

1111 17th Street • San Francisco, California 94107• 415-861-6666

* MS-808: 6-PIN IFB/ISO/ACCESSORY CONNECTORS.

1. All Ms-808 Main Stations built after July 1, 1987, with serial numbers higher than 330407 , are equipped with three 6 -pin male xL type connectors that are not mentioned in the manual. These connectors are located on the left hand side of the rear panel, between the Program Input connector and the Channel l-4 Intercom Line connectors. They are designated, from left to right, "J3", "J4", \& "J5", respectively.
2. These connectors have standard functions, but are also occasionally used for special purpose and custom modification connections. The standard functions are:
2.1 J3: "IPB 1-4". (J3 accesses the operating module that is connected to J105 on the 1/O board.)
2.2 J4: "IFB 5-8". (J4 accesses the operating module that is connected to Jl06 on the I/O board.)
2.3 J5: "ISO". (J5 connects directly to a ISO-4 ISO Control Module (when installed). only a single connector is required regardless of the number of ISO-4 modules.)
3. For additional, detailed information concerning MS-808 IFB and/or ISO connection and operation, refer to the PIC-4000B or ISO-4000 Operation Manuals.
4. Any non-standard functions or connections of J3, J4, \& J5 are indicated on the individual "MS-808 Configuration label" that is affixed to the right hand side of the MS-808 rear panel, and on the "MS-808 Configuration Sheet" that is shipped with each unit.
adDENDUM
November 17, 1987

* MS-808: MIC TO LINE GAIN LEVEL INCREASE.

In effecting a 4 dB Mic to Line increase in gain level, the following changes have been made:

Change:
At:
R37
10 K OHM
R40

To:

3.9 K OHM

15 K OHM

* IFB-4 MIC TO LINE GAIN LEVEL INCREASE

In effecting a 4 dB Mic to Line increase in gain level, the following changes have been made:

Change: At: To:
4.7K OHM

R29, $31 \quad 6.8 \mathrm{~K}$ OHM
33, 35

* CH-4 MIC TO LINE GAIN LEVEL INCREASE

In effecting a 4 dB Mic to Line increase in gain level, the following changes have been made:

Change: At: To:
10K OHM R37, 38, 15K OHM 39, 40

SPBCIAL NOTE:
ON PAGE 13 OF THE MS-808 INSTRUCTION AND SERVICE MANUAL (PART NUMBER 810003) UNDER THE SECTION "DLC SYSTEM INTERCONNECT", DELETE THE THIRD SENTENCE WHICH READS: With each DLC station, we supply two 30-pin female connectors (these attach to each end of the interconnect cable)."

CLEAR-COM NO LONGER PROVIDES THESE CONNECTORS AT NO CHARGE. THEY MUST BE ORDERED AND PURCHASED SEPARATELY. THE PART NUMBER IS: DLC/820018.

THE DLC SERIES

OPERATION MANUAL

Table of Contents
I. Introduction 1A. Circuit Flow Description (MS-808)B. MS-808 SpecificationsC Technical Overview
II. Intercom System Set-Up 7
A. System Interconnection

1. MS-808 \& Standard Remote Stations... 7
1.1 Station Capacity
1.2 Interconnect Cable
1.3 Interconnection Procedures
2. DLC System Interconnection. 13
B. Assigning Channel I.D.'s
C. Termination
D. Program Send/Receive
E. Channel Sidetone Null ("A.S.T.")
F. Headsets, Speaker, and Gooseneck Mic
III. MS/IS-808 Operating Controls 23
Unlabelled Button
ISOConversion from Mono to Stereo Headset
IV. DLC System With IFB 35
A. Introduction
3. PIC-4 Program Controller
4. Talent Receivers
5. DLC System
B. System Connections
C. PIC-4 Operation
D. IFB System Specifications
V. Warranty \& Maintenance. 39
VI. Trouble-Shooting 40
VII. Bill of Materials 43
ILLUSTRATIONS
DLC Mainframe with Control Modules, page 2
MS-808 Power Supply Capacity (graph), 7
Belden Cable Specifications, 9
Two-Channel Stiation Wiring, Permanent Installation, 10
Four-Pair Cable Detail, 12
DLC Interconnect Cable Wiring, 14
DLC Connector Pin Assignments, 15
Input/Output ("I/O") Printed Circuit Board, 17
Intercom Control Module ($\mathrm{CH}-4$) Printed Circuit Board, 18
Headset " Y " Cable, 22
Headset Extension Cable, 22
MS/IS Front Panel Controls, 24
Point-to-Point System Interconnection, 27
I/O Printed Circuit Board Stuffing Diagram, 29
Internal Wiring of DLC Station, 3

I. INTRODUCTION

This manual is a reference document that helps the intercom user and the service technician understand, set up, operate, and maintain the clear-Com DLC Series
Production Intercom System.
This manual does not contain information about electrical adjustments that require test procedures and equipment. Please call the factory should your system need adjustment.

The DLC Series contains the "MS-808" and "IS-808" Station mainframes; the CH-4 and IFB-4 Control Modules; the SP-4 Speaker Module; and related accessories including a Four-Wire Interface Unit (Model IF4-4) and a fully-integrated Program Interrupt System (Model PIC-4 IFB Controller and IFB Talent Receivers TR-50/TR-62).

The DLC Series is a high-performance intercom system designed for teleproduction and broadcast studios, although its features, versatility, and reliability make it ideal for commercial or industrial use. Its innovative solid-state circuitry and digital logic control enable programable two-way communications in a "Par-ty-Line" or a Point-to-Point intercom system. With the addition of Clear-Com's interface units, the System can link with many 2,3 , and 4 -wire commnications devices, including television cameras, telephone lines, and other intercom systems such as RTS or Roh.

DLC Station Features:

1) FULL SYSTEM CAPABILITY-- each DLC Station is self-powered. The IS Station contains a regulated power supply; the MS Station's regulated power supply is slightly larger, so it can support an intercom system containing standard remote headset or speaker stations. Each MS/IS mainframe provides "power on" and short-circuit indication, and is circuit-breaker-protected.
2) BUILT-IN ASSIGNERT MATRIX--a 9×10 slide-switch matrix inside the MS/IS Station assigns each set of channel controls (A through H) to the inputs connected to the rear panel. The Matrix also assigns your dedicated line to the desired destination, or lets you "park" it in an "OFF" (disabled) position.
3) VERSATILE MOEITORING SYSTEM-- With the CH-4 Control Module, the DLC Station operator can access any channel with one of the two switches assigned to it. The Listen control is a locking pushbutton that illuminates dimly when activated, and the Talk control is a 3-position toggle switch with lock-on, momentary-on, and off settings.
4) HANDS-FREE DEDICATED LINE--allows the MS/IS operator to maintain permanent, point-to-point communications with another Station operator. A point-topoint system can be configured to contain up to nine stations.
5) PROGRAM MONITORIFG--the MS/IS Station has a balanced auxiliary input for monitoring an external program; the operator hears the program in the speaker or in a headset, and may send the program to any channels so Remote Stations can monitor it also. A front panel Program volume control adjusts the level, and the $\mathrm{CH}-4$ Control Module contains trimpots for adjusting program level on each channel.
6) STAGE ANTOUNCE FUNCTION-the MS/IS Station operator can add the Station's amplified mic output to an external connector. The output is line-level
balanced, and works in conjunction with a "speaker mute" function provided on the rear panel.
7) VISUAL CALL SIGNALLING--attracts the attention of other Station operators; also used to activate remote control of KB-112 Stations.
8) ULTRA-STABLE SIDETONE CONTROL--suppresses feedback when using a mic and speaker simultaneously
9) MIC LIMITER-- part of the Station's mic preamplifier, the mic limiter prevents overload and maintains constant signal levels
10) GOOSENECK MIC--a noise-cancelling electret mic on an field-adjustable flexible extension is permanently attached to the MS/IS mainframe.
11) EXTERNAL SPEAKER--the MS/IS Station provides a jack on the rear panel for connecting the Station to an external speaker

Special DLC System Features:

1) CHANNEL ISO-- allows the Station operator to hold a private conversation with any channel(s) without having to turn off the "talk" monitor switches for all other channels.
2) OPTIONAL PROGRAM INTERRUPT (IFB) PACRAGE--includes the IFB-4 Control Module, the PIC-4 Program Interrupt Controller, and one or more Talent Receivers, for a fully-integrated IFB System with four channels of intercom and four channels of IFB. Other combinations are possible. The DLC System is available with up to eight intercom channnels and eight IFB channels.
3) CAMRRA INTERFACE--the IF4-4 Four-Wire Interface allows TV camerapeople (operating three-wire or four-wire systems) to communicate with Clear-Com System operators

Interconnect Cable Required:

DLC Stations interconnect with 12-pair cable; the rear panel of each unit has one or two 30 -pin male connectors for output/input. This manual provides detailed diagrams to help the user construct the DLC interconnect cable, putting a FEMALE 30-pin ("Tuchel" type) connector at each end.

Figure 1

The MS/IS-808 Station circuitry contains three major components: the input/output ("I/O") board, the four-channel intercom modules, and the power supply.

The I/O board contains the microphone preamplifier, the power amplifier, bias supply circuits, and the dedicated line monitoring circuit.

The four-channel intercom board (Model $\mathrm{CH}-4$) contains four identical channel monitoring circuits, each of which consists of switches and logic that control, for each channel:
--the monitoring of the talk/listen circuits
--the DC "call" signalling
--the termination
--the program distribution
There are two mic inputs to the intercom station: one is the mic on the headset, which is connected to pins 1 and 2 on the station's front panel headset connector; it is input to the mic preamp ($\mathrm{IC}-1 \mathrm{~B}$) via header J109. The second input is to the built-in electret gooseneck mic, which is, like the headset's mic, mixed into the summing input (pin 6) of IC-1B. The gooseneck mic input level is adjustable through trimpot P5. The electret mic is controlled by the mic on/off switch, which controls the power to the gooseneck mic. The signal input then goes through the mic preamp, where it is amplified approximately 54 dB . The signal is controlled by the limiter (Q1), which maintains the output near 0 dB level.

The mic preamp output then goes to the 4 -channel boards, to the individual channel talk analog switches (IC-1, IC-3, IC-5, and IC-7). The signals then go through line driver amplifiers which feed the intercom lines through 1.5 k resistors, and
then out to the intercom line. The impedance is raised approximately 15k ohms by the receive buffer (IC8), which feeds its associated circuitry, composed of 1% precision resistors (R172, R36, and R156).

Sidetone

Sidetone null balance is achieved by taking a portion of the signal from the output of the line driver (IC8) and adjusting its leve 1 and phase with the sidetone control (P8) until it balances out the signal in the line driver; the resultant output at pin 1 is fed to the listen analog switch (IC7). It is then mixed together with the signals from the other channels through resistor R 35 to a summing amplifier (IC7). The summing amp's output is fed through headset volume control (P3) into the 4 -watt power amplifier (IC8). The signal is then applied to the station's speaker and through a separate op amp to the headset connector (pins 3 and 4).

Signalling

Signalling is achieved by applying a $D C$ voltage on the intercom line. This voltage is applied when the front panel "call" button is depressed, which turns on transistor Q12 (see channe1 D in schematic) which applies approximately 15 VDC to the intercom line of that channel. A receiving station sees the 15 V on the intercom line; the voltage is sensed by amplifier IC14, which turns on an NPN transistor. This in turn causes the call lamp to shine brightly (14).

Program

An external program is fed to the program connector (3-pin XLR female) on the rear panel; the input is a balanced one, -20 to 0 dBm . From there, the signal is amplified, passes the program master
gain control (P 6), and then to another amplifier (IC5, section A on the I/O PCB schematic) which feeds the program buss and the program volume control on the station's front panel. The signal at that point gets mixed into the output of the summing amplifier where it is combined with the intercom signal. From there, the signal can go directly to the headset/speaker power amp, OR it can go into a separate program amplifier (ICllB) and then feed directly to one side of a split phone headset. The feed to the program buss from

IC5A goes to the 4-channel boards ($\mathrm{CH}-4$ Control Modules) and program is sent with intercom to any or all of the channels depending on the setting(s) of the program level trimpot(s).

Stage Announce
When the Stage Announce button is pressed, the output of the mic preamp is also fed to a buffer amp which provides the rear panel $1 / 4^{\prime \prime}$ phone jack with a balanced linelevel signal at 600 ohm impedance. The mic preamp continues to feed the intercom line as well.

AMPL IFIER DESIGN
IC amplifiers including solid-state switching and signalling circuits. Current-limited and short-circuit protected.

MICROPHONE PRE-AMP:
Microphone Input: 200 ohm nominal dynamic type
Mic Input Level: -55 dB nominal Frequency Response: $250-12 k \mathrm{~Hz}$ with mic limiter to maintain level and to prevent overload
Limiter Range: $\quad 25 \mathrm{~dB}$
Gain Adjust: $\pm 5 \mathrm{~dB}$ (gooseneck mic only)

HEADPHONE AMPLIFIER
Output Impedance
Range: 50-2000 ohms
Output Level--
Speaker: 4 watts into 8 ohms
Headset: $\quad+20 \mathrm{dBm}$ into 600 ohms
Distortion: <.25\% THD @ 1 kHz
Amplifier Gain: $\quad 35 \mathrm{~dB}$
Frequency Response: $150-18 \mathrm{kHz} \pm 2 \mathrm{~dB}$

PROGR AM AMFL IFIER :

Switchable for $0-4$ channels per $\mathrm{CH}-$ 4 Control Module with individual level controls
Frequency Response: $150-18 \mathrm{k} \mathrm{Hz}$
Input:
50k ohms trans-former-less, balanced
Input Level:
Common Mode Rejection: $\quad>50 \mathrm{~dB}$

POWER SUPPLY:
Output Voltage

Output Current: 2 amps maximum, MS-808
1 amp maximum, IS-808

VOLTAGE GAIN:
Mic-to-line: $\quad 37 \mathrm{~dB}$ nominal
Mic Gain Adjust: $\quad \pm 5 \mathrm{~dB}$
Line-to-output: $\quad 37 \mathrm{~dB}$
CHANNEL SEPARATION: $\geq 50 \mathrm{~dB}$
SIGNAL-TO-NOISE: $>55 \mathrm{~dB}$
S IDETONE:
adjustable from $>25 \mathrm{~dB}$ null to
full on

OPERAT ING COND ITIONS:
Channel Monitoring
Programmable channels with illuminated locking monitor switches
Sending Call Signal
Follows position of "listen" monitor switches
Call Light Sensitivity: 4 VDC
Signalling Voltage: 11 VDC
Capacity (MS-808)
Will support up to 100 remote headset stations or 20 remote speaker stations
System Impedance
200 ohms or 15 k ohms bridging, switchable
System Level
-15 dB nominal; 0 dB before clipping

CONNECTIONS:

Headset Inputs:	(1) XLR male 4-
	pin
Line Outputs:	(9) XLR male 3-
	pin
	(1) 30-pin male
Program Input:	(1) XLR femal.e
	3-pin
Stage Announce:	1/4' jack
Speaker Mute:	1/4" jack
External Speaker:	1/4' jack

AC POWER REQUIREMENTS:
105-130 VAC; $48-62 \mathrm{~Hz} ; 80$ watts maximum. May be modified for 210 to 260 VAC .
DIMENSIONS: $19^{\prime \prime} \times 3.5^{\prime \prime} \times 9^{\prime \prime}$
AMB IENT TEMPERATURE TOLERANCE:
$0-50$ degrees $C .32-12$ degrees F

I.C THE CLEAR-COM CONCEPT: TECHNICAL OVERVIEW

The DLC Series is a closed-circuit intercom system that provides high-ly-intelligible two-way communications in all environments. A basic system consists of:
--an MS-808 Main Station connected to a number of Clear-Com Remote Stations and/or various DLC System Accessorles, or
--an interconnected group of IS-808 Intercom Stations.

System Interconnection

All units in the DLC Series (MS/IS808, IF4-4, and PIC-4) interconnect with a single cable which carries up to seventeen audio "channels" (eight intercom, eight IFB, one point-to-point) plus DC power. Each intercom station location may be assigned to the point-to-point audio channel, which is referred to as a "dedicated 1ine."

Most Remote Headset and/or Speaker Stations connect to the MS-808 with standard two-conductor shielded microphone cable. One wire carries DC power, the other wire carries the audio channel, and the shield acts as common ground.

Only one termination is needed throughout the system, and is accomplished at the MS- or IS-808.

Performance

The DLC Series is a distributed amplifier system; each intercom station houses its own mic preamplifier with limiter, power amplifier (for the headset or internal/ external speaker), and visual signalling circuitry. Electrical isolation between the talk and listen circuits is achieved, prior to the switch matrix, by the individual ampliflers. The mic limiter prevents overload and maintains a steady transmit level from each station.

The "automatic headset detection"
circuit shuts of f the station's mic preamp when the mic or headset is disconnected, so an unused, on-line mic does not add background noise. Low impedance mic input lines (200 ohms) make the audio channels virtually immune to RF and dimmer noise. Each bridging circuit is terminated with a low impedance to prevent crosstalk between station pairs that have been simultaneously selected for monltoring.

Clear-Com prevents audio feedback between the station's mic and speaker with individual anti-sidetone circuits on each intercom channel. Analog logic circuitry determines the direction of the intercom signal, regulating the gain circuitry for the highest performance.

Power Supplies
IS-808 Stations are self-powered and incorporate regulated DC power supplies (1 amp) for operation with 115-120 VAC, $50-60 \mathrm{~Hz}$ line power. MS-808 Stations have regulated power supplies (2 amps) and the connectors to support up to 100 standard remote headset stations or 20 remote speaker stations distributed along a mile of wire. Remote stations bridge the intercom line at a very $h i g h$ impedance and place a minimum load on the line. Audio level always remains constant, even when stations leave/join the ifne.

Both the MS-808 and the IS-808 are short-circuit-protected, providing an LED for "short" indication and a circuit breaker re-set button.

The 28-30 VD provided by the MS808 enables Remote Stations to operate with minimal current (headset stations, 10 milliamps ; speaker stations, 20 milliamps) while generating loud listen levels (greater than 110 dB SPL). The higher voltage and low current keep voltage losses to an absolute minimum in long lines.

A. SYSTEM IRTERCONRECTION

1) MS-808 \& Standard Remote Stations

1.1 Station Capacity

The MS-808 has a regulated power supply that delivers 30 volts at 2 amps. Therefore, it can support an intercom system that contains any combination of Clear-Com's 1-, 2-, or 4-channel Remote Stations. The number of Remote Stations that one MS-808 can support depends upon 4 factors:

1) the current requirements of each Remote Station
2) the length of the cable that interconnects the Stations
3) the gauge of the interconnect cable
4) the capacitance of the interconnect cable

If your MS-808 is to support remote headset stations only (MR-102A, RS100A, RS-201, etc), the system can contain up to 100 units. If your MS-808 is going to support remote speaker stations only (KB-lllA, RM$400, \mathrm{R} M-120$, etc), the system can hold up to 20 units.

Most intercom systems incorporate a variety of headset and speaker stations. To determine the maximum number that one MS-808 can support, see the graph in Figure 2. Match the number of speaker stations in your system to the number of headset stations. If the intersection falls within the graph's shaded section, one MS-808 can support all the stations in your system.

In systems where interconnect lines between stations are longer than 1000 feet, we recommend you add a second power source to act as a back-up supply; this doubles the system's capacity, allowing you to include more Remote Stations. Main Stations and Power Supplies can be paralleled in the intercom system. If your system includes two MS808's or one MS-808 plus another power source (PS-452, MS-200, etc), the system termination occurs in only ONE of the power sources.

SPEAKER STATIONS
Figure 2 maximum Amount of Remole Staions
II. Intercom System Set-Up, continued

1.2 INTERCONNECT CABLE

Each intercom channel is normally fed on standard two-conductor, shielded mic cable. This cable is routed from a $3-$ pin male connector on an MS-808 rear panel to a Remote Station's input connector. One wire in the cable carries DC power and the other wire carries the audio signal; the shield serves as circuit ground.

The pin assignments on ALL 3-pin, Xta intercom connectors (male and female):

$$
\begin{array}{ll}
\text { PIN } & 1-- \text { COMMON } \\
\text { PIN } & 2-- \\
\text { PIN } & 3-- \\
\text { INTERCOM AUD IO }
\end{array}
$$

The MS-808 provides 28-30 WC to run the Remote Stations. Each one uses minimal current (headset stations, 10 milliamps quiescent; speaker stations, 20 mA quiescent) and generates loud listen levels (greater than 110 dB SPL). The higher voltage and low current keep voltage losses to an absolute minimum in long lines. If the voltage drops because you've added many extra Remote Stations or great lengths of cable, the stations in the system continue to operate normally even with less than 12 volts available.

CHOOS ING CABLE

The MS-808 contains nine XLR, 3-pin male connectors, one for each of the eight channels and one for the dedicated line. Depending upon what stations are in your system, you will:

1) route each channel on a separate two-conductor cable that goes to single-channel Remote Stations, or
2) route two channels together on multi-pair cable to two-channel Remote Stations, or
3) route four channels together on multi-pair cable to the fourchannel Remote Stations.

When choosing interconnect cable, keep in mind the following considerations:

1) DC resistance affects crosstalk. In permanent installations, do not use cable smaller than 20 gauge, stranded (except on runs shorter than 100 feet). Keep the total resistance under 100 ohms.
2) The capacitance of the interconnect cable affects the frequency response and sidetone stability of the Remote Stations. Total capacitance should be .25 microfarads or less (capacitance between the conductor and shield; equivalent to an intercom system with 5000 feet of $50 \mathrm{pF} /$ foot of cable.
3) Standard Clear-Com Remote Stations operate with cable that has no more than 35 pF from conductor to conductor, and no more than 70 pF from conductor to shield.

Cable for Portable Installations:

Typical cable for connecting the MS-808 to portable single-channel Remote Stations is rubber-jacketed, two-conductor, shielded mic cable. We suggest you try BELDEN 8413 or the equivalent (24 gauge, stranded) for connections of 500 feet or less. For connections that run between 500 and 5000 feet, we suggest BELDEN 8412 or the equivalent (20 gauge, stranded).

Cable for Permanent Installations: We recommend you use vinyl-insulated and jacketed cable for interconnecting all permanently installed Remote Stations (wall-mount or custom-mount units). This cable costs less and is easier to pull through conduit than the rubberinsulated type.

As explained before, low-capaci-
II. Intercom System Set-Up continued
tance cable must be used. We suggest BELDEN 8762 or the equivalent (20 gauge, stranded) for up to 500 feet, or BELDEN 8760 or the equivalent (18 gauge, stranded) for up to 5000 feet.

If you don't use Belden cable, use a similar type with the equivalent wire gauge and capacitance. Cable (especially in longer runs) should
have low DC resistance--less than 15 ohms per 1000 feet, with large diameter conductors. Cable should have low interconductor capaci-tance--less than or equal to 55 pF/foot of cable, capacitance between conductor and shield.

Consult the Belden wire specs in Figure 3 to ensure that the substitute cable is the equivalent.

Figure 3
Belden Shielded Cables

$\underset{\#}{\text { Trade }}$	\# of Cond.	AWG \& (Stranding)	Insulation Thickness (Inch)	$\begin{gathered} \text { Jacket } \\ \begin{array}{c} \text { Thickness } \\ \text { (Inch) } \end{array} \end{gathered}$	Nom. O.D. (inch)	\% Shield Coverage	Suggested Working Voltage	Nom. Cap. (p / ft.)	Nom. Cap. (p / ft.)
8413	2	$24(45 \times 40)$. 019	. 025	. 190	100	300	30	55
8412	2	20 (26x34)	. 020	. 043	. 268	84	600	30	55
8762	2	20 (7x28)	. 014	. 028	. 196	100	350	27	49
8760	2	18 (16x30)	. 018	. 028	. 222	100	450	24	44
8725	8	20 (7x28)	. 015	. 030	. 360	100	400	27	49
8723	4	22 (7x30)	. 008	. 019	. 165	100	400	35	62

\therefore Capaciance between conductors.

- Capacitance between 1 conductor and other conductor connected to shield.

Cable for Multi-Channel Lines:
When installing a system that contains two- or four-channel Remote Stations, you can send each channel in its own two-conductor shielded mic cable, OR you can:

1) route 2 channels together in a two-pair, individually shielded cable (Belden 8723)
2) route 4 channels together in a four-pair, individually shielded cable (Belden 8725).

Whichever method you chose, make sure that the cable you select provides A SEPARATE SHIELD FOR EACH CHANNEL. See Figures 4 and 5, Two-Pair and Four-Pair Cable.

II. Intercom System Set-Up, continued

1.3 INTERCONNECTION PROCEDURES

1) When routing cable from the MS-808 to the Remote Stations, allow at least three inches behind rack-mount units for cables to extend from the rear panels. Avoid sharp bends in the cabling.
2) Always route cables away from heavy $A C$ power sources, such as lighting panels or electric motors.
3) Portable and rack-mount Remote Stations have female/male pairs of input/output $X L R$ connectors; when installing a system with these units, it's easy to "daisy-chain" several stations along one interconnect path.

DAISY CHAIN
Alternately you might try Clear-Com's Quadropuss Splitter to feed lines to individual Stations (the Quadropuss is a line splitter with one input and three outputs, and is plugged directly into the MS-808 or installed along the line). Both these methods lessen the amount of cable you need, and also simplify installation.
4) Use of Conduit: Wall-mounted and custom-mounted Remote Stations connect to the intercom system via 5-pin terminal strips instead of XIR connectors. If you're using these in an installation site that has conduit, run interconnect cables through the conduit. If the conduit has existing wire, you can use that whether it's shielded or not.

Be sure to install cable in accordance with approved local building codes.
5) Not Using Conduit?: In installations where conduit is NOT used, and equipment doesn't share a common ground, it is good engineering practice to run an additional ground wire to tie all chasses together. This decreases susceptibility to electrical noise fields.
6) DMPORTANT: "Chassis ground" and "signal ground" (Pin 1 on intercom XLR connectors) are NOT the same point. DO NOT connect the chassis and Pin 1 together. The chassis is insulated from the signal ground with a capacitor (. 01 mic cofarad, 1.4 kV). This eliminates the hum and potential shock hazards that might arise should the Stations be at different ground potentials.

Refer to the Permanent Installation Wiring Diagram (Fig. 4) when making connections.
7) Crosstalk: When routing two or more channels to one Remote Station, the amount of crosstalk is proportional to the amount of DC resistance in the ground return. Two ohms of resistance or less is ideal; two ohms will give 40 dB of isolation. Anything greater than two ohms will increase crosstalk. Be sure to route each channel in its own shield.
II. Intercom System Set-Up. continued
8) When using four-pair cable, you should connect all the shields and ground wires. This effectively lowers ground resistance and improves crosstalk. See the Interconnect Cable Detail diagram, Fig. 5. Also, tie any unused wires in the interconnect cable to Ground (Pin l on intercom XLR connectors), thereby further improving crosstalk.

4-PAIR CABLE Belden 8725 or equivalent

Figure5 - INTERCONNECT CABLE DETAIL
2) DLC SYSTEM INTERCONNECTION

DLC Stations and the PIC-4 Program Controller connect to each other with $12-\mathrm{paif}$ shielded cable. The cable is input to the $30-\mathrm{pin}$ male connector on the Station's rear panel. With each DLC Station, we supply two $30-\mathrm{p}$ in female connectors (these are attached to each end of the interconnect cable).

The following pages contain illustrations to help you construct the interconnect cable. We recommend you use Belden 9768 or the equivalent (twelve-pair, individuallyshielded, 22 gauge).

Cable, especially in longer runs, should have low DC resistance-less than 15 ohms per 1000 feet, with large diameter conductors. Cable should have low inter-conductor capacitance-- less than or equal to $55 \mathrm{pF} /$ foot of cable, capacitance between conductor and shield.

The MS-808 provides one $30-\mathrm{pin}$ connector for output to DLC Series components.

The IS-808 Station provides two 30pin connectors, one for "input" and one for "output," so you can daisychain the unit with other IS Stations. See the Daisy-Chain diagram in the previous section.

The PIC-4 Program Controller contains one $30-\mathrm{pin}$ connector for DLC intercom/FFB input.

Since each MS-808 and IS-808 contains its own power supply, there is no limit to the amount of mainframes that can be interconnected within a system. (systems with IFB must contain at least one MS-808 to provide power for the Program Controller and Talent Receivers; see Section IV.)

Always route the interconnect cable away from heavy AC power sources, such as lighting panels or electric motors.

Avoid sharp bends in the cabling. Allow at least 3 inches behind each DLC Station for cable to extend from the rear panel.

PIN ASSIGNMENT

A1 INTERCOM AUDIO 1
A2 INTERCOM AUDIO 2
A3 INTERCOM AUDIO 3
A4 INTERCOM AUDIO 4
A5 INTERCOM AUDIO 5
A6 INTERCOM AUDIO 6
A7 INTERCOM AUDIO 7
A8 INTERCOM AUDIO 8
A9 IFB-1A
AO GROUND
B1 + VOLTS
B2 + VOLTS
B3 IFB-2A
B4 IFB-3A
B5 IFB-4A
B6 IFB-1B
B7 IFB-2B
B8 IFB-3B
B9 PRIORITY
BO GROUND
C1 INTERCOM AUDIO 9
C2 IFB-4B
C3 PROGRAM 1
C4 PROGRAM 1
C5 PROGRAM 2
C6 PROGRAM 2
C7 N/C
C8 N/C
C9 N/C
CO GROUND

-30-PIN MALE

TUCHEL CONNECTOR AS SEEN FROM INSIDE CHASSIS (Wiring side)
II. Intercom System Set-Up, continued
B. ASS IGN ING CHANNEL I.D.' 8

The MS/IS Station with two CH-4 Control Modules provides two-way communicating abilities on eight intercom channels and a dedicated line. The Modules let you pre-set the channel functions and control channel monitoring.

The dedicated line has no external controls for it; it remains permanently "on," allowing the DLC Station operator to main tain constant point-to-point communications with another Station operator.

When you interconnect DLC Stations, the lines in the cable are not hard-wire-assigned to the specific "channels" (A through H) which are controlled via the front panel. Assigning each set of channel controls on the $\mathrm{CH}-4$ module to the audio lines in the cable (and the Stations connected to the lines) is done via the Station's Assignment Matrix.

The Matrix is located on the Input/ Output Circuit Board inside the DLC Station. Remove the top cover of the Station, and you'11 see the labelled Assignment Matrix. See Flgure 8, Input/Output Board, for exact location.

On the Assignment Matrix, the horizontal rows labelled l-9 correspond with the nine intercom lines run through the $30-\mathrm{pin}$ connector on the Station's rear panel (MS or IS mainframe). Refer to the pin-out chart, Figure 7, to see which pins on the connector correspond to which intercom lines.

The vertical columns on the Matrix are labelled with alphabet letters $A-H$ and "D/L." They correspond with the channels monitored via the CH-4 Modules.

The position marked "off" on the

Assignment Matrix disables one of the circuits within the unit, disconnecting it entirely from the system. It should be used as a place to "park" the dedicated line slideswitch in systems that do not use point-to-point communications.

At the factory, we set up the Matrix so the intercom lines in the 30-pin connector are assigned to the channels in a straight-forward manner:
Intercom line $1=$ Channel A
Intercom line $2=$ Channel B
Intercom line $3=$ Channel C
Intercom line $4=$ Channel D
Intercom line $5=$ Channel E
Intercom line $6=$ Channel F
Intercom line $7=$ Channel G
Intercom line $8=$ Channel H
Intercom line $9=$ Dedicated Line

If you have an MS-808 that connects to standard remote headset/speaker stations instead of DLC System components, there's no need for you to re-set the Assignment Matrix. The $3-\mathrm{pin}, \mathrm{XLR}$ connectors on the Station's rear panel directly correspond with the intercom lines; in other words, the line run through XLR connector \#1 is monitored via the Channel A buttons, the line to XLR connector \#2 is monitored via the Channel B buttons, the line to XLR connector \#3 is monitored via the Channel C buttons, and so on. XLR connector \#9 is for the dedicated line.

To change the channel/1ine assignments: use the point of a pencil (or end of a paper clip, etc.) to push each Matrix slide-switch up or down its column, thereby assigning a channel ID to each intercom line run through the $30-\mathrm{pin}$ connector (it is possible to assign more than one line to the same channel; you can assign two sets of talk/listen controls to one XLR input).

Figure8

C. TERMINATION

After completion of cable routing and system interconnection, you must make sure that the system is properly terminated once at a point in the system.

Only one termination per channel is needed. All channels should be terminated at any one of the MS or IS Stations or other Main Stations in the system, or at the MS-808 if it's the only power source.

Termination for each intercom channel is accomplished with a dipswitch which is located on the $\mathrm{CH}-4$ Control Module's printed circuit board. Loosen the screws that hold the Control Module onto the DLC Station's front panel, and gently pull the Module out of the slot until you have access to the dip switches (grouped in sets of 4 , there is one set for each channel). See Figure 9, CH-4 Circuit Board, for exact location of dip switches.

The circuit board is labelled on its far left side (next to the first set of dip switches) with the

D. PROGRAM SEND/RECEIVE

The rear panel of each MS/IS mainframe contains a $3-\mathrm{pin}$ female XLR connector for a balanced, auxiliary program input. The Station operator hears the program in the headset and/or speaker.

In most cases, the headset connector on the DLC mainframe's front panel has the intercom and program signals combined onto one pin (pin 4), although the DLC mainframe is optionally available with a 6 -pin headset connector that has separate program and intercom pins for use with binaural headsets.

The program input uses a differen-
switch functions. Dip switch 44 in each set is for that channel's termination. Each termination switch must be set to the "on" or "closed" (not "open") position.

Make sure a termination switch is "on" for all intercom channels in your system. Even if a channel is not in use, you should terminate it.

At all other DLC Stations in the system (also at all Main Stations, Switchboard Stations, or Power Supplies, if part of the system), the termination switches should be OFF ("open" position).

It is important to remember that each channel, whether in use or not, should be terminated ONCE at some point within the intercom system (note: that point need not be the same for each channel).

In DLC Systems using IFB-4 Control Modules, the IFB channels are terminated by the PIC-4 Program Controller.
tial amplifier to accept a balanced signal without using a transformer. A -25 dB signal will drive the line to full output. The input impedance of the program amplifier is approximately 50 k ohms.

The speaker output always combines the intercom and program signals, although the relative levels of each are dependent upon the settings of both volume controls on the front panel (Intercom Volume, Program Volume).

The program level heard in the headset is affected only by the Program Volume control. However,

PROGRAM SEND/RECEIVE, continued
the program level heard in the speaker is affected by the setting of the Intercom Volume control.

If you're using a binaural headset with the DLC mainframe, the Intercom Volume has no effect whatsoever upon the program level, whether in the speaker or the headset.

The DLC mainframe operator can combine the the program with the intercom on any or all of the channels. If he decides to do so, the program and intercom signals are mixed at the Station and the ensuing signal is sent to the Remote Stations on the desired channel(s).

To send the program on any channel,

E. CHANNEL SIDETONE NULL

Sidetone control enables the Station operator to vary the level of his/her voice as heard in. his headset or speaker.

The CH-4 Module provides a sidetone null trimpot for each channel. This light-blue trimpot looks like the Program trimpot, but is located towards the rear end of the Control
F. HEADSETS, SPEAKERS $2, ~$ GOOSENECK MIC

An electret mic on a gooseneck extension is permanently attached to the front panel of the DLC Station. The length of the extension is adjustable; loosen the screws that hold the base to the front panel, and you can slide the gooseneck in or out. The gooseneck mic is controlled by a Mic On/Off toggle switch next to the gooseneck base.
slide out the appropriate $\mathrm{CH}-4$ Control Module. The control to adjust is a light-blue trimpot, located close to the front panel (see Fig. 9, for exact location of all controls on $\mathrm{CH}-4$ Module). Turn the trimpot fully clockwise, and the assoclated channel will receive the program signal at maximum level. Turn the trimpot fully coun-ter-clockwise, and the associated channel will not hear the program.

Program can not be sent on the dedicated line.

Note: the Program Input XLR connector is wired in parallel with the "program 1" lines in the mainframe's 30-pin connector (see Fig. 7 for specific pins).

Module circuit board (see Figure 8 for exact location).

These trimpots adjust the sidetone level for the individual channels. Turn a sidetone null trimpot clockwise to decrease the sidetone heard on its associated channel. At the factory, we set all these trimpots for maximum null.

Beneath the gooseneck mic is a headset connector, for use with a dynamic headset. The headset connector's pin assignments are:

Pin 1 - Mic Common
Pin 2 - Mic Hot
Pin 3 - Headphone Common Pin 4 - Headphone Hot

Do not use the mic or headset within two feet of an $A C$ power trans-

GRADSETS, SPRAKER \& COOSBERECK MIC, continued
former, or the mic(s) will pick up hum.

The Station's headset/speaker amplifier can drive a headset to levels greater than 110 dB SPL. When the headset jack is not used, the Station's amplifier gain is reduced from 50 dB to unity gain, eliminating pick-up from the unused input.

All dynamic headset connectors in Clear-Com Stations are 4-pin XLR male connectors. These are for use with monaural headsets, but can be adapted for use with stereo (binaural) headets (see Section G).

To assure proper level and performance, the headsets (or handsets or mics) should have the following characteristics:

Microphone Type: dynamic
Impedance:
Output Level:
Headphone Type:
Output Impedance:
150-250 ohms $-55 \mathrm{~dB}$
dynamic
300-2000 ohms
Clear-Com can supply you with the Model YC-100 "Y" Cable, which allows you to plug two headsets into the one 4 -pin connector on the Station's front panel. Alternately, you can construct your own Ycable; we recommend you use Belden 8416 or the equivalent (2-conductor, 25 gauge) or Belden 8734 or the equivalent (3-conductor, 22 gauge). See Figure 10, Y-Cable Construction.

You can also build an extension cord for the headset, using the same cable specified for the Y cable. Limit the extension length to 15 feet or less; greater lengths lead to possible capacity coupling between the mic signal and the headset signal, which causes oscillation or a loss in frequency re-
sponse. See Figure 11, Headset Extension Cord Construction.

If you want to connect an external speaker to the MS/IS mainframe, use one with impedance of 8 ohms or more. Connect the two wires from the speaker to the tip and sleeve of a $1 / 4^{\prime \prime}$ phone plug, then plug it into the external speaker jack on the Station's rear panel. The external speaker always remains on, and does not affect operation or performance of the Station's builtin speaker (which is included when the MS/IS mainframe contains an SP4 Speaker Module).

The mainframe ia easily adapted for use with a stereo (binaural) headset. You will need:
--6-pin insert (male, Switchcrafttype) for the connector
--one jumper
--one capacitor, 100 pF lkV
--small-blade screwdriver
--small needle-nose pliers
--solder iron and wick
To switch from mono to binaural:

1) remove top cover from mainframe
2) remove set screw from top of headset connector shell (inside front panel)
3) remove 4 -pin insert from connector shell by gently pulling its wires towards rear of mainframe
4) carefully unsolder all 4 wires from the insert
5) prepare the 6-pin insert by soldering the 100 pF capacitor between the insert's ground tab and Pin 1 (see diagram next page) (continued)
II. Intercom System Set-Up, continued

ERADSETS, SPRAKER \& COOSERECR MIC, continued
(adapting mainframe to stereo headset connector)
6) solder the headset connection wires to the 6 -pin insert: a-- black \& blue twisted-wire pair to Pin 1 (black) and Pin 2 (blue);
b- other black wire to Pin 3; c-- pare white/yellow wire to Pin 4 (spare wire is tucked inside the mainframe, in the same bundle as the other wires);
d-- orange wire to Pin 5 ; e--jumper between Pins 3 and 6.
7) use pliers to move jumper JP2 from the MIX position to the SEPARATE position (located on I/O PC Board between the Sidetone and Intercom Volume con(rols)
8) Slide the 6-pin insert through headset connector shell; secure with set screw
9) replace top cover of mainframe.

G. TRITPOTS ON I/O (INPUT/OTIPUY) FC DOARD

There are three trimponts on the I / O Board that are set at the factory for optimum operation (refer to Pigure 14 for their location).

Dedicated Line Sidetone Null (reference designator, P4):
Adjusts the sidetone null on the dedicated line; should not require readjustment.

Gooseneck Mic Trim (P5):
Sets the level for the gooseneck mic sensitivity over a 10 dB range.
Master Program Gain (P6):
Adjusts the program gain from full off to full on, $>60 \mathrm{~dB}$.

Figure 10
HEADSET "Y" CABLE CONNECTIONS

Figure 11
HEADSET EXTENSION CORD

III. MS-808/IS-808 OPRRATING CONTROLS

The mainframe and $\mathrm{CH}-4$ Module controld are described as they appear from left to right, viewing the front panel of the MS/IS-808.

Figure 12

POWER SWITCH

PUSH-TO-RESET CIRCUIT BREAKER

LED SHORT IKDICATOR

The MS/IS mainframe has a power cord that connects to a source of $105-125$ VAC, $50-60 \mathrm{~Hz}$. When the power switch is turned on, it illuminates, indicating the Station is ready to run.

The MS/IS mainframe provides a red LED that illuminates when the Station's circuit breaker pops, indicating a short circuit or phase reversal in the cabling. If the LED lights up, inspect the interconnect cable, remove the short circuit, and press the Circuit Breaker re-set to re-establish the system.

SPEAKER ON/OFF

This toggle switch controls the MS/IS mainframe's built-in speaker.

CALL

Pressing Call activates the Visual Signal Circuitry in the system, allowing the Station operator to attract the attention of other operators.

The Call button will signal the operators on channels that the calling Station operator has chosen with $\mathrm{CH}-4$ locking "Listen" buttons. If the Listen buttons for Channels D and E are on, pressing Call will signal only those Stations on Channels D and E. If all Listen buttons are enabled, all connected Stations will receive the Call signal.

When a Remote Station sends a Call signal, the MS/IS Station's Listen button for that Remote Station's channel will illuminate brightly (whether it's on or off).

S/A-- STAGE ARHOUNCE

"Stage Announce" allows the MS/IS Station operator to add his words spoken into the mic to the intercom system to an external output. When the operator presses the S / A button, the mic preamp output is added to the rear panel Stage Announce connector (1/4" phone jack) as a balanced, line-level signal, with 600 ohms impedance. The S/A function has no sidetone.

The MS/IS mainframe rear panel also provides a $1 / 4^{\prime \prime}$ phone jack for "Speaker Mute." Speaker Mute provides a contact closure when the Stage Announce function is activated, allowing you to use a relay that will shut off or mute an external speaker located close to the MS/IS Station (so there's no feedback). The Speaker Mute phone jack should not be used to send a signal to a speaker.

UNLABELLLED BUTTON

On the front panel of the MS/IS mainframe, there is an unlabelled button. Depending upon the specified configuration when your system was ordered, this button is any of the following:
a) unwired
b) "All Page" (talk to all channels at once)
c) "All IFB" (dip program and cue all talent at once)

You might choose to wire up this button yourself; if so, call our Sales or Engineering Department (415-861-6666) for assistance.

PROGRAM VOLUNE

This front panel knob adjusts the overall volume level of the auxiliary Program signal in the Station's speaker or headset.

SIDETONE VOLURE

This knob controls the overall volume level of the operator's voice as he hears it in the Station headset/speaker. Sidetone control also prevents feedback when the Station is used with an external speaker. The sidetone control does not affect the level of the operator's voice heard by other Stations or the level of incoming signals.

As you turn the knob clockwise overall sidetone level increases.
Sidetone can be varied from fully off to fully on, "no null" level. For maximum speaker output without feedback, turn the sidetone knob fully counter-clockwise (maximum null).

INTERCOM VOLUME

This knob adjust the overall volume of the channels monitored in the speaker/headset of the DLC Station.

CH-4 Control Module: TALK/LISTEN MONITOR CONIROLS

The front panel of the Control Module contains four pairs of intercom channel controls. For each channel, there is a "Listen" push-button and a "Talk" toggle switch.

When a square "Listen" button is activated, it dimly illuminates, locks into place, and allows the operator to listen to activity on the associated channel. The operator can listen to as many channels as needed.

NOTE: the positions of the Listen buttons determine which channels will receive a visual signal when the MS/IS operator presses Call; the Call signal travels only on channels whose Listen buttons are ON.

The "Talk" toggle switch has three positions: on, off, and momentary on. The Station operator can talk on as many channels at the same time as s he wants.

Activating the "momentary Talk" function automatically dips the Station's speaker output approximately 6 dB so you don't get feedback.

ISO OPTION

The CH-4 Module contains a certain jumper within the electronics for each channel. When removed, the channel becomes an ISO line. To access an ISO channel, set that channel's "talk" toggle switch to the momentary on position. This lets you talk to the Stations on the ISO line only, and disables your "talk" and "listen" ability on all other channe1s, regardless of their "talk" and "listen" switch positions. You can still hear the external program (if input to the auxiliary input) while communicating with an ISOlated channel.

Please call the factory at the above number if you'd like to modify any of your channels for ISO operation.

Figure 13: DLC Point-to-Point System Interconnection

NOTES:
I. PARTS INSIDE DOTTEO LINE
ARE MOUNTED ON PCBD.
2. FOR Z3OV OPERATION USE
K AMP SLOW BLOW FUSE.

MAJOR COMPONENTS OF A
OLC PRODUCTION INTERCOM SYSTEM
WITH 4 INTERCOM CHANNELS ANO
4 IFB CHANNELS
ALSO AVAILABLE WITH UP TO 8 INTERCOM
CHANNELS AND 8 IFB CHANNELS
A. IETRODUCTIOR TO THE IFB SYSTEM

The Clear-Com IFB System is a oneway program interrupt system that is fully integrated within the DLC System.

This flexible IFB System sends one of two program channels to talent, and permits multiple intercom station operators to interrupt the program and access the talent.

Split program feeds are possible, which allow the talent to monitor a program continuously in one ear and have program interrupted in the other ear.

A system with one PIC-4 provides four channel outputs to talent; however, eight channels are possible by daisy-chaining two Program Controllers (PIC-4) together. One is called the "primary" PIC-4, while the other is the "secondary"

PIC-4. The DLC System input is only connected to the primary PIC4, which then connects to the secondary unit via a $25-$ pin D connector and ribbon cable.

When the director (a DLC Station operator) presses a button on the IFB-4 Module, the station's mic activates and disconnects from the "talk" portion of the intercom system to allow talent cueing. The "listen" portion of the intercom is not affected, which permits continuous monitoring of the intercom during IFB use.

```
Components of an IFB System:
--PIC-4 Program Controller
    62), up to }4\mathrm{ per PIC-4
--a DLC Intercom System with at
    least one IFB-4 Control Module
```


1. PIC-4 Program Controller

The PIC-4 contains all the controls and connectors to provide the link between the IFB/intercom stations and the talent receivers. Each PIC-4 has four outputs to Talent.

With each Talent output, the PIC-4 provides a control for dip level and switches for selecting which continuous and/or interruptable program feeds the Talent will hear. The PIC-4 is powered by Clear-Com, connected via the $12-p a i r$ DLC System cable.

2. Taleat Receivers

Talent Receivers allow talent to hear the program and cues coming through the PIC-4 from the intercom system.

TR-50
This miniature, lightweight belt-pack has volume control and a clip for attaching it to a belt or under a table. It contains an earphone connector and is supplied with Model TS-1 earpiece.

The TR-50 accepts one program channel, and connects to the PIC-4 with standard two-conductor shielded mic cable.
2. Talent Receivers, continued

TR-62
The TR-62 is a compact two-channel belt-pack that allows the talent to monitor uninterrupted program in one ear and interrupted program in the other ear. Ideal for sportscasting, the TR-62 provides a separate volume control for each program. It works with any binaural headset, 150 ohms or greater.

The TR-62 connects to the PIC-4 with individually-shielded two-pair cable.

3. DLC System With IFB

IFB-4 Control Module
This 4-channel module plugs into the DLC Station mainframe. One or two Modules can be plugged in for accessing up to eight talent.

The IFB-4 Module contains 4 momentary push-buttons, each of which is associated with a separate IFB channel/Talent output. The buttons glow continuously for easy identification.

The DLC Station mainframe contains an ALL IPB pushbutton that simultaneously accesses all talent.

B. IFB SYSTEM CONRBCTIORS

The PIC-4 rear panel provides two types of intercom input connectors: 3-pin, XLR-type female connectors for separate intercon channels (four), and the 30 -pin male connector for the DLC System line. The PIC-4 is powered by Clear-Com.

1. Intercom System Input

Route 12-pair DLC interconnect cable from any MS/IS mainframe to the PIC-4's 30-pin connector ("IFB Interconnect").
2. Program_Input

The PIC-4 has two 3-pin female XLR connectors for balanced program inputs. The program input uses a differential amplifier to accept two separate, balanced signals, without using a transformer. A signal ranging from -18 dB to +16 $d B$ will drive the line to full output. The input impedance of the program amplifier is approximately 50k ohms bridging.
3. Talent Receiver Output

If a single program signal is fed to Talent, then the Receiver used is a TR-50 with TS-1 earpiece, and the Talent Out connector on the PIC-4 is a 3-pin XLR male. Interconnect cable is standard twoconductor shielded mic cable.

If a split program is fed to Talent (both program inputs used), then the Receiver is a TR-62 with a binaural headset, and the Talent Out connector on the PIC-4 is a $6-$ pin XLR male. Interconnect cable is two-pair, individually shielded cable.

NOTE: On the DLC mainframe rear panel, the auxiliary program input (3-pin XLR-type female) is wired to the Program 1 pins in the $30-\mathrm{pin}$ male connector.

C. PIC-4 OPERATING CONTROLS

After you connect the PIC-4 between the intercom system and the Talent Receivers, and you adjust all levels and controls according to desired operation, then the PIC-4 becomes "transparent" and need not be an "active" system component.

Program Level 1 \& 2: Adjusts volume $\overline{\text { level }}$ of associated program inputs \#1 and \#2.

Program Select Toggle Switches Each Talent Output (A, B, C, and D) is associated with three controls.

The "Non-Int" switch allows you to select which one program the TR-62 will receive continuously, while the "Int" switch selects which interrupted program (plus cues) will be monitored by either the TR62 , or the TR-50. The numbers " 1 " and "2" designate the program feeds as input to the PIC-4 rear panel (ie, Pgm 非 \& Pgm \#2).

Dip Adjust: Allows you to vary the dip amount from full on to full off.

8-CHANNEL IFB SYSTEM

If your system includes two PIC-4 Controllers, one is considered a "primary" unit and the other is considered "secondary."

The secondary PIC-4:
--connects to the DLC System via ribbon cable input to the 25 -pin D connector on the rear panel (labelled "extender")
--is modified (by Clear-Com) with the addition of four jumpers (at JPl-JP4 on PCB) that permit the system extension.

To send program and cues to eight talent people, two IFB-4 Control Modules are required; these modules, however, need not be in the same DLC MS/IS mainframe. One Station operator (the director, for instance) can have access to Talent 1-4 via one IFB-4 Module, while another operator (such as the assistant director) has access to Talent $5-8$ with another IFB-4 Module.

IV. DLC System with IPB, continued

D. IPB SYSTEM SPECIPICATIONS

Frequency Response:
Distortion:
Signal-to-Noise Ratio:
IFB Line Level:

PIC-4
Program Imputs:
Program Input Leve1:
Program Output on IFB Line: -10 dBm
Program Dip Range: 0 to -40 dB
Power Required:

Dimensions:

Connectors:
Program Input:
Intercom Input:
Talent Output:
DLC Input:
Extension:

IFB-4 MODULE
Controls:
IFB interconnect:

TR-50 TALENT RECEIVRR
Earphone Type:
Earphone Impedance:
Max. Output Level:
Power Required:
Headset Connector:
IFB Connector:

TR-62 TALEAT RECEIVER

Headset Type:
Headset Impedance:
Max. Output Level:
Power Required:
Headset Connector:
IFB Connector:
<. 1% THD @ 1 kHz
$-10 \mathrm{~dB}$
by Clear-Com line
dynamic
$+20 \mathrm{dBm}$

3-pin XLR male
$100-15 \mathrm{k} \mathrm{Hz},+/-1 \mathrm{~dB}$
better than -55 dB
two, selectable to each talent
1 for interrupt, 1 for non-interrupt
-20 to $+15 \mathrm{dBm}, 50 \mathrm{k}$ ohms bridging, balanced

27 ma quiescent @ 28VDC supplied
$19^{\prime \prime} \mathrm{W} \times 1.75^{\prime \prime} \mathrm{H} \times 6.5^{\prime \prime} \mathrm{D}$
(2) 3-pin XLR female
(4) 3-pin XLR female
(4 total) 3-pin XLR male (single program feeds)
or 6-pin XLR male (optional split-feed program feed)
(1) 30-pin connector
(1) 25-pin "D" connector for extension to second PIC-4
(4) momentary push-buttons (glowing)

20-pin ribbon cable

30 ohms or greater
10 ma quiescent @ 28VDC supplied by Clear-Com line $1 / 8^{\prime \prime}$ miniature jack
dynamic
>150 ohms
$+20 \mathrm{dBm}$
15 ma quiescent @28VDC supplied by Clear-Com line 6-pin XLR male
6-pin XLR male

V. WARRANTY \& MAINTENANCE

Your Clear-Com System contains modular, solid-state equipment that allows system expansion and field serviceability. Efficient ventilation is inherent in chassis design. Rugged packaging guards against abuse. The intercom station chassis is constructed of .090 5052-H32 aluminum, and it contains doublesided, glass epoxy plug-in PC Boards. Our circuitry is conservatively engineered to assure the longest component life. We shield heavily against hum, RF pick-up, and solid-state dimmer noise.

Before shipping, we test each unit individually to ensure that it
meets or exceeds all specifications. All units are guaranteed by Clear-Com against defects in materials and workmanship for a period of one year following date of purchase (90 days for headsets-- see the warranty card enclosed with the unit).

Our Engineering and Service Departments will gladly give you technical advice and assistance. If you have any questions regarding operation, modifications, or applications of your intercom system, call us between $9 \mathrm{a} . \mathrm{m}$. and $5 \mathrm{p} . \mathrm{m}$. at (415) 861-6666 (Pacific Standard Time).
VI. TROUBLESHOOTING

Symptom
Cause
Remedy

System is non-	
operable; power	a. Loss of AC power
switch is not	b. Internal fuse is
illuminated	blown; could be
	caused by power
	supply failure.

a. Plug unit into dependable AC source
b. Replace fuse; if it blows repeatedly, bridge rectifier or other component probably shorted inside power supply. Have power supply fixed.

Circuit breaker trips repeatedly; short circuit LED remains lit	a. Shorted or mis-wired interconnect cable b. Defective remote unit	a. Remove cables, one at a time, from Main Station until faulty line is located. Check for shorts between Pins 1 and 2. b. Check remote unit.
Hum or buzz in system	a. Inductive pick-up caused by close proximity of Main or Remote Station to power lines or transformers. b. Due to ground loop, caused by improper grounding of system. c. 10 ohm chassis ground resistor (R14) in power supply is open* d. inductive pick-up by headset mic; check by switching mic on and off	a. Relocate offending unit. b. Reverse power cord, lift ground (see Installation Instructions. c. Check resistance between chassis and Pin 1 of connector, make sure it's ten ohms. If not,open power supply and replace resistor. d. Move mic away from "hum field" or use carbon or electret headset.
Excessive background noise pick-up by mic	a. distance from mic to lips is too far b. volume too high c. too many mics "on" in entire system	a. Move closer to mic b. Lower headset/ speaker volume c. Turn off all unused mics

(continued)

TROUBLESHOOTIHG

Symptom
Cause
Remedy
System Feedback
Acoustical
a. Check sidetone levels
b. Check termination
c. Volume too high at one station
d. Two or more speaker stations have mics on simultaneously; spaak one at a time (per channel)

* Power Supply's 10 -ohm resistor is opened when the system ground comes in contact with something "hot," with respect to the Main Station Earth Ground. Should this occur, we recommend you carefully check the system ground and AC distribution in the area. NOTE: THIS IS A POTERITIALLY DANGEROUS SITUATIOR; IF IT OCCURS, A SHOCR haZard may occur betwere hetal book of hradset and GROURD.

LESCRIFTION

HILL. OF MATERIALS
ASSGEMBL.Y 710044 AGY $1 / 2$ REG FOWER SUFFLY HOLULEE.

BILL OF MATERIALS
ASSEMELY 710044 ASY $1 / 2$ REG POUER SUPPLY MODULE

ASSEMELY IFE-4 FGI 4 CHANHEL TALENT IFE MOLIULE
P/N DESCRIPTION GTY

| 250183 | MET DLC SERIES 4 CHAN GOARI-TO-PLATE BRACKET | 2 |
| :--- | :--- | :--- | :--- |
| 250184 | MET IFE-4 FRONT PANEL | 1 |
| 280004 | HDS A-40 CAPTIVE PANEL SCREW-BLK RAFE369-SS-26 | 2 |
| 280005 | HDS CAPT PNL SCRN RETAINER-BLK RAF $1000-125-5 S-26$ | 2 |
| 710142 | ASY IFB-4 MODULE REU.C | 1 |

ASSEMELY CH-4 FGI 4 CHANNEL IHSERT

：40015	AAA	NNA ROGARI慁E－67－0－DC－ML． $1251 / 2 \mathrm{~W}$	W／1／8 SHAFT
240020	NNE	RED EUTTOH FOR CBN SWITCH \＄8121	
390005	LAH	LAMP FOF CC $\$ 5125240$ ZOMA SCHALIOU	W 62524
470020	AAA	REV 100K LINEAR FCC MTG CTS\＄FE6645	
470034	FEV	SOK TRIMFOT CTS／HECKIMAH＊91ARSON	
480004	TRA	MF＇S－A13 TRANSISTOR	
480008	TRA	MFSS－A63 TRANSISTOR	
4830044	TRA	2N5031 JFET	
400047	TRA	2N4401 RIPN TRANSISTOR	
480056	ICS	KC4559NE IUUAL OF AMP 日－FIN DIF	
480069	TRN	2N5639 it CHANNEL JFET	
480070	AAA	ICS NES532 IIUAL LO NOISE OF＇AMP	
480073	ICS	IUG308A AtIALGG SUITCH QUAII	
480074	ICS	CD4081日 GUAL DLAAL IUPUT NANL GATE	
480075	ICS	LM35日 IUUAL GNI SENSING OF AKP	
480076	ICS	CU4049E CMOS HEX IUUERT RUFFER	
480078	TRA	UF－C78LI5H NEC VOLT REG， 150 IOOMA	
510027	SWT	MINI LIIP SWITCH GKAYHILL $\ddagger 76 \mathrm{SHO4}$	
510028	AAA	SWT SHAF－ACTIOH C\＆Kit8121W8025RE［13	
510041	SWT	IJPIT SHAF ACTION C\＆F \＃B221YAVS	
510043	SWT	SFIHT SUAF ACTION C8K\％	
510044	SWT		
510046	SW T	10×10 MIHI MATRIX AMF＇\＄436270－1	
510050	SWT	SCHFF－H－OO－2U－EE－N－21－01－16－01－R－A	－AG－3－03

ASSEMELY 820018
asy tuchel cormector assy female for wire

F／N
210096
210119
210119
210120
280000
280009
280010
640025
640026
810006

UESCRIFTION
TER 30 PIN DIN RECEFTACLE
TUC CONNECTOR SHELL－RIGHT KALF W／THROUGH HOLES TUC CONNECTOR SHELL－LEFT HALF W／STGAIN RELIEF TUC $1 / 2$ SELF TAFFING SCFEW FOR CONNECTOF
TUC S／日 SELF TAFFING SCEEW FOF CONNECTOR SHEL．L TUC $3 / 8$ SELF IAFFIHG SCREW FOR STRAIN RELIEF TUC FUNHEF EUSHING FOR TUCHEL
TUC STRAIA RELIEF BFACKET FOR TUCHEL MAN TUCHEL WIRING INSTRUCTIONS ILLC ICW－EI－C

1
\square
P／N

IESCRIPTION
150048 CAD 100PF 1 KiV 20% RF CAF
210013 AAA SWC ITM COTANECTOR
210089
240007
240015
240020
240021
250157
250166
250202
250202
250203
250204
250207
250210
280067
390007
500089
500090
510002
510006
510044
520018
520019
TER CRIMP LUG SLIFONS SHITH $\$ 27$＇7
HAN PANEL HAHIHLE 2 IHCH SHITH\＃163
AAA KNE ROGAIHFRE－67－0－DIC－ML． $1251 / 2 \mathrm{~W} / 1 / 8$ SHAFT
KNE REII HUTTON FOR C\＄Fi SWITCH \＆B121
LNE BLACK EUTTON FOR C\＆Fi SLITCH $\ddagger 8121$
MET ELECTRET MIC COLLAR
TEA SEE 280068
MET BRACKET（SITIES）SUBFAHEL ILLC MET－SURPLATE SPK MTG－DLC MET SPEAKER PAMEL INSERT DLC MET SFK SCREEH ILEC
MET FRONT FAIJEL DLC／16 CH
MET FRONT PANEL DLE／16 CH
HDS DRESS COHE NUT C\＆K $\$ 7025$
HDS DRESS COINE NU CEK 7025
LED PANEL KOUNTED REII LED $1 \mathrm{HI} \$ 5100 \mathrm{H} 1$
AAA SFK 3 INCH ROUND SFEAKKER CTS $\$ 3$ A 2479
MIC PRIMO MICROFHONE W／GSHK FEM4544 STANDARI SWT FOWER ILLUM，ROCKER ARCOL， 403 SCBR2 SWT MINI－TOG W／LONE LEAIIS CEK？7101FBYW SWT SF3T ON－OFF－（ON）C\＆K17107F3YW FUS PLASTIC PLATE FOR CB ALLIED\＄851－8200 FUS CIRCUIT EREAKER LITTELFUSE $\$ 81502.5$

ASY MS－808／IS－BO8 FROHT FATJEL．ASSY

ASSEMRLY 720030 ASY MS－808 CHASSIS ASSY
AMP 16 PIN MFA HOUSING $\$ 1-640440-6$
AMP 6 FIN MTA HOUSING ATF $\$ 640440-6$
AMP 8 FIN MTA HOUSING AMP $\$ 640440-8$
KNE RED EUTTON FOR CEK SWITCH \$E121
MET $31 / 2$ INCH FACK CHASSIS MS- 800
MET COVER FOR $31 / 2 \times 13$ INCH RACK CHASSIS
MET FOWER SUPPLY COUER DLC/B CH
MET ERACKET CRD CAGE ILLC
HDS DRESS CONE NUT CEK $\$ 7025$
HIS $9.3501 N$ PC SLIDE CALAERO PLASTICS OLI-6200
ASY $1 / 2$ REG POWER SUPPLY MOIULE REV, D
ASY DLC I/O MODULE REV.A

HILL OF MATERIALS
ASSEMELY >10142 ASY IFE-4 MORULE REU.C

Qty	REF	OESIG							
4	C 2	C5	C4	C	c3				
1	c1								
4	C6	C7	Ca	C	C9				
9	C21	C20		C19		C18		C10	C11
	C12	C22		C13					
4	c14	C17		C16		C15			
1									
1									
12									
8	R31	R29		R35		833		647	R48
	R45	846							
5	R69	R17		R18		819		R20	
4	R36	R34		R32		K30			
4	R23	R24		R22		R21			
12	F44	F42		R16		R53		R54	R55
	R40	R38		R56		R13		K14	R15
4	$R 9$	R10	R1	11	R1	12			
4	R8	R7	R6	R	R5				
2	$R 4$	R3							
4	R60	R59		R58		R57			
4	R28	R27		R26		R25			
4	R64	R62		R68		R66			
4	R39	R37		R41		$R 43$			
4	R65	R67	R	R61		R63			
2	R2	R1							
4	R52	R49		R50		R51			
13	12	D3	D4	D5	05	D6		D7	
	D13	D8	19	9 D	D10				012
	D1								
4	as	Q6	07	0	08				
1	IC1								
4	02	01	04	0	03				
4	IC4	1 C 3	3 I	IC6		$1 \mathrm{C5}$			
1	IC2								
1	S12								

ASSEMFLY 720011
ASY MS-800 REAR FATEL ASSY
P/N CIESCRIPTION
210002
210003
210050
210055
210082
210095
210098
250142
560011
010000
640000

AAA SWC [13F CORHECTOF

ASSEMELY 72003I ASY IS-80日 REAFF F'AHEL ASSY

NOTICE:

"While Clear-Com makes every attempt to maintain the accuracy of the information contained in its product manuals, the information is subject to change without notice."

