

• Hundreds of titles available – Books, eBooks, and online
resources from industry experts

• Free U.S. shipping

• eBooks in multiple formats – Read on your computer,
tablet, mobile device, or e-reader

• Print & eBook Best Value Packs

• eBook Deal of the Week – Save up to 60% on featured titles

• Newsletter and special offers – Be the first to
hear about new releases, specials, and more

• Register your book – Get additional benefits

microsoftpressstore.com

Visit us today at

https://www.microsoftpressstore.com?WT.mc_id=BOB_store_pg

Get the latest news from Microsoft Press sent to
your inbox.

• New and upcoming books

•	 Special	offers

• Free eBooks

• How-to articles

Sign up today at MicrosoftPressStore.com/Newsletters

Hear about
it first.

https://www.microsoftpressstore.com/newsletters?WT.mc_id=BOB_news_pg

Wait, there’s more...

Find more great content and resources in the
Microsoft Press Guided Tours app.

The Microsoft Press Guided Tours app provides
insightful tours by Microsoft Press authors of new and
evolving Microsoft technologies.

Download from

Windows Store
Download from

Windows Store

• Share text, code, illustrations, videos, and links with
peers and friends

• Create and manage highlights and notes
• View resources and download code samples
• Tag resources as favorites or to read later
• Watch explanatory videos
• Copy complete code listings and scripts

http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Microsoft Corporation. All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014956173
ISBN: 978-0-7356-9581-8

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you
need support related to this book, email Microsoft Press Book Support at
mspinput@microsoft.com. Please tell us what you think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views,
opinions and information expressed in this book, including URL and other Internet Web site
references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real
association or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” Web
page are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

Acquisitions Editor: Karen Szall
Developmental Editor: Karen Szall
Copyeditor: Megan Smith-Creed
Cover Illustration: Twist Creative, Seattle

http://aka.ms/tellpress
http://www.microsoft.com

Contents iii

Contents

Introduction vii

Chapter 1 Why automation? 1
Microsoft automation history ... 1

What are Microsoft automation solutions? ... 2

Where do Microsoft automation solutions fit? .. 6

What do Microsoft automation solutions consist of? ... 7

Chapter 2 Understanding automation: Architectures 11
On-premises architectures .. 11

Database role 11

Web service role 12

Runbook worker role 13

Service Management Automation PowerShell module 14

Windows Azure Pack Service Management Portal 14

Azure-based architectures... 15

Considerations for Azure Automation accounts 16

Creating Azure Automation accounts 18

Chapter 3 Understanding automation: Interfaces 19
Web services interface .. 19

Using the web service in an application 22

Using the web service in Windows PowerShell 24

Windows PowerShell interfaces .. 26

Service Management Automation PowerShell module 26

Azure Automation PowerShell cmdlets 28

Web portal interfaces .. 31

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

http://aka.ms/tellpress

http://aka.ms/tellpress

Chapter 4 Implementing automation 37
Using assets .. 37

Connections 38

Credentials 39

Variables 39

Schedules 40

Integration Modules 41

Using runbooks ... 41

Authoring runbooks ... 42

Exploring the runbook workflow structure 43

Differences between standard Windows PowerShell
and workflows 44

Defining parent and child runbook relationships 47

Authoring Integration Modules ... 48

Creating an Integration Module file 49

Creating an Integration Module Manifest file 51

Creating an Integration Module Metadata file 51

Chapter 5 Managing runbooks 53
Runbook authoring tools.. 53

Management portals 53

Windows PowerShell ISE 54

Visual Studio IDE 56

Using source control ... 57

Team Foundation Server 57

Visual Studio Online 58

Using logging .. 59

Using error handling .. 61

Troubleshooting runbooks .. 63

Logs 63

Configuration files 64

Certificates 65

Groups and service accounts 65

iv Contents

Contents v

Chapter 6 Examples of automation scenarios 67
Logging to a local file ... 67

Logging to Table storage .. 69

Creating an automation databus ... 78

Continuous Integration Model .. 87

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

http://aka.ms/tellpress

http://aka.ms/tellpress

This page intentionally left blank

Introduction
his book provides you with an introduction to the Microsoft automation solutions: Azure
Automation and Service Management Automation. Throughout the chapters, the text

explores these tools and how they can be used to meet the automation needs of your
Microsoft Azure cloud solutions or your enterprise datacenter environments.

We provide considerations on the features of each solution, and how they can be
architected to fit your needs. Next, the text explores the interfaces you will use to interact with
the solutions, including the web-based portals, Windows PowerShell command-line
interaction, and programmatic access via the web services. The text then covers how you
implement and manage automation using runbooks, assets, and Integration Modules, along
with how you can use a source control system to manage runbook content. Finally, some
examples of automation scenarios are discussed, providing you with samples that can be used
to speed development in your own solution.

The target audience for this book is IT pros charged with planning, building, or managing
Microsoft Azure cloud solutions or enterprise datacenter environments, or anyone who is
curious about taking their own steps toward using the Microsoft automation solutions. The
information contained in this book has been gathered from field experience of the authors,
working with customers to automate their solutions.

The content covered in this book is just the beginning for the Microsoft automation
solutions, and the intention is to help you quickly learn the tools and lower any barrier for
adoption of the Microsoft automation solutions.

To continue learning about Microsoft automation solutions, explore the following:

 System Center Orchestrator Engineering Blog:
http://blogs.technet.com/b/orchestrator/

 Microsoft Azure Automation Forum:
http://social.msdn.microsoft.com/forums/azure/en-US/home?forum=azureautomation

 Runbook Writing Wiki:
http://social.technet.microsoft.com/wiki/contents/articles/26616.quick-tips-and-tricks-
for-runbook-writing.aspx

 TechNet Script Center Automation content:
http://gallery.technet.microsoft.com/scriptcenter/site/search?f%5B0%5D.Type=RootCat
egory&f%5B0%5D.Value=WindowsAzure&f%5B0%5D.Text=Windows%20Azure&f%5B
1%5D.Type=SubCategory&f%5B1%5D.Value=WindowsAzure_automation&f%5B1%5D
.Text=Automation

Introduction vii

http://blogs.technet.com/b/orchestrator/
http://social.msdn.microsoft.com/forums/azure/en-US/home?forum=azureautomation
http://social.technet.microsoft.com/wiki/contents/articles/26616.quick-tips-and-tricks-for-runbook-writing.aspx
http://social.technet.microsoft.com/wiki/contents/articles/26616.quick-tips-and-tricks-for-runbook-writing.aspx
http://gallery.technet.microsoft.com/scriptcenter/site/search?f%5B0%5D.Type=RootCategory&f%5B0%5D.Value=WindowsAzure&f%5B0%5D.Text=Windows%20Azure&f%5B1%5D.Type=SubCategory&f%5B1%5D.Value=WindowsAzure_automation&f%5B1%5D.Text=Automation
http://gallery.technet.microsoft.com/scriptcenter/site/search?f%5B0%5D.Type=RootCategory&f%5B0%5D.Value=WindowsAzure&f%5B0%5D.Text=Windows%20Azure&f%5B1%5D.Type=SubCategory&f%5B1%5D.Value=WindowsAzure_automation&f%5B1%5D.Text=Automation
http://gallery.technet.microsoft.com/scriptcenter/site/search?f%5B0%5D.Type=RootCategory&f%5B0%5D.Value=WindowsAzure&f%5B0%5D.Text=Windows%20Azure&f%5B1%5D.Type=SubCategory&f%5B1%5D.Value=WindowsAzure_automation&f%5B1%5D.Text=Automation
http://gallery.technet.microsoft.com/scriptcenter/site/search?f%5B0%5D.Type=RootCategory&f%5B0%5D.Value=WindowsAzure&f%5B0%5D.Text=Windows%20Azure&f%5B1%5D.Type=SubCategory&f%5B1%5D.Value=WindowsAzure_automation&f%5B1%5D.Text=Automation

About the companion content

The companion content for this book can be downloaded from the following page:

http://aka.ms/automation/files

The companion content includes the following:

 The examples from Chapters 3 and 4

 The code listings and scenarios from Chapters 5 and 6

Acknowledgments

The authors would like to thank Sheldon Boxall and Yen Chiu Chin of Microsoft Services in
Australia for their support in working with us to automate solutions for our customers and
grow our collective knowledge of the Microsoft automation solutions, and for their reviews
and input into the contents of this book.

The Series Editor would like to thank the following individuals at Microsoft who reviewed
the outlines for the proposed titles in this series and provided helpful feedback to our authors:

 David Ziembicki

 Adam Fazio

 Robert Larson

 David Stoker

 Joel Yoker

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from
Microsoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and
Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

viii Introduction

http://aka.ms/automation/files
http://aka.ms/mspressfree

Microsoft Virtual Academy

Build your knowledge of Microsoft technologies with free expert-led online training from
Microsoft Virtual Academy (MVA). MVA offers a comprehensive library of videos, live events,
and more to help you learn the latest technologies and prepare for certification exams. You’ll
find what you need here:

http://www.microsoftvirtualacademy.com

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

http://aka.ms/automation/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http://twitter.com/MicrosoftPress.

Introduction ix

http://www.microsoftvirtualacademy.com
http://aka.ms/automation/errata
http://support.microsoft.com
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

This page intentionally left blank

Why automation?

his chapter introduces the Microsoft automation solutions by reviewing the history of
automation and describing the new automation tools available, where they are used, and

what they include. This introduction will provide you with the background necessary to dig
deeper into the technology through the remainder of the book.

Microsoft automation history

If you have been around the IT industry for more than a few years, you remember when
automation went by the generic name of “scripting.” Scripting has evolved over the years,
starting in the Windows arena with languages such as DOS batch files, Perl, and Kix, moving on
to VBScript and Jscript, and now including Windows PowerShell and System Center
Orchestrator. Each advance has been a generational leap forward in capability and complexity.
Now with the push to the cloud, scripting is again taking a leap forward, having become the
center of operations and management of the hyper-scale datacenter.

Not to understate the usefulness of the early tools, but as the needs of IT pros have grown,
the tools have advanced too. The need to perform complex, long-running, branched, and
repeatable tasks is becoming common place. Windows PowerShell and System Center
Orchestrator have made it possible to perform these functions without excessive scripting
logic.

The limits of the technologies of old have forced the development of the technologies of
today. With DOS scripting, IT professionals could control logic flow, manipulate text, and call
out to perform tasks. Some impressive feats were achieved with DOS scripting, and even to this
day some IT professionals fall back to this method for certain tasks. However, limitations came,
reliance on external programs became cumbersome, and a sequentially processed scripting
model constrained how a task could be done.

The inclusion of technology such as Windows Management Instrumentation (WMI), Active
Directory Services Interface (ADSI), and direct object access into the Windows operating
system in the early 1990s drove the shift to VBScript, Perl, Kix, and Jscript. The ability of
VBScript and these other languages to directly access information, perform tasks, and
manipulate external systems was a boon for scripters, who no longer needed to call out to
external executables or code, with their inconsistent calling and returning routines. The ability
to manage objects in scripts, rather than basic text alone, meant less time spent manipulating
strings into the right formats from one output so that it could fit into another input. If a

CHAPTER 1 Why automation? 1

function returned an integer, it could be stored in an object as an integer, and future access to
the object could be treated as such.

With the onslaught of object-oriented programming (OOP) models (such as Microsoft .NET)
during the 1990s, it was only a matter of time before the concepts and corresponding benefits
of these models made their way into the scripting world.

Windows PowerShell set IT professionals on the path to a single unified model for
automation. The Microsoft vision was grand: Windows PowerShell would be used as the
command-line interface for administering the entire stack of Microsoft products. Some people
scoffed at the idea. But before long the vision became clear to everyone, and now it is a reality.
Everything IT professionals do to administer their Windows-based systems can be done
through Windows PowerShell these days. It is ubiquitous across Microsoft products, from
Windows to Exchange, Lync, SharePoint, System Center, and SQL. The early days of Windows
PowerShell had rough moments, but gradually, features such as Remoting and Workflow
trickled in, and IT professionals can now use Windows PowerShell to accomplish tasks that
were impossible five years ago.

And then there was System Center Orchestrator. Microsoft purchased Opalis Software in
December 2009, and with that purchase, the shift to a new age began to build momentum. As
is usually the case with any technology purchase, it took Microsoft some time to truly
transform the purchase into the cog that they wanted in the grand Microsoft technology
machine. The Opalis name was changed to System Center Orchestrator, and through a couple
of releases, its features grew and its integration with the broader ecosystem strengthened.

What are Microsoft automation solutions?

Microsoft automation solutions enable the IT professional to leverage a centralized
automation engine to interact with any target system. Automation solutions function as a
flexible and extensible service that can be leveraged for almost any task that can be imagined
(see Figure 1-1).

2 CHAPTER 1 Why automation?

FIGURE 1-1 Automation overview

In this book, the term “Microsoft automation solutions” references both the on-premises
tool System Center Service Management Automation and the cloud-based tool Microsoft
Azure Automation. These are essentially the same, the only difference being the location from
which they are delivered (see Figure 1-2).

FIGURE 1-2 Automation deployment models

CHAPTER 1 Why automation? 3

Microsoft automation solutions are the next evolution of orchestration capability, built on
top of Windows PowerShell version 3 and its Workflow engine. The purchase and integration
of Opalis into the Microsoft stack provided a step into the orchestration arena; however,
Microsoft investments in Windows PowerShell garnered a more powerful and flexible
alternative. Beginning with the release of System Center 2012 R2, Service Management
Automation was released as a standalone product included in the System Center 2012 R2
Orchestrator media, subsequently followed up by the preview release of Microsoft Azure
Automation.

These solutions provide a consistent interface and set of functionality to work with both
private and public cloud infrastructures and let you build on your existing knowledge of
Windows PowerShell to help you rapidly learn and adopt these tools.

As illustrated in Figure 1-3, Service Management Automation consists of the following
pieces:

 Database A SQL database storing the Service Management Automation activities
and objects.

 Web service The core entry point for administration of Service Management
Automation, from which all other administrative interfaces are derived. It is based on
the industry standard representational state transfer (REST) and open data protocol
(OData) application programming interfaces (API), which allows third-party systems
to interact with Service Management Automation via a well-known programming
interface.

 Runbook worker The execution environment for activities defined in Service
Management Automation. A runbook worker hosts one or more isolated execution
environments to run and control runbooks, which are referred to as sandboxes. A
sandbox is a managed, isolated environment where runbook activities can be
activated without affecting other processes running on the same computer. This
allows Service Management Automation to manage and monitor compute resources
for runbooks and control or terminate runbooks as required.

 Service Management Automation PowerShell module A portable PowerShell
module that can be deployed to endpoints to enable IT professionals to administer
Service Management Automation remotely. The PowerShell module interacts with the
Service Management Automation web service for access to the Service Management
Automation database.

 (Optional) Windows Azure Pack Service Management Portal A web-based
graphical user interface (GUI) for authoring, managing, monitoring, and running
Service Management Automation activities. The Service Management Portal interacts
with the Service Management Automation web service for access to the Service
Management Automation database.

4 CHAPTER 1 Why automation?

FIGURE 1-3 Service Management Automation model

Each of these pieces can be combined on a single server for a basic deployment or
distributed to provide greater scalability and availability. For details, refer to Chapter 2,
“Understanding automation: architectures.”

As illustrated in Figure 1-4, the Microsoft Azure Automation model is much simpler because
it is provided as a service. Deployment of the service in Microsoft Azure is as easy as creating
an automation account under an existing Microsoft Azure subscription. The instance is created
and ready to use in minutes. This makes automation accessible to anyone using the Microsoft
Azure public cloud services, including those with an MSDN subscription. If you have none of
these, you can sign up for a free trial of Microsoft Azure at http://azure.microsoft.com/.

CHAPTER 1 Why automation? 5

http://azure.microsoft.com/

FIGURE 1-4 Microsoft Azure Automation model

Where do Microsoft automation solutions fit?

Service Management Automation provides the engine for powering automation activities for a
private cloud environment. It provides a bridge between the System Center suite and Windows
Azure Pack. This bridge makes it possible for you to use scheduled, ad-hoc, or event-based
triggers for performing automated administrative tasks. Service Management Automation can
be used in conjunction with other tools, such as those in the System Center suite or any
product that can be interacted with via Windows PowerShell or a custom Windows PowerShell
module. For example, you can use Service Management Automation to do the following:

 Perform an action upon creation of a virtual machine, such as updating a
configuration management database (CMDB) or ticketing system (such as System
Center Service Manager) or sending a notification email to the virtual machine owner
on successful completion of the activity.

 Do scheduled maintenance, such as coordinated patch management of hosting
infrastructure or workload balancing across host clusters.

 Manually trigger a discovery or auditing activity as needed.

6 CHAPTER 1 Why automation?

Likewise, Microsoft Azure Automation powers automation activities for the Microsoft Azure
public cloud environment. Under the public cloud models, your interaction is not with the
underlying infrastructure; instead, it is with the cloud assets and workloads themselves. For
example, you can use Microsoft Azure Automation to do the following:

 Create and tear down development and test environments.

 Monitor and manage workload usage, such as shutting down unused virtual
machines to conserve spending and scaling out workloads and assets as required to
meet demand.

 Manage deployment of application workloads through various lifecycles in
conjunction with developer tools and processes.

These tools by no means negate the need for you to continue to use Windows PowerShell
or the native tools provided for administering systems. Automation gives you the ability to
predefine workflows for common activities and have them handled automatically so you can
focus your attention on adding value in other areas.

Functionally, the Microsoft automation tools overlap with the existing capability of System
Center Orchestrator, and you may wonder which one you should use. It depends. You must
consider the solution that is being built or the problem being solved, any investments already
made in automation, and the skills of those involved in building a solution. Consider the
following guidelines when deciding which tool to use:

 If you are targeting traditional datacenter automation activities and have an existing
investment in System Center Orchestrator and the graphical authoring environment,
continue to use this path.

 If you are building out a private cloud solution, have skilled resources, and are
comfortable with Windows PowerShell, Service Management Automation is the path
you should take.

 If you are building out a solution in the Microsoft Azure public cloud, Microsoft Azure
Automation is a more logical path for starting your automation journey.

What do Microsoft automation solutions consist of?

The Microsoft automation solutions consist of several object types that collectively provide the
automation service, including the following:

 Assets The static objects in the service that provide configurations to automation
activities, allowing globally defined settings to be leveraged across the service. Asset
types used in Microsoft automation solutions include:

 Connections Used to store details of a service that is used by multiple
automation activities; include settings such as a server name, user name, and
password. Connections are useful for connecting to services such as System
Center Virtual Machine Manager (VMM) or a Microsoft Azure subscription.

CHAPTER 1 Why automation? 7

 Credentials Used to store two types of credentials: Windows PowerShell
credentials or certificate credentials. Credentials allow automation activities to
refer to a repository of securely stored credentials that can be used for accessing
systems and services as required, without the need for user input. Because each
activity runs under the context of the runbook worker services, credentials or
connections are required for privilege escalation or any interaction happening
off the runbook worker server.

 Variables Used to store key-value pair variables to be consumed in automation
activities. Variables can be defined with the following types: string, integer,
boolean, datetime, and not defined. Variables can be optionally encrypted if the
values are determined to be sensitive, for example, if storing license keys or
passwords.

 Schedules Used to define a regular schedule to which an activity can be linked,
for example, to initiate a runbook at the start or end of business each day.

 Modules Used to store Windows PowerShell modules for use by automation
activities. If a module is stored as an asset (see Figure 1-5) and leveraged in a
runbook workflow, it will be delivered to the runbook worker. This ensures that
modules can be centrally managed rather than manually deployed to each
runbook worker server in a deployment.

 Runbooks Windows PowerShell workflow objects used to define a single or logical
set of activities to be run (see Figure 1-6). On initiation, a runbook starts as a job on a
runbook worker in a sandbox environment. Each runbook represents a Windows
PowerShell workflow script, which inherits all Windows PowerShell workflow
capabilities, including input and out parameters, checkpoint and suspend/resume,
parent-child relationships, and extensibility through Windows PowerShell modules.

FIGURE 1-5 Asset user experience

8 CHAPTER 1 Why automation?

FIGURE 1-6 Runbook user experience

Each of the objects defined in this section are represented in the Service Management
Automation database or the Microsoft Azure Automation database. For more details of
managing assets and runbooks, refer to Chapter 4, “Implementing automation.”

CHAPTER 1 Why automation? 9

This page intentionally left blank

Understanding automation:
Architectures

his chapter provides an overview of the architectural options for deploying Service
Management Automation on-premises and for using Microsoft Azure Automation in the

Microsoft Azure public cloud.

On-premises architectures

The on-premises Microsoft automation solution, Service Management Automation, has a quite
flexible architecture, allowing for consolidated or scaled-out deployment scenarios. This
section explores roles, scaling options, and deployment considerations for each Service
Management Automation role and how these roles can be deployed in your organization:

The recommended architecture for a Service Management Automation deployment
includes the following:

 A dedicated SQL server instance for the database role

 Three servers co-hosting the web service and runbook worker roles

 Load balancing of the web service role

 Virtual machine deployment for ease of scaling and management

For hardware and software requirements, refer to the Service Management Automation
TechNet article at http://technet.microsoft.com/en-us/library/dn469256.aspx.

Database role
The role of the Service Management Automation database is to provide the central
configuration store for all objects, including runbooks, assets, jobs, and logging data. No data
is stored on other Service Management Automation roles, with the exception of Windows
PowerShell modules on runbook workers if they are not imported as assets in Service
Management Automation (which is explored in Chapter 4, “Implementing automation”).

The database must run on Microsoft SQL Server 2012 at minimum and can be deployed to
a standalone SQL Server server, a SQL Server failover cluster, or a SQL Server AlwaysOn
Availability Group (see Figure 2-1). It is worth noting the Service Management Automation

CHAPTER 2 Understanding automation: Architectures 11

http://technet.microsoft.com/en-us/library/dn469256.aspx

database is a contained database, meaning it can be included in an availability group without
the need to manually replicate additional objects.

FIGURE 2-1 Service Management Automation database server options

Generally, the use of a dedicated SQL server instance is recommended for the Service
Management Automation database to ensure it can be allocated appropriate memory and
CPU resources and can be managed independently of other databases.

The Service Management Automation database role can exist only once for a single
deployment; therefore, its scaling ability is limited to scaling-up resources (memory and CPU
cores). As with any SQL database, it is best to separate the application database, tempdb, and
log files onto disks to optimize performance.

The Service Management Automation database is created during the installation of the
Service Management Automation web service. Prior to this installation, the target SQL server
instance must be installed and configured. When installing the database, a service account is
used to grant the web service access to the database, which is also used later for integration
with the Windows Azure Pack Service Management Portal and for the addition of web service
instances when scaling out. Be sure to follow your standards for creating and managing this
service account since you will need it to configure your Service Management Automation
deployment later.

Web service role
The role of the web service is to provide a control point for interaction with Service
Management Automation from user and system interfaces when accessing the database. The
web service is essential for the operation of your Service Management Automation
deployment; therefore, planning how it is deployed with scalability and resiliency in mind is
critically important.

The Service Management Automation web service is stateless, so it can be scaled up with
additional compute resources (such as CPU and memory), as well as scaled out with additional

12 CHAPTER 2 Understanding automation: Architectures

server instances and the use of a load balancing service, such as Windows Network Load
Balancing or a third-party load balancer.

Product guidance for Service Management Automation web service roles specifies at least
two cores and 4 gigabytes (GB) of RAM, even when combined with the runbook worker role.
However, this will not suffice for most deployments, so it is better to start with 8 GB of RAM.

By default, the web service creates a self-signed certificate and binds the HTTPS protocol to
port 9090. When registering Service Management Automation with the Service Management
Portal, the URL of the web service endpoint is required, such as https://mysmaserver:9090/. For a
lab or small-scale deployment that does not require high availability, self-signed certificates and
a standard server hostname URL may suffice. If, however, you are starting small and intend to
scale out the web service role at some point, careful planning early will help you avoid heavy
reconfiguration later. Consider the following when planning the deployment of the web service:

 Use a generic DNS hostname for your web service URL, such as sma.contoso.com.

 Provision a web server certificate for your web service role using your generic DNS
hostname. Be sure to mark the certificate’s private key as exportable so you can install
it on additional web service role servers. As a general best practice with certificates,
be sure to keep the certificate’s private key safe.

 If you plan to use a third-party load balancer, use it to front your single server
deployment initially so scaling out will not impact the service.

The web service is based on industry standard representational state transfer (REST) and
open data protocol (OData) application programming interfaces (API), is required for each
deployment, and must be deployed on Internet Information Services (IIS) 7.5. This makes it
easy to consume the web service from external systems, such as when integrating with service
desk or monitoring systems. Web services capabilities are covered in more detail in Chapter 3,
“Understanding automation: Interfaces.”

Runbook worker role
The role of the Service Management Automation runbook worker is to host the runtime
environment of runbooks. From the runbook worker server, a runbook can run the defined
workflows with access to any required assets and modules that are stored in the Service
Management Automation database.

Unlike the web service role, the runbook worker role is not stateless. In a Service
Management Automation deployment, a runbook worker deployment is created. A runbook
worker deployment defines a static list of runbook worker servers, which are allocated a
portion of the runbook job queue for processing. The runbook job queue is divided by the
number of available runbook workers in a deployment and each is given a range of jobs it can
process between a low and high key value.

For example, in a single server deployment, the runbook worker job queue is allocated to
one server, and its key range is 0 to 2147483647. However, if two runbook workers are
available in a deployment, the job queue is split, giving the first runbook worker a key range of

CHAPTER 2 Understanding automation: Architectures 13

https://mysmaserver:9090/

0 to 1073741823 and the second runbook worker a key range of 1073741824 to 2147483647.
In the static job queue model, if a runbook worker becomes unavailable, any jobs destined for
that server do not process until that server (or a new server with the same name) is brought
online. For this reason, any change to runbook workers in your Service Management
Automation deployment, including scaling up for capacity or losing a runbook worker due to
failure, must be handled manually.

See also For more details of a runbook work deployment, including guidance for
changing an existing deployment, refer to http://technet.microsoft.com/en-us
/library/dn530618(v=sc.20).aspx.

As introduced in Chapter 1, “Why automation?” the runbook worker uses a sandbox
runtime model, which contains multiple discrete units of transactions running in isolated
containers. Each sandbox is assigned resources and, by default, is configured to handle 30
concurrent jobs. A runbook worker can instantiate up to four sandboxes by default (since the
default maximum number of running jobs per runbook worker is 120). However, undesirable
performance characteristics may be exhibited well before reaching these maximums, such as
compute resource exhaustion and an increase in transactional processing times.

Service Management Automation PowerShell module
The Service Management Automation PowerShell module can be deployed to clients and
servers to allow remote interaction with the web service. By default, the PowerShell module is
installed as part of the web service, but it can also be installed on any computer by using the
installation media.

To view the available cmdlets in the
Microsoft.SystemCenter.ServiceManagementAutomation module, run the following command
from a Windows PowerShell session on your web service server:

Get-Command -Module Microsoft.SystemCenter.ServiceManagementAutomation | select

Name,Parameters

The PowerShell module is explored further in Chapter 3.

If you intend to explore the PowerShell module before reading on, note that each cmdlet
will require you to provide a -WebServiceEndpoint parameter, for which you should provide
the web service URL without the port number. For example:

Get-SmaRunbook -WebServiceEndpoint "https://sma.contoso.com"

Windows Azure Pack Service Management Portal
The Windows Azure Pack Service Management Portal is the primary interface to a Microsoft
private cloud deployment, providing you with a web-based interface to manage your
resources. The Service Management Portal also functions as the primary interface for Service
Management Automation, allowing you to use the web-based management and authoring
experience rather than relying on the PowerShell module alone.

14 CHAPTER 2 Understanding automation: Architectures

http://technet.microsoft.com/en-us/library/dn530618(v=sc.20).aspx
http://technet.microsoft.com/en-us/library/dn530618(v=sc.20).aspx

The deployment and scaling options for Windows Azure Pack are outside the scope of this
book; however, for detailed guidance, refer to the published documentation at
http://technet.microsoft.com/en-us/library/dn296432.aspx.

When a Service Management Portal deployment is available, integrating Service
Management Automation is straightforward. Log in to the Service Management Portal and
perform the following steps:

1. Scroll down in the menu pane and click Automation.

2. In the Automation Quick Start workspace, click the Register Service Management
Automation Endpoint link.

3. Enter the service URL of the Service Management Automation web service and the
user name and password of the account used when installing the Service Management
Automation web service and database, and then click OK.

When the Service Management Automation endpoint is successfully registered, you can
navigate to the Automation workspace to view the Dashboard, Runbooks, and Assets views
(see Figure 2-2).

FIGURE 2-2 Service Management Portal Automation workspace

Azure-based architectures

The Azure-based architecture for Microsoft Azure Automation is provided as a service, so you
do not need to plan and deploy the underlying infrastructure to use the service.

CHAPTER 2 Understanding automation: Architectures 15

http://technet.microsoft.com/en-us/library/dn296432.aspx

16 CHAPTER 2 Understanding automation: Architectures

NOTE If you are not familiar with Microsoft Azure, you can sign up for a free trial of
the software at http://azure.microsoft.com/.

Before you use Azure Automation, it is useful to understand how Azure services and
features are organized (see Figure 2-3). When you sign up for Microsoft Azure, you establish
an Azure account that acts as a management and billing container. Within an Azure account,
you can create and manage one or more Azure subscriptions, which can be used to separate
administrator access or manage multiple lifecycles (e.g., development, test, and production).
Each Azure subscription can host any Azure service, including the Azure Automation service.

When using the Azure Automation service, you create one or more Automation accounts
under your Azure subscription (up to 30, in fact). Each Automation account represents a
separate instance of Azure Automation under your subscription, allowing you to create and
manage runbooks under multiple Automation accounts for development and testing, for load
distribution, or for distributing services across Microsoft Azure regions.

FIGURE 2-3 Microsoft Azure services and features model

Considerations for Azure Automation accounts
When planning your Azure Automation deployment, you should consider the following
concepts to ensure your deployment is flexible enough to service your needs but simple to
manage.

http://azure.microsoft.com/

CHAPTER 2 Understanding automation: Architectures 17

Administrative control
In the current Microsoft Azure management model, an Azure subscription is the lowest level of
administrative control. Any co-administrator of an Azure subscription can fully manage the
services within that subscription. If multiple Azure Automation accounts are created in a
subscription, all co-administrators will have full access to each of them. For this reason, if you
need to limit access for administrators to a subset of Microsoft Azure resources, including
Azure Automation services, it may be necessary to create multiple Azure subscriptions for an
Azure account.

Load distribution
When you are familiar with Azure Automation and you’re using it extensively to automate your
Azure services, you may consider scaling out your Azure Automation accounts to distribute
load. Unlike Service Management Automation where the runbook worker roles configuration
can be tuned (e.g., job runtime and sandbox resource limits settings), the Azure Automation
service provides statically configured runbook worker services that cannot be tuned. To
overcome this limitation, you can create additional Azure Automation accounts and distribute
your runbooks and jobs across them.

For example, this may be useful when you need to use a very long-running runbook. A
runbook that runs for more than 30 minutes will be suspended to allow other runbook jobs on
the same runbook worker to process. After all other runbooks have processed, the original
runbook will resume from its last checkpoint. This is known as the Fair Use feature in Azure
Automation and ensures one or more runbooks do not dominate job time on a runbook
worker. In this scenario, using multiple Azure Automation accounts allows more long-running
runbooks to run in parallel. They will still suspend and resume, but the time between will be
minimized (see Figure 2-4). Given this feature, it is important to understand how runbooks use
checkpointing capabilities in the Windows PowerShell workflow to handle suspend and resume
actions. Chapter 4 explores checkpointing in more depth.

NOTE The Azure Automation service billing model is based on runbook processing time
in minutes, so long-running runbooks that have little actual activity should be avoided in
favor of smaller, more modular runbooks that run on schedules.

18 CHAPTER 2 Understanding automation: Architectures

FIGURE 2-4 Comparison of load distribution models

Regional distribution
In solutions built with Microsoft Azure, deployed services, such as websites, virtual machines,
and SQL databases, are often associated with a common Azure region (e.g., U.S. West or
Southeast Asia). Regional deployment ensures these services are optimized for performance
due to the short physical distance between the infrastructures they are hosted on.

This consideration applies to Azure Automation as well. When creating an Azure
Automation account, you are required to provide an Azure region. You should place the new
account in the region where your runbooks will interact with other Azure services. If you have
Azure services distributed across multiple regions, consider creating multiple Azure
Automation accounts.

NOTE At the time of writing this book, the Azure Automation service is in preview and is
provided only in the East U.S. region. On release, the service will be available in more regions.

Creating Azure Automation accounts
To create an Azure Automation account in your Azure subscription, you will need an account
name and the target region.

Log in to the Microsoft Azure Management Portal and perform the following steps:

1. Scroll down in the menu pane and click Automation.

2. In the bottom menu pane, click Create.

3. In the Create An Automation Account dialog box, provide the account name, select
the region for the account, and click OK.

When you complete the procedure, the Azure Automation account is created, and an instance
is provisioned in the region you specified. In a few minutes, the instance is available for use.

Understanding automation:
Interfaces

his chapter introduces you to the interfaces through which you can interact with the
Microsoft automation solutions. This chapter will cover:

 How the web services work

 How to administer automation solutions using Windows PowerShell

 How to navigate the web portals for the best authoring and management experience

Web services interface

As introduced in Chapter 2, "Understanding automation: Architectures," the web service plays
a critical role in managing the Microsoft automation solutions. The web service is exposed in a
Service Management Automation system, allowing you to interact with the system and build
extended solutions using it. When the Azure Automation solution is provided as a service,
however, the web service is not exposed, allowing management only through the Azure
PowerShell module and the Microsoft Azure Management Portal interfaces. For this reason,
the remainder of this section on the web services interface will focus on the Service
Management Automation web service.

The Service Management Automation web service is based on the open data protocol
(OData) web service model, meaning requests delivered to the web service are returned with
XML responses. This allows external services to interact with the web service and receive
standardized responses that can be easily interpreted.

See also For details of the OData standard, refer to http://msdn.microsoft.com/en-
us/library/ff478141.aspx.

A web service request requires the following information:

 Request type (Get, Put, and so on)

 Uniform resource identifier (URI)

CHAPTER 3 Understanding automation: Interfaces 19

http://msdn.microsoft.com/en-us/library/ff478141.aspx
http://msdn.microsoft.com/en-us/library/ff478141.aspx

 Authentication type (Basic or Windows)

 HTTP headers

 Request body when posting data through the web service

Request types sent to the web service include:

 Get Retrieves a collection or single entry record as requested in the URI

 Post Creates a new entry based on the body of the request

 Put Edits an existing entry based on the body of the request

 Delete Deletes an entry as requested in the URI

The hierarchy of the web service is broken into collections and entries. A collection is similar
to a folder and contains one or more entries below it. An entry is a single object similar to a
file. The URI that you use navigates the hierarchical structure of the web service. In the case of
the Service Management Automation web service, the base of the hierarchy (or service root
URI) is represented by the following URI:

https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000/

From the service root URI, you can navigate through the hierarchy by extending the URI
with the appropriate path based on the following structure:

[Service Root URI]/[Resource Path]?[Query Options]

See also For more details of URI syntax for the Service Management Automation web service,
refer to http://msdn.microsoft.com/en-us/library/dn720250.aspx.

For example, you can use basic navigation to do the following:

 To navigate into the runbooks collection, use this URI (see Figure 3-1):

https://sma.contoso.com:9090/00000000-0000-0000-0000-
000000000000/Runbooks

 To navigate to a module entry directly, use this URI:

https://sma.contoso.com:9090/00000000-0000-0000-0000-
000000000000/Modules(guid'e83b4d53-4028-4ccc-9063-72a1047969fb')

20 CHAPTER 3 Understanding automation: Interfaces

http://msdn.microsoft.com/en-us/library/dn720250.aspx
https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000/
https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000/Runbooks
https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000/Runbooks
https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000/Modules
https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000/Modules

FIGURE 3-1 Example web service response for the service root URI

The OData web service framework allows for complex request types, such as using queries
or paging. For example, to find a module by name, use this URI:

https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000/
Modules?filter=Name eq 'OperationsManager-Portable'

The Authentication type used when making a request to the web service will be either Basic
or Windows, depending on where your request is coming from and the authentication
mechanisms it supports, along with your security preferences. By default, the Service
Management Automation web service is enabled for both Basic and Windows authentication;
however, the requirements of your solution or organization may dictate that a specific
mechanism is used. Whichever authentication method is used, the authenticating user must
then be authorized to use the web service through membership in the smaAdminGroup local
group on the web service servers.

When a request is sent to the web service, a standard set of HTTP headers is used for
requests and responses.

See also For details of these headers, refer to http://msdn.microsoft.com/en-
us/library/dn688268.aspx.

Finally, when a Post or Put request type is sent to the web service, additional data is
delivered in the request via the body of the request. The body of the request is an XML
document.

See also For details of collection and entry body syntax, refer to the Service Management
Automation Web Service Reference at http://msdn.microsoft.com/en-us/library/dn688271.aspx.

CHAPTER 3 Understanding automation: Interfaces 21

http://msdn.microsoft.com/en-us/library/dn688268.aspx
http://msdn.microsoft.com/en-us/library/dn688268.aspx
http://msdn.microsoft.com/en-us/library/dn688271.aspx
https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000/Modules?filter=Name
https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000/Modules?filter=Name

Bringing this all together, you can construct a request to the web service and receive a
response. Following are two examples of using the web service, the first using a basic
command-line tool created in Visual Studio using C#, and the second using Windows
PowerShell.

Using the web service in an application
This example shows how to create a basic command-line application that uses the web service
to explore the collections and entries available through the web service.

From a computer running Visual Studio, perform the following steps:

1. Open Visual Studio, and, from the File menu, click New, and then click Project.

2. In the New Project dialog box, using the tree-view, expand the Visual C# view. Locate
and select the Console Application template in the center list pane.

3. Enter the name of the application, for example type SMAWebServiceExplorer.

4. From Solution Explorer, right-click References, and select Add Service Reference.

5. In the Add Service Reference dialog box, type the URL of the web service, for example
type https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000,
and then provide a name for the namespace, for example type SMAWebService.

22 CHAPTER 3 Understanding automation: Interfaces

https://sma.contoso.com:9090/00000000-0000-0000-0000-000000000000

6. The Program.cs file should already be open in the main workspace. If it is not, locate
and open it from Solution Explorer.

7. Add additional resources to the project by appending the following lines after the
default using references:
using System.Net;

using System.Data.Services.Client;

using SMAWebServiceExplorer.SMAWebService;

8. In the Main code block, insert the following:
// Create connection to the web service

OrchestratorApi smaws = new OrchestratorApi(new Uri(@"https://sma01.contoso.com:

 9090/00000000-0000-0000-0000-000000000000/"));

// Authenticate with currently logged on credentials

((DataServiceContext)smaws).Credentials = CredentialCache.DefaultCredentials;

try

{

 // Request all runbooks

 var rbs = smaws.Runbooks;

 // Enumerate runbooks and display the name of each

 foreach (Runbook rb in rbs)

 Console.WriteLine("---{0}", rb.RunbookName);

CHAPTER 3 Understanding automation: Interfaces 23

 // Prompt user to exit

 Console.WriteLine("Press any key to exit...");

 Console.ReadKey(true);

}

catch (NullReferenceException ex)

{

 // Catch exception and notify user

 throw new ApplicationException("An error occured during execution.", ex);

}

9. To test the program, click Start in the Visual Studio toolbar or press F5. The program
compiles and runs, and you are presented with a list of the available runbooks on your
Service Management Automation deployment (see Figure 3-2).

FIGURE 3-2 Output of the sample command-line program

Using the web service in Windows PowerShell
Since the web service is a representational state transfer (REST) Odata web service, you can
leverage it using the built-in Invoke-RestMethod cmdlet in Windows PowerShell. This may be
useful when you want to interact with Service Management Automation from a client or server
but are unsure if the Windows PowerShell module is available on the end point, or if you are
unwilling to install it. This example browses the available collections via the web service and
explores a runbook and a variable asset.

24 CHAPTER 3 Understanding automation: Interfaces

Browsing the web service service root URI

PS> $smaRoot = Invoke-RestMethod -Method Get -Uri https://sma.contoso.com:9090/00000000-

 0000-0000- 0000-000000000000 -UseDefaultCredentials

PS> $smaRoot.service.workspace.collection

href title

---- -----

Jobs Jobs

Runbooks Runbooks

RunbookVersions RunbookVersions

JobContexts JobContexts

JobParameters JobParameters

Schedules Schedules

Modules Modules

ConnectionFields ConnectionFields

ConnectionFieldValues ConnectionFieldValues

Connections Connections

ConnectionTypes ConnectionTypes

Variables Variables

Credentials Credentials

Certificates Certificates

Activities Activities

ActivityParameterSets ActivityParameterSets

ActivityParameters ActivityParameters

ActivityOutputTypes ActivityOutputTypes

RunbookParameters RunbookParameters

Statistics Statistics

AdminConfigurations AdminConfigurations

Deployment Deployment

Exploring a runbook

PS> $smaRunbooks = Invoke-RestMethod -Method Get -Uri https://sma.contoso.com:9090/

 00000000-0000-0000-0000-000000000000/Runbooks -UseDefaultCredentials

PS> $smaRunbooks.[0].content.properties

TenantID : TenantID

RunbookID : RunbookID

RunbookName : Sample-Managing-ServiceBusCloud

CreationTime : CreationTime

LastModifiedTime : LastModifiedTime

LastModifiedBy : LastModifiedBy

Description : Description

IsApiOnly : IsApiOnly

CHAPTER 3 Understanding automation: Interfaces 25

IsGlobal : IsGlobal

PublishedRunbookVersionID : PublishedRunbookVersionID

DraftRunbookVersionID : DraftRunbookVersionID

Tags : Tags

LogDebug : LogDebug

LogVerbose : LogVerbose

LogProgress : LogProgress

Exploring a variable asset

PS> $smaVariable = Invoke-RestMethod -Method Get -Uri https://sma.contoso.com:9090/

 00000000-0000-0000-0000-000000000000/Variables -UseDefaultCredentials

PS> $smaVariable.[0].content.properties

VariableID : VariableID

TenantID : TenantID

Name : Company

Value : "Contoso"

Description : Description

IsEncrypted : IsEncrypted

CreationTime : CreationTime

LastModifiedTime : LastModifiedTime

Windows PowerShell interfaces

The Windows PowerShell interfaces for Service Management Automation and Azure
Automation, while similar in some ways, are provided separately and have different levels of
interaction. In this section you will learn about the Windows PowerShell interface for each
solution.

Service Management Automation PowerShell module
The Service Management Automation Powershell module can be deployed on any system with
Windows PowerShell version 4.0. This module allows you to manage and interact with the
Service Management Automation service by leveraging the web service described previously.
The module includes the following cmdlets.

26 CHAPTER 3 Understanding automation: Interfaces

PS > get-command -Module *ServiceManagementAutomation*

CommandType Name

----------- ----

Cmdlet Edit-SmaRunbook

Cmdlet Get-SmaAdminConfiguration

Cmdlet Get-SmaCertificate

Cmdlet Get-SmaConnection

Cmdlet Get-SmaConnectionField

Cmdlet Get-SmaConnectionType

Cmdlet Get-SmaCredential

Cmdlet Get-SmaJob

Cmdlet Get-SmaJobOutput

Cmdlet Get-SmaLicense

Cmdlet Get-SmaModule

Cmdlet Get-SmaRunbook

Cmdlet Get-SmaRunbookDefinition

Cmdlet Get-SmaRunbookWorkerDeployment

Cmdlet Get-SmaSchedule

Cmdlet Get-SmaVariable

Cmdlet Import-SmaModule

Cmdlet Import-SmaRunbook

Cmdlet New-SmaConnection

Cmdlet New-SmaRunbookWorkerDeployment

Cmdlet Publish-SmaRunbook

Cmdlet Remove-SmaCertificate

Cmdlet Remove-SmaConnection

Cmdlet Remove-SmaCredential

Cmdlet Remove-SmaModule

Cmdlet Remove-SmaRunbook

Cmdlet Remove-SmaSchedule

Cmdlet Remove-SmaVariable

Cmdlet Resume-SmaJob

Cmdlet Set-SmaAdminConfiguration

Cmdlet Set-SmaCertificate

Cmdlet Set-SmaConnectionFieldValue

Cmdlet Set-SmaCredential

Cmdlet Set-SmaLicense

Cmdlet Set-SmaRunbookConfiguration

Cmdlet Set-SmaSchedule

Cmdlet Set-SmaVariable

Cmdlet Start-SmaRunbook

Cmdlet Stop-SmaJob

Cmdlet Suspend-SmaJob

CHAPTER 3 Understanding automation: Interfaces 27

See also For more details of these cmdlets, refer to the complete command reference at
http://download.microsoft.com/download/A/0/B/A0BB6495-3010-43A8-B06C-
6B0F0E8F92D9/SC2012R2_SMA_Cmdlets.pdf.

This array of cmdlets greatly extends the possible scenarios for operations to be perfomed
using the Service Management Automation solution. Leveraging the module allows for
standard Windows Powershell scripts to interact directly with service.

Running a runbook using the PowerShell module
This example launches a runbook remotely, with a set of paramaters supplied directly to the
runbook, and then, when the runbook is complete, uses the Job ID to display the runbook
output stream.
$myJob = Start-SmaRunbook -WebServiceEndpoint https://sma.contoso.com -Port 9090 -Name

"sample-using-runbookparameters" -Parameters @{"Name"="World";"Number"="73"}

$jobID = $myJob.JobID

$loop = $true

While ($loop)

{

 $job = Get-SmaJob -id $jobID -WebServiceEndpoint "https://sma.contoso.com"

 $status = $job.JobStatus

 $loop = (($status -ne "Completed") -and ($status -ne "Failed") -and ($status -ne

 "Suspended") -and ($status -ne "Stopped"))

}

$out = Get-SmaJobOutput -Id $jobID -Stream Output -WebServiceEndpoint

 "https://sma.contoso.com"

Azure Automation PowerShell cmdlets
When administering Azure Automation from Windows PowerShell, you use a separate set of
cmdlets included in the Azure PowerShell module. Since the Azure Automation service handles
the configuration and management of your automation account, you only need to manage
runbooks, assets, and jobs. The set of cmdlets includes a limited set of commands that you can
use to manage your runbooks, schedules, and jobs.

To access the Azure Automation cmdlets, install the Azure PowerShell module using the
Microsoft Web Platform Installer as follows:

1. Browse to http://www.microsoft.com/web/downloads/platform.aspx, and click Free
Download.

2. When prompted, run the wpilauncher.exe file.

3. After it has installed, launch the Web Platform Installer application.

28 CHAPTER 3 Understanding automation: Interfaces

http://download.microsoft.com/download/A/0/B/A0BB6495-3010-43A8-B06C-6B0F0E8F92D9/SC2012R2_SMA_Cmdlets.pdf
http://download.microsoft.com/download/A/0/B/A0BB6495-3010-43A8-B06C-6B0F0E8F92D9/SC2012R2_SMA_Cmdlets.pdf
http://www.microsoft.com/web/downloads/platform.aspx

CHAPTER 3 Understanding automation: Interfaces 29

4. On the Products tab at the top of the Web Platform Installer application, in the search
field, type Azure PowerShell.

5. Click Add next to the Microsoft Azure PowerShell item, and then click Install.

6. When installation is complete, launch the Microsoft Azure PowerShell link from the
Start menu.

NOTE Before you can use the Azure PowerShell module, you will need to establish trust
with your Microsoft Azure subscription from your client computer. For details on using
Azure Active Directory for authenticating to your Microsoft Azure subscription, refer to
http://azure.microsoft.com/en-us/documentation/articles/install-configure-powershell/
#Connect.

To use the Azure PowerShell cmdlets from a script or from a standard Windows PowerShell
session, load the module using the following command:

Import-Module -Name Azure

The Azure PowerShell module currently includes the following Azure Automation cmdlets:

PS C:\> get-command *azureautomation*

CommandType Name ModuleName

----------- ---- ----------

Cmdlet Get-AzureAutomationAccount Azure

Cmdlet Get-AzureAutomationJob Azure

Cmdlet Get-AzureAutomationJobOutput Azure

Cmdlet Get-AzureAutomationRunbook Azure

Cmdlet Get-AzureAutomationRunbookDefinition Azure

Cmdlet Get-AzureAutomationSchedule Azure

Cmdlet New-AzureAutomationRunbook Azure

Cmdlet New-AzureAutomationSchedule Azure

Cmdlet Publish-AzureAutomationRunbook Azure

Cmdlet Register-AzureAutomationScheduledRunbook Azure

Cmdlet Remove-AzureAutomationRunbook Azure

Cmdlet Remove-AzureAutomationSchedule Azure

Cmdlet Resume-AzureAutomationJob Azure

http://azure.microsoft.com/en-us/documentation/articles/install-configure-powershell/#Connect
http://azure.microsoft.com/en-us/documentation/articles/install-configure-powershell/#Connect

Cmdlet Set-AzureAutomationRunbook Azure

Cmdlet Set-AzureAutomationRunbookDefinition Azure

Cmdlet Set-AzureAutomationSchedule Azure

Cmdlet Start-AzureAutomationRunbook Azure

Cmdlet Stop-AzureAutomationJob Azure

Cmdlet Suspend-AzureAutomationJob Azure

Cmdlet Unregister-AzureAutomationScheduledRunbook Azure

Note that as with all Microsoft Azure products and services, changes and enhancements are
continuously added; therefore, the list above may change over time.

When using the Azure Automation cmdlets in the Azure PowerShell module, all actions are
targeted against an Azure Automation account and therefore have a required parameter called
AutomationAccountName. Rather than repetitively typing this parameter name and value, you
can use a default parameter value in your Windows PowerShell session to set the value
automatically. For example, in the Azure PowerShell console, use the following command to
set the default value for the AutomationAccountName parameter for all related Azure
Automation cmdlets:

$PSDefaultParameterValues = @{"*AzureAutomation*:AutomationAccountName"="<AccountName>"}

See also For more details of using default parameter values, refer to
about_Parameters_Default_Values at http://technet.microsoft.com/en-
us/library/hh847819.aspx.

Creating and running a runbook using the Azure Automation
PowerShell cmdlets
Follow this example to create a basic runbook in Azure Automation and run it using the Azure
Automation cmdlets.

1. Create a Windows PowerShell script file called Hello-World.ps1 and include the
following code:
workflow Hello-World

{

 Write-Output "Hello World!!!"

}

2. Open an Azure PowerShell console from the Start menu.

3. Set the default value for your Automation account name:
$PSDefaultParameterValues =

@{"*AzureAutomation*:AutomationAccountName"="<AccountName>"}

4. Use the following command to create a new runbook:
$runbook = New-AzureAutomationRunbook -Name "Hello-World" -Description "Example

runbook." -Tags "Example"

30 CHAPTER 3 Understanding automation: Interfaces

http://technet.microsoft.com/en-us/library/hh847819.aspx
http://technet.microsoft.com/en-us/library/hh847819.aspx

5. Update the runbook workflow with the script you created in step 1:
$runbook | Set-AzureAutomationRunbookDefinition -Path <Path to script>\Hello-

World.ps1 -Overwrite

6. Publish the runbook:
$runbook | Publish-AzureAutomationRunbook

7. Run the runbook and view the results:
$runbook | Publish-AzureAutomationRunbook

$job = $runbook | Start-AzureAutomationRunbook

$job | Get-AzureAutomationJobOutput -Stream Output

Web portal interfaces

The Microsoft Azure Management Portal and the Windows Azure Pack Service Management
Portal provide the web-based interface for the Microsoft automation solutions. Each portal
provides the following:

 An overview dashboard of the system

 The ability to create and manage assets used in the system

 A set of runbook authoring and management capabilities

 The ability to launch runbooks, supply user input, and view job status and outputs

The Dashboard view (see Figure 3-3) provides an operational overview of the Service
Management Automation deployment, including a graph and list view of current runbook job
activity. From this page you can view the health and performance of the system.

CHAPTER 3 Understanding automation: Interfaces 31

FIGURE 3-3 Elements of the automation Dashboard view in the Service Management Portal

The Runbooks view (see Figure 3-4) displays a filterable list of runbooks. From this page,
you can take the following actions:

 Start a runbook

 Import a runbook from a .ps1 file

 Export a runbook to a .ps1 file

 Delete a runbook

Clicking the linked name of a runbook (in dark blue) opens the runbook authoring
workspace, which will be covered in more detail in Chapter 4, "Implementing automation."

32 CHAPTER 3 Understanding automation: Interfaces

FIGURE 3-4 Elements of the automation Runbook view in the Service Management Portal

The Assets view (see Figure 3-5) displays all information for registered modules,
connections, credentials, variables, and schedules. Chapter 4 covers managing assets.

CHAPTER 3 Understanding automation: Interfaces 33

FIGURE 3-5 Elements of the automation Assets view in the Service Management Portal

When using the management portals, you will be navigating a collection of workspaces and
views. Figure 3-6 provides a map of the available workspaces and views in the portals, which
are explored further throughout this book. As shown in the figure, the intial view you will use is
the Automation workspace, which provides access to the following views:

 Dashboard view

 Runbooks view

 Assets view

From the Runbooks view, you can access any runbook to reach the Runbook workspace.
This workspace provides access to additional views for managing a single runbook, including:

 Runbook Dashboard view

 Jobs view

 Author view

 Schedule view

 Configure view

34 CHAPTER 3 Understanding automation: Interfaces

From the Jobs view, you can review a runbook's job history, and accessing a particular job
takes you to the Job workspace, which provides additional views for reviewing the details of a
job.

Finally, the Asset view under the Automation workspace provides views for managing your
assets.

FIGURE 3-6 Tree view of workspaces and views in the management portals

CHAPTER 3 Understanding automation: Interfaces 35

This page intentionally left blank

Implementing automation

his chapter explores how to implement Microsoft automation solutions. You will learn:

 How to use asset objects in your solution

 How to use runbooks in the management portals

 How a runbook is structured

 How to author and publish runbooks

 How to author Integration Modules to use in your runbooks

Using assets

As previously identified in Chapter 1, "Why automation?" assets provide your runbooks with
static configuration details commonly used in your environment. All assets can be managed
from the Windows Azure Pack Service Management Portal and the Microsoft Azure
Management Portal, and are accessed using the Assets view of the Automation workspace.
From this workspace, you can click Add Setting to launch the Add Setting dialog box to create
new assets (see Figure 4-1).

FIGURE 4-1 Add Settings dialog box for adding assets

CHAPTER 4 Implementing automation 37

Connections
Connections store details of a service that is used by multiple automation activities and include
variables such as a server name, user name, and passwords. Connections are useful for
connecting to services such as Microsoft System Center Virtual Machine Manager (VMM) or a
Microsoft Azure subscription.

By default, a Service Management Automation deployment includes the following
connection types:

 Azure

 ConfigurationManager

 DataProtectionManager

 MgmtSvcAdmin

 MgmtSvcConfig

 MgmtSvcMySql

 MgmtSvcSqlServer

 OperationsManager

 OrchestratorService

 ServiceBus

 ServiceManagementAutomation

 SpfAdmin

 VirtualMachineManager

 WebHostingSnapin

Each connection type is defined in the Windows PowerShell modules that are loaded by the
service. In the "Authoring Integration Modules" later in this chapter, you'll learn how to author
your own Windows PowerShell modules for the Microsoft automation solutions, including how
to define connection types, enabling you to specify how connections are made to your own
systems or products.

The configuration settings requested will depend on the connection type you use. For
example, the Azure connection type requests settings such as subscription ID and certificate,
whereas the Virtual Machine Manager connection type requests a server name, user name, and
password. The following example describes how to create a Virtual Machine Manager
connection:

1. From the Assets view in the Automation workspace, click Add Settings.

2. Click Add Connection.

3. In the Connection Type drop-down list, select VirtualMachineManager.

4. Provide a name for the connection, such as myVMMConnection.

5. Click the Next arrow.

38 CHAPTER 4 Implementing automation

6. Provide values for the Computername, Username, and Password fields.

7. Click Complete to finish adding the connection.

After you create a connection by using Add Setting, it can be consumed in a runbook as
follows:
Get connection asset object

$vmmConnection = Get-AutomationConnection -Name "myVMMConnection"

Access connection properties

$vmmServerName = $vmmConnection.ComputerName

$vmmUsername = $vmmConnection.Username

$vmmEncryptedPassword = $vmmConnection.Password

Credentials
Credential assets store two types of credentials: PowerShell credentials and certificate
credentials. Credentials allow automation activities to refer to a repository of securely stored
credentials that can be used to access systems and services as required without user input. A
PowerShell credential asset stores a standard user name and encrypted password combination.
A certificate credential asset stores a certificate in either .cer or .pfx format, depending on
whether the certificate requires its private key to be available.

The following example shows how to create a credential asset:

1. From the Assets view in the Automation workspace, click Add Settings.

2. Click Add Credential.

3. In the Credential Type drop-down list, select the required type.

4. Provide a name for the credential, such as myCredential.

5. Click the Next arrow.

6. If creating a PowerShell credential, provide values for the user name and password
fields. If creating a certificate credential, click Browse to locate your certificate file.

7. Click Complete to finish adding the credential.

After you create a credential by using Add Setting, it can be consumed in a runbook as
follows:
Get PowerShell Credential asset object

$myCred = Get-AutomationPSCredential -Name "myCredential"

Get Certificate Credential asset object

$myCert = Get-AutomationCertificate -Name "myCertificate"

Variables
Variable assets store name-value pair variables, which are consumed in runbooks. Variables can
be defined with the following types: string, integer, boolean, datetime, and not defined.

CHAPTER 4 Implementing automation 39

Variables can be optionally encrypted if the values are sensitive, for example, if they are storing
license keys or passwords.

The following example shows how to create a variable asset:

1. From the Assets view in the Automation workspace, click Add Settings.

2. Click Add Variable.

3. In the Variable Type drop-down list, select the required type.

4. Provide a name for the variable, such as myVar.

5. Click the Next arrow to continue.

6. Provide a value for the variable.

7. Click Complete to finish adding the variable.

After you create a variable by using Add Setting, it can be consumed in a runbook as
follows:
Get Variable asset object

$myVar = Get-AutomationVariable -Name "myVar"

Schedules
Schedule assets define a regular schedule to which an activity can be linked, for example, to
initiate a runbook at the start or end of business each day.

The following example shows how to create a schedule asset:

1. From the Assets view in the Automation workspace, click Add Settings.

2. Click Add Schedule.

3. Provide a name for the schedule, such as mySched.

4. Click the Next arrow to continue.

5. Select the type of schedule: One Time to set the schedule to run one time only or
Daily to set the schedule to run at the same time each day.

6. Provide a value for the data and a time to process.

7. Click Complete to finish adding the schedule.

After you create a schedule by using Add Setting, it can be attached to a runbook as
follows:

1. Locate the runbook you are attaching the schedule to.

2. Click Use An Existing Schedule.

3. Select the schedule created previously, such as mySched.

4. Click the Next arrow.

5. Provide any parameter values expected by the runbook.

6. Click Complete to finish attaching the schedule to the runbook.

40 CHAPTER 4 Implementing automation

Integration Modules
Integration Modules store Windows PowerShell modules for use by automation activities.
These allow you to extend the capability of the Microsoft automation solutions by leveraging
Microsoft and third-party developed modules or even modules you create. Creation and use of
integration modules is covered in the section "Authoring integration modules" later in this
chapter.

Using runbooks

Runbooks provide the process automation definition for the Microsoft automation solutions.
All runbooks can be managed from the portals and are accessed in the Runbooks view of the
Automation workspace. In the Runbooks view, you can:

 Create new runbooks by clicking New at the bottom left of the view (see Figure 4-2).
You'll be prompted for the name of the runbook and optional values for the
description and tags for the runbook.

 Start a runbook by clicking Start . You'll be prompted for any parameters required by
the runbook and for confirmation to start.

 Import a runbook by clicking Import. This allows you to import a pre-existing
runbook, usually in a .ps1 file.

 Export a runbook by clicking Export. This allows you to export a single runbook as a
.ps1 file.

 Delete a runbook by clicking Delete.

FIGURE 4-2 Action buttons in the portal user interfaces

After creating your runbook, click its name in the Runbooks view to open the Runbook
workspace (see Figure 4-3), where you can configure that runbook directly.

CHAPTER 4 Implementing automation 41

FIGURE 4-3 Runbook workspace views in the Service Management Portal

The Runbook workspace provides the following views:

 Dashboard view, similar to the Automation workspace dashboard, which provides a
summary of the runbooks jobs in graph and list formats

 Jobs view, which provides a full, filterable list of the runbook jobs

 Author view for viewing the published version of the runbook and for editing a draft
version of the runbook

 Schedule view for viewing or attaching schedules to the runbook

 Configuration view to edit general settings of the runbook, such as the optional
description and tags values, and to configure logging levels for the runbook
(explored in Chapter 5, "Managing runbooks")

Authoring runbooks

You author runbooks in the Runbook workspace, in the Author view. Runbooks can be either
published or draft runbooks. A published runbook represents a complete version that is ready
to run or to be nested in other runbooks, and it will log activity to the database. A draft
runbook, in contrast, can be edited and tested before being published. However, be aware that
testing a runbook runs it live on a runbook worker server, so be sure to develop in a
development environment before running your runbooks in production. If you decide not to
publish a runbook draft, you can dispose of your changes by using the Discard Draft action.

The following example shows how to create a new runbook. This runbook will serve as the
basis for the rest of the examples in this section:

1. From the Service Management Portal, click New.

2. Click Runbook, then click Quick Create.

3. Provide a name for the runbook, in this case, Hello-World.

4. Click Create to create the runbook.

5. From the Runbooks view in the Service Management Portal, click the name of the
newly created runbook.

6. Click the Author view of the runbook, and then click the Draft view.

7. Click Edit Runbook to enter edit mode.

42 CHAPTER 4 Implementing automation

Exploring the runbook workflow structure
A runbook contains a Windows PowerShell workflow, which is processed by the Microsoft
automation solutions infrastructure. The runbook workflow structure, exactly like a standard
Windows PowerShell workflow, begins with the workflow block, which defines the parent
workflow script block. The runbook created in the previous section shows the default structure
in the Hello-World runbook. Note that both the workflow and runbook name are the same:
workflow Hello-World

{

}

You define the steps that your runbook will follow within the curly braces. If your runbook
will output data, define the output type first. This allows you to control the type of data that
other runbooks will receive if they call this runbook and also enables future iterations of
Microsoft automation solutions to use this field for discovery. For example:

workflow Hello-World

{

 [OutputType([string])]

}

Generally, a runbook contains one or more input parameters that allow you to feed data
into the runbook at runtime, either manually, passed from another runbook, or via a scheduled
or automated method. To define parameters in your runbook, extend the workflow as follows:

workflow Hello-World

{

 [OutputType([string])]

 param

 (

 [parameter(Mandatory=$true)]

 [string]$firstName,

 [parameter(Mandatory=$true)]

 [string]$lastName

)

}

Parameters in runbooks have the following constraints:

 Parameter definitions support only the following attributes: Name, Type, Default
Value (Optional), and Mandatory (Optional).

 Only the following types are permissible: string, string array, object, integer, datatime,
boolean, and PSCredential.

 Parameters of string array or object types must be in a JSON string format.

CHAPTER 4 Implementing automation 43

Variable definitions in a runbook follow standard Windows PowerShell syntax. In the
following example, the input parameters of the runbook are joined to create a variable:

workflow Hello-World

{

 [OutputType([string])]

 param

 (

 [parameter(Mandatory=$true)]

 [string]$firstName,

 [parameter(Mandatory=$true)]

 [string]$lastName

)

$fullName = "$firstName $LastName"

}

To complete the basic example, output the value of the new variable by using the write-
output activity or by simply using the variable name:

workflow Hello-World

{

 [OutputType([string])]

 param

 (

 [parameter(Mandatory=$true)]

 [string]$firstName,

 [parameter(Mandatory=$true)]

 [string]$lastName

)

$fullName = "$firstName $LastName"

write-output $fullName

or

$fullName

}

Differences between standard Windows PowerShell and
workflows
When you write runbooks, it's important to understand the differences between writing
standard Windows PowerShell scripts and Windows PowerShell workflows. The main
considerations are how activities are used inside a workflow and how cmdlets are consumed.

44 CHAPTER 4 Implementing automation

An activity in a workflow is any task processed directly in the workflow script block. This can
take the form of a cmdlet, a workflow-specific activity, or an activity defined by the Microsoft
automation solutions.

A standard activity in a workflow can be any cmdlet defined in the Microsoft.PowerShell.*
modules or the Microsoft.Wsman.Management module. These activities are processed natively
in a workflow. For example, the Get-Date cmdlet exists in the
Microsoft.PowerShell.Commands.Utility module and, therefore, can be used directly in a
workflow.

A cmdlet activity is any cmdlet that is not in one of the modules mentioned above. When a
cmdlet activity runs, Windows Workflow Foundation (which hosts Windows PowerShell
Workflow) processes the cmdlet inside an InlineScript activity behind the scenes and returns
any output of the cmdlet to the workflow session. For example, the Get-Disk cmdlet exists in
the Storage module and runs inside an InlineScript when processed in a workflow.

The Microsoft automation solutions also include additional activities to provide enhanced
features when running tasks in runbooks. These activities, starting with either Get-Automation*
or Set-Automation*, enable the Microsoft automation solutions to interact with assets in the
database directly so they are available in the workflow. For example, the Get-
AutomationCredential activity provides access to credential assets and is capable of decrypting
the password, in contrast to using the Get-SmaCredential cmdlet, which can access a credential
asset, but not its unencrypted password.

See also For more details of using activities in script workflows, please refer to
http://technet.microsoft.com/en-us/library/jj574194.aspx.

Another key feature of Windows PowerShell Workflow that you can leverage in runbooks is
the parallel and sequence activity constructs. These provide you the ability to run multiple
activities in a defined manner. For example, to process a set of tasks in parallel, use the
following script block construct:

workflow Hello-World

{

 Parallel

 {

 Get-Date

 Get-Disk

 Get-SmaCredential

 }

}

CHAPTER 4 Implementing automation 45

http://technet.microsoft.com/en-us/library/jj574194.aspx

The sequence script block allows sequential processing of tasks. At first this might not seem
useful; however, when this construct is nested in a Parallel block, it can control the order of
activities to ensure they run in a specific way, for example:

workflow Hello-World

{

 Parallel

 {

 Get-Date

 Get-Disk

 Get-SmaCredential

 Sequence

 {

 Get-NetAdapter

 Get-NetIpAddress

 }

 }

}

When you use cmdlet activities, rather than running them from inside the Workflow script
block and having Windows Workflow Foundation push them into an InlineScript, it is often
easier to pre-define the InlineScript block. Doing so allows you to control when a block of
script runs in a Windows PowerShell session and gives you the ability to target that session
against a remote host. The InlineScript script block supports processing against remote hosts
by providing parameter values for PSComputerName and PSCredential, as in the following
example:

workflow Hello-World

{

 InlineScript

 {

 Get-Disk

 } -PSComputerName $computerName -PSCredential $credential

}

Note that data is passed into and out of the script block when you use InlineScript script
blocks. Because Windows Workflow Foundation runs the script block in a new Windows
PowerShell session, any variables defined or used in an InlineScript do not naturally inherit
values from the parent workflow. To pass values into an InlineScript script block, use the
$Using: scope modifier, as in the following example.

46 CHAPTER 4 Implementing automation

workflow Hello-World

{

 $outerVar = "test"

 InlineScript

 {

 $innerVar = $Using:outerVar

 }

}

To output data from an InlineScript script block, assign it to a variable and write out your
required output in the script block, as in the following example:

workflow Hello-World

{

 $output = InlineScript

 {

 Write-Output "Hello world!!!"

 }

 Write-Output $output

}

Defining parent and child runbook relationships
The Microsoft automation solutions enable the development of runbooks that can be linked
together using parent-child relationships. This allows you to author re-usable small modular
runbooks that achieve defined tasks and group them together in a runbook set. You should
use a parent runbook that controls process logic and leverages many child runbooks for
runbook development. This avoids having overly complex runbooks with potentially thousands
of lines of Windows PowerShell code.

Establishing a parent-child relationship for runbooks requires two things:

 Calling a child runbook from a parent runbook

 Returning data to the parent runbook

There are two methods for calling other runbooks and passing them parameters inside a
runbook:

 Inline call Synchronously invokes a runbook directly and waits for its completion;
optionally retrieves data from the child runbook
workflow Hello-World

{

 Example-Runbook -Param1 "value1" -Param2 " value2" -Param3 "value3"

}

CHAPTER 4 Implementing automation 47

 Start-SmaRunbook Asynchronously invokes a runbook and does not wait for
completion; optionally returns the initiated runbook's Job ID
workflow Hello-World

{

 Start-SmaRunbook -WebServiceEndpoint "https://sma.contoso.com"

 -port 9090 -name "Sample-Using-Modules" -Parameters

 @{"Modulepath"="C:\Modules";"Servername"="Server01"}

}

For an effective parent-child relationship, you also need to return data from the child
runbook so the parent runbook can manage the success or failure of the child or perform
actions based on the data returned. To return data from the child, use the OutputType defined
at the start of the workflow and output the data required at the end of the runbook, as in the
following example:

workflow Child-Runbook

{

 [OutputType([string])]

 Write-Output "Output data."

}

This can then be consumed by the parent runbook, as shown in the following example:

workflow Parent-Runbook

{

 $result = Child-Runbook

 Write-Output $result

}

These methods of presenting and returning data between runbooks provides a flexible
solution for automation of long-running processes.

Authoring Integration Modules

Authoring Integration Modules for Microsoft automation solutions is essentially the same as
authoring standard Windows PowerShell modules, with some simple additions to enable them
to expose extra capability. If you're familiar with Windows PowerShell modules, you have used
.psm1 files to store common script code which can be leveraged across multiple scripts.
Integration Modules use a standard .psm1 file, with the addition of the following:

 A Module Manifest file to define metadata about the module itself, such as the
version, author, and description, and any prerequisites for the module

 An Integration Module Metadata file to define any custom connection types used by
the module

48 CHAPTER 4 Implementing automation

You can zip these three files (module .psm1 file, manifest .psd1 file, and metadata .json file)
and import them into the Microsoft automation solutions (see Figure 4-4). The names of these
files and the zipped module is very important. A common name must be applied to each file
to ensure the import process completes successfully.

FIGURE 4-4 Structure of an Integration Module zip file

Creating an Integration Module file
As already noted, an Integration Module is essentially just a Windows PowerShell module file.
A module file consists of the following:

 Cmdlets A function that is exported as a cmdlet, inheriting capabilities similar to
compiled cmdlets, such as parameter sets, help URIs, and so on

 Functions A standard function used internally in the module or optionally exported

 Variables A standard variable object used internally in the module or optionally
exported.

The following example shows a skeleton of a Windows PowerShell module using these
object types.

$privateVariable = "0"

$publicVariable = "1"

<#

 .SYNOPSIS

 This cmdlet provides.... (Short description)

 .DESCRIPTION

 This cmdlet provides... (Long description)

CHAPTER 4 Implementing automation 49

 .NOTES

 Module Name : myModule

 Created by : Author Name

 Date Coded : 02/09/2014

 .LINK

 http://aka.ms/automate

#>

function Get-ExampleOutput

{

 [CmdletBinding(HelpURI='http://aka.ms/automate')]

 [OutputType([System.String])]

 param

 (

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$ParamName

)

 # your code here...

 return $result

}

function PrivateExampleFunction

{

 [OutputType([System.String])]

 param

 (

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$ParamName

)

 # your code here...

 return $result

}

Export-ModuleMember -Cmdlet "Get-ExampleOutput"

Export-ModuleMember -Variable $publicVariable

50 CHAPTER 4 Implementing automation

Creating an Integration Module Manifest file
An Integration Module Manifest file can be generated manually using any text editor or the
New-ModuleManifest cmdlet. For details of the contents of a manifest file, please refer to
http://msdn.microsoft.com/en-us/library/dd878337(v=vs.85).aspx.

Creating an Integration Module Metadata file
An Integration Module Metadata file provides the Microsoft automation solutions with details
of a new connection type to expose through the service. This is useful for systems that may
require a different set of connection variables, such as a password and an application key or ID,
or that require multiple settings you would prefer to bundle into a single object.

The example below shows how to define a new connection type to be included in your
Integration Module.

{

 "ConnectionFields": [

 {

 "IsEncrypted": false;

 "IsOptional": false;

 "Name": "StorageAccountName";

 "TypeName": "System.String";

 },

 {

 "IsEncrypted": true;

 "IsOptional": false;

 "Name": "StorageAccountKey";

 "TypeName": "System.String";

 }

 {

 "IsEncrypted": false;

 "IsOptional": false;

 "Name": "StorageContainter";

 "TypeName": "System.String";

 }

],

 "ConnectionTypeName": "AzureBlobStorage",

 "IntegrationModuleName": "AzureBlobStorage"

}

CHAPTER 4 Implementing automation 51

http://msdn.microsoft.com/en-us/library/dd878337(v=vs.85).aspx

This page intentionally left blank

Managing runbooks

his chapter explores the tools you can use to manage runbooks in the Microsoft
automation solutions. You will learn:

 Which authoring tools you can use to create and edit runbooks and the strengths and
weaknesses of each

 How to manage source control of runbooks

 How to manage runbook output and logs

 How to leverage error-handling techniques

 How to troubleshoot server issues

Runbook authoring tools

As you become more familiar with the Microsoft automation solutions, knowing how you can
use various tools to create and maintain your library of runbooks becomes important. When
you have authored a number of runbooks and generated thousands of lines of runbook
workflows, challenges will arise, especially when you have multiple authors. The runbook
authoring tools available to you provide a wide range of capabilities, each having its own
strengths and weaknesses.

Management portals
The Microsoft Azure Management Portal and the Windows Azure Pack Service Management
Portal, introduced in Chapter 3, "Understanding automation: Interfaces," enable you to author
and manage runbooks directly. The management portals provide a web-based user interface
to all aspects of the Microsoft automation solutions (see Figure 5-1) and will likely be your
primary interface for managing runbooks and assets as you become familiar with the solutions.

CHAPTER 5 Managing runbooks 53

FIGURE 5-1 The Azure Management Portal interface

The management portals provide the following capabilities related to authoring runbooks:

 A live view of runbooks, assets and jobs in the Azure Automation or Service
Management Automation system

 The ability to edit and test draft versions of your runbooks with full access to all assets

 A web-based authoring experience that provides basic intellisense auto-completion,
text searching, and syntax highlighting

 The ability to create assets during runbook editing

 The ability to view output of a runbook in real time while it runs

The management portals do have some limitations, however, for runbook authoring. For
example, the lack of integrated source control and the basic Windows PowerShell authoring
user interface can be limiting.

Windows PowerShell ISE
The Windows PowerShell Integrated Scripting Environment (ISE) was introduced in Windows 7,
along with Windows PowerShell 1.0, and is now included with all current versions of Windows
(see Figure 5-2). Since its initial release, the ISE capabilities have expanded to include the
ability to author Windows PowerShell workflows. Given this capability, it is possible to use the
ISE to author runbooks, with some constraints.

54 CHAPTER 5 Managing runbooks

CHAPTER 5 Managing runbooks 55

FIGURE 5-2 The Windows PowerShell ISE user interface

The ISE provides the following capabilities related to authoring runbooks:

 The ability to create and edit Windows PowerShell workflows

 A client-based authoring experience that provides full intellisense auto-completion,
script outlining, text searching, and syntax highlighting

 Script snippet management

 Extensibility through add-ons

The ISE does not included direct integration with the Microsoft automation solutions;
therefore, you cannot natively test your runbooks on runbook workers during authoring nor
access assets stored in your Azure Automation or Service Management Automation system.

NOTE You can use the Emulated Automation Activities Windows PowerShell module
to access assets in a Service Management Automation system when authoring runbooks
in the ISE. For details of this solution, please refer to http://blogs.technet.com/
b/orchestrator/archive/2014/03/27/authoring-sma-runbooks-in-the-powershell-ise.aspx.
Note that at the time of this writing this solution does not work for Azure Automation.

Like the management portals, the ISE lacks an integrated source control capability, leaving
source control as the responsibility of the runbook authors. There are possible solutions to this,
however, which are explored in the following section.

http://blogs.technet.com/b/orchestrator/archive/2014/03/27/authoring-sma-runbooks-in-the-powershell-ise.aspx
http://blogs.technet.com/b/orchestrator/archive/2014/03/27/authoring-sma-runbooks-in-the-powershell-ise.aspx

Visual Studio IDE
Microsoft Visual Studio represents a complete Integrated Development Environment (IDE) with
a wide range of capabilities and features (see Figure 5-3). Out of the box, Visual Studio is not a
native Windows PowerShell authoring tool and requires add-ons to support full intellisense in
Windows PowerShell scripts. Like the ISE, Visual Studio also is not directly integrated with the
Microsoft automation solutions.

FIGURE 5-3 The Visual Studio IDE user interface

To enable extended Windows PowerShell authoring features in Visual Studio, you can use
the PowerShell Tools for Visual Studio 2013 extension. To install this extension, follow these
steps in the Visual Studio interface:

1. On the Tools menu, click Extensions And Updates.

2. In the Extensions And Updates dialog box, click Online in the left tree view.

3. Type PowerShell Tools in the search text box at the top of the dialog box.

4. From the list of search results, select PowerShell Tools for Visual Studio 2013, and then
click Download.

5. After the extension downloads and runs, accept the license, and then install the
extension.

6. Restart Visual Studio to complete the extension installation.

56 CHAPTER 5 Managing runbooks

Visual Studio has some distinct advantages when integrated with a managed source control
system, such as Microsoft Team Foundation Server or Visual Studio Online, which makes
managing the runbook development lifecycle easier, as described in the following section.

Using source control

Traditionally, Windows PowerShell script authoring version control has been handled by a
version number either inside the script file or as part of the script file name. The script author
must decide what type of version numbering scheme is used and what types of changes
trigger a major, minor, or incremental version numbering change. When multiple authors are
involved with edits in a script repository, issues with untracked changes and data loss inevitably
arise.

The concept of source control is generally associated with application development.
However, as an IT professional, you are likely increasingly finding the need to manage growing
libraries of scripts and configuration files. The Microsoft automation solutions are no different
in this aspect: as you start to build a collection of runbooks, custom modules, and associated
configuration files, the need to manage these objects is critical. Because the Microsoft
automation solutions provide a centralized, multi-user authoring experience, leveraging source
control tools for managing versions will help you avoid data loss by providing rollback
capabilities.

The Microsoft automation solutions provide some built-in capabilities for managing
runbook contents, including:

 Published versions of runbooks

 Draft versions of runbooks

 The Get-SMARunbookDefinition and Set-SMARunbookDefinition Windows
PowerShell cmdlets

 Stored runbook versions linked to existing jobs

However, these provide only very basic version control, which, like traditional Windows
PowerShell scripting, is at the runbook author's discretion.

A managed source control solution can resolve some of these issues and enhance your
runbook authoring experience. Tools such as Team Foundation Server or Visual Studio Online
offer enterprise-level capabilities.

Team Foundation Server
Team Foundation Server for version control is useful for an on-premises Service Management
Automation system. Team Foundation Server provides a centralized version control system,
along with other very useful capabilities for managing development activities as part of a
team, such as work item management and bug tracking.

CHAPTER 5 Managing runbooks 57

58 CHAPTER 5 Managing runbooks

You can use Team Foundation Server version control features to check in and check out
runbook script files for editing. Native integration between Team Foundation Server and
Service Management Automation is not currently available out of the box, but solutions exist
to provide more seamless integration between the tools. Using Team Foundation Server to
manage your Service Management Automation runbooks will help you build a historical view
of what has changed, when it changed, and who performed the change.

NOTE An example solution for integrating Team Foundation Server and Service
Management Automation can be found at http://blogs.technet.com/b/privatecloud /
archive/2014/05/09/automation-mvp-spotlight-series-tfs-and-service-management-
automation-better-together.aspx.

See Also For more details on Team Foundation Server, please refer to
http://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx.

Visual Studio Online
Visual Studio Online provides the same functionality as Team Foundation Server, but it is
hosted and managed by Microsoft as a cloud service. With Visual Studio Online as your version
control solution, you can offload the build and management of additional infrastructure and
access your runbook scripts from anywhere.

Team Foundation Server uses a centralized version control system called Team Foundation
Version Control (TFVC). Visual Studio Online also uses this system, but can also use the Git
distributed version control system, which has gained popularity in development communities.
Using Git, your team members can store a local copy (called a clone) of your repositories
(called repos) on client computers and synchronize them with the Visual Studio Online
repository.

While Visual Studio Online could be used for version management of a Server Management
Automation system, it is more suited for use as part of an Azure Automation solution. Like
Team Foundation Server, no native integration between these tools is currently available,
although solutions exist to provide integration between them.

NOTE Find an example solution for Visual Studio Online and Azure Automation at
http://azure.microsoft.com/blog/2014/07/24/azure-automation-integrating-runbook-
source-control-using-visual-studio-online/.

See Also For more details on Visual Studio Online, please refer to
http://www.visualstudio.com/products/what-is-visual-studio-online-vs.

http://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx
http://azure.microsoft.com/blog/2014/07/24/azure-automation-integrating-runbook-source-control-using-visual-studio-online/
http://azure.microsoft.com/blog/2014/07/24/azure-automation-integrating-runbook-source-control-using-visual-studio-online/
http://www.visualstudio.com/products/what-is-visual-studio-online-vs
http://blogs.technet.com/b/privatecloud/archive/2014/05/09/automation-mvp-spotlight-series-tfs-and-service-management-automation-better-together.aspx
http://blogs.technet.com/b/privatecloud/archive/2014/05/09/automation-mvp-spotlight-series-tfs-and-service-management-automation-better-together.aspx
http://blogs.technet.com/b/privatecloud/archive/2014/05/09/automation-mvp-spotlight-series-tfs-and-service-management-automation-better-together.aspx

CHAPTER 5 Managing runbooks 59

Using logging

When using runbooks to automate tasks in your environment, gathering feedback from your
runbooks is important to ensure you have a record of the activities performed and to provide
diagnostic information. The Microsoft automation solutions leverage native Windows
PowerShell workflows output capabilities and surface their output either through the output
pane in the management portal runbook authoring view or through the job output history
view. The available types of output streams include the following:

 Output Used to output objects in a runbook using the Write-Output activity.
Should not be used for general output.

 Warning Used to capture warning output from activities in a runbook.

 Error Used to capture error output from activities in a runbook.

 Progress Generally not used with runbooks unless you need to track the start and
finish of each activity for troubleshooting. Enable logging of progress records using
the runbook configuration view of an individual runbook.

 Verbose Used for writing general output of a runbook using the Write-Verbose
activity. Enable logging of verbose records using the runbook configuration view of
an individual runbook.

 Debug Used to output debugging details. Enable logging of debug records using
the runbook configuration view of an individual runbook. Note that debug logging is
not available in Azure Automation.

NOTE More details of output types and their use can be found at
http://blogs.technet.com/b/orchestrator/archive/2014/01/16/sma-capabilities-in-depth-
controlling-runbook-streams-for-testing-and-troubleshooting.aspx.

As you author runbooks using the management portals, you can test draft versions in the
runbook authoring view. When testing a runbook from this view, an output pane appears in
the interface to provide near real-time output of the runbook as it runs (see Figure 5-4). In the
case of a published runbook, this output is displayed on the History tab of the runbook job
(see Figure 5-5).

http://blogs.technet.com/b/orchestrator/archive/2014/01/16/sma-capabilities-in-depth-controlling-runbook-streams-for-testing-and-troubleshooting.aspx
http://blogs.technet.com/b/orchestrator/archive/2014/01/16/sma-capabilities-in-depth-controlling-runbook-streams-for-testing-and-troubleshooting.aspx

60 CHAPTER 5 Managing runbooks

FIGURE 5-4 Output pane of a runbook

FIGURE 5-5 Job history view of a runbook

Output streams are stored in the Microsoft automation solutions databases as part of the
runbook job history. Although extremely useful for troubleshooting and validation, excessive
output can result in excessive database disk write IO and have a detrimental impact on the
performance of the system. Service Management Automation provides a built-in grooming
process that relies on the SQL Server Agent to purge job history, and when this is enabled, the
process will run every 15 minutes. By default, data older than 30 days is purged from the
database.

NOTE For more details on database purging process, see http://technet.microsoft.com/
en-us/library/dn469633.aspx.

In some scenarios, retaining only 30 days of log data may not be sufficient for auditing or
compliance purposes. Also, the data contained in the output logs may not meet your desired
level of detail of the actions performed. A solution for this is to author your own stream output
in the desired format and implement a custom logging solution. For example, a custom
logging solution could output data for a Service Management Automation system to one of
the following destinations.

http://technet.microsoft.com/en-us/library/dn469633.aspx
http://technet.microsoft.com/en-us/library/dn469633.aspx

 A separate SQL Server database

 A file on the local server or a remote file share

 An email, which can be sent to a shared mailbox or a log collection tool

 A Service Bus queue, which can be consumed by another service

If you are using Azure Automation, a custom logging solution could output data to one of
the following destinations:

 Table storage, one of the Azure Storage services

 File storage, another one of the Azure Storage services

 An Azure SQL Server database

 An Azure Service Bus queue, which can be consumed by another service

Chapter 6, "Examples of automation scenarios," explores two of these scenarios to get you
started with external logging.

Using error handling

In any operation within your environment, the inevitability of an error needs to be accounted
for in your runbooks. The Windows PowerShell default behavior for terminating errors is to
display the error and halt processing, which results in the runbook suspending. Managing how
this behavior could impact your runbooks and processing logic is very important. One high-
level consideration is the need to classify errors, for example, as follows:

 Stop error The error halts all runbook processing and prevents downstream events
from succeeding.

 Suspend error The error places the runbook in a suspended state and operator
intervention may be required to stop or resume processing.

 Non-fatal error The error does not hinder downstream events from succeeding.

With a classification system, you can more easily design scripting logic to handle each
classification. As indicated in the description of a non-fatal error in the preceding list,
sometimes an error condition is acceptable and the runbook can continue processing. The
suspend error and non-fatal conditions may require a different method of error handling so as
not to terminate processing, such as one of the following methods:

 Try, Catch, and Finally This method of error trapping and management works as
the name suggests: Try something, catch any errors, and finally process any close-out
activities. To learn about the pattern in more detail, go to
http://technet.microsoft.com/en-us/library/hh847793.aspx.

 Trap The Trap method provides custom exception handling instead of the default
Windows PowerShell error-handling mechanism. To learn about the pattern in more
detail, go to http://technet.microsoft.com/en-us/library/hh847742.aspx.

CHAPTER 5 Managing runbooks 61

http://technet.microsoft.com/en-us/library/hh847793.aspx
http://technet.microsoft.com/en-us/library/hh847742.aspx

62 CHAPTER 5 Managing runbooks

NOTE The Trap method is not supported in a PowerShell Workflows block but can be
used in an InlineScript block.

Utilizing both classification and error handling patterns, you can intercept error conditions
and determine an appropriate action. Listing 5-1 shows an example of the Trap method with
the Continue option that will attempt to use a WMI disk volume query against a fictitious
server. The resulting failure will be caught, but it will not stop the runbook from further
processing. If the Continue option is replaced with a Break command, the runbook enters a
suspended state.

Listing 5-1 Example workflow using the Trap method to handle an error

workflow Test-Trap

{

 InlineScript{

 Write-Verbose "Attempting WMI query"

 Trap{

write-verbose("[ERROR] " + $_)

continue

 }

 gwmi win32_volume -ComputerName "NotARealServerName" -ErrorAction Stop

 write-verbose "Completed WMI Query"

 }

}

Listing 5-2 shows an example of the Try, Catch, and Finally method with the Continue
option, which will attempt to use the same WMI disk volume query against a fictitious server.
The resulting failure will be caught by the Catch block and stop the runbook from further
processing. The Finally block will always run regardless of the Catch section actions.

Listing 5-2 Example workflow using the Try, Catch, and Finally method to handle an error.
workflow Test-TryCatch

{

 $VerbosePreference = "Continue"

 $servername = "NotARealServerName"

 try

 {

 gwmi win32_volume -PSComputer $servername -ErrorAction Stop

 }

 catch

 {

 Write-Verbose "Exiting runbook server was not found" -Verbose

 Exit

 }

 Finally

 {

 Write-Verbose "exiting wmi drive information" -Verbose

 }

}

Troubleshooting runbooks

When you are developing and testing your runbooks, your primary troubleshooting tool will
be the runbook authoring view's output pane and the job history views that were introduced
earlier in this chapter. These provide you with output details that you will need to identify
issues and correct them inside your runbooks.

For troubleshooting issues outside the runbook development and testing space, you will
need to understand how the system's infrastructure is configured and where to look when
trying to identify the cause of issues. Because the Azure Automation solution is provided as a
service, you will not have visibility or access to the system's underlying infrastructure. Given
this, the remainder of this section will address how to troubleshoot the underlying
infrastructure of a Service Management Automation system.

Logs
Service Management Automation, as discussed earlier in this chapter, logs job output to its
own database; however, it also logs to the local Windows event log for operational application
logging (see Figure 5-6). In this log, you will find events and errors relating to the runbook
service, sandboxes, and database connectivity.

CHAPTER 5 Managing runbooks 63

FIGURE 5-6 Service Management Automation event log

If you require more detailed event log data, you can enable the Analytic log, which
provides extensive logging information. However, enabling this log should be reserved for
troubleshooting very complex issues. To enable the Analytic log, follow these steps:

1. From the Event Viewer window, select the Microsoft-ServiceManagementAutomation
folder in the Event Viewer tree view.

2. Right-click the folder, click View, and then click Show Analytic And Debug Logs.

3. The Analytic log appears in the Microsoft-ServiceManagementAutomation folder.
Select the log, right-click it, and then click Enable Log.

Configuration files
Generally, with products such as Service Management Automation, you should not directly
edit application configuration files. You should let them be managed by the application itself.
However, knowing the location of configuration files and the settings they store can help you
understand how the application functions.

A Service Management Automation system stores configuration files in one main location.
On a server running the runbook worker role, locate the application installation directory,
which by default is located in C:\Program Files\Microsoft System Center 2012 R2\Service

64 CHAPTER 5 Managing runbooks

Management Automation\. In this folder, you will find several .config files. The most useful to
review is the Orchestrator.Settings.config file, which contains information such as SQL Server
details, job settings, and sandbox settings.

Certificates
During installation, the Service Management Automation web service creates a self-signed
certificate by default (unless you pre-stage a certificate for use by the web service) and assigns
the certificate to the web services site in Internet Information Services (IIS). The default self-
signed certificate will not be trusted by other computers and services attempting to use the
web service and has a lifetime of two years from creation. It is always a best practice to replace
a self-signed certificate with a certificate from an internal or external certificate authority that
is trusted by your computers and services.

Groups and service accounts
The web service and runbook worker roles of Service Management Automation both utilize a
service account. The account used can be the same for both, but it is better for service
accounts to leverage a separate account per role to help identify issues later.

During the installation of each role, the service account you provide is granted access to the
Service Management Automation database with dbowner privileges and is granted the Logon
as a Service right on the local server. Often, security policies override the Logon as a Service
privilege by centrally managed configurations, so keep this in mind if your Service
Management Automation system is not functioning.

On the runbook worker role, the service account is used as the logon account for the
Runbook Service. On the web service role, the service account is used as the logon identity on
the web services application pool.

During the installation of the web service role, a local group called smaAdminGroup is
created on the server. This group is used to grant access accounts using the web service. By
default, during the installation of the web service, only the service account specified during
installation is added to the local group. Best practice is to place a group from your Active
Directory domain in this local group and use the domain group for managing access to your
Service Management Automation web service.

CHAPTER 5 Managing runbooks 65

This page intentionally left blank

Examples of automation
scenarios

his chapter explores several scenarios you may come across when using the Microsoft
automation solutions and shows how to create the building blocks you can use to fast

track your runbook development. Expanding on some topics covered throughout this book,
this chapter addresses the following:

 Logging to an external file in a Service Management Automation system

 Logging to Table storage in an Azure Automation solution

 Creating an automation databus for sharing complex data structures between parent
and child runbooks

 Using source control tools and processes for continuous integration to the Microsoft
automation solutions

Logging to a local file

You can use Service Management Automation to send alternative streams of output to a
tracing log, which can be used for troubleshooting and compliance needs. With the tracing
log, you can use the custom stream to send user-defined data to a log file to determine where
a fault is occurring within a runbook if the built-in logging capability is not sufficient. Writing
to a tracing log creates a permanent record of the runbook output and can be as verbose as
required without any chance of performance issues on the Service Management Automation
database.

The Write-Log function in Listing 6-1 logs simple string messages, along with other
important metadata such as an error-level setting (e.g., INFO, WARNING, or ERROR) and time
and date stamps. When viewed with a tool such as the Configuration Manager Trace Log
Viewer (CMtrace.exe), the trace log is color coded and easy to read (see Figure 6-1).

NOTE If you don't already use CMTrace for log file viewing, you can find it in the System
Center 2012 R2 Configuration Manager Toolkit available at http://www.microsoft.com/
en-us/download/details.aspx?id=36213.

CHAPTER 6 Examples of automation scenarios 67

http://www.microsoft.com/en-us/download/details.aspx?id=36213
http://www.microsoft.com/en-us/download/details.aspx?id=36213

FIGURE 6-1 Using CMTrace to view trace output log files

In the following Service Management Automation example, first the location of the log file
is constructed, along with a timestamp. With these variables constructed, a simple call to an
Add-Content cmdlet can be run with the formatted text to be written (see Listing 6-1).

Listing 6-1 Basic Write-Log function to output messages to a text file

function Write-Log

{

 param

 (

 [parameter(Mandatory=$true)]

 [String]$LogFolderPath,

 [parameter(Mandatory=$true)]

 [String]$RunbookName,

 [parameter(Mandatory=$true)]

 [String]$ErrorCode,

 [parameter(Mandatory=$true)]

 [String]$Message

)

 $LogFilePath = "$LogFolderPath\$RunbookName.log"

 $date = (Get-Date -Format g).ToString()

 Add-Content $LogFilePath "$date : $ErrorCode : $RunbookName : $Message"

}

To consume the Write-Log function within a runbook, use the following command:
Write-Log -LogFolderPath "C:\Logs " -RunbookName "Hello-World" -ErrorCode "INFO"

 -Message "You successfully logged output to a file."

This simple example shows another option for logging runbook output that can be used as
a permanent record of actions.

68 CHAPTER 6 Examples of automation scenarios

CHAPTER 6 Examples of automation scenarios 69

Logging to Table storage

Chapter 4, “Implementing automation,” introduced the concept of Integration Modules, which
store common or portable code that can be re-used. To log to an external system from an
Azure Automation runbook, you can create an Integration Module that writes log data to
Table storage, one of the Azure Storage services. Table storage provides a persistent, cloud-
based location to keep log data, which you can access from anywhere using tools such as the
Microsoft Excel Power Query add-in or any of the free Azure Storage viewing tools. Note that
this Integration Module also functions in Service Management Automation if you need to log
output to Table storage.

NOTE To download an extended version of this Integration Module, which includes
additional connection options and key-value pair data entry, refer to
http://gallery.technet.microsoft.com/scriptcenter/Azure-Storage-Tables-a7366266.

A new Integration Module requires a custom connection type to store your Azure Storage
account name and access key. Secure the Azure Storage account key and do not keep it in
clear text anywhere; with this key, anyone can access your data and use your Azure Storage
account from anywhere, possibly with great cost to you. In this example, the
AzureStorageTables-Automation.json file is defined with the StorageAccountName and
StorageAccountKey settings (see Listing 6-2). Note that the StorageAccountKey setting is
defined as IsEncrypted, meaning its value will not be displayed in the Azure Automation
interface and it will be stored as an encrypted value in the database.

Listing 6-2 Contents of the AzureStorageTables-Automation.json file

{

 "ConnectionFields": [

 {

"IsEncrypted": false,

"IsOptional": false,

 "Name": "StorageAccountName",

 "TypeName": "System.String"

 },

 {

"IsEncrypted": true,

"IsOptional": false,

 "Name": "StorageAccountKey",

 "TypeName": "System.String"

 }

],

 "ConnectionTypeName": "AzureStorageTables",

 "IntegrationModuleName": "AzureStorageTables"

}

http://gallery.technet.microsoft.com/scriptcenter/Azure-Storage-Tables-a7366266

Next, the AzureStorageTables.psm1 module file is created, including the following:

 New-HMACSignature A private function used to calculate a signature hash that is
used to authenticate to Table storage

 Write-AzureTableLog A cmdlet used to write a log message to an instance of
Table storage

 New-AzureTableLog A cmdlet used to create a new instance of Table storage for
logging to

At the time of writing, the current release of the Azure PowerShell module includes support
for creating and listing storage tables in a storage account but not the ability to manipulate
table data, such as adding rows and columns. Therefore, this example uses the Table Service
REST API to access the Table storage in the storage account.

See also For more information on the Table Service REST API, refer to
http://msdn.microsoft.com/en-us/library/azure/dd179423.aspx.

To use the REST API, you first need to authenticate to the service. Whenever a request is
sent to the service, details of the request must be signed by an HMAC signature. To perform
the hash, use the storage account key. When the service receives the request, it performs the
same hashing process and compares the hash delivered with the one generated. If the two
hashes match, the request succeeds authentication and is processed. The cmdlets in the
example Integration Module will use the private function shown in Listing 6-3 to create the
required signature hash, and that signature will be included in each REST request.

Listing 6-3 Private function for calculating a signature hash

function New-HMACSignature

{

 <#

 .SYNOPSIS

 Create a HMAC256 Hash

 .DESCRIPTION

 Creates an HMAC256 Hash of a Table storage signature, used to authenticate to

Table storage REST web service

 #>

 [OutputType([string])]

 param

 (

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$TableName,

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$AccountName,

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

70 CHAPTER 6 Examples of automation scenarios

http://msdn.microsoft.com/en-us/library/azure/dd179423.aspx

 [string]$AccountKey,

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$TimeNow

)

 # Create signature to be signed

 $signature = @{}

 $signature = "POST$([char]10)$([char]10)"

 $signature += "application/json$([char]10)"

 $signature += "$TimeNow$([char]10)"

 $signature += "/" + $AccountName + "/" + $TableName

 # Sign signature

 $accountKeyBytes = [System.Convert]::FromBase64String($AccountKey)

 $HMACSHA256 = New-Object

 System.Security.Cryptography.HMACSHA256((,$accountKeyBytes))

 $signatureUTF8 = [System.Text.Encoding]::UTF8.GetBytes($signature)

 $hmacHash = $HMACSHA256.ComputeHash($signatureUTF8)

 # Convert signature to Base64 and output

 $hmacSignature = [System.Convert]::ToBase64String($hmacHash)

 $hmacSignature

}

The primary cmdlet for the example Integration Module is shown in Listing 6-4. This is used
to send logging messages to Table storage. This cmdlet performs the following actions:

1. Consumes parameters provided when the cmdlet is called.

2. Expands the Connection object that is provided as a hashtable. This Connection object
is the object defined in the AzureStorageTables-Automation.json file created earlier.

3. Creates a timestamp for the message.

4. Requests an authentication hash from the New-HMACSignature function.

5. Constructs a hashtable of HTTP headers and a hashtable of the message body.

6. Sends the REST request and validates success.

Listing 6-4 Cmdlet used to write a log message to Table storage

function Write-AzureTableLog

{

 <#

 .SYNOPSIS

 Write log message to Table storage

 .DESCRIPTION

 Write log message to Table storage using the details provided.

CHAPTER 6 Examples of automation scenarios 71

Table - The name of the table to log the message to. If the table does not

exist then it will be created.

Message - The text value of the message to be logged.

Type - A text value describing the type of message to log, e.g., INFO /

WARNING / ERROR

RunbookName - The name of the runbook that generated the log. This value is

used as the PartitionKey in the table.

JobID - The value of the JobID of the instance of the Runbook that was

running.

Connection - A hashtable returned from the Get-AutomationConnection

activity, containing the AzureStorageTables connection object.

 Requires a valid AzureStorageTables connection object.

 #>

 [CmdletBinding(HelpURI='http://aka.ms/automate')]

 [OutputType([bool])]

 param

 (

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$Table,

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$Message,

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$Type,

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$RunbookName,

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$JobID,

 [parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [Hashtable]$Connection

)

 $AccountName = $Connection.StorageAccountName

 $AccountKey = $Connection.StorageAccountKey

 $rowKey = [GUID]::NewGuid()

 # Get current time

 $timeNow = [System.DateTime]::UtcNow.ToString("r")

72 CHAPTER 6 Examples of automation scenarios

 # Get hash signature for authentication to Table storage

 $hash = New-HMACSignature -TableName $Table -AccountName $AccountName

 -AccountKey $AccountKey

 -TimeNow $timeNow

 Write-verbose $hash -Verbose

 # Create headers for request

 $baseURI = "https://$AccountName.table.core.windows.net/$Table"

 $authorizationHeader = ("SharedKey {0}:{1}" -f $AccountName,$hash)

 write-verbose $authorizationHeader -Verbose

 $headers = @{}

 $headers.Add("Authorization",$authorizationHeader)

 $headers.Add("Accept","application/json;odata=fullmetadata")

 $headers.Add("Accept-Charset","UTF-8")

 $headers.Add("Content-Type","application/json")

 $headers.Add("MaxDataServiceVersion","3.0;NetFx")

 $headers.Add("x-ms-date",$timeNow)

 $headers.Add("x-ms-version","2014-02-14")

 write-verbose $headers -Verbose

 # Create body for request

 $body = @{}

 $body.Add("Type",$Type)

 $body.Add("Message",$Message)

 $body.Add("JobID",$JobID)

 $body.Add("PartitionKey",$RunbookName)

 $body.Add("RowKey",$rowKey)

 $body = $body | ConvertTo-Json

 write-verbose $body -Verbose

 # Send REST request

 try

 {

 $output = Invoke-RestMethod -Method POST -Uri $baseURI -Headers $headers

 -Body $body

 write-verbose $output -Verbose

 return $true

 }

 catch [System.Net.WebException]

 {

 If($_.Exception.Message -like "*(404) Not Found*")

 {

Table not created, create it now and retry

New-AzureTableLog -Table $Table -Connection $Connection

 Write-AzureTableLog -Table $Table -Message $Message -Type $Type

CHAPTER 6 Examples of automation scenarios 73

-RunbookName $RunbookName -JobID $JobID -Connection $Connection

 }

 }

 catch

 {

 Write-Output "Unknown error occurred."

 return $false

 }

}

You may have noticed in the Write-AzureTableLog cmdlet that when the request is sent, it
is wrapped in a Try/Catch block. This error handler checks the result of the request, and if it
returns a message like “404 Not Found,” you can assume the table has not yet been created.
To create the table, call the final cmdlet, New-AzureTableLog (see Listing 6-5). This cmdlet
performs the same types of activites as Write-AzureTableLog; however, in this case, rather than
sending a log message, the body of the cmdlet sends a request to create the table you are
trying to write to.

Listing 6-5 Cmdlet used to create a logging table

function New-AzureTableLog

{

 <#

 .SYNOPSIS

 Create Azure Storage Table

 .DESCRIPTION

 Creates a new Azure Storage Table using the name provided.

Table - The name of the table to log message to. If the table does not exist

then it will be created.

Connection - A hashtable returned from the Get-AutomationConnection

activity, containing the AzureStorageTables connection object.

 Requires a valid AzureStorageTables connection object.

 #>

 [CmdletBinding(HelpURI='http://aka.ms/automate')]

 [OutputType([string])]

 param

 (

 [parameter(Mandatory=$true)]

 [string]$Table,

 [parameter(Mandatory=$true)]

 [Hashtable]$Connection

)

 $AccountName = $Connection.StorageAccountName

74 CHAPTER 6 Examples of automation scenarios

 $AccountKey = $Connection.StorageAccountKey

 # Get current time

 $timeNow = [System.DateTime]::UtcNow.ToString("r")

 # Get hash signature for authentication to Table storage

 $hash = New-HMACSignature -TableName "Tables" -AccountName $AccountName

 -AccountKey $AccountKey -TimeNow $timeNow

 write-verbose $hash -Verbose

 # Create headers for request

 $baseURI = "https://$AccountName.table.core.windows.net/Tables"

 $authorizationHeader = ("SharedKey {0}:{1}" -f $AccountName,$hash)

 write-verbose $authorizationHeader -Verbose

 $headers = @{}

 $headers.Add("Authorization",$authorizationHeader)

 $headers.Add("Accept","application/json;odata=fullmetadata")

 $headers.Add("Accept-Charset","UTF-8")

 $headers.Add("Content-Type","application/json")

 $headers.Add("MaxDataServiceVersion","3.0;NetFx")

 $headers.Add("x-ms-date",$timeNow)

 $headers.Add("x-ms-version","2014-02-14")

 write-output $headers

 # Create body for request

 $body = @{}

 $body.Add("TableName",$Table)

 $body = $body | ConvertTo-Json

 write-verbose $body -Verbose

 # Send REST request

 try

 {

 $output = Invoke-RestMethod -Method POST -Uri $baseURI -Headers $headers

 -Body $body

 write-verbose $output -Verbose

 return $true

 }

 catch [System.Net.WebException]

 {

 If($_.Exception.Message -like "*(404) Not Found*")

 {

Table not created, create it now and retry

write-verbose $_.Exception.Message -Verbose

New-AzureTableLog -Table $Table -Connection $Connection

CHAPTER 6 Examples of automation scenarios 75

Write-AzureTableLog -Table $Table -Message $Message -Type $Type

-RunbookName $RunbookName -JobID $JobID -Connection $Connection

 }

 }

 catch

 {

 Write-Output "Unknown error occurred."

 Write-Verbose $_.Exception.Message -Verbose

 return $false

 }

}

To complete the Integration Module .psm1 file and make the cmdlets visible, call the
Export-ModuleMember cmdlet to publish Write-AzureTableLog and New-AzureTableLog by
using the following command:
Export-ModuleMember Write-AzureTableLog, New-AzureTableLog

Finally, use the New-ModuleManifest cmdlet to create the Module Definition file by using
the following command:
New-ModuleManifest -Path <Path to AzureStorageTables.psd1>

 -RootModule <Path to AzureStorageTables.psm1>

When the required files have been created and saved in a folder called AzureStorageTables,
you can compress the folder as a .zip file and upload it as an Integration Module asset to
Azure Automation.

After you import the Integration Module, it will be visible in the Assets view of the
management portals (see Figure 6-2), and you will be able to use the defined cmdlets as
activities in your runbooks.

FIGURE 6-2 The AzureStorageTables Integration Module

To use the AzureStorageTables Integration Module in a runbook, simply call the activities in
your runbook workflow or from within an InlineScript script block. Because the Integration
Module is known to Azure Automation, you do not need to explicitly import the runbook
using the Import-Module cmdlet. Listing 6-6 demonstrates a basic Hello-World runbook that
uses the Write-AzureTableLog activity.

76 CHAPTER 6 Examples of automation scenarios

Listing 6-6 Sample runbook using the AzureStorageTables Integration Module
workflow Hello-World

{

 [OutputType([string])]

 param

 (

 [parameter(Mandatory=$true)]

 [string]$firstName,

 [parameter(Mandatory=$true)]

 [string]$lastName

)

$conn = Get-AutomationConnection -Name 'AzureStorageConnection'

$RunbookName = "Hello-World"

$logsTableName = "RunbookLogs"

$fullName = "$firstName $LastName"

Write-AzureTableLog -Connection $conn `

 -JobID $PSPrivateMetaData.JobID.GUID `

 -Message "Hello $fullName, welcome to Azure Automation!" `

 -RunbookName $RunbookName `

 -Table $logsTableName `

 -Type "INFO"

}

You can view the runbook log in Table storage using Microsoft Power Query for Excel 2013
(see Figure 6-3).

FIGURE 6-3 Runbook log imported from Table storage to Excel

CHAPTER 6 Examples of automation scenarios 77

78 CHAPTER 6 Examples of automation scenarios

NOTE To download Microsoft Power Query for Excel 2013, refer to
http://office.microsoft.com/en-us/excel/download-microsoft-power-query-for-excel-
FX104018616.aspx.

See also For guidance on using Microsoft Power Query for Excel 2013 to access Table storage,
refer to http://office.microsoft.com/en-us/excel-help/connect-to-microsoft-azuretable-storage-
HA104122607.aspx?CTT=5&origin=HA104003952.

Creating an automation databus

If you are familiar with System Center Orchestrator, you have likely used the built-in databus
capability, which enables you to publish and subscribe to data throughout activities in your
Orchestrator runbooks. Because each Orchestrator runbook occupies its own process, passing
data between runbooks requires defining output and input types, and, overall, the databus
model works well.

The Microsoft automation solutions provide similar capabilities given they are based on
Windows PowerShell Workflow. Defining variable objects, collecting data, and reusing
variables throughout a runbook is common practice. Even passing data between runbooks is
straightforward with the use of output types and input parameters. However, how to pass
complex objects between runbooks can be less than obvious when handling data flows in the
Microsoft automation solutions.

You may wonder why you can’t pass any object around since it's all PowerShell. Sometimes
you can and sometimes you cannot. Chapter 4 introduced the concept of invoking a child
runbook from either an inline call or the Start-SMARunbook cmdlet. When you call a child
runbook using an inline call, when the parent runbook is started, the runbook worker service
parses the workflow for inline calls and compiles all child runbooks into its workflow. Given this
compilation process, the child runbook workflow runs in the same process as the parent,
allowing complex objects to be passed between the parent and child workflows. Because the
Microsoft automation solutions support a limited number of input parameter types on a
runbook, the only caveat when passing complex types is the need to re-cast the objects when
transferred to child runbooks.

The examples shown in Listing 6-7 demonstrate a very basic parent and child runbook that
passes an XML object from the parent to the child using an inline call.

http://office.microsoft.com/en-us/excel/download-microsoft-power-query-for-excel-FX104018616.aspx
http://office.microsoft.com/en-us/excel/download-microsoft-power-query-for-excel-FX104018616.aspx
http://office.microsoft.com/en-us/excel-help/connect-to-microsoft-azuretable-storage-HA104122607.aspx?CTT=5&origin=HA104003952
http://office.microsoft.com/en-us/excel-help/connect-to-microsoft-azuretable-storage-HA104122607.aspx?CTT=5&origin=HA104003952

Listing 6-7a Parent runbook loading an XML object and passing it to child via inline call
Workflow Parent-Runbook

{

 $parentXml = [XML](Get-Content -Path "C:\<path>\<file>.xml")

 Child-Runbook -data $parentXml

}

Listing 6-7b Child runbook accepting input parameter and re-casting it as an XML object

Workflow Child-Runbook

{

 param

 (

 [parameter(Mandatory=$true)]

 [object]$data

)

 InlineScript

 {

 $childXml = [XML]$Using:data

 write-output $childXml.InnerXml.ToString()

 }

}

In the case of the Start-SMARunbook cmdlet, the PowerShell cmdlet calls the child runbook
via the web service. Any request made to the web service, that contains objects must be able
to serialize the objects as JSON. As a result, attempting to pass complex object types that can't
convert to JSON objects results in an exception, for example, if the child runbook in the
previous example was called using the Start-SMARunbook cmdlet. The examples shown in
Listing 6-8 demonstrate a very basic parent and child runbook that passes a JSON object from
parent to child using the Start-SMARunbook cmdlet.

Listing 6-8a Parent runbook creating a hashtable object, converting to JSON, and passing to a child via
Start-SMARunbook

Workflow Parent-Runbook

{

 $parentHashtable = @{"Firstname"="Dan","Lastname"="Jump"}

 $parentJson = ConvertTo-Json -InputObject $parentHashtable

 Child-Runbook -Start-SMARunbook -Name Child-RB1 -Parameters @{"data"=$parentJson}

 -WebServiceEndpoint "https://sma.contoso.com/"

}

CHAPTER 6 Examples of automation scenarios 79

Listing 6-8b Child runbook accepting input parameter and converting it to a hashtable
Workflow Child-Runbook

{

 param

 (

 [parameter(Mandatory=$true)]

 [object]$data

)

 $childObject = ConvertFrom-Json -InputObject $data

 $childHashtable=@{}

 $childObject.PSObject.Properties | foreach{$childHashtable."$($_.Name)" = $_.Value}

 write-output $childHashtable

}

Note in the previous example that the child runbook accepts the parameter as type
“object.” Because the object has been passed via the web service and serialized, the incoming
object must be converted to the type you need. In this case, the properties of the incoming
object are enumerated and a hashtable based on these properties is created. This is important
to understand because in this method of passing data between runbooks, the object’s data is
passed, not the object itself. This is because the object is flattened for JSON, which is essentially
a string, and the object’s methods are removed. Upon receipt of the object data, the child
runbook must construct a new object based on the data.

For example, if the parent runbook receives an object that represents a Windows service
using the PowerShell Get-Service cmdlet, then converts the result to JSON and passes it to
another runbook via the Start-SMARunbook cmdlet, the resulting object is not the original
object. It contains only the data of the object at that point. For the child runbook to interact
with the service, it needs to create a new object based on the data received, such as the
service’s name. The following example demonstrates this scenario. (These commands are all
available as Scenario 6-1 in the Companion Content for this book). First, an object of the Time
Service is created:
PS C:\> $timeSvcParent = Get-Service -Name W32Time

PS C:\> $timesvcParent | fl

Name : W32Time

DisplayName : Windows Time

Status : Running

DependentServices : {}

ServicesDependedOn : {}

CanPauseAndContinue : False

CanShutdown : True

CanStop : True

ServiceType : Win32ShareProcess

80 CHAPTER 6 Examples of automation scenarios

Next, the object is converted to JSON as required to pass to a child runbook:

PS C:\> $timeSvcParentJson = ConvertTo-Json -InputObject $timeSvc

PS C:\> $timeSvcParentJson

{

 "CanPauseAndContinue": false,

 "CanShutdown": true,

 "CanStop": true,

 "DisplayName": "Windows Time",

 "DependentServices": [

],

 "MachineName": ".",

 "ServiceName": "W32Time",

 "ServicesDependedOn": [

],

 "ServiceHandle": null,

 "Status": 4,

 "ServiceType": 32,

 "Site": null,

 "Container": null,

 "Name": "W32Time",

 "RequiredServices": [

]

}

Next, the received object is converted to JSON as required in a child runbook:

PS C:\> $timeSvcChild = ConvertFrom-Json -InputObject $timeSvcParentJson

PS C:\> $timeSvcChild.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False PSCustomObject System.Object

Note that the original object’s type was a ServiceController:

PS C:\> $timeSvcParent.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False ServiceController

System.ComponentModel.Component

CHAPTER 6 Examples of automation scenarios 81

To access the service again, a new object representing it must be created:

PS C:\> $newTimeSvcChild = get-service -Name $timeSvcChild.Name

PS C:\> $newTimeSvcChild.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False ServiceController

System.ComponentModel.Component

Given what you now know, you can construct a generic approach to data sharing between
runbooks that suits all scenarios, which can be called the automation databus. It must comply
with the following rules:

1. The automation databus will be a hashtable that is created in each runbook.

2. A parent runbook will be responsible for adding data to the automation databus.

3. When calling a child runbook, the request must always provide the automation
databus object as an input.

4. Each child runbook must have a mandatory parameter to accept the automation
databus object.

5. Each child runbook must output to the parent any data it needs to be made available
in the automation databus, and the parent runbook must perform adding data to the
automation databus.

As in the earlier example of logging to Table storage, the following example creates a new
Integration Module to store the automation databus code so it can be imported and used in
the Microsoft automation solutions. This Integration Module, called AutomationDatabus,
consists of only a Windows PowerShell module file (AutomationDatabus.psm1) and a Windows
PowerShell manifest definition file (AutomationDatabus.psd1). This Integration Module allows
you to use a databus object to pass data between parent and child runbooks (see Figure 6-4).

82 CHAPTER 6 Examples of automation scenarios

FIGURE 6-4 Runbooks leveraging databus capabilities

The AutomationDatabus.psm1 module file will consist of the following:

 An object template for the automation databus

 An Initialize-Databus cmdlet used to create the automation databus object in each
runbook

 An Add-DatabusItem cmdlet used to add objects to the automation databus

To create the Integration Module, first define the automation databus object using a
PSObject object (see Listing 6-9). This is similar to defining a class in a C# program. From this
object definition, you can create a consistent automation databus object as a copy in each
runbook.

Listing 6-9 Defining a new object type for the automation databus

$databusClass = New-Object PSObject -Property @{

 _parent = $null

 _date = $null

}

Next, create the Intialize-Databus cmdlet, which will be called at the start of each runbook
(see Listing 6-10). This cmdlet will consume a databus as an optional parameter, used when
initializing the automation databus in a child runbook. This allows data from a parent to be
passed to the child. The cmdlet will then create a copy of the custom object type,
$databusClass. If a databus parameter has been passed, the cmdlet will populate the child
runbook’s new automation databus with the data from the parent. If no databus paremeter is

CHAPTER 6 Examples of automation scenarios 83

passed, the cmdlet assumes this is the parent runbook and creates a new blank automation
databus. Finally, the cmdlet ouputs the databus object to be used in the runbook.

Listing 6-10 Creating the cmdlet used to initialize the databus in each runbook
function Initialize-Databus

{

 <#

 .SYNOPSIS

 Create a Databus object

 .DESCRIPTION

 Creates a databus object and optionally imports a parent databus if supplied via

the $InputDatabus parameter.

 #>

 [CmdletBinding(HelpURI='http://aka.ms/automate')]

 [OutputType([Object])]

 param

 (

 [Parameter(Mandatory=$false)]

 [Object]$InputDatabus

)

 $databus = $databusClass.PSObject.Copy()

 If($inputDatabus -ne $null)

 {

 # Imports the existing parent databus into current scope.

 $parentDatabusObject = ConvertFrom-Json -InputObject $inputDatabus

 $parentDatabusObject.PSObject.Properties | ForEach{Add-Member

 -InputObject $databus

- MemberType NoteProperty

 -Name $_.Name -Value $_.Value -Force}

 }

 else

 {

 # Creates a new databus and assumes running are in the Parent Runbook scope.

 $databus._parent = $ParentCommandName

 $databus._date = ((Get-Date).ToString())

 }

 $databus

}

Next, add a cmdlet to the Integration Module Add-DatabusItem, which will enable you to
add objects to the databus from your runbooks (see Listing 6-11).

84 CHAPTER 6 Examples of automation scenarios

Listing 6-11 Creating the cmdlet used to add objects to the databus from the runbook
function Add-DatabusItem

{

 <#

 .SYNOPSIS

 Adds an object to a Databus

 .DESCRIPTION

 Adds a supplied object from the $InputObject parameter to the databus supplied

via the $Databus parameter

 #>

 [CmdletBinding(HelpURI='http://aka.ms/automate')]

 [OutputType([Object])]

 param

 (

 [Parameter(Mandatory=$true)]

 [Object]$Databus,

 [Parameter(Mandatory=$true)]

 [Object]$InputObjectName,

 [Parameter(Mandatory=$true)]

 [Object]$InputObject

)

 Add-Member -InputObject $Databus -MemberType NoteProperty -Name $InputObjectName

 -Value $InputObject

 $databus

}

To complete the Integration Module .psm1 file and make the cmdlets visible, call the
Export-ModuleMember cmdlet to publish Initialize-Databus and Add-DatabusItem:

Export-ModuleMember Initialize-Databus,Add-DatabusItem

Finally, use the New-ModuleManifest cmdlet to create the Module Definition file using the
following command:

New-ModuleManifest -Path <Path to AzureStorageTables.psd1>

 -RootModule <Path to AzureStorageTables.psm1>

When the required files have been created and saved in a folder called AutomationDatabus,
you can compress the folder as a .zip file and upload it as an Integration Module asset to
Azure Automation.

After you import the Integration Module, it will be visible in the Assets view of the
management portals (see Figure 6-5), and you will be able to use the defined cmdlets as
activities in your runbooks.

CHAPTER 6 Examples of automation scenarios 85

FIGURE 6-5 The automation databus Integration Module

To use the automation databus Integration Module in your runbooks, simply call the
activities in your runbook workflow. Because the Integration Module is known to Azure
Automation, you do not need to explicitly import the runbook using the Import-Module
cmdlet. The following example demonstrates a basic parent and child runbook, which uses the
automation databus to pass object data from the parent and access it from the child. The new
parent runbook created In Listing 6-12 will do the following:

1. Create a new automation databus object

2. Create a string object and a complex object from the Get-Service cmdlet

3. Add each object to the automation databus

4. Convert the automation databus to JSON and pass it to the child runbook

Listing 6-12 Sample parent runbook using the automation databus Integration Module
workflow Parent-Runbook

{

 $databus = Initialize-Databus

 $testText = "Hello Automation Specialists!"

 $databus = Add-DatabusItem -Databus $databus -InputObjectName "testText" -

InputObject $testText

 $testService = InlineScript{($testSvc = Get-Service | Where{$_.Name -eq "RpcSs"}) |

 convertto-json}

 $databus = Add-DatabusItem -Databus $databus -InputObjectName "testService"

 -InputObject $testService

 $db = ConvertTo-JSON -InputObject $databus

 ChildRB -parentDatabus $db

}

The new child runbook created in Listing 6-13 will do the following:

1. Create a new automation databus object, which will be passed to the parent databus
object supplied from the parent runbook

2. Write the value of the string object

3. Convert the object from JSON so that it can be referenced correctly and write a value

86 CHAPTER 6 Examples of automation scenarios

Listing 6-13 Sample child runbook using the automation databus Integration Module
workflow ChildRunbook

{

 param

 (

 [parameter(Mandatory=$true)]

 [object]$parentDatabus

)

 $databus = Initialize-Databus -InputDatabus $parentDatabus

 Write-Output "Value of the testText object:"

 InlineScript{$Using:databus.testText}

 Write-Output "Value of the testService object:"

 InlineScript{$testService = ConvertFrom-Json -InputObject

$Using:databus.testService.Value;$testService.DisplayName}

}

Now you can run a test of the Parent-Runbook runbook in the management portal and
view the output to confirm the child runbook displays the data collected in the parent
runbook (see Figure 6-6).

FIGURE 6-6 Runbook output when passing data using the automation databus

Using this example, you can pass object data between runbooks without having to explicitly
worry about the serialization process. You can also pass as many objects as you need by using
the single databus object rather than having to declare multiple parameters on each runbook.
You could extend this example to include error handling routines, validation of data, or
possibly even object re-inflation in child runbooks.

Continuous Integration Model

In any application lifecycle management project, the need to meet or exceed quality gates are
a major requirement. The authoring of runbooks is no exception to this requirement. In
complex scenarios, this becomes more pertinent: the more systems runbooks integrate with to
perform tasks, the greater the risk of undesired results.

CHAPTER 6 Examples of automation scenarios 87

The typical model of development, testing, and then promotion into production
environments will mitigate some of the risk of undesired results. Quickly promoting changes
into production through continuous integration can remediate issues or add functionality
without the runbook consumer having to wait long periods of time. Previous chapters covered
various tools and authoring techniques you can leverage to provide such a capability. The
model and process in this section show one approach to creating continuous deployment
capability and will help you get started with runbook authoring and management.

The model shown in Figure 6-7 used in this section is agnostic to the tools you are using,
whether they are Azure Automation and Visual Studio Online or Service Management
Automation and Team Foundation Server. In both cases, applying the model provides you with
a managed source control solution that allows promotion of runbooks between lifecycle levels.

The model consists of the following:

 A runbook authoring tool, as discussed in Chapter 5, “Managing runbooks”

 A source control solution containing a centralized repository of runbooks

 A local clone of the runbook repository, which is synchronized with the source control
system

 For each lifecycle level in your environment (e.g., Development, Testing, Production),
a branch of the runbook repository created in the source control solution

 A synchronization runbook in each lifecycle level that pulls runbooks from the
appropriate branch of the runbook repository

 A log location to store details of runbook synchonization actions in each lifecycle
level

88 CHAPTER 6 Examples of automation scenarios

FIGURE 6-7 Continuous integration model

The change process in this model includes these steps:

1. Runbook authoring is performed through a local authoring tool or the management
portal.

2. Runbooks stored in your local repository are synchronized to the source control
solution in the development branch.

3. The runbook synchonization runbook in the development environment pulls all
runbooks from the source control solution. At this point in the process, they can be
tested and revised as required.

4. After completing development, a runbook can be merged into the testing branch
using the source control solution. At this point in the process, the runbook
synchonization runbook in the testing environment pulls all runbooks from the source
control solution.

5. Runbooks can be tested and bugs logged as required. After runbook testing has been
completed, the process can be repeated to merge the testing branch with the
production branch. At this point, the runbook synchonization runbook in the
production environment pulls all runbooks from the source control solution.

Note this model does not preclude the use of the management portals for runbook
authoring; however, to maintain accurate records of changes in the source control solution,

CHAPTER 6 Examples of automation scenarios 89

you should copy any changes made via the management portals into your local repository and
allow them to synchronize to the source control solution.

This book has already covered the tools and infrastructure you need to establish this kind of
model, from the runbook authoring tools, to a source control solution, to the deployment of
Azure Automation accounts and Service Management Automation systems. The piece that
brings this type of model together, however, is the runbook synchronization processes, which
fortunately have been created and published for you to use.

For an Azure Automation solution, the Sync-VsoGitRunbook example synchronizes
runbooks from a Git repository in Visual Studio Online. For details of how to download and use
this runbook, refer to http://azure.microsoft.com/blog/2014/07/24/azure-automation-
integrating-runbook-source-control-using-visual-studio-online/.

For a Service Management Automation solution, the SMA-TFS integration runbooks
provide the ability to synchronize with a Team Foundation Server system. For details of how to
download and use these runbooks, refer to
http://blogs.technet.com/b/privatecloud/archive/2014/05/09/automation-mvp-spotlight-series-
tfs-and-service-management-automation-better-together.aspx.

90 CHAPTER 6 Examples of automation scenarios

http://azure.microsoft.com/blog/2014/07/24/azure-automation-integrating-runbook-source-control-using-visual-studio-online/
http://azure.microsoft.com/blog/2014/07/24/azure-automation-integrating-runbook-source-control-using-visual-studio-online/
http://blogs.technet.com/b/privatecloud/archive/2014/05/09/automation-mvp-spotlight-series-tfs-and-service-management-automation-better-together.aspx
http://blogs.technet.com/b/privatecloud/archive/2014/05/09/automation-mvp-spotlight-series-tfs-and-service-management-automation-better-together.aspx

About the authors
ROB COSTELLO is a Senior Consultant for Microsoft Consulting Services in
Australia, with over 15 years of experience in the IT industry. He provides
strategy and architecture leadership to Public Sector and Enterprise
customers, as well as specializing in a wide range of on-premises and
cloud-based Microsoft infrastructure technologies, including the Microsoft

Azure platform and System Center suite. Rob leads large technical teams delivering complex
programs of work and maintains a passion for delivering high-quality solutions to his
customers. Throughout his career, Rob has developed a love of automation technologies and
seeks to use automation wherever possible to add value to his customer outcomes.

RICHARD MAUNSELL has been working with Microsoft technologies for
the last 17 years. During this period, he has gained a deep insight into
most aspects of Microsoft infrastructure products, deployment, and
management. In recent years, this has evolved into automation of
complex IT operations with various Microsoft toolsets and integration

with other IT systems.

About the series editor
MITCH TULLOCH is a well-known expert on Windows Server administration
and virtualization. He has published hundreds of articles on a wide variety of
technology sites and has written, contributed to, or been series editor for
over 50 books. His free ebooks Introducing Windows Server 2012 (Microsoft
Press, 2012) and Introducing Windows Server 2012 R2 (Microsoft Press, 2013)
have together been downloaded over a million and a quarter times! For a
complete list of free ebooks from Microsoft Press, visit the Microsoft Virtual

Academy at http://www.microsoftvirtualacademy.com/ebooks.

Mitch has repeatedly received the Microsoft Most Valuable Professional (MVP) award for
his outstanding contributions to supporting the global IT community. He is a ten-time MVP in
the technology area of Windows Server Software Packaging, Deployment & Servicing. You can
find his MVP Profile page at http://mvp.microsoft.com/en-us/mvp/Mitch%20Tulloch-21182.

Mitch is also Senior Editor of WServerNews, a weekly newsletter focused on system
administration and security issues for the Windows Server platform. With almost 100,000 IT
pro subscribers worldwide, WServerNews is the largest and oldest-running Windows Server–
focused newsletter in the world. Visit http://www.wservernews.com and subscribe to
WServerNews today!

Mitch runs an IT content development business based in Winnipeg, Canada, that produces
white papers and other collateral for the business decision maker (BDM) and technical decision
maker (TDM) audiences. His published content ranges from white papers about Microsoft
cloud technologies to reviews of third-party products designed for the Windows Server
platform. Before starting his own business in 1998, Mitch worked as a Microsoft Certified
Trainer (MCT) for Productivity Point.

For more information about Mitch, visit his website at http://www.mtit.com or follow Mitch
on Twitter @mitchtulloch.

http://www.microsoftvirtualacademy.com/ebooks
http://mvp.microsoft.com/en-us/mvp/Mitch%20Tulloch-21182
http://www.wservernews.com
http://www.mtit.com

Microsoft Press

Free ebooks

From technical overviews to drilldowns on special topics, get

free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for

Kindle formats.

Look for other great resources at Microsoft Virtual Academy,

where you can learn new skills and help advance your career

with free Microsoft training delivered by experts.

http://www.microsoftvirtualacademy.com/ebooks

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

http://aka.ms/tellpress

	Cover
	Microsoft Press Store
	Newsletters
	Guided Tours app
	Contents
	Introduction
	Chapter 1 Why automation?
	Microsoft automation history
	What are Microsoft automation solutions?
	Where do Microsoft automation solutions fit?
	What do Microsoft automation solutions consist of?

	Chapter 2 Understanding automation: Architectures
	On-premises architectures
	Database role
	Web service role
	Runbook worker role
	Service Management Automation PowerShell module
	Windows Azure Pack Service Management Portal

	Azure-based architectures
	Considerations for Azure Automation accounts
	Creating Azure Automation accounts

	Chapter 3 Understanding automation: Interfaces
	Web services interface
	Using the web service in an application
	Using the web service in Windows PowerShell

	Windows PowerShell interfaces
	Service Management Automation PowerShell module
	Azure Automation PowerShell cmdlets

	Web portal interfaces

	Chapter 4 Implementing automation
	Using assets
	Connections
	Credentials
	Variables
	Schedules
	Integration Modules

	Using runbooks
	Authoring runbooks
	Exploring the runbook workflow structure
	Differences between standard Windows PowerShell and workflows
	Defining parent and child runbook relationships

	Authoring Integration Modules
	Creating an Integration Module file
	Creating an Integration Module Manifest file
	Creating an Integration Module Metadata file

	Chapter 5 Managing runbooks
	Runbook authoring tools
	Management portals
	Windows PowerShell ISE
	Visual Studio IDE

	Using source control
	Team Foundation Server
	Visual Studio Online

	Using logging
	Using error handling
	Troubleshooting runbooks
	Logs
	Configuration files
	Certificates
	Groups and service accounts

	Chapter 6 Examples of automation scenarios
	Logging to a local file
	Logging to Table storage
	Creating an automation databus
	Continuous Integration Model

	About the authors
	About the series editor
	Free ebooks
	Tell us what you think!

