheostats and Resistors for ArmyNavy Aircraft-No. 120; Slide Wire Rheostat-Potentiometer-No. 121; AN3155 Army-Navy Aircraft Rheostats-No. 124; "RITEOHM" Precision Resistors-No. 126; Direction Indicator Potentio-meter-No. 128; 2 Watt Molded Composition Po-tentioneter-No. 131; "BROWN DEVIL" Fixed Resistors-No. 132; Radio Frequency Plate ChokesNo. 133; Model Train Control Rheostats--No. 134; "LITTTLE DEVIL" Insulated Composition Resistors - No. 135.

NOMENCLATURE
 Definitions of Resistance Terms

To avoid misunderstanding when making inquiries, we suggest that the following terms be used only with the same sense as given in the definitions which follow. The terms are used in this catalog in accordance with these definitions.

RESISTANCE: A general term used in electricity and meaning that property of a substance which impedes the flow of current and results in the dissipation of power in the form of heat. Its relation to current and voltage is given by Ohm's Law. Resistance is measured in ohms. The term "resistance" is sometimes used as a noun meaning "a resistance unit" but it is better to nse the more explicit terms given hereafter.

RESISTOR: The general name for a device used for the purpose of introducing resistance into a circuit.

FIXED RESISTOR: A form of resistor the resistance of which is not intended to be adjusted by the userexcept by the use of intermediate taps. The latter type of unit is known as a Tapped Resistor.

AIJJUSTABLE RESISTOR: A resistor which has the resistance wire partly exposed to enable the amount of resistance in use to be adjusted occasionally by the user. Adjustment is made wilh the circuit electrically open. Adjustment requires the loosening of a screw, the subsequent moving of the lug, and retightening of the screw.

RHEOSTAT: The general name for a device which has the resistance element partly exposed to enable the amount of resistance in use to be easily adjusted by the simple movement of a control knob. A rheostat enables frequent and immediate change with the circuit electrically alive.

POTENTIOMETER (ADJUSTABLE): A rheostat equipped with a terminal at each end of the resistance winding and a connection to the moving arno so that a voltage-divider type of circuit can be used.
RHEOSTAT.POTENTIOMETER: A rheostat equipped with three terminals so that it may be used either as a rheostat or as a potentiometer. It is identical with a potentiometer.

