Avery Weigh-Tronix

WI-125 (QTLTSC)
Indicator and System
Service Manual

Daily Inspection Checklist For Lift Truck Scale Users

Check scale carriage for loose, worn, bent, or broken components.Inspect forks for damage.Check locking pins on forks for proper function.Inspect cables from the junction box to Weigh Bars for wear.Inspect retractable cable for pinched, rubbed, stretched, or damaged areas.Inspect power cable for nicks or cuts.Make sure power cable is routed out of harms way. Fasten periodically to eliminate potential problems.Tighten cable connections at indicator and summing box if necessary.Inspect cable clamps and cable ties to be sure all cable attachments are secure.Inspect digital indicator mounting bracket, isolation mounts and hardware for loose or cracked parts.Check to make sure the junction box cover/shielf is fastened.Tighten bottom clamps on scale carriage if necessary. Raise carriage and visually inspect.\square Check and adjust the lift chain so the heel of the forks have $\frac{1 / 2 "}{}$ to 1 " of clearance from the floor when the carriage is down and the mast is vertical.
Table of Contents 3
WI-125 Specifications 4
Introduction 5
Operational Modes 5
Operations Mode 5
Test Mode 5
Configuration Mode 5
Sealing the Indicator 5
Keyboard 6
Entering Numbers with Arrow Keys 6
Error Messages 7
Configuration Mode 7
Customizing the Layout Menu 15
ASCII Strings 16
Examples and Step by Step Instructions 18
Deleting One ASCII Code From an ASCII String 18
Deleting All the ASCII Codes in an ASCII String 18
Deleting an ASCII Print Command After the ASCII Codes Are Cleared 19
Deleting a Non-ASCII Print Command From the Layout Menu 19
Inserting a Print Command in the Layout Menu 19
Adding Characters to an ASCII String 19
Calibration 21
Entering the Configuration Mode to Calibrate the System 21
J-Box Information 23
Original Style J-Box 23
Trim Potentiometer Adjustment 24
Balance Potentiometer Adjustment 25
Spanning Adjustment for an Existing Calibration 26
Step-by-Step Instructions for Acquiring Data Points 28
Calculating New Lift Capacity 33
Making a Ramp 35
Replacing Weigh Bars on the QTLTSC Carriage Equipped with Super Bolt ${ }^{\text {TM }}$ Tensioners 36
Disassembly 36
Reassembly 36
Loosening Procedure 37
Tightening Procedure 37
Replacing Weigh Bars on the QTLTSC Class II Carriage Equipped with Jam Nuts 38
Disassembly 38
Reassembly 38
Tightening Procedure 39
Reset Menu and Master Clear 40
Master Clear Menu 41
Reset Menu 41
Indicator Diagnostics 42
WI-125 QTLTSC Troubleshooting Tips 44
Resistance Test of QTLTSC Weigh Bars 52
Technical Illustrations and Assemblies 53

Dimensions:	$\begin{aligned} & 9.37^{\prime \prime} \mathrm{W} \times 6.7 \mathrm{"}^{\mathrm{H}} \times 3.75 \mathrm{c} \mathrm{D} \\ & (23.8 \mathrm{~cm} \times 17.1 \mathrm{~cm} \times 9.5 \mathrm{~cm}) \end{aligned}$
Power:	10 to 90 VDC, 300 mA minimum
Display:	8 digits, 7 -segment LCD, 0.6 inch high with annunciators and backlighting.
Display Rate:	One, two or five times per second
Agencies:	NIST Handbook 44, Class III, IIIL, 5,000 divisions Consumer and Corporate Affairs, Canada FCC Class A
Accuracy :	Class III, IIIL; 5,000 divisions Span: $\pm 5.0 \mathrm{ppm} / \mathrm{C}$ Zero: $\pm .066 \mathrm{uV} / \mathrm{C}\left(-10\right.$ to $\left.40^{\circ} \mathrm{C}\right)$ Span: $\pm 10 \mathrm{ppm} / \mathrm{C}$ Zero: $\pm 0.13 \mathrm{uV} / \mathrm{C}\left(-30\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Linearity:	$\pm 0.005 \%$ of capacity, maximum
Repeatability:	$\pm 0.005 \%$ of capacity, maximum
Hysteresis:	0.005\% of capacity, maximum
Weigh bar drive capacity:	Up to eight 350 ohm weigh bars.
Environment:	-10 to $40^{\circ} \mathrm{C}$ (14 to $104^{\circ} \mathrm{F}$) for $\mathrm{HB}-44$ specs 10 to 90% relative humidity
Internal Resolution:	$0.25 \mathrm{mV} / \mathrm{V}=67,500$ counts
A to D conversion rate:	30 times per second
Analog Range:	-0.14 to $+3.5 \mathrm{mV} / \mathrm{V}$
Capacity:	.00001 to 999999, programmable to any number between these limits.
Divisions:	. 0001 to 20000, programmable to any division size between these limits.
Push Button Zero Range:	0 to $\pm 100 \%$ of capacity; programmable independent positive and negative limits; unit will not allow zeroing beyond capacity.
Tare:	The unit may be configured to have pushbutton tare which can function as a scroll tare register. Pushbutton tare and scroll tare may tare only positive gross weights up to the capacity of the unit. Scroll tare allows numeric entry of a tare value using two keys to enter the value.
Motion Detection Window:	Programmable from 0 to 999999 divisions, decimal entries are accepted.
Automatic Zero Tracking:	Window: Programmable from 0 to 999999 divisions, decimal entries are accepted.
	Net Mode
	Tracking: May be enabled or disabled.
	Rate: 0.2 division per second
	Starting Delay: 2 seconds
Angle Compensation:	Compensates for pitch and/or roll out-of-level weighing.
RATION COMPENSATION	
Analog Low Pass Filter:	Two section with .10 second time constant for low power analog and .06 second time constant for standard analog.
Software Low Pass Filter:	One section with .05 second time constant.

This service manual covers the WI-125/Quik-Tach certified lift truck system. The front section of the manual covers such things as configuration of the indicator and calibration of the system. The back section contains technical drawings of the system components.

Operations Mode

Test Mode

Configuration Mode

The WI-125 operates in three modes:

- operations mode
- test mode
- configuration mode

Operations mode contains all normal weighing operations. In this mode, you can view or set the following parameters if the unit is so configured:

- pushbutton tare
- time
- date
- light (backlight)

Any combination of these items can be secured behind a security code. Any items secured by the code number can be viewed but not changed. Operations mode is fully explained in the WI-125 (QTLTSC) Indicator User's Manual (PN 29608-0013).

Use this mode to perform tests on the WI-125. The test mode is covered in the Indicator Diagnostics section of this manual.

Use this mode to set up options and program the operation of the scale and indicator. Configuration is explained fully in the Configuration Mode section of this manual.

Sealing the Indicator

Complete the physical sealing of the unit by using a sealing wire and the screws on the outside of the enclosure.

S1-2 is not functional.

The WI-125 can be sealed. If sealed, no configuration items can be changed in the configuration menu. Seal the unit by placing switch S1-1 in the OFF position. Unseal the unit by placing S1-1 in the ON position. Remove the front panel of the indicator to gain access to switch S1-1. The switch is located near the bottom corner of the PC board behind the display and looks like the diagram at right.

Figure 1

WI-125 Keyboard

Enters a pushbutton tare in gross/net operation. This key's factory default is OFF and it must be enabled for use.

Accesses the gross weighing mode from any other function and activates the net weighing mode if a tare is active.

ZERO Zeros the scale in gross or net weigh mode. This button also

CLEAR clears scrolled digits on the display before they are accepted.

PRINT
\odot
Sends a print command and is used to select menu items.
SELECT
MENU Used to access menus and move among choices in a menu.

UNITS
Changes the unit of measure during operations mode and moves a digit inserted with the key one space to the left. The factory default for this key is set for lbs only.

Lets you scroll numerical values.

Entering Numbers with Arrow Keys

The arrow keys are used to enter numbers throughout different configuration selections. Refer to this section when you need to enter a number or numbers.

Example: To key in the number 603
Press the \uparrow key repeatedly until the 6 appears on the display.
Press the \leftarrow key once to move the 6 one space to the left.
Press the \uparrow key until the 0 appears.
Press the \leftarrow key once to move the 60 one space to the left.
Press the \uparrow key until 3 appears.
To exit to normal weigh mode, press \mathbf{G} / \mathbf{N}.

The following are displays you may see if problems occur or if invalid operations are attempted with your WI-125:

Display Description

.............
Overrange weight.
...........
........
Loc uP
A-D converter is not functioning.
Corrupted data in the reset menus. See the Reset Menu section later in this manual. (* = RESET, SETUP, or CAL)

Displayed while a key is pressed when attempting to modify a sealed selection without edit privileges.
$\boxed{454}$ Device on serial port is not ready to receive data.

SEcurEd

FnLy

EAnt
Underrange weight.
Recovering from lock-up or out of range condition.
-Flashing -
ノノ।
GEMLEd

User menu item is protected from changes by security code number.

Only one selection for this key is enabled.
This function is not allowed due to current configuration.

This section of the manual explains how to view and set up parameters in the configuration mode. Follow the configuration menu and instructions in Figure 2 to set up the WI-125 indicator to suit your specific needs. Following that are explanations for each section of the menu. The non-bold heading for each section is the pathway you follow on the configuration menu to get to the parameter or parameter options shown in bold text.

Sidestepping Security Code Entry to Configuration

In case you forget the security code or the security code is altered without your knowledge, access the configuration menu as follows: First, make sure switch S1-1 is in the OFF position. Then enter the default code number 1. Get into the configuration menu as instructed in the key to Figure 2. When CODE NUMBER is displayed on the menu, flip switch S1-1 from the OFF position to the ON position. Understand that opening the indicator to access the switch unseals the indicator! Then enter a new code number twice, as the display prompts. Now you have complete access to the configuration menu.
 LIGHT options are enabled under OPTIONS section of this configuration menu.

Setup, Scale, Units-

Pounds, 1000g
Under each unit of measure you have the option of selecting ON or OFF. Choosing the OFF option under a unit of measure disables that unit of measure. If a unit is disabled, it will not appear in the configuration menu under CAPACITY or DIVISION nor will you be able to choose it during weighing procedures. The message OnLY is displayed when the key is pressed.

Setup, Scale, Units, CapacityPounds, 1000 g

This menu section lets you set the scale capacity for those units of measure enabled under UNITS. For lb/kg scales to be sealed in the USA, you must be sure the capacities are within one division. For example, if you want a 10,000 by 2 lb scale, the kg capacity must be 4536 kg . Note that the indicator will show over range at 10,000 lb. If a 2.5% over range is desired, you must enter 10250 lb and 4695 kg as the capacities in this example.

Setup, Scale, Units, Capacity, Division-

Pounds, 1000g
This option lets you set the division size for the units of measure enabled under UNITS.

One feature not readily apparent is that the number of displayed leading zeros can be specified. For example, for 10 lb divisions, if you want 5 zeros displayed when no weight is on the scale, key in 00010 for a division size. The display will read 00000 when the scale is empty. If you want two zeros displayed when the scale is empty, key in a division size of 10.

WARNING - Do not set ANGLES to OFF or all calibration data will be lost. OFF should only be chosen if the indicator is connected to a lift truck scale with no angle sensing capability.

Setup, Scale, Units, Capacity, Division, Zero-

-Percent, Percent

With this option you can set the plus and minus percent of capacity that the indicator can zero. For example, if the capacity of the scale is $10,000 \mathrm{lb}$ and the zero range is $\pm 2 \%$, key in 2 for both the positive and negative ranges. You may key in decimal values.

Setup, Scale, Units, Capacity, Division, Zero-

Stability

This option lets you set the size of the motion detection window in divisions. You may enter decimal values less than one or up to 999999 which turns off the motion detection.

Setup, Scale, Units, Capacity, Division, Zero, Stability, AZT -

Range, Net

Range - With this option you can set the \pm automatic zero tracking window in scale divisions. To turn off AZT, enter a range of 0 .

Net - If an AZT range is set, NET will appear in the menu. This option lets you choose to enable AZT during net weighing operations (ON) or disable it (OFF). The gross weight must be zero for AZT to work in net mode.

Setup, Scale, Units, Capacity, Division, Zero, Stability, AZT, Update 5, 1, 2

Choose the rate at which your display updates information, 1, 2, or 5 times per second. Five is the default value.

Setup, Scale, Units, Capacity, Division, Zero, Stability, AZT, Update -
Average
This option allows you to choose the number of display periods over which the dates are internally averaged prior to being displayed.
Any number between 1 and 10 may be entered. Three is the default value.

Setup, Scale, Options -
 Angles

Choosing ON enables angle sensors. Choosing OFF disables angle sensors.

Setup, Scale, Options, Angles -

Dashes

Choosing ON causes dashes to be displayed during scale motion. Required for Canadian certification.

[^0]Setup, Scale, Options, Angles, Dashes, Tare -
ID

Turn ID number function ON or OFF.

Setup, Scale, Options, Angles, Dashes, Tare, ID, -
ACC
Choose to turn the accumulator ON or OFF.

```
Setup, Scale, Options, Angles, Dashes, Tare, ID, ACC -
Count
```

Choose to turn the Count ON or OFF. Count is the number of times you have added to the accumulator.

Setup, Scale, Options, Angles, Dashes, Tare, ID, ACC, Count Hour

With this option you can choose to have the clock disabled (OFF) or the mode of clock you want. You can choose the 12 hour clock display or the 24 hour clock display. If the clock is disabled, HOUR will not appear in the SECURITY section of this menu and DAY will not appear in the OPTIONS or SECURITY section of this menu.

Setup, Scale, Options, Angles, Dashes, Tare, ID, ACC, Count, Hour -

Day
This option lets you choose to disable the calendar (OFF) or choose the mode of calendar display you want. You can choose to display the days (dd), months (mm), and year (yy) as mm dd yy, or dd $\mathbf{m m} \mathbf{y y}$, or $\mathbf{y y} \mathbf{m m}$ dd. If DAY is disabled, DAY will not appear in the SECURITY section of this menu.

Setup, Scale, Options, Angles, Dashes, Tare, ID, ACC, Count, Hour, Day Light

Choose to have the backlight ON all the time, OFF all the time, or AUTOmatically come on when the light level drops.

Setup, Scale, Options, Security -
Code No.
This option lets you enter a personalized security code number.

Setup, Scale, Options, Security, Code No. -
Tare, ID, Hour, Day, ACC, Count, Light
Under each item you have the option of choosing OFF to leave the option unlocked or choosing ON to lock the option behind the security code. If ON is chosen you can view but not change that parameter value in the operations menu.

Setup, Scale, Options, Security, Serial, Print Button

Choosing OFF disables the front panel PRINT button. Choosing ON enables the front panel PRINT button.

Setup, Scale, Options, Security, Serial, Print, Button Enquire

This sub-menu allows you to choose a printer or other device which will send an enquire code to the indicator. You may select the ASCII code number you wish to act as the enquire code number. ASCII decimal 0005 is the default value. If a device sends the enquire code number to the indicator, the indicator will transmit weight data. If a computer sends the enquire code number, the Button, Auto and Broad. selections are overridden and will not function.

Setup, Scale, Options, Security, Serial, Print, Button, Enquire -
Auto
With auto print enabled the indicator automatically transmits weight data when the scale weight stabilizes at greater than 1% of capacity. To print again, scale weight must fall below 1% of capacity and stabilize above 1% of capacity again. OFF disables the auto print feature. ON enables the auto print.

Setup, Scale, Options, Security, Serial, Print, Button, Enquire, Auto -
Broad.
Broad. stands for broadcast. If you enable ON (broadcast), weight data is transmitted at the display rate. Choosing OFF disables the broadcast. If broadcast is enabled, the Button, Enquire, and Auto selections are overridden and will not function.

Setup, Scale, Options, Security, Serial, Print, Busy -
Disabled, Enabled
Disables or enables the hardware ready/busy line. If your printer does not have a ready/busy line, this parameter must be set to disabled. If your printer has a ready/busy line, you can enable this parameter so the indicator will know if the printer is busy or ready.

Setup, Scale, Options, Security, Serial, Print, Busy, Baud 9600, 300, 600, 1200, 2400, 4800

This option lets you choose the baud rate for your printer or device.

Setup, Scale, Options, Security, Serial, Print, Busy, Baud, Parity -
Clear, Even, Odd, Set
This option lets you choose parity as even, odd, clear (logic 0 or space), or set (logic 1 or mark).

	Data Bits	Stop Bits	Parity
Set (Mark)	7	2	none
Clear (Space)	8	1	none
Mark	7	2	none
Space	8	1	none
Odd	7	1 or 2	odd
Even	7	1 or 2	even

Setup, Scale, Options, Security, Serial, Print, Busy, Baud, Parity, No. Stops -
1, 2
With this option you can set the number of stop bits as 1 or 2.

Setup, Scale, Options, Security, Serial, Print, Busy, Baud, No. Stops Layout

Use this print-layout option to customize the physical arrangement of your printed information. This section assumes you have the time/date option card and that the parameters are all enabled.

The next several pages deal with the layout of your printed output. The rest of the documentation on configuration follows this layout section.

You may print the following items:

- Time
- Date
- Gross weight
- Net weight
- ID
- Tare weight
- Displayed weight
- Custom wording you choose
- Weight only, no labels
- Number of Accumulations
- Total accumulated weight

These are the commands you use to print these items:

Print Command	Item
HOUR	Time
DAY	Date
GROSS	Gross weight
NET	Net weight
ID	Prints ID if ID is enabled
TARE	Tare weight
DISPLAY	Displayed weight
ASCII	Custom digits (ASCII string)
BARE	Weight digits without G, T, N, or Ib/kg.
COUNT	Number of accumulations performed
TOTAL	Total accummulated weight
DELETE	Deletes a layout item

Figure 3 shows a sample of the default printout generated when you press the PRINT key. Figure 4 shows an example of a customized printout. Refer to Figure 5 for the default order of print commands.

Figure 3 Default Printout

Figure 4

Customized Printout

The default layout menu can be changed to suit your needs. Any print command can be deleted or rearranged to accomplish customization. (See Figure 4.)

As in the other WI-125 menus, the SELECT key opens up the next level of the menu. There is one more level of information under the print commands in the layout menu. This information may be one of two types:

- an ASCII string or

ASCII Strings

ASCII is an acronym for American Standard Code for Information Interchange. ASCII codes are numbers a computer can translate into letters, numbers and instructions. See Table 2.

ASCII strings are stored under the ASCII print commands, such as numbers $1,3,5,7$, etc. An ASCII string is a sequence of ASCII code numbers. Each code number is preceded on the indicator display by a sequence number. See Figure 5. You view these sequence numbers and ASCII code numbers by repeatedly pressing MENU. These ASCII strings contain the codes for your custom wording.

Figure 5 shows the default ASCII string under the 1 ASCII print command.
Table 1 shows the relationship between this sequence of codes and the output of the printer. You can change the ASCII string or delete it entirely to suit your needs. To delete an ASCII print command from the layout menu, first delete the entire ASCII string which is stored in that ASCII print command.

As you enter ASCII codes, the display may read FULL when you try to enter a code number. This means the memory allocated to the print layout is full. You must rearrange or delete some of the items you want printed for your customized printout.

Find complete instructions for these procedures in the section Examples and Step by Step Instructions.

Figure 5
ASCII Control Code under the Print Command, 1 ASCII

In Figure 5, the MENU key advances you through the ASCII control-character displays. The SELECT key returns you to the I ASCII display.
\#31- Sets WP-233 printer to 40 column print mode
\#15- Makes double wide characters until a carriage return
\#14- Makes double high characters until a carriage return
\#87- W
\#69- E
\#73- I
\#71- G
\#72- H
\#45- -
\#84- T
\#82- R
\#79- O
\#78- N
\#73- I
\#88- X
\#32- Space
\#87- W
\#73- I
\#45- -
\#49- 1
\#50- 2
\#53- 5
\#13- Carriage return (CR)
\#10- Line feed (LF)
\#13- Carriage return (CR)
\#10- Line feed (LF)
\#15- Sets next line's characters to double wide

Table 1

ASCII Control Characters under the Print Command, 1 ASCII

Layout Submenu

Under each non-ASCII print command (GROSS, TARE, etc.) is a layout submenu. The layout submenu contains all seven print commands and a DELETE command. From this submenu you select what you want printed and in what order. The same submenu is available in every case, but the currently selected item is always offered first.

Find complete instructions for these procedures in the section Examples and Step by Step Instructions.

Figure 6
Layout Submenu

Examples and Step by Step Instructions

Deleting One ASCII Code From an ASCII String

Example A: To change the second print command from 2 GROSS to 2 HOUR:

1. Scroll to the HOUR print command in the submenu under 2 GROSS.
2. Press SELECT.

The print command 2 GROSS is now changed to 2 HOUR.

Example B: To delete the second print command, 2 GROSS:

1. Scroll to DELETE in the
submenu under 2 GROSS.
2. Press SELECT.

The 2 GROSS print command is now deleted, and 3 ASCII becomes 2 ASCII, 4 becomes 3, etc.

Below is a list of procedures to customize your layout. The steps for each procedure are explained below the list. Use the appropriate procedure or procedures to customize your layout to your liking. These step by step instructions relate to the layout shown in Figure 4.

- Deleting one ASCII code from an ASCII string
- Deleting all the ASCII codes in an ASCII string
- Deleting an ASCII print command after the ASCII codes are deleted
- Deleting a non-ASCII print command from the layout menu
- Inserting a print command in the layout menu
- Adding ASCII codes to an ASCII string

For example, to delete the hyphen in WEIGH-TRONIX you need to delete the ASCII control code for the hyphen. In Table 1 you can see that this is \#45. In Figure 4, the 9th ASCII control code is code \#45.

1. With 945 displayed, press CLEAR twice.

CLEAR deletes the value and deletes that step in the string. When you delete \#9, \#10 becomes \#9, etc.

For example, to delete the entire line of text at the top of a printout you need to delete all the ASCII control codes under the 1 ASCII display shown in Figure 4.

1. With the first ASCII control code of the string displayed (1 31), press CLEAR repeatedly until $E N D$ is displayed.
2. Press SELECT.

I ASCII is displayed. All the control characters under it are now gone.

Deleting an ASCII Print Command After the ASCII Codes Are Cleared

Deleting a Non-ASCII Print Command From the Layout Menu

Inserting A Print Command in the Layout Menu

You may insert new codes in an existing ASCII string. Display the code you want the new code to precede and press \leftarrow. A cursor appears and you may enter the new code number. All the following code numbers move down one position in the sequence.

Adding Characters to an ASCII String

To repeat any ASCII code, instead of entering it multiple times, enter the code number, then a decimal, then the number of times you want that code repeated. For example: To enter seven carriage returns, enter 13.7 To enter two capital letter O's in a row, enter 79.2.

1. With 1 ASC/I displayed, press CLEAR.

The item is removed from the menu and all the following items move up one number value on the menu. What was item 2 becomes item 1 , etc.

For example, to delete 2 GROSS from the menu:

1. Display 2 GROSS.
2. Press CLEAR.

The item is removed from the menu and all the following items move up one number value on the menu. What was item 2 becomes item 1, etc.

For example, to reinsert GROSS in the \#2 position:

1. Display 2 ASCII, the menu item currently in the \#2 position.
2. Press \leftarrow. The layout submenu shown in Figure 5 appears.
3. Scroll through the menu by pressing MENU until GROSS is displayed.
4. Press SELECT.

2 GROSS is displayed showing that it has been inserted in the second position. 2 ASCI/ becomes 3 ASCII, etc.

These directions apply to the insertion of any print command in the menu.

For example, let's say you've created a new ASCII print command in the \#1 position in the menu (1 ASCII). To insert new codes:

1. Display 1 ASCII.
2. Press SELECT.
3. Key in the control code you want and press MENU.

1 _ is displayed.

2 _ is displayed, prompting you for the 2nd control code in the ASCII string.
4. Repeat this step until you have entered all the ASCII control codes you want or the indicator tells you the memory is full.
5. Press SELECT.

1 ASCII is displayed in this example.

Table 2
ASCII Control Codes

Code \#	Control Character						
0	NUL	33	!	66	B	99	c
1	SOH	34	"	67	C	100	d
2	STX	35	\#	68	D	101	e
3	ETX	36	\$	69	E	102	f
4	EOT	37	\%	70	F	103	g
5	ENQ	38	\&	71	G	104	h
6	ACK	39	'	72	H	105	i
7	BEL	40	(73	I	106	j
8	BS	41)	74	J	107	k
9	HT	42	*	75	K	108	1
10	Line Feed	43	+	76	L	109	m
11	VT	44	,	77	M	110	n
12	Form Feed	45	-	78	N	111	\bigcirc
13	Carriage Return	46	.	79	0	112	p
14	S0	47	1	80	P	113	q
15	S1	48	0	81	Q	114	r
16	DLE	49	1	82	R	115	s
17	DC1	50	2	83	S	116	t
18	DC2	51	3	84	T	117	u
19	DC3	52	4	85	U	118	v
20	DC4	53	5	86	V	119	w
21	NAK	54	6	87	W	120	x
22	SYN	55	7	88	X	121	y
23	ETB	56	8	89	Y	122	z
24	CAN	57	9	90	Z	123	\{
25	EM	58	:	91	[124	\|
26	SUB	59	;	92	1	125	\}
27	ESC	60	$<$	93]	126	\sim
28	FS	61	$=$	94	\wedge	127	Delete
29	GS	62	$>$	95	-		
30	RS	63	?	96	-		
31	US	64	@	97	a		
32	Space	65	A	98	b		

NOTE: To repeat a control code a number of times, enter the control code \#, a decimal, and the number of times you want it repeated. Spaces, letters, or carriage returns can easily be repeated this way.

Entering the Configuration Mode to Calibrate the System

While in the ACQUIRE mode, the power cable must always be hooked up to a hot line or data acquired will be lost. If you are running the lift truck during calibration do not turn off the lift truck until calibration is completely done.

You must be certified by your local weights and measures authorities to legally seal a scale system for legal use.

Calibration of the QTLTSC system consists of two processes; cornering and calibration of the system. Cornering makes the Weigh Bars work together. Calibration of the system makes the indicator work with the scale. If the indicator provides linear but incorrect readings, you need only perform a span adjustment. See the section Spanning Adjustment for an Existing Calibration. A total system calibration is done by acquiring data points. Acquiring data points means loading the scale with different test weights, tilting the unit to different angles and telling the indicator what weight is on the scale at each tilt position. The indicator then fits these data points into its operation.

For Angle (16 Point) Calibration:

Avery Weigh-Tronix recommends using certified test weights equal to the rated capacity of the scale to perform an Angle (16 point) calibration of the system. If this is not possible you may use a smaller amount of weight as long as the weight used for the calibration is at least 60% of rated capacity of the scale.

When performing the Angle calibration you will actually need two known weight values to properly calibrate the scale. Weight values to use are capacity and $1 / 2$ of the capacity. For the Span section of the calibration you will need the weight value that is from 60% of capacity to 100% of capacity. For the $1 / 2$ capacity section of the Angle calibration you will need a weight that is $1 / 2$ the value of the span weight you are using. For instance if you used 5000 lb for span weights you will need to use 2500 lb for the $1 / 2$ capacity weight.

For Span Calibration:

NTEP/Handbook 44 requires that the scale be calibrated to at least 50% of the scale's rated capacity. A minimum of 12.5% or 1000 lb (which ever is greater) of the scale's rated capacity in certified test weights is required for calibration. If you do not have 50% of capacity in certified weight available, you will need to use the Substitution test method (Build up Calibration) to reach the required amount of weight, this weight must include the required certified weight.

To calibrate your system you must enter the Configuration Menu. Follow the steps on the following pages to enter the Configuration Menu, corner the Weigh Bars and calibrate the system.

1. While in Gross Weighing Mode with the unit unsealed, press the up arrow key two times. The number "1" should appear on your display.
2. With the number " 1 " displayed, press and hold the MENU key until SET UP is displayed.
NOTE: DO NOT let go of the MENU key until SET UP is displayed or else LIGHT will be displayed. If this occurs, press the \mathbf{G} / \mathbf{N} key to return to Weighing Mode and begin again at Step 1.
3. Press MENU to display ADJUST.
4. Press SELECT to display ACQUIRE.
5. You are now in the Configuration Menu. To move around within the Configuration Menu follow the instructions printed in the box below. Specific instructions for cornering and acquiring data points are detailed on the following pages.

Figure 7
Calibration Menu Guide

J-Box Information

Caution

DO NOT ADJUST THE PITCH AND ROLL POTS! These are factory set and should be left alone.

Use a drop of \#242 (blue) Loctite on all threaded hardware and RTV (electronic grade) on all pots and connectors.

You make trim and balance adjustments in the J-box. The J-box is shown at right. Trim and balance adjustments make up the cornering procedure. Cornering makes the Weigh Bars work together and is usually not required unless you replace a Weigh Bar or junction box.

To access the junction box, remove the protective plate in the center of the scale. Remove the sealing wire and the two screws fastening the access cover.

Trim, balance and calibration (acquiring data points) are covered in the following sections.

If you have the original style J-box, refer to the illustration below when making potentiometer adjustments.

Trim Potentiometer Adjustment

The right fork and left forks are those that are on the right and left when you are sitting in the lift truck seat.

Letters (LRT, RTB, etc.) refer to the potentiometer labels on the J-Box.
0.15% of $1000 \mathrm{lbs}=1.5 \mathrm{lbs}$
0.15% of $2000 \mathrm{lbs}=3 \mathrm{lbs}$
0.15% of $3000 \mathrm{lbs}=4.5 \mathrm{lbs}$
0.15% of $4000 \mathrm{lbs}=6 \mathrm{lbs}$
0.15% of $5000 \mathrm{lbs}=7.5 \mathrm{lbs}$
0.15% of $6000 \mathrm{lbs}=9 \mathrm{lbs}$
0.15% of $7000 \mathrm{lbs}=10.5 \mathrm{lbs}$
0.15% of $8000 \mathrm{lbs}=12 \mathrm{lbs}$
0.15% of $9000 \mathrm{lbs}=13.5 \mathrm{lbs}$
0.15% of $10000 \mathrm{lbs}=15 \mathrm{lbs}$
0.15% of $11000 \mathrm{lbs}=16.5 \mathrm{lbs}$
0.15% of $12000 \mathrm{lbs}=18 \mathrm{lbs}$
0.15% of $13000 \mathrm{lbs}=19.5 \mathrm{lbs}$
0.15% of $14000 \mathrm{lbs}=21 \mathrm{lbs}$
0.15% of $15000 \mathrm{lbs}=22.5 \mathrm{lbs}$
0.15% of $16000 \mathrm{lbs}=24 \mathrm{lbs}$
0.05% of $1000 \mathrm{lbs}=0.5 \mathrm{lbs}$
0.05% of $2000 \mathrm{lbs}=1 \mathrm{lbs}$
0.05% of $3000 \mathrm{lbs}=1.5 \mathrm{lbs}$
0.05% of $4000 \mathrm{lbs}=2 \mathrm{lbs}$
0.05% of $5000 \mathrm{lbs}=2.5 \mathrm{lbs}$
0.05% of $6000 \mathrm{lbs}=3 \mathrm{lbs}$
0.05% of $7000 \mathrm{lbs}=3.5 \mathrm{lbs}$
0.05% of $8000 \mathrm{lbs}=4 \mathrm{lbs}$
0.05% of $9000 \mathrm{lbs}=4.5 \mathrm{lbs}$
0.05% of $10000 \mathrm{lbs}=5 \mathrm{lbs}$
0.05% of $11000 \mathrm{lbs}=5.5 \mathrm{lbs}$
0.05% of $12000 \mathrm{lbs}=6 \mathrm{lbs}$
0.05% of $13000 \mathrm{lbs}=6.5 \mathrm{lbs}$
0.05% of $14000 \mathrm{lbs}=7 \mathrm{lbs}$
0.05% of $15000 \mathrm{lbs}=7.5 \mathrm{lbs}$
0.05% of $16000 \mathrm{lbs}=8 \mathrm{lbs}$

A zero shift will occur when-

 ever any of the potentiometers are adjusted. Remove all weight from the forks and zero the indicator after making any adjustments.Prior to beginning any adjustments, obtain a 42", square, heavy duty pallet that will support the weights you will be using during the calibration process. To exercise the system, it is recommended that you place the pallet and weights on the lift truck and drive it around. Once you start this procedure, do not move the lift truck to another location until the procedure is completed.

1. Set the WI-125 indicator to read in one pound divisions by following the steps shown in Figure 7. Remember to reset divisions to five pound increments when finished.
2. Set the forks directly over the Weigh Bars ${ }^{\top \mathrm{M}}$. Place the cornering weight (recommend 50\% of capacity) on each of the four corners of the pallet one at a time and record the weight of each location.
3. Starting with the fork that has the largest difference between front and rear weight readings, adjust the trim balance (RTB for right trim balance and LTB for the left trim balance) to reduce the difference to less than 0.15% of the cornering weight you are using. See Guidelines for Adjusting the Trim Potentiometers below to determine which way to turn the potentiometer.
4. Switch to the other fork. Adjust the trim balance for that fork to reduce the difference between front and rear weight readings to less than 0.15% of the cornering weight you are using.
5. Place the cornering weight on the center of each fork and record the weight. Adjust the left-right balance (LRT) until the difference between these readings is less than 0.15% of the cornering weight you are using.
6. Repeat steps 3 through 5 , but reduce the allowable difference to 0.05% of the cornering weight you are using.

Guidelines for Adjusting the Trim Potentiometers

(refer to Figure 8 for potentiometer location)

- The right trim balance (RTB) reduces the difference in weight readings on the right fork. For example, if the weight reading on the end of the right fork is less than the reading at the base of the right fork, slightly turn the RTB clockwise.
- The left trim balance (LTB) reduces the difference in weight readings on the left fork. For example, if the weight reading on the end of the left fork is less than the reading at the base of the left fork, slightly turn the LTB clockwise.
- The left-right trim (LRT) reduces the difference in weight readings between the left and right forks. For example, if the weight reading of the left fork is less than the reading of the right fork, turn the LRT clockwise.

Balance Potentiometer Adjustment

The right fork and left forks are those that are on the right and left when you are sitting in the lift truck seat.
0.15% of $1000 \mathrm{lbs}=1.5 \mathrm{lbs}$
0.15% of $2000 \mathrm{lbs}=3 \mathrm{lbs}$
0.15% of $3000 \mathrm{lbs}=4.5 \mathrm{lbs}$
0.15% of $4000 \mathrm{lbs}=6 \mathrm{lbs}$
0.15% of $5000 \mathrm{lbs}=7.5 \mathrm{lbs}$
0.15% of $6000 \mathrm{lbs}=9 \mathrm{lbs}$
0.15% of $7000 \mathrm{lbs}=10.5 \mathrm{lbs}$
0.15% of $8000 \mathrm{lbs}=12 \mathrm{lbs}$
0.15% of $9000 \mathrm{lbs}=13.5 \mathrm{lbs}$
0.15% of $10000 \mathrm{lbs}=15 \mathrm{lbs}$
0.15% of $11000 \mathrm{lbs}=16.5 \mathrm{lbs}$
0.15% of $12000 \mathrm{lbs}=18 \mathrm{lbs}$
0.15% of $13000 \mathrm{lbs}=19.5 \mathrm{lbs}$
0.15% of $14000 \mathrm{lbs}=21 \mathrm{lbs}$
0.15% of $15000 \mathrm{lbs}=22.5 \mathrm{lbs}$
0.15% of $16000 \mathrm{lbs}=24 \mathrm{lbs}$
0.05% of $1000 \mathrm{lbs}=0.5 \mathrm{lbs}$
0.05% of $2000 \mathrm{lbs}=1 \mathrm{lbs}$
0.05% of $3000 \mathrm{lbs}=1.5 \mathrm{lbs}$
0.05% of $4000 \mathrm{lbs}=2 \mathrm{lbs}$
0.05% of $5000 \mathrm{lbs}=2.5 \mathrm{lbs}$
0.05% of $6000 \mathrm{lbs}=3 \mathrm{lbs}$
0.05% of $7000 \mathrm{lbs}=3.5 \mathrm{lbs}$
0.05% of $8000 \mathrm{lbs}=4 \mathrm{lbs}$
0.05% of $9000 \mathrm{lbs}=4.5 \mathrm{lbs}$
0.05% of $10000 \mathrm{lbs}=5 \mathrm{lbs}$
0.05% of $11000 \mathrm{lbs}=5.5 \mathrm{lbs}$
0.05% of $12000 \mathrm{lbs}=6 \mathrm{lbs}$
0.05% of $13000 \mathrm{lbs}=6.5 \mathrm{lbs}$
0.05% of $14000 \mathrm{lbs}=7 \mathrm{lbs}$
0.05% of $15000 \mathrm{lbs}=7.5 \mathrm{lbs}$
0.05% of $16000 \mathrm{lbs}=8 \mathrm{lbs}$

A zero shift will occur whenever any of the potentiometers are adjusted. Remove all weight from the forks and zero the indicator after making any adjustments.

The following directions will enable you to adjust the scale so that it is insensitive to changes in fork position.

1. Place the cornering weight (recommend 50% of capacity) on the center of the right fork and record the weight. Move the right fork in six inches. Once again, place the weight on the center of the right fork and record the weight. Move the right fork out six inches so that it is in its original position.
2. Place the cornering weight on the center of the left fork and record the weight. Move the left fork in six inches. Once again, place the weight on the center of the left fork and record the weight. Move the left fork out six inches to its original position.
3. Starting with the fork that has the largest difference in weight readings between the two positions, adjust the balance potentiometer (RB or LB) to reduce the difference to less than 0.15% of the cornering weight you are using. See Guidelines for Adjusting the Balance Potentiometers below to determine which way to turn the potentiometer.
4. Switch to the other fork. Adjust the balance potentiometer (RB or LB) to reduce the difference between the two readings to less than $.15 \%$.
5. Repeat steps three and four, but reduce the allowable difference to 0.05% of the cornering weight you are using.
6. Adjusting the balance potentiometers may affect the cornering. You can correct these differences by repeating the steps listed under Guidelines for Adjusting the Trim Potentiometers. If large adjustments are necessary, the balance potentiometers may need to be readjusted by following the steps under Balance Potentiometer Adjustment.

Guidelines for Adjusting the Balance Potentiometers

(refer to Figure 8 for potentiometer location)

- The right balance potentiometer (RB) reduces the weight reading difference between the two positions of the right fork. For example, if the weight reading when the right fork is moved in six inches is less than the reading when the fork is directly over the Weigh Bars ${ }^{\text {TM }}$, turn the right balance potentiometer (RB) clockwise.
- The left balance potentiometer (LB) reduces the weight reading difference between the two positions of the left fork. For example, if the weight reading when the left fork is moved in six inches is less than the reading when the fork is directly over the Weigh Bars ${ }^{T M}$, turn the left balance potentiometer (LB) counterclockwise.

Spanning Adjustment for an Existing Calibration

IMPORTANT!

The indicator should read 0 before doing a span adjustment. Press the ZERO key on the indicator to verify the unit is at 0 with no weight on the scale. Doing steps A and B capture the zero adjustment.

Span Adjustment

For Span Calibration:

NTEP/Handbook 44 requires that the scale be calibrated to at least 50% of the scale's rated capacity. A minimum of 12.5% or 1000lb (which ever is greater) of the scale's rated capacity in certified test weights is required for calibration. If you do not have 50\% of capacity in certified weight available, you will need to use the Substitution test method (Build up Calibration) to reach the required amount of weight, this weight must include the required certified weight.

You must be certified by your local weights and measures authorities to legally seal a scale system for legal use.

Your scale should be ready to use without calibration; however, respanning with a known test weight and recalibration may be necessary.

1. Lift a load near the capacity of the lift truck several times to exercise the scale.
2. Check the scale span by lifting an accurately known load with the lift truck. If the weight reading is correct, go to Step 3.

If the weight reading is incorrect, the scale should be respanned by following these steps:
a. The indicator should read 0 before doing a span adjustment. Press the ZERO key on the indicator to verify the unit is at 0 with no weight on the scale.

Press the round, yellow UP ARROW key twice-" 1 " is displayed
b. Press and hold the MENU key until "set up" appears
c. Press MENU again-"adjust" appears
d. Press SELECT-"acquire" appears
e. Press MENU—"fit" appears
f. Press MENU—"adjusts" appears
g. Press SELECT-"span" appears.
h. Press SELECT again-a number appears and you may now enter in the known weight of your test load using the yellow UP ARROW and UNITS keys. Follow the example below:

To enter the weight of 4500 :

1. Press the yellow UP ARROW key 4 times- 4 is displayed
2. Move over the 4 by pressing the UNITS key- 40 is now displayed
3. Press the yellow UP ARROW key 5 times- 45 is displayed
4. Move over the 45 by pressing the UNITS key-450 is now displayed
5. Since the third number is a zero, press the UNITS key to accept it-450 is now displayed
6. Move over the 450 by pressing the UNITS key- 4500 is now displayed
i. After keying in your load weight, press SELECT-"busy" is displayed momentarily, followed by "span"
j. Press MENU—"accept" is displayed
k. Press SELECT-" $n o$ " is displayed
I. Press MENU-"yes" is displayed
m. Press SELECT—"accept" is displayed
n. Press MENU-"end" is displayed
o. Press SELECT-"adjusts" is displayed
p. Press the \mathbf{G} / \mathbf{N} key to return to weighing mode. Calibration is complete.
7. Unload the scale, zero the indicator by pressing the ZERO key and weigh the known weight again. If the weight reading is still incorrect, respan the indicator by following steps "a" through "o" above.
8. Check the scale for load shift sensitivity (cornering error).
a. Lift one-half of net capacity in one quadrant of the pallet and record the weight.
b. Move the weight to each of the other four quadrants, recording the displayed weight each time.

- A new, certifiable installation should have the same weight reading in every corner of the pallet.
- An older installation should have scale readings within 5 lbs in each corner.
c. If the scale requires cornering, refer to the Trim and Balance sections of this manual.

5. Check the scale for tilting sensitivity
a. Lift a known weight (at least half of net capacity) with the scale,
b. Tilt the scale through the expected range of operation. The scale should be allowed to settle in several tilted positions.
c. If the scale requires cornering, refer to the Trim and Balance sections of this manual.
6. Check the scale for linearity.
a. Zero the scale and lift one-half of net scale capacity.
b. Load additional known weights until the total weight is near net scale capacity.
c. If the scale does not accurately display both weighments (within 5 lbs at full capacity), refer to the Trim and Balance sections of this manual.

Step-by-Step Instructions for Acquiring Data Points

See Figure 7 for configuration menu guide.

Configure indicator to display 1 pound increments.

See Making a Ramp for tilting the lift truck accurately. To determine the inch equivalent of five degrees, see Table 3.

Make sure to return lift truck and forks to a level condition before moving to next step in calibration.

Use a torpedo level and an angle transfer level to verify the carriage is level side to side and the mast is vertical.

Forks must be tilted between five and ten degrees. If this is impossible to accomplish by tilting the forks alone, tilt the entire lift truck.

For Angle (16 Point) Calibration:
Avery Weigh-Tronix recommends using certified test weights equal to the rated capacity of the scale to perform an Angle (16 point) calibration of the system. If this is not possible you may use a smaller amount of weight as long as the weight used for the calibration is at least 60% of rated capacity of the scale.

When performing the Angle calibration you will actually need two known weight values to properly calibrate the scale. Weight values to use are capacity and $1 ⁄ 2$ of the capacity. For the Span section of the calibration you will need the weight value that is from 60\% of capacity to 100% of capacity. For the $1 / 2$ capacity section of the Angle calibration you will need a weight that is $1 / 2$ the value of the span weight you are using. For instance if you used 5000 lbs. for span weights you will need to use 2500 lbs. for the $1 / 2$ capacity weight.

The following checklist is the 16 step procedure for acquiring data points. Detailed instructions follow below.

Acquiring Data Points Checklist

- Scale at zero, lift truck level
\square Scale at zero, lift truck's right side elevated
- Scale at zero, lift truck's left side elevated
\square Scale at zero, forks tilted forward
\square Scale at zero, forks tilted backward
With a weight of 30% to 50% capacity on scale, lift truck level
- With a weight of 30% to 50% capacity on scale, lift truck's right side elevated
With a weight of 30% to 50% capacity on scale, lift truck's left side elevated
\square With a weight of 30% to 50% capacity on scale, forks tilted forward
With a weight of 30% to 50% capacity on scale, forks tilted backward
\square With a weight of 60% to capacity* on scale, lift truck level
\square With a weight of 60% to capacity* on scale, lift truck's right side elevated
\square With a weight of 60% to capacity* on scale, lift truck's left side elevated
\square With a weight of 60% to capacity* on scale, forks tilted forward
- With a weight of 60% to capacity* on scale, forks tilted backward

With a weight of 30% to 50% capacity on scale, lift truck level

[^1]Be careful not to exceed lift truck rated lifting capacity.

1a. Level the forklift. With only a pallet on the scale and ACQUIRE displayed on the WI-125, press SELECT. Once the number on the scale is steady, press

SELECT again.
1b. Scroll in 0 and press SELECT.

2a. Raise the right side of the lift truck between five and ten degrees. Press SELECT. Once the number on the scale is steady, press SELECT again.

2b. Press SELECT.

3a. Lower the right side of the lift truck and raise the left side between five and ten degrees. Press SELECT. Once the number on the scale is steady, press SELECT again.

3b. Press SELECT.

01 is displayed.
bUSy is displayed briefly and then ACQUIRE is redisplayed.

02 is displayed.

$b U S y$ is displayed briefly and then ACQUIRE is redisplayed.

03 is displayed.
$b U S y$ is displayed briefly and then ACQUIRE is redisplayed.

4a. Bring the lift truck back to a level position, then tilt the forks forward between five and ten degrees. Press SELECT. Once the number on the scale is steady, press SELECT again.

04 is displayed.

For steps 7 and 8, make sure to use an adequate jack placed under the side of the lift truck to safely tilt it.

You may view or change any or all of your data points by following these steps.

To view the data points:

1. From the ACQUIRE display, press SELECT, then press SELECT.

The first available data point will appear followed by an underscore ().
2. Press the MENU key.

END will be displayed.
3. Press the MENU key.

The first data point and the entered value will be displayed. Press MENU repeatedly to see the consecutive data points.

To change a data point:

1. From point 3 above, scroll in a new value. Then press SELECT.

The new value is accepted and the next data point appears.

Escape from this procedure by pressing MENU until END is displayed, then press SELECT.

4b. Press SELECT.

5a. Tilt the forks back, past level, to between five and ten degrees. Press SELECT. Once the number on the scale is steady, press SELECT again.

5b. Press SELECT.

6a. With the lift truck and forks level, place $1 / 2$ of capacity on the scale. Press SELECT. Once the number on the scale is steady, press SELECT again.

6b. Scroll in the amount of weight used. Press SELECT.

7a. Raise right side of the lift truck between five and ten degrees. Place $1 / 2$ of capacity on the scale. Press SELECT. Once the number on the scale is steady, press SELECT again.

7b. Scroll in the amount of weight used. Press SELECT.

8a. With weight on the scale, from a level condition, raise the left side of the lift truck between five and ten degrees. Press SELECT. Once the number on the scale is steady, press SELECT again.

8b. Press SELECT.

9a. Leave the weight on the scale, level the lift truck and tilt forks forward between five and ten degrees. Press SELECT. Once the number on the scale is steady, press SELECT again.

9b. Press SELECT.
$\boldsymbol{b U S y}$ is displayed briefly and then ACQUIRE is redisplayed.

05 is displayed.
$b U S y$ is displayed briefly and then ACQUIRE is redisplayed.

06 is displayed.
$b U S y$ is displayed briefly and then ACQUIRE is redisplayed.

07 is displayed.
bUSy is displayed briefly and then ACQUIRE is redisplayed.

08 is displayed.
$b U S y$ is displayed briefly and then ACQUIRE is redisplayed.

09 is displayed.
$\boldsymbol{b U S y}$ is displayed briefly and then ACQUIRE is redisplayed.

Remember to refit the data if you have changed any data points.

10a. Leave the weight on the scale and tilt forks backward, beyond level, to between five and ten degrees. Press SELECT. Once the number on the scale is steady, press SELECT again.

10b. Press SELECT.

11a. With the lift truck and forks level, place a weight of between 60\% and new capacity (see Calculating New Lift Capacity) on the scale. Press SELECT. Once the number on the scale is steady, press SELECT again.

11b. Scroll in the amount of weight used. Press SELECT.

11 is displayed.
$b U S y$ is displayed briefly and then ACQUIRE is redisplayed.

12a. Raise right side of the lift truck between five and ten degrees. Place a weight of between 60% and new capacity on the scale. Press SELECT. Once the number on the scale is steady, press SELECT again.

12b. Scroll in the amount of weight used. Press SELECT.

12 is displayed.
bUSy is displayed briefly and then ACQUIRE is redisplayed.

13a. Leave the weight on the scale, lower the right side of the lift truck and raise left side between five and ten degrees. Press SELECT. Once the number on the scale is steady, press SELECT again.

13b. Press SELECT.
13 is displayed.
bUSy is displayed briefly and then
ACQUIRE is redisplayed.
14a. Leave the weight on the scale, level the lift truck then tilt the forks forward between five and ten degrees. Press SELECT Once the number on the scale is steady, press SELECT again

14b. Press SELECT.

In step 19, if the you get the number 0 , check your data points.

Remember to reconfigure your indicator to display the proper pound increments for your legal-for-trade system.

15a. Leave the weight on the scale and tilt forks back, beyond level, to between five and ten degrees. Press SELECT. Once the number on the scale is steady, press SELECT again.

15b. Press SELECT.

16a. With the lift truck and forks level, place $1 / 2$ of new capacity on the scale. Press SELECT. Once the number on the scale is steady, press SELECT again.

16b. Scroll in the amount of weight used. Press SELECT.
17. Press MENU.
18. Press SELECT.
19. Press SELECT.
20. Press MENU.
21. Press MENU.
22. Press SELECT.
23. Press MENU to toggle to yes.
24. Press SELECT.
25. Press MENU.
26. Reset the indicator to read in five pound divisions by following the flow chart in Figure 1.
When the number 1 is displayed, repeatedly press the up arrow key until the number 5 is displayed.
27. Check the unit for accuracy in all positions.

15 is displayed.
$b U S y$ is displayed briefly and then ACQUIRE is redisplayed.

16 is displayed.
bUSy is displayed briefly and then ACQUIRE is redisplayed.

Fit is displayed.

Fit dAtA is displayed.
bUSy is displayed briefly and then a number will be displayed. Keep pressing SELECT until you get the same number (to the 2nd or 3rd decimal) consistently. Ideally this number is less than 3.

Fit dAtA is displayed.

ACCEPt is displayed.
no is displayed.
YES is displayed.
ACCEPt is displayed.
End is displayed.

Calculating New Lift Capacity

You must have the ID plate on the lift truck updated stating the new lifting capacity and center of gravity information. This requirement is per OSHA rules and regulations. A calculation formula is provided below. It is the customer's responsibility to contact their lift truck manufacturer / distributor with this information to obtain the new ID plate.

The QTLTSC lift truck scale comes in ITA Class II (16" high, 5,000 Ib) and ITA Class III (20" high, 5,000 and 10,000 $\mathrm{lb})$ and Class IV (25 " high, $10,000 \mathrm{lb}$ and $16,000 \mathrm{lb}$) models. Each class comes in several widths for cleat type carriages. Measure the height and width of the lift truck carriage. Select from the table below the appropriate width that best meets the dimensions of the lift truck carriage. Use the weights, dimensions and the following formula to calculate the net lifting capacity of your lift truck with a scale attached. Refer to Figure 9.

Net Capacity $=\frac{A(B+C)-D(E+F)}{E+G+H}$

Class II

A = Truck basic capacity, pounds
$B=$ Inches from front wheel center line to fork face
C = Inches from fork face to truck rating point (usually 24")
$D=$ Weight of the scale in pounds
$E=$ Inches from front wheel center line to carriage face
$F=$ Inches from carriage face to scale center of gravity (CG)
$\mathrm{G}=\mathrm{J}+\mathrm{K}$ (Inches from carriage face to rear face of load)
H Inches from fork face to new truck rating point
$J=$ Thickness of fork
$\mathrm{K}=$ Thickness of scale
$L=1 / 2$ the height of the scale or the Vertical Center of Gravity (VCG)

Class III

Class IV

Average loss in lifting capacity for a QuickTach lift truck scale is 12 to 14%.

Class II 5,000 lb Models

Scale P/N	Width	Weight "D"	DIM "F"	DIM "K
$48196-0094$	$30.0 "$	373 lb	$2.0 "$	4.0
$48196-0011$	$32.0 "$	381 lb	$2.0 "$	4.0
$48196-0029$	$34.0 "$	389 lb	$2.0 "$	4.0
$48196-0102$	$36.0 "$	410 lb	$2.0 "$	4.0
$48196-0037$	$37.0 "$	413 lb	$2.0 "$	4.0
$48196-0110$	$38.0 "$	418 lb	$2.0 "$	4.0
$48196-0128$	$40.0 "$	438 lb	$2.0 "$	4.0
$48196-0045$	$42.0 "$	446 lb	$2.0 "$	4.0

Class III 5,000 lb Models

Scale P/N	Width	Weight "D"	DIM "F"	DIM "K"
$51856-0016$	$36.0 "$	520	$2.00 "$	$4.00 "$
$51856-0024$	$37.0 "$	530	$2.00 "$	$4.00 "$
$51856-0032$	$38.0 "$	540	$2.00 "$	$4.00 "$
$51856-0057$	$40.0 "$	580	$2.00 "$	$4.00 "$
$51856-0073$	$42.0 "$	635	$2.00 "$	$4.00 "$
$51856-0099$	$44.0 "$	685	$2.00 "$	$4.00 "$
$51856-0115$	$46.0 "$	700	$2.00 "$	$4.00 "$
$51856-0131$	$48.0 "$	720	$2.00 "$	$4.00 "$

Scale P/N	Width	Weight "D"	DIM "F"	DIM "K"
$51857-0031$	$40.0 "$	725	$2.75 "$	$5.50 "$
$51857-0056$	$42.0 "$	780	$2.75 "$	$5.50 "$
$51857-0072$	$44.0 "$	795	$2.75 "$	$5.50 "$
$51857-0106$	$47.0 "$	855	$2.75 "$	$5.50 "$
$51857-0114$	$48.0 "$	865	$2.75 "$	$5.50 "$
$51857-0155$	$52.0 "$	935	$2.75 "$	$5.50 "$
$51857-0197$	$56.0 "$	1005	$2.75 "$	$5.50 "$
$51857-0239$	$60.0 "$	1030	$2.75 "$	$5.50 "$

Class IV $10,000 \mathrm{lb}$ Models

Scale P/N	Width	Weight "D"	DIM "F"	DIM "K"
53924-0010	38.0"	920	$2.75{ }^{\prime \prime}$	5.50 "
53924-0036	40.0"	941	2.75"	5.50"
53924-0051	42.0"	1007	2.75"	5.50 "
53924-0077	44.0"	1028	2.75"	5.50 "
53924-0093	46.0"	1093	$2.75{ }^{\prime \prime}$	5.50 "
53924-0119	48.0"	1114	2.75"	5.50 "
53924-0135	50.0"	1179	$2.75{ }^{\prime \prime}$	$5.50{ }^{\prime \prime}$
53924-0150	52.0"	1200	$2.75{ }^{\prime \prime}$	5.50 "
53924-0176	54.0 "	1266	2.75"	5.50 "
53924-0192	$56.0{ }^{\prime \prime}$	1287	$2.75{ }^{\prime \prime}$	5.50 "
53924-0218	58.0"	1306	2.75"	5.50 "
53924-0234	60.0"	1322	$2.75{ }^{\prime \prime}$	5.50 "

Class IV 16,000 lb Models

Scale P/N	Width	Weight "D"	DIM "F"	DIM "K"
53425-0014	38.0"	1068	$3.06{ }^{\prime \prime}$	$6.13{ }^{\prime \prime}$
53425-0030	$40.0{ }^{\prime \prime}$	1092	3.06"	$6.13{ }^{\prime \prime}$
53425-0055	42.0 "	1154	3.06"	6.13 "
53425-0071	44.0 "	1178	3.06"	6.13 "
53425-0097	46.0 "	1239	3.06"	$6.13{ }^{\prime \prime}$
53425-0113	48.0 "	1263	3.06"	6.13 "
53425-0139	50.01	1338	3.06"	6.13 "
53425-0154	52.0"	1362	3.06"	$6.13{ }^{\prime \prime}$
53425-0170	54.0 "	1437	3.06"	6.13 "
53425-0196	56.0 "	1461	3.06"	6.13 "
53425-0212	$58.0{ }^{\prime \prime}$	1484	$3.06{ }^{\prime \prime}$	6.13 "
53425-0238	60.0"	1592	3.06"	6.13 "
53425-0253	62.0"	1616	3.06"	6.13 "
53425-0279	$64.0{ }^{\prime \prime}$	1639	3.06"	6.13 "
53425-0295	66.0 "	1747	3.06"	6.13 "
53425-0311	68.0"	1771	3.06"	6.13 "
53425-0337	70.01	1794	3.06"	6.13 "
53425-0352	72.0"	1812	3.06"	6.13 "

Lift truck with no scale

Lift truck with scale

Figure 9
Recalculating Lift Truck Capacity

Making a Ramp

Use a torpedo level and an angle transfer level to verify the carriage is level side to side and the mast is vertical.

1. With plywood, build two ramps, following the diagram below.
2. Nail them together.

Board	H (in inches)	W (in inches)	L (in inches)
A	0.5	8	$24^{\prime \prime}$
B	0.5	8	$22^{\prime \prime}$
C	0.5	8	$20^{\prime \prime}$
D	0.5	8	$18^{\prime \prime}$
E	0.5	8	$16^{\prime \prime}$
F	0.5	8	$14 "$

Table 3
Inch Equivalent of Five Degrees
If your lift truck width is: Five degrees is:

48 inches
42 inches
36 inches
30 inches
24 inches
4.2 inches
3.7 inches
3.2 inches
2.6 inches
2.1 inches

Replacing Weigh Bars on the QTLTSC Carriage
 Equipped with Super Bolt ${ }^{\circledR}$ Tensioners

Disassembly

Tools needed for Class II and III 5000 Ib carriages:

- Minimum 65 foot/pounds torque wrench
- $5 / 32$ hex Allen
- $3 / 8$ hex Allen
- 6 Weigh Bar bolts, part \# 17704-5929
- $7 / 16$ socket
- $3 / 4$ " socket
- $1 / 2$ "socket
- (2) ${ }^{3 / 32}{ }^{\prime \prime}$ cable ties
- side cutters
- \#242 Loctite
- another person--
this disassembly and reassembly procedure is a two person task

Reassembly

Tools needed for

 Class III \& IV carriages (10K \& 16K Ib) :- Minimum 12 inch/pounds torque wrench
- Minimum 180 foot/pounds torque wrench
- 5/32 hex Allen
- $1 / 4$ hex Allen
- 1/2 hex Allen (Class IV)
- 6 Weigh Bar bolts, PN 17704-6224 (10K) PN 17704-6232 (16K)
- 15/16" socket
- 1 1/8" socket (16K Ib)
- $1 / 2$ "socket
- (2) $3 / 32^{\prime \prime}$ cable ties
- side cutters
- \#242 Loctite
- another person-this disassembly and reassembly procedure is a two person task

1. Remove forks.
2. Raise lift truck carriage and remove mounting hooks from bottom of QuickTach carriage.
3. Remove junction box shield.
4. Disconnect cables from junction box.
5. Remove the four bolts from the cable shield.
6. Place a pallet under carriage and lower the carriage until it is resting loosely on the pallet.
7. Tilt the carriage off and lay flat.
8. Loosen set screws on the tensioners according to the instructions on the next page.
9. Remove the tensioners.
10. Remove rear carriage from front carriage, being careful not to damage the Weigh Bar cables.
11. Remove the cable tie securing the cables to the cable shield.
12. Tilt the front carriage up and remove the Weigh Bar bolts and the Weigh Bar.

To reassemble, reverse the steps listed above and pay close attention to the following notes:

1. Make sure the Weigh Bar cables are positioned correctly behind the cable guard. See the illustrations of the scale carriage parts and assembly in the Z-fold pages of this manual for correct routing. Also make sure the cables are secured and not pinched.
2. You must replace the Weigh Bar bolts with new ones during reassembly. The part number for 5000 lb Class II and III carriages is 17704-5929. The part number for 10,000 lb Class III \& IV carriages is 17704-6224. For the $16,000 \mathrm{lb}$ Class IV the part number is 17704-6232.
3. Use the Tightening Procedure on the next page when installing the Weigh Bars.

When tightening the weigh bar bolts on a 5000 lb carriage, they must be torqued at 65 foot pounds in a star pattern starting with the top and bottom bolts.

When tightening the weigh bar bolts on a $10,000 \mathrm{lb}$ carriage, they must be torqued at 180 foot pounds in a star pattern starting with the top and bottom bolts.

When tightening the weigh bar bolts on a $16,000 \mathrm{lb}$ carriage, they must be torqued at 180 foot pounds in a star pattern starting with the top and bottom bolts. See illustrations on next page.

Use a drop of \#242 (blue) Loctite on all threaded hardware except the tensioner.

Loosening Procedure

$5 k$ and $10 k$ carriages

Figure 10 Circular Pattern

Tightening Procedure

5 k and 10 k carriages

Figure 11

Star Pattern

If the set screws show signs of damage, they must be replaced with new ones.

Damage to set screws is usually a result of not loosening the them in a uniform fashion.

Set screws should be loosened with care. Loosening can be accomplished quickly, but do not rush to completely loosen individual set screws. Remember that the intent is to slowly release the preload force. All set screws should be loosened uniformly and usually there is no need to remove any set screw from the tensioner body during loosening.

1. Turn the first set screw counterclockwise until it feels loose (no more than half a turn). The idea is just to unload each set screw, not to completely loosen it.
2. Move in a circular pattern to the next set screw (see Figure 10) and repeat step 1.
3. Continue repeating until all set screws have been unloaded.
4. By the time you get back to the first set screw, it will be tight again. Repeat the process, moving in a circular pattern.
5. Usually, after two or three passes, the tensioner can be spun off the bolt or stud by hand.
6. Before reusing any tensioner, the set screws should be removed in the appropriate manner, the body and set screws cleaned and relubricated with approved lubricant to insure proper set screw torque vs. preload performance on installation.

Attempt to tighten as consistently as possible. Do not tighten all at once. Use a standard torque wrench to verify final torque values.

1. On the $5,000 \mathrm{lb}$ scale, slide the washer onto the bolt or stud first.
2. Check the base of the tensioner(s) and verify that all set screws are flush with the bottom of the tensioner body.
3. Clear any dirt or chips from the threads of the bolt or stud and from the main internal thread of the tensioner.
4. Spin the tensioner body down on the main thread of the bolt or stud by hand. The tensioner body should be in light contact with the hardened washer or mounting plate.
5. Tighten the set screws in the star pattern shown in Figure 11 to $15 \mathrm{in} / \mathrm{lbs}$ or so that they are all hand tight against the washer.
6. Tighten the set screws in the same star pattern to $72 \mathrm{in} / \mathrm{lbs}(6 \mathrm{ft} / \mathrm{lbs})$ for a 5000 lb carriage and $25 \mathrm{ft} / \mathrm{lbs}$ for 10,000 and $16,000 \mathrm{lb}$ carriages.
7. Tighten the set screws in the circular pattern shown in Figure 10 to 108 in/lbs ($9 \mathrm{ft} / \mathrm{lbs}$) for a 5000 lb carriage and $37 \mathrm{ft} / \mathrm{lbs}$ for 10,000 and 16,000 lb carriages.
8. Tighten the set screws in the same circular pattern to $144 \mathrm{in} / \mathrm{lbs}$ (12 $\mathrm{ft} / \mathrm{lbs}$) for a 5000 lb carriage and $48 \mathrm{ft} / \mathrm{lbs}$ for 10,000 and $16,000 \mathrm{lb}$ carriages.
9. With the torque wrench set for the final torque value (from step 8), continue to repeat the circular pattern until all the set screws are torqued to the same value. This may take two or three passes to accomplish.

Replacing Weigh Bars on the QTLTSC Class II Carriage Equipped with Jam Nut

Disassembly

Tools needed for

Class II 5000 Ib
carriages:

- Minimum 65 foot/pounds torque wrench
- 5/32 hex Allen
- 3/8 hex Allen
- 6 Weigh Bar bolts, part \# 17704-5929
- 3/4" or 1" socket drive
- 1 ½ socket
- adapter for torque wrench to fit 1 ½ socket
- 7/16 Socket
- 3/4" socket
- 1/2"socket
- (2) $3 / 32$ " cable ties
- side cutters
- \#242 Loctite
- another person-this disassembly and reassembly procedure is a two person task

Reassembly

Use \#242 (blue) Loctite on all threaded hardware including the jam nut.

Jam nuts are torqued to $500 \mathrm{ft} / \mathrm{lbs}$ so removal requires extra force and caution. Use a $3 / 4$ " or $1^{\prime \prime}$ drive socket and the method described below to secure the scale for disassembly/assembly.

1. Leave the forks on the scale with a loaded pallet on them.
2. Remove the lower hooks and disconnect the scale interface cable. Block the back of the hooks so the scale will tilt forward when lowered.
3. Lower the scale so that it disengages from the lift truck carriage.
4. Back the lift truck away from the scale. This leaves the scale in an upright position with easy access to the nuts and stability for providing the $500-\mathrm{ft} \mathrm{lb}$. torque required.
5. Remove junction box shield.
6. Disconnect cables from junction box.
7. Remove the four bolts from the cable shield.
8. Loosen jam nuts .
9. Remove jam nuts.
10. Remove rear carriage from front carriage, being careful not to damage the Weigh Bar cables.
11. Remove the cable tie securing the cables to the cable shield.
12. Remove the Weigh Bar bolts and the Weigh Bar.

To reassemble, reverse the steps listed above and pay close attention to the following notes:

1. Make sure the Weigh Bar cables are positioned correctly behind the cable guard. See the illustrations of the scale carriage parts and assembly in the Z-fold pages of this manual for correct routing. Also make sure the cables are secured and not pinched.
2. You must replace the Weigh Bar bolts with new ones during reassembly. The part number for 5000 lb Class II carriages is 17704-5929.
3. Torque bolts to 65 foot pounds in a star pattern starting with the top and bottom bolts.
4. Install the hardened washers.
5. Use the Tightening Procedure on the next page when installing the Weigh Bars.

Tightening Procedure
Clean the pockets for the washers, nuts and weigh bar threads.
To tighten the jam nut to $500 \mathrm{ft} / \mathrm{lbs}$ you can use two techniques:
One, use a torque wrench to torque the nuts to $500 \mathrm{ft} / \mathrm{lbs}$.
Two, and our recommended technique, torque the nut to $50 \mathrm{ft} / \mathrm{lbs}$ and then with a $3 / 4$ " or 1 " drive socket and a $1 \frac{1}{2}$ " socket, turn the nut $1 / 6$ th of a turn, $\pm 1 / 8 "$. This will be very close to $500 \mathrm{ft} / \mathrm{lbs}$. See the illustration below.

Reset Menu and Master Clear

Do not reset anything unless it is absolutely necessary. If you reset ADJUST, this may mean you have to bring in a weight truck to re-calibrate your system.

If the indicator's memory, calibration or other data becomes corrupted, a reset menu will become active. RESET will be displayed telling you there has been a problem. You may also choose to perform a Master Clear to reset the setup, or adjust data values to default values. Performing a master clear gives you access to the first reset menu shown below. If the indicator found a problem with itself, you will see the second menu. In either case, you must turn switch S1-1 on before you can reset setup or adjust items. NOTE: The only items active for a reset or master clear are those items that are not set to the factory defaults.

To perform a master clear follow these steps:

1. Turn the unit off, hold the TARE and ZERO keys down and turn on the unit.
2. Press SELECT. . .
3. Use the \uparrow key and \rightarrow key to key in your security code number, then press SELECT. . .

NOTE: You must enter the security code number before you can reset any items. ' 1 ' is the default code.
4. Press MENU. . .

CODE NO. is displayed.
CODE NO. is displayed.
0 is displayed.

RESET is displayed. From here you access the rest of the menu items the same as you do for all the other menus.

Master Clear Menu

Within the RESET menu at right, you may need to toggle switch S1-1 to correct powerup problems after exchanging EEPROMs.

GROSS
NET

If SETUP, ADJUST, or DATA are set to defaults, they will not appear in the menu.

If SETUP, ADJUST, or DATA appear, you have the option to reset one, two, or all three of them to default values.

If any of the following are flashing it means the option is corrupted and will need to be reset in order for the unit to operate.

ALL - Includes Setup, Adjust, and Data
SET UP - Configuration selections
ADJUST - Calibration settings
DATA - User entered information

If SETUP, ADJUST, or DATA appears and it is flashing, the indicator is telling you that it is corrupted and must be reset to default values.

If $A L L$ appears, you have the option to reset all values to their default settings simultaneously.
If $A L L$ is flashing, the indicator is telling you that SETUP, ADJUST, and DATA are all corrupted and you must reset them all to default values.

If you choose $A L L$, the unit returns automatically to weighing mode. All factory defaults are now in place, including calibration values.

To reset any of the choices, use the MENU key to toggle between the choices. When the correct choice is displayed, press SELECT, then press G/N to save.

If you choose to reset some choices, but not all, the unit will return to weighing mode when you press \mathbf{G} / \mathbf{N}. If nothing is corrupted (no choices are flashing) you can return to weighing mode by pressing SELECT while END (after RESET) is displayed.

The test mode is used to test various functions of the WI-125. The test menu is shown in Figure 12. Instructions for using the test menu are found below.

Figure 12
Test Menu

1. Enter the test mode from gross/net operation by pressing and holding the MENU key until tESt is displayed. SEALEd or unSEALEd is displayed briefly while you hold the key.
2. Move to the right through the menu selections by pressing MENU briefly. Move to the left through the menu selections by pressing MENU for 1 second or hold down for continuous scrolling.
3. To move down a level in the hierarchy, press SELECT. Anytime you wish to get to the next higher level in the hierarchy, press and hold SELECT for approximately 1.5 seconds or press SELECT whenever End is displayed.
4. Press MENU to toggle between choices.
5. Press \mathbf{G} / \mathbf{N} to return to gross weighing operation at any time.

Below are the specific directions and explanations for the items you see in the test menu.

VERSION - Under version are the Weigh-Tronix part number and revision number for the software found in your machine. WeighTronix part numbers are divided into two parts: the prefix and the dash number.

DISPLAY - With diSPLAY displayed, press SELECT and the bottom row of annunciators turns on. Press SELECT again and a dynamic test is run. Press MENU to stop the dynamic test or consecutively press MENU to step through the display test routine. Press SELECT when the dynamic test is active to return the unit to diSPLAY.

BUTTONS - With buttonS displayed, press SELECT and an underscore will appear on the screen. Press any key except MENU to check for proper key functioning. After testing the buttons, press MENU to return to the display.

A to $\mathrm{D}-\quad$ Displays the analog to digital counts. The span is normally 20,000 counts per millivolt per volt. With a calibrator at zero millivolts per volt, the displayed value should be between -200 and +200 .

ANGLE - Displays pitch and roll confirming that the angle sensors are functional.

SERIAL - Tells you if the serial output is ready or busy. A jumper connecting pins 4 and 8 of the serial port will cause rEAdY to be displayed. Pressing the MENU key puts $\angle O O P$ or no LOOP on the display. With pins 2 and 3 connected, $\angle O O P$ is displayed. With them disconnected, no $\angle O O P$ is displayed.

1. Powered Indicator
a. If there is a readout check the other tips
b. If there is no readout check for voltage on the Quick Disconnect power supply connector, must have at least 10.5 volts DC and 150 mA .
2. If there is power at the connector, check for power coming from P2 pins 1 and 4 on the power supply card, should have at least 10.5 volts DC
a. If there is power at power supply, replace main card. Setup new card and calibrate (16 Steps).
b. If there is no power at P2, check fuse, if bad replace fuse. If the fuse is ok, replace power supply card.
3. If there is no power at the connector, check power cable replace if necessary. Try a different power source on the LT.

2. Lockup

This means the A to D section is out of range or not communicating with the cells.
a. Disconnect the interface cable at the indicator, if it stays in "lockup", replace main card.
b. If you read a value connect the weight and pitch/roll simulators to the indicator, if it reads "lockup", replace the main card.

1. If the reading is unstable replace the main card
2. If the reading is stable, remove the 12-pin test cable and connect the interface cable to the simulators.
3. If you get "lockup" again, replace the interface cable
4. If there is a stable reading the interface cable and indicator are OK, there is a problem somewhere in the carriage assemble.
c. For hardwire style J-box. Once the indicator and interface cable have been checked and are OK, now you need to check the pigtail. This will take an ohmmeter to verify no shorts and/or opens. Replace if defective.
d. With the indicator attached to the carriage again and still in "lockup," disconnect one bar at a time and try adjusting the "Zero pot" to enable a weight value. Keep proceeding until all Weigh Bars are disconnected.
e. Next, ohm out the four Weigh Bars
a. If all Weigh Bars ohm out OK, replace the junction box. (Note: On a Hardwire style J-box, check for any broken wires or a cell(s) not wired correctly Before replacing the Junction box.)
b. If a Weigh Bar ohms out of tolerance, replace the Weigh Bars. (Note: If you have to replace a J-box or Weigh Bar, the scale will need to be cornered and calibrated.)

3. Printer shuts down when trying to print.

The WP series printers could take up to 3 amps when there is heavy printing, this may be why your printer shuts down. Try another power source (direct to a battery or remote power source).

4. Center Dashes

This means that there is no communication between the indicator and the angler sensors. This indication has nothing to do with Weigh Bars.
a. Check the indicator with the roll and pitch simulator.

1. If you still have center dashes check the 12-pin connector on the enclosure. Also check the internal wiring for any loose or broken wires
2. If you get weight readout, remove the 12-pin test cable and connect in the interface cable.
a. If you get center dashes, than replace the interface cable.
b. If you get weight readout on a system that uses a Connector style J-box: Replace the J-box. On a hardwire style: Ohm out the pigtail and check for shorts and/or opens. If any found, replace the pigtail. If the pigtail is OK, check for any broken or miswired connections, otherwise change the J-box.

5. All 88888s

If you see this on the indicator, it can be caused by 2 problems.
a. It could mean the program has somehow been corrupted and the indicator will need to be master cleared and calibrated (16 step).
b. Or it could be that the photo sensor is shorted against the LCD tube. This will usually happen when a main card was replaced. Check to make sure that the sensor is in the machined hole designated for it on the keyboard backerplate.

6. Reset

If you see this message then the software in the indicator has either become corrupted or the battery backup has fallen below the voltage level needed to retain the RAM memory.
a. This reset menu is referenced in the Service Manual and it consists of three or four menus:
ALL: If all 3 of your menus need to be reset you will be able to use this option instead of going through each menu individually.
SETUP: This is your Setup menu. If this menu is flashing you will need to reset it. This information is modified through the security code. This menu does not affect the calibration. So when resetting this menu you will not have to recalibrate!!
ADJUST: This is your calibration menu. If this menu is flashing you will need to reset it and recalibrate.
DATA: This menu will consist of any user information. If this menu is flashing it will need to be reset. Resetting this option does not effect calibration. If there is a battery voltage problem, this will most likely be a menu you will need to reset. If you continue to have this menu go to reset, you should have the main card repaired or replaced.

7. Drifting

This could be caused by a handful of different things. So try to isolate the problem.
a. You will want to verify the stability of the indicator first, so check the unit with the simulator. If the indicator still drifts replace the main card. If there is stability, check the indicator with the interface cable.
a. If there is drift, change the Interface cable. If there is stability, disconnect each cell and adjust the zero pot if necessary to locate a faulty Weigh Bar.
b. If there is stability after disconnecting a certain cell, replace the defective Weigh Bar. If each Weigh Bar was tested individually and the drift never went away, you will either want to ohm the Weigh Bars to see if one or more Weigh Bars are out of tolerance or replace the J-box.
c. On a hardwire style J-box: Ohm out the pigtail and check for shorts and/or opens. If any found, replace the pigtail. If the pigtail is OK, check for any broken or miswired connections. Otherwise change the J-box.

8. Not Repeating

This can be caused by the way the Quik-Tach Scale is hanging on the lift truck's carriage.
a. First check the clamps on the bottom of the carriage. Make sure there is proper spacing around the block assembly. These clamps are there to keep the scale from coming forward off the lift truck carriage. They are not intended to secure the scale to the lift truck carriage.
b. If you have done any maintenance to the carriage as far as replacing a Weigh Bar, verify that all Weigh Bars have the stamped " T " at the very top of Weigh Bar. Also the Weigh Bars and the Super bolts should be torqued properly, and in the sequence specified in this manual.
c. If a J-box is not cornered correctly this could cause repeating problems. There is a cornering procedure in the WI-125 QTLTSC Service manual. On a hardwire style J-box, broken or miss-aligned interface or cell wires can cause repeating problems. Check the color code on the J-box PCB.

9. Upper or Lower Dashes.

Your going to be dealing with a system that was working before because every system leaves the factory in working condition. So there must be a reason why the unit has dashes. Normally dashes (upper or lower) means your out of the A to D range of the existing calibrate points, but when the unit was working before there has to be something that put the unit into a dash mode. You will want to start trouble shooting the system to find out what part, or parts are defective and causing this type of problem. Start by checking the indicator with a simulator, if the head checks out move onto the interface cable and so on.
10. All 0000s or 9999s after fitting data in calibration.

This means the points in the calibration were too far out of tolerance for the WI-125 to mathematically configure the calibration. It would be wise to do a Master Clear and then recalibrate.

Figure 15
Setup

QTLTSC System Troubleshooting Sequence

QTLTSC System Troubleshooting Sequence

[^2] to installation guide for QTLTSC.

QTLTSC System Troubleshooting Sequence

QTLTSC System Troubleshooting Sequence

Perform these resistance checks to test the legal for trade lift truck scale Weigh Bars. With the meter set on the appropriate ohms scale, check the following values between the color coded wires on the section of the cord connected to the Weigh Bar or the corresponding pin out for the connector. See Figure 16.

$A=-$ Output
$B=+$ Excitation Shear Bridge
$\mathrm{C}=+$ Output
$D=-$ Excitation
$E=+$ Excitation Trim Bridge
F= Shield
Figure 16
Front view of six-pin, male connector

The electrical connections of the QTLTSC Weigh Bar with a six-pin, male connector, shown above, can be verified by measuring the resistances listed below:

Pins	Wires	Reading	Tolerance in Ohms
B to D	Green to Black		1021 to 1062 (1032)
B to C	Green to White		764-796 (780)
B to A	Green to Red		764-796 (780)
B to E	Green to Blue		1335 to 1391 (1363)
E to C	Blue to White		1038 to 1082 (1060)
E to A	Blue to Red		1038 to 1082 (1060)
E to D	Blue to Black		356-372 (364)
C to A	White to Red		935-973 (954)
D to A	Black to Red		714 to 744 (729)
D to C	Black to White		714 to 744 (729)

All pins or wires to the metal of the Weigh Bar are to measure >500 megaohms. Pin F (shield, bare wire, orange wire) to all other pins or wires are to measure >500 megaohms.

(22) IMPORTANT ROUTE AND TIE THE CABLES AS SHOWN.

$\begin{array}{\|l\|} \hline \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	W-T P/N	QTY
1	WI-125 Lift Truck (QTLTSC) Indicator Assy	47955-0014	1
2	12-72VDC Power Cable (12' long)	19266-0041	1
3	J-Box Shield	48190-0017	1
4	Weigh Bar Assy, (incl: weigh bar, bolts)	55846-0010	4
5	Retractable Cable Assembly (j-box-to-indicator)	48432-0015	1
6	Mounting Hook	19967-0019	2
7	Crriage Locating Pin	19968-0018	1
* 8	1-W/B Jam Nut Assy Kit (new version), class II \& III - $5 k$ (incl: 1-jam nut, 1 -washer, locktite, 1 -torque label) (also Ref. Senvice Repair Kits below	57652-0019	4/carriage
9	Bolt, Soc Hd Hex, . $44 \times 1.50^{\prime \prime}$ long	17704-0920	24
10	Bolt, Hex . $50 \times 1.5^{\prime \prime}$ long GR 5	48369-0012	4
11	J-Box Assy (incl. level sensor)	48369-0012	1
12	Shim(.059"thk.)	48876-0018	1
	Shim (.048" thk.)	48876-0026	1
	Shim (.035" thk.)	48876-0034	1
13	Spacer Plate (.095" thk.)	49890-0018	1
14	Bolt, Hex, $1 / 4^{\prime \prime} \times 2^{\prime \prime} \mathrm{L}$	14476-0017	4
15	WI-125 Indicator Angle Mounting Bracket (not shown)	49106-0018	1
16	Bolt, Hex, 5/16" (special)	48482-0014	4
17	Lock Washer, $1 / 2$	14474-0107	4
18	Bolt, $1 / 4 \times \times 1 /{ }^{\prime \prime}$	14495-0011	4
19	Lock Washer, $1 /{ }^{\prime \prime}$	14474-0065	10
20	Lock Washer, 5/16"	14474-0073	6
21	Boit $1 / 4^{\prime \prime} x^{3 / 4} 4^{\prime \prime} \mathrm{L}$	14476-0014	2
22	Bolt, 5/16" $\times 5 / 8^{\prime \prime} \mathrm{L}$	14495-0144	2
23	12-Pin Male Connector	46696-0010	2/cable
24	Indicator In-Line Fuse Kit (not shown)	55338-0023	1
25	--No Part--	----	---
* 26	Tensioner Assy (old version), (incl.: tensioner, set screws, flat washer)	N/A	---
	Tensioner Set Screw (for tensioner above)	N/A	---
	Service Repair Kits		
*	4-W/B Jam Nut Assy Kit (new version), class II \& III - 5k (incl: 4-jam nuts, 4 -washers, locktite, 1 -torque label)	57652-0027	1

* Note: Do not mix "old version tensioner assy's" and "new version jam nuts"

WI-125 LIFT TRUCK (QTLTSC)
J-BOX ASSY w/ CONNECTORS (with pigtail) \& REAR MOUNT CABLE BRACKET KIT

ITEM NO.	DESCRIPTION	W-T P/N	QTY
*1	Silicone Keypad Gasket (ref: keypad kit)	1055-10389	1
2	Keypad / Backer Plate Kit (incl: keypad, backer plate \& gasket)	60265-0012	1
3	Backer Plate (ref: keypad kit, item 2)	-----	---
4	Main Board Assy W/ E-prOm Main Board Assy W/o E-prOm E-prom (For Ltc)	$\begin{aligned} & 53042-1080 \\ & 53042-0058 \\ & 53660-0026 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
5	Enclosure Sealing Bracket	1067-09677	1
6	Front Enclosure	45902-0012	1
7	Rear Enclosure	46477-0015	1
8	Level Sens Bd To Main Bd Cable Assy	47958-0011	1
9	Wght/level Sensor Cable Assy	48433-0014	1
10	Power Supply To Main Bd Cable Assy	45949-0017	1
11	Rs232 / Level Sens Pc Bd Assy	47922-0014	1
12	Input Power Conn / Cable Assy	48438-0019	1
13	Strain Relief	15257-0024	1
14	Time \& Date Pc Bd Assy (optional)	29409-0014	1
	Standoff for Time \& Date Bd.	15437-0175	1
15	Adhesive Foam Rear Encl. Gasket	1045-08401	1
16	Cap Screw,\#10-32 X . 381	14505-0035	2
17	Cap Screw,\#10-32 X .50I	14505-0050	4
18	Tooth Washer, \#10	15698-0054	6
19	Mtg Bracket (Long)	28170-0013mts	1
20	Mtg Bracket (Short)	28170-0039	1
21	Rubber Mount	17807-0090	3
22	Power Supply Pc Bd	45931-0017	1
23	12-72 Vdc Pwr Cable Assy (12' Long)	19266-0041	1
24	Two Pin Male Connector	14481-0025	1
25	Pwr Cable Clamp	14482-0016	1
26	Serial To Cpu Display Cable Assy	45898-0018	1
27	Overhead Mtg. Brkt. (Use W/ Items 19 Or 20)	53804-0023	1
28	Indicator In-line Fuse Kit (Not Shown)	55338-0023	1
29	Capacity Label (Not Shown)	47990-0011	1

WI-125 INDICATOR FOR "QTLTSC"

J-BOX CABLE ASSEMBLIES \& INTERNAL

SERIAL INTERFACE-MAIN BD/CABLE ASSY P/N 45898-0018

PDWER SUPPLY-CPU CINN/CABLE ASSY P/N 45949-0017

WI-125 (QTLTSC) INDICATOR KEYPAD ASSEMBLY AND SCHEMATIC

WI-125 LTC KEYPAD/BACKER PLATE KIT P/N 60265-0012

TD P10 (MAIN PC BIARD)

(OBSOLETE)
"FIRST GENERATION" J-BOX LEVEL SENSOR P/N 47961-0016

Lift Truck Scale In-Line Fuse Kit (PN 55338-0023) Installation Instructions

Figure 1

Items Included in Kit

Item	Description	P/N	Qty
1	Terminal Rings	$16062-0159$	2
2	Shrink Tubing (1/2 dia.)	$14486-0087$	4 in.
3	In-Line Fuse Holder	$52703-0019$	1
4	Fuse, 2 amp slo-blo	$15454-0066$	1
5	Shrink Tubing (3/116 dia.)	$14486-0053$	6 in.
6	Butt-Splice Connector	$16390-0103$	1
7	Cable Tie (not shown)	$13762-0035$	12

Avery Weigh-Tronix (AWT) requires lift truck scales to be connected directly to the battery for the best performance of the indicator. AWT recommnends the installation of this fuse kit to protect the cabling, indicator and lift truck from shorts in the cable.

Follow these steps to install the fuse kit:

1. Cut the wire on the fuse holder as indicated in Figure $\mathbf{1}$ at left.
2. Using the supplied butt-splice connector and heat shrink tubing, items 6 and 5 in Figure 2, connect wire from the fuse holder to the white wire and 5 in Figure 2, connect wire from the fuse holder to the white wire
from the power supply cable. The smaller diameter wire from the power frable should be inserted into the red striped end of the butt-splice con nector. Insert the wire from the fuse holder into the other end (no stripe) of the butt-splice connector. The heat shrink tubing should be placed over the butt splice connector.
3. Cut the heat shrink tubing in half, item 2 in Figure 2, and place one piece on the black wire from the power supply cable and one piece on the loose wire from the fuse holder
4. Crimp the ring terminals, item 1, onto the wires as shown in Figure 2.
5. Using a heat gun, shrink all three pieces of heat shrink tubing in place.
6. Connect the ring terminals to the lift truck battery terminals. The one connected to the the fuse holder should be attached to the positive (+) terminal. The one connected to the black wire to the negative - terminal

QTLTSC LIFT TRUCK SCALE CARRIAGE

FIG. 1

FIG. 2

- Remove the customer's forks before you mount the Quik-Tach carriag
- Clean and inspect the customer's lift truck carriage. Both the upper and lower sections of the carriage should be flat and not twisted or bent out of shape (Helpful hint: use a 4 ft . straight edge to determine if car riage is flat and not twisted). It is especially important that the upper carriage notches are not excessively worn.
- Remove the two mounting hooks and washers bolted to the bottom of the Quik-Tach carriage (see Figure 1). The hooks secure the scale to Raise the Quik-Tach carriage to a vertical position on the pallet and Rrive the lift truck into position.
- Align the Quik-Tach carriage centering pin with the center notch in the customer's lift truck carriage. The rear face of the scale carriage must customer's lift truck carriage. The rear face of the scale carriage m
be against the customer's lift truck carriage and the top mounting be against the customer's lift truck carriage and te top mounting
blocks of the scale carriage must be over the top of the customer's lift ruck carriage lip and seated firmly in place.
- Raise the carriage and back the liff truck away with the Quik-Tach scale in place.
NOTE \#1: (See Figure 2) Make sure the bosses on the Quik-Tach carriage make contact with the customer's lift truck when both forks are seated.
If there is more than .030" gap between the Quik-Tach and the customer's lift truck carriage (see Figure 2) when the forks are seated, use the included shims as needed to close the gap on either end, then bend over the tabs to hold them in place as shown in (Figure 1). There are three shim thicknesses (. $035^{\prime \prime}$, $048^{\prime \prime}$, $0599^{\prime \prime}$). If you have to stack more than wo shims on either end, your carriage is bent and needs to be fixed or

NOTE \#2: There must be $0.030^{\prime \prime}$ to $0.060^{\prime \prime}$ space between the customer's lift truck carriage and the mounting hooks of the Quik-Tach scale. See
Hook Clearance in (Figure 2) These parts must not touch or the scal won't weigh correctly. Use the spacer plates as needed to be sure this space exists. Also be sure that the customer's lift truck forks contact the cale only at the positions shown in (Figure 2). Repair or replace the forks they are bent or have protrusions which contact the face of the scal.

- Mount the forks on the Quik-Tach scale carriage in the same way the
attach to the regular lift truck carriage and move the forks into the attach to the regular lift truck carriage and move the forks into the positions they will be used during normal operation. Make sure all carriage omponents are firmly and safely in place. Apply a drop of thread locking fasteners.

Equipment required for the J-Box transfer:

- Ohm Meter
- Tweeker (little screwdriver)
- Existing Hardwire J-Box (old style)
- Quick-Disconnect J-Box (new style)

The following procedure will only approximate the corner and balance adjustment of a factory set J-Box. You still need to go through a complete corner and balancing procedure after you transfer the data from the old J-Box to the new J-box to get exact readings.

1. Document the readings from the working, old style J-Box with no cells connected Left Trim Readout \qquad Ohms TB1 pin 2 (GRN) to TB4 pin 5 (BLU) Right Trim Readout \qquad Ohms TB1 pin 2 (GRN) to TB5 pin 5 (BLU)
Left Balance Readout \qquad Ohms TB1 pin 2 (GRN) to TB4 pin 2 (GRN)
Right Balance Readout \qquad Ohms TB1 pin 2 (GRN) to TB5 pin 2 (GRN)

NOTE: 1 full turn of the pot will adjust about 10 lbs . Out of a fork when using real weight.
2. With no cells connected to the new J-Box, transfer the readings to the correct pots. If your looking at the front of the J-Box (so you can read the part number) the 2 back connectors are for the bottom cells and the 2 front connectors are for the top cells (Reference figure 2 for correct assignment)
3. Measure across J1B to J4E. Adjust the LTB to equal the Left Trim Readout.
4. Measure across J1B to J5E. Adjust the RTB to equal the Right Trim Readout.
5. Measure across J1B to J4B. Adjust the LB to equal the Left Balance Readout.
6. Measure across J1B to J5B. Adjust the RB to equal the Right Balance Readout
7. Follow the corner and balance procedure in the WI-125 QTLTSC Service Manual to fine-tune the J-Box readings.

Equipment required for the weighbar connector modification

- Solder

Soldering Iron
Potting Compound Non-corrosive Non-conductive sealan
(Wire Strippers 22 AWG
Complete Kit (PN 52224-0019) Incl.
New J-box
Neoprene Tubing, ($6^{\prime \prime}$ total $1.5 \% /$ cable)
Heat Shrink, (2" total . 5 "/shield wire)
Connectors, (4 total 1/weighbar)
Mounting Device, (2-Hold downs for upper weighbar cables)
Cable Tie, (2 total)

Modifying the Weighbar Connection

Refer to figure 1 as you go through the following steps.

1. Cut off the existing leads of the weighbar cable so you can start with fresh, undamaged wires.
2. Strip off $.75^{\prime \prime}$ of the jacket from the end of the weighbar cable. Then strip off .25 " of the insulation from the ends of the cable wires and then tin the leads.
3. Disassemble connector and insert the cable through the Strain Relief Clamp, Insulator, and Locking Ring(you may need to loosen the strain relief screws). Trim, strip, position the heat shrink over the shield, and solder the wires to the Jack.
4. Position the Locking Ring on the Jack and assemble the Insulator to the Jack. Then fill with the potting compound. Be sure the cable jacket is inside the potting compound. This will assure that moisture doesn't feed back up through the cable
5. Screw Strain Relief Clamp into place and tighten the Relief Screws down to the neoprene tube and cable.

Finishing Procedure

1. Attach new J-box to the front, center mounting plate
2. Connect all weigh bar cables to the junction box. Where vibration may cause loosening of connectors, place a bead of silicone across the assembled J-box connection, see figure 2.
3. Perform cornering and balance procedures for the J-Box.
4. Perform a complete system calibration.

Fig. 2

Avery Weigh-Tronix

Declaration of Conformance to SMA Standard Year of Declaration 2002 Production Meets Type

We the manufacturer of

Model	Type	Certificate and Number	Issued by
QTLTSC	Lift Truck Weighing Sys.	NTEP CC 95-126A2	NCWM

Declare in our responsibility the conformance of the above listed models and types to the mentioned certificates and the requirements of the SMA standard.

This declaration becomes valid when the SMA Conformance Logo, having our name or trademark is applied to the device or its accompanying documentation.

[^3]
Avery Weigh-Tronix USA

1000 Armstrong Dr.
Fairmont, MN 56031 USA
Telephone: 507-238-4461
Facsimile: 507-238-4195
e-mail: industrial@weigh-tronix.com
www.wtxweb.com

Avery Weigh-Tronix UK

Foundry Lane
Smethwick, West Midlands
England B66 2LP
Tel: +44 8709034343
Fax: +44 1212248183
Email: info@awtxglobal.com
Web site:www.averyweigh-tronix.com

Avery Weigh-Tronix Canada, ULC
217 Brunswick Boulevard
Pointe Claire, QC H9R 4R7 Canada
Telephone: 514-695-0380
Toll free: 800-561-9461
Facsimile: 514-695-6820
www.weigh-tronix.ca

[^0]: Setup, Scale, Options, Angles, Dashes -
 Tare
 Choosing ON enables the pushbutton tare. Choosing OFF disables the pushbutton tare. If pushbutton tare is disabled, TARE will not appear in the operations menu.

[^1]: * Refer to Figure 9, "Recalculating Lift Truck Capacity" on the next page for the new capacities.

[^2]: All Weigh Bars test good. Proceed

[^3]: * SMA PRODUCTION MEETS TYPE DEVICE MANUFACTURER Conformance Logo and Design are a registered trademark of the Scale Manufacturers Association

