
Agronomy 2014, 4, 279-301; doi:10.3390/agronomy4020279 

 

agronomy 
ISSN 2073-4395 

www.mdpi.com/journal/agronomy 

Article 

Pheno-Copter: A Low-Altitude, Autonomous  
Remote-Sensing Robotic Helicopter for  
High-Throughput Field-Based Phenotyping 

Scott C. Chapman 1,*, Torsten Merz 2, Amy Chan 3, Paul Jackway 3, Stefan Hrabar 2,  

M. Fernanda Dreccer 4, Edward Holland 1, Bangyou Zheng 1, T. Jun Ling 1 and  

Jose Jimenez-Berni 5 

1 CSIRO Plant Industry and Climate Adaptation Flagship, Queensland Bioscience Precinct,  

306 Carmody Rd, St. Lucia, QLD 4067, Australia; E-Mails: Edward.Holland@csiro.au (E.H.); 

Bangyou.Zheng@csiro.au (B.Z.); Jun.Ling90@gmail.com (T.J.L.) 
2 CSIRO Computational Informatics, QCAT, 1 Technology Court, Pullenvale, QLD 4069, Australia; 

E-Mails: Torsten.Merz@csiro.au (T.M.); Stefan.Hrabar@csiro.au (S.H.) 
3 CSIRO Computational Informatics, EcoSciences Precinct, 41 Boggo Rd, Dutton Park, QLD 4102, 

Australia; E-Mails: mathematical.coffee@gmail.com (A.C.); xomexx@gmail.com (P.J.) 
4 CSIRO Plant Industry and Climate Adaptation Flagship, Cooper Laboratory, PO Box 863,  

The University of Queensland, Warrego Highway, Gatton, QLD 4343, Australia;  

E-Mail: Fernanda.Dreccer@csiro.au 
5 CSIRO Plant Industry, High Resolution Plant Phenomics Centre, Clunies Ross St, Black Mountain, 

Canberra, ACT 2601, Australia; E-Mail: Jose.Jimenez-Berni@csiro.au 

* Author to whom correspondence should be addressed; E-Mail: scott.chapman@csiro.au;  

Tel.: +61-732-142-254. 

Received: 17 March 2014; in revised form: 20 May 2014 / Accepted: 21 May 2014 /  

Published: 17 June 2014  

 

Abstract: Plant breeding trials are extensive (100s to 1000s of plots) and are difficult and 

expensive to monitor by conventional means, especially where measurements are time-sensitive. 

For example, in a land-based measure of canopy temperature (hand-held infrared thermometer 

at two to 10 plots per minute), the atmospheric conditions may change greatly during the 

time of measurement. Such sensors measure small spot samples (2 to 50 cm2), whereas  

image-based methods allow the sampling of entire plots (2 to 30 m2). Capturing images 

from an aircraft which is flown precisely at low altitude (10 to 40 m) to obtain high ground 

resolution data for every plot allows the rapid measurement of large numbers of plots. This 

OPEN ACCESS



Agronomy 2014, 4 280 

 

 

paper outlines the implementation of a customized robotic helicopter (gas-powered, 1.78-m 

rotor diameter) with autonomous flight control and software to plan flights over 

experiments that were 0.5 to 3 ha in area and, then, to extract, straighten and characterize 

multiple experimental field plots from images taken by three cameras. With a capacity to 

carry 1.5 kg for 30 min or 1.1 kg for 60 min, the system successfully completed >150 flights 

for a total duration of 40 h. Example applications presented here are estimations of the 

variation in: ground cover in sorghum (early season); canopy temperature in sugarcane 

(mid-season); and three-dimensional measures of crop lodging in wheat (late season). 

Together with this hardware platform, improved software to automate the production of 

ortho-mosaics and digital elevation models and to extract plot data would further benefit 

the development of high-throughput field-based phenotyping systems. 

Keywords: UAV; UAS; plant breeding; remote sensing; canopy temperature; crop 

establishment; lodging; wheat; sorghum; sugarcane 

 

1. Introduction 

Crop breeding requires continued investment to maintain performance, particularly against the 

evolving resistances of pests and diseases to control measures, and to improve yields as crop production 

spreads into increasingly marginal environments that are now also subject to the additional risk of the 

negative impacts of climate change. The delivery of new cultivars can be accelerated directly through 

faster means of the generation of progeny and improved understanding of the genetic control of 

adaptive traits that facilitate earlier, faster selection of superior lines. Given this powerful capability to map 

and manipulate the genetics of crops, the limit to progress in improving adaptation traits is now our 

understanding and measurement of the phenotype in the field, an area of research described as  

field-based phenotyping (FBP), and which can be facilitated by using various remote-sensing 

platforms to monitor plant growth and development [1,2]. 

Breeding utilizes the knowledge of how the genetic composition of lines within species that can be best 

combined to maximize the expression of phenotypes, such as yield. Over the last 30 years or so, 

between the development of molecular markers and now the regular use of mapped genomic 

information, plant breeding has benefited from the application of these technologies to accelerate the 

identification of target genotypes. The price of high-density genomic screens, such as SNP chips (5000 

to 500,000 genes are typical) is dropping, such that they are becoming less than the cost of a single 

yield plot evaluation (ca. USD$10 to 40) in a breeding program, i.e., for the cost of an extra yield plot 

or the substitution of one, breeders may obtain a genomic screen that facilitates a statistical prediction 

of the genotype. This approach allows breeders to undertake DNA screens on large numbers of 

individual seeds from multiple crosses and to plant only those which, based on pedigree, are predicted 

to have the maximum expectation for increased yield through the pyramiding of multiple gene 

segments [3]. New breeding methods, such as doubled-haploids, off-season nurseries and embryo rescue, 

as well as powerful statistical techniques to adjust for within and between trial environment effects 

have also reduced the time between an initial cross and a delivered cultivar. With these technological 
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advances, the exploitation of novel genetic resources and the recombination of these and current 

genetics is able to be done faster than ever before. With the acceleration of the delivery of both genetic 

data and of new offspring, the collection of phenotypic data is therefore now the major limiting factor 

in being able to design and predict outcomes in breeding programs. 

Some phenotypes associated with abiotic adaptation can be evaluated precisely in non-field  

conditions, e.g., flowering time responses to temperature and photoperiod, seedling vigour and early root 

development. In dryland cropping, the yield is the outcome of complex interactions of the crop canopy 

and root system and the partitioning of assimilates to economic yield. If we could better track the 

development of these resource-capturing systems and their consequent effects on the dynamics of crop 

water use and growth and partitioning to yield, then it would be possible to identify genotypes with 

more robust and/or optimal growth patterns to stabilise or maximize yield in the variable environments 

experienced by dryland farmers. Growth-associated characteristics of plants, such as chlorophyll 

content and water content, can be quantified using remote-sensing instruments to calculate indices 

based on the reflectance of different spectra from the canopy. In recent years, the application of such 

indices has moved from scientific investigation to commercial application with indices, such as NDVI 

(Normalised Difference Vegetation Index), being used to identify weeds in fallowed fields and to 

manage in-season nitrogen requirement of crops [4]. New instruments and methods are providing an 

increasingly diverse set of indices to measure characteristics in field experiments, including canopy 

temperature [5], pigments, like anthocyanins and carotenoids [6,7], water content indices [8], water 

potential of leaves [9] and other adaptation traits, such as the stem content of water-soluble 

carbohydrates [10]. Many of these indices have been found to have associations with the adaptation of 

crops to drought or well-watered conditions to the degree that they begin to separate the predicted 

yield performance of different genotypes [11]. 

There has been a long history of the application of both satellite remote-sensing and yield 

monitoring systems in agricultural production and the prediction of fertilizer needs or yields at the 

paddock, farm and regional scales. Plot-level harvesters were developed in the mid-20th century, and 

their use in breeding has been successfully augmented by visual observations and scoring, improved 

experiment design and statistical analysis and electronic data capture systems. Objective high-throughput 

phenotypic screening supported by appropriate instruments, vehicles and data processing tools are  

now being developed. White et al., 2012 [1], extensively reviewed the criteria and needs for field-based 

phenotyping and considered the options for proximal sensing of different characteristics of crops, 

including the characterization of crop development, leaf canopy and above-ground biomass over time 

and the condition of the canopy under different nutrient, heat and drought stress conditions. For data 

acquisition, they evaluated five vehicle options, including helicopters. With the miniaturisation of sensing 

instruments, such as cameras and scanning detectors, it becomes possible to implement these systems 

on unmanned aircraft, also commonly known as unmanned aerial vehicles (UAVs) or unmanned 

aircraft systems (UASs). 

As noted by Merz and Chapman (2011) [12], UAS have been deployed for vegetation monitoring, 

photogrammetric survey and infrastructure inspection [13–17]. These craft have the advantage of 

allowing sensing with high spatial and spectral resolution at a relatively low cost, subject to the 

regulations of the country in which they are operated. The low altitude flight allows the use of less 

expensive sensors, compared to those needed in manned aircraft, without disturbing the local 
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conditions above the crop canopy, even down to 10 to 15 m of elevation. The other advantages of UASs 

are their speed of deployment and of data collection and ability to access trials when the field is  

water-logged or untrafficable. The canopy temperature of crops is an indicator of their stress  

condition [18], but it is extremely sensitive to small changes in cloud cover and wind speed [19], causing 

this trait to be difficult to assess through slow ground-based methods. Water-logged conditions or the 

lodging of trials normally prevent any operations via ground-based vehicles, and in taller crops, such as 

sugarcane and maize, it is not possible for these vehicles to access the crops later in the season without 

causing substantial damage to the trial. Laneways can facilitate access in these crops, but can greatly 

increase the size of the experiment and consequent cost. Further, while ground-based vehicles may be 

suitable for research farm applications, plant breeding typically entails multiple field experiments grown on 

commercial properties over a large geographic area spanning >1000 km in extent for sorghum, wheat, 

cotton or sugarcane in Australia. These trials may only be visited on three or four occasions, including 

when the plots are harvested, so that timely visits with FBP ground vehicles would be greatly constrained 

by transport and operator costs, as well as the ground conditions at the time of visit. 

Automated unmanned platforms can be quickly and cheaply transported and, with appropriate training, 

deployed by local operators. However, little is known about the dependability of the commercial  

off-the-shelf (COTS) UAS for field crop research, and the systems are typically not optimized for that 

particular application. On the other hand, many components of the system described here have already 

been proven in other The Commonwealth Scientific and Industrial Research Organisation (CSIRO) 

research projects (see below). 

Merz and Chapman (2011) [12] described the automation of the data acquisition using a customized 

unmanned aircraft based on a COTS remote control (COTS RC) helicopter to undertake low-altitude, 

way-point following missions; alias “Pheno-Copter” (Figure 1). In this paper, we outline the further 

development of the hardware and software capabilities of the platform to provide a software workflow 

solution for plot-based experiments (Figure 2), and we assess the utility of this platform and software 

in the collection of phenotypic data in breeding trials of sorghum, wheat, cotton and sugarcane. The paper 

does not provide comprehensive ground-truthing of the datasets, as these analyses are still on-going, 

but rather aims to overview the performance and capabilities of the system and to identify research 

needs for improvement. 

Figure 1. The platform as fitted out for Pheno-Copter work, which can be flown with a 

radio transmitter only or via a touch-screen control and monitoring ground station (inset). 
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Figure 2. Aerial image analysis workflow showing pre-flight (left), post-flight (centre) 

and image processing (right) tasks. 

 

2. Results and Discussion 

Research on the utility of applying autonomous systems technology in plant breeding field experiments 

began in 2009, followed by improvements in hardware and software systems for both gathering and 

processing the images between 2011 and 2013. This section provides an evaluation of the performance 

of the platform for FBP applications in multiple crops, considering the use of aerial imagery to detect 

crop cover and crop canopy temperature and to generate digital elevation models of variations in crop 

height related to the lodging of the plots.  

2.1. Evaluation of Pheno-Copter Performance 

The first version of the CSIRO platform as a Pheno-Copter was flown at The University of Queensland 

campus, Gatton, Queensland (27.55° S, 152.34° E), on September 10, 2009, following a manually-created 

way-point route and carrying a single digital compact camera with continuous time delay triggering. 

Details of the system requirements for task and of the platform and cameras are given in the Experimental 

Section. In its most recent guise, the flight-plan was automatically generated and the entire flight of 

three cameras was autonomous, except for the operator needing to control the vertical descent speed on 

landing and to signal the touchdown. Log books are kept for these helicopters, recording flight times, 

maintenance, technical problems and incidents, and the on-board computer retains detailed flight logs. 

These logs include the position and attitude of the helicopter, image capture events and detailed 

information on many aspects of the helicopter system performance (engine parameters, servo commands, 

parameters of the electric power system, etc.). Since 2009, 155 Pheno-Copter flights have been logged 

using four of six available helicopters on 55 days, for 37.5 flight hours and an average flight time of 

just over 15 min (Figure 3). Between August, 2008, and March, 2014, and including other research 

applications, the six CSIRO helicopters of the same type have completed more than 275 flight hours 

and more than 1500 landings, with the loss of four. Two of the Pheno-Copters were lost—one, the 
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mechanical failure of the COTS, and one, operator error, with the other two losses in other applications 

also being mechanical failures of the COTS. Record keeping and thorough failure analysis has allowed 

the continuous improvement of the helicopter system through the development of better components, 

the replacement of components and new inspection and maintenance procedures. Manual checks are 

performed before each flight, and flight tests are conducted whenever a system component is modified, 

following a strict protocol. With the current helicopter system, the most laborious maintenance tasks 

are the replacement of the engine after 25 h of use and the maintenance of the airframe every 30 h. 

Figure 3. The average duration of flights (columns) and number of flights per day 

(symbols) between September, 2009, and September, 2013, at five locations for crops of 

wheat (Gatton 27.55° S, 152.34° E), sorghum (Dalby 27.36° S 151.24° E, Warwick  

28.22° S, 152.10° E), sugarcane (Dalbeg 20.2° S, 147.3° E) or cotton (Narrabri 30.20° S, 

149.61° E). 

 

The Pheno-Copter has been demonstrated to be sufficiently reliable to undertake up to seven flights 

per day and almost two hours of flight time. Allowing 5 min for take-off/landing and a standard 

cruising speed of 3 m s−1 when taking images, the platform has flown more than 250 km so far. When 

flown by an operator without piloting skills in 2013 in its near-completely autonomous form  

(operator-assisted landing), the flight time was preceded by about 10 to 15 min of pre-flight setup and 

tethered engine testing (automated), so that the 3 ha of field experiments at Gatton could be imaged in 

20 to 30 min. With its payload capacity of about 1.5 kg for 30 min endurance or 1.1 kg for 60 min 

endurance, a major advantage of the platform compared to smaller electric rotorcraft is that it could 

carry all three cameras and cover the whole area in a single flight. This provides a consistent dataset 

and reduces the field flight time. A small COTS electric octocopter, which was evaluated until it failed 

after six missions, needed, for five flights, at least twice the field flight time compared to the  

Pheno-Copter and required charging of at least 10 battery packs over the day. Moreover, the pitch and 

roll angles of the airframe of our single-rotor helicopter were relatively small during steady flight in 

low-wind conditions, eliminating the need for an attitude angle-compensated camera system. 
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2.2. Estimation of Ground Cover of Hybrids in a Sorghum Breeding Trial 

Plant breeders frequently record “establishment” scores to use as independent co-variates in their 

analyses of yield trials. These assessments of ground cover are typically made visually or with  

ground-level digital images, need to be made in a timely fashion several weeks after planting, 

regardless of soil conditions, and require substantial labour to collect in large experiment programs.  

In early 2011, a sorghum trial comprising >900 genotypes grown in two-row (1.8 m wide) plots that 

were each 4 m in length was machine planted at the Hermitage Research Station in Warwick  

(28.2° S, 152.0° E) as part of the state breeding research program [20]. The trial was a row/column 

design with augmented check genotypes distributed across the experiment. The crop had variable 

establishment, as many of the genotypes varied in their seed viability and vigour, so that there was 

substantial variation in the plant stand. On December 21, 2011, at six weeks after sowing, a flight was 

made at 60 m of elevation using the digital visual camera (see Experimental Section) and following a  

grid-like plan as similar to the example that is discussed in the in Experimental Section. 

Analyses of images that covered the entire experiment were thresholded to estimate green cover in 

each plot, with a range of contrasting adjacent plots shown in Figure 4. Within two days of the flight, 

plant counts were made in 100 random plots, with these counts having a strong correlation (r2 = 0.78) 

with the estimates of green cover from the images. Using the ground cover data and experimental 

design, best linear unbiased predictors (BLUPs) were estimated for each genotype in a mixed effects 

statistical model that accounted for spatial trends in row and column directions. The trial included the 

hybrids that had been created using the F4 progeny from 17 diverse parents with ca. 50 hybrids per 

parent. Figure 5 shows boxplots of the BLUPs, which indicate the values of the commercial checks 

(single points) and the distribution of values for the multiple hybrids for each F4 cross-parent. While 

most commercial lines and checks had ground cover estimates of 60% or greater, the hybrids from the 

F4 progeny had a substantial range of green cover, with the mean of the progeny hybrids being less 

than the checks. However, within each F4 family, the breeder could identify one or more hybrids that 

had high ground cover based on the image analysis. These hybrids and their parent lines would be 

good candidates for future breeding for increased ground cover. 

For trials of several 1000 plots, ground-based estimates by visual scores or with cameras may take 

many hours to collect, compared to the 10- to 15-min flights that are possible with a UAS platform. 

The first flight of the day takes about 15 min to setup, while turn-around flights take about 5 min. 

Alternative estimates include the types of FBP vehicle described by [1] and others, as well as approaches 

that utilize laser detection of early biomass [21], for example, or that deploy methods that use near 

infrared sensors to detect vegetation cover. In addition to the time and labour savings associated with 

aerial detection, this speed and altitude of the platform assists in dealing with issues of variation in sun 

conditions that affect the quality of photography and non-active near-infrared methods compared to 

conventional aircraft. 
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Figure 4. Ground cover at six weeks after planting in a sorghum breeding trial at Warwick, 

December 21, 2011. (a) Four extracted plot images end trimmed at 10% and thresholded  

(to the right) to estimate green ground cover and (b) the correlation (r2 = 0.78) between the 

number of plants per plot and estimated green cover for 100 plots of the trial. Each ground 

cover point was averaged from at least two or, more commonly, three, images. 

 

Figure 5. The boxplots of the best linear unbiased predictors (BLUPs) of green cover from 

a trial of commercial sorghum genotypes and of multiple hybrids produced from the F4 

progeny of 17 families (ca. 50 hybrids per F4 family), where the progeny were derived 

from separate crosses between R986087-2 and the 17 parental lines. 
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2.3. Canopy Temperature and Estimate of a Relative Transpiration Index in Sugarcane 

Collaborators at Dalbeg (20.2° S, 147.3° E) in the Burdekin irrigation area in northern Queensland 

are undertaking research to compare the yield and sugar content of diverse sugarcane clones when 

grown in drought or non-drought conditions. Analyses of these clones include extensive monitoring of 

leaf-level conductance, as well as biomass sampling to characterise growth rates. 

A trial at this site comprised three treatments (drought, no irrigation; semidr, half irrigation;  

irrig, full irrigation), where irrigation was supplied via furrows on the laser-levelled site. In each 

irrigation treatment, the same 40 clones, comprising commercial lines and diverse germplasm sources 

(designated by the prefix “CT”) were planted as single-bud setts in May, 2011. The plot sizes were four 

rows (6 m) wide by 10 m long with three blocks of 40 clones replicated in each treatment. While the 

drought treatment was rainfed only, the “semidr” and “irrig” crops had been irrigated the week before 

measurement, with the irrigated treatment being watered at least once every three weeks from planting, 

depending on the rainfall received. On November 28–29, 2011, flights were made over the trial with the 

Ricoh cameras and the Miricle thermal camera on-board. At that time, the thermal camera had not been 

calibrated against canopy temperature. Ground measurements showed canopy temperatures of 30 to  

38 °C on the day, as recorded by a hand-held IR thermometer (Mikron IN15+, IMPAC Infrared GmbH, 

Frankfurt [22]). A relative temperature index was computed from images similar to that in 

Experimental Section. The range of the thermal index was derived after masking out the hot soil and 

dead leaves (>ca. 50 °C) from the images. For each pixel, the index is computed as the pixel value 

divided by the difference between the maximum and the minimum pixel values for the masked image. 

For each trimmed and thresholded image of a plot, the values of the masked pixels were averaged to 

determine the thermal index, and the ratio of masked pixels to total pixels was used as an estimate of 

green ground cover (Figure 6). As an approximation of the relative transpiration index of each plot, the 

ground cover was multiplied by (1 – the relative thermal index), given that higher temperatures are 

associated with lower transpiration rates. On this scale, the clones ranged in mean value between 0.2 

and 0.45 in the drought treatment, with the lowest value being recorded for the clone Q190, which is a 

clone selected for performance in irrigated environments. 

In general, there was little obvious variation among clones within either the drought or irrigated 

environments. However, in the semidr (partially irrigated environment), the unselected “CT” clones 

had greater variability in response when compared to the commercial clones, with at least six of the  

CT clones having substantially lower values in the semidr compared to the irrigated treatment. 

Commercial clones were not significantly different in their values for these two treatments. 

2.4. Quantifying Crop Lodging in Wheat 

In high yielding irrigated conditions, lodging is a major cause of yield loss, due both to premature 

senescence of the canopy and due to weathering of grain, especially in wet conditions. Wheat crops 

rarely lodge before stem elongation, a stage about halfway to flowering, but may lodge and sometimes 

“stand up” again on multiple occasions from this stage through to maturity. The date and extent of 

lodging are important considerations in the evaluation of the suitability of wheat varieties for  

high-input conditions, and breeders select against wheat genotypes that are susceptible to lodging. 



Agronomy 2014, 4 288 

 

 

Figure 6. (a) Approximation of the potential transpiration index for 40 clones of sugarcane in 

three different drought treatments (drought, semi-drought and irrigated) based on green leaf 

cover and relative crop temperature, as determined from images similar to that in Figure 4. 

Missing columns are “filler”, and missing plots had poor establishment or pigweed infestation 

and were eliminated based on inspection of the images. The upper figures are heatmaps of 

(b) the thresholded green cover estimates and (c) the relative crop temperature. Images 

were taken at 60 m of elevation on November 28, 2011, when the crop had just passed six 

months of age. 

 
(a) 

(b) (c) 

As part of an ongoing research program, an irrigated wheat trial (designated as 12GEHEAT-1) 

comprising 45 varieties in two replicates of 2 m-wide by 7 m-long plots, was sown on May 24, 2012, 
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at the CSIRO research station near Gatton in southern Queensland (27.55° S, 152.34° E). The trial was 

subject to multiple lodging events after flowering. A flight made on September 28, 2012, while carrying 

two RICOH cameras (visual and NIR (red-edge) filtered, see the Experimental Section) enabled the 

visualization of the impact of some of the first lodging events that accompanied strong south-westerly 

winds of 30 to 40 km h−1 that were recorded by the adjacent weather station on September 21, 2012. 

The JPG images from the NIR (red-edge) filtered camera were annotated using EXIF, a public domain 

software, to add metadata from the flight log, including latitude, longitude and elevation, in addition to 

the metadata that was stored by the cameras related to focal length, white balance setting, shutter speed 

and exposure. The images were submitted to the commercial “DroneMapper” service (see Materials 

and Methods) for processing into an ortho-mosaic and a three-dimensional point-cloud digital elevation 

model that is shown in polygon format in Figure 7. This model can be analysed by various tools to extract 

the height in an image from any x, y position, as indicated by an example transect in Figure 7. The mosaic 

was then processed by the Pheno-Copter R library to extract estimated heights for all 90 plots in the 

12GEHEAT1 trial.  

Figure 7. From an ortho-mosaic of NIR (red-edge) images (top left), the generated digital 

elevation model of wheat at about two weeks after average flowering time (top right) with a 

transect highlighted. A 3D view of the height transect through partially lodged plots is 

shown on a close-up of the DEM draped with the near-infrared ortho-mosaic (middle 

right), which allows the estimation of canopy height across three and a half 7-m plots 

(bottom). The dark squares in the near-infrared image are where sample quadrats were cut 

at anthesis. 
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To determine lodging, the variance was determined among pixel heights within each plot. By 

inspection of the images with the greatest variance, a height threshold (ca. 50 cm) was set in order to 

identify the lodged proportion of plots and the average height of lodged and standing fractions of the 

plots. For the date observed, the proportion of lodging was estimated in a range of 10% to 70% across 

the plots (Figure 8) and was able to be verified by inspection of the images and by visual scores done 

at the same time as the flight. 

Figure 8. Spatial layout (range and row) of a wheat variety trial showing the proportion of 

lodging (zero to one, coloured) by area for each plot. The proportion of lodging was 

estimated as the proportion of pixels within each plot that were deemed to be lodged. The 

right-hand false-colour image of crop height estimated from the DEM (Figure 8) shows the 

pixels (red) that had been deemed to be lodged based on their (low) estimated height within 

plots that had extreme variance. A single visual image of the upper part of the trial (left) is 

shown for comparison to the quantitative analysis, with example plots, from an  

irrigated wheat trial designated as 12GEHEAT-1, linked by blue lines across the  

three representations.  

 

2.5. Combined Image Representations 

Once the images have been extracted, they are typically trimmed by a similar amount (default 10%) 

to remove edge effects due to the wheel tracks between plots and due to walking alleys at the top and 

bottom of plots. Whether extracted from single images or from mosaics, these extracted images can be 

laid out in the original plot design for visual interpretation to assist quantitative analysis. Figure 9 

shows an example for another wheat trial grown at Gatton in 2011, on which multiple flights (up to 10 

on one day) were done every two to three weeks during the season. This irrigated wheat trial had 

Sep 28, 2012 
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partially lodged about 2 weeks before the flight date in Figure 9. The NIR (red-edge) filtered image, 

which highlights vegetative material, shows the lodged areas more clearly than does the standard RGB 

image. At 11:00 h, the lodged areas of the plots were generally hotter than the non-lodged areas. By 

15:05 h, the plots had started to cool, but lodged areas indicated by the oval shape were still hotter than 

the remainder of the plot. 

Figure 9. Comparison of trimmed images for six adjacent plots of a wheat trial from  

flights made on November 14, 2011, from 60 m of elevation at about one week after 

flowering time. The top three images (NIR (red-edge) filtered, RGB and false-colour thermal  

(yellow = cooler; red = hotter)) were taken at 11:00 h, while the bottom thermal image was 

taken at 15:05 h. The white ovals indicate a lodged area of the third plot (lodging is also 

evident in Plots 2, 4 and 5). 

 

The generation of an ortho-mosaic and DEM requires high resolution images with substantial overlap in 

order to detect control points that will link the images. Most current thermal cameras have a maximum 

resolution of 640 × 480 and would require low flights (20 m or so) with high coverage to obtain sufficient 

coverage. At present, we are working on ways to project and link the thermal images onto DEMs 

generated by the higher resolution cameras. This would allow high-quality masking from those images 

to be transferred to thermal images, e.g., for estimation of the thermal effects associated with lodging 

events or with canopy height, per se, which has been shown to be genetically associated with effects on 

canopy temperature [23]. 

3. Experimental Section 

To undertake the phenotyping that is described here, the autonomous capability of the helicopter was 

improved further to allow operations with minimal training, and several software solutions were integrated 

to provide an aerial image analysis workflow that results in quantitative plot-level data for visual,  
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near-infrared and thermal (far infrared) wavelengths (Figure 2). Further details of the helicopter system 

and the other software are available from the authors. The platform is a research tool, and the software is 

not able to be supported, but some parts of it can readily be provided to potential users. 

3.1. Robotic Helicopter 

The robotic helicopter (Figure 1) was developed around the objectives of having: (1) high 

dependability; (2) sufficient payload capacity and endurance; (3) good usability; and (4) sufficient 

flight performance in terms of control errors and average cruise speed [12]. It comprises a modified 

COTS RC helicopter (Vario Benzin Trainer) and a wireless user interface. 

The user interface is either a handheld RC transmitter or a touchscreen computer (Figure 1) that allows 

on-screen monitoring. The latest version of the Pheno-Copter does not require the touchscreen computer at 

all, as all flight information is provided on a USB memory stick, which is plugged into the Pheno-Copter 

before the mission, and all control is via a standard handheld transmitter to communicate essential 

commands, such as take-off, land and flight termination. The latter is important for safety reasons and 

to comply with Australian aviation regulations. Flight termination means the helicopter engine is killed 

and a full collective pitch is applied to the main rotor to reduce its rotor speed as quickly as possible. 

Flight termination can be evoked by the operator or by the system itself in case of a fatal error.  

While not typically required for field crop research applications, the platform also has capabilities in 

terrain following and obstacle avoidance using 2D LiDAR and can operate in unknown environments that 

are beyond visual range, including in darkness. The key criteria measure for the robotic helicopter system 

was dependability, with the development being facilitated by the modelling of all system behaviour 

using an extended state machine software framework [24]. For new flight plans, all critical components 

can be ground-tested before flight to minimize the risk of failure. With the integration of two compact 

digital cameras, a thermal camera and an image capture computer, the 1.78-m single rotor helicopter 

weighs a little over 12 kg and can fly missions of at least 45 min. For the field crop research application, 

the cruise speed can be set to 1 to 5 m s−1 ground speed and the height chosen between 10–110 m above 

ground, and the flight path is limited to horizontal and vertical straight line segments. 

Merz and Chapman (2011) [12] give further details on the system components, available flight services, 

system monitoring and flight termination, the guidance, navigation and control (GNC) system and the 

hardware modifications to the RC helicopter. The system logs and maintains full flight records to 

support the image analysis and facilitates the evaluation of flight performance and any malfunctions, 

should they occur. 

In 2011, the system capability allowed it to follow a pre-set flight plan, taking images at a fixed time 

separation of 4 s, which was the maximum capture rate of the digital cameras, for any chosen sectors 

of a manually-created flight plan [24]. At this stage, the take-off and landing were operator controlled. 

Since that publication, developments in the flight software and hardware now provide automated pre-flight 

testing, autonomous take-off and operator-assisted landing. During landing, the helicopter flies to an 

elevation of approximately 15 m above the pre-set landing site, and the operator needs only to control 

the descent rate of the helicopter, with the system controlling all other position factors. While completely 

autonomous landings would be possible with a system suggested by Merz et al. (2006) [25], we 

decided not to sacrifice payload capacity and endurance for the integration of the landing system. 
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Moreover, it is safer for the operator to observe and control the last part of the vertical descent in order 

to anticipate ideal conditions for landing, e.g., to avoid wind gusts at the exact time of landing, as these 

can be seen coming across the field by the operator. 

3.2. Imaging Payload 

The Pheno-Copter can carry a combination of a variety of sensors, typically including several 

cameras with different filters and a thermal far-infrared camera. As all sensors are mounted on the 

same vibration-isolated carrier board as the GNC system, this allows the helicopter state estimates to 

be used to determine the pose of a sensor. Sensors for vegetation monitoring are typically mounted 

vertically pointing down, while sensors for structure or tree canopy inspections are typically mounted 

horizontally pointing forward. To maximize sensor payload capacity and flight endurance, gimbals are 

not used, as the software applications can tolerate small changes in sensing direction and require only 

still images with short exposure times. As our applications do not require interactive control of sensors 

or live transmission of data, the sensors are controlled by the flight computer as defined in a mission 

plan and data is recorded on-board in flash memory. Sensor data is saved synchronously with 

helicopter state estimates. Table 1 contains details about the sensors and the accuracy of pose estimates. 

Depending on the application, the geo-referencing of data is possible based on pose estimates only or a 

combination of pose estimates and ground control points. 

For phenotyping applications, three cameras are typically used. Two digital compact cameras 

(Ricoh GR Digital III and Ricoh GR Digital IV with a 10 million pixel CCD image sensor and a focal 

length equivalent to 28 mm for 35 mm film cameras) capture raw image formats under manual exposure 

and focus control. The time delay between sending a shutter command from the flight computer until 

image capture of the cameras is calibrated. The Ricoh GR Digital III camera has been after-market 

modified in which the factory-fitted infrared filter was removed and an external 720 nm infrared  

(red-edge) transmitting filter was added to the lens. The third sensor is a thermal (far-infrared) camera 

with three different models being used so far. For most flights, the thermal camera was an uncooled 

Thermoteknix MIRICLE 307K with a 640 × 480 array size, ≤50 mK sensitivity (excluding optics) and 

56.3° horizontal field of view [26]. In July, 2013, we began using a higher quality pixel-calibrated camera 

(Xenics Gobi-640-GigE) that had the same spatial resolution as the MIRICLE. In the current system, 

all three cameras are initiated by the flight computer, typically at a constant cruise speed and constant 

interval between images, as defined in the mission plan. 

3.3. Flight-Planning Tool 

Aerial imagery captured for phenotyping work needs to satisfy requirements for complete coverage 

of the region of interest (ROI), a minimum ground sample distance (GSD) (the distance measured between 

pixel centres on the ground) and image overlap characteristics that allow for the effective creation of 

mosaics of images. 

The flight planning tool (Figure 10) allows a user to specify an arbitrary polygonal ROI to be imaged 

with an overlay onto satellite image mosaics from Google Maps [27]. The tool then generates 

“lawnmower” pattern flight plans that ensure the parameters specified above are met, i.e., the flight 

plans are output-driven based on the information about the camera(s), lens, image frequency and 
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aircraft flight specifications, such as cruising speed (Figure 10). This version of the planner assumes 

that the ROI has a negligible slope when generating the flight plan, although a 3D version is also under 

development, which facilitates flights in more mountainous regions, where some crops and forestry 

field experiments are planted. 

Figure 10. The flight planning tool showing the mission planning information, options to 

read in camera and aircraft performance specifications and to determine desired imaging 

parameters for the flight for a region of interest (marked by the user with the blue drop 

pins). In this case, three passes (arrows) are needed, for the desired resolution is  

10 mm/pixel with 25% image overlap (shown in red), a transect width of 10 m and a 

boundary overshoot of 5 m (to continue imaging). 

 

There are commercial [28–30] and open-source [31] flight planners with similar functionality, but 

which do not output flight plans that are compatible with our helicopter system and also do not easily 

account for camera and aircraft performance specifications. These planners were developed for 

experienced UAV operators and have complex interfaces. We developed a flight planner for ease of 

use by plant breeders and agronomists who may not have expert knowledge of unmanned aircraft systems. 

Other commercial flight planners for manned aerial photography flights [32,33] also have complex 

interfaces and do not produce compatible flight plans. 

Once the relevant camera and aircraft parameters are entered and an ROI is designated, the flight 

planning tool provides direct visual feedback to the user, making it possible to visualize coverage and 

image overlap as other parameters are adjusted. In developing a flight plan, the parameters are set  

as follows:  
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- Coverage: The user specified the corners of the ROI by clicking on the map or by loading a text 

file containing corner coordinates. Image footprints are displayed on the map for visual confirmation 

of the coverage; 

- GSD: This is entered in a text field or adjusted via a slider. The flight altitude is automatically 

adjusted to ensure that the specified GSD is achieved for the selected camera; 

- Image overlap: Overlap between consecutive images (front lap) is set via a slider. Overlap between 

consecutive rows (side lap) is set indirectly by adjusting the row width. The image footprints 

shown on the map help to visually confirm that the overlap is appropriate. 

As cameras may have a different resolution and field of view, the flight is planned so that the specified 

GSD is achieved for the lowest resolution camera, while still maintaining the coverage and overlap 

requirements. The tool allows for toggling between three camera configurations to visualize the flight 

plan for each in case a specific flight plan is required. 

3.4. Flight and Image Retrieval Tool 

At the completion of a flight, the helicopter is connected to a laptop to download the flight data and 

camera images (Figure 2, lower centre box of the workflow). A directory structure comprising the 

location, date and flight number for the day is automatically constructed on the storage drive with all 

images being copied across to separate directories for each camera. For digital cameras, both JPG and 

RAW format images are retained, each comprising three wavelengths. The thermal cameras store data 

in a 256-bit binary format that can be displayed in monochrome or colour-enhanced formats. For each 

image, the associated entry in the flight log is automatically found, and the relevant data is appended 

into the image metadata. This includes the latitude, longitude, height and orientation of the camera at 

the time of capture. Geo-referencing the images in this way assists in the image assembly process 

described in Section 3.5.1. Creation of Image Mosaics. 

3.5. Aerial Image Processing 

The tools described above result in the images being collated into an organized storage system from 

which point they can be individually analysed or be combined into mosaics before additional analysis 

(Figure 2). The advantages of image mosaics is that they allow the extraction of large numbers of plots 

at once, which reduces the operator time and, with geo-referencing, can allow the creation of fine-scale 

digital elevation models (DEM) by treating adjacent images as stereo pairs. The disadvantages are that 

the merged images may vary in the information that can be extracted. 

3.5.1. Creation of Image Mosaics 

While most of the work presented below has utilized analyses of plots from single images,  

two commercial software tools (one desktop, one online) were used to create image mosaics (Figure 7, 

left-hand figure) that enable the analysis of a larger numbers of plots. The main use of the mosaics was 

to assist the image analysis in navigating through the processing of individual images. AutoPano 

GigaPro [34] is desktop software that utilizes features from images in order to create mosaics. While this 

software can be greatly challenged by the variable pose of images (i.e., movement of the helicopter 
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position) and the lack of straight-line or colour contrast features in images of crop experiments, 

AutoPano has been able to generate reasonable “panoramas” for the extraction of plot information, 

similar to that in Figure 7. Apart from the standard settings in Auto-Pano, the detection control point 

RANSAC model was set to “homography” (recommended when the panorama point of view is 

changing, rather than from a single point); optimization was set to “strong algorithm” with lens 

distortion correction “enabled” with “multiple viewpoints”; projection was set to “ortho”; and render 

blending presets to “exposure fusion”. 

Since the project began in 2009, on-line image-processing services have been developed, and after 

the evaluation of several services, DroneMapper Aerial Imagery Processing and GIS Services [35] was 

able to provide ortho-mosaics and DEM from supplied sets of images that contain embedded flight 

position metadata. In crop experiments, DEM data have shown the potential to allow the estimation of 

crop height and canopy structure, as well as the impacts of phenotype effects, such as lodging, and are 

partially evaluated in this paper (see later for the methods). 

3.5.2. Identification and Extraction of Trial Images and Plots, Straightening and Trimming 

The remainder of the steps in the software workflow (plot identification and the steps on the  

right of Figure 2) are completed using a customized software library developed in the R language [36]. 

Individual (or mosaic) images of multiple plots are processed together with a CSV file containing the 

row and column positions and identities of plots. Field experiments of row crops typically comprise 

rectangular plots that vary in dimension, depending on the trial purpose. Yield or physiology trial plots 

of field crops (e.g., wheat, sorghum, cotton) range from about one to three meters wide, with the row 

number varying with the crop/agronomy, and are three to 15 m in length. While agronomy and 

physiology trials tend to have 15 to 100 plots, breeding trials at a single site may have several hundred 

to several thousand plots. 

A mission typically comprises 50 to several hundred images, depending on the elevation used and 

the flight area. In practice, most flights have been at 20, 40, 60 or 80 m of elevation and cover between 

0.5 and 4 ha of trials, which amounts to 1200 plots across multiple experiments and fields. The 

platform does not currently use RTK-GPS, so the positional information for each image is only 

approximate and is not sufficiently accurate to allow the image to be re-orientated to the vertical (i.e., 

when vehicle pose is oblique) or automatically matched to a map of the field layout. Given this and 

other constraints (that plots are rectangular in shape and have the same dimensions), the approach was 

to use an image-based method to “straighten” the images by re-projecting them onto a rectangular grid 

matching the ground layout. The software displays an image (from a list given in R script), asks the 

user to interactively define four corners of an area of interest (normally fewer than 10 to 12 plots), to 

identify the corner plots and to provide the plot dimensions. The analysis output includes a  

low-resolution check image (Figure 11) to indicate the original and extracted plots and their identities, 

as well as “straightened” JPG (no compression) images that are named according to the flight and plot 

information. For each image manipulation in R, an R data file (.RDA) is created to allow the tracking 

and revision of any operations that were done and resetting many parameters associated with images, 

including camera focal information. This .RDA file facilitates the next stages of analysis. 
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Figure 11. An example of a check image from the plot extraction software. An overlay of 

the user-selected rectangle on the lens-corrected false-colour thermal image of a sugarcane 

experiment is seen on the left, with the 16 extracted, straightened and trimmed plot images 

shown on the right, together with their plot (column) and row positions in the trial layout. 

 

The R library also contains functions from the VOIR package (an internal CSIRO library) that 

enable operations, such as feature extraction, trimming, thresholding and other image manipulations. 

As part of the previous step, the user may define trimming parameters for the plots (The default is 10% 

on each side, to remove inter-row space between plots). Alternatively, the R data file associated with 

each image can be used to re-process the plots for trimming after the extraction step. These functions can 

be also scripted using other open-source tools, such as ImageJ. 

3.5.3. Image Spectral Extraction and Analysis 

For any or all flights, R scripts were written to extract data from the single plot trimmed images and 

their associated .RDA files. These scripts process data for all three wavelengths for the visual cameras, 

and a single wavelength for the thermal camera, and thresholds or trimming were used to eliminate 

unwanted areas from single images, such as static sensors or equipment that was mounted in plots, or 

areas of plots where quadrat samples had been taken. 

As many plots appeared in more than one image, replicated data was collected on these plots. The final 

stage of image processing was to set thresholds to select pixels for further analysis, depending on the 

phenotype of interest. These thresholds define an image mask that indicates which pixels to eliminate 

from further analysis. Studies of ground cover and leaf senescence utilized thresholds that estimated 

green pixels as a proportion of total pixels in the image. For canopy temperature, the thresholds were 

set based on the identification of the soil in images, which was typically much hotter than the crop 

canopy, although in some cases (early morning) it could be identified as being cooler than the crop canopy. 

Although we made attempts to set global thresholds for these images, we found that it was usually 

necessary to set thresholds for each flight, due to variation in lighting and environmental conditions. 

Mask overlays onto the extracted images made these decisions more objective than might be  

initially expected. 
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3.5.4. Experimental Analysis of Plot-Level and Treatment-Level Data 

In the experiments reported here, the interest was largely in the comparison of data from multiple 

images and with independently assessed phenotypes where possible. Pearson correlations were computed 

to compare image data or image data vs. other phenotype data at the plot-level. In several examples, 

the results have been analysed to the level of genotype, which is the main treatment of interest. Where 

this has been done, a mixed model analysis using ASREML (ASREML, VSN International, 

Wallingford, UK [37]) has been applied in accordance with standard practice in Australian breeding 

research, which includes the adjustment of predicted fixed (Best Linear Unbiased Estimators, BLUEs) 

or random (BLUPs) effect means for the spatial effects of row and column dimensions [38]. These are 

spatially-adjusted means of the treatment factors, usually genotype. 

Over the last four years, the Pheno-Copter has been used in breeding and/or agronomy trials of wheat, 

sorghum, cotton and sugarcane. To simplify the presentation of this work, examples from this work are 

both described and interpreted in the Results Section. Phenotypic traits that are presented include the 

estimation of ground cover (sorghum), canopy temperature (sugarcane) and crop lodging (wheat), 

although all of these traits have been variously phenotyped in all of the crops. 

4. Conclusions 

Plant breeding is a critical research and delivery mechanism to maintain food security and to 

respond to changes in the climate and production environment. The acceleration in our ability to 

phenotype crops will enable this essential part of the breeding process to keep up with improvements 

in plant genetics and methods of generating new progeny. While military-grade UAVs have large 

payload capacities (>10s to 100s of kg) and long flight times, there are few small, affordable platforms for 

use in cost-sensitive activities, like agricultural research. Although the platform described here cannot be 

purchased as “ready-to-fly”, the cost was comparable to current alternatives that are being developed 

for electric platforms: <ca. $25,000 to purchase, test and construct, not including imaging. With minor 

training (ca. 2 d), this platform provides a phenotyping capability in all soil conditions, at diverse 

locations, to allow repeated monitoring of crops within or across days. The software system developed 

for the platform has specifically addressed the need to have different levels of image coverage for 

different needs (plot extraction or the generation of DEMs) and allows the extraction of regular plots 

from the images. The analysis of aerial imagery in crop experimentation is proceeding rapidly and has 

not been discussed in detail here, with the reader being referred to the citations below as a starting 

point. Automated on-site image processing would facilitate the interpretation of this type of data and 

allow breeders to immediately visit specific plots of interest. Further miniaturization of flight and 

imaging platforms could eventually lead to the development of low-cost, “personal aerial assistants” that 

could be used remotely by breeders or “called in” when needed during walking visits to the field. 
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