
Sibelius® Software
Using the ManuScript Language

Legal Notices

© 2017 Avid Technology, Inc., (“Avid”), all rights reserved.
This guide may not be duplicated in whole or in part without
the written consent of Avid.

003, 192 Digital I/O, 192 I/O, 96 I/O, 96i I/O, Adrenaline,
AirSpeed, ALEX, Alienbrain, AME, AniMatte, Archive,
Archive II, Assistant Station, AudioPages, AudioStation,
AutoLoop, AutoSync, Avid, Avid Active, Avid Advanced
Response, Avid DNA, Avid DNxcel, Avid DNxHD, Avid DS
Assist Station, Avid Ignite, Avid Liquid, Avid Media Engine,
Avid Media Processor, Avid MEDIArray, Avid Mojo,
Avid Remote Response, Avid Unity, Avid Unity ISIS,
Avid VideoRAID, AvidRAID, AvidShare, AVIDstripe, AVX,
Beat Detective, Beauty Without The Bandwidth,
Beyond Reality, BF Essentials, Bomb Factory, Bruno, C|24,
CaptureManager, ChromaCurve, ChromaWheel,
Cineractive Engine, Cineractive Player, Cineractive Viewer,
Color Conductor, Command|8, Control|24, Cosmonaut Voice,
CountDown, d2, d3, DAE, D-Command, D-Control, Deko,
DekoCast, D-Fi, D-fx, Digi 002, Digi 003, DigiBase,
Digidesign, Digidesign Audio Engine, Digidesign
Development Partners, Digidesign Intelligent Noise
Reduction, Digidesign TDM Bus, DigiLink, DigiMeter,
DigiPanner, DigiProNet, DigiRack, DigiSerial, DigiSnake,
DigiSystem, Digital Choreography, Digital Nonlinear
Accelerator, DigiTest, DigiTranslator, DigiWear, DINR,
DNxchange, Do More, DPP-1, D-Show, DSP Manager,
DS-StorageCalc, DV Toolkit, DVD Complete, D-Verb, Eleven,
EM, Euphonix, EUCON, EveryPhase, Expander,
ExpertRender, Fairchild, FastBreak, Fast Track, Film Cutter,
FilmScribe, Flexevent, FluidMotion, Frame Chase, FXDeko,
HD Core, HD Process, HDpack, Home-to-Hollywood,
HyperSPACE, HyperSPACE HDCAM, iKnowledge, Impact,
Improv, iNEWS, iNEWS Assign, iNEWS ControlAir, InGame,
Instantwrite, Instinct, Intelligent Content Management,
Intelligent Digital Actor Technology, IntelliRender, Intelli-Sat,
Intelli-Sat Broadcasting Recording Manager, InterFX,
Interplay, inTONE, Intraframe, iS Expander, iS9, iS18, iS23,
iS36, ISIS, IsoSync, LaunchPad, LeaderPlus, LFX, Lightning,
Link & Sync, ListSync, LKT-200, Lo-Fi, MachineControl,
Magic Mask, Make Anything Hollywood,
make manage move|media, Marquee, MassivePack,
MassivePack Pro, Maxim, Mbox, Media Composer,
MediaFlow, MediaLog, MediaMix, Media Reader,
Media Recorder, MEDIArray, MediaServer, MediaShare,
MetaFuze, MetaSync, MIDI I/O, Mix Rack, Moviestar,
MultiShell, NaturalMatch, NewsCutter, NewsView,
NewsVision, Nitris, NL3D, NLP, NSDOS, NSWIN, OMF,
OMF Interchange, OMM, OnDVD, Open Media Framework,
Open Media Management, Painterly Effects, Palladiium,
Personal Q, PET, Podcast Factory, PowerSwap, PRE,
ProControl, ProEncode, Profiler, Pro Tools, Pro Tools|HD,
Pro Tools LE, Pro Tools M-Powered, Pro Transfer,
QuickPunch, QuietDrive, Realtime Motion Synthesis,
Recti-Fi, Reel Tape Delay, Reel Tape Flanger,
Reel Tape Saturation, Reprise, Res Rocket Surfer, Reso,
RetroLoop, Reverb One, ReVibe, Revolution, rS9, rS18,
RTAS, Salesview, Sci-Fi, Scorch, ScriptSync,
SecureProductionEnvironment, Shape-to-Shape,
ShuttleCase, Sibelius, SimulPlay, SimulRecord,
Slightly Rude Compressor, Smack!, Soft SampleCell,
Soft-Clip Limiter, SoundReplacer, SPACE, SPACEShift,
SpectraGraph, SpectraMatte, SteadyGlide, Streamfactory,
Streamgenie, StreamRAID, SubCap, Sundance,

Sundance Digital, SurroundScope, Symphony, SYNC HD,
SYNC I/O, Synchronic, SynchroScope, Syntax,
TDM FlexCable, TechFlix, Tel-Ray, Thunder, TimeLiner,
Titansync, Titan, TL Aggro, TL AutoPan, TL Drum Rehab,
TL Everyphase, TL Fauxlder, TL In Tune, TL MasterMeter,
TL Metro, TL Space, TL Utilities, tools for storytellers, Transit,
TransJammer, Trillium Lane Labs, TruTouch, UnityRAID,
Vari-Fi, Video the Web Way, VideoRAID, VideoSPACE,
VTEM, Work-N-Play, Xdeck, X-Form, and XMON are either
registered trademarks or trademarks of Avid Technology, Inc.
in the United States and/or other countries.

Bonjour, the Bonjour logo, and the Bonjour symbol are
trademarks of Apple Computer, Inc.

Thunderbolt and the Thunderbolt logo are trademarks of Intel
Corporation in the U.S. and/or other countries.

This product may be protected by one or more U.S. and non-
U.S. patents. Details are available at www.avid.com/patents.

Product features, specifications, system requirements, and
availability are subject to change without notice.

Guide Part Number 9329-65914-00 REV C 10/17

Sibelius ManuScript Language Guide iii

Contents

Chapter 1. Introduction . 1

Rationale . 1

Technical Support . 2

System Requirements and Compatibility Information . 2

Conventions Used in Sibelius Documentation . 3

Chapter 2. Sibelius ManuScript Language Tutorial . 5

Edit Plug-ins . 5

Editing the Code. 9

Loops . 12

Objects . 15

Representation of a Score . 16

The “for each” Loop . 18

Indirection, Sparse Arrays, and User Properties . 21

Dialog Editor. 26

Set Creation Order . 29

Debugging Plug-ins . 32

Storing and Retrieving Preferences . 33

Chapter 3. Reference . 41

Syntax . 41

Expressions . 43

Operators . 45

Contentsiv

Chapter 4. Object Reference . 47

Hierarchy of Objects. 47

All Objects . 48

Accessibility . 50

Bar . 50

Barline . 59

Barlines . 59

BarObject . 60

BarRest . 65

Bracket . 65

Clef. 66

Comment . 67

ComponentList . 68

Component. 68

DateTime . 69

Dictionary . 70

DocumentSetup . 71

DynamicPartCollection. 74

DynamicPart. 75

EngravingRules . 76

File . 79

Folder . 80

GuitarFrame . 81

GuitarScaleDiagram. 85

HitPointList . 86

HitPoint. 87

InstrumentChange . 87

InstrumentTypeList. 88

InstrumentType . 88

KeySignature . 91

Line . 91

LyricItem. 92

NoteRest . 93

Note . 97

NoteSpacingRule . 100

Contents v

PageNumberChange . 103

PluginList . 105

Plugin . 105

RehearsalMark. 106

Score . 106

Selection . 117

Sibelius. 121

SoundInfo. 132

SparseArray . 133

SpecialBarline . 135

Staff . 135

Syllabifier . 140

SymbolItem and SystemSymbolItem . 141

SystemObjectPositions . 141

SystemStaff, Staff, Selection, Bar and, all BarObject-derived Objects 142

SystemStaff . 142

Text and SystemTextItem . 143

TimeSignature . 144

TreeNode . 145

Tuplet . 145

Utils . 147

VersionHistory . 153

Version . 153

VersionComment . 154

Chapter 5. Global Constants . 156

Global Constants . 156

Contentsvi

Chapter 1: Introduction 1

Chapter 1: Introduction

ManuScript is a simple, music-based programming language used to write plug-ins for Sibelius. ManuScript is

based on Simkin, an embedded scripting language developed by Simon Whiteside, and has been extended by him

and the rest of the Sibelius team ever since. (Simkin is a spooky pet name for Simon sometimes found in Victo-

rian novels.) For more information on Simkin, and additional help on the language and syntax, visit the Simkin

website at www.simkin.co.uk.

Rationale
Providing a plug-in language for Sibelius addresses several different issues:

• Music notation is complex and infinitely extensible, so some users will sometimes want to add to a music no-

tation program to expand its possibilities with these new extensions.

• It is useful to allow frequently repeated operations (for example, opening a MIDI file and saving it as a score)

to be automated, using a system of scripts or macros.

Certain more complex techniques used in composing or arranging music can be partly automated, but there are

too many to include as standard features in Sibelius.

There were several conditions that we wanted to meet in deciding what language to use:

The language had to be simple, as we want normal users (not just seasoned programmers) to be able to use it.

We wanted plug-ins to be usable on any computer, as the use of computers running both Windows and Mac OS

X is widespread in the music world.

We wanted the tools to program in the language to be supplied with Sibelius.

We wanted musical concepts (pitch, notes, bars) to be easily expressed in the language.

We wanted programs to be able to talk to Sibelius easily (to insert and retrieve information from scores).

We wanted simple dialog boxes and other user interface elements to be easily programmed.

C/C++, the world’s “standard” programming language(s), were unsuitable as they are not easy for the non-spe-

cialist to use, they would need a separate compiler, and you would have to recompile for each different platform

you wanted to support (and thus create multiple versions of each plug-in).

The language Java was more promising as it is relatively simple and can run on any platform without recompi-

lation. However, we would still need to supply a compiler for people to use, and we could not express musical

concepts in Java as directly as we could with a new language.

http://www.simkin.co.uk

Sibelius ManuScript Language Guide2

So we decided to create our own language that is interpreted so it can run on different platforms, integrated into

Sibelius without any need for separate tools, and can be extended with new musical concepts at any time.

The ManuScript language that resulted is very simple. The syntax and many of the concepts will be familiar to

programmers of C/C++ or Java. Built into the language are musical concepts (Score, Staff, Bar, Clef, NoteRest)

that are instantly comprehensible.

Technical Support
Since the ManuScript language is more the province of our programmers than our technical support team (who

are not, in the main, programmers), we can’t provide detailed technical help on it, any more than Oracle will

help you with Java programming. This document and the sample plug-ins should give you a good idea of how

to do some simple programming fairly quickly.

We would welcome any useful plug-ins you write – please contact us at www.sibelius.com/plugins and we may

put them on our web site; if we want to distribute the plug-in with Sibelius itself, we’ll pay you for it.

Mailing list for plug-in developers

There is a growing community of plug-in developers working with ManuScript, and they can be an invaluable

source of help when writing new plug-ins. To subscribe, go to http://avid-listsrv1.avid.com/mail-

man/listinfo/plugin-dev.

System Requirements and Compatibility Information
Avid can only assure compatibility and provide support for hardware and software it has tested and approved.

For complete system requirements and a list of qualified computers, operating systems, hard drives, and third-

party devices, visit: www.avid.com/compatibility.

http://www.avid.com/compatibility
http://www.avid.com/compatibility

Chapter 1: Introduction 3

Conventions Used in Sibelius Documentation
Sibelius documentation uses the following conventions to indicate menu choices, keyboard commands, and

mouse commands:
:

The names of Commands, Options, and Settings that appear on-screen are in a different font.

The following symbols are used to highlight important information:

Convention Action

File > Save Choose Save from the File tab

Control+N Hold down the Control key and press the N key

Control-click Hold down the Control key and click the mouse but-

ton

Right-click Click with the right mouse button

User Tips are helpful hints for getting the most from your Sibelius system.

Important Notices include information that could affect data or the performance of your Sibelius
system.

Shortcuts show you useful keyboard or mouse shortcuts.

Cross References point to related sections in this guide and other Avid documentation.

Sibelius ManuScript Language Guide4

Chapter 2: Sibelius ManuScript Language Tutorial 5

Chapter 2: Sibelius ManuScript Language
Tutorial

Edit Plug-ins

A Simple Plug-in

Let’s start a simple plug-in. You are assumed to have some basic experience of programming (such as BASIC

or C), so you’re already familiar with ideas like variables, loops, and so on.

To create a new Sibelius plug-in:

1 Start Sibelius and open or create a new score.

2 Choose File > Plug-ins > Edit Plug-ins.

Chapter 2: Sibelius ManuScript Language Tutorial 6

3 The following dialog appears:

4 Click New.

5 You are asked to type the internal name of your plug-in (used as the plug-in’s filename), the name that should

appear on the menu and the name of the category in which the plug-in should appear, which will determine

which ribbon tab it appears on.

Chapter 2: Sibelius ManuScript Language Tutorial 7

The reason for having two separate names for plug-ins is that filenames may be no longer than 31 characters on

Macs running Mac OS 9 (which is only significant if you intend your plug-in to be used with versions of Sibelius

prior to Sibelius 4), but the menu names can be as long as you like.

6 Type Test as the internal name, Test plug-in as the menu name and Tests as the category name, then click OK.

7 You’ll see Test (user copy) added to the list in the Edit Plug-ins dialog under a new Tests branch of the tree

view. Click Close. This shows the folder in which the plug-in is located (Tests, which Sibelius has created for

you), the filename of the plug-in (minus the standard .plg file extension), and (user copy) tells you that this

plug-in is located in your user application data folder, not the Sibelius program folder or application package

itself.

8 If you look in the Home > Plug-ins gallery again you’ll see a Tests category, with a Test plug-in underneath it.

9 Choose Home > Plug-ins > Tests > Test and the plug-in will run.You may first be prompted that you cannot

undo plug-ins, in which case click Yes to continue (and you may wish to switch on the Don’t say this again

option so that you’re not bothered by this warning in future.) What does our new Test plug-in do? It just pops

up a dialog which says Test (whenever you start a new plug-in, Sibelius automatically generates in a one-line

program to do this). You’ll also notice a window appear with a button that says Stop Plug-in, which appears

whenever you run any plug-in, and which can be useful if you need to get out of a plug-in you’re working on

that is (say) trapped in an infinite loop.

10 Click OK on the dialog and the plug-in stops.

Three Types of Information

Let’s look at what’s in the plug-in so far. Choose File > Plug-ins > Edit Plug-ins again, then select Tests/Test

(user copy) from the list and click Edit (or simply double-click the plug-in’s name to edit it). You’ll see a dialog

showing the three types of information that can make up a plug-in:

• Methods: Methods are similar to procedures, functions, or routines in some other languages.

• Dialogs: The layout of any special dialogs you design for your plug-in.

• Data: Data are variables whose value is remembered between running the plug-in. You can only store strings

in these variables, so they’re useful for things like user-visible strings that can be displayed when the plug-in

runs. For a more sophisticated approach to global variables, ManuScript provides custom user properties for

all objects—see “Edit Plug-ins” on page 5.

Chapter 2: Sibelius ManuScript Language Tutorial 8

Methods

The actual program consists of the methods. As you can see, plug-ins normally have at least two methods, which

are created automatically for you when you create a new plug-in:

Initialize

This method is called automatically whenever you start up Sibelius. Normally it does nothing more than add the

name of the plug-in to the Plug-ins menu, although if you look at some of the supplied plug-ins you’ll notice that

it’s sometimes also used to set default values for data variables.

Run

This is called when you run the plug-in, you’ll be startled to hear (it’s like main() in C/C++ and Java). In other

words, when you choose Home > Plug-ins > Tests > Test, the plug-in’s Run method is called. If you write any

other methods, you have to call them from the Run method—otherwise how can they ever do anything?

Click on Run, then click Edit (or you can just double-click Run to edit it). This shows a dialog where you can edit

the Run method:

Chapter 2: Sibelius ManuScript Language Tutorial 9

In the top field you can edit the name; in the next field you can edit the parameters (the variables where values

passed to the method are stored); and below is the code itself:

Sibelius.MessageBox("Test");

This calls a method MessageBoxwhich pops up the dialog box that says Test when you run the plug-in. Notice

that the method name is followed by a list of parameters in parentheses. In this case there’s only one parameter:

because it is a string (that is, text) it is in double quotes. Notice also that the statement ends in a semicolon, as in

C/C++ and Java. If you forget to type a semicolon, you’ll get an error when the plug-in runs.

What is the role of the word Sibelius in Sibelius.MessageBox? In fact it’s a variable representing the Si-

belius program; the statement is telling Sibelius to pop up the message box (C++ and Java programmers will rec-

ognize that this variable refers to an “object”). If this hurts your brain, we’ll go into it later.

Editing the Code

Now try amending the code slightly. You can edit the code just like in a word processor, using the mouse and ar-

row keys, and you can also use Ctrl+X/C/V or X/C/V for cut, copy and paste respectively. If you right-click

(Windows) or Control-click (Mac) you get a menu with these basic editing operations on them too.

Change the code to this:

x = 1;
x = x + 1;

Sibelius.MessageBox("1 + 1 = " & x);

You can check this makes sense (or, at least, some kind of sense) by clicking the Check Syntax button. If there

are any blatant mistakes (e.g. missing semicolons) you will be notified where they are.

Chapter 2: Sibelius ManuScript Language Tutorial 10

Then close the dialogs by clicking OK, OK again then Close. Run your amended plug-in from the Plug-ins menu

and a message box with the answer 1 + 1 = 2 should appear.

How does it work? The first two lines should be obvious. The last line uses & to stick two strings together. You

cannot use + as this works only for numbers (if you try it in the example above, you will get an interesting an-

swer!).

One pitfall: try changing the second line to:

x += 1;

Then click Check syntax. You will encounter an error: this syntax (and the syntax x++) is allowed in various lan-

guages but not in ManuScript. You have to do x = x+1;.

Where Plug-ins are Stored

Plug-ins supplied with Sibelius are stored in folders buried deep within the Sibelius program folder on Windows,

and inside the application package (or “bundle”) on Mac. It is not intended that end users should add extra plug-

ins to these locations themselves, as we have provided a per-user location for plug-ins to be installed instead.

When you create a new plug-in or edit an existing one, the new or modified plug-in will be saved into the per-

user location (rather than modifying or adding to the plug-ins in the program folder or bundle):

• On Windows, additional plug-ins are stored at C:\Users\username\AppData\Roaming\Avid\Sibelius\Plugins.

• On Mac, additional plug-ins are stored in subfolders at /Users/username/Library/Application

Support/Avid/Sibelius/Plugins.

This is worth knowing if you want to give a plug-in to someone else. The plug-ins appear in subfolders which

correspond to the categories in which they appear in the various Plug-ins galleries. The filename of the plug-in

itself is the plug-in’s internal name plus the .plg extension, such as Test.plg.

(Sibelius includes an automatic plug-in installer, which you can access via File > Plug-ins Install Plug-ins. This

makes it easy to download and install plug-ins from the Sibelius web site.)

Line Breaks and Comments

As with C/C++ and Java, you can put new lines wherever you like (except in the middle of words), as long as you

remember to put a semicolon after every statement. You can put several statements on one line, or put one state-

ment on several lines.

You can add comments to your program, again like C/C++ and Java. Anything after // is ignored to the end of

the line. Anything between /* and */ is ignored, whether just part of a line or several lines:

// comment lasts to the end of the line
/* you can put
several lines of comments here
*/

Chapter 2: Sibelius ManuScript Language Tutorial 11

For instance:

Sibelius.MessageBox("Hi!"); // print the active score

or:

Sibelius /* this contains the application */ .MessageBox("Hi!");

Variables

x in the Test plug-in is a variable. In ManuScript a variable can be any sequence of letters, digits or _ (under-

score), as long as it does not start with a digit.

A variable can contain an integer (whole number), a floating point number, a string (text) or an object (such as

a note)—more about objects in a moment. Unlike most languages, in ManuScript a variable can contain any type

of data—you do not have to declare what type you want. Thus you can store a number in a variable, then store

some text instead, then an object.

Try this:

x = 56; x = x+1;
Sibelius.MessageBox(x); // prints '57' in a dialog box
x = "now this is text"; // the number it held is lost
Sibelius.MessageBox(x); // prints 'now this is text' in a dialog
x = Sibelius.ActiveScore; // now it contains a score
Sibelius.MessageBox(x); // prints nothing in a dialog

Variables that are declared within a ManuScript method are local to that method; in other words, they cannot be

used by other methods in the same plug-in. Global Data variables defined using the plug-in editor can be ac-

cessed by all methods in the plug-in, and their values are preserved over successive uses of the plug-in.

A quick aside about strings in ManuScript is in order at this point. Like many programming languages, Manu-

Script strings uses the back-slash \ as an “escape character” to represent certain special things. To include a sin-

gle quote character in your strings, use \', and to include a new line you should use \n. Because of this, to in-

clude the backslash itself in a ManuScript string one has to write \\.

Converting Between Numbers, Text, and Objects

Notice that the method MessageBox is expecting to be sent some text to display. If you give it a number instead

(as in the first call to MessageBox above) the number is converted to text. If you give it an object (such as a

score), no text is produced.

Similarly, if a calculation is expecting a number but is given some text, the text will be converted to a number:

x = 1 + "1"; // the + means numbers are expected
Sibelius.MessageBox(x); // displays '2'

If the text doesn’t start with a number (or if the variable contains an object instead of text), it is treated as 0:

x = 1 + "fred";
Sibelius.MessageBox(x); // displays ‘1’

Chapter 2: Sibelius ManuScript Language Tutorial 12

Loops

“for” and “while”

ManuScript has a while loop which repeatedly executes a block of code until a certain expression becomes

True. Create a new plug-in called Potato. This is going to amuse one and all by writing the words of the well-

known song “1 potato, 2 potato, 3 potato, 4.” Type in the following for the Run method of the new plug-in:

x = 1;
while (x<5)
{

text = x & " potato,";
Sibelius.MessageBox(text);
x = x+1;

}

Run it. It should display “1 potato,” “2 potato,” “3 potato,” “4 potato,” which is a start, though annoyingly you

have to click OK after each message.

The while statement is followed by a condition in () parentheses, then a block of statements in { } braces

(you don’t need a semicolon after the final } brace). While the condition is true, the block is executed. Unlike

some other languages, the braces are compulsory (you can’t omit them if they only contain one statement). More-

over, each block must contain at least one statement.

In this example you can see that we are testing the value of x at the start of the loop, and increasing the value at

the end. This common construct could be expressed more concisely in ManuScript by using a for loop. The

above example could also be written as follows:

for x = 1 to 5
{

text = x & " potato,";
Sibelius.MessageBox(text);

}

Here, the variable x is stepped from the first value (1) up to the end value (5), stopping one step before the final

value. By default, the “step” used is 1, but we could have used (say) 2 by using the syntax for x = 1 to 5
step 2, which would then print only “1 potato” and “3 potato”!

Notice the use of & to add strings. Because a string is expected on either side, the value of x is turned into a string.

Notice also we’ve used the Tab key to indent the statements inside the loop. This is a good habit to get into as it

makes the structure clearer. If you have loops inside loops you should indent the inner loops even more.

Chapter 2: Sibelius ManuScript Language Tutorial 13

The if statement

Now we can add an if statement so that the last phrase is just “4,” not “4 potato”:

x = 1;
while (x<5)
{

if(x=4)
{

text = x & ".";
}
else
{

text = x & " potato,";
}
Sibelius.MessageBox(text);
x = x+1;

}

The rule for if takes the form if (condition) {statements}. You can also optionally add else
{statements}, which is executed if the condition is false. As with while, the parentheses and braces are

compulsory, though you can make the program shorter by putting braces on the same line as other statements:

x = 1;
while (x<5)
{

if(x=4) {
text = x & ".";

} else {
text = x & " potato,";

}
Sibelius.MessageBox(text);
x = x+1;

}

The position of braces is entirely a matter of taste.

Chapter 2: Sibelius ManuScript Language Tutorial 14

Now let’s make this plug-in really cool. We can build up the four messages in a variable called text, and only dis-

play it at the end, saving valuable wear on your mouse button. We can also switch round the if and else blocks

to show off the use of not. Finally, we return to the for syntax we looked at earlier.

text = ""; // start with no text
for x = 1 to 5
{

if (not(x=4)) {
text = text & x & " potato, "; // add some text

} else {
text = text & x & "."; // add no. 4

}
}
Sibelius.MessageBox(text); // finally display it

Arithmetic

We’ve been using + without comment, so here’s a complete list of the available arithmetic operators:

ManuScript evaluates operators strictly from left-to-right, unlike many other languages; so 2+3*4 evaluates

to 20, not 14 as you might expect. To get the answer 14, you’d have to write 2+(3*4).

ManuScript also supports floating point numbers, so whereas in some early versions 3/2 would work out as 1,

it now evaluates to 1.5. Conversion from floating point numbers to integers is achieved with the

RoundUp(expr), RoundDown(expr), and Round(expr) functions, which can be applied to any expression.

a + b add

a – b subtract

a * b multiply

a / b divide

a % b remainder

–a negate

a) evaluate first

Chapter 2: Sibelius ManuScript Language Tutorial 15

Objects

Now we come to the neatest aspect of object-oriented languages like ManuScript, C++ or Java, which sets them

apart from traditional languages like BASIC, Fortran and C. Variables in traditional languages can hold only cer-

tain types of data: integers, floating point numbers, strings and so on. Each type of data has particular operations

you can do to it: numbers can be multiplied and divided, for instance; strings can be added together, converted

to and from numbers, searched for in other strings, and so on. But if your program deals with more complex types

of data, such as dates (which in principle you could compare using =, < and >, convert to and from strings, and

even subtract) you are left to fend for yourself.

Object-oriented languages can deal with more complex types of data directly. Thus in the ManuScript language

you can set a variable, let’s say thischord, to be a chord in your score, and (say) add more notes to it:

thischord.AddNote(60); // adds middle C (note no. 60)
thischord.AddNote(64); // adds E (note no. 64)

If this seems magic, it’s just analogous to the kind of things you can do to strings in BASIC, where there are very

special operations which apply to text only:

A$ = "1"
A$ = A$ + " potato, ": REM add strings
X = ASC(A$): REM get first letter code

In ManuScript you can set a variable to be a chord, a note in a chord, a bar, a staff or even a whole score, and do

things to it. Why would you possibly want to set a variable to be a whole score? So you can save it or add an in-

strument to it, for instance.

Objects in Action

We’ll have a look at how music is represented in ManuScript in a moment, but for a little taster, let’s plunge

straight in and adapt Potato to create a score:

x = 1;
text = ""; // start with no text
while (x<5)
{

if (not(x=4)) {
text = text & x & " potato, "; // add some text

} else {
text = text & x & "."; // add no. 4

}
x = x+1;

}
Sibelius.New(); // create a new score
newscore = Sibelius.ActiveScore; // put it in a variable
newscore.CreateInstrument("Piano");
staff = newscore.NthStaff(1); // get top staff
bar = staff.NthBar(1); // get bar 1 of this staff
bar.AddText(0,text,"Technique"); // use Technique text style

Chapter 2: Sibelius ManuScript Language Tutorial 16

This creates a score with a Piano, and types our potato text in bar 1 as Technique text.

The code uses the period (.) several times, always in the form variable.variable or

variable.method(). This shows that the variable before the period has to contain an object.

If there’s a variable name after the period, we’re getting one of the object’s sub-variables (called “fields” or

“member variables” in some languages). For instance, if n is a variable containing a note, then n.Pitch is a num-

ber representing its MIDI pitch (60 for middle C), and n.Name is a string describing its pitch (“C4” for middle

C). The variables available for each type of object are listed later.

If there’s a method name after the period (followed by () parentheses), one of the methods allowed for this type

of object is called. Typically a method called in this way will either change the object or return a value. For in-

stance, if s is a variable containing a score, then s.CreateInstrument("Flute") adds a flute (changing

the score), but s.NthStaff(1) returns a value, namely an object containing the first staff.

Let’s look at the new code in detail. There is a pre-defined variable called Sibelius, which contains an object rep-

resenting the Sibelius program itself. We’ve already seen the method Sibelius.MessageBox(). The

method call Sibelius.New() tells Sibelius to create a new score. Now we want to do something to this score,

so we have to put it in a variable.

Fortunately, when you create a new score it becomes active (i.e. its title bar highlights and any other scores be-

come inactive), so we can just ask Sibelius for the active score and put it in a variable:

newscore = Sibelius.ActiveScore

Then we can tell the score to create a Piano: newscore.CreateInstrument("Piano"). But to add

some text to the score you have to understand how the layout is represented.

Representation of a Score

A score is treated as a hierarchy: each score contains 0 or more staves; each staff contains bars (though every staff

contains the same number of bars); and each bar contains “bar objects.” Clefs, text and chords are all different

types of bar objects.

To add a bar object (i.e. an object which belongs to a bar), such as some text, to a score:

1 Specify which staff you want (and put it in a variable): staff = newscore.NthStaff(1).

2 Specify which bar in that staff you want (and put it in a variable): bar = staff.NthBar(1); finally you

tell the bar to add the text: bar.AddText(0,text,"Technique").

3 Specify the name (or index number – see Text styles on page 141) of the text style to use (and it has to be a

staff text style, because we’re adding the text to a staff).

Notice that bars and staves are numbered from 1 upwards; in the case of bars, this is irrespective of any bar num-

ber changes that are in the score, so the numbering is always unambiguous. In the case of staves, the top staff is

no.1, and all staves are counted, even if they’re hidden. Thus a particular staff has the same number wherever it

appears in the score.

Chapter 2: Sibelius ManuScript Language Tutorial 17

The AddText method for bars is documented later, but the first parameter it takes is a rhythmic position in the

bar. Each note in a bar has a rhythmic position that indicates where it is (at the start, one quarter after the start,

etc.), but the same is true for all other objects in bars. This shows where the object is attached to, which in the case

of Technique text is also where the left hand side of the text goes. Thus to put our text at the start of the bar, we

used the value 0. To put the text a quarter note after the start of the bar, use 256 (the units are 1024th notes, so a

quarter is 256 units – but don’t think about this too hard):

bar.AddText(256,text,"Technique");

To avoid having to use obscure numbers like 256 in your program, there are predefined variables representing

different note values (which are listed later), so you could write:

bar.AddText(Quarter,text,"Technique");

or to be quaint you could use the British equivalent:

bar.AddText(Crotchet,text,"Technique");

For a dotted quarter, instead of using 384 you can use another predefined variable:

bar.AddText(DottedQuarter,text,"Technique");

or add two variables:

bar.AddText(Quarter+Eighth,text,"Technique");

This is much clearer than using numbers.

The System Staff

As you know from using Sibelius, some objects don’t apply to a single staff but to all staves. These include titles,

tempo text, rehearsal marks and special barlines; you can tell they apply to all staves because (for instance) they

get shown in all the instrumental parts.

All these objects are actually stored in a hidden staff, called the system staff. You can think of it as an invisible

staff which is always above the other staves in a system. The system staff is divided into bars in the same way

as the normal staves. So to add the title “Potato” to our score we’d need the following code in our plug-in:

sys = newscore.SystemStaff; // system staff is a variable
bar = sys.NthBar(1);
bar.AddText(0,"POTATO SONG","Subtitle");

As you can see, SystemStaff is a variable you can get directly from the score. Remember that you have to use

a system text style (here I’ve used Subtitle) when putting text in a bar in the system staff. A staff text style like

Technique won’t work. Also, you have to specify a bar and position in the bar; this may seem slightly superfluous

for text centered on the page as titles are (though in reality even this kind of page-aligned text is always attached

to a bar), but for Tempo and Metronome mark text they are obviously required.

Chapter 2: Sibelius ManuScript Language Tutorial 18

Representation of Notes, Rests, Chords, and Other Musical Items

Sibelius represents rests, notes and chords in a consistent way. A rest has no noteheads, a note has 1 notehead and

a chord has 2 or more noteheads. This introduces an extra hierarchy: most of the squiggles you see in a score are

actually a special type of bar object that can contain even smaller things (namely, noteheads). There’s no overall

name for something which can be a rest, note or chord, so we’ve invented the pretty name NoteRest. A NoteRest

with 0, 1 or 2 noteheads is what you normally call a rest, a note or a chord, respectively.

If n is a variable containing a NoteRest, there is a variable n.NoteCount which contains the number of

notes, and n.Duration which is the note-value in 1/256ths of a quarter. You can also get n.Highest and

n.Lowest which contain the highest and lowest notes (assuming n.NoteCount isn’t 0). If you set

lownote = n.Lowest, you can then find out things about the lowest note, such as lownote.Pitch
(a number) and lownote.Name (a string). Complete details about all these methods and variables may be

found in Chapter 3, “Reference.”

Other musical objects, such as clefs, lines, lyrics and key signatures have corresponding objects in ManuScript,

which again have various variables and methods available. For example, if you have a Line variable ln, then

ln.EndPosition gives the rhythmic position at which the line ends.

The “for each” Loop

It’s a common requirement for a loop to do some operation to every staff in a score, or every bar in a staff, or ev-

ery BarObject in a bar, or every note in a NoteRest. There are other more complex requirements which are still

common, such as doing an operation to every BarObject in a score in chronological order, or to every BarObject

in a multiple selection. ManuScript has a for each loop that can achieve each of these in a single statement.

The simplest form of for each is like this:

thisscore = Sibelius.ActiveScore;
for each s in thisscore // sets s to each staff in turn
{ // ...do something with s
}

Here, since thisscore is a variable containing a score, the variable s is set to be each staff in thisscore
in turn. This is because staves are the type of object at the next hierarchical level of objects (see “Hierarchy of

Objects” on page 47).

For each staff in the score, the statements in {} braces are executed.

Score objects contain staves, as we have seen, but they can also contain a Selection object, e.g. if the user has se-

lected a passage of music before running the plug-in. The Selection object is a special case: it is never returned

by a for each loop, because there is only a single selection object; if you use the Selection object in a for
each loop, by default it will return BarObjects (not Staves, Bars or anything else!).

Chapter 2: Sibelius ManuScript Language Tutorial 19

Let’s take another example, this time for notes in a NoteRest:

noterest = bar.NthBarObject(1);
for each n in noterest // sets n to each note in turn
{

Sibelius.MessageBox("Pitch is " & n.Name);
}

n is set to each note of the chord in turn, and its note name is displayed. This works because Notes are the next

object down the hierarchy after NoteRests. If the NoteRest is, in fact, a rest (rather than a note or chord), the loop

will never be executed – you don’t have to check this separately.

The same form of loop will get the bars from a staff or system staff, and the BarObjects from a bar. These loops

are often nested, so you can, for instance, get several bars from several staves.

This first form of the for each loop got a sequence of objects from an object in the next level of the hierarchy of

objects. The second form of the for each loop lets you skip levels of the hierarchy, by specifying what type of ob-

ject you want to get. This saves a lot of nested loops:

thisscore = Sibelius.ActiveScore;
for each NoteRest n in thisscore
{

n.AddNote(60); // add middle C
}

By specifying NoteRest after for each, Sibelius knows to produce each NoteRest in each bar in each staff in the

score; otherwise it would just produce each staff in the score, because a Staff object is the type of object at the

next hierarchical level of objects. The NoteRests are produced in a useful order, namely from the top to the bot-

tom staff, then from left to right through the bars. This is chronological order. If you want a different order (say,

all the NoteRests in the first bar in every staff, then all the NoteRests in the second bar in every staff, and so on)

you’ll have to use nested loops.

So here’s some useful code that doubles every note in the score in octaves:

score = Sibelius.ActiveScore;
for each NoteRest chord in score
{

if(not(chord.NoteCount = 0)) // ignore rests
{

note = chord.Highest; // add above the top note
chord.AddNote(note.Pitch+12); // 12 is no. of half-steps

(semitones)
}

}

It could easily be amended to double in octaves only in certain bars or staves, only if the notes have a certain pitch

or duration, and so on.

Chapter 2: Sibelius ManuScript Language Tutorial 20

This kind of loop is also very useful in conjunction with the user’s current selection. This selection can be ob-

tained from a variable containing a Score object as follows:

selection = score.Selection;

We can then test whether it’s a passage selection, and if so we can look at (say) all the bars in the selection by

means of a for each loop:

if (selection.IsPassage)
{

for each Bar b in selection
{

// do something with this bar
…

}
}

Be aware that you can not add or remove items from bars during iterating. The example of adding notes to chords

above is fine because you are modifying an existing item (in this case a NoteRest), but it’s not safe to add or re-

move entire items, and if you try to do so, your plug-in will abort with an error. However, it’s very useful to add

or remove items from bars, so you need to do that in a separate for loop, after first collecting the items you want

to operate on into a ManuScript array, something like this:

num = 0;
for each obj in selection
{

if (IsObject(obj))
{

n = "obj" & num;
@n = obj;
num = num + 1;

}
}
selection.Clear();
for i = 0 to num
{

n = "obj" & i;
obj = @n; // get an object from the pseudo array
obj.Select();

}

The @n in this example is the array. To find out more about arrays, read on.

Chapter 2: Sibelius ManuScript Language Tutorial 21

Indirection, Sparse Arrays, and User Properties

Indirection

If you put the @ character before a string variable name, then the value of the variable is used as the name of a

variable or method. For instance:

var="Name";
x = @var; // sets x to the contents of the variable Name
mymethod="Show";
@mymethod(); // calls the method Show

This has many advanced uses, though if taken to excess it can cause the brain to hurt. For instance, you can use

@ to simulate “unlimited” arrays. If name is a variable containing the string "x1", then @name is equivalent to

using the variable x1 directly. Thus:

i = 10;
name = "x" & i;
@name = 0;

sets variable x10 to 0. The last two lines are equivalent to x[i] = 0; in the C language. This has many uses;

however, you’ll also want to consider using the built-in arrays (and hash tables), which are documented below.

Sparse Arrays

The method described above can be used to create “fake” arrays through indirection, though this is a little fiddly.

ManuScript also provides Javascript-style sparse arrays, which can store anything that can be stored in a Manu-

Script variable, including references to objects. Like a variable, storing a reference to an object in a sparse array

will preserve the lifetime of that object (because objects are reference counted), but the underlying object in Si-

belius may become invalid if (say) a Score is modified.

To create a sparse array in ManuScript, use the built-in method CreateSparseArray(a1,a2,a3,a4...an).
You can create an empty array simply by passing in no variables to the CreateSpareArray method.

Sparse arrays provide a read/write variable called Length that returns or sets the length of the array: when you set

Length to a number greater than the present size of the array, the array is padded with null values; if you set

Length to a number smaller than the present size of the array, any values beyond this number are removed.

To push one or more values to the end of the array, use the method Push(a1, a2, ... an). To remove and return

the last element of an array, use the method Pop().

An example of how to use a sparse array:

array = CreateSparseArray(4,5,6);
array[10] = 19; // creates 11th element of array, intervening ele-
ments are null
array.Length = 20; // extends array to 20 elements, new elements
are all null

Chapter 2: Sibelius ManuScript Language Tutorial 22

Sparse arrays by their nature may not have values in every array element. To return a new sparse array containing

only the populated indices of the original sparse array (i.e. those that are not null), use the array’s ValidIndi-
ces variable. For example, using the above sparse array:

array2 = array.ValidIndices; // will contain values 0, 1, 2, 10 and
19
return array[array2[0]]; // returns the first populated element of
array

You can compare two sparse arrays for equality, e.g.:

if (array = array2) {
// do something

}

To access the end of an array, it’s convenient to use negative indices; e.g. array[-1] returns the last element,

array[-2] returns the penultimate element, and so on. It’s not possible to access elements before the start of

the array, so if you do e.g. array[-100] on a six element array, you will get array[0] returned.

Some things to remember when using sparse arrays:

• Sparse arrays use a zero-based index.

• Elements that have not been initialised are null, and do not cause an error when referenced.

• Assigning to an index beyond the current length increases the Length to one greater than the index assigned

to.

• If an array contains references to objects, whether the arrays are equal or not depends on the implementa-

tion of equality for those objects.

User Properties

All ManuScript objects other than those listed below, including objects created by Sibelius, can have user prop-

erties attached to them, allowing for convenient storage of extra data, encapsulation of several items of data

within a single object, and returning more than one value from a method, among other things.

To create a new user property, use the following syntax:

object._property:property_name = value;

where object is the name of the object, property_name is the desired user property name, and value is the

value to be assigned to the new user property. User properties are read/write and can be accessed as ob-
ject.property_name.

To get a sparse array containing the names of all the user properties belonging to an object, you can do e.g.:

names = object._propertyNames;

Chapter 2: Sibelius ManuScript Language Tutorial 23

Here is an example of creating a user property:

nr = bar.NoteRest;
nr._property:original = true;
if (nr.original = true) {

// do something
}

Some things to remember when using user properties:

• If you attempt to get or set a user property that has not yet been created, your plug-in will exit with a run-

time error.

• To check whether or not a user property has been created without causing a run-time error, use the notation

object._property:property_name, which will be null if no matching user property has been created

yet.

• User properties cannot be created or accessed for normal data types (e.g. strings, integers, etc.), the global

Sibelius object, old-style ManuScript arrays created byCreateArray(), old-style hashes created by

CreateHash(), and null.

• User properties that conflict with an existing property name cannot be accessed as object.proper-
ty_name (though they can be accessed using the ._property: notation).

• User properties belong to a particular ManuScript object and disappear when that object’s lifetime ends. To

stop an object dying, you can (for example) store it in a sparse array, but be aware that its contents may be-

come invalid if (say) the underlying score changes.

Dictionary

Dictionary is a programmer extensible object, simply allowing the use of user properties as above with con-

venient construction. It also has methods allowing the use of aribtrarily named user properties, and can also have

methods in plug-ins attached to it allowing the creation of encapsulated user objects (i.e. objects with variables

and methods attached to them).

To create a dictionary, use the built-in function CreateDictionary(name1, value1, name2, value2, ...
nameN, valueN). This creates a dictionary containing user properties called name1, name2, nameN with values

value1, value2, valueN respectively.

A dictionary can contain named data items (like a struct in languages like C++), or data that is indexed by

string, so that you can use strings to look items up within it.

The values in a dictionary can be accessed using square bracket notation, so you can use a dictionary like a hash

table, e.g.:

test = CreateDictionary("fruit",apple,"vegetable",potato);
test["fruit"] = banana;
test["meat"] = lamb;

You can even put other objects, e.g. sparse arrays, inside dictionaries, e.g.

test2 = CreateDictionary("fruit",
CreateSparseArray(apple,banana,orange));

Chapter 2: Sibelius ManuScript Language Tutorial 24

You can access the user properties within a dictionary using the ._property: notation, e.g.:

return test2._property:fruit;

which would return the array specified above. Even more direct, you can access user properties in a dictionary

as if they were variables or methods, like this:

test2.fruit;

which would also return the array specified above. You can also return more than one value from any ManuScript

method using a dictionary, e.g.:

getChord()
value = CreateDictionary("a", aNote, "b", anotherNote);
return value;
//... in another method somewhere
chord = getChord();
trace(chord.a);
trace(chord.b);

which returns two values, a and b, which you can access via e.g. chord.a and chord.b.

You can compare two dictionaries for equality, e.g.:

if (test2 = test3) {
// do something
}

Whether or not dictionaries containing objects evaluate as equal depends on the implementation of equality for

those objects.

If you’re comfortable with programming in general, you may find it useful to be able to add methods to dictio-

naries, particularly if you are writing code designed to act as a library for other methods or plug-ins to call. Writ-

ing code in this way provides a degree of encapsulation and can make it easy for client code to use your library.

To add a method to a dictionary, call the dictionary’s SetMethod() method, e.g.:

pluginmethod "(obj,x,y) {
// a method that does something to obj
}"
test4 = CreateDictionary();
test4.SetMethod("doSomething",Self,"pluginmethod");
test4.doSomething(3,4);

// call pluginmethod within the current plug-in, passing in
// test4 (obj in the method above) and 3 (x in the method
// above) and 4 (y in the method above)

In the example above, doSomething is the name of the method belonging to the dictionary, Self tells the plug-

in that the method is defined in the same plug-in, and pluginmethod is the name of a method elsewhere in the

plug-in (shown at the top of the example).

Chapter 2: Sibelius ManuScript Language Tutorial 25

To return a sparse array containing the names of the methods belonging to a dictionary, use the dictionary’s

GetMethodNames() method. You can also check the existence of a particular method using the dictionary’s

MethodExists() method. Use the dictionary’s CallMethod() method to call a specific method, where

the name of the method is the first parameter, and any parameters to be passed to the specified method follow.

For example:

array = test4.GetMethodNames(); // create sparse array containing
method names
first_method_name = array[0]; // sets first_method_name to name of
first method
methodfound = test4.MethodExists("doSomething"); // returns True
in this case;
test4.CallMethod("doSomething",5,6);

Everything you put into a dictionary is a user property, so all of the methods outlined in User properties above

can be used on data in dictionaries too.

Using User Properties as Global Variables

You can store SparseArray and Dictionary objects, and indeed any other object, as user properties of the Plugin

object itself. In the example below, Self is the object that corresponds to the running plug-in, and a user property

globalData is assigned to the plug-in, containing a Dictionary:

Self._property:globalData = CreateDictionary(1,2,3,4);
// globalData and Self.globalData can be used interchangeably
trace(globalData);
trace(Self.globalData);

User properties assigned to the plug-in are persistent between invocations. Take care to ensure that these user

properties are created before you attempt to use them, otherwise your plug-in will abort with a run-time error.

Using the _property:property_name syntax never causes run-time errors, but direct references to

property_name force a runtime error if property_name hasn't been created yet.

The example below shows how to test the existence of a specific user property, globalCounter, initialize it

to 0 if it is not found, then increment it by 1 every time the plug-in runs:

// Test the persistence of user properties
if (Self._property:globalCounter = null) {
 Self._property:globalCounter = 0;
}
globalCounter = globalCounter + 1;
// this number increases by one every time the plugin is run
trace(globalCounter);
trace(Self.globalCounter);

If you store a reference to a musical object in a user property that is assigned to the plug-in, there is an increased

danger of that reference becoming invalid due to the score being closed or edited, etc. Use the IsValid()
method to validate such data before using it.

Chapter 2: Sibelius ManuScript Language Tutorial 26

User properties of plug-ins will be inaccessible (except by using the _property:property_name syntax) if

there is an existing global variable of the same name.

Watch Out for Recursive Cycles!

Be careful not to create recursive cycles using arrays, user properties and dictionaries. When you use, say, an ar-

ray in a dictionary, you are not creating a copy of the array or its values, but a reference to the original array: dic-

tionaries and arrays are objects, not values. As a result, you could write something where an array contains a dic-

tionary that itself refers to the original array: this will lead to Sibelius crashing. So be careful!

Other Things to Look Out For

The Parallel 5ths and 8ves plug-in illustrates having several methods in a plug-in, which we haven’t needed so

far. The Proof-read plug-in illustrates that one plug-in can call another – it doesn’t do much itself except call the

CheckPizzicato, CheckSuspectClefs, CheckRepeats and CheckHarpPedaling plug-ins. Thus you can build up

meta-plug-ins that use libraries of others. Cool!

(You object-oriented programmers should be informed that this works because, of course, each plug-in is an ob-

ject with the same powers as the objects in a score, so each one can use the methods and variables of the others.)

Dialog Editor

For more complicated plug-ins than the ones we’ve been looking at so far, it can be useful to prompt the user for

various settings and options. This may be achieved by using ManuScript’s simple built-in dialog editor. Dialogs

can be created in the same way as methods and data variables in the plug-in editor.

Showing a Dialog in a Plug-In

To show a dialog from a ManuScript method, we use the built-in call

Sibelius.ShowDialog(dialogName, Self);

where dialogName is the name of the dialog we wish to show, and Self is a “special” variable referring to

this plug-in (telling Sibelius to whom the dialog belongs). Control will only be returned to the method once the

dialog has been closed by the user.

Creating or Editing a Dialog

To create a new dialog, choose the Dialog radio button at the bottom of the window that lists methods, data and

dialogs, and click Add. To edit an existing dialog, select it from the Dialogs list box at the top right-hand corner

of the window, and click Edit.

Chapter 2: Sibelius ManuScript Language Tutorial 27

The dialog form will then appear, along with a long thin “palette” of available controls, as follows:

To create a new control, just drag and drop it from the palette onto the dialog.

Dialog Properties

With no controls selected, either double-click on a blank part of the dialog (or right-click, and then choose Prop-

erties) to access the dialog’s Properties dialog, which allows you to specify:

• Name: the value of dialogName for the Sibelius.ShowDialog() method call (see Showing a dialog in

a plug-in above).

• Title: the name of the dialog as it appears in its title bar.

• Size: the Width and Height (measured in somewhat arbitrary dialog units); you can also set the size of the di-

alog by resizing it directly when editing it.

• Position: the X and Y position that the dialog should open at by default.

Laying Out Controls

The dialog editor includes a number of simple options for producing a pleasing layout:

• To select a control, either click it or hit Tab to select the next control in the creation order (Shift-Tab selects the

previous control).

• To nudge a selected control, use the arrow keys.

• To align controls, select them using Command-click (Mac) or Control-click (Windows), then use e.g. Com-

mand+Left Arrow (Mac) or Control+Left Arrow (Windows) to align all of the selected controls with the left-

hand edge of the left-most control, or Command+Up Arrow (Mac) or Control+Up Arrow (Windows) to align

all of the selected controls with the top edge of the top-most control.

• To space controls evenly, select them using Command-click (Mac) or Control-click (Windows), then use e.g.

Command+Option+Option+Down Arrow (Mac) or Control+Alt+Shift+Down Arrow (Windows) to space the

Radio button

Checkbox

Button

Static text

Editable text

Combo box

List box

Group box

Chapter 2: Sibelius ManuScript Language Tutorial 28

controls evenly in the distance between the top edge of the top-most and the bottom edge of the bottom-most

controls, or Command+Option+Option+Left Arrow (Mac) or Control+Alt+Shift+Left Arrow (Windows) to

space the controls evenly in the distance between the left-hand edge of the left-most and the right-hand edge

of the right-most controls. Once controls are spaced evenly, you can increase or decrease the space between

them proportionally by typing Command+Option+Option+Up, Down, Right, Left Arrow keys (Mac) or Con-

trol+Alt+Shift+Up, Down, Right, Left Arrow keys (Windows) as appropriate.

You can optionally display a grid to aid with alignment. Right-click on a blank part of the dialog and choose Grid

from the context menu to see a dialog with settings for the grid:

Switch on Show grid to show the grid in the editor. Choose between Dots or Lines, and specify the Opacity of

the grid display by adjusting the slider. Switch on Snap to grid to enable control snapping as you drag them with

the mouse. Although a control that you nudge with the keyboard will not snap to the grid, one side of its selection

outline will flash when it comes into alignment with the grid in either the horizontal or vertical directions.

Undo and Redo

You can undo and redo everything you have done while editing a dialog using Command+Z (Mac) or Control+Z

(Windows) to undo and Command+Y (Mac) or Control+Y (Windows) to redo.

Testing the Dialog

To test the dialog within the editor, right-click a blank part of the dialog and choose Test from the context menu,

or type the shortcut Command+T (Mac) or Control+T (Windows). To finish testing and return to the editor, press

Esc or click any control whose properties are set to close the dialog (e.g. an OK or Cancel button, if you have cre-

ated one).

Saving Changes

To save the changes to the dialog, click the close button in the dialog’s title bar. If there are any unsaved changes,

Sibelius prompts you to save the changes.

Chapter 2: Sibelius ManuScript Language Tutorial 29

Set Creation Order

If you have done any programming in other languages that allow you to edit dialogs, you will probably be famil-

iar with the concept of tab order, which refers to the order in which controls are given the focus when the user

repeatedly hits the Tab key to cycle through them. ManuScript has a similar concept called creation order, so

named because the order in which the controls in a dialog are created affects not only the tab order but also some

other subtle things (including radio button grouping – see “Radio Buttons” on page 31).

To set the creation order of controls in your plug-in’s dialog, right-click on a blank part of the dialog and choose

Set Creation Order from the context menu. A special display appears overlaid on the controls in your dialog, like

this:

To set the creation order, simply click on each control in order. If you make a mistake, press Command (Mac)

or Control (Windows) and click on the last control whose order is correct to restart the sequence from that point,

then release Command (Mac) or Control (Windows) and resume clicking on the remaining controls. Once you’re

done, press Esc to finish editing the creation order.

Chapter 2: Sibelius ManuScript Language Tutorial 30

Control Properties

Every control that you create also has a Properties dialog, which can be accessed by double-clicking a selected

control, by right-clicking and choosing Properties from the context menu, or by pressing Command+Return

(Mac) or Control+Return (Windows). The dialog for a radio button control, for example, is shown below:

With a control selected, the properties window varies depending on the type of the control, but most of the op-

tions are common to all controls, and these are as follows:

• ID: an internal string that identifies the control; Sibelius generates this for you automatically, but you can

change if you like

• Text: the text appearing in the control

• Position (X, Y): where the control appears in the dialog, in coordinates relative to the top left-hand corner

• Size (width, height): the size of the control

• Variable storing control’s value: the ManuScript Data variable that will correspond to the value of this control

when the plug-in is run

• Method called when clicked: the ManuScript method that should be called whenever the user clicks on this

control (leave blank if you don’t need to know about users clicking on the control)

• Click closes dialog: select this option if you want the dialog to be closed whenever the user clicks on this con-

trol. The additional options Returning True / False specify the value that the Sibelius.ShowDialog
method should return when the window is closed in this way.

• Give this control focus: select this option if the “input focus” should be given to this control when the dialog

is opened, i.e. if this should be the control to which the user’s keyboard applies when the dialog is opened.

Mainly useful for editable text controls.

Chapter 2: Sibelius ManuScript Language Tutorial 31

Other options vary according to the type of control selected.

Combo Boxes and List Boxes

Combo boxes and list boxes have an additional property; you can set a variable from which the control’s list of

values should be taken. Like the value storing the control’s current value, this should be a global Data variable.

However, in this instance they have a rather special format, to specify a list of strings rather than simply a single

string. Look at the variable _ComboItems in Add String Fingering for an example – it looks like this:

_ComboItems
{

 "1"
 "2"
 "3"
 "4"
 "1 and 3"
 "2 and 4"

}

List boxes have one further property, which is to determine whether they should allow a single selection or mul-

tiple selections. The return value from a combo box or a single-selection list box is a single string. If a list box

is set to allow multiple selections, the selection is returned as an array of strings.

Radio Buttons

Radio buttons also have an additional property that allows one to specify groups of radio buttons in plug-in dia-

logs. When the user clicks on a radio button in a group, only the other radio buttons belonging to that groups are

deselected; any others in the dialog are left as they are. This is extremely useful for more complicated dialogs.

To specify a radio group, pick one control from each group that represents the first button of the group, and for

these controls ensure that the checkbox Start a new radio group is selected in the control’s Properties dialog.

Then set the creation order of the controls (see “Set Creation Order” on page 29). A radio button group is defined

as being all the radio buttons created between two buttons that have the Start a new radio group flag set (or be-

tween one of these buttons and the end of the dialog). So to make the radio groups work properly, ensure that

each group is created sequentially in order, with the button at the start of the group created first, and then all the

rest of the radios in that group. To finish, click the Set Creation Order menu item again to deactivate this mode.

Static Text

Static text controls additionally allow you to determine whether the text should be aligned to the Left (useful for

explanatory text) or to the Right (useful for text associated with a specific control to its right, such as an edit con-

trol, checkbox or combo box).

Chapter 2: Sibelius ManuScript Language Tutorial 32

Buttons

In most plug-in dialogs, you will want the OK button to be the default button for the dialog, such that if the user

presses Return or Enter on their keyboard, the dialog is confirmed, and closes. Likewise, you will want the Can-

cel button to respond to the user hitting Esc on their keyboard, closing the dialog without making any changes.

For OK buttons, or other buttons that should confirm the dialog, switch on the Default button for dialog checkbox

in the button’s Properties dialog. Each dialog should only have one default button. You will also normally set

Click closes dialog, returning to True. Depending on the other controls in your dialog, you may additionally

want to check Give this control focus; if you have one or more edit controls in the dialog, you should probably

set Give this control focus on the first of those controls instead.

Cancel buttons, by contrast, should normally only have Click closes dialog, returning set to False.

Debugging Plug-ins

When developing any computer program, it’s all too easy to introduce minor (and not so minor!) mistakes, or

bugs. ManuScript performs its own internal error checking at all times, and you’ll find that if you try to access

a non-existent method or variable on an object, or make a syntax error, or attempt to add or remove bars or items

from bars while iterating over them, the plug-in will throw an error and open the plug-in editor window at the line

that generated the error.

As ManuScript is a simple, lightweight system, there is no special purpose debugger, but there are a handful of

tools provided to help you debug your plug-ins.

Undo

One good technique for finding problems in your plug-ins is to set Sibelius’s undo buffer to a very small size, or

to disable it altogether (by dragging the slider on the Other page of File > Preferences to its leftmost position).

In the unlikely event that ManuScript does not throw an error when you perform an illegal operation (e.g. adding

or deleting an object while iterating over a bar), reducing the undo buffer to its smallest possible size will expose

the problem right away – though be warned, the result of such a problem may be that Sibelius will crash.

Plug-in Trace Window

The trace window can be shown by choosing Plug-ins > Plug-in Trace Window. A special ManuScript com-

mand, trace(string), will print the specified string in the trace window. This is useful to keep an eye on what

your plug-in is doing at particular points. These commands can then be removed when you’ve finished debug-

ging. Another useful feature of the trace window is function call tracing. When this is turned on, the log will show

which functions are being called by plug-ins.

One potential pitfall with the trace(string)approach to debugging is that the built-in hash table and array ob-

jects discussed earlier aren’t strings, and so can’t be output to the trace window. To avoid this problem, both of

these objects have a corresponding method called WriteToString(), which returns a string representing the

Chapter 2: Sibelius ManuScript Language Tutorial 33

whole structure of the array or hash at that point. So we could trace the current value of an array variable as fol-

lows:

trace("array variable = " & array.WriteToString());

Checking the Validity of Objects

One of the common problems that you might encounter when writing complex plug-ins is that the object you are

trying to operate on is no longer valid (e.g. it has already been deleted). You can enable error checking – either

for all objects, or for individual objects – that will cause your plug-in to throw an error if an object is no longer

valid.

To enable error checking, use the ManuScript command ValidationChecking(enable[, object1[,
object2]...]), and set the Boolean parameter enable to true. If enable is the only parameter, validation

checking is enabled for all types of objects, and all plug-ins. If you supply one or more object parameters (e.g.

Tuplet, Score, BarObject, etc.), only those objects will be checked, and only in the currently running

plug-in. You should ensure ValidationChecking is set to false before you give your plug-ins to anybody

else to use.

You can also use the special method IsValid() to determine whether an object is valid: it will return false

if the object in question no longer exists. GetValidationError(object) returns an empty string if there

is no error, or returns a string if an error has occurred, use trace(GetValidationError(score)); to

trace any validation error returned by a Score object to the trace window.

Stopping the Plug-in

If you want to force your plug-in to stop on a particular error condition, use StopPlugin([message]), which

will stop your plug-in, display the optional message in an alert box, and open the plug-in editor at the line of code

reached.

You can also use ExitPlugin(), which exits the plug-in cleanly without dropping into the plug-in editor.

Storing and Retrieving Preferences

In Sibelius 4 or later, you can use Preferences.plg, contributed by Hans-Christoph Wirth, to store and retrieve

user-set preferences for your plug-ins.

How Does it Work?

Preferences.plg stores its data in a text file in the user’s application data folder. Strings are accessed as associated

pairs of a key (the name of the string) and a value (the contents of the string). The value can also be an array of

strings, if required.

Chapter 2: Sibelius ManuScript Language Tutorial 34

Initializing the Database

errorcode = Open(pluginname,featureset);

Open the library and lock for exclusive access by the calling plug-in. The calling plug-in is identified with the

string pluginname. It is recommended that this string equals the unique Sibelius menu name of the calling plug-

in.

Parameter featureset is the version of the feature set requested by the calling plug-in. The version of the feature

set is currently 020000. Each library release shows in its initial dialog a list of supported feature sets. The call to

Open() will fail and show a user message if you request an unsupported feature set. If you should want to pre-

vent this user information (and probably setup your own information dialog), use CheckFeatureSet() first.

After Open() the scope is undefined, such that you can access only global variables until the first call to

SwitchScope().

Return value: Open() returns zero or a positive value on success. A negative result indicates that there was a fa-

tal error and the database has not been opened.

• -2 other error

• -1 library does not support requested feature set

• 0 no common preferences database found

• 1 no preferences found for current plug-in

• 2 preferences for current plug-in loaded

In case of errors (e.g. if the database file is unreadable), Open() offers the user an option to recover from the

error condition. Only if this fails too will an error code be returned to the calling plug-in.

errorcode = CheckFeatureSet(featureset);

Check silently if the library supports the requested feature set.

Return value: CheckFeatureSet() returns zero or a positive value on success. A negative value indicates

that the requested feature set is not supported by this version.

errorcode = Close();

Release the exclusive access lock to the library. If there were any changes since the last call to Open() or

Write(), dump the data changes back to disk (probably creating a new score, if there was none present).

Return value: Close() returns zero or a positive value on success. A negative result indicates that there was a

fatal error and the database has not been written.

errorcode = CloseWithoutWrite();

Release the exclusive access lock to the library, discarding any changes performed since last call to Open() or

Write().

Chapter 2: Sibelius ManuScript Language Tutorial 35

Return value:CloseWithoutWrite() returns zero or a positive value on success. A negative result indicates

that there was a fatal error, namely that the database was not open at the moment.

errorcode = Write(dirty);

Force writing the data back to disk immediately. Keep library locked and open. If dirty equals 0, the write only

takes place if the data has been changed. If dirty is positive, the common preferences score is unconditionally

forced to be rewritten from scratch.

Return value: Write() returns zero or a positive value on success. A negative result indicates that there was a

fatal error and the database has not been written.

Accessing Data

index = SetKey(keyname, value);

Store a string value value under the name keyname in the database, overwriting any previously stored keys or ar-

rays of the same keyname.

If keyname has been declared as a local key, the key is stored within the current scope and does not affect similar

keys in other scopes. It is an error to call SetKey() for local keys if the scope is undefined.

Return value: SetKey() returns zero or a positive value on success, and a negative value upon error.

errorcode = SetArray(keyname, array, size);

Store an array array of strings under the name keyname in the database, overwriting any previously stored keys

or arrays of the same keyname. size specifies the number of elements in the array. A size of -1 is replaced with

the natural size of the array, i.e., array.NumChildren.

If keyname has been declared as a local key, the array is stored within the current scope and does not affect sim-

ilar keys in other scopes. It is an error to call SetArray() for local keys if the scope is undefined.

Return value: SetArray() returns zero or a positive value on success, and a negative value upon error.

value = GetKey(keyname);

Retrieve the value of key keyname from the database. It is an error to call GetKey() on an identifier which had

been stored the last time using SetArray(). For local keys, the value is retrieved from the current scope which

must not be undefined.

Return value: The value of the key or Preferences.VOID if no key of that name found.

Chapter 2: Sibelius ManuScript Language Tutorial 36

size = GetArray(keyname, myarray);

Retrieve the string array stored under name keyname from the database. It is an error to call GetArray() on

an identifier which has been stored the last time by SetKey(). For local arrays, the value is retrieved from the

current scope which must not be undefined.

You must ensure before the call that myarray is of ManuScript’s array type (i.e., created with

CreateArray()).

Return value: size equals the number of retrieved elements or -1 if the array was not found. Note that size might

be smaller than myarray.NumChildren, because there is currently no way to reduce the size of an already

defined array.

size = GetListOfIds(myarray);

Fill the array myarray with a list of all known Ids in the current score (or in the global scope, if undefined).

Before you call this method, ensure that myarray is of ManuScript’s array type (i.e. created with

CreateArray()).

Return value: returns the size of the list, which might be smaller than the natural size of the array,

myarray.Numchildren.

index = UnsetId(keyname);

Erase the contents stored with an identifier (there is no distinction between keys and arrays here). If the key is de-

clared as local, it is erased only from the local scope which must not be undefined.

Return value: The return value is zero or positive if the key has been unset. A negative return value means that

a key of that name has not been found (which is not an error condition).

RemoveId(keyname);

Erase all contents stored in the database with an identifier (there is no distinction between keys and arrays here).

If the key is declared as local, it is erased from all local scopes.

Return value: The return value is always zero.

RemoveAllIds();

Erase everything related to the current plug-in.

Return value: the return value is always zero.

Chapter 2: Sibelius ManuScript Language Tutorial 37

Commands for Local Variables

errorcode = DeclareIdAsLocal(keyname);

Declare an identifier as a local key. Subsequent calls to Set... and Get... operations will be performed

in the scope which is set at that time. The local state is stored in the database and can be undone by a call to

DeclareIdAsGlobal or RemoveId.

Return value: Non-negative on success, negative on error.

size = GetListOfLocalIds(myarray);

Fill the array myarray with a list of all Ids declared as local. Before you call this method, ensure that myarray
is of ManuScript’s array type (i.e. created with CreateArray()).

Return value: Returns the size of the list, which might be smaller than the natural size of the array,

myarray.NumChildren.

errorcode = SwitchScope(scopename);

Select scope scopename. If scope scopename has never been selected before, it is newly created and initialized

with no local variables. Subsequent Set... and Get... operations for keys declared as local will be per-

formed in scope scopename, while access to global keys is still possible.

The call SwitchScope("") selects the undefined scope which does not allow access of any local variables.

Return value: Non-negative on success, negative on error.

errorcode = RemoveScope();

Erase all local keys and arrays from the current scope and delete the current scope from the list of known scopes.

It is an error to call RemoveScope() if the current scope is undefined. After the call, the database remains in

the undefined scope.

errorcode = RemoveAllScopes();

Erase all local keys and arrays from all scopes and delete all scopes from the list of known scopes. After the call,

the database remains in the undefined scope. Note that this call does retain the information which Ids are local

(see DeclareIdAsLocal()).

Return value: Non-negative on success.

string = GetCurrentScope();

Retrieve the name of the currently active scope, or the empty string if the database is in undefined scope.

Return value: Returns a string.

Chapter 2: Sibelius ManuScript Language Tutorial 38

size = GetListOfScopes(myarray);

Fill the array myarray with a list of all known scope names. You must ensure before the call that myarray is of

ManuScript’s array type (i.e., created with CreateArray()).

Return value: Returns the size of the list, which might be smaller than the natural size of the array,

myarray.NumChildren.

Miscellaneous

Trace(tracelevel);

Select level of tracing for the library. Useful levels are: 0 for no trace, 10 for sparse trace, 20 for medium trace,

30 for full trace. This command can also be run when the library is not open, to specify the tracing level for the

Open() call itself.

TraceData();

Writes a full dump of the data stored currently in ThisData array to the trace window. This is the full data be-

longing to the current plug-in. TraceData() always traces the data, regardless of the current trace level se-

lected.

filename = GetFilename();

Return the full filename of the preferences database (including path).

Editor();

Invoke the interactive plug-in editor. This method must not be called while the database is open. Direct calls to

Editor() from plug-ins are deprecated, since the end-user of your plug-in will probably not expect to be able

to edit (and destroy) the saved preferences of all plug-ins at this stage.

Basic Example

Suppose you have a plug-in called myplugin and would like to save some dialog settings in a preferences file

such that these settings are persistent over several Sibelius sessions and computer reboots. Your dialog may con-

tain two checkboxes and a list box. Let DialogDontAskAgain and DialogSpeedMode be the global vari-

ables holding the status of the checkboxes, respectively, and let DialogJobList hold the contents of the list

box item.

Chapter 2: Sibelius ManuScript Language Tutorial 39

The work with the database can be reduced to four steps:

1 Open the database and retrieve initial data. At begin of your plug-in, e.g. right at top of your Run() method,

you have to add some code to initialize the database. You probably also want to initialize your global keys

based on the information currently stored in the database. See below for a detailed example. (Depending on

your program, you might have to define prefOpen as a global variable in order to prevent trying to access

an unopened database in future.)

// At first define hard coded plug-in defaults, in case that the
plug-in
// is called for the first time. If anything else fails, these
defaults
// will be in effect.
DialogDontAskAgain = 0;
DialogSpeedMode = 0;
DialogJobList = CreateArray();
DialogJobList[0] = "first job";
DialogJobList[1] = "second job";
// Attempt to open the database
prefOpen = Preferences.Open("myplugin", "020000");
if(prefOpen >= 0) {

// Database successfully opened. So we can try to load the
// information stored last time.
// It’s a good idea to work with a private version scheme, in

order
// to avoid problems in the future when the plug-in is developed
// further, but the database still contains the old keys. In our
// example, we propose that the above mentioned keys are present
// if "version" key is present and has a value of "1".
version = Preferences.GetKey("Version");
switch(version) {

case("1") {
// Now overwrite the above set defaults with the information

stored
// in the database.
DialogDontAskAgain = Preferences.Getkey("DontAskAgain");
DialogSpeedMode = Preferences.Getkey("SpeedMode");
Preferences.GetArray("JobList", DialogJobList);
}

default {
// handle other versions/unset version gracefully here ...
}

}
}

2 Work with the data. After the initialization step, you can and should work with global variables

DialogDontAskAgain, DialogSpeedMode, and DialogJobList as you are used to: read from

Chapter 2: Sibelius ManuScript Language Tutorial 40

them to base control flow decisions on their setting, write to them (mostly from within your own dialogs) to

set new user preferences.

3 Write data back to the database. To make any changes persistent, you must tell the database the new values to

be written to the hard disk. See below for a detailed example. According to taste, you can execute these lines

each time the settings are changed, or only once, at the end of your plug-in.

if(prefOpen >= 0) {
Preferences.SetKey("Version", "1");
Preferences.SetKey("DontAskAgain", DialogDontAskAgain);
Preferences.SetKey("SpeedMode", DialogSpeedMode);
Preferences.SetArray("JobList", DialogJobList, -1);

}

4 Close the database. In any case, you must release the lock to the library on exit of your plug-in. This writes

data actually back to disk, and enables other plug-ins to access the shared database later. To do this, use:

Preferences.Close();

Chapter 3: Reference 41

Chapter 3: Reference

Syntax
Here is an informal run-down of the syntax of ManuScript.

A method consists of a list of statements of the following kinds:

Block

{statements }

for example:

{
a = 4;

}

While

while { expression } block
for example:

while (i < 3) {
Sibelius.MessageBox(i);
i = i + 1;

}

Chapter 3: Reference 42

Switch

switch (test-expression) {
 case (case-expression-1) block
 [case (case-expression-2) block]
 …
 [default block]
The switch statement consists of a “test” expression, multiple case statements and an optional

default statement. If the value of test-expression matches one of the case-expressions, then the

statement block following the matching case statement will be executed. If none of the case state-

ments match, then the statement block following the default statement will be executed. For

example:

switch (note.Accidental) {
case (DoubleSharp) {

Sibelius.MessageBox("Double sharp");
}
case (DoubleFlat) {

Sibelius.MessageBox("Double flat");
}
default {

Sibelius.MessageBox("No double");
}

}

if else

if (expression) block [else block]
for example:

if (found) {
Application.ShowFindResults(found);

} else {
Application.NotFindResults();

}

for each

for each variable in expression block
This sets variable to each of the sub-objects within the object given by the expression.

Normally there is only one type of sub-object that the object can contain. For instance, a Note

Rest (such as a chord) can only contain Note objects. However, if more than one type of sub-

object is possible you can specify the type:

for each Type variable in expression
block
for example:

for each NoteRest n in thisstaff {
n.AddNote(60); // add middle C

}

Chapter 3: Reference 43

Expressions
Here are the operators, literals and other beasts you’re allowed in expressions.

for

for variable = value to value [step value]
block
The variable is stepped from the first value up to or down to the end value by the step value. It

stops one step before the final value.

So, for example:

for x=1 to note.NoteCount {
...

}

works correctly.

assignment

variable = expression;
for example:

value = value + 1;

or

variable.variable = expression;
for example:

Question.CurrentAnswer=True;

method call

variable.identifier(comma-separated expressions);
for example:

thisbar.AddText(0,"Mozart","text.system.composer");

self method

call

identifier(comma-separated expressions);
Calls a method in this plug-in, for example:

CheckIntervals();

return

return expression;
Returns a value from a plug-in method, given by the expression. If a method doesn’t contain a

return statement, then a “null” value is returned (either the number zero, an empty string, or

the null object described below).

Self

This is a keyword referring to the plug-in owning the method. You can pass yourself

to other methods, for example:

other.Introduce(Self);

null This is a literal object meaning “nothing.”

Identifier
This is the name of a variable or method (letters, digits or underscore, not starting with

a digit) you can precede the identifier with@ to provide indirection; the identifier is then

taken to be a string variable whose value is used as the name of a variable or method.

member variable
variable.variable
This accesses a variable in another object.

Chapter 3: Reference 44

integer
for example:

. 1, 100, -1

floating point number
for example:

1.5, 3.15, -1.8

string

Text in double quotes, for example: “some text.” For strings that are rendered by

Sibelius as part of the score, i.e. the contents of some text object, there is a small but

useful formatting language allowing one to specify how the text should appear. These

“styled strings” contain commands to control the text style. All commands start and

end with a backslash (\) The full list of available styling commands is as follows:

\n\ New paragraph

\N\ New line

\B\ Bold on

\b\ Bold off

\I\ Italic on

\i\ Italic off

\U\ Underline on

\u\ Underline off

\fArial Black\ Font change to Arial Black (for example)

\ctext.character.musictext\
Character style change to Music text (for example)

\f_\ Font change to text style’s default font, including removing

any active character styles

\s123\ Size change to 123 (units are 1/32nds of a space, not points)

\v\ Vertical scale in percent

\h\ Horizontal scale in percent

\t\ Tracking (absolute) in 1/32nds of a space

\p\ Baseline adjustment: use normal, sub (for subscript) or
super (for superscript)
\$keyword\ Substitutes a string from the Score Info dialog (see below)

A consequence of this syntax is that backslashes themselves are represented by \\,

to avoid conflicting with the above commands.

The substitution command \$keyword\ supports the following keywords:

Title, Composer, Arranger, Lyricist, MoreInfo, Artist, Copy-
right, Publisher and PartName.

Each of these correspond to a field in the File > Score Info dialog.

not

not expression
Logically negates an expression, for example:

not (x=0)

and

expression and expression
Logical and, for example:

FoxFound and BadgerFound

or

expression or expression
Logical or, for example:

FoxFound or BadgerFound

equality

expression = expression
Equality test, for example:

Name="Clock"

Chapter 3: Reference 45

Operators

Condition Operators
You can put any expressions in parentheses after an if or while statement, but typically they will contain con-

ditions such as = and <. The available conditions are very simple:
a = b equals (for numbers, text or objects)

a < b less than (for numbers)

a > b greater than (for numbers)

c and d both are true

c or d either are true

not c inverts a condition, e.g. not(x=4)
<= less than or equal to

>= greater than or equal to

!= not equal to

Use = to compare for equality, not == as found in C/C++ and Java.

subtract

expression – expression
Subtraction, for example:

12-1

add

expression + expression
Addition, for example:

12+1

minus

–expression
Inversion, for example:

-1

concatenation

expression & expression
Add two strings, for example:

Name = "Fred" & "Bloggs"; // ‘Fred Bloggs’

You can’t use+ as this would attempt to add two numbers, and sometimes succeed (!).

For instance:

x = "2" + "2"; // same as x = 4

subexpression

(expression)
For grouping expressions and enforcing precedence, e.g.

(4+1)*5

method call

variable.identifier(comma-separated expressions);
for example:

x = monkey.CountBananas();

self method call

Identifier(comma-separated expressions);
Calls a method in this plug-in, for example:

x = CountBananas();

Chapter 3: Reference 46

Arithmetic
a + b add

a - b subtract

a * b multiply

a / b divide

a % b remainder

-a negate

(a) evaluate first

ManuScript will evaluate expressions from left to right, so that 2+3*4 is 20, not 14 as you might expect. To

avoid problems with evaluation order, use parentheses to make the order of evaluation explicit. To get the answer

14, you’d have to write 2+(3*4).

ManuScript also now supports floating point numbers, so whereas in previous versions 3/2 would work out as

1, it now evaluates to 1.5. Conversion from floating point numbers to integers is achieved with the

RoundUp(expr),RoundDown(expr) and Round(expr)functions, which can be applied to any expression.

Chapter 4: Object Reference 47

Chapter 4: Object Reference

Hierarchy of Objects

Sibelius object

Score

Stave (including the SystemStave)Selection

Bar

Text, Clef, Line, TimeSignature, KeySignature,

Highlight, Lyric, Barline, Tuplet, GuitarFrame,

GuitarScaleDiagram, Comment,

NoteRest (these are all BarObjects)

Note (in NoteRests only)

VersionHistory

Version

VersionComment

DynamicPartCollection

DynamicPart

EngravingRules

NoteSpacingRule

Chapter 4: Object Reference 48

All Objects

Methods
AddToPluginsMenu("menu text","function name")

Adds a new menu item to the Plug-ins menu. When the menu item is selected the given function is called. This

is normally only used by plug-ins themselves. This method may only be called once per plug-in (that is each

plug-in may only add one item to the Plug-ins menu); subsequent method calls will be ignored.

Asc(expression)

Returns the ASCII value of a given character (the expression should be a string of length 1).

CharAt(expression,position)

Returns the character from the expression at the given (zero-based) position, for example CharAt("Po-
tato",3) would give “a.”

Chr(expression

Returns a character (as a string) with the given ASCII value. This can be used for inserting double quotes (") into

strings with Chr(34).

CreateArray()

Returns a new array object.

CreateHash()

Returns a new hash-table object.

GetValidationError(object)

Returns the validation error, if any, of the specified object. Useful to pass validation errors to the plug-in trace

window.

ExitPlugin()

Exits the plug-in cleanly without dropping into the plug-in editor

IsObject(expression)

Returns 1 (or True) if expression evaluates to an object rather than a null, boolean, string, or any number.

(Not to be confused with the IsPassage variable of Selection objects!)

IsValid(object)

Returns 1 (or True) if the object is valid, returns 0 (or False) if the object no longer exists (that is has been

deleted).

Chapter 4: Object Reference 49

JoinStrings(expression, delimiter)

Joins together (concatenates) an array of strings into a single string, separated by the string delimiter.

Length(expression)

Gives the number of characters in the value of the expression.

Round(expression)

Returns the nearest integer to the value of the expression, for example Round(1.5) would be “2” and

Round(1.3) would be “1.”

RoundDown(expression)

Returns the nearest integer less than the value of the expression, for example RoundDown(1.5)would be “1.”

RoundUp(expression)

Returns the nearest integer greater than the value of the expression, for example RoundUp(1.5)would be “2.”

SplitString(expression,[delimiter,][trimEmpty])

Splits a string into an array of strings, using the given delimiter. The delimiter can be a single character or a string

containing several characters – for instance ".," would treat either a comma or full stop as a delimiter. The de-

fault delimiter is the space character. If the trimEmpty parameter isTrue then this will ignore multiple delimiters

(which would otherwise produce some empty strings in the array). The default value of trimEmpty is False.

s=':a:b:c';
bits=SplitString(s,':', false);
// bits[0] = ''; bits[1] = 'a'; bits[2] = 'b' ...
s='a b c';
bits=SplitString(s,' ', true);
// bits[0] = 'a'; bits[1]='b' ...

StopPlugin([message])

Stops the plug-in, and shows the optional message in an alert box. Opens the plug-in editor at the line of code

reached.

Substring(expression,start,[length])

This returns a substring of the expression starting from the given start position (zero-based) up to the end of the

expression, for example Substring("Potato",2) would give “tato”. When used with the optional length

parameter, Substring returns a substring of the of the expression starting from the given start position (zero-

based) of the given length, for example Substring("Potato",2,2) would give “ta”.

Trace(expression)

Sends a piece of text to be shown in the plug-in trace window, for example Trace("Here's a trace");

Chapter 4: Object Reference 50

ValidationChecking(enable[, object1[, object2]...])

If enable is the only parameter, validation checking is enabled for all types of objects, and across all plug-ins. If

you supply one or more object parameters (such as Tuplet, Score, BarObject, and so on), only those ob-

jects will be checked, and only in the currently running plug-in. You should ensure ValidationChecking
is set to false before you give your plug-ins to anybody else to use.

User Properties
All objects (except for the Sibelius object, old-style ManuScript arrays created using CreateArray(),

old-style ManuScript hashes created using CreateHash(), and null) can also have user properties assigned

to them.

Accessibility
Accessed from the Sibelius object.

Methods
None.

Variables
ScoreDescription

Returns true if Sibelius’s built-in score description functionality is enabled (read/write).

Bar
A Bar contains BarObject objects.

for each variable in produces the BarObjects in the bar

for each type variable in produces the BarObjects of the specified type in the bar

Methods
AddBarNumber(new bar number[,format[,extra_text[,prepend[,skip this bar]]]])

Adds a bar number change to the start of this bar. new bar number should be the desired external bar number. The

optional format parameter takes one of the three pre-defined constants that define the bar number format; see

“Global Constants” on page 156. The optional extra_text parameter takes a string that will be added after the nu-

meric part of the bar number, unless the optional boolean parameter prepend is True, in which case the extra_-
text is added before the numeric part of the bar number. If the optional skip this bar parameter is True, the bar

number change is created with the Don’t increment bar number option set. Returns the BarNumber object cre-

ated.

Chapter 4: Object Reference 51

AddChordSymbolFromPitches(position,pitches[,instrument style])

Adds a chord symbol from the given array of pitches at the specified position. The optional instrument style pa-

rameter operates the same as in the AddGuitarFrame method (see above). If the method is unable to create a

chord symbol, the method returns null; otherwise it returns the GuitarFrame object created.

AddClef(pos,concert pitch clef[,transposed pitch clef])

Adds a clef to the staff at the specified position. concert pitch clef determines the clef style when Notes > Trans-

posing Score is switched off; the optional transposed pitch clef parameter determines the clef style when this

is switched on. Clef styles should be an identifier like “clef.treble”; for a complete list of available clef styles, see

“Clef Styles” on page 164. Alternatively you can give the name of a clef style, such as “Treble,” but bear in mind

that this may not work in non-English versions of Sibelius. Returns the Clef object created.

AddComment(sr,text[,color[,maximized]])

Adds a comment at the specified sr position in the current bar, displaying the specified text. The optional color
parameter allows you to specify the color of the comment that is created (if not specified, the comment is created

with its default color), and the optional maximized Boolean parameter allows you to set the comment to be min-

imized (if not specified, the comment is created maximized by default). If you want to specify the maximized pa-

rameter without specifying a particular color, set color to -1.

AddCommentWithName(sr,text,username[,color[,maximized]])

Adds a comment that will display a given username at the specified sr position in the current bar, displaying the

specified text. The optional color parameter allows you to specify the color of the comment that is created (if not

specified, the comment is created with its default color), and the optional maximized Boolean parameter allows

you to set the comment to be minimized (if not specified, the comment is created maximized by default). If you

want to specify the maximized parameter without specifying a particular color, set color to -1.

AddGraphic(file name,pos[,below staff[,x displacement[,y displacement[,size ratio]]]])

Adds a graphic above or below the bar at a given position. If below staff is True, Sibelius will position the

graphic below the staff to which it is attached, otherwise it will go above (the default). You may additionally dis-

place the graphic from its default position by specifying x- and y displacements. These should be expressed in

millimeters, the latter defining an offset from the top or bottom line of the staff, as appropriate. By default, the

graphic will be created 5mm away from the staff. To adjust the size of the graphic, you may set a floating point

number for its size ratio. When set to 1.0 (the default), the graphic will be created with a height equal to that of

the staff to which it is attached. A value of 0.5 would therefore halve its size, and 2.0 double it. The graphic may

be rescaled to a maximum of five times the height of its parent staff. This function returns True if successful, oth-

erwise False.

AddGraphicToBlankPage(file name,nth page,x offset,y offset[,size ratio])

Adds a graphic to a blank page belonging to the current bar. nth page specifies the particular blank page you

would like the graphic to, starting from 1. The x offset and y offset parameters are floating point values relative

to the size of the page the graphic is being added to. For example, an x offset of 0.0 would position the graphic

at the very left of the page; 0.5 in the centre. You may specify the size of the graphic by specifying a value for

size ratio. This defaults to 1.0, which has the same effect as creating a graphic in Sibelius manually using Create

> Graphic. (As with AddGraphic, 0.5 would halve its size, and 2.0 double it.) The graphic may be rescaled

to a maximum of five times its intial size. This function returns True if successful, otherwise False.

Chapter 4: Object Reference 52

AddGuitarFrame(position,chord name[,instrument style[,fingerings])

Adds a chord symbol for the given chord name to the bar. The optional instrument style parameter should refer

to an existing instrument type that uses tab, and should be specified by identifier; see “Instrument Types” on

page 165. If instrument style is not specified, Sibelius will create a chord symbol that will optionally display a

chord diagram using the default tab tuning associated with the instrument type used by the staff to which the

chord symbol will be attached. The position is in 1/256th quarters from the start of the bar. The optional finger-
ings parameter gives the fingerings string to display above (or below) the guitar frame, if supplied. If the method

is unable to create a chord symbol, the method returns null; otherwise it returns the GuitarFrame object created.

AddInstrumentChange(pos,styleID[,add_clef[,show_text[,text_label[,show_warning[,warning_la-
bel,
[full_instrument_name[, short_instrument_name]]]]]])

Adds an instrument change to the bar at the specified position. styleID is the string representing the instrument

type to change to (see “Instrument Types” on page 165 for a list). The optional boolean parameter add_clef,
True if not specified, determines whether Sibelius will add a clef change at the same position as the instrument

change if required (that is if the clef of the new instrument is different to that of the existing instrument). show_-
text is an optional boolean parameter, True if not specified, determining whether or not the text label attached

to the instrument change should be created shown (the default) or hidden. text_label is an optional string param-

eter; if specified, Sibelius will use this string instead of the default string (the new instrument’s long name).

show_warning is an optional boolean parameter, True if not specified, determining whether or not Sibelius

should create a text object (using the Instrument change staff text style) above the last note preceding the instru-

ment change, announcing the instrument change and giving the player time to pick up the new instrument. warn-
ing_label is an optional string parameter; if specified, Sibelius will use this string instead of the default string (the

word “To” followed by the new instrument’s short name). You can also override the names Sibelius will give the

instruments on subsequent systems. If a null string is passed to either full_instrument_name or short_instru-
ment_name (or if the arguments are omited), the instrument names will remain unchanged. Returns the Instru-

mentChange object created.

AddKeySignatureFromText(pos,key name,major key[,add double barline[,hidden[,one staff
only]]])

Adds a key signature to the bar. The key signature is specified by text name, such as “Cb” or “C#”. The third pa-

rameter is a Boolean flag indicating if the key is major (or minor). Unless the fourth parameter is set to False,

a double barline will ordinarily be created alongside the key signature change. You may additionally hide the key

signature change by setting hidden to True, and make the change of key appear on the bar’s parent staff only

with the one staff only flag. Returns the key signature object created.

AddKeySignature(pos,num sharps,major key[,add double barline[,hidden[,one staff only]]])

Adds a key signature to the bar. The key signature is specified by number of sharps (+1 to +7), flats (–1 to –7),

no accidentals (0) or atonal (-8). The third parameter is a Boolean flag indicating if the key is major (or minor).

Unless the fourth parameter is set to False, a double barline will ordinarily be created alongside the key signa-

ture change. You may additionally hide the key signature change by setting hidden to True, and make the

change of key appear on the bar’s parent staff only with the one staff only flag. Returns the key signature object

created.

Chapter 4: Object Reference 53

AddLine(pos,duration,line style[,dx[,dy[,voicenumber[,hidden]]]])

Adds a line to the bar. The line style can be an identifier such as “line.staff.hairpin.crescendo” or a name, such

as “Crescendo”. For a complete list of line style identifiers that can be used in any Sibelius score, see “Line

Styles” on page 160. Style identifiers are to be preferred to named line styles as they will work across all lan-

guage versions of Sibelius. Returns the Line object created, which may be one of a number of types depending

on the Line style used.

AddLiveTempoTapPoint(position)

Adds a Live Tempo tap point at the rhythmic position specified by position, in 1/256th quarters from the start of

the bar.

AddLyric(position,duration,text[,syllable type [,number of notes,voicenum]]])

This method adds a lyric to the bar. The position is in 1/256th quarters from the start of the bar, and the duration

is in 1/256th quarter units. The two optional parameters allow you to specify whether the lyric is at the end of a

word (value is “1”, and is the normal value) or at the start or middle of a word (value is “0”), and how many notes

the lyric extends beneath (default value 1). You can also optionally specify the voice in which the lyric should

be created; if voicenum is 0 or not specified, the lyric is created in all voices. Returns the LyricItem object cre-

ated.

AddNote(pos,sounding pitch,duration,[tied [,voice[,diatonic pitch[,string number]]]])

Adds a note to staff, adding to an existing NoteRest if already at this position (in which case the duration is ig-

nored); otherwise creates a new NoteRest. Will add a new bar if necessary at the end of the staff. The position is

in 1/256th quarters from the start of the bar. The optional tied parameter should be True if you want the note to

be tied. Voice 1 is assumed unless the optional voice parameter (with a value of 1, 2, 3 or 4) is specified. You can

also set the diatonic pitch, that is the number of the “note name” to which this note corresponds, 7 per octave (35

= middle C, 36 = D, 37 = E and so on). If a diatonic pitch of zero is given, a suitable diatonic pitch will be cal-

culated from the MIDI pitch. The optional string number parameter gives a string number for this note, which is

only meaningful if the note is on a tablature stave. If this parameter is not supplied then a default string number

is calculated based on the current tablature stave type and the guitar tab fingering options (specified on the Notes

page of File > Preferences). Returns the Note object created (to get the NoteRest containing the note, use

Note.ParentNoteRest).

AddPageNumber([blank page offset])

Creates and returns a page number change at the end of the bar. Due to the nature of adding a page number

change, a page break will also be created at the end of the bar. Therefore, the page number change will actually

be placed at the start of the next bar. The desired properties of the page number change can be set by calling the

appropriate methods on the Page Number Change object returned.

The blank page offset flag allows you to create page number changes on blank pages. If a bar object is followed

by one or more blank pages, each blank page may also have a page number change of its own. If unspecified, the

page number change will be created on the next available page (whether it contains music or not) after the bar,

otherwise the user may specify a 1-based offset which refers to the nth blank page after the bar itself.

Chapter 4: Object Reference 54

AddPageNumberAtStartOfBar()

Creates and returns a page number change at the start of the bar. This is useful for adding a page number change

at the very start of the score, that is to change the initial page number, by using this method on the first bar of the

score. If used on a bar later in the score, it will create the page number change at the end of the previous bar, but

unlike the AddPageNumber method, it will not force a page break, so in general the AddPageNumber
method is recommended.

AddRehearsalMark([consecutive[,mark[,new prefix and suffix[,prefix[,suffx[,override defaults]]]]])

Adds a rehearsal mark above the bar. If no parameters have been specified, the rehearsal mark will inherit the

properties of the previous rehearsal mark in the score, incrementing accordingly. Optionally, the appearance of

the rehearsal mark may be overriden. If consecutive is False, Sibelius will not continue the numbering of the

new rehearsal marks consecutively, but allow the user to set a new mark. A mark may be expressed as a number

of a string. For example both 5 and “e” are both valid and equivalent values. If new prefix and suffix is True, the

values set for prefix and suffix will be applied to the new rehearsal mark. The final parameter, override defaults,

is a Boolean defaulting to False whose purpose it is to mimic the behavior of the option with the same name in

the Rehearsal Mark dialog in Sibelius.

AddSpecialBarline(barline type[,pos])

Adds a special barline to a given position in a bar; see “Global Constants” on page 156. If no position has been

specified, start repeat barlines will snap to the start of the bar by default. All other special barline types will snap

to the end.

AddSymbol(pos,symbol index or name)

Adds a symbol to the bar at the specified position. If the second parameter is a number, this is taken to be an

index into the global list of symbols, corresponding to the symbol’s position in the Create > Symbol dialog in

Sibelius (counting left-to-right, top-to-bottom from zero in the top-left hand corner). Some useful symbols

have pre-defined constants; see “Global Constants” on page 156. There are also constants defined for the start of

each group in the Create > Symbol dialog, so that to access the 8va symbol, for example, you can use the index

OctaveSymbols + 2.

It’s better to use indices rather than names, because the names will be different across the various language ver-

sions of Sibelius. Returns the Symbol object created, or null if no symbol can be added to the score.

AddText(pos,text,style[,voicenum])

Adds the text at the given position, using the given text style. A staff text style must be used for a normal staff,

and a system text style for a system staff. The styles should be an identifier of the form “text.staff.expression”;

for a complete list of text styles present in all scores, see “Text Styles” on page 158. Alternatively you can give

the name of a text style, eg. “Expression”, but be aware that this may not work in non-English versions of Sibel-

ius. You can also optionally specify the voice in which the lyric should be created; if voicenum is 0 or not spec-

ified, the text object is created in all voices. Returns the Text object created.

AddTextToBlankPage(xPos,yPos,text,style,pageOffset)

Adds the text at the given position, using the given text style. A blank page text style must be used; you cannot

add staff text or system text to a blank page. style takes a style ID, using the form “text.blankpage.title”; for a

complete list of text styles present in all scores, see “Text Styles” on page 158. xPos and yPos are the absolute

Chapter 4: Object Reference 55

position on the page. pageOffset takes a positive number for a blank page following a special page break (the first

blank page is 1), and negative for a blank page preceding the first bar of the score (the blank page immediately

before the first bar is -1, the one before that -2, and so on). Returns the Text object created.

To add text to a blank page, first create the special page break using the Bar.BreakType variable, and set the

number of blank pages using Bar.NumBlankPages or Bar.NumBlankPagesBefore. Then use

Bar.AddTextToBlankPage.

AddTimeSignature(top,bottom,allow cautionary,rewrite music[,use symbol])

Returns an error string (which will be empty if there was no error) which if not empty should be shown to the

user. The first two parameters are the top and bottom of the new time signature. The third tells Sibelius whether

to display cautionary time signatures from this time signature. If rewrite music is True then all the bars after the

inserted the time signature will be rewritten. You can also create common time and alla breve time signatures. If

you’re creating a time signature in 4/4 or 2/2, set use symbol to True and Sibelius will replace the numbers of the

time signature with their symbolic equivalent.

AddTimeSignatureReturnObject(top,bottom,allow cautionary,rewrite music[,use symbol])

As above, but returns the time signature object created, or null if unsuccessful.

AddTuplet(pos,voice,left, right, unit[, style[, bracket[, fullDuration]]])

Adds a tuplet to a bar at a given position. The left and right parameters specify the ratio of the tuplet, for example

3 (left) in the time of 2 (right). The unit parameter specifies the note value (in 1/256th quarters) on which the tu-

plet should be based. For example, if you wish to create an eighth note (quaver) triplet group, you would use the

value 128. The optional style and bracket parameters take one of the pre-defined constants that affect the visual

appearance of the created tuplet; see “Global Constants” on page 156. If fullDuration is true, the bracket of the

tuplet will span the entire duration of the tuplet. Returns the Tuplet object created.

N.B.: If AddTuplet() has been given illegal parameters, it will not be able to create a valid Tuplet object.

Therefore, you should test for inequality of the returned Tuplet object with null before attempting to use it.

Bar[array element]

Returns the nth item in the bar (counting from 0) for example Bar[0]

Clear([voice number])

Clears a bar of all its items, leaving only a bar rest. If a particular voice number is specified, only the items in that

voice will be removed.

ClearNotesAndModifiers([voice number])

Clears a bar of all its notes, rests, tuplets and slurs, replacing them with a single bar rest. If a particular voice num-

ber is specified, only the items in that voice will be removed.

Delete()

Deletes and removes an entire bar from a score. This, by definition, will affect all the staves in the score.

Chapter 4: Object Reference 56

DeletePageNumber([blank page offset])

Deletes the page number change at the end of the bar, or if there are one or more blank pages after the bar, any

page number change that occurs on any of those blank pages. If blank page offset is unspecified, the page number

change on the first page after the bar will be deleted.

GetClefAt(pos)

Returns a Clef object corresponding to the current clef at the specified rhythmic position.

GetKeySignatureAt(pos)

Returns a KeySignature object corresponding to the current clef at the specified rhythmic position.

GetInstrumentTypeAt(pos)

Returns an InstrumentType object representing the instrument type used by the bar at the specified rhythmic po-

sition.

GetPageNumber([blank page offset])

Returns the page number change object at the end of the bar, or if the bar contains no page number change, null.

As with AddPageNumber, you may get the page number change from any of the blank pages that follow the

bar by specifying a valid blank page offset.

InsertBarRest(voice number[,rest type])

Inserts a bar rest into the bar, but only if the bar is void of any NoteRests (or an existing bar rest) using the same

voice number. The optional rest type parameter allows you to specify the type of bar rest or repeat bar to be cre-

ated, defined by the constants WholeBarRest (the default if rest type is not specified), BreveBarRest,

OneBarRepeat, TwoBarRepeat and FourBarRepeat. Returns True if successful.

NthBarObject(n)

Returns the nth object in the bar, counting from 0.

RemoveLiveTempoTapPoint(position)

Removes a Live Tempo tap point at the rhythmic position specified by position, in 1/256th quarters from the start

of the bar.

ResetSpaceAroundBar(above,below

)Does the equivalent of Layout > Reset Space Above Staff and/or Reset Space Below Staff for the given

bar. Set above to True to reset the space above the staff, and below to True to reset the space below the staff.

Respace()

Respaces the notes in this bar.

Chapter 4: Object Reference 57

Variables
BarNumber

The bar number of this bar. This is the internal bar number, which always runs consecutively from 1 (read only).

BarObjectCount

The number of objects in the bar (read only).

BreakType

The break at the end of this bar, given by the constants MiddleOfSystem, EndOfSystem, MiddleOf-
Page, EndOfPage, NotEndOfSystem, EndOfSystemOrPage or SpecialPageBreak. To learn the

correspondence between these constants and the menu in the Bars panel of the Properties window, see the dis-

cussion in “Global Constants” on page 156.

When you set the break at the end of a bar to be SpecialPageBreak, Sibelius will add one blank page after

the break. You can then adjust the number of pages by setting the value of either Bar.NumBlankPages or

Bar.NumBlankPagesBefore, or tell Sibelius to restart the music on the next left or right page with

Bar.MusicRestartsOnPage.

ExternalBarNumber

This has been deprecated as of Sibelius 5, because it can only return a number, and bar numbers that appear in

the score may now include text. Use ExternalBarNumberString instead, which returns the external bar

number of this bar, taking into account bar number changes in the score (read only). Note that you cannot pass

this bar number to any of the other ManuScript accessors; they all operate with the internal bar number instead.

ExternalBarNumberString

The external bar number of this bar as a string, taking into account bar number changes and bar number format

changes (read only). Note that you cannot pass this bar number to any of the other ManuScript accessors; they

all operate with the internal bar number instead.

GapAfter

Sets the gap (in spaces) after the bar (read/write)

GapBefore

Sets the gap (in spaces) before the bar (read/write).

InMultirest

Returns one of four global constants describing if and/or where the bar falls in a multirest (read only). The con-

stants are NoMultirest, StartsMultirest, EndsMultirest and MidMultirest; see “Global Constants” on page 156.

Length

The rhythmic length (read only).

Chapter 4: Object Reference 58

MusicRestartsOnPage

Tells Sibelius to restart the music on the next left or right page after a special page break, and can only be set if

BreakType is SpecialPageBreak. This variable may be set to only two of the global special page break

constants: MusicRestartsOnNextLeftPage or MusicRestartsOnNextRightPage (write only).

NthBarInSystem

Returns the position of the bar in the system, relative to the first bar on the system (bar 0) (read only).

NumBlankPages

The number of blank pages following the bar containing a special page break.

NumBlankPagesBefore

The number of blank pages preceding the bar containing a special page break. This value only has an effect if a

special page break exists in bar 1.

OnHiddenStave

Returns True if the bar is currently hidden by way of Hide Empty Staves (read only).

OnNthPage

Returns the zero-based page number on which the bar occurs in the current part (read only).

OnNthPageExternal

Returns a string containing the external page number (which is the page number displayed in the score) of the

page in which the bar occurs.

OnNthSystem

Returns the zero-based system number (relative to its parent page) in which the bar occurs (read only).

ParentStaff

The staff containing this bar (read only).

SectionEnd

Corresponds to the Section end checkbox on the Bars panel of Properties (read/write).

Selected

Returns True if the entire bar is currently selected (read only).

SpecialPageBreakType

Returns the type of the special page break; see the documentation for the Special page break types in “Global

Constants” on page 156 (read only).

Chapter 4: Object Reference 59

SplitMultirest

When True, a multirest intersecting the bar in question will be split (read/write).

Time

The time at which the bar starts in the score in milliseconds (read only).

Barline
Accessed from a Barlines object.

Methods
None.

Variables

BottomStave

Returns the Staff object at which the barline ends, relative to the current part.

BottomStaveNum

Returns the number of the bottom staff included in the barline, relative to the current part.

TopStave

Returns the Staff object at which the barline starts, relative to the current part.

TopStaveNum

Returns the number of the top staff included in the barline, relative to the current part.

Barlines
Accessed from a Score bject. Corresponds to the barline groupings in the score.

for each barline in iterates through all the barlines in the list, for example:

s = Sibelius.ActiveScore;
barlines = s.Barlines;
for each barline in barlines {
 // do something with barlines here
}

Array access [int n] returns the nth barline in the list, or null if the barline does not exist.

Chapter 4: Object Reference 60

Methods
AddBarline(top staff number, bottom staff number)

Creates a new bar line inclusively spanning the staff numbers (relative to the current part) supplied. Returns the

new Barline object created, or null if it fails.

ClearAll()

Removes all the barlines from the score.

DeleteNthBarline(index)

Removes a given barline identified by index from the score.

Variables
NumChildren

Returns the number of unique barlines in the score (read only).

BarObject
BarObjects include Clef, Line, NoteRest & Text objects. All the methods and variables below apply to all spe-

cific types of BarObject—they are listed here instead of separately for each type. (To object-oriented program-

mers, the NoteRest, Clef and those types are derived from the base class BarObject.)

Methods
Delete()

Deletes an item from the score. This will completely remove text objects, clefs, lines and so on from the score;

however, when a NoteRest is deleted, it will be converted into a rest of similar duration. To delete multiple items

from a bar, see “Deleting Multiple Objects from a Bar” on page 64.

Deselect()

Removes the object from the selection list of the parent score. If the selection is currently a passage selection, it

is first changed to a multiple selection before the object is deselected. Returns True if the object is successfully

removed from the selection.

FreezeMagneticLayoutPositions()

Does the same as selecting an object and choosing Layout > Freeze Magnetic Layout Positions, that explic-

itly sets the object’s Dx/Dy to the position produced by Magnetic Layout, then disables Magnetic Layout for that

object.

GetIsInVoice(voicenum)

Returns True if the object is in the voicenum specified.

Chapter 4: Object Reference 61

GetPlayedOnNthPass(n)

Returns True if the object is set to play back the nth time.

NextItem([voice[, item type]])

Returns the next item in the parent bar of the current item, or null if no item exists. If no arguments have been

supplied, the very next item in the bar will be returned, regardless of its voice number and item type. You may

additionally specify the voice number of the object you’re looking for (1 to 4, or 0 for any voice number), and

the item’s type. Note that an item will only be returned if it exists in the same bar as the source item. By way of

example, to find the next crescendo line in voice 2, you would type something along the lines of: hairpin =
item.NextItem(2, “CrescendoLine”);

PreviousItem([voice[, item type]])

As above, but searches backwards.

RemoveVoice(voicenum)

Removes the object from the specified voicenum, leaving the object in all remaining voices.

ResetPosition([horizontal[, vertical]])

Performs Layout > Reset Position on the object. If you supply no parameters, this method will reset both the

horizontal and vertical position of the object. If either or both of the optional Boolean parameters horizontal or

vertical is set to True, you can reset the position of the object either horizontally or vertically independently if

required.

ResetDesign()

Performs Layout > Reset Design on the object.

Select()

Appends the object to the selection list of the parent score. A multiple selection consiting of any number of in-

dividual objects can be built up by repeatedly calling Select on each object you wish to add to the list. Note

that calling Select on a BarObject will first clear any existing passage selection.

SetAllVoices()

Sets the object to be in all voices. This has no effect on some types of object, such as NoteRests.

SetVoice(voicenum[,clear other voices])

Sets the object to be in voice voicenum, optionally removing the object from all other voices if the Boolean pa-

rameter clear other voices is True.

ShowInAll()

Shows the object in the full score, and in all relevant parts; equivalent to Edit > Hide or Show > Show In All.

Chapter 4: Object Reference 62

ShowInParts()

Hides the object in the full score, and shows it in all relevant parts; equivalent to Edit > Hide or Show > Show

In Parts.

ShowInScore()

Hides the object in all relevant parts, and shows it in the full score; equivalent to Edit > Hide or Show > Show

In Score.

SetPlayedOnNthPass(n, do play)

Tells Sibelius whether or not the object should play back the nth time.

TimeOnNthPass(n)

Returns the time at which the object occurs in the score in milliseconds on the nth pass through the score, where

n is an integer specifying the pass (specify 1 for the first pass through the score), or returns -1 in the case of an

error (because the specified value of n is out of range).

Variables
CanBeInMultipleVoices

Returns True if the object can be in more than one voice (read-only).

Color

The color of this BarObject (read/write). The color value is in 24-bit RGB format, with bits 0–7 representing

blue, bits 8–15 green, bits 16–23 red and bits 24–31 ignored. Since ManuScript has no bitwise arithmetic, these

values can be a little hard to manipulate; you may find the individual accessors for the red, green and blue com-

ponents to be more useful (see below).

ColorAlpha

The alpha channel component of the color of this BarObject, in the range 0–255 (read/write).

ColorRed

The red component of the color of this BarObject, in the range 0–255 (read/write).

ColorGreen

The green component of the color of this BarObject, in the range 0–255 (read/write).

ColorBlue

The blue component of the color of this BarObject, in the range 0–255 (read/write).

CueSize

True if the object is cue-size in the current part or score, and False if the object is normal size (read/write).

Chapter 4: Object Reference 63

CurrentTempo

Returns the tempo, in bpm, at the location of the object in the score (read only).

DrawOrder

Returns the layer at which the object is currently drawn. When used to set the layer of an object, values from 1
(meaning the bottom layer) to 32 (meaning the highest layer) can be used; 0 is a special value that tells Sibelius

to use the default layer for that type of object (read/write).

Dx

The horizontal graphic offset of the object from the position implied by the Position field, in units of 1/32

spaces (read/write).

Dy

The vertical graphic offset of the object from the centre staff line, in units of 1/32 spaces, positive going upwards

(read/write).

HasCustomDrawOrder

Returns True if the object is set to a layer other than its default layer (read only).

Hidden

True if the object is hidden in the current part or score, and False if the object is shown (read/write).

OnNthBlankPage

Returns 0 if the object occurs on a page of music, otherwise a number from 1 upwards indicating the nth blank

page of the bar on which the object occurs (read only).

ParentBar

The Bar containing this BarObject (read only).

Position

Rhythmic position of the object in the bar (read only).

Selected

Returns True if the object is currently selected (read only).

Time

The time at which the object occurs in the score in milliseconds; if the score contains repeats, this will always re-

turn the time as if for the first pass through the score (read only). Returns -1 in the case of an error.

Type

A string describing the type of object, such as “NoteRest,” “Clef.” This is useful when hunting for a specific type

of object in a bar. See “GuitarScaleDiagram” on page 85 for the possible values (read only).

Chapter 4: Object Reference 64

UsesMagneticLayout

Returns

True if the object is positioned by Magnetic Layout. Returns False if the object is set not to be taken into ac-

count by Magnetic Layout. To set whether or not an object should use Magnetic Layout, use one of the global

constants AlwaysDodge (equivalent to Edit > Magnetic Layout > n), SuppressDodge (Edit  Magnetic

Layout > Off) or DefaultDodge (Edit > Magnetic Layout > Default) (read/write).

UsesMagneticLayoutSettingOverridden

Returns True if the object has had its Magnetic Layout settings overridden; otherwise False.

VoiceNumber

Is 0 if the item belongs to more than one voice (a lot of items belong to more than one voice) and 1 to 4 for items

that belong to voices 1 to 4 (read only).

Voices

Returns or sets Sibelius’s internal bitfield that represents the voices to which an object belongs; useful for copy-

ing the voices used by a given object (read/write).

Deleting Multiple Objects from a Bar
If you wish to delete multiple objects from a bar, you should first build up a list of items to delete, then iterate

over the list deleting each object in turn. It is not sufficient to simply delete the objects from the bar as you iterate

over them, as this may cause the iterator to go out of sync. Therefore, code to delete all tuplets from a bar should

look something like this:

counter = 0;
for each Tuplet tup in bar {
 name = "tuplet" & counter;
 @name = tup;
 counter = counter + 1;
}

// Delete objects in reverse order
while(counter > 0) {
 counter = counter - 1;
 name = "tuplet" & counter;
 tup = @name;
 tup.Delete();
}

Chapter 4: Object Reference 65

BarRest
Derived from a BarObject object.

Methods
None.

Variables
PauseType

Returns the type of fermata (pause), if any, on the bar rest. Returns one of the constants PauseTypeNone
(0), PauseTypeSquare (1), PauseTypeRound (2), PauseTypeTriangular (3) (read/write).

RestType

Returns the type of bar rest via one of the constants WholeBarRest (0), BreveBarRest (1), OneBarRe-
peat (2),TwoBarRepeat (3),FourBarRepeat (4) (read only). To create a bar rest of a particular type, use

bar.InsertBarRest() (see above).

Bracket
Accessed from a BracketsAndBraces object.

Methods
None.

Variables
BottomStave

Returns the Staff object at which the bracket ends, relative to the current part.

BottomStaveNum

Returns the number of the bottom staff included in the bracket, relative to the current part.

BracketType

Returns the type of the bracket: BracketFull, BracketBrace or BracketSub.

TopStave

Returns the Staff object at which the bracket starts, relative to the current part.

Chapter 4: Object Reference 66

TopStaveNum

Returns the number of the top staff included in the bracket, relative to the current part.

Brackets and Braces

Accessed from a Score object. Describes the brackets (which may be brackets, sub-brackets or braces) present in

the score.

for each bracket in iterates through all the brackets in the list.

Array access [int n] returns the nth bracket in the list, or null if the bracket does not exist.

Methods
AddBracket(type, top staff number, bottom staff number)

Creates a bracket of a given type, spanning the range of staves specified between top staff number and bottom
staff number inclusive, and returns the new Bracket object. The staff numbers are relative to the current part

view. Values for type are BracketFull (0), BracketBrace (1) and BracketSub (2).

ClearAll()

Removes all existing brackets, sub-brackets and braces from the current part, and returns the number of brackets

removed.

DeleteNthBracket(n)

Deletes the nth bracket from the current part, and returns True if successful.

Variables
NumChildren

Returns the number of child brackets, sub-brackets and braces in the list.

Clef
Derived from a BarObject

Methods
None.

Variables
ClefStyle

The name of this clef, which may be different depending on the state of Notes  Transposing Score (read only).

Chapter 4: Object Reference 67

ConcertClefStyleId

The concert pitch identifier of the style of this clef (read only).

ConcertClefStyle

The concert pitch name of this clef (read only).

StyleId

The identifier of the style of this clef, which may be different depending on whether or not Notes Transposing

Score is switched on. This can be passed to the Bar.AddClefmethod to create a clef of this style (read only).

TransposingClefStyle

The transposing score name of this clef (read only).

TransposingClefStyleId

The transposing score identifier of the style of this clef (read only).

Comment
Derived from a BarObject.

Methods
None; create via Bar object.

Variables
Maximized

Returns True if the comment is maximized, otherwise returns False (read/write).

Text

Returns the text of the comment (read/write).

TextWithFormatting

Returns an array containing the various changes of font or style (if any) within the comment’s text in a new el-

ement (read only). For example, “This text is \B\bold\b\, and this is \I\italic\i\” would return an array with eight

elements containing the following data:

arr[0] = “This text is “
arr[1] = “\B\”
arr[2] = “bold”
arr[3] = “\b\”
arr[4] = “, and this is “
arr[5] = “\I\”

Chapter 4: Object Reference 68

arr[6] = “italic”
arr[7] = “\i\”

TextWithFormattingAsString

The comment’s text including any changes of font or style (read only).

TimeStamp

Returns a DateTime object corresponding to the date the comment was created or last edited (read only).

UserName

Returns the username of the user who created or last edited the comment (read only).

ComponentList
An array that is obtained from Sibelius.HouseStyles or Sibelius.ManuscriptPapers. It can be

used in a for each loop or as an array with the [n] operator to access each Component object:

Methods
None.

Variables
NumChildren

Number of plug-ins (read only).

Component
This represents a Sibelius “component,” namely a house style or a manuscript paper. Examples:

// Create a new score using the first manuscript paper
papers=Sibelius.ManuscriptPapers;
score=Sibelius.New(papers[0]);
// Apply the first house style to the new score
styles=Sibelius.HouseStyles;
score.pplyStyle(styles[0], "ALLSTYLES");

Methods
None.

Chapter 4: Object Reference 69

Variables
Name

The name of the component (read only).

DateTime
This object returns information about the current date and time.

Methods
None.

Variables
Seconds

Returns the number of seconds from the time in a date (read only).

Minutes

Returns the number of minutes from the time in a date (read only).

Hours

Returns the number of hours from the time in a date (read only).

DayOfMonth

Returns the nth day on the month, 1-based (read only).

Month

Returns the nth month of the year, 1-based (read only).

Year

Returns the year (read only).

NthDayOfWeek

Returns the nth day of the week, 0-based (read only).

NthDayOfYear

Returns the nth day of the year, 0-based (read only).

LongDate

Returns the date in a human-readable format, for example: 1st May 2008 (read only).

Chapter 4: Object Reference 70

ShortDate

Returns the date in a human-readable format, for example: 01/05/2008 (read only).

LongDateAndTime

Returns the date and time in a human-readable format, for example: 1st May 2008 14:07 (read only).

ShortDateAndTime

Returns the date and time in a human-readable format, for example: 01/05/2008 14:07 (read only).

TimeWithSeconds

Returns the time in a human-readable format, for example: 14:07 (read only).

TimeWithoutSeconds

Returns the time in a human-readable format, for example: 14:07:23 (read only).

Dictionary
To create a dictionary, use the built-in function CreateDictionary(name1, value1, name2, value2, ...

nameN, valueN). This creates a dictionary containing user properties called name1, name2, nameN with values

value1, value2, valueN respectively.

To iterate over dictionaries:

1 To iterate over element values in Dictionary objects, use for each n in Dictionary or for each
Value n in Dictionary.

2 To iterate over element names in Dictionary objects,use for each Name n in Dictionary.

3 To iterate over value.name pairs in Dictionary objects, use for each Pair n in Dictionary; this

returns a new Dictionary object: n.Name is the element name, n.Value is the element value.

Methods
CallMethod(methodname,param1,param2,...paramN)

Calls the specified method methodname in the dictionary, passing in any other values that are required for the

method as further parameters.

GetMethodNames()

Returns a sparse array containing the names of the methods belonging to a dictionary.

GetPropertyNames()

Returns a sparse array of the names of all the user properties in the dictionary (same as _propertyNames).

Chapter 4: Object Reference 71

MethodExists(methodname)

Returns True if the specified method methodname exists in the dictionary.

PropertyExists(propertyname)

Returns True if the specified user property propertyname exists in the dictionary.

SetMethod(methodname,Self,method)

Binds a method to the dictionary. methodname is the name by which you want to access the method via the dic-

tionary, Self refers to the plug-in in which the method is found, and method is the name of the method itself,

found elsewhere in the plug-in.

Variables
None.

Converting Old-Style Hash Tables to Dictionaries
The Dictionary object is, among other things, a replacement for the old Hash object, which was a simple hash ta-

ble object. You are recommended to use the new Dictionary object instead of the old Hash object in your plug-

ins, but if you have an existing plug-in in which old-style hashes are used, you can convert them to Dictionaries

as follows:

Hash.ConvertToDictionary()

Returns a new Dictionary object, populated with strings converted from the old-style Hash.

DocumentSetup
Accessed from a Score object. Corresponds to the settings in Layout  Document Setup.

When you first access the DocumentSetup object, the units default to millimetres; if you want to use another unit

of measurement, set DocumentSetup.Units before you set any of the other values. This will not, however,

change the units displayed in Layout  Document Setup; to do that, set DocumentSetup.UnitsInDoc-
umentSetupDialog.

Be careful also that if you set DocumentSetup.PageSize after setting DocumentSetup.PageWidth
or DocumentSetup.PageHeight, the page size specified will override any custom height/width you may

have just set: so set the page size before you then adjust the width or height of the page.

Methods
None.

Chapter 4: Object Reference 72

Variables
AboveTopStaveGap

Returns or sets the top staff margin on each page in the units specified by the Units variable (read/write).

AboveTopStaveGapAfterFirstPage

Returns or sets the top staff margin on pages after the first page in the units specified by the Units variable

(read/write). To set this, first set FirstPageHasUniqueVerticalStaveMargins to True.

BelowBottomStaveGap

Returns or sets the bottom staff margin on each page in the units specified by the Units variable (read/write).

To set this, first set FirstPageHasUniqueVerticalStaveMargins to True.

BelowBottomStaveGapAfterFirstPage

Returns or sets the bottom staff margin on each page after the first page in the units specified by the Units vari-

able (read/write).

FirstPageHasUniqueVerticalStaveMargins

ReturnsTrue if the After first page checkbox is switched on in Document Setup, specifying that the first page

of the score has different top and bottom staff margins to subsequent pages; otherwise returns False
(read/write).

Orientation

Returns or sets the current page orientation. Values are OrientationPortrait (0) and Orientation-
Landscape (1). If you change the orientation, this will swap the PageTopMargin and PageBottomMar-
gin values with the PageLeftMargin and PageRightMargin values, to reflect the change in orientation

(read/write).

PageHeight

Returns or sets the height of a page in the units specified by the Units variable (read/write).

PageSize

Returns or sets the current page size. Values are listed in “PageSize Values” on page 200. If you attempt to set

PageSize to PageSizeCustom, Sibelius will do nothing; to set a custom page size, set PageWidth and

PageHeight individually. Setting any default PageSize value will also change the PageWidth and

PageHeight values (read/write).

PageWidth

Returns or sets the width of a page in the units specified by the Units variable (read/write).

MarginType

Returns or sets the current page margin type. Values arePageMarginsSame (0),PageMarginsMirrored
(1), PageMarginsDifferent (2) (read/write).

Chapter 4: Object Reference 73

PageBottomMargin

Returns or sets the bottom page margin in the units specified by the Units variable (read/write).

PageLeftMargin

Returns or sets the left page margin in the units specified by the Units variable (read/write).

PageRightMargin

Returns or sets the right page margin in the units specified by the Units variable (read/write).

PageTopMargin

Returns or sets the top page margin in the units specified by the Units variable (read/write).

RightPageLeftMargin

Returns or sets the left page margin for right-hand pages in the units specified by the Units variable

(read/write). Setting this value automatically sets MarginType to PageMarginsDifferent.

RightPageRightMargin

Returns or sets the right page margin for right-hand pages in the units specified by the Units variable

(read/write). Setting this value automatically sets MarginType to PageMarginsDifferent.

StaffLeftMarginFullNames

Returns or sets the margin to the left of staves showing full instrument names in the units specified by the Units
variable (read/write).

StaffLeftMarginNoNames

Returns or sets the margin to the left of staves showing no instrument names in the units specified by the Units
variable (read/write).

StaffLeftMarginShortNames

Returns or sets the margin to the left of staves showing short instrument names in the units specified by the

Units variable (read/write).

StaffSize

Returns or sets the staff size in the units specified by the Units variable (read/write).

Units

Returns or sets the units of measurement for all of the relevant variables of the DocumentSetup object. Always

returns 0 (millimeters). Values are DocumentSetupUnitsmm (0), DocumentSetupUnitsInches (1),

DocumentSetupUnitsPoints (2) (read/write).

UnitsInDocumentSetupDialog

Returns or sets the units of measurement currently shown in the Layout  Document Setup dialog. Values are

as for Units.

Chapter 4: Object Reference 74

DynamicPartCollection
Accessed from a Score object. Contains DynamicPart objects.

The DynamicPartCollection object always contains the full score as the first entry, whether or not any dynamic

parts exist. The DynamicPart objects are returned in the order in which they were created (the last part returned

is the most-recently created one). For scores in which dynamic parts were generated automatically, the parts will

normally be returned in top to bottom score order.

The edit context for ManuScript is stored in the score itself which means that ManuScript can only ever access

one part at a time – the “current” DynamicPart for that Score object. This is irrespective of the number of score

windows open for a score, which dynamic parts are open, and even if the user has managed to create two different

ManuScript Score objects referring to the same Sibelius score.

It is inadvisable to modify Staves, Bars, or any BarObjects that do not exist on Staves in Score.Current-
DynamicPart. Doing so will create part overrides for part-specific properties of these objects which will be in-

visible until those Staves are added to the part. DynamicPart.IncludesStaff() can be used to test if a

DynamicPart contains a particular Staff object.

Both DynamicPartCollection and DynamicPart refer to an underlying Score and part(s) and will generate errors

if the Score and/or part(s) are no longer valid (for example, if a DynamicPart has been deleted). DynamicParts

are never “re-used.” For example, if you delete a DynamicPart and create a new DynamicPart, the old Manu-

Script DynamicPart object will not refer to the newly-created DynamicPart.

for each variable in iterates through all valid DynamicPart objects for the Score, always starting first with

the full score. Adding or deleting parts while iterating will have undefined results, and is not recommended.

Array access [int n] returns the nth part (0 is always the full score), or null if the part does not exist.

Methods
CreateDefaultParts()

Creates the default set of dynamic parts, as created automatically by Sibelius when clicking the New Part button

in the Parts window. This method does nothing and returns False if the Score has no staves.

CreatePartFromStaff(staff)

Creates a dynamic part from the specified Staff object, if valid. Returns the new DynamicPart object for success,

or null for failure.

DeletePart(dynamic part)

Deletes the specified part, if it’s valid. Returns True for success, False for failure. This method fails is the

specified dynamic part is the currently active part for the Score, or is the full score, or refers to a different Score.

Variables
NumChildren

Returns the number of DynamicPart objects for the Score returned by iteration (read only).

Chapter 4: Object Reference 75

DynamicPart
Accessed from a DynamicPartCollection object.

for each variable in returns the Staff objects in the dynamic part, in top to bottom order. Warning: this can

return a Staff that is not included in Score.CurrentDynamicPart.

Methods
AddStaffToPart(staff)

Adds the specified staff to the bottom of the dynamic part. Returns False for failure. This method will cause an

error if it is called on the full score, or if attempting to add a staff that is already present in the part or a staff from

a different score.

DeleteStaffFromPart(staff)

Deletes the specified staff from the dynamic part. Returns False for failure. This method will cause an error if

called on the full score, or if attempting to delete a staff that is not present in the part, or if deleting the last staff

in a part, or attempting to delete a part from a different score.

IncludesStaff(staff)

Returns True if the specified staff is contained in this dynamic part.

Variables
IsFullScore

Returns True if this is the full score (read only).

IsSelectedInPartsWindow

Returns True if the part is selected in the Parts window (read only).

StaveCount

Returns the number of staves in the part (read only).

ParentScore

Returns the Score object containing this dynamic part (read only).

Chapter 4: Object Reference 76

EngravingRules
Accessed via the Score object. Corresponds to selected settings in the House Style > Engraving Rules dialog.

Methods

None.

Variables
AdjustTranspositionIfKeySigWraps

Returns True if Sibelius will adjust note spelling for transposing instruments in extreme keys, False other-

wise; corresponds to the Adjust note spelling in transposing instruments in remote keys option on the Clefs

and Key Signatures page (read/write).

BarlineWidth

Returns or sets the width of normal barlines in spaces, from the Barlines page (read/write).

BeamThickness

Returns or sets the thickness of beams in spaces, from the Beams and Stems page (read/write).

CautionaryNaturalsInKeySignatures

Returns True if key changes will show cautionary naturals; False otherwise, from the Clefs and Key

Signatures page (read/write).

CueNoteScale

Returns or sets the percentage by which cue-sized notes are scaled relative to normal-sized notes, from the Notes

and Tremolos page (read/write).

DashedBarlineWidth

Returns or sets the width of dashed barlines in spaces, from the Barlines page (read/write).

DoubleBarlineSeparation

Returns or sets the distance between the two lines in double barlines in spaces, from the Barlines page

(read/write).

DoubleBarlineWidth

Returns or sets the width of double barlines in spaces, from the Barlines page (read/write).

DoubleTremoloStyle

Returns or sets the style used for double tremolos in the score, from the Notes and Tremolos page; values are

DoubleTremolosTouchingStems (0), DoubleTremolosBetweenStems (1), DoubleTremolo-
sOuterTremoloTouchingStems (2) (read/write).

Chapter 4: Object Reference 77

ExtraSpacesAboveForSystemObjectPositions

Returns or sets the n extra spaces above for System Object Positions value on the Staves page (read/write).

ExtraSpacesBelowVocalStaves

Returns or sets the n extra spaces below vocal staves (for lyrics) value on the Staves page (read/write).

ExtraSpaceBetweenGroupsOfStaves

Returns or sets the n extra spaces between groups of staves value on the Staves page (read/write).

FinalBarlineSeparation

Returns or sets the distance between the two lines in final barlines in spaces, from the Barlines page (read/write).

FinalBarlineWidth

Returns or sets the width of the thick line of final barlines in spaces, from the Barlines page (read/write).

GraceNoteScale

Returns or sets the percentage by which grace notes are scaled relative to normal notes, from the Notes and

Tremolos page (read/write).

InstrumentNamesFirstSystem

Corresponding to the option for instrument names on the first system on the Instruments page; values are In-
strumentNamesFull (0), InstrumentNamesShort (1), InstrumentNamesNone (2) (read/write).

InstrumentNamesNewSections

Corresponding to the option for instrument names at the start of new sections on the Instruments page; values

are InstrumentNamesFull (0), InstrumentNamesShort (1), InstrumentNamesNone (2)

(read/write).

InstrumentNamesSubsequentSystems

Corresponding to the option for instrument names on subsequent systems on the Instruments page; values are

InstrumentNamesFull (0), InstrumentNamesShort (1), InstrumentNamesNone (2)

(read/write).

JustifyGrandStaveInstruments

Returns True if Justify both staves of grand staff instruments on the Staves page is switched on, otherwise

False (read/write).

JustifyMultiStaveInstruments

Returns True if Justify all staves of multi-staff instruments on the Staves page is switched on, otherwise

False (read/write).

LegerLineThickness

Returns or sets the thickness of leger lines in spaces, from the Notes and Tremolos page (read/write).

Chapter 4: Object Reference 78

RespellRemoteKeysInTransposingScore

Returns True if Sibelius will choose the equivalent key signature with one fewer flat or sharp for transposing in-

struments; False otherwise, corresponding to the option Respell remote key signatures in transposing

score on the Clefs and Key Signatures page (read/write).

ShowNameOfPrevailingInstrumentChangeAtStartOfSystems

Returns True if Sibelius will update the instrument name at the start of each system to reflect the current instru-

ment change, False otherwise; corresponds to the Change instrument names at start of system after in-

strument changes option on the Instruments page (read/write).

SlurMiddleThickness

Returns or sets the default thickness of the middle of slurs in spaces, from the Slurs page (read/write).

SlurOutlineWidth

Returns or sets the thickness of slur ends in spaces, from the Slurs page (read/write).

SmallStaffSizeScale

Returns or sets the percentage by which small staves are scaled relative to normal-sized staves, from the Staves

page (read/write).

SpacesBetweenStaves

Returns or sets the n spaces between staves value on the Staves page (read/write).

SpacesBetweenSystems

Returns or sets the n spaces between systems value on the Staves page (read/write).

StaffJustificationPercentage

Returns or sets the Justify staves when page is at least n% full value on the Staves page (read/write).

StaffLineWidth

Returns or sets the width of a staff line in spaces, from the Staves page (read/write).

StemThickness

Returns or sets the thickness of stems in spaces, from the Beams and Stems page (read/write).

TieMiddleThickness

Returns or sets the thickness of the middle of ties in spaces, from the Ties 1 page (read/write).

TieOutlineWidth

Returns or sets the thickness of tie ends in spaces, from the Ties 1 page (read/write).

Chapter 4: Object Reference 79

File
Retrievable using for each on a folder.

Methods
Delete()

Deletes a file, returning True if successful.

Rename(newFileName)

Renames a file, returning True if successful.

Variables
CreationDate

Returns the file’s creation date and time as a DateTime object, in local time (read only).

CreationDateAndTime

A string giving the date and time the file was last modified in GMT (read only).

ModificationDate

Returns the file’s modification date and time as a DateTime object, in local time (read only).

Name

The complete pathname of the file, no extension (read only).

NameWithExt

The complete pathname of the file, with extension (read only).

NameNoPath

Just the name of the file, no extension (read only).

Path

Returns just the path to the file (read only).

Type

A string giving the name of the type of the object; File for file objects (read only).

Chapter 4: Object Reference 80

Folder
Retrievable from methods of the Sibelius object.

for each variable in produces the Sibelius files in the folder, as File objects

for each type variable in produces the files of type type in the folder, where type is a Windows extension.

Useful values are SIB (Sibelius files), MID (MIDI files) or OPT (PhotoScore files), because they can all be

opened directly by Sibelius. On the Macintosh files of the corresponding Mac OS Type are also returned (so, for

example, for each MID f will return all files whose names end in .MID, and all files of type “Midi”).

Both these statements return subfolders recursively.

Methods
FileCount(Type)

Returns the number of files of type Type in the folder. As above, useful values are SIB, MID or OPT.

Variables
FileCount

The number of Sibelius files in the folder (read only).

FileCountAllTypes

The number of files of all types in the folder (read only).

Name

The name of the folder (read only).

Type

A string giving the name of the type of the object; Folder for folder objects (read only).

Chapter 4: Object Reference 81

GuitarFrame
Derived from a BarObject. This refers to chord symbols as created by Create > Chord Symbol, whether or not

they show a guitar chord diagram (guitar frame), but is called GuitarFrame in ManuScript for historical reasons.

Methods
CopyOutSuffixes()

Returns an array containing a list of the suffix elements present in the chord. If the chord symbol is an

unrecognised chord type, the array returned will be empty. The values that can be returned in the array are

as follows:

halfdim dim
add6/9 6/9
sus2/4 aug
omit5 alt
omit3 b13
maj13 #11
add13 13
maj11 11
dim13 #9
dim11 b9
maj9 b6
add9 #5
maj7 b5
dim9 #4
dim7 nc
sus9 9
sus4 7
add4 6
sus2 5
add2 m
maj /

GetChromaticPitchesOfChordInClosePosition(consider root)

Returns an array containing the chromatic pitches of the notes in the chord, assuming a voicing in close position.

If consider root is True (it defaults to False), the pitches returned will be offset according to the chromatic value

of the root note on which the chord is based.

GetEndStringForNthBarre(barreNum)

Returns the string number on which the nth barré ends.

GetPitchOfNthString(stringNum)]

Returns the pitch of the given (open) string stringNum, as a MIDI pitch.

Chapter 4: Object Reference 82

GetPositionOfFingerForNthBarre(barreNum)

Returns the fret position that the nth barré occupies.

GetPositionOfFingerOnNthString(stringNum)

Returns the position of the black dot representing the finger position on a given string stringNum, relative to the

top of the frame. A return value of 0 means the string is open (that is a hollow circle appears at the top of the di-

agram), and -1 means that the string is not played (that is an X appears at the top of the diagram). Used in con-

junction with GetPitchOfNthString(), you can calculate the resulting pitch of each string.

GetStartStringForNthBarre(barreNum)

Returns the string number from which the nth barré begins.

IsNthStringPartOfBarre(stringNum)

Returns True if the given string is part of a barré.

NthStringHasClosedMarkingAtNut(nth string)

Returns True if there’s an X marking at the top or left of the specified string.

NthStringHasOpenMarkingAtNut(nth string)

Returns True if there’s an O marking at the top or left of the specified string.

Variables
BassAsString

The note name of the chord symbol’s altered bass note (for example: “F”).

ChordNameAsStyledString

The name of the chord represented by this chord symbol as it appears in the score, for example: “Cm^7” (read

only).

ChordNameAsPlainText

The name of the chord represented by this chord symbol as it appears when editing the chord symbol, so that in

its plain text representation, for example: “Cmmaj7” (read only).

ChromaticRoot

The chromatic pitch (C = 0, B = 11) of the chord symbol’s root note (read only).

ChromaticBass

The chromatic pitch (C = 0, B = 11) of the chord symbol’s altered bass note (read only).

Chapter 4: Object Reference 83

DiatonicRoot

The diatonic pitch, that is the number of the “note name” to which this note corresponds, 7 per octave (0 = C, 1

= D, 2 = E and so on), of the chord symbol’s root note (read only).

DiatonicBass

The diatonic pitch, that is the number of the “note name” to which this note corresponds, 7 per octave (0 = C, 1

= D, 2 = E and so on), of the chord symbol’s altered bass note (read only).

Fingerings

The fingerings string for this chord. This is a textual string with as many characters as the guitar frame has strings

(for example, six for standard guitars). Each character corresponds to a guitar string. Use to denote that a string

has no fingering.

FrameIsVisible

True if the chord symbol is currently showing a guitar chord diagram (read only).

Horizontal

True if the guitar chord diagram is horizontally orientated, False if it is vertically orientated (read/write).

LowestVisibleFret

The number of the top fret shown in the guitar chord diagram; setting the special value -1 resets the lowest vis-

ible fret to the default for that chord diagram (read/write).

NumBarresInChord

The number of unique barrés in the guitar chord diagram (read only).

NumberOfFrets

The number of frets in the guitar chord diagram, that is the number of horizontal lines; setting the special value

-1 resets the number of frets to the default for that chord diagram (read/write).

NumberOfStrings

The number of strings in the guitar chord diagram, for example,. the number of vertical lines (read only).

NumPitchesInClosePosition

The number of unique pitches in the chord, assuming a voicing in close position with no duplicates.

Recognized

Returns True if the chord symbol is a specific recognized chord type, and False otherwise, that is if the chord

symbol is shown in red in the score because Sibelius is unable to parse the user’s input (read only).

RootAsString

The note name of the chord symbol’s root (for example, “C#”).

Chapter 4: Object Reference 84

ScaleFactor

The scale factor of the guitar chord diagram (as adjustable via the Scale parameter on the General panel of

Properties), expressed as a percentage (read/write).

ShowFingerings

Set to True if the fingerings string should be displayed, False otherwise (read only).

SuffixText

The suffix part of the chord symbol as it appears in the score, or an empty string if the chord isn’t recognised

(read only).

TextIsVisible

True if the chord symbol is currently showing a text chord symbol (read only).

TransposingChromaticRoot

Returns the chromatic pitch of the root note for the specified chord symbol as if the score is shown at transposed

pitch, but regardless of whether or not Notes  Transposing Score is switched on.

TransposingChromaticBass

Returns the chromatic pitch of the altered bass note for the specified chord symbol, if present, as if the score is

shown at transposed pitch, but regardless of whether or not Notes > Transposing Score is switched on.

TransposingDiatonicRoot

Returns the diatonic pitch of the root note for the specified chord symbol as if the score is shown at transposed

pitch, but regardless of whether or not Notes > Transposing Score is switched on.

TransposingDiatonicBass

Returns the diatonic pitch of the altered bass note for the specified chord symbol, if present, as if the score is

shown at transposed pitch, but regardless of whether or not Notes > Transposing Score is switched on.

TransposingRootAsString

Returns a string representing the pitch of the root note for the specified chord symbol as if the score is shown at

transposed pitch, but regardless of whether or not Notes > Transposing Score is switched on.

TransposingBassAsString

Returns a string representing the pitch of the altered bass note for the specified chord symbol, if present, as if the

score is shown at transposed pitch, but regardless of whether or not Notes > Transposing Score is switched on.

VisibleComponents

The visible parts of the chord symbol, that is whether it displays a text chord symbol only (TextOnly), a guitar

chord diagram only (FrameOnly), both a text chord symbol and a guitar chord diagram (FrameAndText), or

whether or not the chord symbol shows a guitar chord diagram based on the type of instrument to which it is at-

tached (InstrumentDependent) (read/write).

Chapter 4: Object Reference 85

GuitarScaleDiagram
Derived from a BarObject. This refers to guitar scale diagrams as created by Create  Guitar Scale Diagram.

Methods
GetDotFingeringsOnNthString(nth string)

Returns an array of strings containing the text that has been entered on the dots on a given string.

GetDotSymbolsOnNthString(nth string)

Returns an array of values describing the appearance of each of the dots on a given string. The possible values

are DotStyleCircle, DotStyleFilledCircle, DotStyleSquare, DotStyleFilledSquare,

DotStyleDiamond, and DotStyleFilledDiamond.

GetPitchesOfDotsOnNthString(nth string)

Returns an array containing the pitches of all the dots on a given string, in ascending order of pitch.

GetPitchOfNthString(stringNum)

Returns the pitch of the given (open) string stringNum, as a MIDI pitch.

Variables
Fingerings

The fingerings string for this scale diagram. This is a textual string with as many characters as the scale diagram

has strings (for example, six for standard guitars). Each character corresponds to a guitar string. Use – to denote

that a string has no fingering.

Horizontal

True if the guitar scale diagram is horizontally orientated, False if it is vertically orientated (read/write).

LowestVisibleFret

The number of the top fret shown in the guitar scale diagram; setting the special value-1 resets the lowest visible

fret to the default for that scale diagram (read/write).

NumberOfFrets

The number of frets in the guitar scale diagram, for example, the number of horizontal lines; setting the special

value -1 resets the number of frets to the default for that scale diagram (read/write).

NumberOfStrings

The number of strings in the guitar scale diagram,for example, the number of vertical lines (read only).

Chapter 4: Object Reference 86

Root

Returns the chromatic pitch (C = 0) of the scale’s root note (read only).

ScaleFactor

The scale factor of the guitar scale diagram (as adjustable via the Scale parameter on the General panel of Prop-

erties), expressed as a percentage (read/write).

ScaleType

Returns the type of the guitar scale diagram, as specified in the list of “GuitarScaleDiagram Type Values” on

page 198 (read only).

ShowFingerings

Set to True if the fingerings string should be displayed, False otherwise (read only).

HitPointList
Retrievable as the HitPoints variable of a score. It can be used in a for each loop or as an array with the

[n] operator—this gives access to a HitPoint object. The HitPoint objects are stored in time order, so be careful

if you remove or modify the time of the objects inside a loop. If you want to change the times of all the hit points

by the same value then use the ShiftTimes function.

Methods
Clear()

Removes all hit points from the score.

CreateHitPoint(timeMs,label)

Creates a hit point in the score at the given time (specified in milliseconds) with a specified string label. Returns

the index in the HitPointList at which the new hit point was created.

Remove(index)

Removes the given hit point number.

ShiftTimes(timeMs)

Adds the given time (in milliseconds) onto all the hit points. If the time is negative then this is subtracted from

all the hit points.

Variables
NumChildren

Number of hit points (read only).

Chapter 4: Object Reference 87

HitPoint
Individual element of the HitPointList object.

Methods
None.

Variables
Bar

The bar in which this hit point occurs (read only).

Label

The name of the hit point (read/write).

Position

The position within the bar at which this hit point occurs (read only).

Time

The time of the hit point in milliseconds. Note that changing this value may change the position of the hit point

in the HitPointList (read/write).

InstrumentChange
Derived from a Bar object. Provides information about any instrument changes that may exist in the score.

Methods
None.

Variables
StyleIdword

Returns the style ID of the new instrument; see “Instrument Types” on page 165 (read only).

TextLabel

Returns the text that appears above the staff containing the instrument change in the score (read only).

Chapter 4: Object Reference 88

InstrumentTypeList
Contains a list of InstrumentType objects common to a given score.

for each type variable in returns each instrument type in the list, in alphabetical order by the instrument

type’s style ID.

Array access [int n] returns the nth instrument type, in the same order as using a for each iterator, or null if

the instrument type does not exist.

Methods
None.

Variables
NumChildren

Returns the number of unique instrument types in the list (read only).

InstrumentType
Provides information about an individual instrument type.

Methods
Clone()

Makes an exact copy of an existing instrument type.

PitchOfNthString(string num)

Returns the pitch of a given string in a tablature staff, with string number 0 being the lowest string on the instru-

ment.

Variables
Balance

Returns the instrument’s default balance, in the range 0–100 (read only).

Category

Returns an index representing the category of the staff type belonging to this instrument type; 0 = pitched; 1 =

percussion; 2 = tablature (read only).

Chapter 4: Object Reference 89

ChromaticTransposition

Returns the number of half-steps (semitones) describing the transposition of transposing instruments; such as for

B-flat Clarinet, this returns -2 (read/write).

ChromaticTranspositionInScore

Returns the number of half-steps (semitones) describing the transposition of transposing instruments in a score

shown at concert pitch. Typically this is only used by instruments that transpose by octaves, so this will return,

for example, 12 for piccolo or –12 for guitars (read only).

ComfortableRangeHigh

Returns the highest comfortable note (MIDI pitch) of the instrument (read only).

ComfortableRangeLow

Returns the lowest comfortable note (MIDI pitch) of the instrument (read only).

ConcertClefStyleId

Returns the style ID of the normal clef style of the instrument (read only).

DefaultSoundId

Returns the default sound ID used by the instrument (read only).

DiatonicTransposition

Returns the number of diatonic steps describing the transposition of transposing instruments; such as for B-flat

Clarinet, this returns -1 (read/write).

DiatonicTranspositionInScore

Returns the number of diatonic steps describing the transposition of transposing instruments in a score shown at

concert pitch (read only).

DialogName

Returns the name of the instrument as displayed in the Create  Instruments dialog in Sibelius (read/write).

FullName

Returns the name of the instrument as visible on systems showing full instrument names (read only).

HasBracket

Returns True if the instrument has a bracket (read only).

HasKeySignatureOrTuning

Returns True if the instrument type has the Key signature / Tuning checkbox switched on in the Edit Staff

Type dialog.

Chapter 4: Object Reference 90

InstrumentTypeForChordDiagrams

Returns the style ID of the tab instrument type that determines the tuning used for chord diagrams shown for this

instrument, that is corresponding to the Tab instrument to use for string tunings in the New/Edit Instrument

dialogs.

IsVocal

Returns True if the instrument type used has the Vocal staff option switched on, meaning that, for example, the

default positions of dynamics should be above the staff rather than below (read only).

NumStaveLines

Returns the number of staff lines in the staff (read only).

NumStrings

Returns the number of strings in a tablature staff (read only).

OtherClefStyleId

Returns the style ID of the clef style of the second staff of grand staff instruments, piano for example (read only).

Pan

Returns the instrument’s default pan setting, in the range –127 (hard left) to 127 (hard right) (read only).

ProfessionalRangeHigh

Returns the highest playable note (MIDI pitch) of the instrument for a professional player (read only).

ProfessionalRangeLow

Returns the lowest playable note (MIDI pitch) of the instrument for a professional player (read only).

ShortName

Returns the name of the instrument as visible on systems showing short instrument names (read only).

StyleId

Returns the style ID of the instrument; see “Global Constants” on page 156 (read only).

TransposingClefStyleId

Returns the style ID of the clef to be used when Notes > Transposing Score is switched on (read only).

Chapter 4: Object Reference 91

KeySignature
Derived from a BarObject.

Methods
None.

Variables
AsText

The name of the key signature as a string (read only).

IsOneStaffOnly

True if this key signature belongs to one staff only (read only).

Major

True if this key signature is a major key (read only).

Sharps

The number of sharps (positive) or flats (negative) in this key signature (read only).

Line
Anything you can create from the Create > Line dialog is a line object, such as CrescendoLine, Diminuendo-

Line, and so on. These objects are derived from a BarObject.

Methods
None.

Variables
Duration

The total duration of the line, in 1/256th quarters (read/write).

EndBarNumber

The bar number in which the line ends (read only).

EndPosition

The position within the final bar at which the line ends (read only).

Chapter 4: Object Reference 92

RhDx

The horizontal graphic offset of the right-hand side of the line, in units of 1/32 spaces (read/write).

RhDy

The vertical graphic offset of the right-hand side of the line from the centre staff line, in units of 1/32 spaces, pos-

itive going upwards (read/write).

StyleId

The identifier of the line style associated with this line (read only).

StyleAsText

The name of the line style associated with this line (read only).

LyricItem
Derived from a BarObject

Methods
None.

Variables
The total duration of the lyric line, in 1/256th quarters (see “Line” on page 91) (read/write).

NumNotes

Gives the number of notes occupied by this lyric item (read/write). Note that changing this value will not auto-

matically change the length of the lyric line; you also need to set the lyric line’s Duration variable to the cor-

rect length.

StyleAsText

The text style name (read/write).

StyleId

he identifier of the text style of this lyric (read/write).

SyllableType

An integer indicating whether the lyric is the end of a word (EndOfWord) or the start or middle of one (Mid-
dleOfWord) (read/write). This affects how the lyric is jusitifed, and the appearance of hyphens that follow it.

EndOfWord and MiddleOfWord are global constants; see “SyllableTypes for LyricItems” on page 193.

Text

The text as a string (read/write).

Chapter 4: Object Reference 93

NoteRest
Derived from a BarObject. A NoteRest contains Note objects, stored in order of increasing diatonic pitch.

for each variable in returns the notes in the NoteRest.

Methods
AddAcciaccaturaBefore(sounding pitch,[duration[,tied [,voice [,diatonic pitch[,string num-
ber[,force stem dir]]]]]])

Adds a grace note with a slash on its stem (acciaccatura) before a given NoteRest. The duration should be spec-

ified as normal, for example, 128 would create a grace note with one beam/flag. The optional tied parameter

should be True if you want the note to be tied. Voice 1 is assumed unless the optional voice parameter (with a

value of 1, 2, 3 or 4) is specified. If force stem dir is set to True (the default), stems of graces notes in voices 1

and 3 will always point upwards, and stems of notes in voices 2 and 4, downwards. You can also set the diatonic

pitch, that is the number of the “note name” to which this note corresponds, 7 per octave (35 = middle C, 36 =

D, 37 = E and so on). If a diatonic pitch of zero is given then a suitable diatonic pitch will be calculated from the

MIDI pitch. The optional string number parameter gives a string number for this note, which is only meaningful

if the note is on a tablature stave. If this parameter is not supplied then a default string number is calculated based

on the current tablature stave type and the guitar tab fingering options (specified on the Note Input page of File

> Preferences). Returns the Note object created (to get the NoteRest containing the note, use Note.Parent-
NoteRest).

Note that adding a grace note before a NoteRest will always create an additional grace note, just to the left of the

note/rest to which it is attached. If you wish to create grace notes with more than one pitch, you should call Add-
Note on the object returned.

AddAppoggiaturaBefore(sounding pitch,[duration[,tied [,voice [,diatonic pitch[,string num-
ber[,force stem dir]]]]]])

Identical to AddAcciaccaturaBefore, only no slash is added to the note’s stem.

AddNote(pitch[,tied[,diatonic pitch[,string number]]])

Adds a note with the given MIDI pitch (60 = middle C), for example to create a chord. The optional second pa-

rameter specifies whether or not this note is tied (True or False). The optional third parameter gives a diatonic

pitch, which is the number of the ‘note name’ to which this note corresponds, 7 per octave (35 = middle C, 36 =

D, 37 = E etc.). If this parameter is 0 then a default diatonic pitch will be calculated from the MIDI pitch. The op-

tional fourth parameter gives a string number for this note, which is only meaningful if the note is on a tablature

stave. If this parameter is not supplied then a default string number is calculated based on the current tablature

stave type and the guitar tab fingering options (specified on the Notes page of File > Preferences). Returns the

Note object created.

Delete()

Deletes all the notes in the NoteRest, converting the entire chord into a rest of similar duration.

Chapter 4: Object Reference 94

FlipStem()

Flips the stem of this NoteRest—this acts as a toggle.

GetArticulation(articulation number)

Returns True or False depending on whether the given articulation is currently set on this note. The valid ar-

ticulation numbers are defined in “Articulations” on page 192.

NoteRest[array element]

Returns the nth note in the chord, in order of increasing diatonic pitch (counting from 0). For example,

NoteRest[0] returns the lowest note (in terms of diatonic pitch–see AddNote below).

RemoveNote(note)

Removes the specified Note object.

SetArticulation(articulation number,set)

If set is True, turns on the given articulation; otherwise turns it off. The valid articulation numbers are defined

in “Articulations” on page 192.

Transpose(degree, interval type[,keep double accs])

Transposes the entire NoteRest up or down by a specified degree and interval type. To transpose up, use positive

values for degree; to transpose down, use negative values. Note that degrees are 0-based, so 0 is equal to a uni-

son, 1 to a second and so on. For descriptions of the various available interval types, see “Global Constants” on

page 156. By default, Sibelius will transpose using double sharps and flats where necessary, but this behavior

may be suppressed by setting the keep double accs flag to False.

For help in calculating the interval and degree required for a particular transposition, see the documentation for

the Sibelius.CalculateInterval and Sibelius.CalculateDegree methods.

Variables
ArpeggioDx

The horizontal offset of the arpeggio line on the NoteRest (read/write), in units of 1/32nd of a space (the distance

between two adjacent staff lines).

ArpeggioType

The type of note-attached arpeggio line present on the NoteRest. Values are ArpeggioTypeNone, Arpeg-
gioTypeNormal, ArpeggioTypeUp, ArpeggioTypeDown (read/write).

ArpeggioTopDy

The vertical offset of the top of the note-attached arpeggio line on the NoteRest (read/write), in units of 1/32nd

of a space.

Chapter 4: Object Reference 95

ArpeggioBottomDy

The vertical offset of the bottom of the note-attached arpeggio line on the NoteRest (read/write), in units of

1/32nd of a space.

ArpeggioHidden

Returns True if the note-attached arpeggio line on the NoteRest is hidden (read/write).

Articulations

Lets you copy a set of articulations from one NoteRest to another (read/write), for example:

destNr.Articulations = sourceNr.Articulations;

Beam

Takes values StartBeam, ContinueBeam, NoBeam and SingleBeam. (see “Global Constants” on

page 156 for details). These correspond to the keys 7, 8, * (/ on Mac) and / (* on Mac) on the third (F9) Keypad

layout.

DoubleTremolos

Gives the number of double tremolo strokes starting at this note, in the range 0–7. Means nothing for rests. To

create a double tremolo between two successive notes, ensure they have the same duration and set the Double-
Tremolos of the first one (read/write).

Duration

The duration of the note rest (read only).

FallDx

The horizontal offset of a fall, if present on the NoteRest (read/write), in units of 1/32nd of a space.

FallType

\The type of note-attached fall present on the NoteRest. Values are FallTypeNone, FallTypeNormal and

FallTypeDoit (read/write)

FeatheredBeamType

Returns one of three values, based on whether a note is set to produce a feathered beam. Values are Feath-
eredBeamNone (0), FeatheredBeamAccel (1) and FeatheredBeamRit (2) (read/write).

GraceNote

True if it’s a grace note (read only).

HasStemlet

Returns True if the note is showing a stemlet, according either to the state of the Use stemlets on beamed

rests option on the Beams and Stems page of Engraving Rules or the stemlet button on the Keypad (read

only).

Chapter 4: Object Reference 96

Highest

The highest Note object in the chord (read only).

IsAcciaccatura

True if it’s an acciaccatura, that is. a grace note with a slash through its stem (read only).

IsAppoggiatura

True if it’s an appoggiatura, that is a grace note without a slash through its stem (read only).

Lowest

The lowest Note object in the chord (read only).

NoteCount

The number of notes in the chord (read only).

ParentTupletIfAny

If the NoteRest intersects a tuplet, the innermost Tuplet object at that point in the score is returned. Otherwise,

null is returned (read only).

PositionInTuplet

Returns the position of the NoteRest relative to the duration and scale-factor of its parent tuplet. If the NoteRest

does not intersect a tuplet, its position within the parent Bar is returned as usual (read only).

RestPosition

The vertical position of a rest (read/write).

ScoopDx

The horizontal offset of a scoop or plop, if present on the NoteRest (read/write), in units of 1/32nd of a space.

ScoopType

The type of note-attached scoop present on the NoteRest. Values areScoopTypeNone,ScoopTypeNormal,

ScoopTypePlop (read/write).

StemFlipped

True if the stem is flipped (read only).

StemletType

Provides information about whether the NoteRest is set to display a stemlet using the options on the Keypad. Re-

turns either StemletCustomOff (in which case the NoteRest definitely does not show a stemlet), Stem-
letCustomOn (in which case the NoteRest definitely does show a stemlet), or StemletUseDefault (in

which case you should use the read-only variable HasStemlet to determine whether the NoteRest currently

shows a stemlet) (read/write).

Chapter 4: Object Reference 97

Stemweight

Returns the stemweight of a note, taking beams into account (read only). For an unbeamed note, this is the sum

of the stave positions of all the notes in the NoteRest, where the stave position of the middle line is zero and the

position increases as you move up the stave and decreases as you move downwards. For a beamed note, it is the

sum of all the stemweights of the NoteRests under the beam (treated as though they were unbeamed).

There are some special cases. If a note has its stem direction forced due to voicing, then the stemweight will be

one of the global constants StemweightUp or StemweightDown. If a note has its stem direction forced due

to the “flip” flag being set, the stemweight will be either StemweightFlipUp or StemweightFlipDown.

Finally, cross-stave notes have stemweight equal to StemweightCross.

If the stemweight is less than zero, the stem will point up, otherwise it will point down.

SingleTremolos

Gives the number of tremolo strokes on the stem of this note, in the range –1 (for “z on stem”) to 7. Means noth-

ing for rests (read/write).

Note
Only found in NoteRests. Correspond to individual noteheads.

Methods
Delete()

Removes a single note from a chord.

Transpose(degree, interval type[,keep double accs])

Transposes and returns a single Note object up or down by a specified degree and interval type*. To transpose

up, use positive values for degree; to transpose down, use negative values. Note that degrees are 0-based, so 0 is

equal to a unison, 1 to a second and so on. For descriptions of the various available interval types, see “Global

Constants” on page 156. By default, Sibelius will transpose using double sharps and flats where necessary, but

this behavior may be suppressed by setting the keep double accs flag to False. For help in calculating the interval

and degree required for a particular transposition, see the documentation for the Sibelius.Calculate
Interval and Sibelius.CalculateDegree methods.

* N.B.: Individual note objects cannot be transposed diatonically.

Variables
Accidental

The accidental, for which global constants such as Sharp, Flat and so on are defined; see “Global Constants”

on page 156 (read only).

Chapter 4: Object Reference 98

AccidentalStyle

The style of the accidental (read/write). This can be any of following four global constants: NormalAcc, Hid-
denAcc, CautionaryAcc (which forces an accidental to appear always) and BracketedAcc (which

forces the accidental to be drawn inside brackets).

Bracketed

The bracketed state of the note, as shown on the F9 layout of the Keypad (read/write).

Color

The color of this Note (read/write). The color value is in 24-bit RGB format, with bits 0–7 representing blue, bits

8–15 green, bits 16–23 red and bits 24–31 ignored. Since ManuScript has no bitwise arithmetic, these values can

be a little hard to manipulate; you may find the individual accessors for the red, green and blue components to

be more useful (see below).

ColorAlpha

The alpha channel component of the color of this Note, in the range 0–255 (read/write).

ColorRed

The red component of the color of this Note, in the range 0–255 (read/write).

ColorGreen

The green component of the color of this Note, in the range 0–255 (read/write).

ColorBlue

The blue component of the color of this Note, in the range 0–255 (read/write).

DiatonicPitch

The diatonic pitch of the note, that is the number of the “note name” to which this note corresponds, 7 per octave

(35 = middle C, 36 = D, 37 = E and so on). (read/write)

When all Notes in a given NoteRest are the same color, then that color is also promoted to the parent
NoteRest itself. This allows backwards compatibility with versions of Sibelius prior to 8.3 that did not
support the individual coloring of Notes. Coloring of NoteRest-attached objects, such as articulations
and rhythm dots is not supported.

If Note.DiatonicPitch is changed from the full score (not a dynamic part), the written pitch and spelling
of any accidental is changed in both the full score and the part (where there is no difference in spell-
ing). If changed from a part, Sibelius respells any accidental in the part only, leaving the full score un-
changed. In both cases, while there may be a difference in written pitch, Sibelius guarantees that there
is never a difference in the sounding pitch of a note between a part and the full score.

Chapter 4: Object Reference 99

IsAccidentalVisible

Returns True if the accidental on the note is visible, which is the equivalent of whether or not the corresponding

button on the Keypad is illuminated for that note (read only).

Name

The pitch of the note as a string (read only).

NoteStyle

The index of the notehead style of this Note (read/write). The styles correspond to those accessible from the

Notes panel of the Properties window in Sibelius; see “Note Style Names” on page 191 for a complete list of the

defined NoteStyles.

NoteStyleName

The name of the notehead style of this Note (read/write). If an attempt is made to apply a non-existant style name,

the note in question will retain its current notehead.

OriginalDeltaSr

The Live start position of this notehead (in 1/256th quarters), as shown in the Playback panel of Properties

(read/write). This value can be positive or negative, indicating that the note is moved forwards or backwards.

OriginalDuration

The Live duration of this notehead (in 1/256th quarters), as shown in the Playback panel of Properties

(read/write).

OriginalVelocity

The Live velocity of this notehead (in MIDI volume units, 0–127), as shown in the Playback panel of Properties

(read/write). Note that the word “original” refers to the fact that this data is preserved from the original perfor-

mance if the score was imported from a MIDI file or input via Flexi-time. For further details on this value, and

the ones following below, read the Live Playback section in Sibelius Reference.

ParentNoteRest

The NoteRest object that holds this note (read only).

Pitch

The MIDI pitch of the note, in semitones, 60 = middle C (read only).

Slide

Is True if the note has a slide, False otherwise (read/write).

StringNum

The string number of this note, only defined if the note is on a tablature stave. If no string is specified, reading

this value will give –1. Strings are numbered starting at 0 for the bottom string and increasing upwards (read

only).

Chapter 4: Object Reference 100

Tied

Is True if the note is tied to the following note (read/write).

WrittenAccidental

The accidental, taking transposition into account (read only).

WrittenDiatonicPitch

The written diatonic pitch of the note, taking transposition into account if Score.TransposingScore is

True (35 = middle C).

WrittenName

The written pitch of the note as a string (taking transposition into account) (read only).

WrittenPitch

The written MIDI pitch of the note, taking transposition into account if Score.TransposingScore is

True (60 = middle C) (read only).

UseOriginalDeltaSrForPlayback

Is True if the Live start position of this Note should be used for Live Playback. Corresponds to the Live start

position checkbox in the Playback panel of the Properties window.

UseOriginalDurationForPlayback

Is True if the Live duration of this Note should be used for Live Playback. Corresponds to the Live duration

checkbox in the Playback panel of the Properties window.

UseOriginalVelocityForPlayback

Is True if the Live velocity of this Note should be used for Live Playback. Corresponds to the Live velocity

checkbox in the Playback panel of the Properties window.

NoteSpacingRule
Provides access to the settings from the Appearance > House Style > Note Spacing Rule dialog. Obtained

by way of the Score object, for example:

nsr = Sibelius.ActiveScore.NoteSpacingRule;

Methods
None.

Variables
The following variables are listed in the same order as the options to which they correspond in the Note Spacing

Rule dialog.

Chapter 4: Object Reference 101

FixedBarRestWidth

The width of an empty bar if the Fixed empty bar width n spaces radio button is chosen (read/write). This

value is only used if DetermineEmptyBarWidthBySrLength is False.

DetermineEmptyBarWidthBySrLength

Returns True if Empty bar width is determined by time signature is chosen , otherwise False (read/write).

StartOfBarGap

The value of Before first note in bar n spaces (read/write).

MinimumDurationSpace

The value of Short notes n spaces (read/write).

SpaceForSixteenth

The value of 16th note (semiquaver) n spaces (read/write).

SpaceForEighth

The value of 8th note (quaver) n spaces (read/write).

SpaceForQuarter

The value of Quarter note (crotchet) n spaces (read/write).

SpaceForHalf

The value of Half note (minim) n spaces (read/write).

SpaceForWhole

The value of Whole note (semibreve) n spaces (read/write).

SpaceForDoubleWhole

The value of Double whole note (breve) n spaces (read/write).

AllowSpaceForVoiceConflicts

Returns True if Allow extra space for colliding voices is switched on, otherwise False (read/write).

SpaceAroundGraceNote

The value of Space around grace notes n spaces (read/write).

ExtraSpaceAfterLastGraceNote

The value of Extra space after last grace note n spaces (read/write).

IncludeChordSymbols

Returns True if Allow space for chord symbols is switched on, otherwise False (read/write).

Chapter 4: Object Reference 102

ExtraSpaceBetweenGuitarFrames

The value of Minimum gap between chord symbols n spaces (read/write).

MinSpaceAroundNote

The value of Around noteheads (and dots) n spaces (read/write).

MinSpaceBeforeAccidental

The value of Before accidentals n spaces (read/write).

MinSpaceBeforeArpeggio

The value of Before arpeggio n spaces (read/write).

MinSpaceAfterHook

The value of After tails with stems up n spaces (read/write).

MinSpaceAroundLegerLine

The value of Around leger lines n spaces (read/write).

MinSpaceAtStartOfBar

The value of After start of bar n spaces (read/write).

MinSpaceAtEndOfBar

The value of Before end of bar n spaces (read/write).

MinTieSpacing

The value of Min space (tie above/below note) n spaces (read/write).

MinTieSpacingChords

The value of Min space (tie between notes) n spaces (read/write).

IncludeLyrics

Returns True if Allow space for lyrics is switched on, otherwise False (read/write).

AllowFirstLyricOverhang

Returns True if Allow first lyric to overhang barline is switched on, otherwise False (read/write).

AllowSpaceForHyphen

Returns True if Allow extra space for hyphens is switched on, otherwise False (read/write).

SpaceBetweenLyrics

The value of Minimum gap between lyrics n spaces (read/write).

Chapter 4: Object Reference 103

PageNumberChange
Provides access to get and set the attributes of a page number change at the end of a bar or on a blank page.

Methods
SetFormatChangeOnly(format change only)

If format change only is True, this has the same effect as switching off the New page number check box on the

Page Number Change dialog in Sibelius. The page numbering will therefore continue counting consecutively,

but it’s possible to (for example) hide a group of page numbers and restore visibility at a later point on the score

without having to keep track of the previous page numbers.

SetHideOrShow(page number visibility)

Takes one of the three Page number visibility global constants to determine the visibility of the initial page

number change and its subsequent pages; see “Global Constants” on page 156.

SetPageNumber(page number)

Takes an integral number specifying the new number you wish to assign to the page.

SetPageNumberFormat(format)

Takes one of the four Page number format global constants to change the format used to display the page num-

ber change; see “Global Constants” on page 156.

Variables
BarNumber

Returns the bar number expressed as an integer (read only).

HideOrShow

Returns one of the three Page number visibility global constants; see “Global Constants” on page 156 (read

only).

PageNumber

Returns the page number expressed as an integer. For example, page x when using Roman numerals would be

10, or 24 with alphabetics (read only).

PageNumberAsString

Returns the page number change as visible on the corresponding page in Sibelius (read only).

PageNumberBlankPageOffset

Returns the blank page offset of the page number change, or 0 if there are no blank pages following the bar con-

taning the page number change (read only).

Chapter 4: Object Reference 104

PageNumberFormat

Returns one of four Page number format global constants describing the format of the page number change;

see “Global Constants” on page 156 (read only).

Chapter 4: Object Reference 105

PluginList
An array that is obtained from Sibelius.Plugins. It can be used in a for each loop or as an array with

the [n] operator to access each Plugin object.

Methods

Contains(pluginName)

Returns True if a plug-in with the given name is installed. This can be used to query whether a plugin is installed

before you try to call it.

Variables
NumChildren

Number of plug-ins (read only).

Plugin
This represents an installed plugin. Typical usage:

for each p in Sibelius.Plugins
{

trace("Plugin: " & p.Name);
}

Methods
The following methods are intended to allow you to check the existence of specific methods, data and dialogs in

plug-ins, which allows you to check in advance that calling a method in another plug-in will succeed, and fail

gracefully if the method is not found:

MethodExists(method)

Returns True if the specified method exists in the current Plugin object.

DataExists(data)

Returns

True if the specified data exists in the current Plugin object.

DialogExists(dialog)

Returns True if the specified dialog exists in the current Plugin object.

Chapter 4: Object Reference 106

Variables
File

The File object corresponding to the file that the plug-in was loaded from (read only).

Name

The name of the plug-in (read only).

RehearsalMark
Derived from a BarObject and found in the system staff only. RehearsalMarks have an internal numbering and

a visible text representation, both of which can be read from ManuScript.

Methods
None.

Variables
Mark

The internal number of this rehearsal mark. By default rehearsal marks are consecutive (with the first one num-

bered zero), but the user can also create marks with specific numbers.

MarkAsText

The textual representation of this rehearsal mark as drawn in the score. This is determined by the House Style 

Engraving Rules options, and can take various forms (numerical or alphabetical).

Score
You can obtain the Score object by way of the Sibelius object, for example:

score = Sibelius.ActiveScore;

A Score contains one SystemStaff and one or more Staff objects.

for each variable in returns each staff in the score or the current dynamic part in turn (not the system staff).

for each type variable in returns the objects in the score in chronological order, from the top staff to the bot-

tom staff (for simultaneous objects) and then from left to right (again, not including the system staff).

Methods
AddBars(n)

Adds n bars to the end of the score.

Chapter 4: Object Reference 107

ApplyStyle(style file,"style",["style"])

Imports named styles from the given house style file (.lib) into the score. The style file parameter can either be

a full path to the file, or just the name of one of the styles that appears in the House Style  Import House Style

dialog. You can import as many “style” elements as you like in the same method. Style names are as follows:

HOUSE, TEXT, SYMBOLS, LINES, NOTEHEADS, CLEFS, DICTIONARY, SPACINGRULE,

DEFAULTPARTAPPEARANCE, INSTRUMENTSANDENSEMBLES, MAGNETICLAYOUTOPTIONS
or ALLSTYLES.

For instance:

score2.ApplyStyle("C:\NewStyle.lib", "HOUSE", "TEXT");

Note that the constant HOUSE refers, for historical reasons, only to those options in the House Style > Engrav-

ing Rules and Layout > Document Setup dialogs, not the entire house style. To import the entire House Style,

use the ALLSTYLES constant.

ClefStyleId(clef style name)

Returns the identifier of the clef style with the given name, or the empty string if there is no such clef style.

CreateInstrument(style ID[,change names,["full name",["short name"]]])

Creates a new instrument, given the style ID of the instrument type required (see “Instrument Types” on

page 165). If you want to supply the instrument names to be used in the score, set the optional change names pa-

rameter to True, then supply strings for the full name and short name. Returns True if the instrument was cre-

ated successfully and False if the instrument type could not be found.

CreateInstrumentAtBottom(style ID[,change names,["full name",["short name"]]])

Behaves the same way as CreateInstrument, only the new instrument is always created below all other in-

struments that currently exist in the score. This can be useful when programatically copying a list of staves/in-

struments from one score to another, as you can guarantee the ordering of the staves will be the same in both

scores.

CreateInstrumentAtBottomReturnStave(style ID[,change names,["full name",["short
name"]]])

As above, but returns the Staff object created, or null if unsuccessful.

CreateInstrumentAtTop(style ID[,change names,["full name",["short name"]]])

Behaves in exactly the same way as CreateInstrumentAtBottom, only the new instrument is always cre-

ated above all other instruments that currently exist in the score.

CreateInstrumentAtTopReturnStave(style ID[,change names,["full name",["short name"]]])

As above, but returns the Staff object created, or null if unsuccessful.

Chapter 4: Object Reference 108

CreateInstrumentReturnStave(style ID[,change names,["full name",["short name"]]])

Like CreateInstrument, but returns the Staff object created, or null if unsuccessful. Note that if the instru-

ment being created contains more than one staff (such as piano or harp), the top stave of the instrument in ques-

tion will be returned.

ExportPartsAsPDF(filename[,single file[,part IDs[,include score]]])

Exports one dynamic part, a selection of dynamic parts, or all dynamic parts in PDF format, either concatenated

into a single file, or as separate files. The filename parameter should be a complete path. It may contain the fol-

lowing tokens, which Sibelius will expand automatically to generate a complete filename:

%f = Score filename

%t = Score title (as specified in the Title field in File > Info)

%p = Part name (as specified in the Part name field in File > Info)

%n = Part number

%o = Total number of parts

%d = Date (format YYYY-MM-DD)

%h = Time (format HHMM)

The Boolean parameter single file specifies whether the chosen parts should be extracted into separate PDF files

or concatenated into a single PDF file. This parameter defaults to True if not specified.

To specify which parts to export, create a sparse array of part IDs, and pass this in as the third parameter, part
IDs. For example:

s = Sibelius.ActiveScore;
partsToExport = CreateSparseArray();
parts = s.DynamicParts;
firstNPartsToExport = 2;
i = 0;
for each part in parts {
 if (i <= firstNPartsToExport) { // <= because the first "part" in
the
 //DynamicPartsCollection is the full score.
 partsToExport.Push(part);
 }
 i = i + 1;
}
s.ExportPartsAsPDF("c:\\%f - %p.pdf", true, partsToExport);

To export all parts, pass in 0 instead of a sparse array.

The final optional Boolean parameter, include score, defaults to False. If set to True, the full score will also

be exported along with the parts.

ExportScoreAsPDF(filename)

Exports the full score as a PDF, with the specified filename, which should be a complete path. The filename pa-

rameter may use the same tokens as the ExportPartsAsPDF() method—see above.

Chapter 4: Object Reference 109

ExtractParts([show_dialogs[,parts path[,open parts]]])

Extracts parts from the score. The first optional Boolean parameter can be False, in which case the parts are ex-

tracted without showing an options dialog. The second optional parameter specifies a folder into which to extract

the parts (must end with a trailing folder separator). The third optional Boolean parameter, which defaults to

True, specifies whether the extracted parts should be opened immediately, or simply saved.

FreezeMagneticLayoutPositions()

Does the same as selecting the whole score and choosing Layout > Magnetic Layout > Freeze Positions,

which explicitly sets the Dx/Dy of every object to the position produced by Magnetic Layout, then disables Mag-

netic Layout for each object.

GetLocationTime(bar number[,position[,pass]])

Returns the time of a given bar (by passing in its bar number) and optional position within that bar in the score

in milliseconds. If the score contains repeats, the value returned will always be the time on the first pass through

the score, but you can supply the optional pass parameter to specify a particular pass in the repeat structure. If the

bar and position are not valid, the return value will be -1.

GetVersions()

Returns the score’s VersionHistory object (see “VersionHistory” on page 153).

HideEmptyStaves(startStaveNum,endStaveNum,startBarNum,endBarNum)

Hides any empty staves between startStaveNum and endStaveNum, from startBarNum to endBarNum. Both the

staff numbers and bar numbers are 1-based, and refer to the active part.

InsertBars(n,barNum[,length])

Inserts n bars before bar number barNum. If no length has been specified, the bar will be created with the correct

length according to the current time signature. However, irregular bars may also be created by specifying a value

for length.

InternalPageNumToExternalPageNum(pagenum)

Returns a string containing the external page number of the given internal page number pagenum.

LineStyleId(line style name)

Returns the identifier of the line style with the given name, or the empty string if there is no such line style.

NoteStyleIndex(notehead style name)

Returns the index of the note style with the given name, or –1 if there is no such note style.

NthStaff(staff index from 1)

Returns the nth staff of the score or the current dynamic part.

Chapter 4: Object Reference 110

OptimizeStaffSpacing (from staff number[, to staff number[,from bar[,to bar]]])

Does the equivalent of Layout > Optimize Staff Spacing for the given range of staves or a whole score. from
staff number must be specified; if to staff number is not specified, Sibelius will optimize the distances between

from staff number and the bottom staff in the score; if from bar is not specified, Sibelius sets it to 1; if to bar is

not specified, Sibelius sets it to the last bar of the score.

PlayLiveTempo(play)
Switches Play > Live Tempo on or off; set play to True to switch it on, or False to switch it off.

RemoveAllHighlights()

Removes all highlights in this score.

RemoveVideo()
Removes an attached video from the score.

RenameTextStyle("old name","new name")

Renames a text style to a new name.

Save(filename)

Saves the score, overwriting any previous file with the same name.

SaveAs(filename,type[,use_defaults,foldername])

Saves the score in a specified format, overwriting any previous file with the same name. The optional argument

use_defaults only applies to graphics files, and specifies whether or not the default settings are to be used. When

set to False, the Export Graphics dialog will appear and allow the user to make any necessary adjustments. The

optional foldername specifies the folder in which the file is to be saved, and will create the specified folder if it

does not exist. The foldername parameter must not end with a path separator (which is “\\” on Windows).

The possible values for type are:

SIBL Sibelius format (current version)

EMF EMF

BMP Windows bitmap

PICT PICT format

PDF PDF format

PNG PNG format

Midi MIDI format

TIFF TIFF format

XML Uncompressed MusicXML

MXL Compressed MusicXML

So, to save a file using the current Sibelius file format, you would write score.SaveAs(“file-
name.sib”, “SIBL”);

Chapter 4: Object Reference 111

SaveAsAudio(filename[,include all staves[,play from start]])

Creates a WAV file (PC) or AIFF file (Mac) of the score, using Sibelius’s File  Export  Audio feature. If in-
clude all staves is True (the default), Sibelius will first clear any existing selection from the score so every in-

strument will be recorded; only selected staves will otherwise be exported. When play from start is True (also

the default), Sibelius will record the entire score from beginning to end, otherwise from the current position of

the playback line. Note that SaveAsAudiowill only have an effect if the user’s current playback configuration

consists of solely VST and/or AU devices. The functions returns True if successful, otherwise False (including

if the user clicks Cancel during export).

SaveAsSibelius2(filename[,foldername])

Saves the score in Sibelius 2 format, overwriting any previous file with the same name. The optional foldername

specifies the folder in which the file is to be saved. Note that saving as Sibelius 2 may alter some aspects of the

score; see Sibelius Reference for full details.

SaveAsSibelius3(filename[,foldername])

Saves the score in Sibelius 3 format. See documentation for SaveAsSibelius2 above.

SaveAsSibelius4(filename[,foldername])

Saves the score in Sibelius 4 format. See documentation for SaveAsSibelius2 above.

SaveAsSibelius5(filename[,foldername])

Saves the score in Sibelius 5 format. See documentation for SaveAsSibelius2 above.

SaveAsSibelius6(filename[,foldername])

Saves the score in Sibelius 6 format. See documentation for SaveAsSibelius2 above.

SaveAsSibelius7(filename[,foldername])

Saves the score in Sibelius 7 format. See documentation for SaveAsSibelius2 above.

SaveCopyAs(filename[,foldername])

Saves a copy of the score in the current version’s format without updating the existing score’s file name in Si-

belius.

SetPlaybackPos(bar number,sr)

Sets the position of the playback line to a given bar number and rhythmic (sr) position.

ShowEmptyStaves(startStaveNum,endStaveNum,startBarNum,endBarNum)

Shows any empty staves currently hidden using Layout  Hiding Staves  Hide Empty Staves between start-
StaveNum and endStaveNum, from startBarNum to endBarNum. Both the staff numbers and bar numbers are 1-

based, and refer to the active part.

StaveTypeId(stave type name)

Returns the identifier of the stave type with the given name, or the empty string if there is no such stave type.

Chapter 4: Object Reference 112

SystemCount(page num)

The number of systems on a page (the first page of the score is page 1).

SymbolExists(symbol)

Returns True if the symbol index or name symbol is found in the score, otherwise False.

SymbolIndex(symbol name)

Returns the index of the symbol with the given name, or –1 if there is no such symbol.

TextStyleId(text style name)

Returns the identifier of the text style with the given name, or the empty string if there is no such text style.

ViewLiveTempo(view)

Switches View > Live Tempo on or off; set view to True to switch it on, or False to switch it off.

Variables
Arranger

Arranger of score from File > Score Info (read/write).

Artist

Artist of score from File > Score Info (read/write)

Barlines

Returns a Barlines object containing information about the barline groupings in the score (read only).

BarPlaybackOrder

Returns a sparse array containing a list of integers that describes the order in which the bars will be played, ac-

cording to the repeat structure of the score or the settings in Play > Interpretation > Repeats. To set the order

in which bars should be played, pass in a sparse array containing a list of integers describing the order in which

bars should be played back. To return to the score’s automatically-determined playback order, pass in null
(read/write).

BarPlaybackOrderString

Returns a string describing the order in which the bars will be played, according to the repeat structure of the

score. The string uses the same format as the read-out in Play > Interpretation > Repeats, for example, “1–8,

1–5,9–12”. To set the order in which bars should be played, pass in a string of the appropriate format. To return

the score’s automatically-determined playback order, pass in null (read/write).

BracketsAndBraces

Returns a BracketsAndBraces object containing information about the brackets and braces in the score (read

only).

Chapter 4: Object Reference 113

Composer

Composer of score from File > Score Info (read/write).

ComposerDates

Value of Composer’s dates from File > Score Info (read/write).

Copyist

Copyist of score from File > Score Info (read/write).

Copyright

Copyright of score from File > Score Info (read/write).

CurrentDynamicPart

Returns or sets the current DynamicPart object for the Score (read/write). Sibelius will not automatically display

the new part: use Sibelius.ShowDynamicPart() to change the displayed part.

CurrentPlaybackPosBar

Returns the bar number in which the playback line is currently located.

CurrentPlaybackPosSr

Returns the rhythmic position within the bar at which the playback line is currently located.

Dedication

Dedication of score from File > Score Info (read/write).

DocumentSetup

Returns a DocumentSetup object representing the settings in Layout > Document Setup (read only).

DynamicParts

Returns a DynamicPartCollection object representing the dynamic parts present in the Score. This object will al-

ways stay up to date, even if parts are added or deleted (read only).

EnableScorchPrinting

Corresponds to the Allow printing and saving checkbox in the Export Scorch Web Page dialog (read/write).

EngravingRules

Returns an EngravingRules object corresponding to selected settings in the House Style> Engraving Rules di-

alog (read only).

FileName

The filename for the score (read only).

Chapter 4: Object Reference 114

FocusOnStaves

is True if View > Focus on Staves is switched on (read/write). See also Staff.ShowInFocusOn-
Staves.

HitPoints

The HitPointList object for the score (read/write).

InstrumentChanges

Value of Instrument changes from File > Score Info (read/write).

InstrumentTypes

Returns an InstrumentTypeList containing the score’s instrument types, on which one may execute a for
each loop to get information about each instrument type within the score.

IsDynamicPart

Returns True if the current active score view is a part (read only).

LiveMode

Is True (1) if Play > Live Playback is on (read/write).

Lyricist

Lyricist of score from File > Score Info (read/write).

MagneticLayoutEnabled

Returns True if the current score has Layout > Magnetic Layout switched on (read/write).

MainMusicFontName

Returns the name of the font specified as the Main music font (such as “Opus” or “Reprise”) in House Style

>Edit All Fonts (read/write).

MainTextFontName

Returns the name of the font specified as the Main text font (such as “Times New Roman” or “Arial”) in House

Style > Edit All Fonts (read/write).

MusicTextFontName

Returns the name of the font specified as the Music text font (such as “Opus Text” or “Reprise Text”) in House

Style > Edit All Fonts (read/write).

NumberOfPrintCopies

The number of copies to be printed (read/write).

Chapter 4: Object Reference 115

OpusNumber

Opus number of score from File > Score Info (read/write).

OriginalProgramVersion

The version of Sibelius in which this score was originally created, as an integer in the following format:

(major version) * 1000 + (minor version) * 100 + (revision) * 10. So Sibelius at the time of this writing would

be 8.3.1 would be returned as 8310.

OtherInformation

More information concerning the score from File > Score Info (read/write).

PageCount

The number of pages in the score (read only).

PartName

Value of Part Name from File > Score Info (read/write).

Publisher

Publisher of score from File > Score Info (read/write).

Redraw

Set this to True (1) to make the score redraw after each change to it, False (0) to disallow redrawing (write

only).

ScoreDuration

The duration of the score in milliseconds (read only).

ScoreEndTime

The duration of the score, plus the score start time (see above), in milliseconds (read only).

ScoreHeight

Height of a page in the score, in millimetres (read only).

ScoreStartTime

The value of Timecode of first bar, from Play > Video and Time > Timecode and Duration, in milliseconds

(read only).

ScoreWidth

Width of a page in the score, in millimetres (read only).

Selection

The Selection object for the score, which is a list of selected objects (read only).

Chapter 4: Object Reference 116

ShowMultiRests

Is True (1) if Layout > Show Multirests is on (read/write).

StaffCount

The number of staves in the score (read only).

StaffHeight

Staff height, in millimetres (read only).

Subtitle

Subtitle of score from(read/write).

SystemCount

The number of systems in the score (read only).

SystemObjectPositions

Returns a SystemObjectPositions object corresponding to the settings in House Style > System Object Posi-

tions for the score (read only).

SystemStaff

The SystemStaff object for the score (read only).

Title

Title of score from File  Score Info (read/write).

TransposingScore

Is True (1) if Notes > Transposing Score is on (read/write).

UsingManualBarPlayOrder

Returns True if Manual repeats playback is chosen in Play > Interpretation > Repeats, otherwise False
(read only).

YearOfComposition

Value of Year of composition from File > Score Info (read/write).

Chapter 4: Object Reference 117

Selection
for each variable in returns every BarObject (which is an object within a bar) in the selection.

for each type variable in produces each object of type type in the selection. Note that if the selection is a sys-

tem selection (which is surrounded by a double purple box in Sibelius) then objects in the system staff will be re-

turned in such a loop.

Methods
Clear()

Removes any existing selection(s) from the current active score.

ClipboardContainsData([clipboard Id])

Returns True if the given clipboard contains data. As with the Copy and Paste methods, 0 (or no arguments)

refers to Sibelius’s internal clipboard, and all other numeric values will interrogate the temporary clipboard with

the matching ID.

Copy([clipboard Id])

Copies the music within the current selection to Sibelius’s internal clipboard or a ManuScript-specific temporary

clipboard, which goes out of scope along with the Selection object itself. If no clipboard Id is specified, or if it

is set to 0, the selection will be copied to Sibelius’s internal clipboard. Any other numeric value you pass in will

store the data in a temporary clipboard adopting the ID you specify. Used in conjuction with Paste or Paste-
ToPosition (see below).

Delete([remove staves])

Deletes the music currently selected in the active score. Akin to making a selection manually in Sibelius and hit-

ting Delete. If remove staves is omitted or set to True, Sibelius will completely remove any wholly selected

staves from the score. If you wish Sibelius to simply hide such staves instead, set this flag to False.

ExcludeStaff(staff number)

If a passage selection already exists in the current active score, an individual stave may be removed from the se-

lection using this method.

HideSelectedEmptyStaves()

If the current selection contains staves that are empty, they will be hidden (equivalent to selecting a passage and

choosing Layout > Hiding Staves > Hide Empty Staves).

IncludeStaff(staff number)

If a passage selection already exists in the current active score, a non-consecutive stave may be added to the se-

lection using this method.

Chapter 4: Object Reference 118

Paste([clipboard Id[,reset positions]])

Pastes the music from a given clipboard to the start of the selection in the current active score. If no clipboard Id
is specified, or if it is set to 0, the data will be pasted from Sibelius’s internal clipboard. Any other numeric value

you pass in will take the data from a temporary clipboard you must have previously created with a call to Copy
(see above). Returns True if successful.

If reset positions is False, the positions of any objects that have been moved by the user in the source selection

will be retained in the copy. This is the default behaviour. If you wish Sibelius to reset objects to their default po-

sitions, set this flag to True. This can be useful when copying one or more single objects (which is a non-passage

selection).

Note that pasting into a score using this method will overwrite any existing music. Only one copy of the music

will ever be made, so if your selection happens to span more bars or staves than is necessary, the data will not be

duplicated to fill the entire selection area.

PasteToPosition(stave num, bar num, position[, clipboard Id[,reset positions]])

Pastes the music from a given clipboard to a specific location in the current active score. The optional parameters

and pasting behavior works in the same way as calls to Paste.

RestoreSelection()

Restores the selection previously recorded with a call to StoreCurrentSelection. Usefully called at the

end of a plug-in to restore the initial selection.

SelectPassage(start barNum[,end barNum[,top staveNum[,bottom staveNum[,start pos[,end
pos]]]]])

Programmatically makes a passage selection around a given area of the current active score. When no end bar-
Num is given, only the start barNum will be selected. If neither a top- nor bottom staveNum has been specified,

every stave in the score will be selected, whereas if only a top staveNum has been supplied, only that one staff

will be selected. Sibelius will begin the selection from the start of the first bar if no start pos has been given, sim-

ilarly completing the selection at the end of the final bar if no end pos has been supplied.

NB: The start pos and end pos you supply may be altered by ManuScript: Sibelius requires a passage selection

to begin and end at a NoteRest if it doesn’t encompass the entire bar.

SelectSystemPassage(start barNum[,end barNum[,start pos[,end pos]]])

Programmatically makes a system selection around a given area of the current active score. When no end bar-
Num is given, only the start barNum will be selected. Sibelius will begin the selection from the start of the first

bar if no start pos has been given, similarly completing the selection at the end of the final bar if no end pos has

been supplied.

NB: The start pos and end pos you supply may be altered by ManuScript: Sibelius requires a passage selection

to begin and end at a NoteRest if it doesn’t encompass the entire bar.

StoreCurrentSelection()

Stores the current selection in the active score internally. Can be retrieved with a call to RestoreSelection
(see below). Usefully called at the start of a plug-in to store the initial selection.

Chapter 4: Object Reference 119

Transpose(degree, interval type[,keep double accs[,transpose keys]])

Transposes the currently selected music up or down by a specified degree and interval type. To transpose up, use

positive values for degree; to transpose down, use negative values. Note that degrees are 0-based, so 0 is equal

to a unison, 1 to a second and so on. For descriptions of the various available interval types, see “Global Con-

stants” on page 156. By default, Sibelius will transpose using double sharps and flats where necessary, but this

behavior may be suppressed by setting the keep double accs flag to False. Sibelius will also transpose any key

signatures within the selection by default, but can be overriden by setting the fourth parameter to False.

For help in calculating the interval and degree required for a particular transposition, see the documentation for

the Sibelius.CalculateInterval and Sibelius.CalculateDegree methods.

Variables
BottomStaff

The number of the bottom staff of a passage (read only).

FirstBarNumber

The internal bar number of the first bar of a passage (read only).

FirstBarNumberString

The external bar number (including any bar number format changes) of the first bar of a passage (read only).

FirstBarSr

The position of the start of the passage selection in the first bar (read only).

IsPassage

True if the selection represents a passage, as opposed to a multiple selection (read only).

IsSystemPassage

True if the selection includes the system staff (read only).

LastBarNumber

The internal bar number of the last bar of a passage (read only).

LastBarNumberString

The external bar number (including any bar number format changes) of the last bar of a passage (read only).

LastBarSr

The position of the end of the passage selection in the last bar (read only).

TopStaff

The number of the top staff of a passage (read only).

Chapter 4: Object Reference 120

Copying Entire Bars

Copying passages from one location in a score to another—or even from one score to another—is very simple.

Here is an example function demonstrating how one might go about achieving this:

CopyBar(scoreSrc, barFirstSrc, barLastSrc, scoreDest, barFirst-
Dest,

barLastDest) // This is the function signature

{
sel = scoreSrc.Selection;
sel.SelectPassage(barFirstSrc.BarNumber, barLastSrc.BarNumber,

barFirstSrc.ParentStaff.StaffNum,
barLastSrc.ParentStaff.StaffNum);

sel.Copy(0);
selDest = scoreDest.Selection;
selDest.SelectPassage(barFirstDest.BarNumber, barLastDest.Bar-

Number,
barFirstDest.ParentStaff.StaffNum,
barLastDest.ParentStaff.StaffNum);

selDest.Paste(0);
}

Note that you may use any temporary clipboard or Sibelius’s own internal clipboard if the source and destination

locations are in the same score, however you can only use Sibelius’s internal clipboard if the data is being trans-

fered between two individual scores. This is because the temporary clipboards belong to the Selection object it-

self.

Copying Multiple Selections from One Bar to Another
Using a combination of the BarObject’s Select method and the Selection object’s Copy and PasteToPo-
sition methods, it is possible to copy an individual or multiple selection from one location in a score to an-

other. Bear in mind that Pastewill always paste the material to the very start of the selection, so if you’re copy-

ing a selection that doesn’t start at the very beginning of a bar, you’ll have to store the position of the first item

and pass it to PasteToPosition when you later come to paste the music to another bar.

Chapter 4: Object Reference 121

This example code below copies all items from position 256 or later from one bar to another. It is assumed that

sourceBar is a valid Bar object, and destStaffNum and destBarNum contain the destination staff number and

bar number respectively:

sel = Sibelius.ActiveScore.Selection; // Get a Selection object for
this score
sel.Clear(); // Clear the current selection
clipboardToUse = 1; // This clipboard ID we’re going to use
copyFromPos = 256; // Copy all objects from this point in the
source bar
posToCopyTo = 0; // Variable used to store the position of the
first object copied
for each obj in sourceBar { // Iterate over all objects in the bar

if (obj.Position >= copyFromPos) { // Ignore objects before the
start threshold

obj.Select(); // Select each relevant object in turn
if (posToCopyTo = 0) {

posToCopyTo = obj.Position; // Remember the position of the
first item

{
}

}
sel.Copy(clipboardToUse); // Copy the objects we’ve selected to the
clipboard

sel.PasteToPosition(destStaffNum, destBarNum, posToCopyTo, clip-
boardToUse); // And paste them to the destination bar at the rele-
vant offset

Sibelius
There is a predefined variable that represents the Sibelius program. You can use the Sibelius object to open

scores, close scores, display dialogs or (most commonly) to get currently open Score objects.

for each variable in returns each open score.

Methods
AppendLineToFile(filename,text[,use_unicode])

Appends a line of text to the file specified (adds line feed). See comment for AppendTextFile above for ex-

planation of the use_unicode parameter. Returns True if successful.

Chapter 4: Object Reference 122

AppendLineToRTFFile(filename,text)

Appends a line of text to the file specified. Times New Roman 12pt is used, unless you specify a change of for-

matting. To change formatting, use the following backslash expressions:

\B\ bold on

\I\ italic on

\U\ underline on

\n\ new line

\b\ bold off

\i\ italic off

\u\ underline off

\ffontname\ change to given font name (for example \fArial\ to switch to Arial)

\spoints\ set the font size to a specific point size (for example \s16\ to set the font to 16pts).

Note the difference in meaning of \s in the context of adding data to an RTF file, versus its use in the context

of styling text directly within Sibelius (see “Syntax” on page 41 following).

AppendTextFile(filename,text[,use_unicode])

Appends text to the file specified. If the optional Boolean parameter use_unicode is True, then the string spec-

ified will be exported in Unicode format; if this parameter is False then it will be converted to 8-bit Latin-1 be-

fore being added to the text file. This parameter is True by default. Returns True if successful.

CalculateDegree(source pitch, dest pitch, upward interval)

Takes two note names in the form of a string (for example C, G#, Bb, Fx or Ebb) and a boolean that should be

True if the interval you’re wishing to calculate is upward. Returns a 0-based number describing the degree be-

tween the two notes.

For example, CalculateDegree(“C#”, “G”, False) would return 3.

CalculateInterval(source pitch, dest pitch, upward interval)

Takes two note names in the form of a string (for example C, G#, Bb, Fx or Ebb) and a boolean that should be

True if the interval you’re wishing to calculate is upward. Returns a number representing an Interval Type (see

“Global Constants” on page 156). You can use the value returned in calls to NoteRest.Transpose and Se-
lection.Transpose.

For example, CalculateInterval(“Bb”, “G#”, True) would return IntervalAugmented.

Close(show dialogs)

Closes the current score or part view; if the current view is the last tab in the current window, the window will

therefore also be closed. If the optional Boolean parameter is True then warning dialogs may be shown about

saving the active score, and if it is False then no warnings are shown (and the score will not be saved).

Chapter 4: Object Reference 123

CloseAllWindows(show dialogs)

Closes all open document windows. If the optional Boolean parameter is True then warning dialogs may be

shown about saving any unsaved scores, and if it is False then no warnings are shown (and the scores will not

be saved).

CloseDialog(dialogName,pluginName,returnValue)

Closes the dialog dialogName belonging to the plug-in pluginName (normally this should be set to self), re-

turning the Boolean value returnValue, which can be set to True (1) or False (0). Normally you do not need

to use this method to close a dialog, as you can set buttons (typically with labels like OK or Cancel) to close the

dialog and return a value, but if you want greater control over when a dialog is closed, this method provides it.

CloseWindow(show dialogs)

Closes the current window (that closes all of the open tabs in the current window). If the optional Boolean pa-

rameter is True then warning dialogs may be shown about saving the score, and if it is False then no warnings

are shown (and the score will not be saved).

CreateFolder(foldername)

Creates the folder of specified foldername; returns the Folder object created if successful, or null if it fails.

CreateProgressDialog(caption,min value,max value)

Creates the progress dialog, which shows a slider during a long operation.

CreateRTFFile(filename)

Creates the Rich Text Format (RTF) file specified. Any existing file with the same name is destroyed. Returns

True if successful.

CreateTextFile(filename)

Creates the plain text file specified. Any existing file with the same name is destroyed. Returns True if success-

ful.

DestroyProgressDialog()

Destroys the progress dialog.

EnableControlById(plugin,dialog,controlID,enable)

Dynamically enables or disables a given control on a plug-in dialog: plugin is a plug-in object, for example

Self; dialog is a dialog object, and therefore should not be passed in quotation marks; controlID is the string

corresponding to the control to be enabled or disabled; and enable is a Boolean parameter, which enables the con-

trol when set to True and disables the control when set to False.

EnableNthControl(nth control, enable)

Dynamically enables or disables a given control on a plug-in dialog. Can be called either before a dialog has been

displayed (in which case the operation will apply to the next dialog you show), or while a dialog is already visible

(in which case the operation will affect the top-most currently visible dialog).

Chapter 4: Object Reference 124

Note that, using this method, controls can only be identified according to their order upon creation; for this rea-

son, you are strongly recommended to use EnableControlById() instead. To find out the creation order,

open the appropriate dialog in the plug-in editor, right click on the dialog’s client area and choose Set Creation

Order from the contextual menu that appears. Note that nth control expects a 0-based number, unlike the display

given by Set Creation Order. By default, all controls will be enabled; to disable any given control, set enable
to false.

FileExists(filename)

Returns True if a file exists or False if it doesn’t.

FolderExists(foldername)

Returns True if a folder exists or False if it doesn’t.

GetDocumentsFolder()

Returns the user’s My Documents (Windows) or Documents (Mac) folder.

GetElapsedCentiSeconds(timer number)

Returns the time since ResetStopWatch was called for the given stop watch, in 100ths of a second.

GetElapsedMilliSeconds(timer number)

Returns the time since ResetStopWatch was called for the given stop watch, in 1000ths of a second.

GetElapsedSeconds(timer number)

Returns the time since ResetStopWatch was called for the given stop watch in seconds.

GetFile(file path)

Returns a new File object representing a file path for example file=Sibelius.GetFile("c:\\on-
ion\\foo.txt");

GetFolder(file path)

Returns a new Folder object representing a file path for example folder=Sibelius.Get-
Folder("c:\");

GetNotesForChord(chord name)

Returns a ManuScript array giving the MIDI pitches corresponding to the named chord symbol.

GetNotesForGuitarChord(chord name)

Returns a ManuScript array giving the MIDI pitches and string numbers corresponding to the named guitar

chord, using the most suitable fingering according to the user’s preferences. Strings are numbered starting at 0

for the bottom string and increasing upwards. The array returned has twice as many entries as the number of

notes in the chord, because the pitches and string numbers are interleaved thus:

array[0] = MIDI pitch for note 0

array[1] = string number for note 0

array[2] = MIDI pitch for note 1

Chapter 4: Object Reference 125

array[3] = string number for note 1

...

GetScoresFolder()

Returns a new Folder object representing the default Scores folder (as defined on the Files page of File  Pref-

erences).

GetSyllabifier()

Returns a new Syllabifier object, providing access to Sibelius’s internal syllabification engine.

GetUserApplicationDataFolder()

Returns the user’s Application Data (Windows) or Application Support (Mac) folder.

GoToEnd()

Moves the playback line to the end of the score.

GoToStart()

Moves the playback line to the start of the score.

IsDynamicPartOpen(dynamic part)

Returns True if the specified part and its corresponding Score is valid and is visible in a Score window within

Sibelius.

IsFontFamilyInstalled(font name)

Returns True if a font with the name font name exists on the system, otherwise False.

LaunchApplication(path[,parameters[,hide]])

Launches an external application specified via its path, which must be a complete path to the application to be

launched. You can optionally pass in a sparse array of parameters (or a string if you want to pass in only a single

parameter); omit this or set it to null to pass no parameters to the launched application. To prevent the launched

application from gaining the focus once it is launched, set the optional hide parameter to True; if unspecified,

this defaults to False, so the launched application will gain the focus.

LiveTempoTap()

Equivalent to tapping a beat during Live Tempo recording.

MakeSafeFileName(filename)

Returns a “safe” version of filename. The function removes characters that are illegal on Windows or Unix, and

truncates the name to 31 characters so it will be viewable on Mac OS 9.

MessageBox(string)

Shows a message box with the string and an OK button.

Chapter 4: Object Reference 126

MoveActiveViewToBar(bar number[,position])

Brings a given internal bar number into view. Has the same effect as Go to Bar in Sibelius. An optional position

within the bar may also be specified, but if omitted, the very start of the bar will be brought into view.

MoveActiveViewToSelection([start of selection])

Brings the object(s) currently selected into view. If start of selection is False, the end of the selection will be

brought into view. If the optional argument is True or omitted, the start of the selection will be visible. Has the

same effect as Shift + Home/End in Sibelius.

New([manuscript paper])

Creates and shows a new score. If the optional parameter manuscript paper is not supplied, Sibelius will create

a blank score; manuscript paper should be the filename of the manuscript paper you want to create, minus its .sib

file extension, optionally including the name of the category (subfolder) in which it is located, for example both

"String orchestra" and "Orchestral/String orchestra" will work. Returns the score object

corresponding to the new score.

NthScore(score index from 0)

Returns the nth open score (zero-based), or null if the specified index is not valid.

Open(filename [,quiet])

Opens and displays the given file. Filename must include its extension, for example Song.sib. If the optional

boolean parameter quiet is set to True, then no error messages or dialogs will be displayed, even if the file could

not be opened for some reason. Returns True if the file is opened successfully, False otherwise.

Play()

Plays the current score, from the current position of the playback line.

PlayFromSelection()

Plays from the current selection.

PlayFromStart()

Plays from the start of the score.

PrependScreenreaderText(string)

Prepends string to the default screen reader description.

Print(number of copies[, dynamic part[, showdialog]])

Prints the specified number of copies of the current score or dynamic part using default settings. If number of
copies is missing or a negative number, then the default number of copies for the score or part is printed, and if

set to 0 no printing occurs. The optional dynamic part parameter must be a valid object of the active Score (this

does not affect or use Score.CurrentDynamicPart for the Score printed); if it is not supplied, the active

Score is printed instead. Returns True for success, False for failure. The second optional parameter, showdi-

Chapter 4: Object Reference 127

alog, is a Boolean: if set to True, Sibelius will show the Print dialog, and if not specified or set to False, Si-

belius will not show the dialog.

PrintAllDynamicParts([score])

Prints the default number of copies of all dynamic parts, but does not print the full score. Prints the currently-ac-

tive Score if the optional score parameter is not passed in. Returns True for success, False for failure.

RandomNumber()

Returns a random number.

RandomSeed(start number)

Restarts the random number sequence from the given number.

RandomSeedTime()

Restarts the random number sequence based on the current time.

RefreshDialog()

Refreshes the data being displayed by any controls on the currently active plug-in dialog. For example, if a text

object gets its string from a global variable and the value stored in this global variable has changed whilst the di-

alog is visible, calling RefreshDialog will update the text object on the dialog accordingly. Returns True if suc-

cessful.

ResetStopWatch(timer number)

Resets the given stop watch. timer number must be an integer greater than 0.

ReadTextFile(filename,[unicode])

Reads the given filename into an array of strings, one per line. If the unicode parameter is true, the file is treated

as Unicode, otherwise it is treated as ANSI (that is 8-bit) text, which is the default. The resulting array can be

used in two ways:

lines = Sibelius.ReadTextFile("file.txt");
for each l in lines {

trace(l);
}

or:

lines = Sibelius.ReadTextFile("file.txt");
for i=0 to lines.NumChildren {

trace(lines[i]);
}

ScreenreaderText(string)

Replaces Sibelius’s default screen reader description with string.

Chapter 4: Object Reference 128

SelectFileToOpen(caption,file,initial_dir,default extension,default type,default type description)

Shows a dialog prompting the user to select a file to open. All parameters are optional. The method returns a file

object describing the selection. For example:

file=Sibelius.SelectFileToOpen("Save
Score","*.sib","c:\","sib","SIBE","Sibelius File");

Note that the initial_dir parameter has no effect on Mac, because it is unsupported by Mac OS X.

SelectFileToSave(caption,file,initial_dir,default extension,default type,default type description)

Shows a dialog prompting the user to select a file to save to. All parameters are optional. The method returns a

file object describing the selection. File types and extensions:

Description Type Extension

EMF graphics "EMF" emf

Windows bitmap "BMP" bmp

Macintosh PICT bitmap "PICT" pict

Sibelius score "SIBE" sib

MIDI file "Midi" mid

House style file "SIBS" lib

PhotoScore file "SCMS" opt

Web page "TEXT" html

TIFF graphics "TIFF" tif

PNG graphics "PNG" png

Note that the initial_dir parameter has no effect on Mac, because it is unsupported by Mac OS X.

SelectFolder([caption])

Allows the user to select a folder and returns a Folder object. The optional string parameter caption sets the cap-

tion of the dialog that appears.

SetCurrentScoreViewType(view type)

Allows plug-ins to switch between Panorama and normal view; values are ViewTypePage (0) and ViewTy-
pePanorama (1).

SetFocusToControl(pluginName,dialogName,controlID)

Sets the focus on a specific control in a plug-in dialog. pluginName will normally be set to self, dialogName
is the name of the dialog in which the control is found, and controlID is the ID of the control to receive the focus,

which must be specified in quotation marks.

Chapter 4: Object Reference 129

ShowDialog(dialogName,pluginName)

Shows a dialog dialogName from a dialog description and sends messages and values to the given plug-in object

pluginName (normally set to Self). Returns the value True (1) or False (0) depending on which button you

clicked to close the dialog (typically OK or Cancel).

ShowDynamicPart(dynamic part[, newWindow])

Shows the specified dynamic part. The second optional Boolean parameter newWindow allows you to specify

whether the part should open in a new tab (specify False, the default) or a new window (specify True). Re-

turnsTrue if the specified part can be shown,False otherwise. Can be used to bring a Score to the front by way

of Sibelius.ShowDynamicPart(Score.CurrentDynamicPart).

ShowTraceWindow()

Shows the Plug-in Trace Window, or forces it to the front if it is already shown but currently behind another

window.

optartLiveTempoRecording()

Starts recording Live Tempo; equivalent to choosing Play > Record Live Tempo

StopLiveTempoRecording()

Stops recording Live Tempo.

Stop()

Stops the current score from playing.

UpdateProgressDialog(progress pos,status message)

Returns 0 if the user clicked Cancel.

YesNoMessageBox(string)

Shows a message box with Yes and No buttons. Returns True if Yes is chosen, else False.

Variables
ActiveScore

Is the active Score object (read/write). Setting Sibelius.ActiveScore makes active the current dynamic

part (which may be the full score rather than a part) of the score. If that window is not currently shown, a new

window may be created according to the user’s preferences. Returns null if it fails to make the specified score or

part active.

ApplicationLanguage

Returns the language of the version of S.ibelius currently running, always in English—such as English, Ger-
man, French and so on. (read only)

Chapter 4: Object Reference 130

ApplicationLanguageIsoString

Returns the two-letter ISO 3166 identifier of the language in which Sibelius is currently running, such as en, de,

fr, and so on (read only).

CurrentTime

Returns a string containing the current time in the format hh:mm:ss, based on your own computer’s locale (read

only).

CurrentDateShort

Returns a string containing the current date in the format dd/mm/yyyy, based on your own computer’s locale

(read only).

CurrentDateLong

Returns a string containing the current date in the format dd MM yyyy, based on your own computer’s locale

(read only).

CurrentDate

Returns the current date and time as a DateTime object in local time (read only).

FontFamilies

Returns a sparse array of strings containing the names of all the available font families on the system (read only).

HouseStyles

The list of house styles available, as a ComponentList.

LocalizedApplicationLanguage

Returns the language in which Sibelius is currently running, in the localized language, for example it returns

Deutsch when running in German (read only).

ManuscriptPapers

The list of manuscript papers available, as a ComponentList.

Chapter 4: Object Reference 131

OSVersionString

The current operating system in which the plug-in is running, as one of the following strings:

If the operating system is unrecognized, the variable returns Unknown system version.

PathSeparator

Returns the current path separator character (which is “\” on Windows, “/” on Mac).

Plugins

The list of plug-ins installed. See the documentation for the Plugin object

Playing

Is True if a score is currently being played (read only).

ProgramVersion

The current version of Sibelius in which the plug-in is running, as an integer in the following format

(major version) * 1000 + (minor version) * 100 + (revision) * 10

So Sibelius 3.1.3 would be returned as 3130.

ScoreCount

Is the number of scores being edited (read only).

SuppressDefaultScreenreaderText

Set to True to suppress the default score description for screen readers for blind and visually impaired users

(read/write).

ViewHighlights

Is True if View > Highlights is switched on (read/write).

ViewNoteVelocities

Is True if View > Live Playback Velocities is switched on (read/write).

Windows 95
Windows 98
Windows ME
Windows NT 3.x
Windows NT 4
Windows 2000
Windows XP
Windows Vista
Windows 7
Windows 8

Mac OS X
Mac OS X Jaguar
Mac OS X Panther
Mac OS X Tiger
Mac OS X Leopard
Mac OS X Snow Leopard
Mac OS X Lion
Mac OS X Mountain Lion

Chapter 4: Object Reference 132

ViewNoteColors

The current View > Note Colors setting used (read/write).

Description Value

None 0
Notes out of Range 1
Pitch Spectrum 2
Voice Colors 3

SoundInfo
The SoundInfo object contains information about the playback of a given staff.

To get the SoundInfo object for a staff, use for example:

staff = Sibelius.ActivateScore.NthStaff(1);
soundinfo = staff.SoundInfoAtPosition(1,0,0);

The SoundInfo object can be moved around the staff once you have created it, and it will return information

about the sound IDs in use throughout the staff.

Methods
Clone()

Returns a new SoundInfo object using the same credentials as the object on which the method is called.

CreateAt([barNumber,[position,[nthRepeat]]])

Returns a new SoundInfo object at the specified bar number, at the specified rhythmic position in the bar (for ex-

ample 256 for the second quarter note position), as if played through at the nth repeat (for example 2 for the sec-

ond repeat). If no bar number is specified, the information returned will refer to bar 1. If no position is specified,

the information will refer to the start of the bar. If nth repeat is not specified, the information returned will refer

to the first pass through the score.

MoveTo([barNumber,[position,[nthRepeat]]])

Uses the same parameters as CreateAt(). Allows the caller to move the existing SoundInfo object to an en-

tirely new location on the current staff.

MoveToNext()

Moves to the next sound change event. If there are no more changes, it returns false and doesn’t move.

MoveToPrevious()

Moves to the previous sound change event. If there are no changes before, it returns false and doesn’t move.

Chapter 4: Object Reference 133

Variables
ActualSoundId

The actual sound ID at the current location (read only).

BarNum

Returns the current location's bar number (read only).

IsDrumStave

Returns true if the current location is on a drum staff (read only).

NthRepeat

Returns or sets the nth repeat (or pass) of the current location’s bar (read/write).

NumTimesBarPlayed

The number of times the bar at the current location is played (read only).

PatchName

The name of the patch in use at the current location (read only).

Position

Returns or sets the current location’s position within the bar (read/write).

RequestedSoundId

The requested sound ID at the current location (read only).

SoundChangeIndex

The current index in the bar play sequence. This allows differentiation between different identical sound changes

(read only).

SoundSetName

Returns the name of the sound set in use at the current location (read only).

StaveNum

Returns the 1-based stave number (read only)

SparseArray
To create a sparse array, use the built-in method CreateSparseArray(a1,a2,a3,a4...an).

for each allows you to iterate over the contents of a sparse array.

Chapter 4: Object Reference 134

Methods
Concat(array1, array2 ... arrayN)

Concatenate zero or more sparse arrays to this one, and return it as a one-level deep copy (so if a sparse array con-

tains other arrays, for example, then the new sparse array will contain references to those arrays, not copies of

them). This method does not modify the original sparse array.

Join([separator])

Returns the array as a string, with each populated element separated by the optional separator. If you don’t spec-

ify separator, the default separator is a comma.

Push(value1, value2, value3 ... valueN)

Pushes one or more values to the end of the array.

Pop()

Returns the last element of the array, and removes it from the array.

Reverse()

Reverses the sparse array in place, modifying the sparse array being operated on. The reversed array only pop-

ulates the elements needed to create the reversed array.

Slice(start[,end])

Returns a new sparse array of the elements starting from start and up to, but not including, the optional end. start
and end can be negative indices referring to offsets from the end of the array.

Variables
Length

Returns or sets the length of the array (read/write).

ValidIndices

Returns a sparse array containing only the populated indices of the original sparse array, that is those that are not

null.

Converting Old-style Arrays to New Sparse Arrays
The SparseArray object is a replacement for the old Array object, which was a more limited kind of array that

could only hold strings and integers, but no other kind of objects. You are recommended to use the new Sparse-

Array object for all arrays in your plug-ins, but if you have an existing plug-in in which old-style Arrays are used,

you can convert them to SparseArrays as follows:

Array.ConvertToSparseArray()

Returns a new SparseArray object, populated with strings converted from the old-style Array.

Chapter 4: Object Reference 135

SpecialBarline
Derived from a BarObject, these can only be found in system staves.

Methods
None.

Variables
BarlineType

The name of the type of special barline, expressed as a string.

BarlineInternalType

The type of the barline, expressed as a numeric ID which maps to one of the SpecialBarline global constants (see

“Global Constants” on page 156).

Staff
These can be normal staves or the system staff. The system staff contains objects that apply to all staves, such as

SpecialBarlines and text using a system text style.

A Staff contains Bar objects.

for each variable in returns each object in the staff.

for each type variable in returns each item of type type in the staff in chronological order (that is in order

of rhythmic position in each bar).

Methods
AddClef(pos,concert pitch clef[,transposed pitch clef])

Adds a clef to the staff at the specified position. concert pitch clef determines the clef style when Notes  Trans-

posing Score is switched off; the optional transposed pitch clef parameter determines the clef style when this

is switched on. Clef styles should be an identifier like “clef.treble”; for a complete list of available clef styles, see

“Clef Styles” on page 164. Alternatively you can give the name of a clef style, such as “Treble,” but bear in mind

that this may not work in non-English versions of Sibelius.

AddLine(pos,duration,line style,[dx,[dy,[voicenumber,[hidden]]]])

Adds a line to staff (please see the documentation in Bar object below).

AddNote(pos,sounding pitch,duration,[tied [,voice [,diatonic pitch[,string number]]]])

Adds a note to staff, adding to an existing NoteRest if already at this position (in which case the duration is ig-

nored); otherwise creates a new NoteRest. Will add a new bar if necessary at the end of the staff. The position is

Chapter 4: Object Reference 136

in 1/256th quarters from the start of the score. The optional tied parameter should be True if you want the note

to be tied. Voice 1 is assumed unless the optional voice parameter (with a value of 1, 2, 3 or 4) is specified. You

can also set the diatonic pitch, that is the number of the “note name” to which this note corresponds, 7 per octave

(35 = middle C, 36 = D, 37 = E and so on). If a diatonic pitch of zero is given then a suitable diatonic pitch will

be calculated from the MIDI pitch. The optional string number parameter gives a string number for this note,

which is only meaningful if the note is on a tablature stave. If this parameter is not supplied then a default string

number is calculated based on the current tablature stave type and the guitar tab fingering options (specified on

the Note Input page of File > Preferences). Returns the Note object created (to get the NoteRest containing the

note, use Note.ParentNoteRest).

When adding very short notes to tuplets, Sibelius may be unable to find a legal place for the note in the bar.

Should this happen, Sibelius will return null. You should therefore check for a valid object if there is any like-

lyhood that this situation may arise in your code.

N.B.: If you add a note to a score that intersects an existing tuplet, Sibelius will try to snap the note to the closest

sensible place within that tuplet. However, you are advised to use Tuplet.AddNote() for this purpose as it is void

of any ambiguity.

AddStaffAbove(ossia,[start bar number[,end bar number[,start pos[,end pos]]]])

Adds a new staff above the staff. Set ossia toTrue to create an ossia (small) staff. The other, optional parameters

determine where the staff should be visible: if you do not specify a start bar number, the staff will be visible from

the start of the score; if you do not specify an end bar number, the staff will be visible to the end of the score. If

you specify a start and/or end bar number, the staff will be hidden outside that range by way of an instrument

change to the No instrument (hidden) instrument type. start pos and end pos represent the rhythmic position

within the start bar number and end bar number respectively, and if not specified, start pos will default to the

start of the bar, and end pos will default to the end of the bar. Returns the staff created, or null if the call fails.

AddStaffBelow(ossia,[start bar number[,end bar number[,start pos[,end pos]]]])

Adds a new staff below the staff. See AddStaffAbove() above for details.

AddSymbol(pos,symbol index or name)

Adds a symbol to staff (please see the documentation in Bar object below).

CurrentKeySignature(bar number)

Returns a KeySignature valid at the bar number passed.

NthBar(n)

Returns the nth bar in the staff, counting from 1.

ResetSpaceAroundStaff(above,below[,from bar[,to bar]])

Does the equivalent of Layout > Reset Space Above Staff and/or Reset Space Below Staff for the given

range of bars in a staff. Set above to True to reset the space above the staff, and below to True to reset the space

below the staff. If from bar is not specified, Sibelius sets it to 1; if to bar is not specified, Sibelius sets it to the

last bar of the score.

Chapter 4: Object Reference 137

SetSound(styleID[,set SoundStage])

Changes the initial playback sound of this staff to be the default sound for the given default instrument styleID.

For a complete list of default instrument style IDs in Sibelius, see “Instrument Types” on page 165. If the op-

tional Boolean parameter is set to False, then the SoundStage information (volume, pan and distance) for this

staff will be unchanged. If it is omitted or set to True, then the SoundStage information will be set to the default

for the new sound.

SetSoundID(soundID)

Changes the initial playback sound of this staff to the given soundID.

SoundIDAtPosition([bar number,[position,[nth repeat]]])

Returns a new SoundInfo object at the specified bar number, at the specified rhythmic position in the bar (for ex-

ample 256 for the second quarter note position), as if played through at the nth repeat (for example 2 for the sec-

ond repeat). If no bar number is specified, the information returned will refer to bar 1. If no position is specified,

the information will refer to the start of the bar. If nth repeat is not specified, the information returned will refer

to the first pass through the score.

Staff[array element]

Returns the nth bar (counting from 1) for example Staff[1].

Variables
BankHigh

Controls MIDI controller 0, used to select the “coarse” bank number for this stave, and corresponding to the

Mixer control of the same name. The range is 0–127, or –1 if you don’t want to send this controller message at

the start of playback. Note that not all MIDI devices support multiple banks (read/write).

BankLow

Controls MIDI controller 32, used to select the “fine” bank number for this stave, and corresponding to the Mixer

control of the same name. The range is 0–127, or –1 if you don’t want to send this controller message at the start

of playback. Note that not all MIDI devices support multiple banks (read/write).

BarCount

Number of bars in the staff (read only).

Channel

The MIDI channel number of this staff, numbered 1–16 (read/write).

Distance

The reverb “distance” of this staff, corresponding to the control of the same name in the Mixer. This is a percent-

age, used to scale the overall reverb settings from the Performance dialog (read/write).

Chapter 4: Object Reference 138

FullInstrumentName

Gives the full instrument name of the staff, empty for an unnamed staff (read/write).

FullInstrumentNameWithFormatting

Gives the full instrument name of the staff including any changes of font or style, if any (read/write).

NumStavesInSameInstrument

The number of staves belonging to the default instrument from which this staff was created (read only).

InitialClefStyle

The name of the initial clef on a staff, depending on the state of Notes > Transposing Score (read only).

InitialClefStyleId

The style identifier of the initial clef on a staff, depending on the state of Notes > Transposing Score (read

only).

InitialInstrumentType

Returns an InstrumentType object for the instrument type at the start of the staff.

InitialKeySignature

Returns the KeySignature object at the start of this staff (read only).

InitialStyleId

Returns the style identifier of the staff (read only). To create an instrument from such an ID, pass the style as the

first argument to Score.CreateInstrument. For a complete list of all the default instrument names in Si-

belius, see “Instrument Types” on page 165.

InstrumentName

Gives the full instrument name of the staff in the form that is displayed on the Instruments and Staves dialog

in Sibelius (read only). For an unnamed stave, this will be “[Piano]” for example, where Piano is the default in-

strument name of the stave (see below). To get the internal name (which will be empty for unnamed staves), use

the read/write variables FullInstrumentName or ShortInstrumentName instead.

IsSystemStaff

True or False depending on whether this staff is a system staff or not (read only).

IsVocalStaff

Returns True if the instrument type used by the staff has the Vocal staff option switched on, meaning that the

default positions of dynamics should be above the staff rather than below (read only).

Chapter 4: Object Reference 139

MuteMode

Specifies whether or not this stave will play back. Corresponds to the mute button in the Mixer. The supported

values are defined as global constants (see “Global Constants” on page 156) and are Muted, HalfMuted and

NotMuted (read/write).

Pan

The MIDI stereo panning position of this staff (corresponding to the pan control in the Mixer). Permissible val-

ues are –100 to 100, with positive values being to the right and negative to the left (read/write).

ParentScore

Returns the staff’s parent Score object (read only).

ShortInstrumentName

Gives the short instrument name of the staff, empty for an unnamed staff (read/write).

ShortInstrumentNameWithFormatting

Gives the short instrument name of the staff including any changes of font or style, if any (read/write).

ShowInFocusOnStaves

If True then this staff will be shown when Layout > Focus on Staves is switched on (see also Score.Fo-
cusOnStaves). This variable cannot be set to False unless it is also True for at least one other staff in the

score (read/write).

Solo

True or False depending on whether this staff plays back in “solo” mode, corresponding to the Mixer button

of the same name (read/write).

SoundIdOverrideIfAny

Returns a string containing the sound ID override set in the mixer for the staff. If no override has been set, an

empty string is returned (read only).

Small

True if the staff is small (such as an ossia staff), False if it is normal sized (read/write).

StaffNum

Returns the number of this stave, counting from 1 at the top of the currently-viewed part. Returns 0 for for Sys-

temStaff objects (read only).

Volume

The overall MIDI volume of this staff, corresponding to its fader in the Mixer. Permissible values are 0–127

(read/write).

Chapter 4: Object Reference 140

Syllabifier
Acts as a wrapper around Sibelius’s internal Syllabification engine, exposing its functionality to ManuScript.

Methods
AbbreviateUsingApostrophe(useApostrophe)

When the abbreviate flag is set to True when calling Syllabify, Sibelius will replace vowels that have been

combined with the previous syllable with an apostrophe if this option is switched on—for example Vege-ta-bles
vs Veg’-ta-bles. Calling this method will cause the syllabification engine to recalculate its result if necessary.

GetNthSyllable(n)

Once a string has been syllabified by calling the Syllabify method, you can use this method to return each

individual syllable as a string

NthSyllableEndsWord(n)

Once a string has been syllabified by calling the Syllabify method, you can use this method to find out

whether each syllable occurs at the end of a word

Syllabify(textToSyllabify[, language[, abbreviate = False]])

Breaks a string down into its syllabic components, returning the number of syllables in the resultant syllabifica-

tion, or 0 if an error has occured. The rules of the specified language will be used, and you may legally supply

either a language ID, or the localized language name. To get the individual syllables, you should call the Get-
NthSyllable and NthSyllableEndsWord methods documented below.

If the language argument is omited, Sibelius will attempt to automatically identify the language of the text. If

this is not possible, or if an unrecognised language ID or name has been supplied, 0 will be returned.

When abbreviate is True, each ambiguous word in the string will be syllabified using the minimal number

of syllables. For example, syllabifying “Everybody likes vegetables” would return “Eve-ry-bod-y likes vege-ta-

bles” with this flag set to True, otherwise “E-ve-ry-bod-y likes veg-e-ta-bles”.

Variables
AbbreviateUsingApostrophe

Returns True/False depending on whether the syllabification engine is set to abbreviate combined syllables with

an apostrophe (read only – call method with same name for write access)

AvailableLanguageIds

Returns an array containing a list of the available syllabification languages as three-letter non-translatable IDs –

such as ENG (English), GER (German), LAT (Latin). These IDs are identical in all localized versions of Sibelius

(read only)

Chapter 4: Object Reference 141

AvailableLanguages

Returns an array containing a list of the available syllabification languages as localized strings (read only)

NumberOfSyllables

Returns the number of syllables in the hyphenated string generated by calling the Syllabify method (read

only)

SyllabifiedString

Returns the resultant hyphenated string generated by calling the Syllabify method (read only)

SymbolItem and SystemSymbolItem
Derived from a BarObject. For system symbols (such as symbols belonging to the system staff, retrieved with

for each on the system staff object), the type of symbol objects is SystemSymbolItem, not SymbolItem.

Methods
None.

Variables
Index

The index of this symbol in the list of symbols. This corresponds to its position in the Create  Symbol dialog,

counting from zero left-to-right and top-to-bottom (read only).

Name

The name of this symbol. May be translated in non-English language versions of Sibelius (read only).

Size

The draw size of the symbol, corresponding to the four available options in the Symbols dialog in Sibelius. The

four available values are NormalSize, CueSize, GraceNoteSize and CueGraceNoteSize, all de-

fined as global constants (read/write).

SystemObjectPositions
Accessed from a Score object. Corresponds to the settings in House Style  System Object Positions.

Methods
GetNthStaffShowsSystemObjects(staffNum)

Returns True if the given staff number staffNum (relative to the current part) is showing system objects above

it, otherwise False.

Chapter 4: Object Reference 142

SetNthStaffShowsSystemObjects(staffNum, show)

Tells the staff with the given staff number staffNum (relative to the current part) either to show or not show sys-

tem objects above it. This will have no effect if you pass in the top staff in the part, or if the maximum number

of staves allowed to show system objects has already been met.

Clear([removeBelowBottomStaff])

Allows you to clear all the system object positions (apart from the compulsory one above the top staff) in a single

operation; set the optional Boolean parameter removeBelowBottomStaff to True to also clear the Below bottom

staff system object position.

Variables
NumStavesShowingSystemObjects

Returns the current number of staves showing system object positions (read only)

ShowSystemObjectsBelowBottomStaff

Returns True if system objects should show below the bottom staff, otherwise False (read/write).

SystemStaff, Staff, Selection, Bar and, all BarObject-derived
Objects

Variables
IsALine

Returns true if the object is a line object. (Note that this is a variable, not a method, unlike the IsOb-
ject()method for all objects.)

Type

A string giving the name of the type of an object. The strings for the first 4 types above are "SystemStave",

"Stave", "MusicSelectionList", and "Bar". Note that this variable is also a member of all objects

that occur in bars.

SystemStaff
There is one SystemStaff object per score. The SystemStaff contains objects which apply to all staves, such as

SpecialBarlines and text using a system text style. Unlike normal staves, the SystemStaff does not appear in the

score itself. As such, most of the variables and methods supported for Staff objects are not available on a Sys-

temStaff. Those that are supported by SystemStaff are as follows.

Chapter 4: Object Reference 143

Methods
CurrentKeySignature(bar number)

Returns a KeySignature valid at the bar number passed.

CurrentTimeSignature(bar number)

Returns a TimeSignature valid at the bar number passed.

NthBar(n)

Returns the nth bar in the staff, counting from 1.

SystemStaff[array element]

Returns the nth bar (counting from 1) for example SystemStaff[1].

Variables
BarCount

Number of bars in the staff (read only).

InitialKeySignature

Returns the KeySignature object at the start of this staff (read only).

IsSystemStaff

Returns True for a SystemStaff (read only).

Text and SystemTextItem
Derived from a BarObject. For system text (such as text belonging to the system staff, retrieved with for each
on the system staff object), the type of text objects is SystemTextItem, not Text.

Methods
None.

Variables
JumpAtEndOfBar

Returns True if the system text object has Jump at bar end (in the Playback panel of the Inspector) set, other-

wise False. Always returns False for staff text objects (read/write).

StyleAsText

The text style name (read/write).

Chapter 4: Object Reference 144

StyleId

The identifier of the text style of this piece of text (read/write).

Text

The text as a string (read/write).

TextWithFormatting

Returns an array containing the various changes of font or style (if any) within the string in a new element (read

only). For example, “This text is \B\bold\b\, and this is \I\italic\i\” would return an array with eight elements

containing the following data:

arr[0] = “This text is “
arr[1] = “\B\”
arr[2] = “bold”
arr[3] = “\b\”
arr[4] = “, and this is “
arr[5] = “\I\”
arr[6] = “italic”
arr[7] = “\i\”

TextWithFormattingAsString

The text including any changes of font or style (read only).

TimeSignature
Derived from a BarObject.

Methods
None.

Variables
AllowCautionary

Returns True if the time signature is set to show a cautionary at the end of the previous system, if it occurs at

the start of a system (read/write).

Denominator

The time signature’s bottom number (read only).

Numerator

The time signature’s top number (read only).

Chapter 4: Object Reference 145

Text

The time signature as text. You can use this to detect common time and alla breve time signatures by comparing

it to the global constants CommonTimeString and AllaBreveTimeString, which define the Unicode

characters used by these symbols. Other time signatures will be of the form “4\n4” (read only).

TreeNode
These are used internally by ManuScript to implement arrays and hashes (returned with the CreateArray and

CreateHashmethods), and to represent global data (defined in the plugin editor). Each TreeNode can contain

a label, a piece of data and and a list of “children,” which are also TreeNodes. Normally, any access to a Tree-

Node object will access the data that is held, so that you don’t need to know anything about them, but there are

also some extra variables and methods that may be useful in some circumstances. These can be called on any ar-

ray, hash or global variable, and on any member of such a structure.

Methods
WriteToString

Returns a string that represents the structure of this TreeNode object. In this representation, the data of a Tree-

Node is surrounded by double quotes and the label is not. Note that a label need not be defined. Any children of

the TreeNode (also TreeNode objects themselves) are contained within curly braces { and }. To obtain child

TreeNodes, use the normal array operator, as described in the documentation for arrays and hashes.

Variables
Label

The label of this TreeNode.

NumChildren

The number of child TreeNodes belonging to this TreeNode object.

Tuplet
Derived from a BarObject.

Methods
AddNestedTuplet(posInTuplet, left, right, unit[, style[, bracket[,fullDuration]]]])

Nests a new tuplet bracket within an existing tuplet at a position relative to the duration and scale-factor of the

existing tuplet. The left and right parameters specify the ratio of the new tuplet, for example 3 (left) in the time

of 2 (right). The unit parameter specifies the note value (in 1/256th quarters) on which the tuplet should be based.

For example, if you wish to create an eighth note (quaver) triplet group, you would use the value 128. The op-

tional style and bracket parameters take one of the pre-defined constants that affect the visual appearance of the

Chapter 4: Object Reference 146

created tuplet; see “Global Constants” on page 156. If fullDuration is true, the bracket of the tuplet will span the

entire duration of the tuplet. Returns the Tuplet object created.

NB: If AddNestedTuplet() has been given illegal parameters, it will not be able to create a valid Tuplet ob-

ject. Therefore, you should test for inequality of the returned Tuplet object with null before attempting to use it.

AddNote(posInTuplet, pitch, duration[, tied[, diatonic pitch[, string number]]]])

Adds a note to an existing tuplet, adopting the same voice number as used by the tuplet itself. Please note that

posInTuplet is relative to the duration and scale-factor of the tuplet bracket itself. Therefore, if you wanted to add

a quarter note/crotchet to the second beat of a quarter note/crotchet triplet, you would simply use the value 256

– not 341!

utils.SplitTuplet(tuplet,splitpoint)

Split the tuplet object tuplet at the specified splitpoint, which is a number in relation to the tuplet’s parent bar. It

then splits a nest of tuplets at that point in the bar. This method is provided by the utils.plg—see “Utils” on

page 147.

Variables
Bracket

The bracket type of the tuplet (such as. none, auto; see “Global Constants” on page 156).

FullDuration

True if the bracket of the tuplet spans its entire duration.

Left

The left side of the tuplet, for example 3 in 3:2 (read only).

ParentTupletIfAny

If the tuplet intersects a tuplet, the innermost Tuplet object at that point in the score is returned. Otherwise, null
is returned (read only).

PlayedDuration

The true rhythmic duration of the tuplet, for example for quarter-note (crotchet) triplet this would be the duration

of a minim (read only).

PositionInTuplet

Returns the position of the tuplet relative to the duration and scale-factor of its parent tuplet. If the tuplet does not

intersect a tuplet, its position within the parent Bar is returned as usual (read only).

Right

The rightside of the tuplet, for example 2 in 3:2 (read only).

Chapter 4: Object Reference 147

Style

The style of the tuplet (for example, number, ratio, ratio + note; see “Global Constants” on page 156).

Text

The text shown above the tuplet (read only).

Unit

The unit used for the tuplet, for example 256 for a triplet of quarter notes (read only).

Utils
Sibelius installs a plug-in called utils.plg that contains a set of useful and common methods that can be called

directly by other plug-ins. It is not intended to be run as a plug-in in its own right, so does not appear in the

Plug-ins menu.

Methods
The methods available via utils.plg are as follows:

utils.AbsoluteValue(value)

Returns the absolute value of a number, that is its numerical value without regard to its sign.

utils.AddFractions(x,y)

Adds two fractions x and y, passed in as ManuScript arrays. Returns an array with the result of the addition.

utils.BinaryString(x)

Returns a binary string (such as “101010”) equivalent to the number x.

utils.bwAND(x, y)

Equivalent to the C++ bitwise AND (&) operator. For example, utils.bwAND(129,1) is equal to 1.

utils.bwOR(x, y)

Equivalent to the C++ bitwise inclusive OR (|) operator. For example, utils.bwOR(64,4) is equal to 68.

utils.bwXOR(x, y)

Equivalent to the C++ bitwise exclusive XOR (^) operator. For example, utils.bwXOR(4,6) is equal to 2.

utils.CapableOfDeletion()

Returns True if the object can be deleted usingDelete(), which is determined by checking Sibelius’s version

number.

Chapter 4: Object Reference 148

utils.CaseInsensitiveComparison(s1, s2)

Returns True if the two strings s1 and s2 match, ignoring case.

utils.CastToBool(x)

Returns the variable x explicitly cast as a Boolean.

utils.CastToInt(x)

Returns the variable x explicitly cast as an integer.

utils.CastToStr(x)

Returns the variable x explicitly cast as a string.

utils.CombineArraysOfBool(arr1, arr2)

Concatenates two arrays containing Boolean values and returns the result.

utils.CombineArraysOfInt(arr1, arr2)

Concatenates two arrays containing integral values and returns the result.

utils.CombineArraysOfString(arr1, arr2)

Concatenates two arrays containing string values and returns the result.

utils.CopyTextFile(source, dest)

Copies an existing text file from one location to another, returning True if successful.

utils.CreateArrayBlanket(value, size)

Returns an array with size elements, each containing a blanket value specified by the first parameter.

utils.DeleteStaff(score, nth staff, retain selection)

Deletes an entire staff and its content from a given score, returning True if successful. If retain selection is True,

Sibelius will ensure any item(s) that were selected prior to the staff’s deletion are still selected.

utils.DenaryValue(x)

Returns a number in base 10 equivalent to binary number x, which must be provided as a string.

utils.DivideFractions(x,y)

Divides fraction x by fraction y, passed in as ManuScript arrays. Returns an array with the result of the division.

utils.ExtractFileName(filename)

Returns just the filename portion of a string filename containing both a path and a filename.

Chapter 4: Object Reference 149

utils.Format(str, [val1,val2,val3 ...])

Provides a simple means of replacing human-readable data types in a string. Each successive instance of %s in

str is replaced with the value of the next remaining unused argument. for examples = utils.Format("The
%s brown %s jumps %s the lazy %s", "quick", "fox", "over", "dog");

utils.FormatTime(ms)

Formats a time, given in milliseconds, to a human-readable string using the format mm’ss.z (where z is cen-

tiseconds).

utils.FractionAsDecimal(x)

Returns the decimal equivalent of the fraction x, which is passed in as an array.

utils.FractionDenominator(x)

Returns the denominator of fraction x, which is passed in as an array.

utils.FractionNumerator(x)

Returns the numerator of fraction x, which is passed in as an array.

utils.GetAppDir()

Returns the path of the Sibelius executable as a string.

utils.GetArrayIndex(arr, value)

Returns the index of value in the array arr, or -1 if it doesn’t exist in the array.

utils.GetBits(x)

Returns an array containing the list of powers of two whose cumulative sum equates to the value of x.

utils.GetGlobalApplicationDataDir()

Returns the path of the system’s global application data area as a string.

utils.GetLocationTime(score, barNum, position)

Returns the precise time (in milliseconds) of a given location in a score. The position should be local to the start

of the bar number you have supplied. Use the utils library to achieve this if your plug-in needs to be backwards

compatible with Sibelius 4; otherwise call the Score object’s function with the same name.

utils.GetMillisecondsFromTime(time)

If you pass in a time expressed in milliseconds (one minute being 60,000), this function returns the milliseconds

portion of the number (in this case 60,000 modulus 1000 = 0).

utils.GetMinutesFromTime(time)

If you pass in a time expressed in milliseconds, this function returns the minutes portion of the number (for ex-

ample if time = 120,262 milliseconds, this function returns 2).

Chapter 4: Object Reference 150

utils.GetObjectTime(score,obj)

Returns the precise time (in milliseconds) that the object obj occurs from the start of a given score, taking into

account tempo changes, performance markings and any other events in the score that have an effect on playback.

Use this method to achieve this if your plug-in needs to be backwards compatible with Sibelius 4; otherwise use

the Time property of the BarObject object whose time you wish to determine.

utils.GetPluginId(plug-in)

This enables you to identify a plug-in by entering the line of code PluginUniqueID = "someUniqueId";
in a plug-in’s Initializemethod. When you pass a plug-in object to this function, it scans the plug-in’s code

and returns its unique ID if it has one, otherwise an empty string.

utils.GetSibeliusPluginsFolder()

This is a wrapper around the deprecated GetPluginsFolder() function, and returns the path of the Plugins

folder.

utils.GetSibMajorVersion()

Returns the major version number of Sibelius.

utils.GreatestCommonDivisor(m,n)

Returns the greatest common divisor of two non-zero integers, that is the largest positive integer that divides both

numbers without remainder.

utils.IsInArray(arr, value)

Returns True if value exists in the array arr.

utils.IsNumeric(str[, integer only])

Returns True if the string str is numeric. Set the optional Boolean parameter integer only to True if you want

the method to only return True if str is an integer (so that you can disallow floating point numbers).

utils.LowerCase(str)

Returns the ANSI string str in lowercase.

utils.MakeFraction(x,y)

Creates a fraction with x as the numerator and y as the denominator. The fraction is returned as a normal

ManuScript array. (Manipulating fractions means you never have to worry about rounding errors.)

utils.max(x, y)

Returns the greater of two numbers.

utils.min(x, y)

Returns the lesser of two numbers.

Chapter 4: Object Reference 151

utils.MultiplyFractions(x,y)

Multiplies fraction y by fraction x, passed in as ManuScript arrays. Returns an array with the result of the mul-

tiplication.

utils.PatternCount(pattern,str)

Returns the number of times the substring pattern exists in str.

utils.Pos(subStr,str)

Returns the zero-based position of the first instance of the sub-string subStr in str, or -1 if it isn’t found.

utils.PosReverse(subStr,str)

Returns the zero-based position of the last instance of the sub-string subStr in str, or -1 if it isn’t found.

utils.RaisePower(x,y)

Raises x to the yth power, where y is a positive integer.

utils.Replace(inStr,toFind,replaceWith,replaceAll)

Replaces a sub-string in a string with a new value. It looks for toFind in the string inStr, and if it finds it, replaces

it with replaceWith. If the Boolean replaceAll is False, it only changes the first instance found; if it’s True, it

replaces all instances.

utils.ReverseArrayOfBool(arr)

Reverses the order of the elements in an array of Booleans.

utils.ReverseArrayOfInt(arr)

Reverses the order of the elements in an array of integers.

utils.ReverseArrayOfString(arr)

Reverses the order of the elements in an array of strings.

utils.RoundToNDecimalPlaces(number,precision)

Returns a string containing the number number rounded to precision decimal places. The method handles the in-

put as a string, in order to avoid rounding errors which would otherwise spoil results beyond the tenth decimal

place or so.

utils.SetDefaultIfNotInArray(value, arr, DefaultIndex)

Scans the array arr for the value specified by the first parameter. Value is returned if it exists in the array, oth-

erwise, arr[DefaultIndex].

utils.shl(x, y)

Bitwise left-shift. Shifts the value x left by y bits. Equivalent to C++ << operator.

Chapter 4: Object Reference 152

utils.shr(x, y)

Bitwise right-shift. Shifts the value x right by y bits. Equivalent to C++ >> operator.

utils.SortArray(arr,show progress)

Sorts the array arr using a case-insensitive alphabetic sort. Set show progress to True to see a progress bar while

the sort is carried out, or set it to False if you don’t want to see a progress bar.

utils.SortArrayCustom(arr,show progress,plug-in name,method)

Sorts the array arr using a custom sort order routine method, which must be passed into this method. plug-in
name is the name of the plug-in that contains the sort order routine method. You can write your own sort order

routine: it must be a method that takes two strings (strA and strB) and returns 1 or 0 based on the results of the

comparison.

utils.SortArrayNumeric(arr,show progress)

Sorts the array arr in ascending numeric order. Set show progress to True to see a progress bar while the sort

is carried out, or set it to False if you don’t want to see a progress bar.

utils.SplitTuplet(tuplet,splitpoint)

Split the tuplet object tuplet at the specified splitpoint, which is a number in relation to the tuplet’s parent bar. It

then splits a nest of tuplets at that point in the bar.

utils.StartComponentManager(componentName,callbackFunc)

Returns an array of filenames (strings) found on the system inside a folder with a given name, following the same

rules of precedence as Sibelius’s internal component manager. Files in the user’s application data area take pri-

ority over those in the global application data area, followed lastly by those in the Sibelius’s application directory

itself.

callbackFunc should point to a function in the calling script that scans a supplied directory for files with a spe-

cific extension.

Such a function might look something like this:

GetFooFiles(dir) { // This is the function signature
 components = CreateArray();
 for each FOO file in dir {
 components[components.NumChildren] = file.NameWithExt;
 }
 return(components);
}

In the scenario above, the call to start the component manager would look like this (where “Foo Files” is the

name of the directory containing your files):

files = utils.StartComponentManager("Foo Files","myPlugin.Get-
FooFiles");

Chapter 4: Object Reference 153

utils.SubtractFractions(x,y)

Subtracts fraction y from fraction x, passed in as ManuScript arrays. Returns an array with the result of the sub-

traction.

utils.UpperCase(str)

Returns the ANSI string str in uppercase.

VersionHistory
Each Score object has a VersionHistory object (obtained by way of the score.GetVersions() method),

which in turn provides a list of Version objects. Each Version object represents a specific version, and also pro-

vides a list of VersionComment objects, which represent the per-version comments (as opposed to bar-attached

comments, which are represented to ManuScript as Comment objects, derived from BarObject objects).

Methods
AddVersion([name[,comment]])

Adds a new version object and returns it if successful (or null if not), with an optional name and comment for the

version.

DeleteNthVersion(n)

Deletes the nth Version object, returning True if successful.

GetNthVersion(n)

Returns the nth Version object.

Variables
NumChildren

Returns the number of versions in the score’s VersionHistory object.

Version
Accessed via a Score object’s VersionHistory object.

Methods
AddComment(text)

Adds a new comment with the specified text, and returns the VersionComment object created.

Chapter 4: Object Reference 154

Close()

Closes all views of the version that are currently open in Sibelius, returning True if it has actually closed any-

thing.

GetNthComment(n)

Gets the nth comment as a VersionComment object, or returns null if the index is out of range.

DeleteNthComment(n)

Deletes the nth comment, returning True if successful, or null if the index is out of range.

OpenAndReturnScore()

Opens the specified version in Sibelius (if it’s not already open) and returns its Score object.

Variables
EndDate

Returns a DateTime object representing the version’s end date (read only).IsOpenReturns True if the version

is currently open in Sibelius (read only).

Name

Returns the name of the version (read/write).

NumComments

Returns the number of comments in the version (read only).

StartDate

Returns a DateTime object representing the version’s start date (read only).

VersionComment
Accessed via Version objects.

Methods
None.

Variables
Text

Returns or changes the text of the comment, and this cannot be undone (read/write).

Chapter 4: Object Reference 155

TimeStamp

Returns a DateTime object representing the time at which the comment was created.

UserName

Returns the name of the user who created the comment (read only).

Chapter 5: Global Constants 156

Chapter 5: Global Constants

Global Constants
These are useful variables held internally within ManuScript and are accessible from any plug-in. They are called

“constants” because you are encouraged not to change them.

Many of the constants are the names of note values, which you can use to specify a position in a bar easily. So

instead of writing 320 you can write Quarter+Sixteenth or equally Crotchet+Semiquaver.

Truth Values

Measurements

Positions and Durations

True 1

False 0

Space 32

StaffHeight 128

Long 4096 Sixteenth 64

Breve 2048 Semiquaver 64

DottedBreve 3072 DottedSixteenth 96

Whole 1024 DottedSemiquaver 96

Semibreve 1024 ThirtySecond 32

DottedWhole 1536 Demisemiquaver 32

Half 512 DottedThirtySecond 48

Minim 512 DottedDemisemiquaver 48

Chapter 5: Global Constants 157

Style Names
For the ApplyStyle() method of Score objects. Instead of the capitalized strings in quotes, you can use the

equivalent variables in mixed upper and lower case. Note again that the constant HOUSE refers to the options in

House Style > Engraving Rules and Layout > Document Setup only; to apply the entire House Style, use

the ALLSTYLES constant.

DottedHalf 768 SixtyFourth 16

DottedMinim 768 Hemidemisemiquaver 16

Quarter 256 DottedSixtyFourth 24

Crotchet 256 DottedHemidemisemiquaver 24

DottedQuarter 384 OneHundredTwentyEighth 8

DottedCrotchet 384 Semihemidemisemiquaver 8

Eighth 128 DottedOneHundredTwentyEighth 12

Quaver 128 DottedSemihemidemisemiquaver 12

DottedEighth 192

DottedQuaver 192

House “HOUSE” Dictionary “DICTIONARY”

Text “TEXT” SpacingRule “SPACINGRULE”

Symbols
“SYMBOLS” CustomChordNa

mes

“CUSTOMCHORD-

NAMES”

Lines
“LINES” DefaultPartAppea

rance

“DEFAULTPARTAP-

PEARANCE”

Noteheads
“NOTEHEADS” InstrumentsAndE

nsembles

“INSTRUMENTSAN-

DENSEMBLES”

Clefs “CLEFS” AllStyles “ALLSTYLES”

Chapter 5: Global Constants 158

Bar Number Formats
These constants can be used for the format argument of the AddBarNumber method.

Text Styles
Here is a list of all the text style identifiers which are guaranteed to be present in any score in Sibelius. In previous

versions of ManuScript text styles were identified by a numeric index; this usage has been deprecated but will

continue to work for old plug-ins. New plug-ins should use the identifiers given below. For each style we first

give the English name of the style and then the identifier.

BarNumberFormatNormal 0

BarNumberFormatNumberLetterLower 1

BarNumberFormatNumberLetterUpper 2

Instrument

names

“text.instrumentname” Time

signatures (one

staff only)

“text.staff.timesig.onestaf-

fonly”

1st and 2nd

endings

“text.staff.1st_n_2nd_endings”
Tuplets

“text.staff.tuplets”

Auto page

break

warnings

“text.staff.autopagebreak.warn-

ings” Bar numbers

“text.system.barnumber”

Boxed text
“text.staff.boxed” Metronome

mark

“text.system.metronome”

Expression
“text.staff.expression” Multirests

(numbers)

“text.system.multirestnum-

bers”

Chord

diagram

fingering

“text.staff.fingering.chord_dia-

grams” Composer

“text.sys-

tem.page_aligned.composer”

Footnote
“text.staff.footnote”

Composer (on

title page)

“text.sys-

tem.page_aligned.com-

poser.ontitlepage”

Block lyrics
“text.staff.lyrics.block”

Copyright
“text.sys-

tem.page_aligned.copyright”

Multirests

(tacet)

“text.staff.multirests.tacet”
Dedication

“text.sys-

tem.page_aligned.dedication”

Chapter 5: Global Constants 159

Plain text
“text.staff.plain”

Footer (inside

edge)

“text.sys-

tem.page_aligned.footer.inside

”

Small text
“text.staff.small”

Footer (outside

edge)

“text.sys-

tem.page_aligned.footer.out-

side”

Chord

symbol

“text.staff.space.chordsymbol” Worksheet

footer (first

page, l)

“text.sys-

tem.page_aligned.footer.work-

sheet.left”

Figured

bass

“text.staff.space.figuredbass”
Header

“text.sys-

tem.page_aligned.header”

Fingering

“text.staff.space.fingering” Worksheet

header (first

page, l)

“text.sys-

tem.page_aligned.header.work

sheet.left”

Chord

diagram

fret

“text.staff.space.fretnumbers” Worksheet

header (first

page, r)

“text.sys-

tem.page_aligned.header.work

sheet.right”

Lyrics

above staff

“text.staff.space.hypen.lyr-

ics.above”
Header (after

first page)

“text.sys-

tem.page_aligned.head-

er_notp1”

Lyrics

(chorus)

“text.staff.space.hypen.lyr-

ics.chorus”
Header (after

first page,

inside edge)

“text.sys-

tem.page_aligned.head-

er_notp1.inside”

Lyrics line 1
“text.staff.space.hypen.lyr-

ics.verse1”
Instrument

name at top left

“text.sys-

tem.page_aligned.instrname-

topleft”

Lyrics line 2
“text.staff.space.hypen.lyr-

ics.verse2”
Lyricist

“text.system.page_aligned.lyr-

icist”

Lyrics line 3
“text.staff.space.hypen.lyr-

ics.verse3” Page numbers
“text.sys-

tem.page_aligned.pagenum-

ber”

Lyrics line 4
“text.staff.space.hypen.lyr-

ics.verse4”
Subtitle

“text.sys-

tem.page_aligned.subtitle”

Lyrics line 5
“text.staff.space.hypen.lyr-

ics.verse5”
Title

“text.sys-

tem.page_aligned.title”

Nashville

chord

numbers

“text.staff.space.nashvillechords”
Title (on title

page)

“text.sys-

tem.page_aligned.title.onti-

tlepage”

Chapter 5: Global Constants 160

Line Styles

Common

symbols

“text.staff.symbol.common”
Rehearsal mark

“text.system.rehearsalmarks”

Figured

bass

(extras)

“text.staff.symbol.fig-

ured.bass.extras”
Repeat

(D.C./D.S./To

Coda)

“text.system.repeat”

Note tails “text.staff.symbol.noteflags” Tempo “text.system.tempo”

Special

noteheads

etc.

“text.staff.symbol.noteheads.spe-

cial” Timecode

“text.system.timecode”

Percussion

instrument

s

“text.staff.symbol.percussion”
Duration at end

of score

“text.system.timecode.dura-

tion”

Special

symbols

“text.staff.symbol.special”
Hit points

“text.system.timecode.hit-

points”

Tablature

letters

“text.staff.tab.letters” Time

signatures

(huge)

“text.system.timesig.huge”

Tablature

numbers

“text.staff.tab.numbers” Time

signatures

(large)

“text.system.timesig.large”

Technique
“text.staff.technique” Time

signatures

“text.system.timesig.normal”

Arpeggio
“line.staff.arpeggio” Bracketed slur

below

“line.staff.slur.down.brack

eted”

Arpeggio down
“line.staff.arpeggio.down”

Dashed slur below
“line.staff.slur.down.dash

ed”

Arpeggio up
“line.staff.arpeggio.up”

Dotted slur below
“line.staff.slur.down.dot-

ted”

Unused 2 “line.staff.arrow” Slur above “line.staff.slur.up”

Arrow
“line.staff.arrow.black.rig

ht”
Bracketed slur

above

“line.staff.slur.up.brack-

eted”

Dashed arrow
“line.staff.arrow.black.rig

ht.dashed”
Dashed slur above

“line.staff.slur.up.dashed”

Chapter 5: Global Constants 161

Double arrow
“line.staff.arrow.black.rig

ht.left”
Dotted slur above

“line.staff.slur.up.dotted”

Vertical arrow (2)
“line.staff.arrow.black.ver

tical”
String indicator

above (1)

“line.staff.string.above.1”

White arrow
“line.staff.arrow.white.rig

ht”
String indicator

above (2)

“line.staff.string.above.2”

Dashed white arrow
“line.staff.arrow.white.rig

ht.dashed”
String indicator

above (3)

“line.staff.string.above.3”

Double white arrow
“line.staff.arrow.white.rig

ht.left”
String indicator

above (4)

“line.staff.string.above.4”

Vertical arrow
“line.staff.arrow.white.ver

tical”
String indicator

above (5)

“line.staff.string.above.5”

Beam
“line.staff.beam” String indicator

above (6)

“line.staff.string.above.6”

Guitar Bend
“line.staff.bend” String indicator

above (7)

“line.staff.string.above.7”

Guitar hold bend
“line.staff.bend.hold” String indicator

above (8)

“line.staff.string.above.8”

Box
“line.staff.box” String indicator

below (1)

“line.staff.string.below.1”

Bracket above
“line.staff.bracket.above” String indicator

below (2)

“line.staff.string.below.2”

Bracket above (end)
“line.staff.bracket.above.e

nd”
String indicator

below (3)

“line.staff.string.below.3”

Bracket above

(start)

“line.staff.bracket.above.s

tart”
String indicator

below (4)

“line.staff.string.below.4”

Bracket below
“line.staff.bracket.below” String indicator

below (5)

“line.staff.string.below.5”

Bracket below (end)
“line.staff.bracket.below.e

nd”
String indicator

below (6)

“line.staff.string.below.6”

Bracket below

(start)

“line.staff.bracket.below.s

tart”
String indicator

below (7)

“line.staff.string.below.7”

Vertical bracket
“line.staff.bracket.verti-

cal”
String indicator

below (8)

“line.staff.string.below.8”

Chapter 5: Global Constants 162

Vertical bracket 2
“line.staff.bracket.verti-

cal.2”
Tie

“line.staff.tie”

Dashed line “line.staff.dashed” Trill “line.staff.trill”

Vertical dashed line
“line.staff.dashed.verti-

cal”
Tuplet

“line.staff.tuplet”

Dotted line “line.staff.dotted” Vertical line “line.staff.vertical”

Glissando (straight) “line.staff.gliss.straight” Vibrato “line.staff.vibrato”

Glissando (wavy) “line.staff.gliss.wavy” Guitar vibrato bar “line.staff.vibrato.bar”

Guitar effect “line.staff.guitareffect” Wide vibrato “line.staff.vibrato.wide”

Crescendo
“line.staff.hairpin.cre-

scendo”
Dashed system line

“line.system.dashed”

Bracketed

crescendo

“line.staff.hairpin.cre-

scendo.bracketed”
Wide dashed

system line

“line.sys-

tem.dashed.wide”

Dashed crescendo
“line.staff.hairpin.cre-

scendo.dashed”
1st ending

“line.system.repeat.1st”

Dotted crescendo
“line.staff.hairpin.cre-

scendo.dotted”
1st and 2nd ending

“line.sys-

tem.repeat.1st_n_2nd”

Crescendo from

silence

“line.staff.hairpin.cre-

scendo.fromsilence” 2nd ending
“line.system.repeat.2nd”

Diminuendo
“line.staff.hairpin.diminu-

endo”
2nd ending (closed)

“line.sys-

tem.repeat.2nd.closed”

Bracketed

diminuendo

“line.staff.hairpin.diminu-

endo.bracketed” 3rd ending
“line.system.repeat.3rd”

Dashed

diminuendo

“line.staff.hairpin.diminu-

endo.dashed”
Repeat ending

(closed)

“line.sys-

tem.repeat.closed”

Dotted diminuendo
“line.staff.hairpin.diminu-

endo.dotted”
Repeat ending

(open)

“line.system.repeat.open”

Diminuendo to

silence

“line.staff.hairpin.diminu-

endo.tosilence” Accel.
“line.system.tempo.accel”

Guitar artificial

harmonic

“line.staff.harmonic.artifi-

cial” Accel. (italic)
“line.sys-

tem.tempo.accel.italic”

Guitar harp

harmonic

“line.staff.harmonic.harp”
Accel. (italic, text

only)

“line.sys-

tem.tempo.accel.italic.tex-

tonly”

Chapter 5: Global Constants 163

Guitar pinch

harmonic

“line.staff.har-

monic.pinch” Molto accel.
“line.sys-

tem.tempo.accel.molto”

Guitar touch

harmonic

“line.staff.har-

monic.touch”
Molto accel. (text

only)

“line.sys-

tem.tempo.accel.molto.tex

tonly”

Guitar harmonics
“line.staff.harmonics”

Poco accel.
“line.sys-

tem.tempo.accel.poco”

Hauptstimme
“line.staff.hauptstimme”

Poco accel. (text

only)

“line.sys-

tem.tempo.accel.poco.tex-

tonly”

Guitar let ring
“line.staff.letring”

Accel. (text only)
“line.sys-

tem.tempo.accel.textonly”

Lyric line
“line.staff.lyric” Tempo change

(arrow right)

“line.sys-

tem.tempo.arrowright”

Guitar palm mute “line.staff.mute.palm” Rall. “line.system.tempo.rall”

Nebenstimme
“line.staff.nebenstimme”

Rall. (italic)
“line.sys-

tem.tempo.rall.italic”

2 octaves down
“line.staff.octava.minus15

”
Rall. (italic, text

only)

“line.sys-

tem.tempo.rall.italic.tex-

tonly”

Octave down
“line.staff.octava.minus8”

Molto rall.
“line.sys-

tem.tempo.rall.molto”

2 octaves up
“line.staff.octava.plus15”

Molto rall. (text

only)

“line.sys-

tem.tempo.rall.molto.tex-

tonly”

Octave up
“line.staff.octava.plus8”

Poco rall.
“line.sys-

tem.tempo.rall.poco”

Pedal
“line.staff.pedal”

Poco rall. (text only)
“line.sys-

tem.tempo.rall.poco.tex-

tonly”

Pedal lift
“line.staff.pedal.lift”

Rall. (text only)
“line.sys-

tem.tempo.rall.textonly”

Pedal lift again
“line.staff.pedal.lift.again

”
Rit.

“line.system.tempo.rit”

Pedal lift finally
“line.staff.pedal.lift.finall

y”
Rit. (italic)

“line.sys-

tem.tempo.rit.italic”

Chapter 5: Global Constants 164

Clef Styles
Here is a list of all the clef style identifiers that are guaranteed to be present in any score in Sibelius, for use with

the Stave.AddClefmethod. For each style we first give the English name of the style, and then the identifier.

Pedal (no line)
“line.staff.pedal.noline”

Rit. (italic, text only)
“line.sys-

tem.tempo.rit.italic.tex-

tonly”

Guitar pick scrape
“line.staff.pick.scrape”

Molto rit.
“line.sys-

tem.tempo.rit.molto”

Line
“line.staff.plain”

Molto rit. (text only)
“line.sys-

tem.tempo.rit.molto.tex-

tonly”

Portamento
“line.staff.port.straight”

Poco rit.
“line.sys-

tem.tempo.rit.poco”

Guitar rake
“line.staff.rake”

Poco rit. (text only)
“line.sys-

tem.tempo.rit.poco.tex-

tonly”

Guitar slide
“line.staff.slide”

Rit. (text only)
“line.sys-

tem.tempo.rit.textonly”

Slur below “line.staff.slur.down”

Alto “clef.alto” Small tab “clef.tab.small”

Baritone C “clef.baritone.c” Small tab (taller) “clef.tab.small.taller”

Baritone F “clef.baritone.f” Tab (taller) “clef.tab.taller”

Bass “clef.bass” Tenor “clef.tenor”

Bass down 8 “clef.bass.down.8” Tenor down 8 “clef.tenor.down.8”

Bass up 15 “clef.bass.up.15” Treble “clef.treble”

Bass up 8 “clef.bass.up.8” Treble down 8 “clef.treble.down.8”

Null
“clef.null”

Treble (down 8)
“clef.tre-

ble.down.8.bracketed”

Percussion “clef.percussion” Treble down 8 (old) “clef.treble.down.8.old”

Percussion 2 “clef.percussion_2” Treble up 15 “clef.treble.up.15”

Soprano “clef.soprano” Treble up 8 “clef.treble.up.8”

Chapter 5: Global Constants 165

Instrument Types
Here is a list of all the instrument type identifiers that are guaranteed to be present in any score in Sibelius. For

each style we first give the English name of the style and then the identifier. Note that only the tablature stave

types can be used with guitar frames; the rest are included for completeness.

Mezzo-

soprano

“clef.soprano.mezzo”
French violin

“clef.violin.french”

Tab “clef.tab” Sub-bass F “clef.sub-bass.f”

Alp-Horn in F instrument.brass.alp-horn.f

Alp-Horn in G instrument.brass.alp-horn.g

Baritone Bugle in G instrument.brass.bugle.baritone.g

Contrabass Bugle in G instrument.brass.bugle.contrabass.g

Euphonium Bugle in G instrument.brass.bugle.euphonium.g

Mellophone Bugle in G instrument.brass.bugle.mellophone.g

Soprano Bugle in G instrument.brass.bugle.soprano.g

Cimbasso in Bb instrument.brass.cimbasso.bflat

Cimbasso in Eb instrument.brass.cimbasso.eflat

Cimbasso in F instrument.brass.cimbasso.f

Cornet in A instrument.brass.cornet.a

Cornet in Bb instrument.brass.cornet.bflat

Soprano Cornet in Eb instrument.brass.cornet.soprano.eflat

Euphonium in Bb [treble clef] instrument.brass.euphonium

Euphonium in Bb [bass clef, treble transp.] instrument.brass.euphonium.bassclef

Euphonium in C [bass clef] instrument.brass.euphonium.bassclef.bassclef

Euphonium in Bb [bass clef] instrument.brass.euphonium.bflat.bassclef.bassclef

Flugelhorn instrument.brass.flugelhorn

Horn in A [no key] instrument.brass.horn.a.nokeysig

Horn in Ab alto [no key] instrument.brass.horn.alto.aflat.nokeysig

Alto Horn in Eb instrument.brass.horn.alto.eflat

Chapter 5: Global Constants 166

Alto Horn in F instrument.brass.horn.alto.f

Horn in B [no key] instrument.brass.horn.b.nokeysig

Baritone in Bb [treble clef] instrument.brass.horn.baritone

Baritone in C [treble clef] instrument.brass.horn.baritone.2

Baritone in Bb [bass clef, treble transp.] instrument.brass.horn.baritone.bassclef

Baritone in C [bass clef] instrument.brass.horn.baritone.bassclef.bassclef

Bass in Bb instrument.brass.horn.bass.bflat

Bass in Bb [bass clef, treble transp.] instrument.brass.horn.bass.bflat.bassclef

Bass in C instrument.brass.horn.bass.c

Bass in Eb instrument.brass.horn.bass.eflat

Bass in Eb [bass clef, treble transp.] instrument.brass.horn.bass.eflat.bassclef

A Basso Horn [no key] instrument.brass.horn.basso.a.nokeysig

Bb Basso Horn [no key] instrument.brass.horn.basso.bflat.nokeysig

C Basso Horn [no key] instrument.brass.horn.basso.c.nokeysig

Horn in Bb [no key] instrument.brass.horn.bflat.nokeysig

Horn in C [no key] instrument.brass.horn.c.nokeysig

Horn in D [no key] instrument.brass.horn.d.nokeysig

Horn in Db [no key] instrument.brass.horn.dflat.nokeysig

Horn in E [no key] instrument.brass.horn.e.nokeysig

Horn in Eb instrument.brass.horn.eflat

Horn in Eb [no key] instrument.brass.horn.eflat.nokeysig

Horn in F instrument.brass.horn.f

Horn in F [bass clef] instrument.brass.horn.f.bassclef

Horn in F [no key] instrument.brass.horn.f.nokeysig

Horn in F# [no key] instrument.brass.horn.fsharp.nokeysig

Horn in G [no key] instrument.brass.horn.g.nokeysig

Tenor Horn instrument.brass.horn.tenor

Chapter 5: Global Constants 167

Mellophone in Eb instrument.brass.mellophone.eflat

Mellophone in F instrument.brass.mellophone.f

Mellophonium in Eb instrument.brass.mellophonium.eflat

Mellophonium in F instrument.brass.mellophonium.f

Ophicleide instrument.brass.ophicleide

Brass instrument.brass.section

Serpent instrument.brass.serpent

Sousaphone in Bb instrument.brass.sousaphone.bflat

Sousaphone in Eb instrument.brass.sousaphone.eflat

Trombone instrument.brass.trombone

Alto Trombone instrument.brass.trombone.alto

Bass Trombone instrument.brass.trombone.bass

Trombone in Bb [bass clef, treble transp.] instrument.brass.trombone.bassclef.trebleclef

Contrabass Trombone instrument.brass.trombone.contrabass

Tenor Trombone instrument.brass.trombone.tenor

Trombone in Bb [treble clef] instrument.brass.trombone.trebleclef

Trumpet in A instrument.brass.trumpet.a

Trumpet in B [no key] instrument.brass.trumpet.b.nokeysig

Bass Trumpet in Bb instrument.brass.trumpet.bass.bflat

Bass Trumpet in Eb instrument.brass.trumpet.bass.eflat

Trumpet in Bb instrument.brass.trumpet.bflat

Trumpet in Bb [no key] instrument.brass.trumpet.bflat.nokeysig

Trumpet in C instrument.brass.trumpet.c

Trumpet in D instrument.brass.trumpet.d

Trumpet in Db instrument.brass.trumpet.dflat

Trumpet in E [no key] instrument.brass.trumpet.e.nokeysig

Trumpet in Eb instrument.brass.trumpet.eflat

Chapter 5: Global Constants 168

Trumpet in F instrument.brass.trumpet.f

Trumpet in G [no key] instrument.brass.trumpet.g.nokeysig

Piccolo Trumpet in A instrument.brass.trumpet.piccolo.a

Piccolo Trumpet in Bb instrument.brass.trumpet.piccolo.bflat

Tenor Trumpet in Eb instrument.brass.trumpet.tenor.eflat

Tuba instrument.brass.tuba

Tuba in F instrument.brass.tuba.f

Tenor Tuba (Wagner, in Bb) instrument.brass.tuba.tenor

Tenor Tuba [bass clef] instrument.brass.tuba.tenor.bassclef

Wagner Tuba in Bb instrument.brass.tuba.wagner.bflat

Wagner Tuba in F instrument.brass.tuba.wagner.f

Applause instrument.exotic.applause

Birdsong instrument.exotic.birdsong

Helicopter instrument.exotic.helicopter

Ondes Martenot instrument.exotic.ondes-martenot

Sampler instrument.exotic.sampler

Seashore instrument.exotic.seashore

Tape instrument.exotic.tape

Telephone instrument.exotic.telephone

Theremin instrument.exotic.theremin

Bajo [notation] instrument.fretted.bajo.5lines

Bajo, 6-string [tab] instrument.fretted.bajo.tab

Bajo, 4-string [tab] instrument.fretted.bajo.tab.4lines

Bajo, 5-string [tab] instrument.fretted.bajo.tab.5lines

Alto Balalaika [notation] instrument.fretted.balalaika.alto.5lines

Alto Balalaika [tab] instrument.fretted.balalaika.alto.tab

Bass Balalaika [notation] instrument.fretted.balalaika.bass.5lines

Chapter 5: Global Constants 169

Bass Balalaika [tab] instrument.fretted.balalaika.bass.tab

Contrabass Balalaika [notation] instrument.fretted.balalaika.contrabass.5lines

Contrabass Balalaika [tab] instrument.fretted.balalaika.contrabass.tab

Prima Balalaika [notation] instrument.fretted.balalaika.prima.5lines

Prima Balalaika [tab] instrument.fretted.balalaika.prima.tab

Second Balalaika [notation] instrument.fretted.balalaika.second.5lines

Second Balalaika [tab] instrument.fretted.balalaika.second.tab

Bandola [notation] instrument.fretted.bandola.5lines

Bandola [tab] instrument.fretted.bandola.tab

Bandolón [notation] instrument.fretted.bandolon.5lines

Bandolón [tab] instrument.fretted.bandolon.tab

Bandurria [notation] instrument.fretted.bandurria.5lines

Bandurria [tab] instrument.fretted.bandurria.tab

Banjo [notation] instrument.fretted.banjo.5lines

Banjo (aDADE tuning) [tab] instrument.fretted.banjo.aDADE.tab

Banjo (aEADE tuning) [tab] instrument.fretted.banjo.aEADE.tab

Banjo (gCGBD tuning) [tab] instrument.fretted.banjo.gCGBD.tab

Banjo (gCGCD tuning) [tab] instrument.fretted.banjo.gCGCD.tab

Banjo (gDF#AD tuning) [tab] instrument.fretted.banjo.gDFAD.tab

Banjo (gDGBD tuning) [tab] instrument.fretted.banjo.gDGBD.tab

Banjo (gDGCD tuning) [tab] instrument.fretted.banjo.gDGCD.tab

Tenor Banjo [notation] instrument.fretted.banjo.tenor.5lines

Tenor Banjo [tab] instrument.fretted.banjo.tenor.tab

Bordonúa [notation] instrument.fretted.bordonua.5lines

Bordonúa [tab] instrument.fretted.bordonua.tab

Cavaquinho [notation] instrument.fretted.cavaquinho.5lines

Cavaquinho [tab] instrument.fretted.cavaquinho.tab

Chapter 5: Global Constants 170

Charango [notation] instrument.fretted.charango.5lines

Charango [tab] instrument.fretted.charango.tab

Cuatro [notation] instrument.fretted.cuatro.5lines

Cuatro, Puerto Rico [tab] instrument.fretted.cuatro.puerto-rico.tab

Cuatro, Venezuela [tab] instrument.fretted.cuatro.venezuela.tab

Resonator guitar [notation] instrument.fretted.guitar.resonator.5lines

Resonator Guitar, A6 tuning [tab] instrument.fretted.guitar.resonator.a6.tab

Resonator Guitar, B11 tuning [tab] instrument.fretted.guitar.resonator.b11.tab

Resonator Guitar, C#m tuning [tab] instrument.fretted.guitar.resonator.c#m.tab

Resonator Guitar, C6+A7 tuning [tab] instrument.fretted.guitar.resonator.c6-a7.tab

Resonator Guitar, C6 + high G tuning [tab] instrument.fretted.guitar.resonator.c6-highg.tab

Resonator Guitar, standard tuning [tab] instrument.fretted.guitar.resonator.c6.tab

Resonator Guitar, C#m7 tuning [tab] instrument.fretted.guitar.resonator.cm7.tab

Resonator Guitar, E13 Hawaiian tuning [tab] instrument.fretted.guitar.resonator.e13-hawaiian.tab

Resonator Guitar, E13 Western tuning [tab] instrument.fretted.guitar.resonator.e13-western.tab

Resonator Guitar, open A tuning [tab] instrument.fretted.guitar.resonator.open.A.tab

Resonator Guitar, open G tuning [tab] instrument.fretted.guitar.resonator.open.G.tab

Dulcimer instrument.fretted.dulcimer

Dulcimer [notation] instrument.fretted.dulcimer.5lines

Dulcimer (DAA tuning) [tab] instrument.fretted.dulcimer.daa.tab

Dulcimer (DAD tuning) [tab] instrument.fretted.dulcimer.dad.tab

Gamba [notation] instrument.fretted.gamba.5lines

Gamba [tab] instrument.fretted.gamba.tab

12-string Acoustic Guitar [notation] instrument.fretted.guitar.12-string.5lines

12-string Acoustic Guitar, DADGAD tuning

[tab]

instrument.fretted.guitar.12-string.dadgad.tab

12-string Acoustic Guitar, double D tuning

[tab]

instrument.fretted.guitar.12-string.double-d.tab

Chapter 5: Global Constants 171

12-string Acoustic Guitar, dropped D tuning

[tab]

instrument.fretted.guitar.12-string.dropped-d.tab

12-string Acoustic Guitar, open D tuning

[tab]

instrument.fretted.guitar.12-string.open-d.tab

12-string Acoustic Guitar, open E tuning

[tab]

instrument.fretted.guitar.12-string.open-e.tab

12-string Acoustic Guitar, open G tuning

[tab]

instrument.fretted.guitar.12-string.open-g.tab

12-string Acoustic Guitar, standard tuning

(no rhythms) [tab]

instrument.fretted.guitar.12-string.tab

12-string Acoustic Guitar, standard tuning

[tab]

instrument.fretted.guitar.12-string.tab.rhythms

Acoustic Guitar [notation] instrument.fretted.guitar.acoustic.5lines

Acoustic Guitar, DADGAD tuning [tab] instrument.fretted.guitar.acoustic.dadgad.tab

Acoustic Guitar, double D tuning [tab] instrument.fretted.guitar.acoustic.double-d.tab

Acoustic Guitar, dropped D tuning [tab] instrument.fretted.guitar.acoustic.dropped-d.tab

Acoustic Guitar, modal D tuning [tab] instrument.fretted.guitar.acoustic.modal-d.tab

Acoustic Guitar, Nashville tuning [tab] instrument.fretted.guitar.acoustic.nashville.tab

Acoustic Guitar, open A tuning [tab] instrument.fretted.guitar.acoustic.open-a.tab

Acoustic Guitar, open C tuning [tab] instrument.fretted.guitar.acoustic.open-c.tab

Acoustic Guitar, open D tuning [tab] instrument.fretted.guitar.acoustic.open-d.tab

Acoustic Guitar, open Dm cross-note tuning

[tab]

instrument.fretted.guitar.acoustic.open-dm.tab

Acoustic Guitar, open E tuning [tab] instrument.fretted.guitar.acoustic.open-e.tab

Acoustic Guitar, open G tuning [tab] instrument.fretted.guitar.acoustic.open-g.tab

Acoustic Guitar, standard tuning (no

rhythms) [tab]

instrument.fretted.guitar.acoustic.tab

Acoustic Guitar, standard tuning [tab] instrument.fretted.guitar.acoustic.tab.rhythms

4-string Bass Guitar [notation] instrument.fretted.guitar.bass.4-string.5lines

4-string Bass Guitar [tab] instrument.fretted.guitar.bass.4-string.tab

Chapter 5: Global Constants 172

5-string Bass Guitar [notation] instrument.fretted.guitar.bass.5-string.5lines

5-string Bass Guitar [tab] instrument.fretted.guitar.bass.5-string.tab

Bass Guitar [notation] instrument.fretted.guitar.bass.5lines

6-string Bass Guitar [notation] instrument.fretted.guitar.bass.6-string.5lines

6-string Bass Guitar [tab] instrument.fretted.guitar.bass.6-string.tab

Acoustic Bass [notation] instrument.fretted.guitar.bass.acoustic.5lines

Acoustic Bass [tab] instrument.fretted.guitar.bass.acoustic.tab

5-string Electric Bass [notation] instrument.fretted.guitar.bass.electric.5-string.5lines

5-string Electric Bass [tab] instrument.fretted.guitar.bass.electric.5-string.tab

Electric Bass [notation] instrument.fretted.guitar.bass.electric.5lines

6-string Electric Bass [notation] instrument.fretted.guitar.bass.electric.6-string.5lines

6-string Electric Bass [tab] instrument.fretted.guitar.bass.electric.6-string.tab

5-string Fretless Electric Bass
instrument.fretted.guitar.bass.electric.fretless.5-

string.5lines

5-string Fretless Electric Bass [tab] instrument.fretted.guitar.bass.electric.fretless.5-string.tab

Fretless Electric Bass [notation] instrument.fretted.guitar.bass.electric.fretless.5lines

6-string Fretless Electric Bass
instrument.fretted.guitar.bass.electric.fretless.6-

string.5lines

6-string Fretless Electric Bass [tab] instrument.fretted.guitar.bass.electric.fretless.6-string.tab

Fretless Electric Bass [tab] instrument.fretted.guitar.bass.electric.fretless.tab

Electric Bass [tab] instrument.fretted.guitar.bass.electric.tab

5-string Fretless Bass Guitar [notation] instrument.fretted.guitar.bass.fretless.5-string.5lines

5-string Fretless Bass Guitar [tab] instrument.fretted.guitar.bass.fretless.5-string.tab

Fretless Bass Guitar [notation] instrument.fretted.guitar.bass.fretless.5lines

6-string Fretless Bass Guitar [notation] instrument.fretted.guitar.bass.fretless.6-string.5lines

6-string Fretless Bass Guitar [tab] instrument.fretted.guitar.bass.fretless.6-string.tab

Fretless Bass Guitar [tab] instrument.fretted.guitar.bass.fretless.tab

Semi-Acoustic Bass [notation] instrument.fretted.guitar.bass.semi-acoustic.5lines

Chapter 5: Global Constants 173

Semi-Acoustic Bass [tab] instrument.fretted.guitar.bass.semi-acoustic.tab

Bass Guitar [tab] instrument.fretted.guitar.bass.tab

Bass Guitar [tab, with rhythms] instrument.fretted.guitar.bass.tab.rhythms

Classical Guitar [notation] instrument.fretted.guitar.classical.5lines

Classical Guitar, DADGAD tuning [tab] instrument.fretted.guitar.classical.dadgad.tab

Classical Guitar, double D tuning [tab] instrument.fretted.guitar.classical.double-d.tab

Classical Guitar, dropped D tuning [tab] instrument.fretted.guitar.classical.dropped-d.tab

Classical Guitar, open D tuning [tab] instrument.fretted.guitar.classical.open-d.tab

Classical Guitar, open E tuning [tab] instrument.fretted.guitar.classical.open-e.tab

Classical Guitar, open G tuning [tab] instrument.fretted.guitar.classical.open-g.tab

Classical Guitar, standard tuning (no

rhythms) [tab]

instrument.fretted.guitar.classical.tab

Classical Guitar, standard tuning [tab] instrument.fretted.guitar.classical.tab.rhythms

Electric Guitar [notation] instrument.fretted.guitar.electric.5lines

7-string Electric Guitar, low A tuning [tab] instrument.fretted.guitar.electric.7-string.low-a.tab

7-string Electric Guitar, low B tuning [tab] instrument.fretted.guitar.electric.7-string.tab

Electric Guitar, DADGAD tuning [tab] instrument.fretted.guitar.electric.dadgad.tab

Electric Guitar, double D tuning [tab] instrument.fretted.guitar.electric.double-d.tab

Electric Guitar, dropped D tuning [tab] instrument.fretted.guitar.electric.dropped-d.tab

Electric Guitar, open D tuning [tab] instrument.fretted.guitar.electric.open-d.tab

Electric Guitar, open E tuning [tab] instrument.fretted.guitar.electric.open-e.tab

Electric Guitar, open G tuning [tab] instrument.fretted.guitar.electric.open-g.tab

Electric Guitar, standard tuning (no

rhythms) [tab]

instrument.fretted.guitar.electric.tab

Electric Guitar, standard tuning [tab] instrument.fretted.guitar.electric.tab.rhythms

Kora instrument.fretted.guitar.kora

Semi-acoustic Guitar [notation] instrument.fretted.guitar.semi-acoustic.5lines

Semi-acoustic Guitar, DADGAD tuning [tab] instrument.fretted.guitar.semi-acoustic.dadgad.tab

Chapter 5: Global Constants 174

Semi-acoustic Guitar, double D tuning [tab] instrument.fretted.guitar.semi-acoustic.double-d.tab

Semi-acoustic Guitar, dropped D tuning

[tab]

instrument.fretted.guitar.semi-acoustic.dropped-d.tab

Semi-acoustic Guitar, open D tuning [tab] instrument.fretted.guitar.semi-acoustic.open-d.tab

Semi-acoustic Guitar, open E tuning [tab] instrument.fretted.guitar.semi-acoustic.open-e.tab

Semi-acoustic Guitar, open G tuning [tab] instrument.fretted.guitar.semi-acoustic.open-g.tab

Semi-acoustic Guitar, standard tuning (no

rhythms) [tab]

instrument.fretted.guitar.semi-acoustic.tab

Semi-acoustic Guitar, standard tuning [tab] instrument.fretted.guitar.semi-acoustic.tab.rhythms

10-string Hawaiian Steel Guitar [tab] instrument.fretted.guitar.steel.hawaiian.10-string.tab

Hawaiian Steel Guitar [notation] instrument.fretted.guitar.steel.hawaiian.5lines

6-string Hawaiian Steel Guitar, standard

tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab

6-string Hawaiian Steel Guitar, alternate

tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.alter-

native

6-string Hawaiian Steel Guitar, slack key Bb

Mauna Loa tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-

string.tab.bflat.mauna.loa

6-string Hawaiian Steel Guitar, slack key C

Mauna Loa tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-

string.tab.c.mauna.loa

6-string Hawaiian Steel Guitar, slack key

Wahine CGDGBD tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-

string.tab.cgdgbd.wahine

6-string Hawaiian Steel Guitar, slack key

Wahine CGDGBE tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-

string.tab.cgdgbe.wahine

6-string Hawaiian Steel Guitar, slack key

Wahine DGDF#BD tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.dgd-

fbd.wahine

6-string Hawaiian Steel Guitar, slack key G

Mauna Loa tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-

string.tab.g.mauna.loa

6-string Hawaiian Steel Guitar, slack key G

Taro Patch tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-

string.tab.g.taro.patch

6-string Hawaiian Steel Guitar, slack key

Wahine GCDGBE tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-

string.tab.gcdgbe.wahine

8-string Hawaiian Steel Guitar [tab] instrument.fretted.guitar.steel.hawaiian.8-string.tab

Chapter 5: Global Constants 175

8-string Hawaiian Steel Guitar, alternate

tuning [tab]

instrument.fretted.guitar.steel.hawaiian.8-string.tab.alter-

native

Hawaiian Steel Guitar [tab] instrument.fretted.guitar.steel.hawaiian.tab

Pedal Steel Guitar [notation] instrument.fretted.guitar.steel.pedal.5lines

Pedal Steel Guitar [tab] instrument.fretted.guitar.steel.pedal.tab

Guitarra [notation] instrument.fretted.guitarra.5lines

Guitarra, Coimbra [tab] instrument.fretted.guitarra.coimbra.tab

Guitarra, Lisboa [tab] instrument.fretted.guitarra.lisboa.tab

Guitarra, Portuguesa [tab] instrument.fretted.guitarra.portuguesa.tab

Guitarrón [notation] instrument.fretted.guitarron.5lines

Guitarrón [tab] instrument.fretted.guitarron.tab

Laúd [notation] instrument.fretted.laud.5lines

Laúd [tab] instrument.fretted.laud.tab

Tenor Lute [notation] instrument.fretted.lute.5lines

Bass Lute [notation] instrument.fretted.lute.bass-d.french.english.5lines

Bass Lute, D tuning, French/English [tab] instrument.fretted.lute.bass-d.french.english.tab

Bass Lute, D tuning, Italian [tab] instrument.fretted.lute.bass-d.italian.tab

Bass Lute, D tuning, Spanish [tab] instrument.fretted.lute.bass-d.spanish.tab

Tenor Lute, G tuning, Italian [tab] instrument.fretted.lute.italian.tab

Tenor Lute, G tuning, Spanish [tab] instrument.fretted.lute.spanish.tab

Tenor Lute, G tuning, French/English [tab] instrument.fretted.lute.tab

Tenor Lute, A tuning, French/English [tab] instrument.fretted.lute.tenor-a.french.english.tab

Tenor Lute, A tuning, Italian [tab] instrument.fretted.lute.tenor-a.italian.tab

Tenor Lute, A tuning, Spanish [tab] instrument.fretted.lute.tenor-a.spanish.tab

Treble Lute [notation] instrument.fretted.lute.treble-d.french.english.5lines

Treble Lute, D tuning, French/English [tab] instrument.fretted.lute.treble-d.french.english.tab

Treble Lute, D tuning, Italian [tab] instrument.fretted.lute.treble-d.italian.tab

Chapter 5: Global Constants 176

Treble Lute, D tuning, Spanish [tab] instrument.fretted.lute.treble-d.spanish.tab

Mandolin [notation] instrument.fretted.mandolin.5lines

Mandolin [tab] instrument.fretted.mandolin.tab

Oud [notation] instrument.fretted.oud.5lines

Oud [tab] instrument.fretted.oud.tab

Qanoon instrument.fretted.qanoon.5lines

Requinto [notation] instrument.fretted.requinto.5lines

Requinto [tab] instrument.fretted.requinto.tab

Santoor instrument.fretted.santoor.5lines

Sitar [notation] instrument.fretted.sitar.5lines

Sitar (Ravi Shankar) [tab] instrument.fretted.sitar.ravi-shankkar.tab

Sitar (Vilayat Khan) [tab] instrument.fretted.sitar.vilayat-khan.tab

Tambura (Female) [notation] instrument.fretted.tambura.female

Tambura (Male) [notation] instrument.fretted.tambura.male

Tiple [notation] instrument.fretted.tiple.5lines

Tiple, Argentina [tab] instrument.fretted.tiple.argentina.tab

Tiple, Colombia ADF#B tuning [tab] instrument.fretted.tiple.colombia.tab.adfb

Tiple, Colombia DGBE tuning [tab] instrument.fretted.tiple.colombia.tab.dgbe

Tiple, Cuba [tab] instrument.fretted.tiple.cuba.tab

Tiple, Peru [tab] instrument.fretted.tiple.peru.tab

Tiple, Santo Domingo [tab] instrument.fretted.tiple.santo.domingo.tab

Tiple, Uruguay [tab] instrument.fretted.tiple.uruguay.tab

Tres [notation] instrument.fretted.tres.5lines

Tres, GCE tuning [tab] instrument.fretted.tres.tab

Tres, ADF# tuning [tab] instrument.fretted.tres.tab.adf

Tres, GBE tuning [tab] instrument.fretted.tres.tab.gbe

Ukulele [notation] instrument.fretted.ukulele.5lines

Chapter 5: Global Constants 177

Ukulele [tab] instrument.fretted.ukulele.tab

Vihuela [notation] instrument.fretted.vihuela.5lines

Vihuela [tab] instrument.fretted.vihuela.tab

Zither instrument.fretted.zither

Keyboard instrument.keyboard

Accordion instrument.keyboard.accordion

Bandoneon instrument.keyboard.bandoneon

Celesta instrument.keyboard.celesta

Clavichord instrument.keyboard.clavichord

Harmonium instrument.keyboard.harmonium

Harpsichord instrument.keyboard.harpsichord

Keyboards instrument.keyboard.keyboards

Tape Sampler Keyboard [Brass] instrument.keyboard.tape sampler.brass

Tape Sampler Keyboard [Choir] instrument.keyboard.tape sampler.choir

Tape Sampler Keyboard [Flute] instrument.keyboard.tape sampler.flute

Tape Sampler Keyboard [Strings] instrument.keyboard.tape sampler

Melodeon instrument.keyboard.melodeon

Electric Organ instrument.keyboard.organ.electric

Organ [manuals] instrument.keyboard.organ.manuals

Manual [solo organ manuals] instrument.keyboard.organ.manuals.solo

Ped. [Organ pedals] instrument.keyboard.organ.pedals

Pedal [solo organ pedals] instrument.keyboard.organ.pedals.solo

Piano instrument.keyboard.piano

Electric Piano instrument.keyboard.piano.electric

Electric Clavichord instrument.keyboard.piano.electric.clavichord

Electric Stage Piano instrument.keyboard.piano.electric.stage

Overdriven Electric Piano instrument.keyboard.piano.electric.overdriven

Chapter 5: Global Constants 178

Honky-tonk Piano instrument.keyboard.piano.honky-tonk

Synthesizer instrument.keyboard.synthesizer

Unnamed (2 lines) instrument.other.2lines

Unnamed (3 lines) instrument.other.3lines

Unnamed (4 lines) instrument.other.4lines

Unnamed (bass staff) instrument.other.bassclef

No instrument (barlines shown) instrument.other.none.barlines

No instrument (bar rests shown) instrument.other.none.barrests

No instrument (hidden) instrument.other.none.hidden

Solo instrument.other.solo.real

Unnamed (treble staff) instrument.other.trebleclef

Almglocken instrument.pitchedpercussion.almglocken

Antique Cymbals instrument.pitchedpercussion.antiquecymbals

Chimes instrument.pitchedpercussion.bells.chimes

Chimes [no key] instrument.pitchedpercussion.bells.chimes.nokeysig

Bell lyre [marching band] instrument.pitchedpercussion.bells.marching

Orchestral Bells instrument.pitchedpercussion.bells.orchestral

Tubular Bells instrument.pitchedpercussion.bells.tubular

Cimbalom instrument.pitchedpercussion.cimbalom

Crotales instrument.pitchedpercussion.crotales

Steel Drums instrument.pitchedpercussion.drums.steel

Steel Drums [bass clef, treble transp.] instrument.pitchedpercussion.drums.steel.bassclef

Gamelan Kengong instrument.pitchedpercussion.gamelan.kengong

Gamelan Slentam instrument.pitchedpercussion.gamelan.slentam

Glockenspiel instrument.pitchedpercussion.glockenspiel

Alto Glockenspiel instrument.pitchedpercussion.glockenspiel.alto

Soprano Glockenspiel instrument.pitchedpercussion.glockenspiel.soprano

Chapter 5: Global Constants 179

Handbells instrument.pitchedpercussion.handbells

Harp instrument.pitchedpercussion.harp

Lever Harp instrument.pitchedpercussion.harp.lever

Kalimba instrument.pitchedpercussion.kalimba

Marimba [grand staff] instrument.pitchedpercussion.marimba

Marimba [treble staff] instrument.pitchedpercussion.marimba.trebleclef

Alto Metallophone instrument.pitchedpercussion.metallophone.alto

Bass Metallophone instrument.pitchedpercussion.metallophone.bass

Soprano Metallophone instrument.pitchedpercussion.metallophone.soprano

Roto-toms instrument.pitchedpercussion.roto-toms

Temple Blocks instrument.pitchedpercussion.templeblocks

Timpani [with key] instrument.pitchedpercussion.timpani

Timpani [no key] instrument.pitchedpercussion.timpani.nokeysig

Vibraphone instrument.pitchedpercussion.vibraphone

Wood Blocks [5 lines] instrument.pitchedpercussion.woodblocks

Xylophone instrument.pitchedpercussion.xylophone

Alto Xylophone instrument.pitchedpercussion.xylophone.alto

Bass Xylophone instrument.pitchedpercussion.xylophone.bass

Contra Bass Bar instrument.pitchedpercussion.xylophone.contrabass.bar

Gyil instrument.pitchedpercussion.xylophone.gyil

Soprano Xylophone instrument.pitchedpercussion.xylophone.soprano

Xylorimba instrument.pitchedpercussion.xylorimba

Alto instrument.singers.alto

Solo Alto instrument.singers.alto.solo

Altus instrument.singers.altus

Baritone instrument.singers.baritone

Solo Baritone instrument.singers.baritone.solo

Chapter 5: Global Constants 180

Bass instrument.singers.bass

Solo Bass instrument.singers.bass.solo

Bassus instrument.singers.bassus

Cantus instrument.singers.cantus

Choir instrument.singers.choir

Contralto instrument.singers.contralto

Countertenor instrument.singers.counter-tenor

Mean instrument.singers.mean

Mezzo-soprano instrument.singers.mezzo-soprano

Quintus instrument.singers.quintus

Secundus instrument.singers.secundus

Soprano instrument.singers.soprano

Solo Soprano instrument.singers.soprano.solo

Tenor instrument.singers.tenor

Solo Tenor instrument.singers.tenor.solo

Treble instrument.singers.treble

Solo Treble instrument.singers.treble.solo

Voice instrument.singers.voice

Voice [male] instrument.singers.voice.male

Contrabass instrument.strings.contrabass

Bass [Double] instrument.strings.contrabass.bass

Double Bass instrument.strings.contrabass.double-bass

Solo Contrabass instrument.strings.contrabass.solo

String Bass instrument.strings.contrabass.string

Upright Bass instrument.strings.contrabass.upright

Hurdy-gurdy instrument.strings.hurdy-gurdy

Sarangi instrument.strings.sarangi

Chapter 5: Global Constants 181

Strings instrument.strings.section

Strings [reduction] instrument.strings.section.reduction

Bass Viol instrument.strings.viol.bass

Tenor Viol instrument.strings.viol.tenor

Treble Viol instrument.strings.viol.treble

Viola instrument.strings.viola

Solo Viola instrument.strings.viola.solo

Violin 1 instrument.strings.violin.1

Violin 2 instrument.strings.violin.2

Violin I instrument.strings.violin.I

Violin II instrument.strings.violin.ii

Solo Violin instrument.strings.violin.solo

Violoncello instrument.strings.violoncello

Solo Violoncello instrument.strings.violoncello.solo

Anvil instrument.unpitched.anvil

Cha-cha bell [1 line] instrument.unpitched.bells.cha-cha

Mambo bell [1 line] instrument.unpitched.bells.mambo

Sleigh Bells instrument.unpitched.bells.sleigh

Brake Drum [1 line] instrument.unpitched.brake-drum.1line

Cabasa [1 line] instrument.unpitched.cabasa

Cabasa [2 lines] instrument.unpitched.cabasa.2lines

Castanets instrument.unpitched.castanets

Shaker, Caxixi [1 line] instrument.unpitched.caxixi.1line

Claves [1 line] instrument.unpitched.claves

Shaker, Cocoa Bean Rattle [1 line] instrument.unpitched.cocoa bean.1line

Finger Cymbals [1 line] instrument.unpitched.cymbals.finger.1line

Percussion [1 line] instrument.unpitched.drums.1line

Chapter 5: Global Constants 182

Percussion [2 lines] instrument.unpitched.drums.2lines

Berimbau instrument.unpitched.drums.2lines.berimbau

Percussion [3 lines] instrument.unpitched.drums.3lines

Percussion [4 lines] instrument.unpitched.drums.4lines

Percussion [5 lines] instrument.unpitched.drums.5lines

Agogos [2 lines] instrument.unpitched.drums.agogos

Bass Drum instrument.unpitched.drums.bass

Bass Drum [5 lines] instrument.unpitched.drums.bass.5lines

Marching Bass Drum [3 lines] instrument.unpitched.drums.bass.marching.3lines

Marching Bass Drum [5 lines] instrument.unpitched.drums.bass.marching.5lines

Itótele [Batá Drum] instrument.unpitched.drums.bata.itotele

Iyá [Batá Drum] instrument.unpitched.drums.bata.iya

Okónkolo [Batá Drum] instrument.unpitched.drums.bata.okonkolo

Bongos [2 lines] instrument.unpitched.drums.bongos

Bongo Bell [High] instrument.unpitched.drums.bongos.bell.high

Bongo Bell [Low] instrument.unpitched.drums.bongos.bell.low

Box instrument.unpitched.drums.box.3lines

Cajon [2 lines] instrument.unpitched.drums.cajon

Congas [2 lines] instrument.unpitched.drums.congas

Congas [1 line] instrument.unpitched.drums.congas.1line

Congas [3 lines] instrument.unpitched.drums.congas.3lines

Congas [4 lines] instrument.unpitched.drums.congas.4lines

Cuíca [3 lines] instrument.unpitched.drums.cuica.3lines

Cymbals instrument.unpitched.drums.cymbal

Marching Cymbals [5 lines] instrument.unpitched.drums.cymbals.marching.5lines

Djembe [3 lines] instrument.unpitched.drums.djembe.3lines

Drum Set (Rock) instrument.unpitched.drums.drumset

Chapter 5: Global Constants 183

Drum Set (Alternative) instrument.unpitched.drums.drumset.alternative

Drum Set (Brushes) instrument.unpitched.drums.drumset.brushes

Drum Set (Dance) instrument.unpitched.drums.drumset.dance

Drum Set (Disco) instrument.unpitched.drums.drumset.disco

Drum Set (Electronica) instrument.unpitched.drums.drumset.electronic

Drum Set (Fusion) instrument.unpitched.drums.drumset.fusion

Drum Set (Garage) instrument.unpitched.drums.drumset.garage

Drum Set (Hip-hop) instrument.unpitched.drums.drumset.hip-hop

Drum Set (Industrial) instrument.unpitched.drums.drumset.industrial

Drum Set (Jazz) instrument.unpitched.drums.drumset.jazz

Drum Set (Lo-Fi) instrument.unpitched.drums.drumset.lo-fi

Drum Set (Metal) instrument.unpitched.drums.drumset.metal

Drum Set (Motown) instrument.unpitched.drums.drumset.motown

Drum Set (New Age) instrument.unpitched.drums.drumset.new age

Drum Set (Pop) instrument.unpitched.drums.drumset.pop

Drum Set (Reggae) instrument.unpitched.drums.drumset.reggae

Drum Set (Stadium Rock) instrument.unpitched.drums.drumset.rock.stadium

Drum Set (Rods) instrument.unpitched.drums.drumset.rods

Drum Set (Drum Machine) instrument.unpitched.drums.drumset.tr-808

Dumbek [3 lines] instrument.unpitched.drums.dumbek.3lines

Kidi [Ewe Drum] instrument.unpitched.drums.ewe.kidi

Sogo [Ewe Drum] instrument.unpitched.drums.ewe.sogo

Gankokwe (Bell) instrument.unpitched.drums.gankokwe

Jam Blocks [2 lines] instrument.unpitched.drums.jamblocks

Jawbone [1 line] instrument.unpitched.drums.jawbone.1line

Pandeiro [2 lines] instrument.unpitched.drums.pandeiro

Rain Stick (High) [1 line] instrument.unpitched.drums.rainstick.high.1line

Chapter 5: Global Constants 184

Rain Stick (Low) [1 line] instrument.unpitched.drums.rainstick.low.1line

Egg Shaker (High) [1 line] instrument.unpitched.drums.shaker.high.1line

Egg Shaker (Low) [1 line] instrument.unpitched.drums.shaker.low.1line

Egg Shaker (Medium) [1 line] instrument.unpitched.drums.shaker.medium.1line

Side Drum instrument.unpitched.drums.side

Snare Drum instrument.unpitched.drums.snare

Marching Snare Drums [5 lines] instrument.unpitched.drums.snare.5lines

Surdo [2 lines] instrument.unpitched.drums.surdo

Tabla instrument.unpitched.drums.table

Taiko Drum instrument.unpitched.drums.taiko

Tenor Drum instrument.unpitched.drums.tenor

Marching Tenor Drums [5 lines] instrument.unpitched.drums.tenor.marching

Quads [5 lines] instrument.unpitched.drums.tenor.marching.quads

Tom-toms [5 lines] instrument.unpitched.drums.tom-toms

Tom-toms [4 lines] instrument.unpitched.drums.tom-toms.4lines

Udu instrument.unpitched.drums.udu

Shaker, Egg Shaker [1 line] instrument.unpitched.egg shaker.1line

Finger Click [1 line] instrument.unpitched.fingerclick

Gamelan Gong Ageng (High) [1 line] instrument.unpitched.gamelan.gong-ageng.high

Gamelan Gong Ageng (Low) [1 line] instrument.unpitched.gamelan.gong-ageng.low

Gamelan Kempyang and Ketuk [2 lines] instrument.unpitched.gamelan.kempyang-ketuk

Gamelan Khendang Ageng [1 line] instrument.unpitched.gamelan.khendang-ageng

Gamelan Khendang Ciblon [1 line] instrument.unpitched.gamelan.khendang-ciblon

Large Gong [1 line] instrument.unpitched.gong.large.1line

Medium Gong [1 line] instrument.unpitched.gong.medium.1line

Gourd [1 line] instrument.unpitched.gourd

Guira [1 line] instrument.unpitched.guira

Chapter 5: Global Constants 185

Guiro (High) [1 line] instrument.unpitched.guiro.high

Guiro (Medium) [1 line] instrument.unpitched.guiro.medium

Handclap [1 line] instrument.unpitched.handclap

Shaker, Kayamba [1 line] instrument.unpitched.kayamba.1line

Maracas instrument.unpitched.maracas

Shaker, Gourd Maracas [1 line] instrument.unpitched.maracas.gourd.1line

Maracas [High] instrument.unpitched.maracas.high

Maracas [Medium] instrument.unpitched.maracas.medium

Mark tree [1 line] instrument.unpitched.marktree

Shaker, Nsak Rattle [1 line] instrument.unpitched.nsak.1line

Finger Snaps instrument.unpitched.orff.fingersnaps

Hand Claps instrument.unpitched.orff.handclaps

Patsch instrument.unpitched.orff.patsch

Stamp instrument.unpitched.orff.stamp

Salsa bell [1 line] instrument.unpitched.salsa.bell

Shaker [1 line] instrument.unpitched.shaker

Shaker, Shekere [1 line] instrument.unpitched.shekere.1line

Tam-tam instrument.unpitched.tam-tam

Tambourine instrument.unpitched.tambourine

Timbales [2 lines] instrument.unpitched.timbales.2lines

Timbales [5 lines] instrument.unpitched.timbales.5lines

Triangle instrument.unpitched.triangle

Shaker, Wasembe Rattle (High) [1 line] instrument.unpitched.wasembe.high.1line

Shaker, Wasembe Rattle (Low) [1 line] instrument.unpitched.wasembe.low.1line

Shaker, Wasembe Rattle (Medium) [1 line] instrument.unpitched.wasembe.medium.1line

Whip instrument.unpitched.whip

Whistle instrument.unpitched.whistle

Chapter 5: Global Constants 186

Wind Chimes [1 line] instrument.unpitched.wind-chimes.1line

Wood Block [1 line] instrument.unpitched.woodblock.1line

Bagpipes instrument.wind.bagpipe

Basset Horn instrument.wind.basset-horn

Bassoon instrument.wind.bassoon

Contrabassoon instrument.wind.bassoon.contrabassoon

Quart Bassoon instrument.wind.bassoon.quart

Quint Bassoon instrument.wind.bassoon.quint

Clarinet in A instrument.wind.clarinet.a

Clarinet in Ab instrument.wind.clarinet.aflat

Alto Clarinet in Eb instrument.wind.clarinet.alto.eflat

Alto Clarinet in Eb [bass clef, treble transp.] instrument.wind.clarinet.alto.eflat.bassclef

Bass Clarinet in Bb instrument.wind.clarinet.bass.bflat

Bass Clarinet in Bb [score sounds 8vb] instrument.wind.clarinet.bass.bflat.8vb-score

Bass Clarinet in Bb [bass clef, treble

transp.]

instrument.wind.clarinet.bass.bflat.bassclef

Clarinet in Bb instrument.wind.clarinet.bflat

Clarinet in C instrument.wind.clarinet.c

Contra Alto Clarinet in Eb instrument.wind.clarinet.contra.alto.eflat

Contra Alto Clarinet in Eb [score sounds

8vb]

instrument.wind.clarinet.contra.alto.eflat.8vb-score

Contra Alto Clarinet in Eb [bass clef, treble

transp.]

instrument.wind.clarinet.contra.alto.eflat.bassclef

Contrabass Clarinet in Bb instrument.wind.clarinet.contrabass.bflat

Contrabass Clarinet in Bb [score sounds

15mb]

instrument.wind.clarinet.contrabass.bflat.15mb-score

Contrabass Clarinet in Bb [bass clef, treble

transp.]

instrument.wind.clarinet.contrabass.bflat.bassclef

Clarinet in D instrument.wind.clarinet.d

Chapter 5: Global Constants 187

Clarinet in Eb instrument.wind.clarinet.eflat

Clarinet in G instrument.wind.clarinet.g

Cor Anglais instrument.wind.coranglais

Didgeridoo instrument.wind.didgeridoo

Duduk instrument.wind.duduk

English Horn instrument.wind.englishhorn

Flageolet instrument.wind.flageolet

Flute instrument.wind.flute

Alto Flute instrument.wind.flute.alto

Bansuri instrument.wind.flute.bansuri

Bass Flute instrument.wind.flute.bass

Eb Flute instrument.wind.flute.eflat

G Flute instrument.wind.flute.g

Harmonica instrument.wind.harmonica

Heckelphone instrument.wind.heckelphone

Mey instrument.wind.mey

Nai instrument.wind.nai

Oboe instrument.wind.oboe

Baritone Oboe instrument.wind.oboe.baritone

Bass Oboe instrument.wind.oboe.bass

Oboe d'Amore instrument.wind.oboe.damore

Ocarina instrument.wind.ocarina

Panpipes instrument.wind.panpipes

Piccolo instrument.wind.piccolo

Military Piccolo in Db instrument.wind.piccolo.dflat

Alto Recorder instrument.wind.recorder.alto

Bass Recorder instrument.wind.recorder.bass

Chapter 5: Global Constants 188

Great Bass Recorder instrument.wind.recorder.bass.great

Contrabass Recorder instrument.wind.recorder.contrabass

Descant Recorder instrument.wind.recorder.descant

Sopranino Recorder instrument.wind.recorder.sopranino

Soprano Recorder instrument.wind.recorder.soprano

Tenor Recorder instrument.wind.recorder.tenor

Treble Recorder instrument.wind.recorder.treble

Alto Saxophone instrument.wind.saxophone.alto

Baritone Saxophone instrument.wind.saxophone.baritone

Baritone Saxophone [score sounds 8vb] instrument.wind.saxophone.baritone.8vb-score

Baritone Saxophone [bass clef, treble

transp.]

instrument.wind.saxophone.baritone.bassclef

Bass Saxophone instrument.wind.saxophone.bass

Bass Saxophone [score sounds 15mb] instrument.wind.saxophone.bass.15mb-score

Bass Saxophone [bass clef, treble transp.] instrument.wind.saxophone.bass.bassclef

C Melody Saxophone instrument.wind.saxophone.c-melody

Contrabass (Tubax) Saxophone instrument.wind.saxophone.contrabass

Contrabass (Tubax) Saxophone [score

sounds 15mb]

instrument.wind.saxophone.contrabass.15mb-score

Contrabass (Tubax) Sax [bass clef, treble

transp.]

instrument.wind.saxophone.contrabass.bassclef

F Mezzo Soprano Saxophone instrument.wind.saxophone.mezz-soprano.f

Sopranino Saxophone instrument.wind.saxophone.sopranino

Piccolo Saxophone in Bb [Soprillo] instrument.wind.saxophone.sopranino.bflat

Soprano Saxophone instrument.wind.saxophone.soprano

C Soprano Saxophone instrument.wind.saxophone.soprano.c

Subcontrabass (Tubax) Saxophone instrument.wind.saxophone.subcontrabass

Subcontrabass (Tubax) Saxophone [score

sounds 15mb]

instrument.wind.saxophone.subcontrabass.15mb-score

Chapter 5: Global Constants 189

Beam Options
For the Beam variable of NoteRest objects.

Bracket Types
For the AddBracket() method of BracketList objects, and the BracketType variable of Bracket objects.

Subcontrabass (Tubax) Sax [bass clef,

treble transp.]

instrument.wind.saxophone.subcontrabass.bassclef

Tenor Saxophone instrument.wind.saxophone.tenor

Tenor Saxophone [score sounds 8vb] instrument.wind.saxophone.tenor.8vb-score

Tenor Saxophone [bass clef, treble transp.] instrument.wind.saxophone.tenor.bassclef

Woodwind instrument.wind.section

Shakuhachi instrument.wind.shakuhachi

Tin Whistle instrument.wind.whistle.tin

NoBeam 1

StartBeam 2

ContinueBeam 3

SingleBeam 4

BracketFull 0

BracketBrace 1

BracketSub 2

Chapter 5: Global Constants 190

Breaks
These constants are used by the SetBreakType() method of Score objects.

These constants correspond to the menu entries in the Bars panel of the Properties window in the following way:

MiddleOfSystem

Middle of system. The bar can only appear in the middle of a system, not at the end.

EndOfSystem

No menu entry; created by Layout > Lock Format. The bar can only appear at the end of a mid-page system, not

the middle of a system or the end of a page.

MiddleOfPage

Middle of page. The bar can appear anywhere except at the end of a page.

EndOfPage

Page break. The bar can only appear at the end of a page.

NotEndOfSystem

No menu entry. The bar can appear anywhere except the end of a mid-page system.

EndOfSystemOrPage

System break. The bar can only appear at the end of a mid-page system or the end of a page.

Default

No break. The bar can appear anywhere.

Note that in older versions of ManuScript the constant MiddleOfSystem was called NoBreak and the con-

stant EndOfSystem was called SystemBreak. These older names were confusing, because they implied a

correlation with the similarly-named menu items in the Properties window that was not accurate. The old names

MiddleOfSystem 1

EndOfSystem 2

MiddleOfPage 3

EndOfPage 4

NotEndOfSystem 5

EndOfSystemOrPage 6

Default 7

SpecialPageBreak 8

Chapter 5: Global Constants 191

are still supported for old plug-ins, but should not be used for new plug-ins. For consistency, the old constant

PageBreak has also been renamed EndOfPage, even though this did correlate correctly with the Properties

window.

Accidentals
For the Accidental variable of Note objects.

Note Style Names
For the NoteStyle variable of Note objects; these correspond to the noteheads available from the Notes panel

of the Properties window in the manuscript papers that are supplied with Sibelius.

DoubleSharp 2

Sharp 1

Natural 0

Flat –1

DoubleFlat –2

NormalNoteStyle 0 BackSlashedNoteStyle 12

CrossNoteStyle 1 ArrowDownNoteStyle 13

DiamondNoteStyle 2 ArrowUpNoteStyle 14

BeatWithoutStemNoteStyle 3 InvertedTriangleNoteStyle 15

BeatNoteStyle 4 ShapedNote1NoteStyle 16

CrossOrDiamondNoteStyle 5 ShapedNote2NoteStyle 17

BlackAndWhiteDiamondNote

Style

6
ShapedNote3NoteStyle

18

HeadlessNoteStyle 7 ShapedNote4StemUpNoteStyle 19

StemlessNoteStyle 8 ShapedNote4StemDownNoteStyle 23

SilentNoteStyle 9 ShapedNote5NoteStyle 20

CueNoteStyle 10 ShapedNote6NoteStyle 21

SlashedNoteStyle 11 ShapedNote7NoteStyle 22

Chapter 5: Global Constants 192

MuteMode Constants
These are the possible values of Stave.MuteMode:

Articulations
Used with Note.GetArticulation and Note.SetArticulation.

Muted 0

HalfMuted 1

NotMuted 2

Custom3Artic 15

TriPauseArtic 14

PauseArtic 13

SquarePauseArtic 12

Custom2Artic 11

DownBowArtic 10

UpBowArtic 9

PlusArtic 8

HarmonicArtic 7

MarcatoArtic 6

AccentArtic 5

TenutoArtic 4

WedgeArtic 3

StaccatissimoArtic 2

StaccatoArtic 1

Custom1Artic 0

Chapter 5: Global Constants 193

SyllableTypes for LyricItems
Used in LyricItem.

Accidental Styles
As used by Note.AccidentalStyle.

Time Signature Strings
These define the unicode characters used to draw common time and alla breve time signatures, so that you can

recognize these by comparison with TimeSignature.Text.

CommonTimeString

AllaBreveTimeString

Symbols
There are a lot of symbols in Sibelius. We’ve defined named constants for the indices of some of the most

frequently used symbols, which can be passed to Bar.AddSymbol. For other symbols, you can work out the

required index by “counting along” in the Create > Symbol dialog of Sibelius, or by using the method

Score.SymbolIndex. To help with the “counting along,” we’ve defined a constant for the start of every

group of symbols in the Create > Symbol dialog, and these are also given below. Then for example you can ac-

cess the 8va symbol as OctaveSymbols + 2.

MiddleOfWord 0

EndOfWord 1

NormalAcc "0"

HiddenAcc "1"

CautionaryAcc "2"

BracketedAcc "3"

Common Symbol Indices

SegnoSymbol "1"

CodaSymbol "2"

RepeatBeatSymbol "5"

RepeatBarSymbol "6"

RepeatTwoBarsSymbol "7"

Chapter 5: Global Constants 194

TrillSymbol "32"

BracketedTrillSymbol "33"

MordentSymbol "36"

InvertedMordentSymbol "37"

TurnSymbol "38"

InvertedTurnSymbol "39"

ReversedTurnSymbol "40"

TripleMordentSymbol "41"

InvertedTripleMordentSymbol "42"

PedalSymbol "48"

PedalPSymbol "49"

PedalUpSymbol "50"

LiftPedalSymbol "51"

HeelOneSymbol "52"

HeelTwoSymbol "53"

ToeOneSymbol "54"

ToeTwoSymbol "55"

CommaSymbol "247"

TickSymbol "248"

CaesuraSymbol "249"

ThickCaesuraSymbol "250"

Indices at the Start of Each Group of Symbols

RepeatSymbols "0"

GeneralSymbols "16"

OrnamentSymbols "32"

KeyboardSymbols "48"

ChromaticPercussionSymbols "64"

Chapter 5: Global Constants 195

DrumPercussionSymbols "80"

MetallicPercussionSymbols "96"

OtherPercussionSymbols "112"

BeaterPercussionSymbols "128"

PercussionTechniqueSymbols "160"

GuitarSymbols "176"

ArticulationSymbols "208"

AccidentalSymbols "256"

NoteSymbols "288"

NoteheadSymbols "320"

RestSymbols "368"

ConductorSymbols "400"

ClefSymbols "416"

OctaveSymbols "448"

BreakSymbols "464"

TechniqueSymbols "480"

AccordionSymbols "496"

HandbellSymbols "528"

MiscellaneousSymbols "544"

Symbol Size Constants

NormalSize "0"

CueSize "1"

GraceNoteSize "2"

CueGraceNoteSize "3"

Chapter 5: Global Constants 196

Special Page Break Types

Interval Types

InMultirest Values

NoPageBreak "0"

MusicRestartsAfterXPages "1"

MusicRestartsOnNextLeftPage "2"

MusicRestartsOnNextRightPage “3”

IntervalDiatonic "-1"

Interval5xDiminished “0”

Interval4xDiminished “1”

Interval3xDiminished “2”

Interval2xDiminished "3"

IntervalDiminished "4"

IntervalMinor “4”

IntervalMajor “5”

IntervalPerfect “5”

IntervalAugmented “6”

Interval2xAugmented “7”

Interval3xAugmented “8”

Interval4xAugmented “9”

Interval5xAugmented “10”

NoMultirest "0"

StartsMultirest "1"

EndsMultirest "2"

MidMultirest “3”

Chapter 5: Global Constants 197

Page Number Visibility Values

Page Number Format Values

Special Barlines

PageNumberShowAll "0"

PageNumberHideFirst "1"

PageNumberHideAll "2"

PageNumberFormatNormal "0"

PageNumberFormatRomanUpper "1"

PageNumberFormatRomanLower "2"

PageNumberFormatLetterLower “3”

SpecialBarlineStartRepeat "0"

SpecialBarlineEndRepeat "1"

SpecialBarlineDashed "2"

SpecialBarlineDouble "3"

SpecialBarlineFinal “4”

SpecialBarlineInvisible “5”

SpecialBarlineBetweenStaves “6”

SpecialBarlineNormal “7”

SpecialBarlineTick “8”

SpecialBarlineShort “9”

Chapter 5: Global Constants 198

Bar Rest Type Values

GuitarScaleDiagram Type Values

WholeBarRest "0"

BreveBarRest "1"

OneBarRepeat "2"

TwoBarRepeat “3”

FourBarRepeat “4”

ScaleTypeMajor "0"

ScaleTypeMinor "1"

ScaleTypeHarmonicMinor "2"

ScaleTypeMelodicMinor “3”

ScaleTypeDorian “4”

ScaleTypePhrygian “5”

ScaleTypeLydian “6”

ScaleTypeMixolydian “7”

ScaleTypeLocrian “8”

ScaleTypeWholeTone “9”

ScalrTypeDiminishedHalfWhole “10”

ScaleTypeDiminishedWholeHalf “11”

ScaleTypeAlteredDominant “12”

ScaleTypeLocrianSharp2 “13”

ScaleTypeLydianFlat7 “14”

ScaleTypeMajorBebop “15”

ScaleTypeDominantBebop “16”

ScaleTypeLydianSharp5 “17”

ScaleTypePhrygianDominant “18”

Chapter 5: Global Constants 199

FeatheredBeamType Values
For the FeatheredBeamType variable of NoteRest objects.

Units Values
For the DocumentSetup object.

Orientation Values
For the Orientation variable of DocumentSetup objects.

ScaleTypeAugmentedArpeggio “19”

ScaleTypeMajor7thArpeggio “20”

ScaleType7thArpeggio “21”

ScaleTypeMin7Flat5Arpeggio “22”

ScaleTypeDiminished7thArpeggio “23”

ScaleTypeMajorPentatonic “24”

ScaleTypeMinorPentatonic “25”

ScaleTypeOther “26”

FeatheredBeamNone "0"

FeatheredBeamAccel "1"

FeatheredBeamRit "2"

DocumentSetupUnitsmm "0"

DocumentSetupUnitsInches "1"

DocumentSetupUnitsPoints "2"

OrientationPortrait "0"

OrientationLandscape "1"

Chapter 5: Global Constants 200

PageSize Values
For the PageSize variable of DocumentSetup objects.

MarginType Values
For the MarginType variable of DocumentSetup objects.

PageSizeLetter "0"

PageSizeTabloid "1"

PageSizeA5 "2"

PageSizeB5 “3”

PageSizeA4 “4”

PageSizeB4 “5”

PageSizeA3 “6”

PageSizeUSBand “7”

PageSizeStatement “8”

PageSizeHymn “9”

PageSizeOctavo “10”

PageSizeExecutive “11”

PageSizeQuarto “12”

PageSizeConcert “13”

PageSizeFolio “14”

PageSizeLegal “15”

PageSize9_5x12_5 “16”

PageSize10x13 “17”

PageSizeCustom “18”

PageMarginsSame "0"

PageMarginsMirrored "1"

PageMarginsDifferent "2"

Chapter 5: Global Constants 201

Tuplets
These define the constants that can be passed as a style parameter to Bar.AddTuplet() and Tuplet.Add-

NestedTuplet().

These define the constants that can be passed as a bracket parameter:

SingleTremolos
For the SingleTremolos variable of NoteRest objects, the constants are numbers in the range 0 to 7, repre-

senting the number of tremolo beams on the stem of the note or chord. For a “z on stem” (for buzz rolls), use the

value –1 or the constant ZOnStem.

DoubleTremolo Values
For the double tremolo style variables of EngravingRules objects.

Instrument Name Values
For the instrument name variables of EngravingRules objects.

TupletNoNumber "0"

TupletLeft "1"

TupletLeftRight "2"

TupletLeftRightNote "3"

TupletBracketOff "0"

TupletBracketOn "1"

TupletBracketAuto "2"

DoubleTremolosTouchingStems "0"

DoubleTremolosBetweenStems "1"

DoubleTremolosOuterTremoloTouchingStems "2"

InstrumentNamesFull "0"

InstrumentNamesShort "1"

InstrumentNamesNone "2"

Chapter 5: Global Constants 202

Types of Objects in a Bar
The Type field for objects in a bar can return one of the following values:

Clef, SpecialBarline, TimeSignature, KeySignature
Line, ArpeggioLine, Bend, CrescendoLine, DiminuendoLine, GlissandoLine,

OctavaLine, PedalLine, RepeatTimeLine, Slur, Trill, Box, BeamLine, Tuplet,

RitardLine, HighLight
LyricItem, Text, SystemTextItem, GuitarFrame, GuitarScaleDiagram,

RehearsalMark, InstrumentChange
BarRest, NoteRest, Graphic, Comment, Bracket, BarNumber
SymbolItem, SystemSymbolItem

Avid
280 N Bernardo Avenue

Mountain View, CA 94043 USA

Technical Support (USA)
Visit the Online Support Center

at www.avid.com/support

Product Information
For company and product

information, visit us on the web at

www.avid.com

	Contents
	Chapter 1: Introduction
	Rationale
	Technical Support
	System Requirements and Compatibility Information
	Conventions Used in Sibelius Documentation

	Chapter 2: Sibelius ManuScript Language Tutorial
	Edit Plug-ins
	A Simple Plug-in
	Three Types of Information

	Editing the Code
	Where Plug-ins are Stored
	Line Breaks and Comments
	Variables
	Converting Between Numbers, Text, and Objects

	Loops
	“for” and “while”
	The if statement
	Arithmetic

	Objects
	Objects in Action

	Representation of a Score
	The System Staff
	Representation of Notes, Rests, Chords, and Other Musical Items

	The “for each” Loop
	Indirection, Sparse Arrays, and User Properties
	Indirection
	Sparse Arrays
	User Properties
	Dictionary
	Using User Properties as Global Variables
	Watch Out for Recursive Cycles!
	Other Things to Look Out For

	Dialog Editor
	Showing a Dialog in a Plug-In
	Creating or Editing a Dialog
	Dialog Properties
	Laying Out Controls
	Undo and Redo
	Testing the Dialog
	Saving Changes

	Set Creation Order
	Control Properties
	Combo Boxes and List Boxes
	Radio Buttons
	Static Text
	Buttons

	Debugging Plug-ins
	Undo
	Plug-in Trace Window
	Checking the Validity of Objects
	Stopping the Plug-in

	Storing and Retrieving Preferences
	How Does it Work?
	Initializing the Database
	Accessing Data
	Commands for Local Variables
	Miscellaneous
	Basic Example

	Chapter 3: Reference
	Syntax
	Expressions
	Operators
	Condition Operators
	Arithmetic

	Chapter 4: Object Reference
	Hierarchy of Objects
	All Objects
	Methods
	User Properties

	Accessibility
	Methods
	Variables

	Bar
	Methods
	Variables

	Barline
	Methods

	Barlines
	Methods
	Variables

	BarObject
	Methods
	Variables
	Deleting Multiple Objects from a Bar

	BarRest
	Methods
	Variables

	Bracket
	Methods
	Variables
	Methods
	Variables

	Clef
	Methods
	Variables

	Comment
	Methods
	Variables

	ComponentList
	Methods
	Variables

	Component
	Methods
	Variables

	DateTime
	Methods
	Variables

	Dictionary
	Methods
	Variables
	Converting Old-Style Hash Tables to Dictionaries

	DocumentSetup
	Methods
	Variables

	DynamicPartCollection
	Methods
	Variables

	DynamicPart
	Methods
	Variables

	EngravingRules
	Variables

	File
	Methods
	Variables

	Folder
	Methods
	Variables

	GuitarFrame
	Methods
	Variables

	GuitarScaleDiagram
	Methods
	Variables

	HitPointList
	Methods
	Variables

	HitPoint
	Methods
	Variables

	InstrumentChange
	Methods
	Variables

	InstrumentTypeList
	Methods
	Variables

	InstrumentType
	Methods
	Variables

	KeySignature
	Methods
	Variables

	Line
	Methods
	Variables

	LyricItem
	Methods
	Variables

	NoteRest
	Methods
	Variables

	Note
	Methods
	Variables

	NoteSpacingRule
	Methods
	Variables

	PageNumberChange
	Methods
	Variables

	PluginList
	Variables

	Plugin
	Methods
	Variables

	RehearsalMark
	Methods
	Variables

	Score
	Methods
	Variables

	Selection
	Methods
	Variables
	Copying Multiple Selections from One Bar to Another

	Sibelius
	Methods
	Variables

	SoundInfo
	Methods
	Variables

	SparseArray
	Methods
	Variables
	Converting Old-style Arrays to New Sparse Arrays

	SpecialBarline
	Methods
	Variables

	Staff
	Methods
	Variables

	Syllabifier
	Methods
	Variables

	SymbolItem and SystemSymbolItem
	Methods
	Variables

	SystemObjectPositions
	Methods
	Variables

	SystemStaff, Staff, Selection, Bar and, all BarObject-derived Objects
	Variables

	SystemStaff
	Methods
	Variables

	Text and SystemTextItem
	Methods
	Variables

	TimeSignature
	Methods
	Variables

	TreeNode
	Methods
	Variables

	Tuplet
	Methods
	Variables

	Utils
	Methods

	VersionHistory
	Methods
	Variables

	Version
	Methods
	Variables

	VersionComment
	Methods
	Variables

	Chapter 5: Global Constants
	Global Constants
	Truth Values
	Measurements
	Positions and Durations
	Style Names
	Bar Number Formats
	Text Styles
	Line Styles
	Clef Styles
	Instrument Types
	Beam Options
	Bracket Types
	Breaks
	Accidentals
	Note Style Names
	MuteMode Constants
	Articulations
	SyllableTypes for LyricItems
	Accidental Styles
	Time Signature Strings
	Symbols
	Special Page Break Types
	Interval Types
	InMultirest Values
	Page Number Visibility Values
	Page Number Format Values
	Special Barlines
	Bar Rest Type Values
	GuitarScaleDiagram Type Values
	FeatheredBeamType Values
	Units Values
	Orientation Values
	PageSize Values
	MarginType Values
	Tuplets
	SingleTremolos
	DoubleTremolo Values
	Instrument Name Values
	Types of Objects in a Bar

