## VOLUME I

 TECHNICAL MANUAL forRADIO TRANSMITTING SET AN / FRT-24A

LIST OF EFFECTIVE PAGES

| PAGE <br> NUMBERS | CHANGE IN <br> EFFECT | PAGE <br> NUMBERS | CHANGE IN <br> EFFECT |
| :---: | :---: | :---: | :---: |
| Volume I: |  | Volume III: |  |
| Title Page | Original | Title Page | Original |
| ii to xiv | Original | iii to x | Original |
| $1-0$ to $1-10$ | Original | $5-1$ to $5-356$ | Original |
| $2-1$ to $2-24$ | Original |  |  |
| $3-1$ to $3-68$ | Original | Volume IV: | Original |
| I-0 to I-4 | Original | Title Page | Original |
| Volume II: |  | iii, iv | Original |
| Title Page | Original | $6-1$ to $6-100$ |  |
| iii to vi | Original |  |  |
| $4-1$ to $4-170$ | Original |  |  |

(Hallicrafters Co.) (Chicago, Illinois) (Contract NObsr 89377)

Errors found in this publication (other than obvious typographical errors), which have not been corrected by means of Temporary Corrections or Permanent Changes should be reported. Such reports should include the complete title of the publication and the publication number (short title); identify the page and line or figure and location of the error; and be forwarded to the Electronics Publication Section of the Bureau of Ships.

All Navy requests for NAVSHIPS electronics publications listed in the current issue of NAVSANDA Publication 2002 "Requisitioning Guide and Index of Forms and Publications," Cognizance Symbol I, or in a subsequent issue of the Electronic Information Bulletin, shouldbe directed to the appropriate Forms and Publications Supply Point.
Paragraph Page Paragraph Page
SECTION 1 - GENERAL INFORMATION
SECTION 4 - TROUBLE SHOOTING (Cont)
4-8. Transmitter Control C-6466/ FRT-24A, Units 2 and 3, Functional Description ..... 4-110
4-9. Keyer, Frequency ShiftKY-557/URT, Unit 6,Functional Description4-119
4-10. Power Supply PP-4242/FRT- 24A (1A4), FunctionalDescription4-132
4-11. Power Supply PP-4243/FRT- 24A (1A7), Functional Description. ..... 4-134
SECTION 5 - MAINTENANCE
2-2. Power Requirements. ..... 2-22-1. Unpacking and Handling2-1
2-3. Site Selection. ..... 2-3
2-4. Installation Requirements ..... 2-4
2-5. Cable Assemblies. ..... 2-4
2-6. Installation of Assemblies Removed before Shipment ..... 2-6
2-7. Inspection and Adjustment ..... 2-9
2-8. Interference Reduction ..... 2-12
SECTION 3 - OPERATION
3-1. Functional Operation ..... 3-1
3-2. Preparation for Operation ..... 3-4
3-3. Operating Procedures ..... 3-4
3-4. Summary of Operating Procedures ..... 3-40
3-5. Emergency Operation ..... 3-50
3-6. Operator's Maintenance ..... 3-51
SECTION 4 - TROUBLE SHOOTING
4-1. Logical Trouble Shooting ..... 4-1
4-2. Radio Transmitting Set
AN/FRT-24A, Overall Functional Description ..... 4-2
4-3. Synthesizer, Electrical Fre- quency O-1251/FRT-24A (1A6), Functional Description . 4-16
4-4. Amplifier, Audio Frequency,AM-4246/FRT-24A (1A2),Functional Description.4-49
4-5. Converter, Amplitude Single- Side-Band CV-1846/FRT-24A
(1A3), Functional Description ..... 4-63
4-6. Radio Transmitter T-973/
FRT-24A, Unit 1, Functional Description ..... 4-71
4-7. Transmission Line Coupler
CU-390/FRT-24, Unit 7, Functional Description ..... 4-108

TABLE OF CONTENTS (Cont)
Paragraph Pagee Paragraph Page
SECTION 6 - PARTS LIST
6-1. Introduction ..... 6-1
6-2. List of Units ..... 6-1
6-3. Maintenance Parts List ..... 6-1

## LIST OF ILLUSTRATIONS

Figure Page Figure Page

## SECTION 1 - GENERAL INFORMATION

1-1. Transmitting Set, Radio AN/FRT-24A ..... $1-0$
SECTION 2 - INSTALLATION
2-1. Radio Transmitting Set AN/ FRT-24A, Typical Installa- tion Drawing ..... 2-13
2-2. Radio Transmitter T-973/ FRT-24A, Outline Drawing ..... 2-14
2-3. Transmitter Control C-6466/ FRT-24A, Outline Drawing ..... 2-15
2-4. Frequency Shift Keyer KY-557/URT, Outline Drawing ..... 2-16
2-5. Transmission Line Coupler CU-390/FRT-24, Outline Drawing ..... 2-17
2-6. Plate Transformer, Terminal Location ..... 2-18
2-7. Radio Transmitter T-973/ FRT-24A, Left-Hand Cabinet. 2-19
2-8. Radio Transmitter T-973/FRT-24A, Right-HandCabinet . . . . . . . . . . . . . . 2-20
2-9. Radio Transmitter T973/FRT-24A, Rear Panels Removed2-21
2-10. Radio Transmitter T-973/FRT-24A, Side View ofLeft-Hand Cabinet, SidePanel Removed2-22
2-11. Radio Transmitter T-973/FRT- 24A, Side View of Right-Hand Cabinet, Side Panel Removed ..... 2-23
SECTION 3 - OPERATION
3-1. Radio Transmitting Set AN/ FRT-24A, Major Units . ..... 3-2
3-2. Radio Transmitter T-973/ FRT-24A, Operating Control and Indicator Locations. . . . ..... 3-5
3-3. Patch Panels, Jack Locations ..... 3-11

## SECTION 3 - OPERATION (Cont)

3-4. Synthesizer Power Supply, Operating Control and Indicator Locations ..... 3-13
3-5. Synthesizer, Operating Control and Indicator Locations ..... 3-15
3-6. Exciter Power Supply, Operating Control and Indicator Locations ..... 3-19
3-7. Amplifier, Operating Control and Indicator Locations ..... 3-21
3-8. Converter, Operating Control and Indicator Locations ..... 3-25
3-9. Transmitter Control, Operat- ing Control and Indicator Locations. ..... 3-29
3-10. Keyer, Operating Control and Indicator Locations ..... 3-31
3-11. Amplifier, Location of Plug-in Electronic Assemblies ..... 3-61
$3-12$. Converter, Location of Plug-in Electronic Assemblies. ..... 3-62
3-13. Synthesizer Power Supply, Location of Plug-In Elec- tronic Assembly ..... 3-65
3-14. Synthesizer, Location of Plug-In Electronic Assemblies ..... 3-67
3-15. Keyer, Location of Plug-In Electronic Assemblies ..... 3-68
SECTION 4 - TROUBLE SHOOTING
4-1. Radio Transmitting Set AN/ FRT-24A, Overall Functional Block Diagram ..... 4-3
4-2. Synthesizer 1A6, Overall Functional Block Diagram ..... 4-17
4-3. Synthesizer 1A6, Spectrum Generator, Simplified Schematic Diagram . ..... 4-21
4-4. Synthesizer 1A6, 10-KC Loop VFO and Reactance Control Circuits, Simplified Schematic Diagram ..... 4-24

## LIST OF ILLUSTRATIONS (Cont)

## Figure <br> SECTION 4 - TROUBLE SHOOTING (Cont)

4-5. Synthesizer 1A6, 10-KC Loop X2 Multiplier and Amplifer, Simplified Schematic Diagram . ..... 4-25
4-6. Synthesizer 1A6, 10-KC LoopX5 Multiplier and PhaseDetector Driver, SimplifiedSchematic Diagram. . . . . . . . 4-26

4-7. Synthesizer 1A6, 10-KC Loop
Phase Detector and Sweep Multivibrator, Simplified Schematic Diagram. . . . . . . . 4-29
4-8. Synthesizer 1A6, 1-KC Loop
Buffer Amplifier and X10 Multiplier, Simplified Schematic Diagram . . . . . . . . 4-31
4-9. Synthesizer 1A6, 1-KC Loop Amplifier and Phase Detector Driver, Simplified Schematic Diagram..... Loop VFO, Cathode follower, and Reactance Control Circuits, Simplified Schematic Diagram . . . . . . . . . . . . . . 4-32
4-11. Synthesizer 1A6, 100-Cycle
Loop X5 Multiplier and Amplifier, Simplified Schematic Diagram. . . . . . . . . . . 4-35
4-12. Synthesizer 1A6, 100-Cycle
Loop X5 Multiplier and Phase Detector Driver, Simplified Schematic Diagram. 4-35
4-13. Synthesizer 1A6, 4 to 1 Locked Divider, Simplified Schematic Diagram ..... 4-36
4-14. Synthesizer 1A6, Third Mixer, Simplified Schematic Diagram ..... 4-37
4-15. Synthesizer 1A6, Main Loop VFO and Reactance Control Circuits, Simplified Sche- matic Diagram. ..... 4-40
4-16. Synthesizer 1A6, Discrimina- tor, Simplified Schematic Diagram ..... 4-43
4-17. Synthesizer 1A6, Analog Memory Section, Channel 1 Operation, Simplified Sche- matic Diagram. ..... 4-45
4-18. Synthesizer 1A6, Synthesizer Coarse Tune, Simplified Schematic Diagram ..... 4-48
4-19. Synthesizer 1A6, Converter Bridge Tune, Simplified Schematic Diagram ..... 4-50
Figure Page
SECTION 4 - TROUBLE SHOOTING (Cont)
4-20. Synthesizer 1A6, Synthesizer Fine Tune, Simplified Schematic Diagram. ..... 4-51
4-21. Amplifier 1A2, Overall Functional Block Diagram ..... 4-52
4-22. Amplifier 1A2, Audio Section, Block Diagram ..... 4-53
4-23. Amplifier 1A2, Audio Ampli- fier, Simplified Schematic Diagram ..... 4-55
4-24. Amplifier 1A2, AGC Amplifier, Simplified Schematic Diagram ..... 4-55
4-25. Amplifier 1A2, Audio Volt- meter, Simplified Schematic Diagram ..... 4-57
4-26. Amplifier 1A2, Phase De- tector Section, Block Diagram ..... 4-58
4-27. Amplifier 1A2, 1-MC Oscilla- tor and Crystal Oven, Sim- plified Schematic Diagram ..... 4-59
4-28. Amplifier 1A2, Power Supply and Regulator, Simplified Schematic Diagram ..... 4-62
4-29. Converter 1A3, Overall Func- tional Block Diagram ..... 4-65
4-30. RF Assembly 1A8, Amplifier, Simplified Schematic Diagram ..... 4-73
4-31. RF Assembly 1A8, RF Driver, Simplified Schematic Diagram ..... 4-75
4-32. RF Assembly 1A8, Power Amplifier, Simplified Sche- matic Diagram ..... 4-77
4-33. RF Assembly 1A8, Voltage Regulator, Simplified Schematic Diagram ..... 4-80
4-34. RF Assembly 1A8, RF Bias Supply, Simplified Sche- matic Diagram ..... 4-81
4-35. RF Assembly 1A8, Autotune System, Single Turn Head, Mechanical Diagram ..... 4-83
4-36. RF Assembly 1A8, Autotune System, Simplified Sche- matic Diagram ..... 4-85
4-37. RF Assembly 1A8, Autotune System, Sequence of Oper- ation for First Direction, Block Diagram ..... 4-87
4-38. RF Assembly 1A8, AutotuneSystem, Sequence of Oper-ation for Second Direction,Block Diagram4-88

## LIST OF ILLUSTRATIONS (Cont)

## Figure <br> SECTION 4 - TROUBLE SHOOTING (Cont)

Page

4-39. RF Assembly 1A8, Autotune
System, Control Head, Me-
chanical Diagram . . . . . . . . 4-89
4-40. Dial Control 1A1, Dial Control with Associated Circuits, Simplified Schematic Diagram . . . . . . . . . . 4-91
4-41. Dial Control 1A1, Sequence
of Operation for Channel
Selection, Block
Diagram. . . . . . . . . . . . . . 4-93
4-42. Dial Control 1A1, Sequence of Operation for Power or Emission Selection, Block Diagram4-95

4-43. Power Control 1A9, Local
Remote Switch S504,
Mechanical Diagram ..... 4-97
4-44. Power Control 1A9, Sequence for Local Operation, Block Diagram ..... 4-102
4-45. Power Control 1A9, Power Control with Associated Circuits, Simplified Schematic Diagram ..... 4-103
4-46. LV Supply 1A11, Simplified Schematic Diagram ..... 4-106
4-47. HV Supply 1A10, Simplified Schematic Diagram ..... 4-107
4-48. Transmission Line Coupler 7, Simplified Schematic Diagram ..... 4-108
4-49. Transmission Line Coupler 7, Derivation Diagram ..... 4-109
4-50. Transmitter Control 2 and 3, Input Audio Amplifier, Sim- plified Schematic Diagram. . ..... 4-113
4-51. Transmitter Control 2 and 3, Output Audio Amplifier, Simplified Schematic Diagram ..... 4-113
4-52. Transmitter Control 2 and 3, Compressor Rectifier, Simplified Schematic Diagram ..... 4-115
4-53. Transmitter Control 2 and 3, Compressor and Audio Bridge Circuit, Simplified Schematic Diagram. ..... 4-115
4-54. Transmitter Control 2 and 3, Audio Metering, Simplified Schematic Diagram. ..... 4-116
4-55. Transmitter Control 2 and 3,Power Supply, SimplifiedSchematic Diagram4-116

Figure Page
SECTION 4 - TROUBLE SHOOTING (Cont)

| 4-56. | Transmitter Control 2 and 3, Keying and Push-to-Talk Circuits, Simplified Schematic Diagram. . . . . . . . . |
| :---: | :---: |
| 4-57. | Telephone Dial and Channel Indicator Circuits, Simplified Schematic Diagram |
| 4-58. | Keyer 6, Overall Functional, Block Diagram. . . . . . . . . |
| 4-59. | Keyer 6, Keying Section, Blo Diagram |

4-60. Keyer 6, Crystal Oscillator, Simplified Schematic Diagram

4-122
4-61. Keyer 6, Gate, Simplified Schematic Diagram . . . . . . . . 4-123
4-62. Keyer 6, Trigger and Binary Gate, Simplified Schematic Diagram

4-125
4-63. Keyer 6, Divider, Simplified Schematic Diagram . . . . . . . . 4-127
4-64. Keyer 6, 1-KC Oscillator Section, Block Diagram

4-128
4-65. Keyer 6, 1-KC Oscillator, Simplified Schematic Diagram

4-128
4-66. Keyer 6, Output Section, Block Diagram . . . . . . . . . . . . . . . 4-129
4-67. Keyer 6, Output and Suppression Gate, Simplified Schematic Diagram. . . . . . . . 4-130
4-68. Keyer 6, Audio Metering Circuit, Simplified Schematic Diagram4-130

4-69. Keyer 6, Power Supply Section,
Block Diagram ..... 4-133

4-70. Keyer 6, Power Supply, Sim
plified Schematic Diagram
4-133
4-71. Amplifier 1A2, Servicing Block Diagram ..... 4-137
4-72. Converter 1A3, Servicing Block Diagram ..... 4-141
4-73. Synthesizer Power Supply 1A4, Servicing Block Diagram ..... 4-143
4-74. Synthesizer 1A6, Reference Circuits, Servicing Block Diagram ..... 4-145
4-75. Synthesizer 1A6, 10-KC Loop
Circuits, Servicing BlockDiagram4-147
4-76. Synthesizer 1A6,1-KC LoopCircuits, ServicingBlock Diagram4-149

## LIST OF ILLUSTRATIONS (Cont)

Figure
Page
SECTION 4 - TROUBLE SHOOTING (Cont)

|  | Synthesizer 1A6, 100-Cycle Loop Circuits, Servicing Block Diagram . . . . . . . . |
| :---: | :---: |
| 4-78. | Synthesizer 1A6, Incremental Divider Circuits, Servicing Block Diagram. |
| 4-79. | Synthesizer 1A6, Main Loop Circuits, Servicing Block Diagram $\qquad$ |
| 4-80. | Synthesizer 1A6, 1.75-MC Assembly, Servicing Block Diagram |
| 4-81. | Synthesizer 1A6, Digital Timing Memory (Programmer), Logic Diagram. . . . . |
| 4-82. | Exciter Power Supply 1A7, Servicing Block Diagram . |
| 4-83. | RF Assembly 1A8, Servicing Block Diagram . . . . . |
| 4-84. | Power Supplies 1A10, 1A11, and 1A12, Servicing Block Diagram |
| 4-85. | Transmitter Control 2 and 3, Servicing Block Diagram. |
| 4-86. | Keyer 6, Servicing Block Diagram . . . . . . . . . . . |

SECTION 5 - MAINTENANCE

5-1. Adjustment of High Voltage Power Supply Assembly 1A4A2, Power Supply PP-4242/FRT-24A5-2

5-2. Adjustment of Low Voltage Power Supply Assembly 1A4A3, Power Supply PP-4242/FRT-24A 5-3
5-3. Adjustment of Reference Assembly 1A5A1A8, Electrical Frequency Synthesizer O-1251/FRT-24A . . . . . . . . 5-5
5-4. Adjustment of Front IF Assembly 1A5A1A4, 10-KC Loop, Electrical Frequency Synthesizer O-1251/FRT-24A 5-7
5-5. Adjustment of Front IF Assembly 1A5A1A4, 1-KC Loop, Electrical Frequency Synthesizer O-1251/ FRT-24A . . . .
5-6. Adjustment of Front and Rear IF Assemblies 1A6A1A4, and 1A6A1A5, 100-CPS Loop, Electrical Frequency Synthesizer O-1251/FRT-24A . . . . 5-13

## LIST OF ILLUSTRATIONS (Cont)

Page Figure
Page

SECTION 5 - MAINTENANCE (Cont)
5-18. Adjustment of $300-\mathrm{KC}$ Generator Assembly 1A3A1A4A2, Amplitude-Single Side-Band Converter CV-1846/FRT24 A .

5-37
5-19. Adjustment of 1300 -KC Generator Assembly 1A3A1A4A1, Amplitude-Single Side-Band Converter CV-1846/FRT-24A. 5-39
5-20. Adjustment of IF Amplifier Assembly 1A3A1A4, Ampli-tude-Single Side-Band Converter CV-1846/FRT-24A.
5-21. Adjustment of Balanced Modu-
lator and Crystal Filter As
sembly 1A3A1A3, Amplitude
Single Side-Band Converter
CV-1846/FRT-24A ..... 5-43
5-22. Adjustment of RF Linear
Amplifier Assembly
1A3A1A5, Amplitude-Single
Side-Band Converter
CV-1846/FRT-24A ..... 5-45
5-23. Adjustment of Local Oscil- lator Rejection Assembly 1A3A1A5, Amplitude-Single Side-Band Converter CV-1846/FRT-24A. . . . .Insert Control Assembly1A3A1A8, Amplitude Single-Side-Band ConverterCV-1846/FRT-24A.5-49
5-25. Adjustment of Carrier and Gain Control Assembly 1A3A1A7, Amplitude-Single Side-Band Converter CV-1846/FRT-24A. ..... 5-51
5-26. Adjustment of PA Filament
Voltage 1A8V115, RF Assembly ..... 5-53
5-27. Adjustment of Amplifier 1A8V116, RF Assembly. ..... 5-55
5-28. Adjustment of CompressionLevel Resistor R927,Transmitter Control C-6466/FRT-24A5-61
5-29. Adjustment of Channel Indica- tor Meter M901, Transmitter Control C-6466/FRT-24A ..... 5-61
5-30. Adjustment of 1-KC Oscil- lator Level 6A2R17 and Divider Output Resistor 6A2R29, Frequency Shift Keyer KY-557/URT ..... 5-63

SECTION 5 - MAINTENANCE (Cont)
5-31. Disassembly of Single-Turn Head. ..... 5-67
5-32. Disassembly of Control Head ..... 5-70
5-33. Removal of Vacuum Type Capacitor ..... 5-73
5-34. Dial Control 1A1, Bottom View, Component Location ..... 5-74
5-35. Amplifier 1A2, Front View, Component and Test Point Location ..... 5-75
5-36. Amplifier 1A2, Top View, Component Location. . . . . . ..... 5-76
5-37. Amplifier 1A2, Bottom View, Component and Test Point Location ..... 5-77
5-38. Amplifier 1A2, AGC and AudioAmplifier Assembly A1A1and A1A4, ComponentLocation5-78
5-39. Amplifier 1A2, Audio Volt- meter Assembly A1A3 andA1A5, Component Location5-79
5-40. Amplifier 1A2, CW Assembly A1A3, Component Location . ..... 5-79
5-41. Amplifier 1A2, Voltage Regu- lator Assembly A1A6, Component Location. ..... 5-80
5-42. Amplifier 1A2, Phase De-tector Assembly A1A7, Top
View, Component Location . ..... 5-81
5-43. Amplifier 1A2, Phase De- tector Assembly A1A7, Bot- tom View, Component and Test Point Locations ..... 5-82
5-44. Amplifier 1A2, Squelch and Emitter Follower Assembly A1A7A1, Component Location ..... 5-83
5-45. Amplifier 1A2, 1-MC Oscil- lator Assembly A1A7A2, Component Location . . . . . . 5-83
5-46. Amplifier 1A2, Phase De-tector Assembly A1A7A3,Component Location . . . . . . 5-84
5-47. Amplifier 1A2, 1-MC Oscil- lator Assembly A1A8, Top View, Component Location ..... 5-84
5-48. Amplifier 1A2, 1-MC Oscil-lator Assembly A1A8,Bottom View, Componentand Test Point Locations5-85
5-49. Amplifier 1A2, 1-MC Oscil-lator Crystal Oven Sub-assembly A1A8A1, Component,Locations. . . . . . . . . . . . . 5-85

## LIST OF ILLUSTRATIONS (Cont)



## LIST OF ILLUSTRATIONS (Cont)

Figure Page Figure Page

## SECTION 5 - MAINTENANCE (Cont)

5-81. Synthesizer 1A6, Analog
Memory Section 1A5, Bottom View, Component Locations 5-116
5-82. Synthesizer 1 A6, Analog Memory Section 1A5, Top View, Component Locations 5-118
5-83. Synthesizer 1A6, Incremental
Relay Assembly A1A2A1,
Component Locations . . . . . 5-119
5-84. Synthesizer 1A6, Incremental Relay Assembly A1A2A2, Component Locations . . . . . . . . . . . . . . 5-120
5-85. Synthesizer 1A6, Incremental Relay Assembly A1A2A3, Comporent Locations 5-121
5-86. Synthesizer 1 A 6 , Relay Board A1A2A4, Component Locations

5-122
5-87. Synthesizer 1A6, Programmer Trigger Assembly A1A3A1, Component and Test Point Locations

5-123
5-88. Synthesizer 1A6, Programmer
Timer Assembly A1A3A2,
Component and Test Point
Locations . . . . . . . . . . . . 5-124
5-89. Synthesizer 1A6, Programmer Coder Assembly A1A3A3, Component and Test Point Locations 5-125
5-90. Synthesizer 1A6, Front IF
Assembly A1A4, Top View,
Component and Test Point
Locations . . . . . . . . . . . . 5-126
5-91. Synthesizer 1A6, Front IF Assembly A1A4, Bottom View, Component Locations

5-128
5-92. Synthesizer 1A6, 10-KC Loop
and 1-KC Loop Phase De-
tector Assemblies A1A4A1
and A1A5A1, Component
Locations . . . . . . . . . . . . 5-131
5-93. Synthesizer 1A6, 100-Cycle Loop Phase Detector Assembly A1A4A2, Component Locations5-131
5-94. Synthesizer 1A6, 10-KC Loop and $1-\mathrm{KC}$ Loop Incremental

    Oscillator Assemblies A1A4A3
    
    and A1A4A5, Component
    
    Locations
    
        5-132
    
## SECTION 5 - MAINTENANCE (Cont)

5-95. Synthesizer 1A6, 100-Cycle Loop Incremental Oscillator Assembly A1A4A4, Component Locations. 5-132
5-96. Synthesizer 1A6, Rear IF Assembly A1A5, Top View, Component and Test Point Locations 5-133
5-97. Synthesizer 1A6, Rear IF Assembly A1A5, Bottom View, Component Locations. . 5-134
5-98. Synthesizer 1A6, VFO and Spectrum Generator Assembly A1A6, Spectrum Generator Section, Top View, Component and Test Point Locations . 5-134
5-99. Synthesizer 1A6, VFO and Spectrum Generator Assembly A1A6, VFO Section, Top View, Component and Test Point Locations 5-135
5-100. Synthesizer 1A6, VFO and Spectrum Generator Assembly A1A6, VFO Section, Side View, Component Locations 5-135
5-101. Synthesizer 1A6, Reference Assembly A1A8, Bottom View, Component and Test Point Locations 5-136
5-102. Synthesizer 1A6, 10 to 1 Locked Divider Subassembly A1A8A3, Component Locations 5-137
5-103. Synthesizer 1A6, 100-KC
Amplifier Subassembly A1A8A4, Component Locations 5-137
5-104. Synthesizer 1A6, X4 Multiplier Subassembly A1A8A5, Component Locations 5-138
5-105. Synthesizer 1A6, Servo Amplifier Differential Chopper and Preamplifier Assembly A1A9A1, Component Locations 5-139
5-106. Synthesizer 1A6, Servo Amplifier Driver and Null Detector Assembly A1A9A2, Component Locations 5-140
5-107. Synthesizer 1A6, 4 to 1 Locked Divider Assembly A1A10A1, Component Locations 5~141

5-108. Synthesizer 1A6, Third
Mixer Assembly A1A10A2,
Component Locations ..... 5-141

## LIST OF ILLUSTRATIONS (Cont)

Figure
Page
SECTION 5 - MAINTENANCE (Cont)
5-109. Synthesizer 1A6, 5 to 1 Locked Divider Assembly A1A10A3, Component Locations 5-142
5-110. Synthesizer 1A6, Fourth
Mixer Assembly A1A10A4,
Component Locations
5-143
5-111. Synthesizer 1A6, 2 to 1
Locked Divider Assembly
A1A10A5, Component
Locations. . . . . . . . . . . . . . 5-144
5-112. Synthesizer 1A6, First
Mixer Assembly A1A11,
Component and Test Point
Locations
5-144
5-113. Synthesizer 1A6, 1.75-MC Assembly A1A12, Top View, Component Locations . . . . . . 5-145
5-114. Synthesizer 1A6, 1.75-MC
Assembly A1A12, Bottom
View, Component and Test
Point Locations
5-145
5-115. Synthesizer 1A6, 4 to 1
Locked Divider Subassembly
A1A12A1, Component
Locations 5-146
5-116. Synthesizer 1A6, Wide-Band
Amplifier Assembly A1A13, Component and Test Point
Locations.
5-146
5-117. Synthesizer 1A6, Meter Circuit Assembly A1A14,
Component Locations5-147

5-118. Synthesizer 1A6, Rear View, Component and Test Point
Locations.
5-148
5-119. Exciter Power Supply 1A7, Front View, Component and Test Point Locations.
5-120. Exciter Power Supply 1A7, Top View Component Locations . .

5-150
5-121. Exciter Power Supply 1A7, Bottom View, Component and Test Point Locations 5-151
5-122. Exciter Power Supply 1A7,
Rear View, Component and
Test Point Locations
5-152
5-123. RF Assembly 1A8, Front View, Component and Test Point Locations5-153

5-124. RF Assembly 1A8, Right Side
View, Component Locations.
5-125. RF Assembly 1A8, Left Side
View, Component Locations . . 5-155

Figure
Page

SECTION 5 - MAINTENANCE (Cont)
5-126. RF Assembly 1A8, Meter Switch Panel, Rear View, Component Locations

5-156
5-127. RF Assembly 1A8, Lower Deck Top View, Component Locations.

5-157
5-128. RF Assembly 1A8, Lower Deck Bottom View, Component Locations. . . . . . . . . 5-158
5-129. RF Assembly 1A8, Rear View, Component and Test Point Locations

5-159
5-130. RF Assembly 1A8, Autotune
Assembly, Front Panel
Removed, Component
Locations. . . . . . . . . . . . . . 5-160
5-131. RF Assembly 1A8, Direction-
al Coupler Assembly A1,
Component Locations
5-161
5-132. Power Control 1A9, Front View, Component Locations. . . . . . . . . . . . . . 5-162
5-133. Power Control 1A9, Rear
View, Component
Locations. . . . . . . . . . . . . . 5-163
5-134. Power Control 1A9, Bottom
View, Component Locations

5-164
5-135. HV Supply 1A10, Rectifier Assembly, Front View, Component Locations . . . . . . 5-165
5-136. HV Supply 1A10, Filter Assembly, Top View, Component and Test Point Locations.

5-166
5-137. HV Supply 1A10, Filter Assembly, Bottom View, Component Locations 5-167
5-138. LV Supply 1A11, Bottom View, Component and Test Point Locations. 5-168
5-139. Service Supply 1A12, Top View, Component Locations . . 5-169
5-140. Transmitter Cabinet 1A13, Front View, Component and Test Point Locations 5-170
5-141. Transmitter Cabinet 1A13, Left Side View, Component Locations. 5-171
5-142. Transmitter Cabinet 1A13, Right Side View, Component Locations 5-172
5-143. Transmitter Cabinet 1A13, Remote Control Assembly A1, Component Locations

5-173

## LIST OF ILLUSTRATIONS (Cont)

Figure Page Figure Page
SECTION 5 - MAINTENACE (Cont)
5-144. Transmitter Cabinet 1A13, Patch Panel A3, Rear View, Component Locations ..... 5-174
5-145. Transmitter Cabinet 1A13, Blower, Component Locations . 5-175
5-146. Transmitter Cabinet 1A13,Maintenance Drawer, Com-ponent Locations5-176
5-147. Transmitter Control 2 and 3, Front View, Component and Test Point Locations ..... 5-177
5-148 Transmitter Control 2 and 3, Front Panel Lowered, Com- ponent and Test Point Locations ..... 5-178
5-149. Transmitter Control 2 and 3, Rear View, Component and Test Point Locations ..... 5-179
5-150. Keyer 6, Front View, Com- ponent and Test Point Locations. ..... 5-180
5-151. Keyer 6, Top View, Com- ponent Locations ..... 5-181
5-152. Keyer 6, Bottom View, Com- ponent Locations ..... 5-182
5-153. Keyer 6, Power Supply As- sembly A1, Component Locations. ..... 5-183
5-154. Keyer 6, Key Gate and 1-KC Oscillator Assembly A2, Component Locations . . . . . . . 5-184
5-155. Keyer 6, Crystal OscillatorAssembly A3 and A4, Com-ponent Locations5-185
5-156. Keyer 6, Trigger and Binary Gate Assembly A5, Com- ponent Locations ..... 5-186
5-157. Keyer 6, Divider Assembly A6, Component Locations . . . . . . . 5-187
5-158. Keyer 6, Output and Suppres-sion Gate Assembly A7,Component Locations.5-188
5-159. Keyer 6, Audio Metering As- sembly A8, Component Locations. ..... 5-189
5-160. Keyer 6, Rear View, Com- ponent and Test Point Locations. ..... 5-190
5-161. Transmission Line Coupler 7, Internal View, Component Locations. ..... 5-191
5-162. Radio Transmitting Set AN/FRT-24A, Intercabling Diagram . . . 5-193
5-163. Radio Transmitter T-973/FRT-24A, Intercabling Diagram . . . 5-195
SECTION 5 - MAINTENANCE (Cont)
5-164. Radio Transmitter T-973/FRT-24A, Primary PowerDistribution, SchematicDiagram.5-233
5-165. Transmitter Control C-6466/FRT-24A, Primary PowerDistribution, SchematicDiagram.5-235
5-166. Frequency Shift Keyer KY-557/URT, Primary PowerDistribution, SchematicDiagram.5-237
5-167. Dial Control 1A1, Schematic Diagram. ..... 5-239
5-168. Amplifier 1A2, Schematic Diagram. ..... 5-241
5-169. Amplifier 1A2, Inner-Outer Case, Wiring Diagram ..... 5-243
5-170. Amplifier 1A2, AGC and AudioAmplifier Assembly A1A1and A1A2, SchematicDiagram5-245
5-171. Amplifier 1A2, Audio Volt- meter Assembly A1A2 and AlA5, Schematic Diagram ..... 5-247
5-172. Amplifier 1A2, CW Assembly A1A3, Schematic Diagram. ..... 5-249
5-173. Amplifier 1A2, Voltage Regulator Assembly A1A6, Schematic Diagram ..... 5-251
5-174. Amplifier 1A2, Phase De- tector Assembly A1A7, Schematic Diagram ..... 5-253
5-175. Amplifier 1A2, 1-MC Oscil- lator Assembly A1A8, Sche- matic Diagram ..... 5-255
5-176. Amplifier 1A2, Audio Atten- uator Assembly A1A9 through A1A13, Schematic Diagram . . . 5-2575-177. Converter 1A3, SchematicDiagram5-259
5-178. Converter 1A3, Inner-Outer Case, Wiring Diagram ..... 5-261
5-179. Converter 1A3, FrequencyOffset and Band SelectorAssembly A1A1, Sche-matic Diagram5-263
5-180. Converter 1A3, Binary Di- vider Assembly A1A2, Schematic Diagram ..... 5-265
5-181. Converter 1A3, BalancedModulator and CrystalFilter Assembly A1A3, Sche-matic Diagram5-267

## LIST OF ILLUSTRATIONS (Cont)

Figure $P$

5-182. Converter 1A3, IF Amplifier Assembly A1A4, Schematie Diagram.

5-269
5-183. Converter 1A3, 1300-KC
Generator Assembly A1A4A1, Schematic Diagram 5-271
5-184. Converter 1A3, 300-KC
Generator Assembly A1A4A2,
$\begin{aligned} & \text { Schematic Diagram ....... }\end{aligned} \mathbf{5 - 2 7 3}$
5-185. Converter 1A3, 1750-KC Buffer Amplifier Assembly A1A4A3, Schematic Diagram . 5-275
5-186. Converter 1A3, RF Linear Amplifier Assembly A1A5, Schematic Diagram . . . . . . . 5-277
5-187. Converter 1A3, Buffer and
Driver Assembly A1A6,
Schematic Diagram . . . . . . 5-279
5-188. Synthesizer Power Supply 1A4, Schematic Diagram . . . . .... 5-281
5-189. Synthesizer Power Supply 1A4,
High Voltage Power Supply Assembly A2, Schematic Diagram

5-283
5-190. Synthesizer Analog Memory
Section 1A5, Schematic Diagram.

5-285
5-191. Synthesizer 1A6, Schematic
Diagram. . . . . . . . . . . . 5-289
5-192. Synthesizer 1A6, Inner-Outer
Case, Wiring Diagram
5-293
5-193. Synthesizer 1A6, Gear Train
Compartment A1A2 (Relay
Assemblies), Schematic
Diagram
5-295
5-194. Synthesizer 1A6, Programmer
Assembly A1A3, Schematic
Diagram
5-297
5-195. Synthesizer 1A6, Front IF As-
sembly A1A4, Schematic Diagram.

5-299
5-196. Synthesizer 1A6, Rear IF Assembly A1A5, Schematic
Diagram.
5-301
5-197. Synthesizer 1A6, VFO and Spectrum Generator Assembly A1A6, Schematic Diagram5-303

5-198. Synthesizer 1A6, Reference Assembly A1A8, Schematic
Diagram
5-305
5-199. Synthesizer 1A6, Servo
Amplifier Differential Chopper
and Preamplifier A1A9A1,
Schematic Diagram 5-307

## LIST OF ILLUSTRATIONS (Cont)

Figure Page
5-221. Keyer 6, Output and Suppression Gate As- sembly A7, Schematic Diagram. ..... 5-351

SECTION 5 - MAINTENANCE (Cont)
FigurePage

## SECTION 5 - MAINTENANCE (Cont)

5-222. Keyer 6, Audio Metering Assembly A8, Schematic Diagram. 5-353<br>5-223. Transmission Line Coupler 7, Schematic Diagram.

## LIST OF TABLES

Table
Page

SECTION 1 - GENERAL INFORMATION

1-1. Equipment Supplied. ........ 1-5
1-2. Equipment and Publications Required But Not Supplied . . 1-6
1-3. Equipment Differences ..... 1-9

## SECTION 2 - INSTALLATION

2-1. Transformer Voltage Con
nections ..... 2-3
2-2. Wire Sizes ..... 2-4
2-3. Preliminary Control Settings . ..... 2-10
SECTION 3 - OPERATION
3-1. Operator's Controls and Indicators ..... 3-4
3-2. Autotune Tuning Chart ..... 3-38
3-3. Starting Control Settings for a Pre-tuned Transmitter . ..... 3-41
3-4. Compatible AM, Local- Automatic Operation, Con- trol Settings ..... 3-41
3-5. Independent Sideband, Local- Automatic Operation, Con- trol Settings ..... 3-42
3-6. Single Sideband, Local-Auto- matic Operation, Control Settings ..... 3-42
3-7. Continuous Wave, Remote-Auto- matic Operation, Control Settings ..... 3-43
3-8. Compatible AM, Remote-Auto- matic Operation, Control Settings ..... 3-43
3-9. Independent Sideband, and Single Sideband, Remote- Automatic Operation, Con- trol Settings ..... 3-44
Table Page
SECTION 3 - OPERATION (Cont.)
3-10. Frequency Shift Keying, Remote-Automatic Operation, Control Settings ..... 3-45
3-11. RF Assembly and Transmitter Cabinet, Typical Meter Readings ..... 3-45
3-12. Synthesizer Typical Meter Readings ..... 3-46
3-13. Amplifier Typical Meter Readings ..... 3-47
3-14. Converter Typical Meter Readings ..... 3-47
3-15. Exciter Power Supply, Typical Meter Readings ..... 3-48
3-16. Summary of Operating Procedures ..... 3-48
3-17. Operator's Fuse Failure Guide ..... 3-53
3-18. Fuse Location ..... 3-54
3-19. Replacement of Electron Tubes ..... 3-56
3-20. Replaceable Plug-In Electronic Assemblies ..... 3-60
SECTION 4 - TROUBLE SHOOTING
4-1. Reference Designation Index ..... 4-5
4-2. Circuit Frequency Vs. Setting $=N\left(f_{\text {ant }}+f_{\text {off }}\right)-$ 1.75-MC Switch Positions ..... 4-19
4-3. Bandswitching Functions of S104 in Power Amplifier Plate Tank ..... 4-76
SECTION 6 - PARTS LIST
6-1. List of Units. ..... 6-2
6-2. Maintenance Parts List. ..... 6-3
6-3. List of Manufacturers. ..... 6-97


Figure 1-1. Radio Transmitting Set, AN/FRT-24A, Relationship of Units

## SECTION I

## GENERAL INFORMATION

## 1-1. SCOPE.

This Technical Manual is in effect upon receipt. Extracts from this publication may be made to facilitate the preparation of other Department of Defense publications.

## 1-2. GENERAL DESCRIPTION.

Radio Transmitting Set AN/FRT-24A (see figure 1-1) is a modification of Radio Transmitting Set AN/FRT-24 for single sideband operation. Radio Transmitting Set AN/FRT-24A (hereinafter called radio set) provides emission in the 2-to $30-\mathrm{MC}$ frequency range tunable in 100 -cycle steps for the following modes: A1 (continuous wave telegraphy), A3a (compatible AM telephony), A3b (two independent sidebands). A3j (single sideband suppressed carrier, selectable upper and lower sideband), and F1 (frequency shift keying). The radio set has independent sideband control and selectable carrier suppression which allow combinations of sideband transmission with a modulation passband of 300 to 3400 CPS. The radio set provides 1 -kilowatt average output power in type A1 emission, 1-kilowatt peak-envelope-power (PEP) in types A3b, A3j, and F1 emission, and a 400-watt nominal carrier power in type A3a emission. The radio set is designed for remote automatic operation with manual overrides for local-manual or manual-automatic operation. Forced air cooling maintains normal operating temperatures. The 50 -ohm transmitter output impedance of the radio set may be matched to a $300-$ to 600 -ohm balanced antenna system by Transmission Line Coupler CU-390/FRT-24.

## 1-3. DESCRIPTION OF UNITS.

a. RADIO TRANSMITTER T-973/FRT-24A. Radio Transmitter T-973/FRT-24A (hereinafter called transmitter) is a single sideband transmitter which operates from a 208/230-volt, single-phase, 50/60-CPS power source. It has an average output power of 1000 watts in type A1 emission, 1000 -watt peak-envelope-power (PEP) in types A3b, A3j, and F1 emission, and a 400watt nominal carrier power in type A3a emission. The 2 -to- 30 MC frequency range of the transmitter is covered in eight bands. The transmitter is contained within two frame-type cabinets, which are bolted together. The dimensions of the combined cabinets are given in table 1-1. A description of each assembly in the transmitter is given in paragraphs 1-3a (1) through 1-3a (13).
(1) RF ASSEMBLY. - The RFassembly, located in the upper right-hand section of the transmitter, rests on telescoping roller slides. It is self-contained, consisting of a driver, an RF power amplifier, an RF bias supply, and an autotune system. The high voltage inputenters the assembly through a plug located on the upper rear panel of the assembly and the low-voltage input, and control-circuit wiring enters through connectors located on the bottom of the assembly. The RF output wiring is mounted on the rear.
(2) LOW-VOLTAGE POWERSUPPLY. The low-voltage power supply (hereinafter called LV supply) furnishes 600 VDC for the driver plate in the RF assembly. Connections are made to the RF assembly from a screw-type terminal strip mounted on the LV supply. The LV supply is located in the center of the right-hand cabinet and is bolted to a channel.
(3) HIGH-VOLTAGE POWER SUPPLY.The high-voltage power supply (hereinafter called HV supply) furnishes 3000 VDC for the power amplifier plate in the RF assembly, and 630 VDC through dropping resistors located in the filter assembly and through zener diodes located in the RF assembly. The HV supply consists of three assemblies: a plate transformer, located below the LV supply, a rectifier assembly located above the LV supply and behind the power control assembly, and a filter assembly chassis, located behind the rectifier assembly. The plate transformer rests on channels in the cabinet framework. The rectifier assembly and filter assembly are bolted to channels in their section of the cabinet.
(4) POWER CONTROL ASSEMBLY. The power control assembly (hereinafter called power control) controls the application of AC power to all power supplies. It also contains the local-remote and emission selector switches. All connections from the power control are made with plug-in connectors. The power control is located in front of the LV and HV supplies and above the blower assembly.
(5) DIAL CONTROL ASSEMBLY. - The dial control assembly (hereinafter called dial control) contains relays which control the auto tune system, actuate the emission selector, and turn the transmitter on or off, according to pulse information from Transmitter Control C-6466/ FRT-24A. The dial control is located in the lefthand cabinet, above and behind Audio Frequency Amplifier AM-4246/FRT-24A.
(6) SERVICE POWER SUPPLY. - The service power supply (hereinafter called service supply) distributes AC power to Power Supplies PP-4243/FRT-24A and PP-4242/FRT-24A. It also supplies 115 volts, 50-60 CPS, to an auxiliary outlet. The service supply is located in the lefthand cabinet behind Power Supply PP-4242/FRT24 A .
(7) PATCH PANEL ASSEMBLY. - The patch panel assembly (hereinafter called patch panel) connects Amplitude-Single Side-Band Converter CV-1846/FRT-24A to the RF assembly. It also provides a 50 -ohm load for the converter and provides samples of the 2 - to $30-\mathrm{MC}$ and 1 -MC outputs. It is located near the center of the left-hand cabinet, above Power Supply PP-4242/ FRT-24A.
(8) ELECTRICAL FREQUENCY SYNTHESIZER O-1251/FRT-24A. - Electrical Frequency Synthesizer O-1251/FRT-24A (hereinafter called synthesizer) is an automatically tuned synthesizer which provides 10 preset output frequencies or one variable output frequency in the 17.75 - to $35.60-\mathrm{MC}$ range tunable in 100 -cycle steps. The synthesizer obtains its stability (1 part in $10^{8}$ per day) from a $1-\mathrm{MC}$ crystal-controlled oscillator in Audio Frequency Amplifier AM-4246/FRT-24A. The synthesizer and its analog memory, which provides the 10 preset channels, is mounted in a tiltslide assembly in the left-hand cabinet relay rack, below Power Supply PP-4242/FRT-24A.
(9) POWER SUPPLY PP-4242/FRT24A. Power Supply PP-4242/FRT-24A (hereinafter called synthesizer power supply) furnishes +180 VDC regulated, +28 VDC regulated, -24 VDC regulated, +12 VDC regulated, -12 VDC regulated, 28 VDC unregulated, 6.3 VDC filament voltage, and 115 VAC to the synthesizer. It is mounted in the left-hand cabinet relay rack, above the synthesizer.
(10) AUDIO FREQUENCY AMPLIFIER AM-4246/FRT-24A. - Audio Frequency Amplifier AM-4246/FRT-24A (hereinafter called amplifier) provides two independent audio channels which are fed to Amplitude-Single Side-Band Converter CV-1846/FRT-24A. Each channel can be supplied by an audio line or a microphone. The amplifier contains a phase detector circuit which can compare its internal 1-MC reference signal with an external 1-MC or $5-\mathrm{MC}$ standard frequency. The amplifier is mounted in a tiltslide assembly in the left-hand cabinet relay rack, above Amplitude-Single Side-Band Converter CV-1846/FRT-24A.
(11) AMPLITUDE-SINGLE SIDE-BAND CONVERTER CV-1846/FRT-24A. - AmplitudeSingle Side-Band Converter CV-1846/FRT-24A 1-2
(hereinafter called converter) is a single sideband converter which translates the two audio signals from the amplifier to RF signals in the 2 - to $30-\mathrm{MC}$ frequency range. The converter also receives a 17.75 - to $35.60-\mathrm{MC} \mathrm{RF}$ carrier input, a $1750-\mathrm{KC}$ IF input, and a $100-\mathrm{KC}$ reference input from the synthesizer. It is tuned automatically with a mechanical override for manual tuning. The converter provides type A1, A3a, A3b, A3j, or F1 emission which is fed through the patch panel to the RF assembly. The converter is mounted in a tilt-slide assembly in the lefthand cabinet relay rack below the amplifier.
(12) POWER SUPPLY PP-4243/FRT24A. - Power Supply PP-4243/FRT-24A (hereinafter called exciter power supply) furnishes +185 VDC unregulated, -30 VDC unregulated, -12 VDC unregulated, -10 VDC unregulated, and 115 VAC to the amplifier and converter. It is mounted in the left-hand cabinet relay rackbelow the synthesizer.
(13) CABINET ACCESSORIES. - Cabinet accessories include all parts that are attached to the transmitter frame, such as meters and interlock switches. Also included is the blower assembly, located in the bottom section of the right-hand cabinet, under the power control assembly.
b. TRANSMITTER CONTROL C-6466/ FRT-24A. - Transmitter Control C-6466/FRT24 A (hereinafter called transmitter control) is a remote control for Radio Transmitter T-973/ FRT-24A. Two identical control units are provided with the radio set. Their dimensions are given in table 1-1.
c. FREQUENCY SHIFT KEYER KY-557/ URT. - Frequency Shift Keyer KY-557/URT (hereinafter called keyer) is a frequency shift keying unit that provides upper and lower sideband audio and FSK signals to the amplifier. The keyer receives upper and lower sideband audio from external phone lines, lower sideband audio from the transmitter control contact closures from a CW key line, and teletype data from a $20-\mathrm{MA}$ or $60-\mathrm{MA}$ teletypewriter key loop. The keyer provides two FSK outputs, one with a center frequency of 2000 CPS and the other with a center frequency of 2550 CPS. It also provides a $1-\mathrm{KC}$ tone output upon closure of a CW key line. The output of the keyer is monitored ontwofront panel monitor meters. The dimensions of the keyer are given in table 1-1.
d. TRANSMISSION LINE COUPLER CU-390/FRT-24. - Transmission Line Coupler CU-390/FRT-24 (hereinafter called transmission line coupler) matches the 50 -ohm unbalanced output of the transmitter to a 300 - to 600 -ohm balanced

ORIGINAL
antenna within the $2-$ to $30-\mathrm{MC}$ frequency range. It is contained in a weatherproof aluminum case whose dimensions are given in table 1-1.

## 1-4. REFERENCE DATA.

a. FREQUENCY RANGE. -2 to 30 MC .
b. TUNING BANDS.

BAND
RANGE (MC)
1
2 to 3

3 to 4
4 to 6

6 to 8
8 to 12
12 to 16
16 to 24
24 to 30
c. NUMBER OF CHANNELS. - 10 .
d. TYPE OF FREQUENCY CONTROL. Synthesized.
e. STABILITY. -1 part in $10^{8}$ per day.
f. TYPE OF EMISSION AND MODULATION CAPABILITY.
(1) Al (telegraph without use of modulating audio frequency; CW).
(2) A3a (compatible AM telephony; upper sideband with carrier).
(3) A3b (two independent sidebands).
(4) A3j (single sideband suppressed carrier; selectable upper and lower sideband).
(5) F1 (frequency shift keying).
g. KEYING SPEED.- 50 words per minute.
h. TRANSMITTER OUTPUT POWER.
(1) A1: 1000 watts average into 50 ohms with maximum SWR of 3 to 1.
(2) A3a: 400 watts nominal carrier power into 50 ohms with maximum SWR of 3 to 1 .
(3) A3b, A3j, and F1: 1000 watts peak-envelope-power (PEP) into 50 ohms with maximum SWR of 3 to 1 .
ORIGINAL
i. PERCENT MODULATION. $-100 \%$.
j. INTERMODULATION DISTORTION. Third order intermodulation products attenuated 43 DB below one tone of two-tone test at 100 watts PEP for frequency range of 2 to 24 MC and attenuated 40 DB below one tone of two-tone test at 1000 watts PEP for frequency range of 24 to 30 MC.
k. CARRIER SUPPRESSION. - Adjustable from 0 DB to 50 DB below a 1000-cycle modulated single sideband output signal at 1000 watts.

1. UNWANTEDSIDEBAND. - Suppressed 50 DB at 1000 watts PEP.
m. SPURIOUS EMISSION. - 50 DB below 1000 watts average power with singletone input.
n. HARMONIC RADIATION. - 50 DB below 1000 watts PEP with two-tone single sideband input.
o. OUTPUT SIGNAL-TO-HUM RATIO. 50 DB below 1000 watts PEP.
p. NOISE.
(1) "Key down" with no input signal: 50 DB below 1000 watts PEP.
(2) "Key up" with no input signal: below -90 DB.
q. POWER OUTPUT DIVISION. $- \pm 5 \%$ when operating with type A3b emission with equal power input to each sideband.
r. POWER AMPLIFIER BANDWIDTH. 7 KC .
s. OUTPUT IMPEDANCE.
(1) Transmitter output impedance: 50 ohms unbalanced.
(2) Transmission line coupler output impedance: 300 to 600 ohms balanced.
t. DUTY CYCLE. - Continuous at full output throughout environmental range.
u. TRANSMITTER COOLING. - Forced air.
v. TRANSMITTER POWER FACTOR. 0.92.
w. POWER SOURCE REQUIREMENTS.

## Note

Radio Transmitter T-973/FRT-24A is initially wired for 208 VAC, 60 cycle, single phase operation. For 230 VAC operation refer to paragraph 2-2.
(1) Voltage: $208 / 230$ volts $\pm 10 \%$.
(2) Frequency: 50/60 $\mathrm{CPS} \pm 5 \%$.
(3) Phase: one
(4) Consumption:
(a) Standby: 1000 watts.
(b) Carrier on, CW: 4180 watts.
(c) Carrier on, SSB: 3560 watts.
(d) Carrier on, FSK: 3560 watts.
x. HEAT DISSIPATION. - 3180 watts maximum.

## y. AMBIENT ENVIRONMENT.

(1) Temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(+32{ }^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$.
(2) Humidity: $0 \%$ to $95 \%$ RH.
(3) Elevation above sea level: 10,000 feet maximum.

## 1-5. EQUIPMENT SUPPLIED.

Equipment supplied with the radio set is listed in table 1-1. The list includes units, technical manuals, and accessories.

1-6. EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED.

Equipment and publications required but not supplied with the radio set are listed in table 1-2. The list includes accessories, test equipment, and technical manuals.

## 1-7. FACTORY OR FIELD CHANGES.

No factory or field changes have been made to Radio Transmitting Set AN/ FRT-24A.

## 1-8. EQUIPMENT DIFFERENCES.

Radio Transmitting Set AN/FRT-24A is a modification of Radio Transmitting Set AN/FRT24 for single sideband operation. The basic equipment differences between them are listed in table 1-3.

## 1-9. PREPARATION FOR RESHIPMENT.

If the original shipping crates are not available. the equipment should be packaged in shipping crates which conform to the dimensions of the equipment listed in table 1-1. Refer to Section 2 for guidance in repacking. If the equipment is packaged for overseas shipment, an outer barrier and dessicant bags must be included. Make certain that the entire radio set is protected against the elements. If it will be stored domestically, no outer barrier or dessicant bags are required. Before packaging, proceed as follows:
a. Remove the six tubes mentioned in paragraph $2-1 \mathrm{~b}(3)$ and carefully pack them, with sufficient padding, in a separate carton. Remove B+ interlock pin, wrap in protective wadding, and secure to $\mathrm{B}+$ interlock mounting bracket.
b. Check that all tubes, assemblies, subassemblies, and fuses are installed in the radio set and are properly seated in their sockets. Secure all doors, drawers, and latches.
c. Using two-by-four lumber, brace the chassis or assemblies that may be shaken in transit.
d. Construct a platform (skid) of sufficient strength to support the radio set. Use the platform as the base and build the crate around it.
e. Wrap technical manuals in a separate package and label package "TECHNICAL MANUALS INSIDE'". Prepare a separate package of mounting hardware. Place the technical manual and hardware packages in one carton and label accordingly.
f. Include packing slip in shipping case listing all items packaged in each case.

## Note

Stencil sufficient cautions on the crates that will make the carrier aware of the fragile nature of the equipment.

| TABLE 1-1. EQUIPMENT SUPPLIED |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { QTY } \\ \text { PER } \\ \text { EQUIP } \end{gathered}$ | NOMENCLATURE |  | $\begin{aligned} & \text { UNIT } \\ & \text { NO. } \end{aligned}$ | OVERALL DIMENSIONS (IN) |  |  | VOLUME (CU FT) | WEIGHT (LB) |
|  | NAME | DESIGNATION |  | HEIGHT | WIDTH | DEPTH |  |  |
|  | Transmitting Set, Radio | AN/FRT-24A |  | - | - | - | - | - |
| 1 | Transmitter, Radio | T-973/FRT-24A | 1 | 83 | 46.875 | 31.75 | 71.20 | 1500 |
| 2 | Control, Transmitter | C-6466/FRT-24A | 2, 3 | 10.875 | 21.125 | 11 | 1.46 | 50 |
| 1 | Keyer, Frequency Shift | KY-557/URT | 6 | 8 | 21 | 14 | 1.36 | 12.5 |
| 1 | Coupler, Transmission Line | CU-390/FRT-24 | 7 | 20.125 | 23 | 20.25 | 5.75 | 90 |
| 2 | Technical Manual for Radio Transmitting Set AN/FRT-24A | NAVSHIPS 09670092010 thru 09070092040 | - | 11.5 | 9.5 | - | - | - |
| 1 | Maintenance Standards Book for Radio Transmitting Set AN/FRT-24A | NAVSHIPS <br> 09670092060 | - | 11.5 | 9.5 | - | - | - |
| 1 | Synthesizer Frequency Calibration Book for Radio Transmitting Sets AN/FRT-24A, AN/URT22 (XN-1), AN/URT-25 (XN-1) |  | - | 9 | 12.75 | - | - | - |
| 1 | Oper ating Instruction Chart for Radio Transmitting Set AN/FRT-24A | $\begin{aligned} & \text { NAVSHIPS } \\ & 09670092050 \end{aligned}$ | - | 11 | 8.5 | - | - | - |

TABLE 1-2. EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED

| QTY | NOMENCLATURE |  | REQUIREDUSE | $\begin{gathered} \text { RADIO TRANSMITTINGSET } \\ \text { AN/FRT-24A } \\ \text { EQUIPMENT } \\ \text { CHARACTERISTICS } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| EQUIP | NAME | DESIGNATION |  |  |
| 1 | Telegraph Key |  | CW operation. | Keying speed: 50 words per minute. |
| 1 | Handset | H-169/U | Radio telephone operation. | Audio frequency response: 300 to 3400 CPS. |
| 1 | Headset | CW49507 | Audio Monitoring. |  |
| 1 | Electronics Installation and Maintenance Book | NAVSHIPS 900,000 |  |  |
| 1 | Handbook for Electronic Circuits | $\begin{aligned} & \text { NAVSHIPS } \\ & 900,000.102 \end{aligned}$ |  |  |
| 1 | Handbook of Test Methods and Practices | NAVSHIPS $91828$ |  |  |
| 1 | Electrical Dummy <br> Load | DA-242/U | Dummy antenna for tuning, adjustments, and trouble shooting. | Power: Up to 1000 watts PEP; Impedance: 50 ohms, Frequency: 2 to 30 MC . |
| 1 | Instruction Book for Electrical Dummy Load DA-242/U |  |  |  |
| 1 | Electronic Multimeter (VTVM) | AN/USM-116 | Vacuum-tube voltmeter for trouble-shooting and maintenance procedures. | Voltages: 0 to 1000 <br> VDC; Impedance 10 <br> MEGO; Frequency: DC to 700 MC . |
| 1 | Instruction Book for Electronic Multimeter AN/USM-116 | $\begin{aligned} & \text { NAVSHIPS } \\ & 93808 \end{aligned}$ |  |  |
| 1 | RF Voltmeter (RF VTVM) | CCVO-91CA | RF vacuum tube voltmeter for troubleshooting and maintenance procedures. | Voltages: 0.2 VRMS to 3 VRMS; Impedance: 10 MEGO; Frequencies: 100 KC to 50 MC . |
| 1 | Instruction Book for RF Voltmeter CCV O-91CA |  |  |  |
| 1 | $\begin{aligned} & \text { Multimeter } \\ & \text { (VOM) } \end{aligned}$ | AN/PSM-4 | V olt-ohm meter for trouble-shooting and maintenance procedures. | Voltages: 6.3 VAC to 230 VAC, 6.3 VDC to 680 VDC. |
| 1 | Instruction Book for Multimeter AN/PSM-4 |  |  |  |

TABLE 1-2. (Continued)

| $\begin{gathered} \text { QTY } \\ \text { PER } \\ \text { EQUIP } \end{gathered}$ | NOMENCLATURE |  | REQUIREDUSE | ```RADIO TRANSMITTING SET AN/FRT-24A EQUIPMENT CHARACTERISTICS``` |
| :---: | :---: | :---: | :---: | :---: |
|  | NAME | DESIGNATION |  |  |
| 1 | Heterodyne Frequency Meter | AN/URM-29 | Precision frequency measurement for maintenance and alignment. | Frequencies: 250 KC to 18 MC . |
| 1 | Instruction Book for Heterodyne Frequency Meter AN/USM-29 |  |  |  |
| 1 | Oscilloscope | AN/USM-105A | Peak voltage measurements and waveform for analysis for maintenance and alignment. | Voltage calibration: 5\% or better. <br> Sweep speed: 1 USEC/CM or faster. <br> Response: more than 30 MC . |
| 1 | Instruction Book for Oscilloscope AN/ USM-105A | NAV SH IPS 93482A |  |  |
| 1 | Electronic Counter with Converter | $\begin{aligned} & \text { CAQI-524D } \\ & \text { with } \\ & \text { CAQI-525A } \end{aligned}$ | Precision frequency measurement for maintenance and alignment. | $300-\mathrm{KC}$ to 30 MC ; accurate $\pm 1$ count to 34 MC . |
| 1 | Instruction Book for Electronic Counter with Converter CAQI-524D/CAQI-525A |  |  |  |
| 1 | Radio Test Set | AN/URM-134 | Comprehensive spectrum analyzer for single sideband maintenance and adjustment procedure. | Frequencies: 2 MC to 30 MC . |
| 1 | Instruction Book for Radio Test Set AN/ URM-134 |  |  |  |
| 1 | Audio Oscillator | TS-382A/U | Two-tone modulation test and audio filter bandpass measuring for maintenance and trouble shooting. | 300 to 3000 CPS + 8 DBM |
| 1 | Handbook Operation and Service Instructions for Audio Oscillator TS-382A/U | $\begin{aligned} & \text { т.O. } \\ & \text { 16-35TS382-2 } \end{aligned}$ |  |  |

TABLE 1-2. (Continued)

| $\begin{gathered} \text { QTY } \\ \text { PER } \\ \text { EQUIP } \end{gathered}$ | NOMENCLATURE |  | $\begin{aligned} & \text { REQUIRED } \\ & \text { USE } \end{aligned}$ | RADIO TRANSMITTING SET <br> AN/FRT-24A <br> EQUIPMENT <br> CHARACTERISTICS |
| :---: | :---: | :---: | :---: | :---: |
|  | NAME | DESIGNATION |  |  |
| 1 | RF Signal Generator | AN/URM-25F | Signal substitution for trouble shooting and maintenance. | Frequencies: 1.860 MC to 50 MC . <br> Voltages: 5 MVRMS to 1 VRMS. |
| 1 | Instruction Book for RF Signal Generator | NAVSHIPS $91283$ |  |  |
| 1 | RF "Tee" Connector | UG-274A/U | Signal diủ load connection for trouble shooting and maintenance. |  |
| 1 | 50-ohm Dummy Load | XFR 4700-51 | Dummy load for low-power RF outputs. | 50-ohm impedance, 2 to $34 \mathrm{MC}, 2$ watts. |
| 1 | Adapter | UG-914/U | Test set-up adapter for trouble shooting and maintenance. |  |
| 1 | Adapter | UG-491/U | Test set-up adapter for trouble shooting and maintenance. |  |
| 1 | $10-\mathrm{DB}, 50-\mathrm{ohm}$ Attenuator |  | Signal attenuator for trouble shooting and maintenance. |  |
| 1 | Electron Tube Tester | TV-7D/U | Tube testing for trouble shooting and maintenance. |  |
| 1 | Instruction Book for Electron Tube Tester TV-7D/U |  |  |  |
| 1 | Transistor Test Set | TS-1100A/U | Transistor testing for trouble shooting and maintenance. |  |
| 1 | Instruction Book for Transistor Test Set TS-1100A/U |  |  |  |
| 1 | Frequency Standard | AN/URQ-9 | External reference ence for trouble shooting and maintenance. | Frequency: 1-MC or 5-MC Level: 0.1 VRMS to 3 VRMS Stability: 1 part in $10^{8}$ per day. |
| 1 | Instruction Book for Frequency Standard AN/URQ-9 |  |  |  |

TABLE 1-3. EQUIPMENT DIFFERENCES

| ITEM | AN/FRT-24 | AN/ $/$ FRT-24A |
| :---: | :---: | :---: |
| Emission | A1, A3 | A1, A3a, A3b, A3j, and F1 |
| Frequency Control | Crystal or stabilized oscillator | Automatically tuned synthesizer. |
| Preset Channels <br> RF Assembly | Nine <br> 1. Contains nine crystals; one for each channel. <br> 2. Contains keyer assembly. | Ten <br> 1. Does not contain crystals. Preset channels selected from synthesizer. <br> 2. Does not contain keyer assembly. |
| Power Supply | Contains Power Supply PP-454/FRT-5. | Contains Power Supply PP-4243/FRT-24A。 |
| Frequency Control | Contains RF Oscillator O-243/FRT-24. | Contains Electrical Frequency Synthesizer O-1251/FRT-24A. |
| Transmitter Control | Contains Transmitter Control C-1362/FRT-24。 | Contains Transmitter C-6466/FRT-24A. |
| Reference Oscillator | In RF Oscillator O-243/FRT-24. | In Audio Frequency Amplifier AM-4246/ FRT-24A. |
| Phase Detector | None | Phase detector contained in Audio Frequency Amplifier AM-4246/FRT-24A. |
| Power Change Assembly | Yes | None |
| Modulator | Audio chassis and modulation transformer and filter chassis | Amplitude-Single SideBand Converter CV-1846/FRT-24A. |
| Keyer | Step up transmitter for phone and CW operation, part of RF assembly | None |
| FSK Unit | None | Frequency Shift Keyer KY-557/URT selects sidebands remotely for transmission. |
| Telephone Set | TA-267/U | H-169/U (Handset) |

## SECTION 2

## INSTALLATION

## 2-1. UNPACKING AND HANDLING.

The radio set is shipped in two wooden crates and four corrugated cartons. The complete transmitter, except for six tubes, is packed in one crate and the transmission line coupler is packed in another crate. The keyer, the two transmitter control units, and the tubes are each packed in separate corrugated cartons.
a. TRANSMITTER. - Unpack the transmitter as follows:
(1) Place transmitter crate near location in which it is to be installed (refer to paragraph 2-3).

## CAUTION

Prying off sides may result in damage. Use care.
(2) Remove nails from top, sides and ends of crate using a nail puller. Do not remove platform the transmitter rests on.
(3) If the transmitter has been packed for overseas shipment, slit waterproof barrier.
(4) Remove the four wooden crossmember stops from bottom platform.

## CAUTION

Do not attempt to lift transmitter with hoist. Transmitter weighs nearly 2000 pounds.
(5) Place a forklift (with capacity of 1 ton or more) in front of transmitter. Adjust height to level of transmitter base.

## WARNING

Use as much manpower as necessary (minimum 5 men ) when performing the following steps.
(6) Use greased steel plates, slip plates under unit, then slide unit onto forklift, lower forks, and slide unit onto the floor. Steel plates should be at least $1 / 8$-inch cold rolled steel and should be long enough both to fit under the unit and also to cover the forks.

An alternate means of removing the transmitter from the skid is to utilize a hoist and webbing. Pass two web straps (rated at 2000
pounds each) under the unit from front to rear. Route both straps to a hoisting ring approximately twelve inches above the unit. Rig another strap horizontally around the unit, over the two hoisting straps, not more than eighteen inches from the top and remove slack. Then hoist the unit from the skid and set in place.

## CAUTION

Horizontal strap is necessary to prevent unit from tipping, as the unit is top heavy.
(7) Move transmitter into installation position, (refer to paragraphs 2-2, 2-3, and 2-4) lower forklift, and carefully walk transmitter off forklift.
(8) Remove side panels and right-rear panel of transmitter and carefully remove seven wooden blocking supports from inside transmitter.
(9) Remove all padding and bonding tape used to protect transmitter from damage during shipment. In cases of overseas shipment, remove bags of dessicant.
(10) Open door on right side of transmitter, turn LATCH RF UNITOPEN-LOCK switch to OPEN and pull out RF assembly (see figure 2-8).
(11) To prevent damage, the high voltage interlock pin (P106, J106) located in the rear of the RF assembly, is not shipped assembled in its bracket. Remove high voltage interlock pin (wrapped in cellulose wadding) from high voltage interlock mounting bracket.
(12) Remove two nuts and star washer from rear of high voltage interlock pin, insert pin in its mounting board and secure with one nut.
(13) Place high voltage terminal lug over rear of high voltage interlock pin and secure with star washer and nut.

CAUTION
Check alignment of high voltage interlock pin before pushing RF assembly completely into cabinet.
(14) Inspect transmitter (see paragraph 2-7a).
(15) Replace right-rear panel of transmitter.
b. TUBES. - Unpack the tubes as follows:
(1) Open top of corrugated carton.
(2) If tubes have been packedfor overseas shipment, slit waterproof barrier.
(3) Remove cushioning from top of tubes and carefully remove tubes. The carton contains six tubes; one PL264, one PL177, two 4B32's, and two 3B28's.
(4) Remove tubes from cellulose wadding and inspect for damage.
(5) Open door on right side of transmitter, turn LATCH RF UNIT OPEN-LOCK switch to OPEN, and pull out RF assembly (see figure 2-8).
(6) Open left side-panel of RF assembly and carefully insert tubes as follows:
(a) Remove four acorn nuts securing gray air director around socket marked V115. Lift out air director.

## CAUTION

Be careful when inserting type PL264 tube in socket to avoid damage to the finger-like contacts. Do not place capacitor C249 electrode under strap. Strap lead must be located away from C249.
(b) Remove strap from around tube and insert PL264 tube in socket. Place air director over tube and secure with four acorn nuts. Place strap over tube and insert the tube plate lead between strap and tube. Tighten strap.
(c) PL177 tube in socket marked V114. Connect plate cap and tighten plate cap screw.
(d) 4B32 tubes in HV supply rectifier assembly and connect plate caps (see figure 2-11).
(e) 3B28 tubes in LV supply and connect plate caps (see figure 2-11).
(7) Turn LATCH RF UNIT OPENLOCK switch to OPEN, push in RF assembly and turn switch to LOCK. Pull on RF assembly to make certain unit is secure.
c. TRANSMITTER CONTROL AND KEYER. - The radio set has two transmitter control units, one is to be located in the same area as the keyer. Unpack the transmitter control units and keyer as follows:
(1) Open top of corrugated cartons.
(2) If equipment has been packed for overseas shipment, slit waterproof barrier.
(3) Remove cushioning from top and sides of equipment and carefully lift equipment out of cartons. In cases of overseas shipment remove bags of dessicant.
(4) Inspect units (see paragraph 2-7a).
d. TRANSMISSION LINE COUPLER. Unpack the transmission line coupler as follows:
(1) Place crate near location in which it is to be installed.

## CAUTION

Prying off sides may result in damage. Use care.
(2) Remove nails from top, sides and ends of crate using nail puller.
(3) If transmission line coupler has been packed for overseas shipment, slit waterproof barrier.
(4) Remove transmission line coupler from crate and visually inspect for damage. In cases of overseas shipment, remove bags of dessicant.

2-2. POWER REQUIREMENTS. - The radio set requires the following power:

## a. TRANSMITTER.

> Note
> The transmitter is initially wired for 208-VAC, 60-CPS, single-phase primary power. Refer to table 2-1 and figure $2-6$ for transformer tap connections when primary power is other than 208 VAC. When primary power frequency is 50 CPS connect capacitor 1A10C404, located on HV supply filter in parallel with capacitor 1A10C401.

The transmitter requires 208- to 230VAC $\pm 10 \%, 50$ - to $60-$ CPS, single-phase primary voltage (see figure 5-164). In the standby condition (filaments on) the transmitter consumes approximately 1000 watts. When the transmitter is on in the carrier CW, carrier phase (unmodulated), SSB carrier phone ( $100 \%$ modulated) or FSK modes, it consumes 4180 watts, 4180 watts, 3560 watts, and 4180 watts respectively.
b. TRANSMITTER CONTROLS. - Each transmitter control requires $115-\mathrm{VAC} \pm 10 \%$, 50to 60-CPS, single-phase primary voltage with 0.5 ampere drawn at 115 VAC (see figure 5-165).

TABLE 2-1. TRANSFORMER VOLTAGE CONNECTIONS

| ASSEMBLY | TRANSFORMER <br> REF DESIG | FOR <br> PRIMARY <br> VOLTAGE (AC) | USE <br> TERMINALS |
| :---: | :---: | :---: | :---: |
| Amplifier 1A2 | 1A2A1A8T3 | 208 | 2 and 3 |
|  |  | 230 | 1 and 3 |

c. KEYER. - The keyer requires a 115VAC $\pm 10 \%, 50$ - to $60-\mathrm{CPS}$, single-phase primary voltage with 0.06 ampere drawn at 115 VAC (see figure 5-166).

## 2-3. SITE SELECTION.

The radio set site should be located to permit connections to the electrical power, ground, remote transmitter control equipment, and an antenna system. The conditions listed below should be provided. (See figures 2-2 through 2-5 for the dimensional requirements of the radio set.)
a. The transmitter must be deck mounted, so make certain that the deck construction will not be strained by the added weight of the transmitter.
b. Provide adequate ventilation and a supply of clean fresh air for efficient blower operation.
c. Provide sufficient space around the transmitter for servicing.
d. Locate the transmitter control units wherever convenient, but the distance to the transmitter must not be so great that the audio line has a loss of more than 25 DBor that the keyline loop resistance exceeds 1000 ohms. The keyer is normally located on top of one transmitter control unit, so the same site selection criteria apply.
e. The connecting cables to the transmitter control units must not be near high-current-carrying power lines.
f. Locate the transmission line coupler near the transmitter or the antenna, depending upon the installation.

## 2-4. INSTALLATION REQUIREMENTS.

a. PREPARATION FOR INSTALLATION. Before starting to install the radio set, refer to the latest Bureau of Ships installation plans. Methods of installation vary between stations, depending upon the station location. If the transmitter is received disassembled, do notassemble it until the transmitter cabinet is installed in place. Follow the requirements in paragraphs 2-5 and 2-6.
b. INSTALLATION. - Refer to figures 1-1 and 2-1 for a typical installation, and to figures 2-2 through 2-5 for dimensional outline
drawings. Conduit and wire for interconnecting the transmitter and its control units are not supplied with the equipment, run the conduit and wires in a trench. Refer to paragraph 2-5 and figure 5-162 for electrical interconnections to the transmitter cabinet.

## Note

All external connections to transmitter are brought through the bottom of cabinet to terminal boards.

## 2-5. CABLE ASSEMBLIES.

a. WIRE SIZES. - Wire sizes for external connections in the radio set are listed in table 2-2.

TABLE 2-2. WIRE SIZES

| CONNECTION | RECOMMENDED WIRE(S) * | NAVY TYPE DESIGNATION |
| :---: | :---: | :---: |
| Primary power source to terminal board 1A13TB651 on transmitter cabinet. | $\begin{aligned} & \text { MW-C10(37)U-(9) } \\ & \text { MW-C10(37)U-(0) } \end{aligned}$ |  |
| Remote keyline switch to terminal board 3TB903 on Transmitter Control C-6466/ FRT-24A(Unit 3). | $\begin{aligned} & \text { MW-C22(7)U-(4) } \\ & \text { MW-C22(7)U-(6) } \end{aligned}$ |  |
| Terminal board 2TB901 on Transmitter Control C-6466/ FRT-24A(Unit 2) to terminal board 3TB901 on Transmitter Control C-6466/FRT-24A(Unit 3). | MW-C22(7)U-(0) <br> MW-C22(7)U-(6) <br> MW-C22(7)U-(8) <br> MW-C22(7)U-(91) <br> MW-C22(7)U-(92) <br> MW-C22(7)U-(95) |  |
| Terminal board 2TB903 on Transmitter Control C-6466/ FRT-24A(Unit 2) to terminal board 3TB903 on Transmitter C-6466/FRT-24A (Unit 3). | $\begin{aligned} & \text { MW-C22(7)U-(1) } \\ & \text { MW-C22(7)U-(2) } \\ & \text { MW-C22(7)U-(4) } \\ & \text { MW-C22(7)U-(6) } \end{aligned}$ |  |
| Terminal board 2TB901 on Transmitter Control C-6466/ FRT-24A (Unit 2) to terminal board 6TB2 on Frequency Shift Keyer KY-557/URT (Unit 6). | $\begin{aligned} & \text { MW-C22(7)SJ-(4) } \\ & \text { MW-C22(7)SJ-(5) } \end{aligned}$ |  |
| Terminal board 6TB2 on Frequency Shift Keyer KY-557/URT (Unit 6) to terminal board 2TB903 on Transmitter Control C-6466/ FRT-24A. | $\begin{aligned} & \text { MW-C22(7)U-(1) } \\ & \text { MW-C22(7)U-(2) } \end{aligned}$ |  |

TABLE 2-2. (Continued)

| CONNECTION | $\underset{\text { WIRE(S) }}{\text { RECOMMENDED }}$ | NAVY TYPE DESIGNATION |
| :---: | :---: | :---: |
| Terminal board 2TB901 on Transmitter Control C-6466/ FRT-24A (Unit 2) to terminal board 1A13TB603 on transmitter cabinet. | $\begin{aligned} & \text { MW-C22(7)U-(6) } \\ & \text { MW-C22(7)U-(8) } \\ & \text { MW-C22(7)U-(9) } \\ & \text { MW-C22(7)U-(91) } \\ & \text { MW-C22(7)U-(92) } \\ & \text { MW-C22(7)U-(95) } \end{aligned}$ |  |
| Terminal board 6TB1 on Frequency Shift Keyer KY-557/URT (Unit 6 ) to terminal board 1A13TB603 on transmitter cabinet. | $\begin{aligned} & \text { MW-C22(7)SJ-(2) } \\ & \text { MW-C22(7)SJ-(3) } \\ & \text { MW-C22(7)SJ-(5) } \\ & \text { MW-C22(7)SJ-(7) } \end{aligned}$ |  |
| Jack 1A13J616 on transmitter cabinet to jack 7J2001 on Transmission Line Coupler CU-390/ FRT-24A(Unit 7). | RG-17A/U |  |
| External reference source to jack 1A13J615 on transmitter cabinet. | RG-58A/U |  |
| Antenna tuner control to terminal board 1A13TB603 on transmitter cabinet. | $\begin{aligned} & \text { MW-C22(7)U-(2) } \\ & \text { MW-C22(7)UU-(3) } \\ & \text { MW-C22(7(U)-(4) } \\ & \text { MW-C22(7)U-(5) } \end{aligned}$ |  |
| Remote terminal equipment to terminal board 6TB1 on Frequency Shift Keyer KY-557/ URT (Unit 6). | $\begin{aligned} & \text { MW-C22(7)SJ-(1) } \\ & \text { MW-C22(7)SJ-(4) } \\ & \text { MW-C22(7)SJ-(9) } \\ & \text { MW-C22(7)SJ-(0) } \end{aligned}$ |  |
| TTY to terminal board 6TB2 on Frequency Shift Keyer KY-557/ URT (Unit 6). | Multiconductor 2 wire AWG No. 20 |  |
| * MW - Type of wire <br> C - Conductor material <br> 22 - Conductor size <br> Wire and Cable, Hookup, Elect | (7)  <br> SJ  <br> (1)  <br> mer  |  |

b. INSTALLATION OF CABLES. - Before installing the necessary cabling, refer to the latest Bureau of Ships installation plans.
(1) EXTERNAL CABLING AND CON-

NECTORS. - No external cabling or connectors are supplied. Refer to figure 5-162 for type of connectors required.
(2) CARE OF CABLES. - Run the cables so they will be protected from damage, being careful that they are never pressed against sharp edges and never subjected to excessive pressure or bends. Each cable should be mechanically supported at frequent points throughout its length.
c. EXTERNAL CONNECTIONS. - Refer to figure 2-1 for typical cable connections.
(1) PRIMARY POWER CONNECTIONS.

## Note

The transmitter is initially wired for 208-VAC, 60-CPS, single-phase primary power. Refer to table 2-1 and to figure 2-6 for transformer tap connections when primary power is other than 208 VAC. When primary power frequency is 50 CPS, connect capacitor 1A10C404, located on HV supply filter in parallel with capacitor 1A10C401.

Connect a 208/230-VAC 50/60-CPS line from the station distribution panel to terminal board 1A13TB651, which is mounted on the cabinet frame (see figure 5-162). This cable extends 3 feet into the transmitter cabinet. Connect the line cord of the keyer and transmitter control units to a 115-VAC,60-CPS, single-phase primary power source.
(2) INPUT, OUTPUT, AND CONTROL CONNECTIONS. - The input, output, and control connections to the radio set must be fabricated from parts not supplied with the radio set. Refer to figure 5-162 for electrical interconnections and cable characteristics.
(3) GROUND CONNECTIONS. - Connect transmitter cabinet to a good ground system in the vicinity of the transmitter. These metal ground areas should be well-bonded together. Connect the base of the transmitter to as many places as is practicable, using wide copper straps bonded to the station ground system or other suitable ground. Do not use flexible copper braid.

2-6. INSTALLATION OF ASSEMBLIES REMOVED BEFORE SHIPMENT. - If the transmitter is shipped with each assembly in a separate box, assemble as described in the following paragraphs. However, if the transmitter is received completely assembled, continue to paragraph 2-7. Inspect all assemblies before installation as described in paragraph 2-7a.
a. RF ASSEMBLY. - Mount the RF assembly in the telescoping slide assembly of the right-hand relay rack of the transmitter cabinet as follows:
(1) Pull out telescoping slides.

## CAUTION

Three or four persons are required to lift RF assembly.
(2) Lift RF assembly and insert into place on telescoping slides. The telescoping slides should fit into the channel on each side of the RF assembly. Before moving RF assembly into transmitter cabinet, hold LATCH RF UNIT OPENLOCK switch in OPEN and push RF assembly back and into transmitter cabinet.
(3) Insert six flathead machine screws (supplied) through holes in top, front of RF assembly and through to each telescoping slide, then tighten screws.
(4) Turn LATCH RF UNIT OPENLOCK switch to OPEN and pull out RF assembly until it locks in position.
(5) Open left side-panel of RF assembly and install tubes removed for shipment. Installation procedures are described in paragraph 2-1b.
(6) Engage connectors on rear of RF assembly. Refer to figure 5-163 for RF assembly connections.
(7) Turn LATCH RF UNIT OPENLOCK switch to OPEN and push RF assembly into transmitter cabinet.
(8) Check operations of RF assembly telescoping slide assembly. Check for abnormal interference or operation of cable return springs, making sure that cables are not pinched at any time.
b. HV SUPPLY. - The HV supply consists of a plate transformer, a filter assembly, and a rectifier assembly. Each assembly is mounted separately. See figures 2-9, and 2-11 for their locations. To install these assemblies follow the directions outlined below.
(1) PLATE TRANSFORMER. - Mount the HV supply plate transformer in the lower rear section of the right-hand relay rack of the transmitter cabinet as follows:

## CAUTION

Two or three persons are required to mount plate transformer.
(a) Place plate transformer on angle brackets (see figures $2-9$ and 2-11) with terminals 7,8 , and 9 facing the right side panel.
(b) Secure plate transformer with four bolts, lockwashers and nuts supplied.
(c) Refer to figure 5-163 for plate transformer interconnections.
(2) FILTER ASSEMBLY. - Mount the HV supply filter assembly in the rear of the righthand relay rack of the transmitter cabinet as follows:
(a) Place assembly on angle bracket, beneath the RF assembly, with choke coils toward the rear (see figure 2-11).
(b) Position assembly so that holes in angle brackets register with holes in bottom of assembly.
(c) Secure assembly with four phillips head machine screws, lockwashers, and nuts supplied.
(d) Refer to figure 5-163 for filter assembly interconnections.
(3) RECTIFIER ASSEMBLY. - Mount the HV supply rectifier assembly directly in front of the filter assembly.
(a) Place assembly on angle bracket, in front of filter assembly, with tubes toward front (see figure 2-11).
(b) Position assembly so that holes in angle brackets register with holes in bottom of assembly.
(c) Secure assembly with two phillips head machine screws, lockwashers, and nuts supplied.
(d) Refer to figure 5-163 for rectifier assembly interconnections.
c. LV SUPPLY. - Mount the LV supply in the right-hand relay rack of the transmitter cabinet directly above the HV supply plate transformer as follows:
(1) Place assembly on angle brackets above HV supply plate transformer with tubes toward the front (see figure 2-11).
(2) Position assembly so that holes in angle bracket register with holes in bottom of assembly.
(3) Secure assembly with four phillips head machine screws, lockwashers, and nuts supplied.
(4) Refer to figure 5-163 for LV supply assembly interconnections.
d. BLOWER. - The blower is already installed in the lower right-hand relay rack. Refer to figure 5-163 for blower interconnections.
e. POWER CONTROL. - The power control is already installed in the right-hand rack. Refer to figure 5-163 for power control inter connections.
f. DIAL CONTROL. - Mount the dial control in the rear of the left-hand relay rack of the transmitter cabinet above the amplifier as follows:
(1) Place dial control on angle brackets with relays toward the front (see figure 2-10).
(2) Position dial control so that holes in angle brackets register with holes in bottom of assembly.
(3) Secure dial control with four phillips head machine screws, lockwashers, and nuts supplied.
(4) Refer to figure 5-163 for dial control interconnections.
g. SERVICE SUPPLY. - Mount the service supply in the rear of left-hand relay rack of the transmitter cabinet as follows:
(1) Position service supply so that holes in rear upright corner supports of the cabinet register with holes in supply (see figure 2-10).
(2) Secure supply with four phillips head machine screws, star lockwashers, and nuts supplied.
(3) Refer to figure 5-163 for service supply interconnections.
h. POWER SUPPLY PP-4243/FRT-24A. Mount the exciter power supply in the bottom of the left-hand relay rack of the transmitter cabinet as follows:
(1) Slide exciter power supply into transmitter cabinets slide assembly (see figure 2-11).
(2) Secure front panel of exciter power supply to slide assembly with four phillips head machine screws, flat washers, and lockwashers supplied.
(3) Refer to figure 5-163 for exciter power supply interconnections.
i. ELECTRICAL FREQUENCY SYNTHESIZER. O-1251/FRT-24A. - Mount the synthesizer in the bottom of the slide assembly in left-hand relay rack of the transmitter cabinet as follows:
(1) Place synthesizer on workbench and solidly secure case.

## CAUTION

Do not allow analog memory section of synthesizer (hinged portion) to swing loose during installation. Tighten screws in rear.
(2) Press PUSH TO UNLOCK button on each handle and carefully slide synthesizer out of case until it locks in position.
(3) Pull tilt latch on each side of front panel and swing synthesizer to vertical position for access to rear panel.
(4) Disconnect all power and RF connectors from rear panel jacks and tag for identification.
(5) Remove cable clamp and spring retractor from rear panel.
(6) Pull tilt latch on each side of front panel and swing synthesizer so that front panel faces up.

$$
\begin{aligned}
& \text { Note } \\
& \text { Do not lose teflon washers when per- } \\
& \text { forming next step. }
\end{aligned}
$$

(7) Remove pivot screw on slide at each side of synthesizer and carefully lift synthesizer, separating it from tilt-slide assembly. Set synthesizer aside on workbench.
(8) Push the rectangular locking bar on the outside of each slide and push in slides.
(9) Turn "Tee" handle on transmitter slide assembly and pull out slide assembly.
(10) Place case in slide assembly as shown in figure 2-10.
(11) Place one each thin rectangular spacer (supplied) in each corner between the front of the four case mounting rails and the transmitter slide assembly and secure each with two screws supplied. Insert screws from inside of transmitter slide assembly.
(12) Place one each thick rectangular spacer (supplied) in each corner between the rear of the four case mounting rails and the transmitter slide assembly and secure with two screws (supplied).
(13) Push transmitter slide assembly back into transmitter cabinet and turn "TEE" handle.
(14) Pull out case tilt-slides until they lock in position.
(15) Hold synthesizer in vertical position, front panel up, and place on tilt-slide assembly.
(16) Place each of two teflon washers between tilt-slide assembly pivot-screw hole and synthesizer. Then place pivot screw in each side of tilt-slide assembly and tighten. If pivot screw does not goinall the way, shift synthesizer slightly and then tighten screw.
(17) Pull tilt latch on each side of front panel and swing synthesizer so that front panel faces down.
(18) Connect power and RF connectors to rear panel jacks and secure cable clamp and spring retractor.
(19) Pull tilt latch on each side of front panel and swing synthesizer to horizontal position.
(20) Press PUSH TO RETRACT button on each handle and carefully slide synthesizer in case.
(21) Check operation of synthesizer in tilt-slide assembly by placing it on each of its positions. Check for abnormal interference or operation of cable retractor, making certain that cables are not pinched at any time. Check that synthesizer locks in the extended position of tilt-slide assembly.
(22) Refer to figure 5-163 for synthesizer interconnections.
j. POWER SUPPLY PP-4242/FRT-24A. Mount the synthesizer power supply in the bottom of the left-hand relay rack of the transmitter cabinet as follows:
(1) Slide synthesizer power supply into transmitter cabinet slide assembly (see figure 2-11). Make certain the guide pins on the rear panel mate with the guide pin receptacles in the slide assembly.
(2) Secure front panel of synthesizer power supply to slide assembly with four screws and lockwashers supplied.
(3) Refer to figure 5-163 for synthesizer power supply interconnections.
k. AMPLITUDE-SINGLE SIDE-BAND CONVERTER CV-1846/FRT-24A. - Mount the converter in the top of the left-hand relay rack of the transmitter cabinet as follows:
(1) Procedures for removing the converter from its case are similar to the steps outlined in paragraphs 2-6i(1) through 2-6i(8).
(2) After removal place case in relay rack above patch panel as shown in figure 2-10.
(3) From the inside of the case insert four flat-head screws and washers (supplied) through the holes containing sleeve spacers and tighten screws into tapped holes in vertical support brackets of transmitter cabinet.
(4) Refer to paragraphs 2-6i(14) through $2-6 i(21)$ to replace converter in case.
(5) Refer to figure 5-163 for converter interconnections.

1. AUDIO FREQUENCY AMPLIFIER AM-4246/FRT-24A. - Mount the amplifier in the top of the left-hand relay rack of the transmitter cabinet as follows:
(1) Procedures for removing the amplifier from its case are similar to the steps outlined in paragraphs 2-6i(1) through 2-6i(8).
(2) After removal, place case in relay rack, above converter, as shown in figure 2-10.
(3) Follow the procedure outlined in paragraph $2-6 \mathrm{k}(3)$ for securing amplifier.
(4) Refer to paragraphs 2-6i(14) through $2-6 i(21)$ to replace amplifier in case.
(5) Refer to figure 5-163 for amplifier interconnections.
m. PATCH PANEL. The patch panel is already installed. Refer to figure 5-163 for patch panel interconnections.

## 2-7. INSPECTION AND ADJUSTMENT.

a. INSPECTION. - Inspect the equipment for possible damage or disarrangement during shipping. Check to see that screws and nuts are tight and that nuts, washers, bits of solder, or other foreign particles have not become lodged where they might cause a short circuit. Make a careful search for broken wires and loose connections. Operate all mechanical controls in each position or through their full range of travel to select any bent shafts or other abnormal indications.
b. PRELIMINARY CHECKS AND CONTROL SETTINGS. - Before applying primary power to the equipment, check that all interconnections have been made in accordance with figure 5-163 and that all doors and interlock switches are closed and equipment is properly grounded. Set controls as indicated in table 2-3.

## WARNING

Voltages as high as 3000 volts exist in the radio set. Observe safety regulations at all times.
c. TRANSMITTER CHECK. - Energize transmitter as follows:

## CAUTION

Before energizing transmitter for first time, make sure that power line and antenna are properly connected, and equipment is properly grounded.
(1) FILAMENT, TIME DELAY AND BLOWER CHECK. - To check the filaments, time delay and blower circuits, proceed as follows:
(a) Set PRIMARY CIRCUIT BREAKER to ON.
(b) Pull out FILAMENT switch. This turns on FILAMENT lamp and all rectifier and tube filaments, and the blower starts. PRIMARY VOLTAGE meter should indicate amplitude of primary voltage.
(c) Pull out PLATE switch. After a delay of $4-1 / 2$ minutes, PLATE lamp should light.
(d) If this delay is more, or less, than $4-1 / 2$ minutes $\pm 1 / 2$ minute, adjust TIME DELAY as described in section 5.
(2) RF ASSEMBLY CHECK. - Check the RF assembly as follows:
(a) Turn LV-TUNE-OPERATE switch to TUNE position. Listen for closing contacts of high-voltage plate relay.
(b) Check PLATE VOLTAGE and PA FIL VX10 meter readings against readings given in table 3-11.
(c) Turn LV-TUNE OPERATE switch to LV.
(3) AUTOTUNE SYNCHRONIZATION CHECK. - Check autotune synchronization as follows:
(a) Turn CHANNELSELECTOR switch on RF assembly to channel 1 position.
(b) Loosen locking keys on all autotune control knobs.
(c) Set autotune controls to center of mechanical range and secure locking keys.
(d) Record position of each autotune control.
(e) Turn CHANNELSELECTOR switch to channel 2.
(f) Wait until autotune stops turning then turn CHANNEL SELECTOR switch back to channel 1 and note position of autotune control knobs. A deviation of $\pm 2$ divisions from those recorded in step (d) is permissible. If a reading(s) is incorrect, refer to Section 4 for trouble shooting and to Section 5 for maintenance.
(4) SYNTHESIZER POWERSUPPLY CHECK. - Check synthesizer power supply as follows:
(a) Set ON-OFF switch to ON position; POWER and FIL lamps should light.

TABLE 2-3. PRELIMINARY CONTROL SETTINGS

| UNIT | CONTROL | POSITION |
| :---: | :---: | :---: |
| Power Control | PRIMARY CIRCUIT BREAKER <br> PLATE switch <br> FILAMENT switch <br> LOCAL-REMOTE switch <br> SSB-CW-AM LOCAL switch | OFF <br> Push to off Push to off LOCAL CW |
| RF Assembly | CHANNEL SELECTOR switch <br> BAND SWITCH <br> LV-TUNE-OPERATE switch <br> TEST KEY switch <br> EXCITER TUNING control <br> DRIVER PLATE TUNING control <br> P.A. PLATE TUNING control <br> P.A. LOADING control <br> LOADING COIL SWITCH <br> Multimeter switch <br> POWER FORWARD-REVERSE switch <br> APC switch <br> PPC control | ```1 1 LV Neutral (center) 50 50 50 50 1 DR PLATE MA x }10 FORWARD OFF Fully Counterclock- wise``` |
| Synthesizer Power Supply | ON-OFF switch | OFF |
| Synthesizer | Band switch <br> MANUAL SETTING digital switches <br> SERVO MODE switch <br> TEST METER switch <br> MOTOR DRIVE ON switch | A <br> 25.8500 <br> AUTO <br> REF MONITOR <br> OFF |
| Exciter Power Supply | ON-OFF switch 115V - 230V (rear) | $\begin{aligned} & \text { OFF } \\ & 230 \mathrm{~V} \end{aligned}$ |
| Converter | BAND SWITCH <br> RF GAIN control <br> SSB CARRIER INSERT control METER switch | 2-4 <br> Fully counterclockwise but not in PRESET SUPPR CARRIER $+180 \mathrm{~V}$ |
| Amplifier | LSB LINE LEVEL control USB LINE LEVEL control MIKE LEVEL control REF SEL switch | Counterclockwise Counterclockwise Counterclockwise INT REF ONLY |
| Transmitter Control | ON-OFF, switch INPUT-OUTPUT switch AUDIO GAIN control | OFF <br> OUTPUT <br> Counterclockwise |
| Keyer | ON-OFF switch <br> KEYLINE INVERTER switch(rear) <br> SENSE INVERTER switch (rear) <br> MODE switch <br> TEST switch <br> TONE SUPPR <br> FUNCTION, LSB <br> FUNCTION, USB | OFF <br> NORM <br> NORM <br> OFF <br> LINE <br> OFF <br> OFF <br> OFF |

TABLE 2-3. (Continued)

| UNIT | CONTROL | POSITION |
| :---: | :---: | :---: |
| Patch Panel | Connect patch cable between |  |
|  | EXCITER OUTPUT jack and |  |
|  | PA 1st AMPL INPUT jack |  |

(b) Observe front-panel blown fuse indicators. If a blown fuse indicator is lighted, check applicable fuse, refer to paragraph $3-6 d(2)$ and table 3-17.
(c) Using Electronic Multimeter AN/USM-116, measure voltages at front-panel test points (refer to paragraph 4-10b). If test results are unsatisfactory, refer to Section 4 for trouble shooting and Section 5 for maintenance.
(5) SYNTHESIZER CHECK. - Check the synthesizer as follows:
(a) Start synthesizer as described in paragraph $3-3 c(1)$ but leave LV-TUNE OPERATE switch in LV position.
(b) Program synthesizer analog memory as described in paragraph $3-3 b(1)$.
(c) Tune synthesizer manually as described in paragraphs 3-5a(2) through 3-5a(13).
(d) Turn synthesizer TEST METER switch to each position and check readings with those in table 3-12. If readings are incorrect refer to Section 4 for trouble shooting and Section 5 for maintenance.
(e) Turn SERVO MODE switch to AUTOTUNE.
(f) Turn MOTOR DRIVE ON switch to ON.
(g) Turn CHANNEL SELECTOR switch on RF assembly to an operating channel.
(h) Turn synthesizer TEST METER switch to each position and check readings with those in table 3-12.
(6) EXCITER POWER SUPPLY CHECK. - Check exciter power supply as follows:
(a) Set ON-OFF switch to ON position; POWER lamp should light.
(b) Turn voltage selector switch to each position and check readings with those in table $3-15$. If readings are incorrect refer to Section 4 for trouble shooting and Section 5 for maintenance.
(7) AMPLIFIER CHECK. - Check the amplifier as follows:
(a) Turn SSB-CW-AM LOCAL switch to SSB.
(b) Connect Handset H-169/U to front-panel MIKE jack.
(c) Turn LSB and USB selector switches to MIKE positions.
(d) Operate press-to-talk switch on handset and speak into transmitter. While speaking, turn MIKE LEVEL control for approximately a red line reading on LSB LEVEL and USB LEVEL meters.
(e) Turn REF SEL switch to each position and check readings with those in table $3-13$. If test results are unsatisfactory, refer to Section 4 for trouble shooting and Section 5 for maintenance.
(8) CONVERTER CHECK. - Check the converter as follows:
(a) Start converter as described in paragraph 3-3c(1) but leave LV-TUNE-OPERATE switch in LV position.
(b) Turn converter METER SWITCH to each position and check readings with those in table $3-14$. If readings are incorrect refer to Section 4 for trouble shooting andSection 5 for maintenance.
(c) Tune converter automatically as described in paragraph 3-3c(5).
(d) Turn converter METER SWITCH to each position and check readings with those in table $3-14$. If readings are incorrect refer to Section 4 for trouble shooting and Section 5 for maintenance.
(9) TRANSMITTER OPERATIONAL CHECK. - Place transmitter in full operation as described in paragraphs $3-3 b(2)$ through $3-3 b(2)$ (ao) and table 3-4.
d. TRANSMITTER CONTROL CHECK.The checks for remote operation are the same as for local operation, except that the LOCALREMOTE switch is placed in REMOTE position after completing the tests for local operation. The following checks are necessary:
(1) GENERAL. - Make sure that transmitter control units and keyer are properly connected (see figure 5-166).
(2) CONTROL CHECK. - Check transmitter control units as follows:
(a) Set ON-OFF switch to ON; POWER lamp should light.
(b) Dial any number on EMISSION AND CHANNEL SELECTOR dial. Transmitter should set up for single sideband operation (A7 MODE lamp on amplifier should light) and automatically tune to channel dialed (applicable CHANNEL MEGACYCLES lamp on synthesizer should light). Filaments in RF assembly should energize and HV and LV supplies should energize. The CHANNEL meter should indicate channel dialed and A7-SSB lamp should light.
(c) Dial 2. Transmitter should set up on second channel, CHANNEL meter should indicate 2 and A7-SSB lamp should light.
(d) Dial A1. Transmitter should remain on channel 2, A7 MODE lamp on amplifier
should go out and A1 MODE lamp should light, A7-SSB lamp on transmitter control should go out and A1-CW lamp should light.
(e) Dial A3. Transmitter should remain on channel 2, A1 MODE lamp on amplifier should go out and A3 MODE lamp should light, A1-CW lamp on transmitter control should go out and A3-AM lamp should light.
(f) Dial 3. Transmitter should set up on third channel, CHANNEL meter should indicate 3, A3-AM lamp should go out and A7SSB lamp should light. A3 MODE lamp on amplifier should go out and A7 MODE lamp should light.
(g) Dial A9 High voltage to transmitter should turn off and place transmitter in standby.
(h) Dial A0. Filaments in RF assembly should turn off and disable transmitter.

2-8. INTERFERENCE REDUCTION. - To reduce interference, the assemblies containing radio frequencies are shielded. If trouble shooting or maintenance requires the removal of the shields, they should be replaced properly after maintenance is completed. Failure to do this will result in RF leaks, which can cause harmonic interference.
TVNIĐIZO


notes:
I. ALL DIMENSIONS IN INCHES.
2. HEAT DISSIPATION $3 I 80$ WATTS MAX.
3. AMBIENT TEMPERATURE DESIGN $0^{\circ} \mathrm{C}$ TO $+50^{\circ} \mathrm{C}$.
4. AMBIENT HUMIDITY DESIGN $0 \%$ TO $95 \%$ RH.
5. ASSEMBLY DESCRIPTION

IAI-CONTROL, DIAL
IA2-AMPLIFIER, AUDIO FREQUENCY (AM-4246/FRT-24A)
IA3-CONVERTER, AMPLITUDE SSB (CV-I846/FRT-24A)
IA4- POWER SUPPLY (PP-4242/FRT-24A)
IA5/IA6-SYNTHESIZER(MEMORY) ELECTRICAL FREQ (0-I25I/FRT-24A) IA7-POWER SUPPLY (PP-4243/FRT-24A)
IA7-POWER SUPPLY
IA8-AMPLIFIER,RF
IA8-AMPLIFIER, RF
IA9-CONTROL, POWER
IAIO-POWER SUPPLY, HV
IAII-POWER SUPPLY, L V
|AI2-POWER SUPPLY, SERVICE
IAI3-CABINET, ELECTRICAL EQUIPMENT


Figure 2-2. Radio Transmitter T-973/FRT-24A, Outline Drawing


Figure 2-3. Transmitter Control C-6466/FRT-24A, Outline Drawing


NOTES:
ALL DIMENSIONS IN INCHES
HEAT DISSIPATION 8 WATTS
AMBIENT TEMPERATURE DESIGN $0^{\circ} \mathrm{C}$ TO $+50^{\circ} \mathrm{C}$
4. AMBIENT HUMIDITY DESIGN 0\% TO 95\% RH
5. ALLOW SUFFICIENT CLEARANCE AT REAR OF UNIT

FOR CABLE CONNECTIONS AND SWITCH OPERATION
6. BRACKETS USED WHEN MOUNTING KEYER ON TOP

OF TRANSMITTER CONTROL C-6466/FRT-24A
7. MOUNTING HOLES FOR STANDARD 19 INCH RACK INSTALLATION.

Figure 2-4. Frequency Shift Keyer KY-557/URT, Outline Drawing

note:
I. ALL DIMENSIONS IN INCHES.

Figure 2-5. Transmission Line Coupler CU-390/FRT-24, Outline Drawing
 TERM

Figure 2-6. Plate Transformer, Terminal Locations


Figure 2-7. Radio Transmitter T-973/FRT-24A, Left-Hand Cabinet


RIGHT HAND CABINET

Figure 2-8. Radio Transmitter T-973/FRT-24A, Right-Hand Cabinet


Figure 2-9. Radio Transmitter T-973/FRT-24A, Rear Panels Removed


Figure 2-10. Radio Transmitter T-973/FRT-24A, Side View of Left-Hand Cabinet, Side Panel Removed


Figure 2-11. Radio Transmitter T-973/FRT-24A, Side View of Right-Hand Cabinet, Side Panel Removed

## SECTION 3

## OPERATION

## 3-1. FUNCTIONAL OPERATION.

a. GENERAL. - Radio Transmitting Set AN/FRT-24A (radio set) includes the following major units:
(1) Radio Transmitter T-973/FRT24 A (transmitter) which is composed of the following assemblies (see figure 3-1):
(a) RF Assembly
(b) LV Supply
(c) HV Supply
(d) Power Control
(e) Dial Control
(f) Service Supply
(g) Patch Panel
(h) Electrical Frequency Synthesizer O-1251/FRT-24A (synthesizer).
(i) Power Supply PP-4242/FRT24A (synthesizer power supply).

## Note

Amplifier and converter together form an exciter for the transmitter.
(j) Audio Frequency Amplifier AM-4246/FRT-24A (amplifier)
(k) Amplitude Single-Sideband Converter CV-1846/FRT-24A (converter).
(1) Power Supply PP-4243/FRT24 A (exciter power supply) furnishes power to amplifier and converter.
(m) Cabinet Accessories
(2) Transmitter Control C-6466/FRT24A (transmitter control); two supplied.
(3) Frequency Shift Keyer KY-557/ URT (keyer).
(4) Transmission Line Coupler CU-390/FRT-24 (transmission line coupler).

The radio set is a general purpose, quick shift, remotely controlled, single sideband radio
transmitter for operation over the $2-$ to $30-\mathrm{MC}$ frequency range. The radio set provides an average output power of 1000 watts for type A1 emission, 1000-watt peak-envelope-power (PEP) for types A3b, A3j, and F1 emission, and 400watt nominal carrier power for type A3a emission. The transmitter is tuned to any one of ten preset channels by a motor driven autotune system. A ten-preset-channel synthesizer furnishes the converter with $R F$ required for the excitation of the RF assembly in the transmitter. The transmitter can be operated locally using front-panel controls or remotely using a telephone type dial on either transmitter control.
b. DEFINITION OF METHODS OF OPERATION. - To understand the operational characteristics of the radio set, a definition of each of the four modes of operation is given below. Refer to table 3-1 for function of controls or indicators.
(1) LOCAL AUTOMATIC. - In local automatic operation, the operator selects the channel frequency and type of emission using the CHANNEL SELECTOR switch on the RF assembly, the ISB and USB selector switches on the amplifier and the SSB-CW-AM LOCAL switch on the power control assembly. The RF assembly, synthesizer, and converter automatically tune to the channel frequency selected by the CHANNEL SELECTOR switch. Initially, the synthesizer must be programmed to the desired channel frequency, and the autotune system of the RF assembly must be set up to tune the RF assembly to the operating frequency. The synthesizer can be programmed (by inserting shorting plugs in the synthesizer analog memory) for up to ten preset channel frequencies. To provide proper amplification of the ten preset channel frequencies, the RF assembly must be tuned to the proper frequency by setting up the autotune system to the operating frequency on each channel. Once the autotune system is set to the channel frequencies programmed in the synthesizer analog memory, all that is required to tune the transmitter to the operating frequency is to set the CHANNEL SELECTOR switch on the RF assembly to the proper channel number. When a channel is selected, the autotune system cycles and tunes the RF assembly to the channel frequency. Servo motors in the synthesizer and converter tune these units to the channel frequency programmed in the synthesizer analog memory. After the automatic tuning sequence, the RF assembly,


RADIO TRANSMITTER T-973/FRT-24A (UNIT I)

Figure 3-1. Radio Transmitting Set AN/FRT-24A, Major Units (Sheet 1 of 2)


Figure 3-1. Radio Transmitting Set AN/FRT-24A, Major Units (Sheet 2 of 2 )
synthesizer, and converter are tuned to the operating channel frequency. In this mode of operation, the type of emission is selected by the SSB-CW-AM LOCAL switch on the power control and the LSB and USB selector switches on the amplifier.
(2) REMOTE AUTOMATIC. - In remote automatic operation, the operator uses the transmitter control and keyer units. As mentioned in the local automatic mode of operation, the synthesizer must be programmed and the autotune system set up to the preset operating channel frequencies. However, before the transmitter can be operated remotely, the LOCAL-REMOTE switch on the power control must be in the REMOTE position. To operate the transmitter remotely, the operator need only dial the desired channel and mode of emission on the transmitter control. Upon dialing, the transmitter automatically cycles to the selected channel and sets up for the selected mode of emission. In addition to dialing, the controls on the keyer must be set to the type of emission selected. If the frequency of a preset channel must be changed, and the original preset channel frequency retained in the synthesizer analog memory, the synthesizer must be tuned to the operating frequency with the MANUAL SETTING digital switches. Once the frequency of a channel is changed, the autotune system must be reset to the changed channel frequency. To return to the original preset frequency on the changed channel, the autotune system must be reset again.
(3) LOCAL SEMI-AUTOMATIC. - In local semi-automatic operation, the transmitter is operated as in local automatic operation, but one or more of the preset channel frequencies is replaced by the frequency selected with the MANUAL SETTING digital switches on the synthesizer analog memory section. Every time a new frequency is selected by the digital switches,
the autotune system must be reset so that the RF assembly is properly tuned. This mode of operation is referred to as local semi-automatic, because the operating frequency must be set manually, although the synthesizer and converter tune automatically. When returning the semiautomatic channel to the preset channel frequency, the autotune must be reset to the preset frequency.
(4) LOCAL MANUAL. - In local manual operation, mechanical overrides on the synthesizer and converter tuning controls are used in place of the servo motors. This is an emergency method of tuning the transmitter. When operating local manual, the synthesizer operating frequency is set by the MANUAL SETTING digital switches and the synthesizer is tuned manually with its MANUAL TUNE control. The converter is also tuned manually with its $R F$ TUNE control. If the frequency of the manually tuned channel is different from that set up for the same channel in the autotune system, the RF assembly must be tuned to the manual channel frequency. Every time a channel frequency is changed, the autotune system must be reset to the original frequency.

## 3-2. PREPARATION FOR USE.

There are no special procedures to be performed before operating the radio set.

## 3-3. OPERATING PROCEDURES.

a. DESCRIPTION OF CONTROLS. - The controls and indicators used during normal operation of the radio set and the function of each are listed in table 3-1. Refer to figures 3-2 through $3-10$ for the physical location of each control or indicator.

TABLE 3-1. OPERATOR'S CONTROLS AND INDICATORS

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| POWER CONTROL (Figure 3-2) |  |  |
| PRIMARY CIRCUIT BREAKER |  | Protects transmitter from <br> 208/230-volt primary power <br> overloads and controls appli- <br> cation of 208/230-volt, 50/60- <br> cycle power to entire trans- <br> mitter. |
| FILAMENT switch |  | Controls application of power <br> to RF assembly filaments. |
|  | Pulling control | Energizes filaments. |
|  | Pusing control | Deenergizes filaments. |



Figure 3-2. Radio Transmitter T-973/FRT-24A, Operating Control and Indicator Locations

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| POWER CONTROL (Figure 3-2) (Cont.) |  |  |
| FILAMENT lamp <br> PLATE switch <br> PLATE lamp <br> LOCAL-REMOTE switch <br> (Normal position) <br> SSB-CW-AM LOCAL switch <br> (Normal position) | Pulling control <br> Pushing control <br> LOCAL <br> REMOTE <br> SSB <br> CW <br> AM | Lights when RF assembly filaments are energized. <br> Controls application of power to high-voltage and low-voltage plate transformers. <br> Energizes transformers. <br> Deenergizes transformers. <br> Lights when high-voltage and low-voltage transformers are energized. <br> Transfers control functions between local controls (for local operation) and controls on transmitter control units (for remote operation). <br> Transmitter operates with local controls. <br> Transmitter operates with remote controls. <br> Selects type of emissions. <br> Transmitter operates in single sideband mode. <br> Transmitter operates in continuous wave mode. <br> Transmitter operates in compatible amplitude modulated continuous wave mode. |
|  | ASSEMBLY (Fi |  |
| LV-TUNE-OPERATE switch <br> (Normal position) | LV <br> TUNE <br> OPERATE | Energizes RF assembly in selected steps. <br> Deenergizes HV supply and leaves LV supply energized. <br> Applies plate and screen voltage to power amplifier in RF assembly. <br> Applies full operating voltage to all circuits in RF assembly. |

TABLE 3-1. (Continued)


TABLE 3-1. (Continued)


TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| RF ASSEMBLY (Figure 3-2) (Cont.) |  |  |
| Multimeter switch (cont.) | PA SCREEN V X 1000 | Power amplifier screen grid voltage is monitored on MULTIMETER; reading should be multiplied by 1000 for true value. |
|  | DR BIAS V X 200 | Driver bias voltage is monitored on MULTIMETER; reading should be multiplied by 200 for true value. |
|  | PA BIAS V X 200 | Power amplifier bias voltage is monitored on MULTIMETER; reading should be multiplied by 200 for true value. |
|  | PA FIL V X 10 | Power amplifier filament voltage is monitored on MULTIMETER; reading should be multiplied by 10 for true value. |
| P.A. CATHODE meter |  | Indicates power amplifier cathode current. |
| LOADING meter |  | Indicates optimum loading of power amplifier stage. |
| POWER OUTPUT meter |  | Indicates forward and reverse output power of power amplifier as selected by POWER FORWARD-REVERSE switch. |
| POWER FORWARDREVERSE switch |  | Selects forward or reverse power in output line to be monitored on POWER OUTPUT meter. |
| (Normal position) | FORWARD | Forward output power is monitored on POWER OUTPUT meter. |
|  | REVERSE | Reverse (reflected) power is monitored on POWER OUTPUT meter. |
| APC ON-OFF switch | ON | Sets limit to average power output. |
|  | OFF | Average power control out of circuit. |

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :--- | :--- | :--- |
| RF ASSEMBLY (Figure 3-2) (Cont.) |  |  |
| PPC control |  | Adjusts level of peak power <br> output. |
| DR BIAS control |  | Adjusts bias voltage of driver <br> stage. |
| PA BIAS control |  | Adjusts bias voltage of power <br> amplifier stage. |

TRANSMITTER CABINET (Figure 3-2)

| PRIMARY VOLTAGE meter |  | Indicates primary voltage that <br> is applied to transmitter. |
| :--- | :--- | :--- |
| PLATE HOURS counter | Indicates total number of hours <br> power amplifier has operated. |  |
| FILAMENT HOURS counter | Indicates total number of hours <br> filament power has been applied <br> to filaments of power amplifier. |  |
| PLATE VOLTAGE meter | Indicates plate voltage of power <br> amplifier. |  |




Figure 3-3. Patch Panel, Jack Locations

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| PATCH PANEL (Figure 3-3) (Cont.) |  |  |
| PA MONITOR jack |  | Furnishes 2-to 30-MC output <br> frequency of RF assembly for <br> monitoring purposes. |

SYNTHESIZER POWER SUPPLY (Figure 3-4)
ON-OFF switch

POWER lamp

FIL lamp

BLOWN FUSE INDICATION
+180 V lamp
+28 V lamp
-12V lamp
+28 V UNREG lamp

115 VAC SEC lamp

REG
+28 V test point
+180 V test point
-24 V test point


Figure 3-4. Synthesizer Power Supply, Operating Control and Indicator Locations

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| SYNTHESIZER POWER SUPPLY (Figure 3-4) (Cont.) |  |  |
| REG (cont.) <br> +12 V test point <br> -12 V test point <br> GROUND test point <br> 6.3VDC FIL test points <br> +28 V UNREG test points <br> 115 VAC SEC test points |  | Furnishes regulated +12 volts DC output for test measurements. Measured to REG GROUND test point. <br> Furnishes regulated -12 volts DC output for test measurements. Measured to REG GROUND test point. <br> Provides ground connection for all regulated voltage test points. <br> Furnishes 6.3 volts DC filament output for test measurements. <br> Furnishes unregulated +28 volts DC output for test measurements <br> Furnishes 115 volts AC output for test measurements. |
| SYNTHESIZER (Figure 3-5) |  |  |
| BAND switch | A <br> B <br> C <br> D | Selects one of four bands of operation for converter in semi-automatic and local manual modes of operation. <br> Provides converter with a frequency range of 19.6 to 35.6 MC to cover 2 - to $4-\mathrm{MC}$ band. <br> Provides converter with a frequency range of 17.8 to 33.8 MC to cover 4 - to $8-\mathrm{MC}$ band. <br> Provides converter with a frequency range of 19.5 to 35.5 MC to cover 8- to 16 MC band. <br> Provides converter with a frequency range of 17.75 to 33.75 MC to cover 16-to 32MC band. |



TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| SYNTHESIZER (Figure 3-5) (Cont.) |  |  |
| MANUAL SETTING digital | 10-MC digital switch | Selects synthesizer operating frequency (determined from the Synthesizer Frequency Calibration book) in semi-automatic and manual mode of operation. <br> Selects first significant digit of synthesizer frequency corresponding to $10-\mathrm{MC}$ position. |
|  | 1-MC digital switch 100-KC digital switch | Selects second significant digit of synthesizer frequency corresponding to $1-\mathrm{MC}$ position. <br> Selects third significant digit of synthesizer frequency corresponding to $100-\mathrm{KC}$ position. |
|  | 10-KC digital switch | Selects fourth significant digit of synthesizer frequency corresponding to $10-\mathrm{KC}$ position. |
|  | 1-KC digital switch | Selects fifth significant digit of synthesizer frequency corresponding to $1-\mathrm{KC}$ position. |
|  | 100-CPS digital switch | Selects last digit of synthesizer frequency corresponding to 100 CPS position. |
| CHANNEL INDICATOR lamps (1 through 10) SERVO MODE switch <br> (Normal position) |  | Indicates which channel is in use during operation |
|  |  | Selects operating mode of synthesizer. |
|  | AUTO TUNE | Allows automatic synthesizer and converter tuning of any one of the ten preset channels in local or remote automatic modes of operation. |
|  | MANUAL CHANNEL SYNTH BRDG | Allows tuning of synthesizer bridge circuit during local manual operation. |
|  | MANUAL CHANNEL EXC BRDG | Allows tuning of converter after synthesizer bridge has been tuned during local manual operation. |
|  | MANUAL CHANNEL LOOP | Allows zeroing of main loop discriminator during local manual operation. |
|  | MANUAL CHANNEL AUTO | Allows tuning of synthesizer and converter during semiautomatic operation when START switch is pressed. |

TABLE 3-1. (Continued)


TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| SYNTHESIZER (Figure 3-5) (Cont.) |  |  |
| Test Meter switch (cont.) |  |  |
|  | GROUND | Grounds TEST METER and makes it inoperative. |
| MANUAL TUNE control |  | Tunes synthesizer during local manual operation. |
| FAULT lamp |  | Lights when synthesizer main loop discriminator error is excessive and not tuned to selected frequency. |
| START switch |  | Initiates automatic tuning process of synthesizer and converter during semiautomatic operation when SERVO MODE switch is in AUTO position. |
| MANUAL CHANNEL lamp |  | Lights during local manual operation. |
| MOTOR DRIVE switch | ON | Energizes servo mechanism. |
| (Normally ON) | Off (down) | Deenergizes servo mechanism. |
| PUSH TO OPERATE switch | Depressed | Removes DC error from main loop discriminator to main loop VFO, causing main loop VFO to free run. |
| READ NULL switch | Depressed | When TEST METER switch is in BRIDGE COARSE MANUAL TUNE position synthesizer is tuned for null on TEST METER. |

EXCITER POWER SUPPLY (Figure 3-6)
ON-OFF switch

POWER lamp

Voltage meter


Figure 3-6. Exciter Power Supply, Operating Control and Indicator Locations

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| EXCITER POWER SUPPLY (Figure 3-6) (Cont.) |  |  |
| Voltage selector switch | $+185 R$ <br> $+270$ <br> +185 R <br> $+240$ $-30$ | Selects one of five operating voltages to be monitored on voltage meter. <br> +185 VDC regulated is monitored on voltage meter. <br> +270 VDC is monitored on voltage meter. <br> +185 VDC regulated is monitored on voltage meter. <br> +240 VDC is monitored on voltage meter. <br> -30 VDC is monitored on voltage meter. |
| AMPLIFIER (Figure 3-7) |  |  |
| OVEN CYCLE lamp <br> LSB LINE LEVEL control <br> LSB LEVEL meter <br> LSB selector switch <br> (Normal position) | OFF LINE AMPL <br> LINE | Lights while 1-MC frequency standard crystal oven is being heated and extinguishes when proper oven temperature is reached. Cycles "on" and "off" during normal operation. <br> Provides variable attenuation of lower sideband phone line level from external terminal during local automatic, local semi-automatic and local manual operation. <br> Indicates lower sideband audio output level. <br> Selects lower sideband operating mode of amplifier section. <br> No lower sideband audio output. <br> Selects phone line input, from terminal to modulate lower sideband signal. Audio input is compressed and amplified. <br> Selects phone line input from terminal to modulate lower sideband signal. Audio input is applied directly through unit without amplification or compression. |



Figure 3-7. Amplifier, Operating Control and Indicator Locations

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| AMPLIFIER (Figure 3-7) (Cont.) |  |  |
| A 1 MODE lamp |  | Lights when A1 is dialed on EMISSION AND CHANNEL SELECTOR dial on transmitter control or when A1 is switched on by means of the SSB-CW-AM LOCAL switch located on the power control unit; light stays on indicating transmitter is set up for type A1 (CW) emission. |
| A3a MODE lamp |  | Lights when A3 is dialed on EMISSION AND CHANNEL SELECTOR dial on transmitter control or when A3 is switched on by means of the SSB-CW-AM LOCAL switch located on the power control unit; light stays on indicating transmitter is set up for type A3a (compatible AM) emission. |
| A7 MODE lamp |  | Lights when any channel is dialed on EMISSION AND CHANNEL SELECTOR dial on transmitter control or when A7 is switched on by means of the SSB-CW-AM LOCAL switch located on the power control unit; light stays on indicating transmitter is set up for types A3b (two independent sidebands), A3j (single sideband suppressed carrier) or F1 (FSK) emission. |
| PHASE DETECTOR meter |  | Indicates relative phase error between internal frequency standard and external reference frequencies as selected by REF SEL switch. |
| REF SEL switch |  | Selects internal frequency standard or external reference frequency for 1-MC reference to synthesizer and converter. Also selects signal to be compared on PHASE DETECTOR meter. |

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| AMPLIFIER (Figure 3-7) (Cont.) |  |  |
| REF SEL switch (cont.) | INT REF EXT PH DET | Selects internal frequency standard for 1-MC reference to synthesizer and converter. PHASE DETECTOR meter indicates phase error of external reference frequency compared to internal frequency standard. |
| (Normal position) | INT REF ONLY | Selects internal frequency standard for 1-MC reference to synthesizer and converter. No phase comparison. |
|  | EXT REF ONLY | Selects external reference frequency for $1-\mathrm{MC}$ reference to synthesizer and converter. No phase comparison. |
|  | EXT REF INT PH DET | Selects external reference frequency for 1-MC reference to synthesizer and converter. PHASE DETECTOR meter indicates phase error of internal frequency standard compared to external reference frequency. <br> Note <br> Maintenance adjustment only. Proper authorization required for adjustment. |
| FINE FREQ ADJ control |  | Provides fine frequency adjustment of internal 1-MC frequency standard. |
| MIKE receptacle |  | Provides connection for type H-169/U handset for transmission of speech. |
| CONVERTER (Figure 3-8) |  |  |
| POWER LAMP |  | Lights when +185 VDC from exciter power supply is applied to converter. |
| BAND SWITCH |  | Selects desired frequency band. May be set manually or automatically. |
| BAND MC counter |  | Indicates operating band of frequencies selected by BAND SWITCH. |
| RF TUNE control |  | Tunes converter to desired operating frequency. May be tuned manually or automatically, as selected by RF TUNE control. |

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| CONVERTER (Figure 3-8) (Cont.) |  |  |
| Frequency dial |  | Indicates approximate transmitter operating frequency, as selected by RF TUNE control. |
| RF GAIN control |  | Allows adjustment of converter gain to be controlled manually and in PRESET, automatically. |
| (Normal position) | $\begin{aligned} & \text { PRESE T } \\ & \text { ( Full CCW) } \end{aligned}$ | RF drive level is determined by applicable PRESET CHANNEL-RF GAIN potentiometer which is selected automatically when a frequency channel is changed. |
|  | Clockwise | RF drive level is adjusted manually by rotating control clockwise for desired amount of drive (PRESET CHANNEL-RF GAIN potentiometers are disabled). |
| SSB CARRIER INSERT switch |  | Allows predetermined 1750-KC carrier levels to be inserted for reduced carrier operation. |
|  | 0 DB | Inserts predetermined carrier level of 0 DB with respect to 1 KW PEP. |
|  | $-10 \mathrm{DB}$ | Inserts a predetermined carrier level of -10 DB with respect to 1 KW PEP. |
|  | $-20 \mathrm{DB}$ | Inserts a predetermined carrier level of -20 DB with respect to 1 KW PEP. Some carrier is inserted into the SSB transmission to overcome poor reception due to noise. |
| (Normal position) | SUPPR CARRIER | Carrier level is suppressed 60 DB. |
| PRESET CHANNEL-RF GAIN potentiometers |  | Provides preset gain adjustment of channel 1 through 10 of converter. |
|  | CHANNEL |  |
|  |  | Provides RF gain adjustment for operation on channel 1; must be adjusted whenever channel frequency is changed. |



Figure 3-8. Converter, Operating Control and Indicator Locations

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |

CONVERTER (Figure 3-8) (Cont.)


TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| CONVERTER ( Figure 3-8) (Cont.) |  |  |
| METER switch (cont.) | -30V <br> $+26 \mathrm{~V}$ <br> $-12 \mathrm{~V}$ <br> $-6 \mathrm{~V}$ <br> $-10 \mathrm{~V}$ <br> OFF <br> SYNTH <br> IFO <br> 1MC <br> OUTPUT <br> $+180 \mathrm{~V}$ | - 30 -volt input from exciter power supply is monitored on METER.* <br> +26 -volt input from amplifier is monitored on METER.* <br> - 12 -volt input from exciter power supply is monitored on METER.* <br> -6-volt in converter is monitored on METER.* <br> - 10 -volt in converter is monitored on METER.* <br> METER is not operative. <br> Synthesizer input to converter is monitored on METER.* <br> Intermediate frequency oscillator output is monitored on METER.* <br> 1-MC input from amplifier is monitored on METER.* <br> RF output is monitored on METER.* <br> +185 -volt input from exciter power supply is monitored on METER (Zener diode drops voltage to +180 VDC).* |
| *Proper operating level will occur in yellow area on METER. |  |  |
| TRANSMITTER CONTROL (Figure 3-9) |  |  |
| ON-OFF switch |  | Controls application of primary power to transmitter control. |
| POWER lamp |  | Lights when primary power is applied to transmitter control. |
| AUDIO LEVEL meter |  | Indicates level of audio signal selected by INPUT-OUTPUT switch. |
| INPUT-OUTPUT switch |  | Selects signal to be monitored on AUDIO LEVEL meter. |

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| TRANSMITTER CONTROL (Figure 3-9) (Cont.) |  |  |
| INPUT-OUTPUT switch (cont.) | INPUT | Audio input to transmitter control is monitored on AUDIO LEVEL meter. |
| (Normal Position) | OUTPUT | Audio output of transmitter control is monitored on AUDIO LEVEL meter. |
| AUDIO GAIN control |  | Adjusts audio output level of transmitter control. |
| CHANNEL meter |  | Indicates dialed channel when transmitter is operationally ready. OFF indicates transmitter is either secured or in standby. |
| EMISSION AND CHANNEL SELECTOR dial |  | Selects type of emission (CW, compatible AM, or SSB) and channel for transmitter when operating transmitter remotely. Also places transmitter in standby and turns it on and off. |
|  | Dial 1 through 0 | Transmitter tunes to dialed channel frequency in the SSB mode of emission. CHANNEL meter indicates dialed channel when transmitter is operationally ready. Approximately 15 to 20 seconds is required for the transmitter to tune to a new channel frequency. Approximately 3 to 5 minutes is required for the transmitter to warm up and tune to a channel frequency from the transmitter off mode (filament and high voltage off). |
|  | Dial A1* | CW type emission is selected. |
|  | Dial A3* | Compatible AM type emission is selected. |
|  | Dial A7* | SSB, ISB, and FSK type emission is selected. |
|  | Dial A9 | Transmitter is placed in standby (filaments on and high voltage off). |
|  | Dial A0 | Transmitter is secured (filaments and high voltage off). |

[^0]

Figure 3-9. Transmitter Control, Operating Control and Indicator Locations

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| TRANSMITTER CONTROL (Figure 3-9) (Cont.) |  |  |
| A1-CW lamp |  | Lights when A1 is dialed on EMISSION AND CHANNEL SELECTOR dial or when A1 is switched on by means of the SSB-CW-AM LOCAL switch located on the power control unit; light stays on indicating transmitter is set up for type A1 emission. |
| A3-AM lamp |  | Lights when A3 is dialed on EMISSION AND CHANNEL SELECTOR dial or when A3 is switched on by means of the SSB-CW-AM LOCAL switch located on the power control unit; light stays on indicating transmitter is set up for type A3a emission. |
| A7-SSB lamp |  | Lights when any channel is dialed on EMISSION AND CHANNEL SELECTOR dial or when A7 is switched on by means of the SSB-CW-AM LOCAL switch located on the power control unit; light stays on indicating transmitter is set up for type A3b, A3j, or F1 emission. |
| MICROPHONE receptacle |  | Provides connection for H-169/U handset. |
| KEY jack |  | Provides connection for telegraph key. |
| KEYER (Figure 3-10) |  |  |
| ON-OFF switch |  | Controls application of primary power to keyer. |
| POWER lamp |  | Lights when primary power is applied to keyer. |
| LSB LEVEL meter |  | Indicates lower sideband audio output level of keyer. Level is adjustable with LSB LEVEL ADJUST. |
| FUNCTION LSB selector |  | Selects lower sideband operating mode of keyer. |
|  |  | No lower sideband output from keyer. |



Figure 3-10. Keyer, Operating Control and Indicator Locations

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| KEYER ( Figure 3-10) |  |  |
| FUNCTION LSB selector (cont.) | C-6466 | Selects direct line audio input from transmitter control to modulate lower sideband signal. |
|  | LSB RMTE | Selects remote phone line input to modulate lower sideband signal. |
|  | FSK CW | Selects frequency shift keyed 2000 CPS or frequency shift keyed 2550 CPS when MODE switch is in 2000~FSK or 2550~FSK position and TEST switch is in LINE position. When MODE switch is in CW 1KC position and TEST switch is in LINE position, keyer provides continuous $1-\mathrm{KC}$ tone that is keyed by telegraph key at the transmitter control unit or an interrupted 1-KC tone keyed by the teletype data. |
| LSB LEVEL ADJUST |  | Adjusts lower sideband output level. |
| LSB MONITOR jack |  | Provides means of monitoring lower sideband output of keyer with headset. |
| USB LEVEL meter |  | Indicates upper sideband audio output level of keyer. Level is adjustable with USB LEVEL ADJUST. |
| FUNCTION USE selector switch |  | Selects upper sideband operating mode of keyer. |
|  | OFF | No upper sideband output from keyer. |
|  | C-6466 | Selects direct line audio input from transmitter control to modulate upper sideband signal. |
|  | USB RMTE | Selects remote phone line input to modulate upper sideband signal. |

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| KEYER (Figure 3-10) (Cont.) |  |  |
| FUNCTION USB selector switch (cont.) | FSK CW | Selects frequency shift keyed 2000 CPS or frequency shift keyed 2550 CPS when MODE switch is in 2000~FSK or 2550~ FSK position and TEST switch is in LINE position. When MODE switch is in CW 1-KC position and TEST switch is in LINE position, keyer provides continuous $1-\mathrm{KC}$ tone that is keyed by telegraph key at the transmitter control unit or an interrupted $1-\mathrm{KC}$ keyed by the teletype data. |
| USB LEVEL ADJUST |  | Adjusts upper sideband output level. |
| USB MONITOR jack |  | Provides means of monitoring upper sideband output of keyer with headset. |
| MODE selector switch |  | Selects frequency shift keying signal center frequency. |
|  | OFF | No frequency shift keyed output signal. |
|  | 2550~ FSK | Provides frequency shift keyed output with center frequency of 2550 CPS when FUNCTION USB or FUNCTION LSB selector switch is in FSK CW position. |
|  | 2000 ~ FSK | Provides frequency shift keyed output with center frequency of 2000 CPS when FUNCTION USB or FUNCTION LSB selector switch is in FSK CW position. |
|  | CW 1KC | Provides continuous 1-KC tone output when FUNCTION USB or FUNCTION LSB selector switch is in FSK CW position. |
| TEST switch |  | Selects actual or simulated teletypewriter data to produce frequency shift keyed output. |
| (Normal position) | LINE | Provides frequency shift keyed output produced by actual teletypewriter data from the $20 / 60 \mathrm{MA}$ key loop. |

TABLE 3-1. (Continued)

| CONTROL OR INDICATOR | POSITION | FUNCTION |
| :---: | :---: | :---: |
| KEYER (Figure 3-10) (Cont.) |  |  |
| TEST switch (cont.) |  |  |
|  | MARK | Provides simulated 'mark' output frequency. When MODE switch is in 2550~FSK position and SENSE INVERTER switch is in NORM position 'mark" frequency is 2975 CPS. When SENSE INVERTER switch is thrown to INV position, 'mark" frequency is 2125 CPS. When MODE switch is in 2000~FSK position and SENSE INVERTER switch is in NORM position, ''mark' frequency is 2425 CPS. When SENSE INVERTER switch is thrown to INV position, "mark" frequency is 1575 CPS. |
|  | SPACE | Provides simulated 'space" output frequency. When MODE switch is in 2550~ FSK position and SENSE INVERTER switch is in NORM position, 'space" frequency is 2125 CPS. When SENSE INVERTER switch is thrown to INV position, "space" frequency is 2975 CPS. When MODE switch is in 2000~ FSK position and SENSE INVERTER switch is in NORM position, 'space" frequency is 1575 CPS. When SENSE INVERTER switch is thrown to INV position, 'space" frequency is 2425 CPS. |
| TONE SUPPR switch |  | Provides tone suppression of keyer output at end of teletypewriter message. |
| (Normal position) | ON | Discontinues 'mark' or 'space" output frequency (depending upon position of SENSE INVERTER switch) after completion of teletypewriter message. |
|  | OFF | No suppression of continuous "mark" or 'space" frequency after completion |

TABLE 3-1. (Continued)


## b. BEFORE OPERATION.

## CAUTION

Before operating the radio set, make sure all interconnections have been made in accordance with Section 2 (Installation).

## (1) PROGRAMMING PRESET CHAN-

NELS. - Before operating the radio set for the first time or whenever changing a channel frequency, program the synthesizer to ten preset operating frequencies (channels 1 through 10). The synthesizer frequency may be determined from the Synthesizer Frequency Calibration manual supplied with the equipment, or by performing the procedure which follows. The Synthesizer Frequency Calibration manual lists the synthesizer setting for frequencies between 2-MC and $34-\mathrm{MC}$ in $100-\mathrm{cycle}$ steps. If an operating frequency is chosen with less than 100-cycle steps, the following procedure must be performed for the correct synthesizer setting. If the synthesizer has been programmed previously, start the equipment as described in paragraph $3-3 c(1)$. To preset the channel operating frequencies, proceed as follows:

## Notes

1. Select frequency range in accordance with frequency range of available antenna.
2. The frequency setting of the synthesizer is not necessarily the output frequency of the synthesizer.
(a) Select and record ten antenna frequencies from 2 to 30 MC .
(b) Determine operating frequencies of synthesizer for antenna frequencies selected as follows:

SETTING $=\mathrm{N}\left(\mathrm{f}_{\text {ant }}+\mathrm{f}_{\text {off }}\right)-1.75 \mathrm{MC}$.
Where: SETTING is synthesizer output frequency minus 1.75 MC . N is band divider: band divider for band $\mathrm{A}(2-4 \mathrm{MC})$ is 8 , for band B (4-8 MC) is 4 , for band C (8-16 MC) is 2 , and for band $D(16-30$ MC ) is 1 .
$\mathrm{f}_{\text {ant }}$ is antenna operating frequency. $\mathrm{f}_{\text {off }}$ is offset frequency of converter; for bands $A$ and $B$, it is 0.450 MC, and for bands C and D , it is 1.75 MC.

Example: For antenna frequency of 6 MC

$$
\begin{aligned}
\text { SETTING }= & \mathrm{N}\left(\mathrm{f}_{\text {ant }}+\mathrm{f}_{\mathrm{off}}\right)-1.75 \mathrm{MC} \\
= & 4\left(6 \times 10^{6}+0.450 \times 10^{6}\right)-1.75 \mathrm{x} \\
& 10^{6} \\
= & 4\left(6.450 \times 10^{6}\right)-1.75 \times 10^{6} \\
= & 25.80 \times 10^{6}-1.75 \times 10^{6} \\
= & 24.05 \times 10^{6} \\
= & 24.05 \mathrm{MC}
\end{aligned}
$$

(c) Pull synthesizer out of transmitter cabinet until it locks in extended position.
(d) Remove all shorting plugs from analog memory section (top of synthesizer).
(e) Insert shorting plug in BAND hole of $\mathrm{CH} \longrightarrow 1$ corresponding to N used in determining channel 1 preset frequency.
(f) Insert shorting plug in $10-\mathrm{MC}$ hole of $\mathrm{CH} \longrightarrow 1$ corresponding to $10-\mathrm{MC}$ digit determined for channel 1 preset frequency.
(g) Insert shorting plug in 1-MC hole of $\mathrm{CH} \longrightarrow 1$ corresponding to $1-\mathrm{MC}$ digit determined for channel 1 preset frequency.
(h) Insert shorting plug in $100-\mathrm{KC}$ hole of $\mathrm{CH} \longrightarrow 1$ corresponding to $100-\mathrm{KC}$ digit determined for channel 1 preset frequency.
(i) Insert shorting plug in $10-\mathrm{KC}$ hole of $\mathrm{CH} \longrightarrow 1$ corresponding to $10-\mathrm{KC}$ digit determined for channel 1 preset frequency.
(j) Insert shorting plug in 1-KC hole of $\mathrm{CH} \longrightarrow 1$ corresponding to $1-\mathrm{KC}$ digit determined for channel 1 preset frequency.
(k) Insert shorting plug in $100 \sim$ hole of $\mathrm{CH} \longrightarrow 1$ corresponding to 100 -cycle digit determined for channel 1 preset frequency.
(l) Repeat steps (e) through (k) for channels 2 through 10.
(m) Record preset frequencies on front panel of synthesizer above corresponding CHANNEL INDICATOR lamps.
(n) Push synthesizer into transmitter and secure in place.
(o) Record type of emission and output power that will be used on each preset channel above corresponding CHANNEL INDICATOR lamps.
(2) SETTING AUTOTUNE SYSTEM. Set the autotune system only if the synthesizer channels are preset to a different operating frequency or if the autotune system controls have been moved. Set controls as indicated in table 2-3.

## Note

Make sure EXCITER OUTPUT jack is connected to 1st AMPL INPUT jack on patch panel and that transmitter is terminated in a dummy load.
(a) Turn LOCAL-REMOTE switch
to LOCAL.
(b) Throw PRIMARY CIRCUIT BREAKER, located on power control assembly to ON .
(c) Turn SSB-CW-AM LOCAL switch to SSB.

## Note

Make certain TEST KEY switch is in center position; APC ON-OFF switch is OFF; and POWER FORWARD - REVERSE switch is in FORWARD. REF SEL switch on the amplifier should be in INT REF ONLY.
(d) Pull out FILAMENT switch.
(e) Throw power switch, located on synthesizer and exciter power supplies, to ON and check voltages.
(f) Allow equipment to warm up for at least five minutes.

## Note

Make certain locking screws on all autotune system controls, located on RF assembly, are secure.
(g) Turn SERVO MODE switch to AUTO TUNE.
(h) Throw MOTOR DRIVE switch, located on synthesizer, to ON.
(i) Press START switch momentarily. Allow autotune system to cycle.
(j) Turn RF GAIN control, located on converter, fully counterclockwise but not to PRESET.
(k) Turn SSB CARRIER INSERT control to 0 DB .
(1) Turn CHANNEL SELECTOR switch, located on RF assembly, to reprogrammed synthesizer channel and allow autotune system to cycle.
(m) After autotune system has cycled, loosen all locking screws on autotune knobs. ORIGINAL
(n) Turn autotune system controls to positions indicated in table 3-2 for approximate settings corresponding to reprogrammed channel frequency of synthesizer.
(o) Turn LV-TUNE-OPERATE switch to LV.
(p) Pull out PLATE switch, located on power control assembly.
(q) Throw TEST KEY switch, located on RF assembly, to up (locked position). Connect patch cord to PA 1st AMPL INPUT jack on patch panel.
(r) Turn MULTIMETER switch, located on RF assembly, to DRIVER PLATE MA X100. Adjust DRIVER BIAS for 50 MA .
(s) Turn ME TER SWITCH, located on converter, to OUTPUT and adjust RF GAIN control for two divisions on METER and adjust EXCITER TUNING control for peak reading on MULTIMETER.
(t) Adjust DRIVER PLATE TUNING control for dip on MULTIMETER.
(u) Turn LV-TUNE OPERATE switch to OPERATE and adjust PA BIAS for a nominal reading on PA CATHODE meter.
(v) Turn LV - TUNE - OPERATE switch to TUNE and readjust RF EXCITER DRIVE for 200 watts out of PA and a $400-$ MA reading on the PA CATHODE meter.
(w) Adjust P.A. PLATE TUNING control for dip on PA CATHODE meter.
(x) Adjust P.A. LOADING control for green area indication on LOADING meter. Readjust P.A. PLATE TUNING control to maintain resonance in power amplifier plate circuit. (Resonance is indicated by a minimum dip in reading on P.A. CATHODE meter.) Check that LOADING meter pointer is approximately $1 / 4$ inch to the right of the green area. Reduce RF GAIN control to zero output.
(y) Turn LV-TUNE-OPERATE switch to OPERATE.
(z) Alternately adjust PA LOADING control and PA PLATE TUNING control to keep LOADING meter in green area and PA CATHODE meter dipped. Adjust RF GAIN control for 1 KW on POWER OUTPUT meter.PA CATHODE meter should read 750 MA nominal.
(aa) Compare all meter readings with those in table 3-11 (type A1 emission). If they do not agree, repeat steps (1) through (z).

TABLE 3-2. AUTOTUNE TUNING CHART

| FREQ (MC) | BAND SWITCH | APPROX POSITION OF CONTROLS |  |  |  |  | APPROX METER READINGS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { P.A. LOAD- } \\ & \text { ING } \end{aligned}$ | DRIVER PLATE | $\begin{aligned} & \text { LOADING } \\ & \text { COIL } \\ & \text { SWITCH } \end{aligned}$ | $\begin{aligned} & \text { P.A. } \\ & \text { PLATE } \end{aligned}$ | EXCITER <br> TUNING | MULTI <br> METER* | $\begin{gathered} \text { PLATE } \\ \text { VOLT- } \\ \text { AGE } \end{gathered}$ | $\begin{gathered} \text { P.A. } \\ \text { CATHODE } \\ \text { (NOMINAL) } \end{gathered}$ | $\begin{aligned} & \text { LOAD- } \\ & \text { ING } \end{aligned}$ | POWER OUTPUT (KW PEP) |
| 2 | 1 | 44 | 4 | 1 | 32 | 12 | 50-60 | 3000 | 750 MA | Green | 1 |
| 3 | 1 | 80 | 70 | 1 | 75 | 64 | 50-60 | 3000 | 750 MA | Green | 1 |
| 3 | 2 | 50 | 14 | 2 | 30 | 42 | 50-60 | 3000 | 750 MA | Green | 1 |
| 4 | 2 | 77 | 60 | 2 | 62 | 92 | 50-60 | 3000 | 750 MA | Green | 1 |
| 4 | 3 | 61 | 26 | 3 | 45 | 54 | 50-60 | 3000 | 750 MA | Green | 1 |
| 6 | 3 | 92 | 76 | 3 | 78 | 88 | 50-60 | 3000 | 750 MA | Green | 1 |
| 6 | 4 | 79 | 54 | 4 | 65 | 24 | 50-60 | 3000 | 750 MA | Green | 1 |
| 8 | 4 | 93 | 80 | 4 | 82 | 66 | 50-60 | 3000 | 750 MA | Green | 1 |
| 8 | 5 | 55 | 38 | 5 | 65 | 38 | 50-60 | 3000 | 750 MA | Green | 1 |
| 12 | 5 | 90 | 80 | 5 | 90 | 86 | 50-60 | 3000 | 750 MA | Green | 1 |
| 12 | 6 | 67 | 40 | 6 | 71 | 40 | 50-60 | 3000 | 750 MA | Green | 1 |
| 16 | 6 | 90 | 72 | 6 | 86 | 76 | 50-60 | 3000 | 750 MA | Green | 1 |
| 16 | 7 | 42 | 28 | 6 | 48 | 34 | 50-60 | 3000 | 750 MA | Green | 1 |
| 24 | 7 | 74 | 78 | 9 | 83 | 88 | 50-60 | 3000 | 750 MA | Green | 1 |
| 24 | 8 | 61 | 54 | 9 | 68 | 38 | 50-60 | 3000 | 750 MA | Green | 1 |
| 30 | 8 | 79 | 82 | 10 | 81 | 64 | 50-60 | 3000 | 750 MA | Green | 1 |

[^1](ab) After all tuning controls of auto-tune system have been properly adjusted, tighten locking screws and record all control settings on a sheet of paper.
(ac) Turn RF GAIN control, located on converter, to zero output.
(ad) Remove cable to 1 st AMPL INPUT jack located on patch panel, and connect it to $50-\mathrm{OHM}$ LOAD jack.
(ae) Turn RF GAIN control, located on converter, to PRESET and adjust Preset Potentiometer for Channel 1 to zero output.
(af) Disconnect cable to 50 OHM LOAD jack, located on patch panel and connect it to 1st AMPL INPUT jack, located on patch panel.
(ag) Adjust CHANNEL 1 Preset Potentiometer located on converter for desired output power on POWER OUTPUT meter, located on RF assembly.
(ah) Turn CHANNEL SELECTOR switch located on RF assembly, to 2. After autotune system has cycled, set CHANNEL SELECTOR switch to channel 1. Autotune system controls should return to positions recorded in step (ab). If controls do not return to correct positions, repeat steps (a) through (ag).
(ai) Repeat steps (1) through (ah) for preset channels 2 through 10.
(aj) Slide PRESET CHANNELRF GAIN cover to left and tighten the two screws.
(ak) Turn RF GAIN control, located on converter, for 1 KW on RF assembly POWER OUTPUT meter.
(al) Throw APC ON-OFF switch on RF assembly to ON.
c. SEQUENCE OF OPERATION. - To operate the radio set, proceed as follows:
(1) STARTING LOCALLY. To start the radio set locally, set controls as indicated in table 3-3.

Note

If preset operating frequencies must be changed, refer to paragraphs $3-3 b(1)$ and $3-3 \mathrm{~b}(2)$.
(2) STARTING REMOTELY. - To start the radio set remotely, set controls as indicated in table 3-3 and proceed as follows:
(a) Turn LOCAL-REMOTE switch, located on power control assembly, to REMOTE.
(b) Throw ON-OFF switch, located on transmitter control, to ON.
(c) The radio set can now be started, with telephone-type dial switch on transmitter control. Dialing desired channel number starts radio set automatically.
(3) OPERATING LOCAL-AUTOMATIC. - To operate the radio set local-automatic, proceed as follows:
(a) Turn LOCAL—REMOTE switch, located on power control assembly, to LOCAL.
(b) Turn CHANNEL SELECTOR switch, located on RF assembly, to desired channel.
(c) Refer to tables 3-4 through 3-6 for desired type of emission and perform steps as indicated.
(4) OPERATING REMOTE-AUTOMATIC. - To operate the radio set remote-automatic, proceed as follows:

## CAUTION

Perform following steps only when radio set has been properly tuned and adjusted as described in paragraphs $3-3 b(1)$ and $3-3 b(2)$.
(a) Turn LOCAL-REMOTE switch, located on power control, to REMOTE.
(b) Refer to tables 3-7 through 3-10
for desired type of emission and perform steps as indicated.
(5) OPERATING LOCAL-SEMIAUTOMATIC.

## Note

Only use this type of operation when an operating frequency other than a preset channel frequency is desired.

To operate the radio set local-semi-automatic, proceed as follows:
(a) Turn LOCAL-REMOTE switch, located on power control, to LOCAL.
(b) Turn CHANNEL SELECTOR switch, located on RF assembly, to channel with frequency that is seldom used.
(c) Turn SERVO MODE selector switch, located on synthesizer, to MANUALAUTO.
(d) Throw MOTOR DRIVE switch to ON.
(e) Determine operating frequency of synthesizer as indicated below.

| BAND | RANGE (MC) | SETTING |
| :---: | :---: | :--- |
| A | $2-4$ | $8 \mathrm{~F}+1.8500$ |
| B | $4-8$ | $4 \mathrm{~F}+0.0500$ |
| C | $8-16$ | $2 \mathrm{~F}+1.7500$ |
| D | $16-32$ | F |

(f) Set frequency, determined above, on MANUAL SETTING digital switch.
(g) Turn BAND switch, located on synthesizer, to band selected in step (e).
(h) Energize transmitter as described in paragraphs $3-3 b(2)(a)$ through $3-3 b(2)(f)$.
(i) Momentarily press START switch located on synthesizer.
(j) Turn RF GAIN control, located on converter, counterclockwise but not to PRESET.
(k) Turn SSB CARRIER INSERT control to SUPPR CARRIER.
(1) Set autotune system controls, located on RF assembly, as described in paragraph $3-3 b(2)(n)$ through $3-3 b(2)(a b)$.
(m) Refer to tables 3-4 through 3-6 for desired type of emission and perform steps as indicated.
(6) STOPPING LOCALLY. - To shut down the radio set locally, push in the FILAMENT switch, located on the power control. The plate and filament hold circuits will be open and the transmitter will not operate until the starting procedure described in paragraph $3-3 b(1)$ is performed.
(7) STOPPING REMOTELY. - To turn off the plate power supplied and put the transmitter on standby, dial A9 on the EMISSION AND CHANNEL SELECTOR dial switch, located on the transmitter control. To turn off all power supplies, dial A0. To turn off the transmitter control, throw its ON-OFF switch to OFF. To turn off the keyer, throw its ON-OFF switch to OFF.
d. INDICATOR PRESENTATIONS. - Typical meter readings for the various modes of emission are given in tables 3-11 through 3-15. Under normal operation the OVEN CYCLE indicator lamp on the amplifier will cycle "on" and "off" at regular rate.

## 3-4. SUMMARY OF OPERATING PROCEDURES.

A summary of operating procedures for the radio set is given in table $3-16$. There is also an equipment check-out procedure in the rear of the manual for quickly and effectively checking out the transmitter.

TABLE 3-3. STARTING CONTROL SETTINGS FOR A PRE-TUNED TRANSMITTER

| CONTROL NAME | LOCATION | POSITION |
| :--- | :--- | :--- |
| LOCAL-REMOTE switch | Power Control | LOCAL |
| PRIMARY CIRCUIT BREAKER | Power Control | ON |
| SSB-CW-AM LOCAL switch | Power Control | Desired emission |
| FILAMENT switch | Power Control | Pulled Out |
| ON-OFF switch | Synthesizer Power Supply | ON |
| ON-OFF Switch | Exciter Power Supply | ON |
| SERVO MODE switch | Synthesizer | AUTOTUNE |
| MOTOR DRIVE ON switch | Synthesizer | ON |
| RF GAIN control | Converter | PRESET |
| SSB CARRIER INSERT switch | Converter | SUPPR CARRIER |
| LV-TUNE-OPERATE switch | RF Assembly | OPERATE |
| PLATE Switch | Power Control | Pulled out |
| LSB selector switch | Amplifier | LINE |
| USB selector switch | Amplifier | FINE |
| POWER FORWARD-REVERSE switch | RF Assembly |  |

TABLE 3-4. COMPATIBLE AM, LOCAL-AUTOMATIC OPERATION CONTROL SETTINGS


TABLE 3-5. INDEPENDENT SIDEBAND, LOCAL-AUTOMATIC OPERATION, CONTROL SETTINGS

| DIRECTION TO OPERATOR | LOCATED ON FRONT PANEL OF |
| :--- | :--- | :--- |
| 1.Turn SSB-CW-AM LOCAL switch to SSB.  <br> 2. Turn USB selector switch to MIKE. <br> 3. Turn LSB selector switch to MIKE. <br> 4.Connect Handset H-169/U to MIKE <br> receptacle. Press press-to-talk <br> switch and talk at normal level into <br> handset transmitter while adjusting <br> MIKE LEVEL control for red line <br> PEAK readings on LSB LEVEL AND <br> USB LEVEL meters. Amplifier <br> To transmit phone-line information <br> set LSB and USB selector switches to <br> LINE AMPL or LINE position as <br> desired. Amplifier | Amplifier |

TABLE 3-6. SINGLE SIDEBAND, LOCAL-AUTOMATIC OPERATION, CONTROL SETTINGS

| DIRECTION TO OPERATOR | LOCATED ON FRONT PANEL OF |
| :---: | :---: |
| 1. Turn SSB-CW-AM LOCAL switch to SSB. <br> 2. Turn USB or LSB selector switch (depending upon sideband selected) to MIKE and other sideband switch to OFF. <br> 3. Connect Handset H--169/U to MIKE receptacle. Press press--to-talk switch and talk at normal level into handset transmitter while adjusting MIKE LEVEL control for red line PEAK readings on USB LEVEL or LSB LEVEL meter. <br> 4. To transmit phone-line information, set applicable sideband selector switch to LINE AMPL or LINE position and other sideband selector switch to OFF. | Power Control <br> Amplifier <br> Amplifier <br> Amplifier |

TABLE 3-7. CONTINUOUS WAVE, REMOTE-AUTOMATIC OPERATION, CONTROL SETTINGS


TABLE 3-8. COMPATIBLE AM, REMOTE-AUTOMATIC OPERATION, CONTROL SETTINGS


TABLE 3-9. INDEPENDENT SIDEBAND, AND SINGLE SIDEBAND, REMOTEAUTOMATIC OPERATION, CONTROL SETTINGS

|  | DIRECTION TO OPERATOR |
| :--- | :--- | :--- |$\quad$ LOCATED ON FRONT PANEL OF

TABLE 3-10. FREQUENCY SHIFT KEYING, REMOTE-AUTOMATIC OPERATION, CONTROL SETTINGS

| DIRECTION TO OPERATOR | LOCATED ON FRONT PANEL OF |
| :---: | :---: |
| 1. Throw ON-OFF switch to ON. | Keyer |
| 2. Throw TONE SUPPR switch to ON. | Keyer |
| 3. Turn MODE switch to desired mode of operation. | Keyer |
| 4. Turn FUNCTION USB or FUNCTION LSB switch to desired position. | Keyer |
| 5. Adjust applicable LEVEL ADJUST control so that the pointer on corresponding level meter is in center of yellow area. | Keyer |
| 6. Turn TEST switch to LINE. | Keyer |
| 7. Throw SENSE INVERTER and KEYLINE INVERTER switches (rear panel) to NORM or to INV position for inverted operation. | Keyer |
| 8. Dial desired channel number on EMISSION AND CHANNEL SELECTOR dial switch. When transmitter is set up on selected channel, channel number appears on CHANNEL meter. | Transmitter Control |
| 9. Dial A7 on EMISSION AND CHANNEL SELECTOR dial switch. | Transmitter Control |

TABLE 3-11. RF ASSEMBLY AND TRANSMITTER CABINET, TYPICAL METER READINGS


TABLE 3-11. (Continued)

| METER | SWITCH ANDPOSITION | MODE/READING |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { CW } \\ & \text { (A1) } \end{aligned}$ | $\begin{gathered} \text { Compatible } \\ \text { AM } \\ \text { (A3a) } \end{gathered}$ | $\begin{aligned} & \text { ISB } \\ & \text { (A3b) } \end{aligned}$ | $\begin{aligned} & \text { SSB } \\ & (\mathrm{A} 3 \mathrm{j}) \end{aligned}$ | $\begin{aligned} & \text { FSK } \\ & (\mathrm{F} 1) \end{aligned}$ |
| MULTIMETER (Cont.) | DR PLATEx100 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
|  | 1st AMPL Vx100 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
|  | PA SCREEN Vx1000 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 |
|  | DR BIAS Vx200 (NOMINAL) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
|  | PA BIAS Vx200 (NOMINAL) | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
|  | PA FIL/Vx10 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
| $\begin{aligned} & \text { P.A. CATHODE } \\ & \text { (NOMINAL) } \end{aligned}$ |  | 750 | 500 | 750 | 750 | 750 |
| LOADING |  | GREEN AREA |  |  |  |  |
| POWER OUTPUT | POWER FORWARD- <br> REVERSE switch |  |  |  |  |  |
|  | FORWARD | Desired output |  |  |  |  |
|  | REVERSE | Approx. zero |  |  |  |  |

TABLE 3-12. SYNTHESIZER TYPICAL METER READINGS

| METER SELECTOR SWITCH POSITIONS | METER READINGS |
| :---: | :---: |
| BRIDGE COURSE MANUAL TUNE 100 KC LOOP FINE MAN. TUNE <br> 10 KC LOOP <br> 1 KC LOOP <br> 100 CPS LOOP <br> LIMITER <br> INCR MONITOR <br> +180 V DC <br> +28 V DC <br> 6 V FIL <br> GROUND | 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> (-) Direction <br> 0 <br> +2.5 to +3.5 <br> +2.5 to +3.5 <br> +2.5 to +3.5 <br> 0 |

TABLE 3-13. AMPLIFIER TYPICAL METER READINGS

| METER SELECTOR SWITCH POSITIONS | METER READINGS |
| :---: | :---: |
| LSB LEVEL METER (WITH TONE APPLIED) |  |
| OFF | None |
| LINE AMPL | Red line $\pm$ yellow area |
| LINE | Red line $\pm$ yellow area |
| MIKE | Red line $\pm$ yellow area |
| USB LEVEL METER (WITH TONE APPLIED) |  |
| OFF | None |
| LINE AMPL | Red line $\pm$ yellow area |
| LINE | Red line $\pm$ yellow area |
| MIKE | Red line $\pm$ yellow area |
| PHASE DETECTOR METER (WITH EXTERNAL STANDARD APPLIED) |  |
| INT REF EXT PH DET | Needle cycles (speed of cycle depends on frequency difference) |
| INT REF ONLY | None |
| EXT REF ONLY | None |
| EXT REF INT PH DET | Needle cycles (speed of cycling depends on frequency difference) |

TABLE 3-14. CONVERTER TYPICAL METER READINGS

| METER SELECTOR SWITCH POSITIONS | METER READINGS |
| :--- | :--- |
| OFF | None |
| SYNTH | Approximately $2-8$ |
| IFO | Red line $\pm$ yellow area |
| 1 MC | Red line $\pm$ yellow area |
| OUTPUT | Variable, approximately $3-4$ |
| +180 V | Red line $\pm$ yellow area |
| OFF | None |
| -30 V | Red line $\pm$ yellow area |
| +26 V | Red line $\pm$ yellow area |
| -12 V | Red line $\pm$ yellow area |
| -6 V | Red line $\pm$ yellow area |
| -10 V | Red line $\pm$ yellow area |

TABLE 3-15. EXCITER FOWER SUFFLY, TYPICAL METER READINGS

| VOLTAGE SELECTOR SWITCH FOSITIONS | VOLTAGE METER READING |
| :---: | :---: |
| $+185 R$ | +185 |
| +270 | +270 |
| $+185 R$ | +185 |
| +240 | +240 |
| -30 | -30 |

TABLE 3-16. SUMMARY OF OPERATING PROCEDURES

| STEP | PROCEDURE |
| :---: | :---: |
|  | Note <br> To change preset operating frequencies, refer to paragraphs $3-3 b(1)$ and $3-3 b(2)$. |
|  | STARTING LOCALLY |
| 1. | Turn LOCAL-REMOTE switch on power control to LOCAL. |
| 2. | Throw FRIMARY CIRCUIT BREAKER on power control to ON. |
| 3. | Turn SSB-CW-AM LOCAL switch on power control to desired emission. |
| 4. | Turn SERVO MODE switch on synthesizer to AUTO TUNE. |
| 5. | Turn RF GAIN control on converter to PRESET. |
| 6. | Turn SSB CARRIER INSERT switch on converter to SUFFR CARRIER position. |
| 7. | Turn LV-TUNE-OF ERATE switch on RF assembly to OPERATE. |
| 8. | Turn REF SEL switch on amplifier to INT REF ONLY. |
| 9. | Full out FILAMENT switch on power control. |
| 10. | Throw ON-OFF switch on synthesizer and exciter power supplies to ON. |
| 11. | Allow equipment to warm up for at least 5 minutes. |
| 12. | Throw MOTOR DRIVE ON switch on synthesizer to ON. |
| 13. | Momentarily press START switch on synthesizer. |
| 14. | Full out PLATE switch on power control. |
| 15. | Turn LSB selector switch on amplifier to LINE AMF L. |
| 16. | Turn USB selector switch on amplifier to LINE AMP L. |

TABLE 3-16. (Continued)

| STEP | PROCEDURE |
| :---: | :---: |
| STARTING REMOTELY |  |
| $\begin{aligned} & \hline 17 . \\ & 18 . \\ & 19 . \\ & 20 . \end{aligned}$ | Perform steps 1 through 16. <br> Turn LOCAL-REMOTE switch on power control assembly to REMOTE. <br> Throw ON-OFF switches on transmitter control and keyer to ON. <br> Dial desired channel number on EMISSION AND CHANNEL SELECTOR dial switch on transmitter control. |
| OPERATING LOCAL-AUTOMATIC |  |
| $21 .$ <br> 22. $23$ | Perform steps 1 through 16. <br> Turn CHANNEL SELECTOR switch on RF assembly to desired channel. <br> Refer to tables 3-4 through 3-6 for desired type of emission and perform steps as indicated. |
| OPERATING REMOTE-AUTOMATIC |  |
| $\begin{aligned} & 24 . \\ & 25 . \end{aligned}$ | Perform steps 17 through 20. <br> Refer to tables 3-6 through 3-10 for desired type of emission and perform steps as indicated. |
| OPERATING LOCAL-SEMI-AUTOMATIC |  |
| 26. <br> 27. <br> 28. <br> 29. <br> 30. <br> 31. <br> 32. <br> 33. <br> 34. <br> 35. <br> 36. <br> 37. | Perform steps 1 through 16. <br> Turn CHANNEL SELECTOR switch on RF assembly to channel with frequency that is seldom used. <br> Turn SERVO MODE switch on synthesizer to MANUAL CHANNEL AUTO. <br> Determine operating frequency of synthesizer as described in paragraphs 3-3c(5)(e). <br> Set frequency determined in step 29 on MANUAL SETTING digital switch on synthesizer. <br> Turn BAND switch on synthesizer to band selected in step 29. <br> Throw MOTOR DRIVE ON switch on synthesizer to ON. <br> Momentarily press START switch on synthesizer. <br> Turn RF GAIN control on converter counterclockwise but not to PRESET position. <br> Turn SSB CARRIER INSERT control to SUPPR CARRIER. <br> Set autotune system controls on RF assembly as described in paragraphs 3-3b(2)(n) through $3-3 b(2)(a b)$. <br> Refer to tables 3-4 through 3-6 for desired type of emission and perform steps as indicated. |
| STOPPING LOCALLY |  |
| 38. | Push in FILAMENT switch on power control. |
| STOPPING REMOTELY |  |
| 39. <br> 40. <br> 41. <br> 42. | Dial A9 EMISSION AND CHANNEL SELECTOR dial switch on transmitter control for standby. <br> Dial AO on EMISSION AND CHANNEL SELECTOR dial switch on transmitter control to secure transmitter. <br> Throw ON-OFF switch on transmitter control to OFF. <br> Throw ON-OFF switch on keyer to OFF. |

3-5. EMERGENCY OPERATION.
In an emergency, the radio set can be manually tuned. Also, an external $5-\mathrm{MC}$ or $1-\mathrm{MC}$ reference signal can be used if the internal $1-\mathrm{MC}$ frequency standard fails.
a. MANUAL TUNING. - Tune the transmitter manually, as follows:
(1) Start radio set as described in paragraph 3-3c(1).
(2) Throw MOTOR DRIVE ON switch, located on synthesizer, to OFF.
(3) Turn SERVOMODE switch to MANUAL CHANNEL SYNTH BRDG.
(4) Determine operating frequency of synthesizer as indicated below.

| BAND | RANGE (MC) | SETTING |
| :---: | :---: | :--- |
| A | $2-4$ | $8 \mathrm{~F}+1.8500$ |
| B | $4-8$ | $4 \mathrm{~F}+0.0500$ |
| C | $8-16$ | $2 \mathrm{~F}+1.7500$ |
| D | $16-32$ | F |

(5) Set frequency, determined above, on MANUAL SETTING digital switches.
(6) Turn BAND switch, located on synthesizer, to band selected in step (4).
(7) Turn TEST METER switch to BRIDGE COARSE MANUAL TUNE.
(8) Press and hold READ NULL switch and adjust MANUAL TUNE control on TEST METER. Release NULL switch.

## Note

A null is indicated by minimum TEST METER indication in either direction. When this is reached, further adjustment of MANUAL TUNE control, in either direction, sharply increases the meter indication.
(9) Turn test meter switch to 100 KC LOOP FINE MAN. TUNE.
(10) Turn SERVO MODE switch to MANUAL CHANNEL LOOP.
(11) Press and hold PUSH TO OPERATE switch and adjust MANUAL TUNE control for null on TEST METER. Release PUSH TO OPERATE switch.
(12) Press and hold READ NULL switch and repeat step (8). Release READ NULL switch.
(13) Turn test meter switch to LIMITER. The TEST METER should give a negative (-) reading indicating that all loops are locked. If reading is positive (+), repeat steps (7) through (13).
(14) Connect patch cable between EXCITER OUTPUT jack and EXCITER 50 2 LOAD jack on patch panel.
(15) Turn BAND SWITCH, located on converter, to center of frequency band on BAND MC counter.
(16) Turn RF TUNE control for operating frequency on frequency dial.
(17) Turn METER switch to OUTPUT and press the press-to-talk switch on handset.
(18) Adjust RF TUNE control for maximum reading on TEST METER.
(19) Disconnect patch cable from EXCITER LOAD jack on patch panel and connect to PA. 1st AMPL INPUT jack.
(20) Set autotune system controls, located on RF assembly, to operating frequency as described in paragraphs $3-3 b(2)(n)$ through $3-3 b(2)(a b)$.
(21) Refer to tables 3-4 through 3-6 for desired type of emission and perform steps as indicated.
b. LOCAL OPERATION. - This procedure covers operation of the transmitter from a local position when the automatic tuning controls are not in service, or when the transmitter control unit is not in service, or when both functions are not in service.
(1) When the transmitter control unit is out of service or when the transmitter control cables are damaged, turn the primary power off and remove all connections from terminal board 1A13A1TB603.
(2) Follow procedure as described in paragraph 3-3a(3), OPERATING LOCAL-AUTOMATIC or paragraph $3-3 \mathrm{a}(5)$, OPERATING LOCAL-SEMIAUTOMATIC.
(3) When the automatic tuning controls are out of service, follow procedure as described in paragraph 3-5a, MANUAL TUNING.
c. SUBSTITUTION OF EXTERNAL REFERENCE SIGNAL. - To substitute an external reference signal for the internal frequency standard, proceed as follows:
(1) Connect an external 1-MC or 5-MC reference signal (with a stability equal to or better than 1 part in $10^{8}$ per day) to J 615 , located next to the RF output jack in the bottom of the right-hand cabinet.
(2) Turn REF SEL switch, located on amplifier, to EXT REF ONLY.
(3) Proceed with normal operation and notify maintenance personnel.

## 3-6. OPERATOR'S MAINTENANCE.

a. GENERAL. - Electronic technicians are responsible for monitoring and repairing the radio set; however, to reduce the technician workload, routine preventive and corrective maintenance items which do not require elaborate test equipment are normally assigned to the operator. To meet this responsibility, complete familiarity with the equipment and its functional sections is mandatory. In this way, the troubles can be isolated, located, and corrected before they become serious. Under normal operation, however, all repairs and adjustments should be made only by the technician.
b. OPERATING CHECKS AND ADJUSTMENTS. - Make the following checks and adjustments before and during operation.
(1) GENERAL CHECKS. - Before operating the equipment after repairs have been made, check that the equipment is properly grounded and that all tubes, fuses, and indicator lamps are inserted in their proper receptacles. Check equipment power controls for work tags. If work tags are attached, do not operate equipment until they are removed by maintenance personnel and equipment is said to be operational. During operation, check meter readings on equipment against readings given in tables 3-11 through 3-15. Check blown fuse indicators for blown fuses. Check that applicable indicator lamps are lighted and that OVEN CYCLE indicator lamp on the converter cycles on and off.
(2) INTERNAL FREQUENCY STANDARD CHECK. - To monitor and adjust the internal frequency standard, using an external highstability (with stability equal to or greater than 1 part in $10^{8}$ per day) $1-\mathrm{MC}$ or $5-\mathrm{MC}$ reference signal, proceed as follows:
(a) Energize radio set as described in paragraph $3-3 \mathrm{c}(1)$ and allow to warm up for approximately 1 hour.
(b) Connect an external 1-MC or 5-MC reference signal (with stability equal to or greater than 1 part in $10^{8}$ per day) to jack J615 located next to the RF output jack in the bottom of the right-hand cabinet.
(c) Turn REF SEL switch, located on amplifier, to REF EXT PH DET. When the internal and external reference signals are in phase, the PHASE DETECTOR meter reading is zero. Any phase or frequency difference between the two reference signals causes the PHASE DETECTOR meter pointer to cycle from left to right as signals go in and out of phase. One full cycle of the needle is from center scale to maximum right, back to center scale, to maximum left, and return to center scale. Timing the cycles of the pointer provides the following information
regarding the difference between the internal and external reference signals:

> 1 cycle per second = frequency difference of 1 part in $10^{6}$

1 cycle per 10 seconds = frequency difference of 1 part in 107

1 cycle per 100 seconds = frequency difference of 1 part in $10^{8}$

## Note

Proper authorization is required for step (d). Maintenance adjustment only.
(d) If the frequency of internal $1-\mathrm{MC}$ reference signal requires adjustment, release the locking mechanism on the FINE FREQ ADJ control and rotate the control for minimum cycling of PHASE DETECTOR meter pointer.
(e) Turn REF SEL switch back to INT REF ONLY and disconnect external reference signal.
c. PREVENTIVE MAINTENANCE. - Refer to Maintenance Standards Book NAVSHIPS 0967009 2060, Radio Transmitting Set AN/FRT24 A , for routine preventive maintenance checks that should be performed by the operator before, during, and after operation.
d. EMERGENCY MAINTENANCE. Sometimes the equipment may fail when technician services are not available. If the radio set must be kept in service, the operator must locate the source of the trouble, determine its nature, and make the necessary repairs. The following paragraphs provide a general discussion of troubleshooting the radio set to determine which unit or assembly is defective.
(1) TROUBLE ISOLATION. - The radio set consists of several interconnected units and assemblies, each of which performs a specific function. A component failure in one of these units usually will affect another which in turn will affect others. Depending upon the function of the defective component, the result may range in seriousness from reduced frequency stability or reduced transmitter power output to a complete breakdown of the equipment. A haphazard search for the defective part may only locate it accidentally. A more efficient approach is to locate the unit in which the trouble has occurred, and isolate it to the defective assembly or stage(s). The repair can be greatly simplified by adhering to these procedures and making the following checks:
(a) Obtain information from previous operator and review radio set history in log book. Then verify reported abnormal operation.
(b) Check position of all controls to make sure they have not been accidentally moved from the normal position.
(c) Check all meter readings and make monitor adjustments of tuning controls to verify proper tuning.
(d) If the radio set is apparently dead, check input power and any external equipment. Note whether any other equipment connected to the same power line is affected.
(e) Check all fuses to determine the power circuit affected by the trouble. Never replace a fuse before examining the circuit to make sure the defect is not permanent.
(f) Make sure all connections between units, to antenna, and to external or remote control equipment, are properly made.
(g) Inspect all tubes and plug-in electronic assemblies or subassemblies, noting whether they are properly seated in their sockets.
(h) Inspect all terminal boards on racks and on each unit or assembly for broken or loose connections.
(i) Visually inspect for flashover of rectifier tubes. Abnormal color may be indicative of improper operation.
(2) OPERATOR'S FUSE FAILURE GUIDE. - A guide to help the operator determine the defective fuse(s) is contained in table 3-17.
(3) FUSE REPLACEMENT AND RESETTING OF CIRCUIT BREAKER. - The power control contains all fuses for the transmitter. Fuses for the synthesizer are located on the synthesizer power supply. Fuses for the amplifier and converter are located on their rear panels and on the exciter power supply. The primary power circuit breaker, which is in series with the $208 / 230$-volt power-line input, will not open unless a short occurs in an unfused portion of the autotransformer circuit. Each circuit fed by the autotransformer is fused, as well as the power control circuits.

## WARNING

Do not make any repairs on an energized radio set. Before repair, throw PRIMARY CIRCUIT BREAKER to OFF.

## CAUTION

Never replace a fuse with one of higher rating unless continued operation of equipment is more important than probable damage. If a fuse burns out immediately after replacement, do not replace it a second time until cause of trouble has been corrected. If a circuit breaker trips after resetting, do not reset a second time until cause of trouble has been corrected.

All fuses in the transmitter are the slow-blow type except the LOW VOLTAGE PLATE, AUTOTUNE MOTOR, and CONTROL CIRCUIT NO. 1 fuses; do not replace these three fuses with the slow-blow type.

If the transmitter fails, the trouble may be caused by a blown fuse; open the right-hand door and observe the blown-fuse indicators on the power control assembly. A lighted lamp indicates that the associated fuse is open. Refer to table 3-17 for symptoms of fuse failure, and to table 3-18 for fuse locations.
(4) ELECTRON TUBE MAINTENANCE. - For satisfactory tube operation and normal tube life, the filament voltage must be within five percent of the rated value. Permitting the tubes to draw current longer than a few seconds while the stage is out of resonance shortens the tube's life.

The rectifier tubes, type 3B28, used in LV supply 1 A 11 , and the rectifier tubes, type 4B32, used in HV supply 1A10 are xenon-filled. These tubes have the same current and voltage ratings as tube types 866/866A and 872/872A, and are directly interchangeable. However, tube types 3B28 and 4B32 will withstand ambient temperature changes better than types $866 / 866 \mathrm{~A}$ and $872 / 872 \mathrm{~A}$ and should not be interchanged except in an emergency.
(5) DEFECTIVE TUBE INDICATIONS.Several types of electron-tube failures are evident to a careful observer; however, many other defective-tube failures can be identified only after tubes are tested and checked. Refer to Handbook of Test Methods and Practices (NAVSHIPS 91828A) and Electronic Equipment Application Guide (NAVSHIPS 91727). If the test equipment is not on hand, the investigation must be visual.
(a) Always replace tubes which indicate arcing across electrodes.
(b) A tube with warped or sagging electrodes may give an erratic indication on the respective monitor meter when the tube is tapped sharply. Replace such a tube as soon as possible.
(6) DEFECTIVE TUBE INSPECTION AND REPLACEMENT.

## WARNING

Allow tubes to cool before handling. If immediate replacement is required, use asbestos gloves or tube puller, and handle carefully.

If it is necessary to examine tubes while equipment is energized, open the transmitter doors, manually lock the interlock switches, and pull out the PLATE and FILAMENT switches. Do not handle exposed highvoltage contacts (terminal boards, plate caps, etc.) when the interlock switches are locked.

## WARNING

Dangerously high voltage exists. Before replacing a tube, push in PLATE and FILAMENT switches and discharge all exposed components using a grounding stick.

Before replacing an electron tube, note the proper location from table 3-19. When removing octal type electron tubes, use a gentle rocking motion. When inserting the replacement tube into the socket, align the tube guide and socket slot; use a steady pressure and push straight downward until the tube is seated properly. Do not force; otherwise, the socket terminal clamp and wiring may be damaged. Use the same procedure when removing any four- or five-pin electron tube.

When removing the 3 B 28 or 4 B 32 tubes, or similarly constructed tubes, grasp the tube firmly and rotate counterclockwise until the tube guide pin is in line with the socket slot. Then lift the tube out of the socket. When inserting a new tube into this type of socket, align the guide pin with the socket slot, push the tube straight down, and rotate clockwise until the guide pin is stopped.
(7) DEFECTIVE PLUG-IN ELECTRONIC ASSEMBLY INDICATION AND REPLACEMENT. - Sometimes a trouble appears in a plug-in electronic assembly, and the radio set may be returned to normal operation by replacing the defective electronic assembly. Complete familiarity with the functional operation of each plug-in electronic assembly is necessary so that the defective assembly can be readily isolated and replaced. The replaceable plug-in electronic assemblies are listed in table 3-20 and are located in figures 3-11 through 3-15. Be extremely careful when replacing an electronic assembly so that the connectors or pins are not damaged in the process. For access to the plugin electronic assemblies, pull the suspected unit out until it locks in position, remove the top cover and ease the assembly out of its socket.

## CAUTION

Do not allow hinged memory section of synthesizer to drop in place. Lower gently to avoid damage to components.

TABLE 3-17. OPERATOR'S FUSE FAILURE GUIDE

| SYMPTOM | FUSE <br> (fuse indicator light glows when fuse is blown) |
| :---: | :---: |
| POWER CONTROL (Fuses on front panel, figure 5-133) |  |
| CONTROL CIRCUIT NO. 3 lamp I503 lights. POWER AMPL FIL. lamp I504 lights. EXCITER FIL. lamp I505 lights. <br> BIAS lamp 1506 lights. <br> AUTOTUNE MOTOR lamp I507 lights. <br> D.C. RELAY SUPPLY lamp 508 lights. <br> SPARE NO. 1 lamp I509. <br> SERVICE POWER SUPPLY lamp I510 lights. BLOWER lamp I511 lights. <br> SPARE NO. 2 lamp I512. <br> SPARE NO. 3 lamp I513. <br> H.V. RECT. FIL. lamp I514 lamp I514 lights. <br> L.V. PLATE lamp I515 lights. <br> L.V. RECT. FIL. lamp I516 lights. <br> CONTROL CIRCUIT NO. 1 lamp 517 lights. CONTROL CIRCUIT NO. 2 lamp 1518 lights. | F503 <br> F504 <br> F505 <br> F506 <br> F507 <br> F508 <br> F509 (Spare) <br> F510 <br> F511 <br> F512 (Spare) <br> F513 (Spare) <br> F514 <br> F515 <br> F516 <br> F517 <br> F518 |

TABLE 3-17. (Continued)

| SYMPTOM | FUSE <br> (Fuse indicator light glows when fuse is blown) |
| :---: | :---: |
| TRANSMITTER CONTROL (Fuse behind front panel, figure 5-148) |  |
| Indicator lamp 9001 lights. | F901 |
| KEYER (Fuses on front panel, figure 5-150) |  |
| Indicator lamp F1 lights. Indicator lamp F2 lights. | $\begin{aligned} & \text { F1 } \\ & \text { F2 } \end{aligned}$ |

EXCITER POWER SUPPLY (Fuses on rear panel, figure 5-122)
Rectifiers V1001 and V1002 do not light.
F1001 effective on 115 and 230 volts, AC.

Rectifier V1004 does not light.

Rectifiers V1001 and V1002 do not light.
F1002 effective on 115 and 230 volts, AC.
F1003--effective on 230 volts AC only.
F1004--effective on 230 volts AC only.

SYNTHESIZER POWER SUPPLY (Fuses on front panel, figure 5-70)

POWER lamp does not light.
115 VAC SEC lamp lights.
+28 V UNREG lamp lights.
-12V lamp lights.
+28 V lamp lights.
+180V lamp lights.
FIL lamp does not light.

F1 or F2 (rear panel, figure 5-77)
F3
F4
F5
F6
F7
F8 (Refer to figure 5-71)

CONVERTER (Fuses on rear panel, figure 5-69)
Blower stops operating. F1 or F2
AMPLIFIER (Fuses on rear panel, figure 5-51)

Blower stops operating.
LSB LEVEL and USB LEVEL meters do not operate, but blower operates.
OVEN CYCLE lamp does not light (stops cycling, remains out).

F1 or F2
F3

F4 or F5

TABLE 3-18. FUSE LOCATION

| REF <br> DESIG | PROTECTS | AMPS | VOLTS |
| :---: | :---: | :---: | :---: |
| AMPLIFIER (Fuses on rear panel, figure 5-51) |  |  |  |
| 1A2A1F1 | $115-$ VAC input | 1 | 125 |
| 1A2A1F2 | $115-$ VAC input | 1 | 125 |
| 1A2A1F3 | 230 -VAC input | $1 / 2$ | 250 |
| 1A2A1F4 | 230 -VAC input | $1 / 4$ | 250 |
| 1A2A1F5 | 230 -VAC input | $1 / 4$ | 250 |

TABLE 3-18. (Continued)


TABLE 3-18. (Continued)

| REF <br> DESIG |  | PROTECTS | AMPS |
| :--- | :--- | :--- | :--- |
| POWER CONTROL (Fuses on front panel, figure 5-132) (Continued) |  |  |  |
| 1A9F512 | Spare. | 2 | 125 |
| 1A9F513 | Spare. | 1 | 125 |
| 1A9F514 | HV supply. | 1 | 125 |
| 1A9F515 | LV supply. | 6 | 250 |
| 1A9F516 | LV supply rectifier filament. | $1 / 4$ | 250 |
| 1A9F517 | Power distribution to control <br> circuits. | 2 | 125 |
| 1A9F518 | Power distribution to control <br> circuits. | 1 | 125 |

TRANSMITTER CONTROL (Fuses behind) front panel, figure 5-148)

| 2F901 | 115-VAC line. | $1 / 2$ | 125 |
| :---: | :---: | :---: | :---: |
| 3 3F901 | $115-$ VAC line. | $1 / 2$ | 125 |
| KEYER (Fuses on front) panel, figure 5-150) |  |  |  |
| 6 F1 | $115-$ VAC input | $1 / 8$ | 250 |
| 6 F2 | 115 -VAC input | $1 / 8$ | 250 |

TABLE 3-19. REP LACEMENT OF ELECTRON TUBES

| REF <br> DESIG | TUBE TYPE <br> NO. | REFER TO <br> FIGURE NO. | FUNCTION |  |  |
| :---: | :--- | :--- | :--- | :---: | :---: |
| AMPLIFIER |  |  |  |  | 1-MC amplifier |
| 1A2A1A7V1 | $5654 / 6 A K 5$ | $5-42$ | Phase inverter |  |  |
| 1A2A1A7V2 | $5654 / 6 A K 5$ | $5-42$ | Phase detector driver |  |  |
| 1A2A1A7V3 | $5654 / 6 A K 5$ | $5-42$ | $1-$ MC amplifier |  |  |
| 1A2A1A7V4 | $5654 / 6 A K 5$ | $5-42$ | $1-$ MC amplifier |  |  |
| 1A2A1A7V5 | $5654 / 6$ AK5 | $5-42$ | $1-$ MC oscillator |  |  |
| 1A2A1A8V1 | $6 A H 6$ | $5-47$ | Buffer |  |  |

TABLE 3-19. (Continued)

| $\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$ | TUBE TYPE NO. | REFER TO FIGURE NO. | FUNCTION |
| :---: | :---: | :---: | :---: |
| CONVERTER (Continued) |  |  |  |
| 1 A 3 A 1 A 3 V 3 | 5654/6AK5 | 5-58 | Buffer |
| 1A3A1A4V1 | 5670/2C51 | 5-60 | 450-KC sideband mixer |
| 1A3A1A4V2 | 5654/6AK5 | 5-60 | 450-KC double sideband amplifier |
| 1A3A1A4V3 | 6EH7 | 5-60 | 1750-KC carrier gate |
| 1A3A1A4V4 | 5725/6AS6 | 5-60 | 1st 1750-KC double side amplifier |
| 1A3A1A4V5 | 5654/6AK5 | 5-60 | 2nd 1750-KC double sideband amplifier |
| 1A3A1A5V1 | 6EH7 | 5-65 | 1st RF amplifier |
| 1A3A1A5V2 | 6EH7 | 5-65 | 2nd RF amplifier |
| 1A3A1A5V3 | 6EH7 | 5-65 | 3rd RF amplifier |
| 1 A 3 A 1 A 5 V 4 | 8233 | 5-65 | Power amplifier |
| SYNTHESIZER |  |  |  |
| 1A6A1A4V1 | 5702 | 5-90 | Driver |
| 1A6A1A4V2 | 5702 | 5-90 | X5 multiplier |
| 1A6A1A4V3 | 5702 | 5-90 | Amplifier |
| 1A6A1A4V4 | 5702 | 5-90 | Driver |
| 1A6AlA4V5 | 5702 | 5-90 | Amplifier |
| 1A6A1A4V6 | 5702 | 5-90 | X10 multiplier |
| 1A6A1A4V7 | 5703 | 5-91 | 10-KC loop VFO |
| 1A6A1A4V8 | 5702 | 5-91 | X2 multiplier |
| 1A6A1A4V9 | 5703 | 5-91 | 1-KC loop VFO |
| 1A6A1A4V10 | 5702 | 5-91 | Amplifier |
| 1A6A1A4V11 | 5702 | 5-90 | 1st IF amplifier |
| 1A6A1A4V12 | 5702 | 5-90 | 2nd IF amplifier |
| 1A6A1A4V13 | 6021 | 5-91 | 100-cycle loop VFO and cathode follower |
| 1A6A1A4V14 | 5702 | 5-91 | X5 multiplier |

TABLE 3-19. (Continued)

| $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | TUBE TYPE NO. | REFER TO FIGURE NO. | FUNCTION |
| :---: | :---: | :---: | :---: |
| SYNTHESIZER (Continued) |  |  |  |
| 1 A 6 Al 44 V 15 | 5702 | 5-91 | Limiter |
| 1A6A1A4V16 | 5702 | 5-91 | Driver |
| 1A6A1A5V1 | 5702 | 5-96 | Driver |
| 1A6A1A5V2 | 5702 | 5-96 | X5 multiplier |
| 1A6A1A5V3 | 5702 | 5-96 | Amplifier |
| 1A6A1A5V4 | 6021 | 5-97 | 100-cycle loop sweep multivibrator |
| 1A6AlA5V5 | 6021 | 5-97 | 1-KC loop sweep multivibrator |
| 1A6A1A5V6 | 6021 | 5-97 | 10-KC loop sweep multivibrator |
| 1A6AlA6V1 | 5702 | 5-99 | Reactance tube |
| 1A6A1A6V2 | 5703 | 5-99 | Main loop VFO |
| 1A6AlA6V3 | 5702 | 5-99 | Buffer amplifier |
| 1A6A1A8V1 | 6 C 4 | 5-101 | Cathode follower |
| 1A6AlAl2V401 | 6AK5 | 5-113 | X7 multiplier |
| 1A6A1A12V402 | 6AK5 | 5-113 | Amplifier |
| 1A6A1A12V403 | 6AK5 | 5-113 | Amplifier |
| EXCITER POWER SUPPLY |  |  |  |
| 1A7V1001 | 5R4GYW | 5-120 | Rectifier |
| 1A7V1002 | 5R4GYW | 5-120 | Rectifier |
| 1A7V1004 | 5R4GYW | 5-120 | Rectifier |
| RF ASSEMBLY |  |  |  |
| 1A8V108 | OA2 | 5-127 | Exciter regulator reference tube |
| 1A8V109 | OA2 | 5-127 | Exciter regulator reference tube |
| 1 A 8 V 110 | 5763 | 5-127 | Exciter voltage regulator tube |

TABLE 3-19. (Continued)

| $\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$ | TUBE TYPE NO. | REFER TO FIGURE NO. | FUNCTION |
| :---: | :---: | :---: | :---: |
| RF ASSEMBLY (Continued) |  |  |  |
| 1 A 8 V 111 | 5763 | 5-127 | Exciter voltage regulator tube |
| 1 A 8 V 112 | 5763 | 5-127 | Exciter voltage regulator tube |
| 1 A 8 V 113 | 5 Y3WG TA | 5-127 | Power-amplifier bias rectifier |
| 1A8V114 | PL177 | 5-127 | RF Driver |
| 1A8V115 | PL264 | 5-125 | Power amplifier |
| 1A8V116 | 6GK6 | 5-127 | RF Amplifier |
| HF SUPPLY |  |  |  |
| 1A10V401 | 4B32 | 5-135 | High voltage rectifier |
| 1A10V402 | 4B32 | 5-135 | High voltage rectifier |
| LV SUPPLY |  |  |  |
| 1A11V301 | 3B28 | 5-138 | High voltage rectifier |
| 1A11V302 | 3B28 | 5-138 | High voltage rectifier |
| TRANSMITTER CONTROL |  |  |  |
| V901 | 12AT7WA | 5-148 | Input audio amplifier |
| V902 | 12AT7WA | 5-148 | Compressor tube |
| V903 | 12AT7WA | 5-148 | Output audio amplifier |
| V904 | 12AT7WA | 5-148 | Compressor rectifier |
| V905 | 12AT7WA | 5-148 | Meter amplifier |
| V906 | 5 Y3WG TA | 5-148 | Rectifier |

TABLE 3-20. REPLACEABLE PLUG-IN ELECTRONIC ASSEMBLIES

| REF DESIG | NAME | FUNCTION |
| :---: | :---: | :---: |
| AMPLIFIER (Figure 3-11) |  |  |
| 1A2A1A1 | AGC and audio amplifier | Amplifies lower sideband audio input signal. AGC controlled by front panel AGC switch. |
| 1A2A1A2 | Audio voltmeter | Rectifies lower sideband audio signal for monitoring on front panel LSB LEVEL meter. |
| 1A2A1A3 | CW assembly | Provides ground gate to converter for carrier on-off keying. Also supplies grid blocking voltage to RF assembly. |
| 1A2A1A4 | AGC and audio amplifier | Amplifies upper sideband audio input signal. AGC controlled by front panel AGC switch. |
| 1A2A1A5 | Audio voltmeter | Rectifies upper sideband audio signal for monitoring on front panel USB LEVEL meter. |
| 1A2A1A6 | Voltage regulator | Provides regulated +26 VDC to assemblies and relays in amplifier. |
| 1A2A1A7A2 | Squelch and emitter follower | Amplifies external reference signal. If external reference signal is less than 0.3 VRMS the squelched circuit discontinues output from 1A2A1A7A2. |
| 1A2A1A7A2 | 1-MC oscillator | Provides 1-MC output phase locked to the external reference signal. |
| 1A2A1A7A3 | Phase detector | Compares external reference signal with internal reference signal. Any phase or frequency difference is monitored on front panel PHASE DETECTOR meter. |


| CONVERTER (Figure 3-12) |  |  |
| :--- | :--- | :--- |
| 1 A3A1A2 | Binary divider | Divides synthesizer input frequency by 8, 4, <br> and 2 for bands 2-4, 4-8, and 8-16, <br> respectively. |
| 1 A3A1A3Z1 | Balanced modulator | Combines lower sideband audio with 1.75-MC <br> subcarrier to provide upper sideband. |
| 1 A3A1A3Z2 | Balanced modulator | Combines upper sideband audio with 1.75-MC <br> subcarrier to provide upper sideband. |
| 1A3A1A4A1 | $1300-$ KC generator | Generates a 1300-KC signal that is mixed with <br> 1.75 MC to produce a 450-KC subcarrier <br> signal for operation on the two low frequency <br> bands (2 to 8 MC). |
| 1A3A1A4A2 | $300-$ KC generator | Gener ates a 300-KC signal that is mixed with <br> 1 MC in 1300-KC generator 1A3A1A4Al to pro- <br> duce 1300 KC. |



Figure 3-11. Amplifier, Location of Plug-in Electronic Assemblies


REF DESIG PREFIX |A3AI

Figure 3-12. Converter, Location of Plug-in Electronic Assemblies

TABLE 3-20. (Continued)

| $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | NAME | FUNCTION |
| :---: | :---: | :---: |
| CONVERTER (Figure 3-12) (Cont.) |  |  |
| 1 A 3 A 1 A 4 A 3 1A3A1A6 | 1.75-MC buffer amplifier <br> Buffer and driver | Isolates $1.75-\mathrm{MC}$ input from circuits in IF assembly. <br> Amplifies output frequency of binary divider 1A3A1A2. |
| SYNTHESIZER POV |  | R SUPPLY (Figure 3-13) |
| 1A4A3 | Low voltage power supply | Provides regulated outputs of +12 VDC, +28 VDC, -12 VDC and 6.3 VDC to synthesizer. |
| SYNTHESIZER (Figure 3-14) |  |  |
| 1A6A1A3A1 | Programmer trigger | Converts start pulse from RF assembly to trigger for starting programmer timer 1A6A1A3A2. Also recycles programmer when power returns after line power failure. |
| 1A6A1A3A2 | Programmer timer | Provides three-slot time sequence which controls sequence of operation for automatically tuning synthesizer and converter. |
| 1A6A1A3 A3 | Programmer coder | Utilizes timing pulses from programmer timer 1A6A1A3A2 to operate relays that control of automatically tuning synthesizer and converter. |
| 1A6A1A8A3 | 10 to 1 locked divider | Divides 1 -MC refer ence signal to 100 KC having stability of reference signal. |
| 1A6A1A8A4 | 100-KC amplifier | Amplifies $100-\mathrm{KC}$ output of 10 to 1 locked divider 1A6A1A8A3. |
| 1A6A1A8A5 | X4 multiplier | Multiplies $100-\mathrm{KC}$ output of 10 to 1 locked divider to 400 KC . |
| 1A6A1A9A1 | Servo amplifier differential chopper and preamplifier | Compares analog output voltage of memory section with output of motor driven potentiometer 1A6A1A7R1. Produces servo motor driving signal when the two inputs are unequal. Part of a closed loop servo circuit as loop error decreases output decreases. |
| 1A6A1A9A2 | Servo amplifier driver and null detector | Converts output of servo amplifier differential chopper and preamplifier 1A6A1A9A1 to trigger pulses that fire silicon control rectifier to obtain proper direction of rotation of servo motor . |
| 1A6A1A10A1 | 4 to 1 locked divider | Divides 1.964 to $2.000-\mathrm{MC}$ output of $100-\mathrm{CPS}$ loop to 0.491 to 0.500 MC which is applied to third mixer 1 A 6 A 1 A 10 A 2 . |

TABLE 3-20. (Continued)

| REF <br> DESIG | NAME | FUNCTION |
| :---: | :---: | :---: |
| SYNTHESIZER (Figure 3-14) (Cont.) |  |  |
| 1A6A1A10A2 | Third mixer | Mixes 0.491 - to $0.500-\mathrm{MC}$ output of 4 to 1 locked divider 1A6A1A10A1 with 3.21- to $3.3-\mathrm{MC}$ output of $1-\mathrm{KC}$ loop to produce 3.701 - to $3.8-\mathrm{MC}$ which is applied to 5 to 1 locked divider 1A6A1A10A3. |
| 1A6A1A10A3 | 5 to 1 locked divider | Divides 3.701- to 3.8-MC output of third mixer 1A6A1A10A2 to 0.7402 - to $0.7600-\mathrm{MC}$ which is applied to fourth mixer 1A6A1A10A4. |
| 1 A 6 A 1 A 10 A 4 | Fourth mixer | Mixes $0.7402-$ to $0.7600-\mathrm{MC}$ output of 5 to 1 locked divider 1A6A1A10A3 with 7.06- to $7.24-\mathrm{MC}$ output of 10 KC loop to produce $7.8002-$ to 8.00 - MC which is applied to 2 to 1 locked divider 1A6A1A10A5. |
| 1A6A1A10A5 | 2 to 1 locked divider | Divides 7.8002- to 8.000-MC output of fourth mixer 1 A 6 A 1 A 10 A 4 to 3.9001 to 4.000 MC which is applied to second mixer on front IF 1A6A1A4. |
| 1A6A1A12A1 | 4 to 1 locked divider | Divides 1 -MC reference signal to 0.250 MC which is applied to X 7 multiplier 1A6A1A12V401 to produce a 1.75 MC signal. |
| KEYER (Figure 3-15) |  |  |
| 6A1 | Power supply | Provides DC operating voltage to keyer. |
| 6A2 | Key gate and 1-KC oscillator | Generates "mark" and "space" keying signals (in response to TTY information) of 0 to -5 VDC which are applied to trigger and binary gate 6A5 and audio output and suppression gate 6A7. Also generates MCW that is applied to 6A7. |
| 6A3 | 23.8-KC and 17-KC crystal oscillators | Generates output frequencies of 23.8-KC and 17-KC which are applied to trigger and binary gate 6A5. |
| 6 A 4 | $19.4-\mathrm{KC}$ and $12.6-\mathrm{KC}$ crystal oscillators | Generates output frequencies of 19.4-KC and 12.6 KC which are applied to trigger and binary gate 6A5. |
| 6A5 | Trigger and binary gate | Converts "mark" and "space" signals from key gate and 1-KC oscillator 6AlA2 to frequency shift keying output frequencies with a center frequency of $15.8-\mathrm{KC}$ or $20.4-\mathrm{KC}$ depending upon position of front panel MODE switch 6S2. |
| 6A6 | Divider | Divides output of trigger and binary gate 6A1A5 to produce center frequency of 2000 CPS and 2550 CPS which is applied to audio output and suppression gate 6A7. |



Figure 3-13. Synthesizer Power Supply, Location of Plug-in Electronic Assembly

TABLE 3-20. (Continued)

| REF <br> DESIG |  | NAME |
| :--- | :--- | :--- |
| KEYER (Figure 3-15) (Cont.) |  |  |
| 6 F7 | Output and suppression <br> gate. | Discontinues keyer output at end of teletype- <br> writer message. |
| Audio metering | Rectifies audio output of keyer for moni- <br> toring on front panel LSB LEVEL and <br> USB LEVEL meters. |  |



Figure 3-14. Synthesizer, Location of Plug-in Electronic Assemblies


Figure 3-15. Keyer, Location of Plug-in Electronic Assemblies

INDEX
Paragraph
(Figure)*Table
Blower assembly connections ..... (5-163)
Blower assembly installation ..... 2-6d
C
Cable assemblies ..... 2-5
Cabling, interconnecting diagram ..... (5-162)
Carrier suppression ..... $1-4 k$
Changes, factory or field ..... 1-7
Checks and adjustments, operator ..... 3-6b
Compatible AM, Local Automatic Operation ..... *3-4
Compatible AM, Remote-Automatic Operation ..... *3-8
Continuous wave, remote-automatic operation ..... *3-7
Controls, description of ..... 3-3a, *3-1
Control Settings, Compatible AM,
Local-Automatic Operation ..... *3-4
Control Settings, Compatible AM, Remote-Automatic Operation ..... *3-8
Control Settings, Continuous Wave,Remote-Automatic Operation*3-7
Control Settings, Frequency Shift
Keying, Remote-Automatic Operation ..... *3-10
Control Settings, Independent Sideband Local-Automatic Operation ..... *3-5
Control Settings, Independent andSingle Sideband, Remote-AutomaticOperation*3-9
ORIGINAL
Paragraph
Paragraph
(Figure)
(Figure) ..... *Table ..... *Table
Control Settings, Preliminary, Instal-
Control Settings, Preliminary, Instal- lation Check lation Check ..... *2-3 ..... *2-3
Control Settings, Single Sideband,
Control Settings, Single Sideband,
Control Settings, Single Sideband, Local-Automatic Operation Local-Automatic Operation Local-Automatic Operation ..... *3-6 ..... *3-6 ..... *3-6
Control settings, starting for
Control settings, starting for
Control settings, starting for Pretuned Transmitter Pretuned Transmitter Pretuned Transmitter ..... *3-3 ..... *3-3 ..... *3-3
Control, Transmitter C-6466/FRT-24A:
Control, Transmitter C-6466/FRT-24A:
Control, Transmitter C-6466/FRT-24A: ..... 5-7 ..... 5-7 ..... 5-7
Block diagram, servicing
Block diagram, servicing
Block diagram, servicing ..... (4-85) ..... (4-85) ..... (4-85)
Description, general
Description, general
Description, general ..... 1-3b ..... 1-3b ..... 1-3b
Description, overall functional
Description, overall functional
Description, overall functional ..... 4-8a ..... 4-8a ..... 4-8a
Electron tube replacement
Electron tube replacement
Electron tube replacement ..... *3-18 ..... *3-18
Inspection and adjustment
Inspection and adjustment
Inspection and adjustment ..... 2-7d ..... 2-7d ..... 2-7d
Operating controls and indicators
Operating controls and indicators
Operating controls and indicators ..... (3-9), *3-1 ..... (3-9), *3-1 ..... (3-9), *3-1
Outline drawing
Outline drawing
Outline drawing ..... (2-3) ..... (2-3) ..... (2-3)
Primary power distribution
Primary power distribution
Primary power distribution diagram diagram diagram ..... (5-165) ..... (5-165) ..... (5-165)
Test data, overall
Test data, overall
Test data, overall ..... 4-8b ..... 4-8b ..... 4-8b
Converter, Amplitude-Single-Sideband
Converter, Amplitude-Single-Sideband
Converter, Amplitude-Single-Sideband CV-1846/ FRT-24A: CV-1846/ FRT-24A: CV-1846/ FRT-24A:
Block diagram, overall functional
Block diagram, overall functional
Block diagram, overall functional ..... (4-29) ..... (4-29) ..... (4-29)
Block diagram, servicing
Block diagram, servicing
Block diagram, servicing ..... 4-72) ..... 4-72) ..... 4-72)
Description, general
Description, general
Description, general ..... 4-5 ..... 4-5
Description, general ..... 1-2
Description of controls ..... $3-3 a, * 3-1$
Description of units ..... 1-3
Dial Control Assembly:
Description, general ..... 1-3a
Description, overall functional ..... 4-6c
Interconnections ..... (5-163)
Installation ..... 2-6f
Duty cycle ..... $1-4 t$

## INDEX (Cont)

Paragraph
(Figure) *Table
E
Electron tube replacement guide ..... *3-19
Emergency maintenance ..... 3-6d
Emergency operation ..... 3-5
Equipment differences ..... 1-8,*1-3
Equipment and publications requiredbut not supplied1-6,*1-2
Equipment supplied ..... 1-5,*1-1
External connections ..... 2-5c,(5-162)
F
Factory of field changes ..... 1-7
Failure analysis ..... 4-1g
Failure and performance and operational reports ..... 5-1
Frequency range ..... 1-4a
Functional operation. ..... 3-1
Fuse failure guide for operators ..... *3-17
Fuse locations ..... *3-18
G, H
Harmonic radiation ..... $1-4 n$
Heat dissipation ..... $1-4 x$
High Voltage Power Supply:
Block diagram, servicing ..... (4-84)
Description, functional ..... 4-6f
Interconnections ..... (5-163)
Installation ..... 2-6b
I
Indicators, description of ..... *3-1
Indicator presentations ..... 3-3d
Inspection and adjustment ..... 2-7
Installation of units and assemblies removed prior to shipment ..... 2-6
Installation ..... 2-4b
Installation of cables ..... 2-5b
Installation requirements ..... 2-4
Interference reduction ..... 2-8
J,K
Keyer, Frequency Shift KY-557/URT:
Adjustments ..... 5-8
Block diagram, overall functional ..... (4-58)
Block diagram, servicing ..... (4-86)
Description, general ..... 1-3c
Description, overall functional ..... 4-9a
Electron tube replacement ..... *3-19
Fuse locations ..... *3-18
Operating controls and indicators ..... $(3-10) * 3-1$

Paragraph (Figure) *Table
Outline drawing ..... (2-4)
Plug-in assemblies, location of ..... (3-15)Primary power distributiondiagram(5-166)
Test data, overall ..... 4-9b
P
Patch Panel Assembly: Description, functional ..... 4-6
Interconnections ..... (5-163)
Installation ..... 2-6m
Jack locations ..... (3-3)
Percent IM distortion ..... $1-4 j$
Percent modulation ..... 1-4i
Power amplifier bandwidth ..... $1-4 \mathrm{r}$
Power Control Assembly:
Description ..... (5-163)
Interconnections ..... 2-6e
Installation
Power output division ..... $1-4 q$
Power requirements ..... 2-2
Power source requirements ..... $1-4 u$
Power Supply PP-4242/FRT-24A:
Adjustment ..... 5-2
Block diagram, servicing ..... (4-73)
Description, general ..... 1-3a
Description, overall functional ..... 4-10a
Fuse locations. ..... *3-18
Interconnection ..... (5-163)
Installation ..... 2-6j
Test data, overall ..... 4-10b
Operating controls and indicators . (3-4),*3-1
Power Supply PP-4243/FRT-24A:
Block diagram, servicing ..... (4-82)
Description, general ..... 1-3a
Description, overall functional ..... 4-11
Electron tube replacement ..... *3-19
Fuse locations ..... *3-18
Interconnection ..... (5-163)
Installation ..... 2-6h
Meter readings, typical ..... *3-15
Operating controls and iPrimary control settings forinstallation check*2-3
Preparation for installation ..... 2-4a
Preparation for reshipment ..... 1-9
Preparation for use ..... 3-2
Preventative maintenance ..... 3-6c
Programming preset channels ..... 3-3b
Q, R
Radio Transmitting Set AN/FRT-24A:
Block diagram, overall functional(4-1)
Cabling, interconnecting diagram ..... (5-162)

INDEX (Cont)

## Paragraph (Figure)

*Table
Q, R
Description, general ..... 1-3
Description, overall functional ..... 4-6a
Electron tube replacement ..... *3-19
Functional operation ..... 3-1
Fuse failure guide for operator. ..... *3-17
Fuse locations ..... *3-18
Installation drawing, typical ..... (2-1)
Major units ..... (3-1),*6-1
Operating controls and indicators ..... *3-1
System diagram ..... (1-1)
Reference data ..... 1-4
Reference designations ..... 6-1a
Reference designations prefix ..... 6-1b
Replacement of electron tubes ..... *3-19
R F Assembly
Block diagram, servicing ..... (4-83)
Description, general ..... 1-3a
Description, functional ..... 4-6b
Interconnections ..... (5-163)
Installation ..... 2-6a
Scope of technical manual ..... 1-1
Selecting preset channels ..... 3-3b
Service Power Supply:
Block diagram, servicing ..... (4-84)
Description, functional ..... $4-6 \mathrm{~g}$
Interconnections ..... (5-163)
Installation ..... 2-6g
Setting autotune system ..... $3-3 b, * 3-11$
Site selection ..... 2-3
Spurious emission ..... $1-4 m$
Stability ..... $1-4 e$
Starting control settings ..... *3-3
Starting the equipment locally or remotely ..... 3-3b,*3-16
Stock number identification ..... 6-5
Stopping the equipment locally or remotely ..... $3-3 b, * 3-16$
Summary of operating
procedures ..... 3-4,*3-16
Symptom elaboration ..... 4-1c
Symptom recognition ..... 4-1b
Synthesizer, Electrical Frequency
O-1251/FRT-24A:
Block diagram, overall functional ..... (4-2)
Description, overall functional ..... 4-3
Description, general ..... 1-3a
Electron tube replacement ..... *3-19
Fuse locations ..... *3-18
Interconnection ..... (5-163)
Installation ..... 2-6i
Logic diagram, digital
timing memory ..... (4-81)
Meter readings, typical ..... *3-12
Operating controls and indicators ..... (3-5), *3-1
Plug-in assemblies, location of ..... (3-14)
Power supply operatingcontrols and indicators . . . . . . . (3-4),*3-1
Power supply plug-in assemblieslocation of(3-13)
Repair ..... 5-9
Servicing block diagram, 100-cycle loop circuits ..... (4-77)
Servicing block diagram, incremental divider circuits ..... (4-78)
Servicing block diagram, main loop circuits ..... (4-79)
Servicing block diagram, 1-KC loop circuits ..... (4-76)
Servicing block diagram,10-KC loop circuits(4-75)
Servicing block diagram, 1.75-MC assembly ..... (4-80)
Servicing block diagram, power supply ..... (4-73)
Servicing block diagram, reference circuits ..... (4-74)
Tuning and adjustment
Tuning and adjustment ..... 5-3 ..... 5-3
T
Transformer voltage connections ..... *2-1
Transmitter cooling ..... $1-4 u$
Transmitter output power ..... 1-4h
Transmitter, Radio T-973/ FRT-24A:
Description, general ..... 1-3a
Description, overall function ..... 4-6
Electron tube replacement ..... *3-19
Fuse locations ..... *3-18
Intercabling diagram ..... (5-163)
Location of components ..... 5-12
Meter readings, typical ..... *3-11
Operating controls and indicators ..... $(3-1), * 3-1$
Primary power distribution diagram ..... (5-164)
Repair ..... 5-11
Tuning and adjustment ..... 5-6

## INDEX (Cont)

Paragraph Paragraph
(Figure) (Figure)
*Table ..... *Table

## T

Trouble shooting, logical . . . . . . . . . . . . . 4-1
Tuning bands and frequency ranges . . . . . . . 1-4b
Type of emission and modulation
capability . . . . . . . . . . . . . . . . . . . . . . . 1-4f
Type of frequency control . . . . . . . . . . . . .1-4d
U
Unpacking and handling . . . . . . . . . . . . . . . 2-1 Wire sizes . . . . . . . . . . . . . . . . . . . 2-5a,*2-2


[^0]:    * If the transmitter is in standby on the desired channel, it can be placed in operational readiness in a few seconds by dialing the type of emission.

[^1]:    * Multimeter switch on RFassemblyin DR. PLATE MAX 100 position.

