

• Hundreds of titles available – Books, eBooks, and online
resources from industry experts

• Free U.S. shipping

• eBooks in multiple formats – Read on your computer,
tablet, mobile device, or e-reader

• Print & eBook Best Value Packs

• eBook Deal of the Week – Save up to 60% on featured titles

• Newsletter and special offers – Be the first to
hear about new releases, specials, and more

• Register your book – Get additional benefits

microsoftpressstore.com

Visit us today at

https://www.microsoftpressstore.com?WT.mc_id=BOB_store_pg

Get the latest news from Microsoft Press sent to
your inbox.

• New and upcoming books

•	 Special	offers

• Free eBooks

• How-to articles

Sign up today at MicrosoftPressStore.com/Newsletters

Hear about
it first.

https://www.microsoftpressstore.com/newsletters?WT.mc_id=BOB_news_pg

Wait, there’s more...

Find more great content and resources in the
Microsoft Press Guided Tours app.

The Microsoft Press Guided Tours app provides
insightful tours by Microsoft Press authors of new and
evolving Microsoft technologies.

Download from

Windows Store
Download from

Windows Store

• Share text, code, illustrations, videos, and links with
peers and friends

• Create and manage highlights and notes
• View resources and download code samples
• Tag resources as favorites or to read later
• Watch explanatory videos
• Copy complete code listings and scripts

http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2015 by Microsoft Corporation All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number
ISBN: 978-0-7356-9584-9

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need
support related to this book, email Microsoft Press Support at mspinput@microsoft.com. Please
tell us what you think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions
and information expressed in this book, including URL and other Internet website references, may
change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real
association or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage
are trademarks of the Microsoft group of companies. All other marks are property of their
respective owners.

Acquisitions Editor: Karen Szall
Developmental Editor: Karen Szall
Editorial Production: Megan Smith-Creed
Copyeditor: Megan Smith-Creed
Cover: Twist Creative • Seattle

http://aka.ms/tellpress
http://www.microsoft.com

Contents iii

Contents

Introduction vii

Chapter 1 Understanding software update
architecture: server side 1
Fundamentals 1

Configuration items 1

Software update point 2

Multiple software update points 2

Software update point failover process 3

Internet-based software update point 4

Software updates on a secondary site 5

Using an existing WSUS server 5

Software update data 5

The synchronization process 8

Scheduled vs. manual synchronization 8

The software update point features 9

The metadata synchronization 10

Configuration Manager inter-site replication 11

Firewall considerations 12

The flow of binary data 12

Software Update policy deployment 14

The policy creation flow 14

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

http://aka.ms/tellpress

http://aka.ms/tellpress

Chapter 2 Understanding software update
architecture: client side 17
Software update client architecture features 17

Windows Update Agent 18

Windows Update data store 21

Software update client architecture features 17

Windows Update Agent 18

Windows Update data store 21

Configuration Manager Software Updates Client Agent 21

Windows Management Instrumentation 26

Configuration Manager client cache 34

Software update scanning process 34

Software update installation process 35

Chapter 3 Managing software updates 37
The patch management process model 37

Phase 1: Assess 38

Phase 2: Identify 38

Phase 3: Evaluate and Plan 39

Phase 4: Deploy 40

Understanding software update groups 41

Reporting groups 41

Rollup groups 41

Monthly groups 42

Quarterly and yearly groups 42

Using software update groups 42

Using a phased rollout strategy 44

Using deployment templates 44

Using deployment packages 45

Deploying software updates 48

Automatic deployment of software updates 48

Manual deployment of software updates 49

Understanding superseded and expired updates 52

Understanding the expired updates cleanup process 54

Manually removing expired updates 54

Configuring the maintenance window 54

iv Contents

Contents v

Chapter 4 Monitoring software updates 57
Compliance accuracy 57

Compliance states from the console 57

Managing client health 59

Tracking compliance data 62

Software update summarization 63

Alerts 64

Monitoring an individual update 65

Monitoring a deployment 67

Deployment Monitoring Tool 69

Built-in and custom reports 73

Software update reports 73

Client status reports 75

Custom reports 75

Chapter 5 Software updates automation 83
Understanding automatic deployment rules 83

Creating automatic deployment rules 84

Automating software update database maintenance 93

Site server software update automation 96

Client software update automation 104

Community resources for software update automation 106

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

http://aka.ms/tellpress

http://aka.ms/tellpress

This page intentionally left blank

Introduction
ver since the advent of the Internet, security has been a concern for all users whose
computers are vulnerable in the "biggest computer network in the free world." Because

Windows is the most popular operating system for organizations and individual consumers,
Microsoft has also always been particularly concerned with security.

To address security concerns, Microsoft first introduced the Windows Update capability
with the launch of Windows 95. In the initial version (v3) of Windows Update, users had to
manually visit the Windows Update website. An ActiveX control would then run on their
computer and determine which software updates should be downloaded and installed on the
user's computer. Windows 98 expanded this to include not only security updates but also
optional features, driver updates, and desktop themes. Windows Update capability was also
added to Windows NT 4.0.

Microsoft next released a tool called the Critical Update Notification Utility, which Windows
98 and Windows 2000 users could download from the Windows Update website and then use
to download and install critical updates on their computers. The Critical Update Notification
Utility was then discontinued and replaced with the Automatic Updates feature in Windows
Millennium Edition (Me) and Windows 2000 Service Pack 4. Automatic Updates was designed
to check for new updates every 24 hours and could automatically download and notify the
user when they were ready to be installed on the computer. Other improvements to Windows
Update were also made, for example the introduction of the Background Intelligent Transfer
Service (BITS) in Windows 2000 SP3 and Windows XP.

In February 2005, Microsoft announced a beta release of Microsoft Update as an optional
alternative to Windows Update for obtaining software updates for Windows and also for other
Microsoft products. Several years later, Microsoft Office Update was introduced to enable
updating of certain applications in the Microsoft Office suite. Beginning with Windows Vista
and Windows Server 2008, the website download model was entirely replaced by a built-in
user interface within Windows that allows updates to be selected and downloaded.

But in enterprise environments, software updates also need to be managed. Windows
Server Update Services (WSUS), previously known as Software Update Services (SUS), was
released in 2002, and Microsoft released a SUS Feature Pack add-on for their System
Management Server (SMS) 2.0 product. The next version SMS 2003 included an Inventory Tool
for Microsoft Updates (ITMU) that provided patch-management capability, although it was not
fully integrated into the SMS product.

With the release of System Center Configuration Manager 2007, the Software Updates
feature was completely re-written and integrated with WSUS. In general, distributing software
updates through Configuration Manager using the WSUS engine works well. Feedback
received by the Configuration Manager product team and Microsoft Customer Support

Introduction vii

Services indicates that customers like the level of flexibility provided by this solution. However,
feedback also shows that customers are often confused because there are too many ways to
accomplish the same tasks.

In the current platform System Center 2012 R2 Configuration Manager, the Software
Updates feature is quite mature and more robust than ever. The process for creating and
maintaining updates has been improved, and the user interface is more self-explanatory,
making it easier to create a group of updates to target collections of machines. From the
server infrastructure perspective, there is much more functionality and flexibility, providing a
reliable and seamless software updates process for corporate environments.

This book addresses some of the gaps and pain points you might encounter when
implementing, administering, and troubleshooting Software Updates using Configuration
Manager 2012 R2. We developed the topics for this book based on our experiences working as
Premier Field Engineers and Microsoft Consultants in customer environments on a daily basis.

We hope you enjoy this book and our shared experiences from the field. May they help you
build a stronger technical knowledge base so you can achieve your IT objectives.

Andre Della Monica

Premier Field Engineer, Microsoft Premier Services

About the companion content

The companion content for this book can be downloaded from the following page:

http://aka.ms/SUMFE/files

The companion content includes the following:

 In Chapter 1, two SQL query examples from the section titled "Software Update Point
failover process"

 In Chapter 4, SQL Query 1, which provides a list of computers, total targeted updates,
total installed, total required, % compliant, number of missing updates, and update
status, and SQL Query 2, which can be used to create a report using SQL Reporting
Services

 In Chapter 5, the sample Windows PowerShell scripts from the section titled
"Automating software update database maintenance"

viii Introduction

http://aka.ms/SUMFE/files

Acknowledgments

The Series Editor would like to thank the following individuals at Microsoft who reviewed the
outlines for the proposed titles in this series and provided helpful feedback to the authors:

 David Ziembicki

 Adam Fazio

 Robert Larson

 David Stoker

 Joel Yoker

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from
Microsoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and
Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

http://aka.ms/SUMFE/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Introduction ix

http://aka.ms/mspressfree
http://support.microsoft.com
http://aka.ms/SUMFE/errata

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http://twitter.com/MicrosoftPress.

x Introduction

http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

Understanding software
update architecture: server
side

icrosoft System Center 2012 Configuration Manager integrates client management in
mobile, physical, and virtual environments. An important part of client management is

the ability to implement a reliable patch-management process to keep organizations secured.
One of the core features of Configuration Manager is Software Updates, which provides a
consistent patch-management solution using existing Microsoft technologies. Rather than
reinventing the wheel, the Configuration Manager product team incorporated Windows Server
Update Services (WSUS) in Configuration Manager as the main engine used by Software
Updates. This feature has been further enhanced in Configuration Manager 2012. This chapter
provides an overview of Software Updates from the server perspective.

Before implementing this feature, it is highly recommended that you become familiar with
the various steps of the process:

 Fundamentals

 The synchronization process

 Software Updates policy deployment

Fundamentals

Before exploring Software Updates from the server perspective, it is helpful to understand the
key elements, principles, and data workflow of Software Updates.

Configuration items
Configuration items are very important elements in Configuration Manager because they are
what describes a configuration and what you use to manipulate or evaluate updates. For
example, a software update can be required, not required, or it can have multiple compliance
states such as installed, not installed, unknown, and so on. The main engine of the
configuration item is the compliance settings feature, but other features such as Operating

CHAPTER 1 Understanding software update architecture: server side 1

System Deployment (OSD) and Application Management take advantage of configuration
items. The focus of this book is the Software Updates feature, which includes the following
Software Updates configuration item types:

 Update source files These are the .msp, .cab, and executable files, which need to
be evaluated to determine where the content is. This is used by the distribution point
to have a reference of its content.

 Individual software updates The status of a software update (required, not
required, installed, not installed, and so on) can vary, depending on the software
update evaluation performed in the client side.

 Software update groups When you do routine maintenance, such as removing
expired software updates or moving updates between software update groups, the
compliance status of the software update group changes to Unknown.

Software update point
A software update point is the Configuration Manager site system role that you must install
before you can implement software updates, and it has only one prerequisite: WSUS.
Configuration Manager integrates some functionalities of WSUS, such as update catalog
download and distribution capabilities, but it uses its own functionality to deploy and install
the updates. So, in general, when installing the software update point, you scan with WSUS but
install the updates with Configuration Manager.

When thinking about capacity and planning for a software update point, it is important to
note that when you implement this role on a system that co-exists with another Configuration
Manager site system, it is possible to support up to 25,000 clients, but if you are installing
software updates on a server with no other Configuration Manager site system role, it is
possible to support up to 100,000 clients. In addition, there is a practical limit of 1,000 update
objects per deployment package when you are working with manual software update
deployments and when you are using automated deployment rules (ADR), which will be
discussed in Chapter 5, "Software updates automation."

Multiple software update points
In Configuration Manager 2012 SP1, the software update point was completely redesigned to
allow you to add multiple software update point site systems to a Configuration Manager
primary site. In addition, you can configure the software update points in the same forest, in a
cross-forest, or for Internet-based clients. When you install more than one software update
point for one Configuration Manager site, clients automatically connect to the most
appropriate one based on their forest boundary. This behavior provides redundancy without
requiring a Network Load Balancing (NLB) cluster, which is still possible to have when using
the Configuration Manager SDK or Windows PowerShell. Remember that you cannot install
more than one software update point on a Configuration Manager secondary site.

2 CHAPTER 1 Understanding software update architecture: server side

IMPORTANT The active software update point concept no longer exists in System
Center 2012 R2 Configuration Manager.

Software update point failover process
The software update point failover process is not as robust as the NLB for load balancing.
When installed for the first time, assuming that your environment has the Software Updates
feature enabled from the Configuration Manager client settings, a client randomly selects an
available software update point, with which it will maintain affinity until it is no longer able to
communicate with that software update point. A combination of four failed retries at 30-
minute intervals and non-retry error codes is what determines that the client is no longer able
to communicate with the software update point and causes the switch to another software
update point. It is important to note that, by default, the software update point only retries on
36 retry error codes, which in part are used by Windows Update Agent (WUA) and WINHTTP
to determine that a scan has failed. If the error code that a particular client is receiving is not in
this list, the failover does not happen.

Based on interactions with Microsoft customers, the best practice for supporting the
software update point failover is to run the following SQL query against the Configuration
Manager database to gather all 36 retry error codes. Note that you should replace the site
code “CM2” with your site code.

select * from SC_Component_Property PROP

join SC_SiteDefinition SCDEF on SCDEF.SiteNumber = Prop.SiteNumber

where Prop.Name = 'WSUS Scan Retry Error Codes'

and SCDEF.SiteCode = 'CM2'

In the SQL query output, the Value2 field contains the WSUS retry codes, as shown in
Figure 1-1.

FIGURE 1-1 SQL query statement to retrieve the WSUS scan retry error codes

CHAPTER 1 Understanding software update architecture: server side 3

The WSUS retry error code list can be retrieved using Windows Management
Instrumentation (WMI) by launching the WMI utility WBEMTEST and running the following
WMI query language (WQL), where PR1 is your Configuration Manager primary site code.

root\SMS\site_PR1

Query - select * from SMS_SCI_SCProperty where propertyname like '%scan retry error

codes%'

SMS_WSUS_CONFIGURATION_MANAGER -> WSUS Scan Retry Error Codes

If a client is failing with a very common error code, and if that error is not in the WSUS retry
error list, then the client will never fail over to the other software update point. For example,
the error 0x80072ee2 is a common network timeout error, and if a client is failing with that
error, it would never be able to scan against the software update point until the issue is fixed.

To work around this issue, you can add the common error to the WSUS retry error code list
inside WMI on the Configuration Manager primary site. To do so, complete the following
steps:

1. Run WBEMTEST with your administrator account.

2. Connect to root\sms\site_<sitecode>.

3. Click Query, and run the following query:

select * from sms_sci_component where

componentname='SMS_WSUS_CONFIGURATION_MANAGER'

4. Double-click the object.

5. Double-click the Props properties.

6. Click View Embedded.

7. Double-click the query result and locate the PropertyName WSUS Scan Retry Error
Codes.

8. Double-click Value2. Add the error code to the list, for example, 2147954402.

9. Click Save Property.

10. Click Save Object.

11. Click Close, and then click Save Property.

12. Click Save Object.

IMPORTANT In order to automate these steps and accomplish the same changes, you
can leverage the Configuration Manager 2012 R2 SDK.

Internet-based software update point
An Internet-based software update point accepts communication from devices on the Internet.
This role must be assigned to a site system that is remote from the site server, located in a
perimeter network, and accessible to Internet-based devices. The Internet-based software

4 CHAPTER 1 Understanding software update architecture: server side

update point synchronizes with a software update point in the same Configuration Manager
site. When the connectivity between the software update point and Internet-based software
update point is limited, you can manually synchronize software updates by using the export
and import process.

Software updates on a secondary site
A software update point is optional on a secondary site. When a software update point is
installed on a secondary site, the WSUS database is configured as a replica instead of as an
autonomous WSUS instance, which is how the WSUS database is configured when installing
the software update point on a primary site or central administration site.

Devices assigned to a secondary site are configured to use a software update point at the
parent site when a software update point is not configured at the secondary site. Typically, a
software update point is installed at a secondary site when there is limited network bandwidth
between devices assigned to the secondary site and the software update point at the parent
site or when the software update point is approaching capacity. After the software update
point is successfully installed and configured on the secondary site, Local Group Policy is
updated on client computers, and they start using the new software update point.

IMPORTANT Internet-based software update points are not supported on Configuration
Manager secondary sites.

Using an existing WSUS server
At the top-level System Center 2012 R2 Configuration Manager site, an existing WSUS server
can be configured as the upstream data source location. During the synchronization process,
the site connects to this location to synchronize software updates. For example, if there is an
existing WSUS server that is not part of the Configuration Manager hierarchy, this server can
be specified as the existing WSUS server to synchronize software updates. That helps
organizations that need to meet security requirements, such as not allowing all servers to have
access to the Internet, which has become a common requirement in today’s IT world since
there are many threats coming from the Internet.

Software update data
An individual software update consists of two pieces:

 The metadata

 The binary file

The metadata provides information about an update, such as the description, product
supported, applicability rules, classification, article ID, file hash information, command line, and
even the URL containing the location for downloading a particular update. If you want to see
the details about an update metadata file, you can run a few queries against the Configuration

CHAPTER 1 Understanding software update architecture: server side 5

Manager database after you have synchronized the software update catalog from the
Microsoft cloud.

Remember that an update metadata file is also a configuration item in the Configuration
Manager database; therefore, it is possible to get more details about a particular update. The
first step is to find the software update configuration item number. Gather this information by
running the following SQL query against the Configuration Manager database:

select * from ci_types

The output for this SQL query returns a list of all configuration items as shown in Figure 1-2.

FIGURE 1-2 The SQL query statement to retrieve the configuration item types

The second step is to run the following SQL query against the Configuration Manager
database to see all of the software update configuration items:

select * from ci_configurationitems where citype_id = 1

The output for the SQL query returns all the software update configuration items as shown
in Figure 1-3.

6 CHAPTER 1 Understanding software update architecture: server side

FIGURE 1-3 The SQL query statement to retrieve all software updates configuration items

After the SQL query output appears, click the update link in the SDMPackageDigest
column to get more details about a specific software update configuration item, as shown in
Figure 1-4.

FIGURE 1-4 SQL query statement showing an example of an individual software update after clicking on
SDMPackageDigest column link

The second piece of the software update file, the binary file, is the actual executable (.exe)
file or Windows Installer (.msi) file that the Configuration Manager client downloads from the
Configuration Manager distribution point to its cache when it is necessary to install a software
update.

CHAPTER 1 Understanding software update architecture: server side 7

IMPORTANT It is worth reinforcing that when the client downloads an update metadata
file during a scanning process (discussed in Chapter 2, "Understanding software update
architecture: client side"), it communicates with the software update point and the WSUS
server. When the client downloads the actual binary files to install an update, it
communicates directly with Configuration Manager by downloading the binary files from
the distribution point.

The synchronization process

All software update points and WSUS instances will synchronize updates within a
Configuration Manager hierarchy from a configured source according to a pre-defined
schedule or even a manual start by an administrator. The goal of this process is for the
software update point to download the Microsoft Update Catalog from the Internet and
transfer it to the Configuration Manager database. For a top-level site such as the central
administration site, the synchronization process happens directly with the Microsoft Update
Catalog hosted in the Microsoft cloud through an Internet connection. As for the child primary
sites, and even the secondary sites, this communication happens through the Configuration
Manager Database Replication Service (DRS), the new mechanism for Configuration Manager
site-to-site replication as of System Center 2012 Configuration Manager. In the case of a single
primary site, the primary site communicates through an Internet connection to download the
Microsoft Update Catalog.

As previously discussed in this chapter, you can also leverage an existing WSUS server to
synchronize the Microsoft Update Catalog if security restrictions prevent Internet access by the
other servers inside your organization.

Scheduled vs. manual synchronization
There are two methods for synchronizing updates from the Microsoft Update Catalog with
Configuration Manager:

 Schedule initiated synchronization Scheduled synchronization can be configured
only from the top-level site. To set up scheduled synchronization, navigate to the
Administration workspace, expand Site Configuration, click Sites, select the top-level
site from your hierarchy, click Configuration Site Components, and then select
Software Update Point. The configuration can be changed on the Synch Schedule tab.
When Configuration Manager performs a scheduled synchronization, it performs a
full synchronization from the Microsoft Update Catalog. This method repairs any
issues you might have had with the previous synchronization cycle.

In addition, this method allows you to synchronize the expired, superseded, and
declined updates with the Microsoft Update Catalog, which doesn’t happen when
you use the manually initiated synchronization method. There are a couple of

8 CHAPTER 1 Understanding software update architecture: server side

scenarios where a full synchronization will be triggered automatically by
Configuration Manager:

• The timeout countdown setting inside the Site Control file is passed.

• The superseded rules are changed.

• The updates categories are changed in the Configuration Manager console.

 Manually initiated synchronization Manually initiated synchronization can be
initiated only from the top-level site within a Configuration Manager hierarchy. It is
also known as the delta synchronization because it synchronizes only the updates
that have been changed since the last synchronization. The last synchronization time
is stored in the Site Control file, which is stored in the Configuration Manager
database as of Configuration Manager 2012 RTM.

Field experience
You can manipulate either a full or a delta synchronization in Configuration Manager by
creating an empty flag file inside the .\inboxes\wsyncmgr.box, located in the Configuration
Manager installation path. For a full synchronization, you need to name the flag file FULL.SYN.
To trigger a delta synchronization, you need to name the flag file SELF.SYN. You can review the
whole synchronization process by viewing the WSYNCMGR.log, which is located in the
Configuration Manager site server installation path\Logs folder.

IMPORTANT It is not recommended that you manipulate the synchronization every time
you need to synchronize your updates catalog, but it is definitely a useful option when
troubleshooting the software updates synchronization process.

The software update point features
The software update point communicates with WSUS in three ways:

 WSUS Control Manager This feature calls the WSUS APIs that are needed during
the software update point and WSUS communications and verifies that the correct
versions of the APIs are being used. In addition, the WSUS Control Manager checks
the connection to WSUS by connecting to the APIRemoting30 virtual directory in
Internet Information Services (IIS). You can check whether the connection succeeded
or failed in WSUSCTRL.log, located in the Configuration Manager installation
path\Logs folder.

 WSUS Configuration Manager This feature manages the software update point
configuration definitions such as classifications, language, products, and others to
synchronize the metadata. It makes a call to the APIRemoting30 virtual directory in IIS
to set all the software update point configuration definitions in WSUS. There is no
need to configure this in the WSUS installation wizard; during the WSUS setup, you
can skip it, and work on these configurations later by using the Configuration
Manager console.

CHAPTER 1 Understanding software update architecture: server side 9

 WSUS Synchronization Manager This feature is responsible for synchronizing its
updates with the Microsoft Update Catalog over the Internet. The software update
point calls the WSUS APIs, and then WSUS starts the Internet connection to
synchronize its updates, saving these updates first into the WSUS database. The
second step of this process is to synchronize the WSUS database tables with the
Configuration Manager site database tables by converting all the updates into
configuration items, as previously explained in this chapter.

The metadata synchronization
Figure 1-5 shows an overview of the synchronization process. The details are as follows:

1. Software update classes and products are selected for synchronization, and the
synchronization schedule is configured or manually initiated. WSUS Synchronization
Manager on the site server calls an API that requests that the WSUS server initiates a
synchronization to Microsoft Update. WSM continues to poll the WSUS server until
synchronization completes.

2. The WSUS server requests the software update metadata from Microsoft Update.
Microsoft Update returns the software update metadata to the WSUS server. The
WSUS server stores the metadata in the WSUS database.

3. WSM polls the WSUS server, detects that WSUS synchronization has successfully
completed, requests the software update metadata from the WSUS server, and inserts
it into the Configuration Manager site database. If the update already exists, it is not
inserted. If it has changed or, for example, it is expired, the associated attribute is
modified. This is the point where the software updates are converted into
configuration items.

4. The site server updates the software update version information in the machine policy
and copies it to the management point so that the next time the clients scan for
updates, they scan against the most recent Microsoft Update Catalog.

10 CHAPTER 1 Understanding software update architecture: server side

FIGURE 1-5 An overview of the software update metadata synchronization process

Configuration Manager inter-site replication
After the metadata synchronization is finished, there is inter-site replication between the
Configuration Manager sites. The various details behind the Configuration Manager inter-site
replication is beyond the scope of this book, but basically, when you have a Configuration
Manager hierarchy with a central administration site, primary sites, and secondary sites, the
software updates and the software update groups, both metadata, will be replicated through
the Configuration Manager SQL replication mechanism known as database replication services,
whether they were created in the central administration site or a child primary site, because
they are considered global data within the Configuration Manager hierarchy.

All the inter-site communication happens through port 4022, using SQL service broker
protocol, and port 1433, which Microsoft SQL Server uses to make sure a connection can be
established between the SQL databases.

CHAPTER 1 Understanding software update architecture: server side 11

Firewall considerations
If an organization does not allow the HTTP ports 80 or 443 to be open through the firewall,
you can restrict the access to the following domains so that the software update point can
communicate with the Microsoft Update Catalog over the Internet:

 http://windowsupdate.microsoft.com

 http://*.windowsupdate.microsoft.com

 https://*.windowsupdate.microsoft.com

 http://*.update.microsoft.com

 https://*.update.microsoft.com

 http://*.windowsupdate.com

 http://download.windowsupdate.com

 http://download.microsoft.com

 http://*.download.windowsupdate.com

 http://wustat.windows.com

 http://ntservicepack.microsoft.com

IMPORTANT The steps for configuring the firewall are meant for a corporate firewall
positioned between the software update point and the Internet. Since the software update
point initiates all of its network traffic, there is no need to configure the Windows Firewall
on the software update point server.

The flow of binary data
When deploying a software update group or even when manually downloading a group of
updates by using the download option from the Configuration Manager console, it is
necessary to associate these downloaded updates with a software updates deployment
package, which is discussed in Chapter 3, "Managing software updates." The deployment
package is like a bucket and contains the binary files that you need to distribute to a
distribution point to make them available for the Configuration Manager clients. Figure 1-6
shows the flow of binary data. Here are the details:

1. The administrator creates a new software updates deployment (or downloads the
updates before deploying the software updates) and associates it with a software
update deployment package.

2. The Configuration Manager site server requests the software updates binary files from
the source location defined in the software update deployment. This can be from
Microsoft Update or from a local source.

12 CHAPTER 1 Understanding software update architecture: server side

http://windowsupdate.microsoft.com
http://*.windowsupdate.microsoft.com
https://*.windowsupdate.microsoft.com
http://*.update.microsoft.com
https://*.update.microsoft.com
http://*.windowsupdate.com
http://download.windowsupdate.com
http://download.microsoft.com
http://*.download.windowsupdate.com
http://wustat.windows.com
http://ntservicepack.microsoft.com

3. The software update binary files are stored temporarily in a folder on the site server.

4. The Configuration Manager site server copies the software update binary files to the
content library on the distribution point.

FIGURE 1-6 An overview of the software update binary data flow process

The Configuration Manager site server uses the Software Update Patch downloader to
download the software update binary data. You can check the download actions in
PatchDownloader.log. This log can be found in c:\users\%username%\appdata\local\temp
when running the Configuration Manager console from a terminal server section, or in the
Configuration Manager site server installation path \SMS_CCM\Logs folder.

IMPORTANT By default, the user account that is logged as performing the software
update actions in the Configuration Manager console is the one used to download the
software update binary data. You can use a software update point proxy server account to
perform this operation. For more information, see the article at
http://technet.microsoft.com/en-us/library/hh427337.aspx.

CHAPTER 1 Understanding software update architecture: server side 13

http://technet.microsoft.com/en-us/library/hh427337.aspx

Software Update policy deployment

The main goal for installing the software update point and synchronizing the updates with the
Microsoft Update Catalog is to be able to make software update policy available for the
Configuration Manager clients. It is important to understand that the act of synchronizing
updates, or even creating software update groups by using the Configuration Manager
console, does not create any software update policy. Policy Provider is responsible for creating
policy, not only in the context of software updates, but for all other Configuration Manager
features such as operating system deployment, application deployment, and others. The
features involved in policy creation are:

 SMS Provider

 SMS Database monitoring

 Distribution Manager

 Offer Manager

 Policy Provider

There is a lot happening behind the scenes when you simply create a software update
group and deploy it to a group of servers or workstations. The flow described in the next
section shows all of the features working together to prepare the software update policy so
that the clients can download and run the updates when communicating with the
management point later.

The policy creation flow
The following steps describe how to the policy is created:

1. The administrator creates the software update group and deploys it. The SMS provider
and SMS Database Monitor are responsible for committing the software update
deployment details into the WMI and SQL database. These activities are registered in
SMSProv.log and SMSDBMon.log, both located in the Configuration Manager
installation path\Logs folder.

2. The policy creation process is triggered by Distribution Manager, which creates an
instruction file (.ofn) for Offer Manager. This is done because the process of creating a
deployment requires a package to be created with its binary files, which are stored in a
distribution point so the clients can locate, download, and run the deployment.
Because the deployment instruction does not apply to every client, the Offer Manager
is also responsible for applying the instruction for those clients pre-defined in the
deployment settings. These activities are registered in DistMgr.log and OfferMgr.log,
both located in the Configuration Manager installation path\Logs folder.

3. Policy Provider receives the .ofn instruction file from Offer Manager and processes and
stores it in the Configuration Manager SQL database. All of the activities are registered
in PolicyPv.log located in the Configuration Manager installation path\Logs folder.

14 CHAPTER 1 Understanding software update architecture: server side

With the policy officially created, you can verify it in the Configuration Manager SQL
database. There are many tables that list policies. The two most important tables are
Dbo.Policy and Dbo.PolicyAssignment. For example, in the Dbo.Policy table, the policy is
stored by ID, as shown in Figure 1-7.

FIGURE 1-7 The SQL query statement to retrieve all policies generated by the act of creating a deployment,
such as software updates or other kind of deployments

The Dbo.PolicyAssignment shows a deployment being assigned to a collection of
Configuration Manager clients, as shown in Figure 1-8.

FIGURE 1-8 The SQL query statement to retrieve all policies assigned to the Configuration Manager clients

IMPORTANT It is possible to review all of the policy ID references in the Configuration
Manager site server logs, such as PolicyPv.log located in the configuration installation path
\Logs folder as well as in the client logs after the policies are deployed to the client
machines.

CHAPTER 1 Understanding software update architecture: server side 15

This page intentionally left blank

Understanding software
update architecture: client
side

icrosoft System Center 2012 R2 Configuration Manager uses a client/server model that
partitions tasks and workloads between providers (site servers and site systems) and

service requesters (clients). The software update feature of Configuration Manager uses the
same model by partitioning its tasks between the software update point server and the
software update clients.

This chapter provides an overview of the software update client architecture responsible for
keeping clients up to date. The chapter also describes the mechanisms used to scan, install,
and report compliance data to the software update point server. A thorough understanding of
how the various architecture features work together is essential to successfully implement,
administer, and troubleshoot your software update environment.

Software update client architecture features

Several client features are involved in deploying software updates using Configuration
Manager. It's important to be familiar with these client features because they can help you
troubleshoot the flow of compliance data from the client to the server when something goes
wrong. The primary software update client features are as follows:

 Windows Update Agent (WUA)

 Windows Update data store

 Configuration Manager Software Updates Client Agent

 Windows Management Instrumentation (WMI)

 Configuration Manager client cache

The sections below go into more detail concerning each part of these features.

CHAPTER 2 Understanding software update architecture: client side 17

Windows Update Agent
The Windows Update Agent (WUA) was originally released with Windows Server 2000 Service
Pack 1 to provide a standard method for detecting, installing, and reporting patch applicability
on Microsoft Windows and other Microsoft products like Microsoft Office, Microsoft Exchange,
and so on. System Center 2012 R2 Configuration Manager also uses the WUA to detect which
updates need to be installed on a Windows system and installs these updates after
Configuration Manager has distributed them to the systems. The idea behind this approach is
to eliminate the need for a separate scanning engine like the Inventory Tool for Microsoft
Updates (ITMU), which was included in Microsoft Systems Management Server 2003.

The WUA is responsible for scheduling and initializing scan, detection, download, and install
of updates on the client machine. WUA consists primarily of the following features:

 WUAUCLT.exe

 WUAServ.dll

 WUAeng.dll

WUAUCLT.exe
This utility is the Automatic Updates client and is responsible for all of the user interactions
involved when deploying software updates, for example displaying the UI for download and
install progress, showing the reboot notification, and so on. The Automatic Updates client
communicates with the Automatic Updates engine through a private application programming
interface (API).

As a utility you can run, WUAUCLT.exe includes the following switches:

 /DetectNow Forces a detection cycle

 /ShowSettingsDialog Opens the UI for “Help Protect your PC: turn on Automatic
Updates” which allows you to configure Automatic Updates settings

 /ResetAuthorization Resets the cookie and the Software Update Services client ID

 /ResetEulas Resets the end user license agreements (EULAs) for updates

 /DemoUI Launches the System Tray icon

WUAServ.dll
This binary is a stub that hosts the WUASERV service in a SVCHOST.exe process. It is
responsible for dynamically loading and unloading WUAeng.dll during the self-update process
described later in the section titled "WUA self-update process."

WUAeng.dll
This is the Automatic Updates engine that performs the core tasks of detection and of
downloading and installing updates. It does this by communicating with the update agent
through the ISUSInternal interface. The Automatic Updates engine is also responsible for

18 CHAPTER 2 Understanding software update architecture: client side

receiving notifications from the update agent, for launching the Automatic Updates client
(WUAUCLT.exe), for receiving client notifications, and for implementing the private interfaces
so that the client can communicate with the Automatic Updates engine.

The Automatic Updates engine consists of the following features:

 Update Manager This caches all the applicable updates synced during a scan. It
provides the ability to search the cache for updates that satisfy different criteria, to
manage updates, and to save updates to an internal database and retrieve them from
the database during service startup.

 Settings Manager This stores and retrieves Automatic Updates settings. Automatic
Updates settings are stored in the registry.

 Handlers These implement an interface through which the client engine can
provide notification of status concerning asynchronous operations. Handlers invoke
the client engine through the ISUSInternal interface to perform their operations.

WUA self-update process
The WUA itself is updated regularly to ensure it can properly detect the latest software updates
released by Microsoft. The process by which WUA auto-updates with a new agent version is
known as the WUA self-update process. This functionality only works when the Automatic
Updates feature of WUA is enabled and is not applicable when Configuration Manager is
integrated with Windows Server Update Services (WSUS), since most administrators disable
automatic updates from a Group Policy Object (GPO).

The WUA self-update process works like this:

1. WUAeng.dll starts the self-update process by communicating with the self-update
service on the WSUS server and downloading WUIDENT.cab, which contains the
WUIDENT.txt file.

2. The WUIDENT.txt file provides information about what minimum version of files are
needed and what tree to use for self-update based on the operation system version
and hardware.

3. If an update is needed for the client binaries, then either WUSETUP.cab or
WSUS3Setup.cab is called, depending on the version already on the client.

4. The self-update process finishes by saving a report in the EventCache folder and
logging an event in ReportingEvents.log, both of which are located at
%systemroot%\Software Distribution.

WUA verbose logging
For troubleshooting purposes, enable verbose logging for the WUA by following these steps:

1. Open the Registry Editor (regedit.exe).

2. Navigate to the following registry key: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\WindowsUpdate\Trace

CHAPTER 2 Understanding software update architecture: client side 19

3. Create the following registry value:

Value name: Flags

Value type: REG_DWORD

Value data: 00000007

4. Create the following registry value:

Value name: Level

Value type: REG_DWORD

Value data: 00000004

Field experience
Experience with customers shows that when you are working with Configuration Manager
integrated with WSUS, you need to disable the Automatic Updates feature of the WUA. You
can do this by following the steps described in KB 2476479, which is found at
http://support.microsoft.com/kb/2476479. The WUA can be updated using a GPO or by
targeting a query-based collection with machines that have the old WUA version using the
Configuration Manager application/package. For more information, see the section “Update
WUA with Configuration Manager” later in this chapter.

It’s important to remember that although Configuration Manager uses WUA, WUA also
maintains its own functionality. This can lead to situations like an unexpected reboot or even
unwanted installation of updates if WUA is not properly configured since WUA can also be
configured through a GPO when using WSUS without Configuration Manager.

When working with Configuration Manager, it’s not necessary to configure a GPO for WUA.
This is because enabling the software update client settings using the Configuration Manager
console (one of the first steps you perform when implementing a software update)
automatically creates a local GPO for WUA on every system on which the Configuration
Manager client has been deployed.

If you choose to create a GPO for WUA, you must configure the Windows Update Server
option to point to the active software update point server in the site or location. If there is an
existing GPO that was intended to manage standalone WSUS prior to implementing
Configuration Manager in your environment, the GPO could override the local GPO created by
Configuration Manager, which can cause issues when the software update client tries to
communicate with the software update point server.

IMPORTANT Remember that WUA is an embedded service in a Windows service
(SVCHOST.exe) and is named Windows Update on Windows Vista and above but
Automatic Updates Service on earlier Windows versions. Do not disable WUA because it
will prevent the Configuration Manager software update client functionality from working
properly.

20 CHAPTER 2 Understanding software update architecture: client side

http://support.microsoft.com/kb/2476479

Update WUA with Configuration Manager
Updating WUA is straightforward with Configuration Manager when you take advantage of
the Application Management feature. The process involves downloading the WUA binary files
and creating the application or package in Configuration Manager. Complete the following
steps:

1. Download the latest WUA version from KB 949104 found at
http://support.microsoft.com/kb/949104. Microsoft continually revises this KB article by
updating it with the latest WUA version.

2. Create the application or package with the WUA you downloaded.

3. Create a deployment and target it to the WUA older version collection.

See also For more information on how to update the WUA version with Configuration
Manager, see this post from the Configuration Manager Product Team blog:
http://blogs.technet.com/b/configmgrteam/archive/2014/07/14/how-to-install-the-windows-
update-agent-on-client-computers.aspx.

Windows Update data store
The WUA instruction folder is stored on the client side in %systemroot%\SoftwareDistribution.
This folder stores all of the update evaluation information that is produced when the software
update scanning process runs. The Datastore.edb file, or Windows Update data store, located
at %systemroot%\SoftwareDistribution\DataStore is a database that stores various information
for the registered services of WUA, such as SMS WUS Handler, Update Metadata, Computer
Info, Eula Acceptance, List of Update Related Files, and so on. This information is parsed before
the client runs a detection cycle to generate a list of already detected updates and related
metadata. The Datastore.edb file hosts both the updates needed as well as those that have
already been applied for a machine. This mechanism is intended to provide better
performance for the WUA during the detection cycle since it has the entire history of all
update evaluation.

Configuration Manager uses the same mechanism regardless of whether the software
update client scan is initiated automatically by the normal schedule or manually by an
administrator. A troubleshooting technique frequently used by Microsoft Support is to ask the
customer to stop the WUA service and rename or delete the Software Distribution folder.
When the WUA service is restarted, the Software Distribution folder is re-created, and the
client scanning begins again. This approach provides a fresh start with a new Windows Update
data store if the Datastore.edb file is corrupted.

Configuration Manager Software Updates Client Agent
This agent drives the Configuration Manager Software Updates client actions in its
Configuration Manager client. The software update client agent configuration can be modified
in the Configuration Manager console by navigating to the Administration workspace, then
Site Configuration, then Site Settings, and then the Default or Custom client setting. The

CHAPTER 2 Understanding software update architecture: client side 21

http://support.microsoft.com/kb/949104
http://blogs.technet.com/b/configmgrteam/archive/2014/07/14/how-to-install-the-windows-update-agent-on-client-computers.aspx
http://blogs.technet.com/b/configmgrteam/archive/2014/07/14/how-to-install-the-windows-update-agent-on-client-computers.aspx

examples in the sections that follow focus on the settings available in the default settings. In
the Default Settings dialog box, a list of settings categories appears on the left and the
configurable properties associated with a selected category appear on the left.

Background Intelligent Transfer settings
Since the Configuration Manager client uses Background Intelligent Transfer (BITS) as the
default protocol for communicating with the Configuration Manager site server or site system,
the first settings to be considered are the BITS throttling settings (located in the Background
Intelligent Transfer settings of the Default Settings dialog box shown in Figure 2-1). Consider
having BITS throttling settings in place when there are network constraints, such as slow
network connections between the Configuration Manager clients and the Configuration
Manager software update servers.

FIGURE 2-1 BITS throttling settings in the Configuration Manager console client settings

Client Policy settings
The Client Policy settings, shown in Figure 2-2, govern the frequency with which the
Configuration Manager client communicates with the management point to download new
software update policies, such as the software update scan schedule or software update
deployment.

22 CHAPTER 2 Understanding software update architecture: client side

FIGURE 2-2 Client Policy settings within the default or custom client settings

Disable Deadline Randomization setting
When you create a software update deployment, you must specify a deadline for that
particular deployment. However, the actual time that software update clients start updating
installations depends not only on the deadline you specify but also on a setting called Disable
Deadline Randomization (located in the Computer Agent workspace of the Default Settings
dialog box shown in Figure 2-3).

For example, if you have configured the software update deadline for 02:00 P.M. in your
time zone and the Disable Deadline Randomization option is enabled, the software update
deployment may begin anytime between 01:00 P.M. and 06:00 P.M. This is because a 4-hour
installation randomization is applied to the deadline. This randomization prevents all software
update clients from starting update installations at the same time. This can be a particular
problem in virtual desktop infrastructure (VDI) environments, but it can also be an issue in a
normal virtual environment that has several servers running on a physical host. The Disable
Deadline Randomization option is disabled by default in Configuration Manager 2012 R2, but
you should enable it for virtual environments, especially VDI environments.

CHAPTER 2 Understanding software update architecture: client side 23

FIGURE 2-3 Computer Agent settings within the default or custom client settings

Enable Software Updates On Clients
Enabling the Enable Software Updates On Clients option (located in the Software Updates
workspace of the Default Settings dialog box) causes the following changes:

1. On the site server side, the site control file changes in the SMS_CI_ClientComp class
and updates the management point policy in the SQL database. (The site control file is
not stored in the file system as of Configuration Manager 2012; it is an XML file stored
in the SQL database.)

2. On the client side, when the Configuration Manager client initiates communication
with the management point, the client receives the new policy, which includes the
software update client feature installation instructions to be installed or applied on the
Configuration Manager client.

3. The client then saves the policy results in Windows Management Instrumentation
(WMI) and compiles the necessary .MOF files responsible for enabling the software
update client feature.

You can verify that the Software Updates Client Agent is enabled by viewing the
Components tab of the Configuration Manager Properties client control panel applet shown in
Figure 2-4.

24 CHAPTER 2 Understanding software update architecture: client side

FIGURE 2-4 Configuration Manager client control panel applet with the software update client agent
enabled

Software Update Scan Schedule setting
The Software Update Scan Schedule setting (located in the Software Updates workspace of the
Default Settings dialog box shown in Figure 2-5) controls the software update scan cycle on
the Configuration Manager clients, which occurs every seven days by default but can be
changed as necessary to fit your organization's requirements.

Schedule Deployment Re-evaluation setting
If you previous deployed the software update client throughout your organization and for
some reason these deployments were removed from the client machines, the Schedule
Deployment Re-evaluation setting (located in the Software Updates workspace of the Default
Settings dialog box shown in Figure 2-5) can be used to re-evaluate these previous software
update deployments and re-install them for the clients according to a specified schedule.

CHAPTER 2 Understanding software update architecture: client side 25

When Any Software Update Deadline Is Reached, Install All Other
Software Update Deployments With Deadline Coming Within A
Specified Period Of Time setting
If a number of updates with different deployment deadlines need to be installed for a client
but are queued up, you can configure the When Any Software Update… setting (located in the
Software Updates workspace of the Default Settings dialog box shown in Figure 2-5) so that
after the deadline for the first update on the list is reached, the remaining updates pending
installation are installed within their subsequent deadlines.

Period Of Time For Which All Pending Deployments With Deadline In
This Time Will Also Be Installed setting
This setting (located in the Software Updates workspace of the Default Settings dialog box
shown in Figure 2-5) can be used with the previous one to define a period of time for checking
the upcoming deadline for an update.

FIGURE 2-5 Software Updates settings example

Windows Management Instrumentation
Windows Management Instrumentation (WMI) has been a native feature in all versions of
Microsoft Windows since Windows NT 4.0. WMI acts like a database inside the operating

26 CHAPTER 2 Understanding software update architecture: client side

system that can be managed locally or remotely to query operating system information such
as hard disk information, the DVD-ROM manufacturer, the applications installed, and so on.

Configuration Manager relies on WMI on both the server and client sides. Any changes that
are made in the Configuration Manager console are saved first in WMI, after which the SMS
provider commits them to the SQL database. On the client side, this includes all client
information, such as the management point, the site code, and other Configuration Manager
information, all of which is saved in WMI. All the software update scan evaluation results are
also saved in WMI when the client goes through the scanning process, which is described later
in this chapter in the section titled "Software update scanning process." All information about
software update deployments are also saved in WMI.

Software update policy in WMI
Software update policy is located in two classes in the WMI namespace:

 Root\ccm\policy\machine\requestedconfig When the client downloads the
policy from the management point, it saves it in this WMI class so the Configuration
Manager client Policy Evaluator can evaluate the policy.

 Root\ccm\policy\machine\actualconfig Policy Evaluator first checks whether
there is a valid policy, and if so, saves it in this class. The actualconfig class is therefore
the running configuration for the client, which means it contains all the current
settings as defined by the Configuration Manager administrator.

The next two sections show how to use the built-in WBEMTEST.exe utility to view the details
of these two software update policies stored in WMI.

Viewing policy stored in the requestedconfig class
To see the software update policy downloaded into the requestedconfig class, complete the
following steps:

1. Open WBEMTEST.exe as an administrator, and type
root\ccm\policy\machine\requestedconfig in the Namespace text box.

2. Click Enum Classes, and select Recursive.

3. Scroll down to review the following classes:

• CCM_SoftwareUpdatesClientConfig

• CCM_SourceUpdateClientConfig

• CCM_UpdateCIAssignment

• CCM_UpdateSource

4. Double-click a class to reveal details about it. For example, double-click the
CCM_SoftwareUpdatesClientConfig class and select Instances to see the details of the
software update policy downloaded to the machine, as shown in Figure 2-6.

CHAPTER 2 Understanding software update architecture: client side 27

FIGURE 2-6 Software update client policy in WMI

5. Double-click the policy in the Query Result dialog box, and click Show MOF. This
reveals more details about the software update client configuration policy, as shown in
Figure 2-7.

FIGURE 2-7 Software update client policy in WMI

Viewing policy stored in the actualconfig class
To see the software update policy downloaded into the actualconfig class, complete the
following steps:

1. Open WBEMTEST.exe as an administrator, and type
root\ccm\policy\machine\actualconfig in the Namespace text box.

2. Click Enum Classes, and select Recursive.

28 CHAPTER 2 Understanding software update architecture: client side

3. Scroll down to review the following classes:

• CCM_SoftwareUpdatesClientConfig

• CCM_SourceUpdateClientConfig

• CCM_UpdateCIAssignment

• CCM_UpdateSource

4. Double-click one of the classes and select Instances to reveal all the software update
deployments assigned to a machine, as shown in Figure 2-8.

FIGURE 2-8 Software update configuration items assigned to a machine in WMI

5. Double-click one of the update assignments in the Query Result dialog box, and select
Show MOF to reveal more details about the update assignment, such as assignment
name, enforcement deadline, reboot outside maintenance windows, and other useful
information, as shown in Figure 2-9.

CHAPTER 2 Understanding software update architecture: client side 29

FIGURE 2-9 Software update assignment details

Software update evaluation and deployment in WMI
Evaluation and deployment information concerning software updates is stored both in WMI
and in the Windows Update data store, as previously described in this chapter. The WMI
information is stored in root\ccm\softwareupdates\deploymentagent and has the following
classes:

 CCM_AssigmentCompliance After evaluation is finished, the assignment is moved
into this class to determine the current compliance state for a particular software
update assignment.

 CCM_AssignmentJobEx1 This class shows an assignment currently being
evaluated, which means real-time evaluation only.

 CCM_DeploymentTaskEx1 This class shows a deployment being installed in real-
time on a machine.

 CCM_TargetedupdateEx1 This class shows every update targeted to a machine
after the evaluation process is finished. UpdatesDeployment.log shows the number of
updates being targeted to a machine, while this WMI class stores the details about
each particular update. Each update has its own unique GUID that can be identified
from the Configuration Manager console by adding the Unique Update ID field to
the console as described in the section titled “Deployment and update unique ID”
later in this chapter.

Figure 2-10 shows the results of using WBEMTEST.exe to view the contents of the
CCM_TargetedupdateEx1 class. In this example, there are 2,417 updates targeted to the
machine.

30 CHAPTER 2 Understanding software update architecture: client side

FIGURE 2-10 Software updates targeted to a machine from WMI

Double-click a specific update to review the details of the update as well as the update
unique ID, as shown in Figure 2-11.

FIGURE 2-11 Software update detail targeted to a machine from WMI

Software update logs reference
When troubleshooting software updates from the client side, it’s often necessary to cross-
reference between WMI and the Configuration Manager client logs. You can use
UpdatesDeployment.log to do this since all of the software update deployments and update
unique IDs are exposed in this log, as shown in Figure 2-12.

CHAPTER 2 Understanding software update architecture: client side 31

FIGURE 2-12 Software updates targeted to a machine shown in UpdatesDeployment.log

Deployment and update unique ID
You can use the Configuration Manager console to cross-reference software update
deployments and update unique IDs. This can be helpful after you have determined which
deployment or update is failing on a machine and you need to make sure everything is
properly configured on the server side.

To identify the deployment unique ID of a software update, complete the following steps:

1. Open the Configuration Manager console.

2. Navigate to the Monitoring workspace and click Deployments.

3. Right-click on any column and select Deployment ID from the list.

As Figure 2-13 shows, following these steps displays the deployment unique ID that you will
need to cross reference with WMI and UpdatesDeployment.log.

32 CHAPTER 2 Understanding software update architecture: client side

FIGURE 2-13 The deployment unique ID in the Configuration Manager console

To retrieve the update unique ID, complete the following steps:

1. Open the Configuration Manager console.

2. Navigate to the Software Library workspace, click Software Updates, and then click
Software Update Groups.

3. Right-click the Software Update group previously identified with the deployment
unique ID and select Show Members.

4. Right-click the column and select Update Unique ID.

As Figure 2-14 shows, following these steps displays the update unique ID that you will
need to cross-reference with WMI and UpdatesDeployment.log.

FIGURE 2-14 The update unique ID in the Configuration Manager console

CHAPTER 2 Understanding software update architecture: client side 33

Configuration Manager client cache
By default, the Configuration Manager 2012 R2 client stores deployed packages in the
%WinDir%\ccmcache folder, and the default disk space for this folder is 5 gigabytes (GB). Do
not encrypt this folder because Configuration Manager cannot upload content to an
encrypted folder. The client downloads the software updates from the distribution point using
BITS after receiving the policy from the management point.

It’s possible to change the Configuration Manager client cache location by specifying the
parameter SMSCACHEDIR=C:\WINDOWS\TEMP with CCMSetup.exe during the Configuration
Manager client installation. In addition, you can change the cache size by using the parameter
SMSCACHESIZE=10240 with CCMSetup.exe, where the value specified is in megabytes.

The content remains in the cache for at least 24 hours. After that time, it can be overwritten
by new content if more disk space is necessary. If the Configuration Manager administrator
configures a package to persist content in the client cache, the client will not automatically
delete or overwrite the package in the cache. In this case, it is necessary to increase the cache
size or choose the delete option from the Control Panel applet of the client to delete the
content from the cache.

Software update scanning process

Understanding the software update scanning process is important for successfully
troubleshooting issues involving the detection and scanning of software updates for
deployment to client machines. The software update scanning process includes the following
steps:

1. The software update scan is initiated, either manually from the Control Panel applet,
by a software update scan cycle action, or based on the Configuration Manager client
default or custom settings schedule.

2. The client obtains the WSUS server location from the management point.

3. The Configuration Manager client calls the WUA feature on the client, which then
connects to the WSUS server and initiates the compliance scan.

4. The WUA returns a list of the updates that are installed or required on the client. The
site server determines what updates are required on each client by comparing the list
of all defined updates with the scan results.

5. WSUS stores the results of the scan in the WSUS database.

6. The Configuration Manager client stores the compliance scan results in WMI, and the
WUA stores the scan results in Datastore.edb.

7. The Configuration Manager client sends the results to the management point in the
form of a batch of state messages.

8. The management point sends the results to the site server where they are then
entered in the Configuration Manager site database.

34 CHAPTER 2 Understanding software update architecture: client side

9. The compliance scan data is now available for viewing in the Software Updates
Compliance reports and in the Configuration Manager console.

Figure 2-15 shows the numbered steps described in this section.

FIGURE 2-15 An overview of the software update scanning process

Software update installation process

Understanding the software update installation process is important for successfully
troubleshooting issues involving installation of software updates on client machines. The
software update installation process includes the following steps:

1. A new software update group is created and deployed by the administrator console.

2. The site server requests the software update binaries from the source location as
defined in the deployment. This can also be from Microsoft Updates.

3. The site server copies the software update binaries to the package share on the
distribution point.

4. The site server adds the new software update deployment to the machine policy and
copies the policy to the management point.

5. The client pulls the machine policy from the management point according to the
specified schedule and receives the new deployment information. The client then

CHAPTER 2 Understanding software update architecture: client side 35

scans for each software update to verify that they are still required.

6. If a software update is still required, the client requests its binaries from the
distribution point. This occurs for each mandatory update, and the binaries obtained
are stored in the local cache.

7. The client sends a state message to the management point reporting that the software
update was downloaded. The management point then forwards the state message to
the site server, which enters the message in the database.

When the software update deadline arrives or the update installation is manually initiated,
the client scans for each software update to verify that it is still required.

NOTE The client scans for and installs the software update using local rules to verify that
the update is no longer required. It then sends a state message to the management point
to indicate the state of the deployment at completion. For each software update that fails
to install, an error status message is sent to the management point. These messages are
then forwarded to the site server, which inserts them into the database.

Figure 2-16 shows the numbered steps described in this section.

FIGURE 2-16 An overview of the software update installation process

36 CHAPTER 2 Understanding software update architecture: client side

Managing software updates

he task of managing software updates is critical to maintaining the security and
operational health of an enterprise and is one of the most important steps an organization

can take to secure digital assets. An update management process can help an organization
maintain operational effectiveness, mitigate security vulnerabilities, and maintain the integrity
of the production environment. Microsoft System Center 2012 R2 Configuration Manager
provides a robust vehicle to deliver software updates in a consistent manner.

The patch management process model

Microsoft has developed a four-phased approach to software update management that is
designed to give organizations control over the maintenance and deployment of recurrent
software update releases. Figure 3-1 illustrates the four phases of the software update
management process, which are as follows:

 Phase 1: Assess

 Phase 2: Identify

 Phase 3: Evaluate and Plan

 Phase 4: Deploy

Figure 3-1 The four phases of the software update management process

CHAPTER 3 Managing software updates 37

Phase 1: Assess
The software update management process starts with the Assess phase. This begins with an
assessment of the state of the production environment. To effectively patch systems,
administrators should strive to understand what security threats and vulnerabilities they are
faced with. The assessment is an ongoing process repeated at the beginning of the software
update lifecycle to ensure that the environment is continually audited and evaluated.

Typical steps performed during the Assess phase include:

 Inventory existing computing assets Differing hardware platforms will likely have
different software update requirements, so it is essential to have an up-to-date
inventory.

 Assess security threats and vulnerabilities The security assessment should
include identifying security standards and policies and analyzing system
vulnerabilities.

 Determine the best source for information about new software updates
Sources of information about software updates can include email notifications, alert
subscriptions, vendor websites, and security and regulatory organizations.

 Assess the existing software distribution structure The assessment should
include determining if the software distribution infrastructure in place is sufficient,
can be used to distribute software updates, can service the computers in your
environment, and is properly maintained.

 Assess operational effectiveness Evaluating your operational processes has a
direct impact on software update management. Determine whether the operational
staff has the training, resources, time, and processes to effectively manage the
software update process.

Phase 2: Identify
The purpose of the Identify phase is to discover the applicability of software updates that may
be relevant to the operating systems and software in your production environment. This
includes prioritizing and identifying the criticality of software updates that may dictate a
standard response or initiate an emergency release, as in the case of a zero-day exploit. The
trigger for the start of the Identify phase of the software update management process is
notification that a new software update exists.

Typical steps performed during the Identify phase include:

 Identify new software updates Discovering a new software update starts with
notification. Common notification mechanisms include email notifications and
security advisory portals.

 Determine whether software updates are applicable to your production
environment Each software update should be checked for relevance. The first step
in checking for relevance is determining whether the software update is designed to

38 CHAPTER 2 Managing software updates

address computers or applications in your production environment. Methods that can
be used to determine the applicability of the software update in your environment
can include reading security bulletins and Microsoft Knowledge Base (KB) articles,
reviewing individual software updates, using the Configuration Manager
administrator console, and using Configuration Manager built-in reports.

 Obtain and verify software update source files Software update source file
verification should include the following steps: verification of the software update
source, validation of the software update binaries, review of the accompanying
documentation, and verification that the software update is virus free.

 Determine update priority and submit change request This step starts the
evaluation and planning phase of the software update process for submitting a
change request. The change request submission should address the following
questions:

• What is the change?

• What vulnerability is the change in response to?

• What services are impacted?

• Is a restart required?

• Can the software update be uninstalled?

• Do countermeasures exist?

• What are the recommended test strategies?

• What is the suggested priority?

• What will be the impact of the change?

If the change addresses a critical security issue or system instability, the priority of the
change request should be marked as “emergency.”

Phase 3: Evaluate and Plan
The third phase of the software update management process is the Evaluate and Plan phase.
The entry point of this phase is a change request for a software update that has been
identified as relevant to your production environment.

Typical steps performed during the Evaluate and Plan phase include:

 Determine the appropriate response Prioritize and categorize the change
request, and obtain authorization to deploy the software update.

 Plan the release of the software update Release planning is the process of
determining how to release the software update into the production environment.
The major considerations of release planning are determining what needs to be
updated, identifying the key issues and constraints, and building the release plan.

CHAPTER 3 Managing software updates 39

 Build the release With the release plan in place, the next stage of the phase is to
develop scripts, tools, and procedures, which the administrators will use to deploy the
software update into the production environment.

 Conduct acceptance testing of the release Acceptance testing allows developers
and business representatives to check that updates work in an environment that
closely mirrors production in that business-critical systems will continue to run
successfully after the software update has been deployed. At a minimum, testing
should be performed to show that after installation the computer will reboot as
designed, the software update can be downloaded and successfully installed, the
software update can be successfully uninstalled, and business-critical systems and
services continue to run.

Phase 4: Deploy
The fourth phase of the software update management process is the Deploy phase. The entry
point of this phase is when a software update package is ready and approvals have been
obtained for deployment to the production environment.

Typical steps performed during the Deploy phase include:

 Deployment preparation The production environment needs to be prepared for
each new release. The steps required for preparing the software update deployment
includes communicating a deployment schedule to the organization and assigning
and staging distribution points.

 Deployment of the software updates to targeted computers The process used
to deploy the software update into the production environment depends on the type
and nature of the release. Emergency releases typically follow the same process as a
normal release but in a compressed timeframe. Ideally, software update deployments
utilize a phased rollout, which minimizes the impact of failures or adverse effects
introduced by the distribution of a software update.

 Post-implementation review The post-implementation review should typically be
conducted within one to four weeks of a release deployment to identify
improvements that should be made to the update management process. A typical
review entails adding vulnerabilities to vulnerability scanning reports and security
policy standards, updating build images to include the latest software updates,
discussing planned versus actual results, discussing the risks associated with the
release, reviewing your organization’s performance through the release, and creating
or updating the baseline for your environment.

40 CHAPTER 2 Managing software updates

Understanding software update groups

Software update groups are a new functionality introduced in Configuration Manager 2012
that merge update lists and update deployments into a single object. Software update groups
function as containers to which software updates can be added and organized either by
product or by timeline. Software updates can be added to software update groups either
manually or automatically. The Windows client can assess the applicable Windows updates, so
there is no mandatory requirement to separate the software updates by products.

Software update groups provide an effective method to organize software updates in your
environment and can be organized to provide baselines for a software update strategy. One
approach to using them is to organize your software update groups into the following
categories:

 Reporting group This compliance group is used for reporting purposes only and is
not deployed to the production environment.

 Rollup group An initial baseline, this group is used as a starting point to deploy
applicable software updates to the production environment.

 Monthly group The monthly software update deployment rollout aligns with the
Microsoft Patch Tuesday monthly release.

 Quarterly group This is a compliance group created once per quarter, containing
three months’ worth of updates.

 Yearly group This compliance group is created at the end of each year to
aggregate the previous year’s software updates.

Reporting groups
A reporting group is a compliance group, which is a software update group that is not
deployed, and it is used to measure all-up compliance. The Configuration Manager console
shows the aggregated compliance for all systems. The group can also be used to break down
compliance by collection using reports. A compliance group is not limited to 1,000 updates, as
is the case of deployed software update groups; however, grouping reporting baselines in
some kind of logical grouping is suggested.

Rollup groups
When you begin to deploy software updates, the first task is often to bring your computers to
an initial and consistent patch state. A rollup group is used as a starting point for deploying
software updates and should include all software updates that are currently applicable.
Applicable updates are those that are installed or required on at least one system.

The initial rollup group, once established, is deployed to all production computers capable
of being patched. This deployment provides a means to update new computers that do not
have the initial baseline patches installed when they are introduced into the environment.

CHAPTER 3 Managing software updates 41

Because this software update group is deployed, it can contain no more than 1,000
updates; therefore, it may be necessary to split this initial baseline into multiple software
update groups. In this case, logical groupings should be used. After they are created, you
should avoid making frequent changes to these groups to avoid a server-side hit on SQL
processing.

Monthly groups
After the initial baseline is been established with the rollup group, monthly software update
groups are used to deploy new software updates. Monthly groups are typically aligned with
the Microsoft Patch Tuesday release cycle, which is the second Tuesday of each month. The
monthly group can be created by using automatic deployment rules or the Distribute Software
Updates Wizard.

Automatic deployment rules can be used to create software update groups using an
advanced filter expression to identify precisely the updates you want to deploy. The automatic
deployment rules can be set to create the monthly deployment in a disabled state so that the
administrator can verify the results returned by the automatic process. After it is created, the
monthly software update group can be deployed to multiple collections using a phased rollout
approach.

There is no need to combine monthly deployment groups into quarterly or yearly
deployment groups. Administrators just keep creating monthly updates over time and add the
updates from each monthly deployment into quarterly or yearly compliance groups. Avoiding
large deployment groups containing hundreds of updates simplifies the task of deploying and
troubleshooting software update groups.

Quarterly and yearly groups
The quarterly and yearly compliance groups are used to provide an aggregate overview of
your compliance through the year. This avoids the overhead and deployment summarization
caused by adding updates to or modifying deployments in existing deployment groups.

Using software update groups

To create a software update group, complete the following steps:

1. Open the Configuration Manager console, select Software Library, then Overview, then
Software Updates, and then All Software Updates. Select multiple software updates.
You can use search criteria to find a specific bulletin ID, article ID, or a string that
would appear in the title for software updates.

2. In the All Software Updates pane, right-click the selected software updates, and in the
context menu, click Create Software Update Group, as shown in the following image.

42 CHAPTER 2 Managing software updates

3. In the Create Software Update Group dialog box, enter a name and description for the
new software update group as shown in the following image:

4. When you click Create in the Create Software Update Group dialog box, you return to
the Configuration Manager console. In the console, select Software Library, then
Overview, then Software Updates, and then Software Update Groups. In the Software
Update Groups pane, you should see the new software update group you created
along with any other software update groups that you created previously, as shown in
the following imager:

CHAPTER 3 Managing software updates 43

Using a phased rollout strategy

Creating a strategy to manage the collections used for software update deployment is an
important step in the patch management process. A staged rollout approach provides the best
solution to identify problems with software update deployments before they are deployed to
the production environment. Here is one strategy your organization might follow:

 Blank for staging Stage the software update group created with an automatic
deployment rule. This collection contains no members.

 Test workstation Deploy and test the software update group to a single
workstation client.

 Test server Deploy and test the software update group to a single server client.

 Pilot workstations Deploy and test the software update group to a limited group
of workstation clients. It is advantageous for the pilot computers to be representative
of the live production environment.

 Pilot servers Deploy and test the software update group to a limited group of
server clients. Typically, the pilot servers do not host mission-critical applications.

 Production workstations Deploy the software update group to production
workstations.

 Production servers Deploy the software update group to production servers.

Using deployment templates

A deployment template saves time by automatically applying settings and properties to new
deployments you create. Since there is no deployment template node in Configuration
Manager 2012 R2, it is a good idea to create an empty collection and apply the deployment
template to it. When the deployment is created from the template, verify the collection and
point the deployment to the appropriate pilot or test collection. Many enterprises frequently
create and use templates similar to the ones shown in Figure 3-2. Typical functionality for such
templates might be as follows:

 Computers - Patch Tuesday Deployment This template is used to deploy the
patches released every second Tuesday of the month. This template’s settings apply
software updates in the maintenance window and provide sufficient time for the user
to restart the computer.

 Computers - Zero Day Deployment (Emergency) This template is used to
immediately deploy a software update. This template includes settings that can install
software updates outside of the maintenance window and restart the computer after
the software update’s installation.

44 CHAPTER 2 Managing software updates

 Servers – Patch Tuesday Deployment (Auto Restart) This template is used to
deploy updates on the servers as per the normal deployment cycle. With this
template, software updates are usually downloaded and installed on the servers
automatically.

 Servers – Patch Tuesday Deployment (Manual Restart) This template is used to
deploy the updates on the servers as per the normal deployment cycle. With this
template, software updates are usually downloaded but not installed on the servers
automatically. Administrators often prefer to install updates manually and restart the
server.

 Servers – Zero Day Patch Deployment (Emergency) This template is used to
deploy updates on the server when an emergency requires patching to safeguard
against a zero-day exploit that has been reported.

FIGURE 3-2 Examples of patch templates

Using deployment packages

A software update deployment package is used to download software updates from Microsoft
to a network shared folder and copy the software update source files to the content library on
the site servers and on distribution points that are defined in the deployment.

To create a deployment package from an existing software update group, complete the
following steps:

1. Right-click the monthly software update group and click Download to launch the
Download Software Updates Wizard.

2. On the Deployment Package page of the wizard, enter the package name and the
network path for storing source installers for updates, as shown in the following
image:

CHAPTER 3 Managing software updates 45

3. On the Distribution Points page, click Add to open the Add Distribution Point Groups
dialog box. In this dialog box you can select distribution points that will host the
content from the list of available distribution points displayed. In the following
example, the distribution point where pilot computers are located is selected.

46 CHAPTER 2 Managing software updates

TIP It is a good idea to create a distribution point group for pilot locations and all
production locations.

4. On the Distribution Settings page, specify the distribution settings for the package
according to the Configuration Manager infrastructure design recommendations for
your organization:

CHAPTER 3 Managing software updates 47

5. On the Download Location page, select Download Software Updates From Internet.

6. On the Language Selection page, select the applicable language update files for your
organization.

7. On the Summary page, click Next.

8. On the Completion page, verify the details, and then click Close.

Deploying software updates

The two main scenarios for deploying software updates are automatic deployment and manual
deployment.

Automatic deployment of software updates
Automatic deployment rules are useful for configuring automatic software updates
deployment. Automatic deployment scenarios are used for monthly software updates (Patch

48 CHAPTER 2 Managing software updates

Tuesday). When the rule runs, the software updates that meet a specified criteria are added to
a software update group. The source installer files are downloaded and copied to the
distribution points. Before deploying to a pilot or production collection, always run on an
empty or test collection first. When the test completes successfully, add the pilot or production
collection for deployment.

Complete the following steps to automatically deploy the software updates:

1. In the Configuration Manager console, click Software Library, expand Software
Updates, and then click Automatic Deployment Rules.

2. Right-click Automatic Deployment Rules and select Create Automatic Deployment
Rule to start the Create Automatic Deployment Rule Wizard.

3. On the General page, enter values for Name, Description, and Collection.

4. Select Template – Patch Tuesday. This selection populates the settings automatically.

5. Select Create A New Software Update Group For Patch Tuesday so it will run on
monthly basis.

6. Select the Enable The Deployment After The Rule Is Run check box to add the software
updates that meet the criteria defined in the rule to a software update group. The
content software updates download if necessary. The content is copied to the
specified distribution points, and the software updates are deployed to the clients in
the target collection.

7. Complete the wizard. Because the Patch Tuesday template was selected, most of the
settings are pre-populated, but you can change them as needed to meet your
organization’s requirements.

Manual deployment of software updates
To manually deploy software updates using Configuration Manager 2012, complete the
following steps:

1. In the Configuration Manager 2012 console, select Software Library, then Overview,
then Software Updates, and then Software Update Groups.

2. Right-click the software update group you want to use for manually deploying
software updates, and from the context menu, select Deploy, as shown in the
following image.

CHAPTER 3 Managing software updates 49

3. In the Deploy Software Updates Wizard, on the General page, specify the deployment
name and, optionally, a description. Click Select Deployment Template and select a
deployment template from the list of available templates displayed in the Select A
Template dialog box. Selecting a template automatically populates the required
settings. In this walkthrough, a template called Computers - Patch Tuesday
Deployment is selected, as shown in the next image:

50 CHAPTER 2 Managing software updates

4. On the Deployment Settings page, make sure that Required is selected to create a
mandatory software update deployment. After the deployment is created, this option
cannot be changed from Required to Available.

5. On the Scheduling page, specify the following:

• For Software Available Time, select Approximately so that contents are available on
all the required distribution points after 24 hours.

• For Installation Deadline, select 7 days. This adds a random two-hour interval to the
scheduled deadline.

6. On the User Experience page, specify the following:

• For User Notifications, select Display In Software Center, which restricts
notifications to only computer restarts.

• For Deadline Behavior, select the Software Installation and System Restart (if
necessary) check boxes only for the Zero Day Patch, which needs to be installed
and applied on all the computers immediately.

• For Device Restart Behavior, if a maintenance window is applied, then there is no
need to suppress the reboot for the computers by selecting the Workstations
check box. If you have any critical servers that you want to manage manually, then
select the Servers check box.

7. On the Alerts page, select the Generate An Alert When The Following Conditions Are
Met check box. Set the lower threshold value for client compliance according to the
direction from your security team.

8. On the Download Settings page, make selections according to the Configuration
Manager 2012 R2 configuration and your available WAN link speed. In case of a zero-
day patch, the option to download and install software updates from the distribution
point or to download and install software updates from the fallback content source
location allows clients to share the content with other clients on the same subnet.
Alternatively, you can select the option to download content from Microsoft Update.

9. On the Deployment Package page, select the package that was created when the
software updates were downloaded.

10. For Download Location, provide the network path where source installers are stored.

11. On the Language Selection page, select applicable language as per the organization’s
requirement.

12. Complete the wizard and verify the messages on the Completion page.

CHAPTER 3 Managing software updates 51

Understanding superseded and expired updates

Software updates expire when they are superseded by more recent software updates or when
they are invalidated by Microsoft. System Center 2012 R2 Configuration Manager provides an
option to mark superseded software updates as expired immediately or after a selected
number of months. Figure 3-3 shows the property settings for configuring supersedence rules,
and Figure 3-4 shows an example of a software update that is superseded but not expired.

Although an expired update cannot be deployed, a superseded update can still be installed
until it expires.

FIGURE 3-3 The Supersedence Rules tab of the Software Update Point Component Properties dialog box

FIGURE 3-4 An example of a superseded but not expired update

An expired update is an update that has been invalidated by Microsoft, for example an
update that has caused an issue upon installation. New deployments cannot be created for an
expired software update, but existing deployments that contain an expired update continue to
work. An expired software update cannot be approved for detection or installation.

Expired updates that are not part of any existing deployments are removed according to
the updates cleanup settings. After that, the relevant software update packages are updated

52 CHAPTER 2 Managing software updates

automatically. Expired updates that are part of existing deployments are not removed.
Figure 3-5 shows an example a software update that is both superseded and expired.
Figure 3-6 shows an example of a software update that is superseded but not expired, and
Figure 3-7 shows the deletion of expired updates in the wsyncmgr.log.

FIGURE 3-5 Example of a superseded and expired software update

FIGURE 3-6 Example of an expired software update that is not superseded

FIGURE 3-7 Entries in wsyncmgr.log showing the deletion of expired updates

NOTE The behavior of an expired patch cannot be changed. An expired patch should not
be installed.

CHAPTER 3 Managing software updates 53

Understanding the expired updates cleanup process
The four phases of removing expired updates and their related content include the expiration
action, tomb-stoning, deletion, and source cleanup. At a high level, updates that have been
expired and aren’t part of an active deployment are deleted seven days after they expire.
Configuration Manager 2012 R2 cleans up the source folders automatically.

See also A script to clean up the source folders for versions earlier than Configuration
Manager 2012 R2 can be found at http://blogs.technet.com/b/configmgrteam/archive
/2012/04/12/software-update-content-cleanup-in-system-center-2012-configuration-
manager.aspx.

Manually removing expired updates
Expired software updates were previously deployable to client computers. Expired updates
contained in active deployments continue to be available to clients. When they expire,
Configuration Manager does not remove the software updates contained within active
software update deployments.

The first step in the process for managing content related to expired updates is getting
expired updates out of any deployed update groups. Configuration Manager will never delete
any expired update associated with an active deployment.

To remove expired updates from deployments, complete the following steps:

1. Navigate to the All Software Updates node under Software Library.

2. To search for all expired updates, add the value for expired updates to search for,
leave the default value of Yes, and click Search.

3. The search results include all of your expired updates. Select all of the updates in the
list (press CTRL+A), right-click, and then select Edit Membership.

4. The Edit Membership window lists all of the update groups where any of the selected
updates from the list are members. To remove the expired updates, clear the selected
check boxes.

5. Click OK to remove all of the expired updates from the selected update groups.

Configuring the maintenance window

A maintenance window is a specific timeframe during which various Configuration Manager
operations can run on the members of a device collection. Maintenance windows can be
applied to all deployments, to software updates, or to task sequences. If a maintenance
window is configured for all deployments, then it applies to software updates too, as long as
there is no separate software updates maintenance window configured. If a software update
maintenance window is configured for a collection, then only this maintenance window is
applicable to the client computers in the scope of that collection and all deployment
maintenance windows are ignored.

54 CHAPTER 2 Managing software updates

http://blogs.technet.com/b/configmgrteam/archive/2012/04/12/software-update-content-cleanup-in-system-center-2012-configurationmanager.aspx
http://blogs.technet.com/b/configmgrteam/archive/2012/04/12/software-update-content-cleanup-in-system-center-2012-configurationmanager.aspx
http://blogs.technet.com/b/configmgrteam/archive/2012/04/12/software-update-content-cleanup-in-system-center-2012-configurationmanager.aspx

By default, computer restart is blocked outside of an assigned maintenance window, but
this can be changed in the deployment settings. Multiple maintenance windows can be
assigned to computers, and the start and end times may or may not overlap. Be careful that
overlapping maintenance windows do not overlap in such a way that the computers do not
come out of maintenance mode. Figure 3-8 shows the settings available for scheduling a
maintenance window called Software Update Maintenance Windows - Production. It is a good
idea to keep maintenance windows for software updates separate from maintenance windows
used for other purposes so that administrators have more control over when software updates
deploy and they will not conflict during other deployments.

FIGURE 3-8 Software Update Maintenance Windows settings

The maintenance window should be longer than the total run time of all the updates.
Check the maximum run time for each software update before you set the maintenance
window, as shown in Figure 3-9.

FIGURE 3-9 Software update maximum run time

CHAPTER 3 Managing software updates 55

This page intentionally left blank

Monitoring software updates

o prove that the Microsoft System Center 2012 R2 Configuration Manager Software
Updates feature is doing its part in keeping an organization compliant, you can use

monitoring to assure management or upper levels, even the IT auditors, that your patch
management is working as expected. Monitoring patch compliance properly has been a pain
point for Configuration Manager administrators because the results displayed on the console
look different than they do in built-in reports.

This chapter describes the different aspects of monitoring, explains how to use monitoring,
and covers different compliance data. The topics that are discussed include the following:

 Compliance accuracy

 Tracking compliance data

 Built-in reports

Compliance accuracy

After software updates are deployed, client systems go through different compliance states. To
assess compliance accuracy, administrators require deep understanding of the software update
scan workflow, how to track compliance data, and how to customize reports using SQL
reporting services. To monitor and track software update deployments, you can use the
administrator console, deployment monitoring tools from a System Center 2012 R2
Configuration Manager Toolkit, or reports.

Compliance states from the console
When software updates sync with Microsoft Updates in your Configuration Manager
environment, newly added updates in the Configuration Manager console initially show zero
values under the Required column. This happens when the client fails to complete the software
update scan and send its state messages back to the management point and then to the site
server. When the client completes its software update scan and sends its compliance state,
state messages are inserted into the site database. The compliance data is then displayed in
the Configuration Manager console.

CHAPTER 4 Monitoring software updates 57

Four types of compliance states can be displayed in the Configuration Manager console:

 Installed This means the software update is applicable and the client already has
the update installed.

 Not Required This means the software update is not applicable to the client
system.

 Required This means the software update is applicable but is not yet installed.
Alternatively, it may mean that the software update was installed but the state
message has not yet been uploaded to the site server.

 Unknown This means either that the client system did not complete the software
scan or the site server did not receive the scan status from the client system.

Being able to properly assess compliance status requires some basic understanding of how
compliance percentages are calculated. For example, Figure 4-1 shows All Software Updates
selected under the Software Updates node in the administrator console. The selected item
shows two required updates, two installed updates, and 40 percent compliance.

FIGURE 4-1 Software update compliance states

If you do the math, it doesn’t seem to add up correctly: if there are two required and two
installed updates, how can the item be 40 percent compliant? To understand this, you need to
factor in the additional fields Not Required and Unknown. In this case, one system is reporting
the status as unknown and zero systems are reporting as not required. If you do the math
again, you realize that two out of five are compliant, so 40 percent of the systems are
compliant.

If the status of one of the unknown systems changes to not required, as shown in Figure 4-2,
two of five systems are compliant, two are still required, and one is not required. Now if you do the
math, three out of five are complaint, so 60 percent of the systems are compliant. Not required
status is calculated as part of the compliant systems.

58 CHAPTER 4 Monitoring software updates

FIGURE 4-2 Software update compliance states with additional Not Required and Unknown columns

Managing client health
Client Status is a built-in feature in the Configuration Manager console. It provides robust
information about the state of each service. Before you can take advantage of the Client Status
feature, you must configure your Configuration Manager site to specify appropriate
parameters that are used to monitor and automatically remediate Configuration Manager
clients. You can also configure alerts if client activity falls below a specified threshold. To
configure and monitor Client Status in the Configuration Manager console, in the Monitoring
workspace, click Client Status. The overall client status details with the number of active clients
that passed client check and number of active clients that failed client check displays in the
right side of the console. Inactive clients or computers with no Configuration Manager client
installed are also indicated, as shown in Figure 4-3.

FIGURE 4-3 Overall Client Status view

There are two configuration settings for Client Status: Client Activity and Client Check.
Client Activity displays active and inactive systems and computers with no Configuration
Manager client installed. To configure the Client Activity setting, complete the following steps:

1. In the Configuration Manager console, navigate to the Monitoring workspace.

CHAPTER 4 Monitoring software updates 59

2. In the Monitoring workspace, right-click Client Status and select Client Status Settings.

3. Under Client Status Settings Properties, configure different client status checks and
their duration.

If none of the criteria are met, the client will be marked as inactive. These settings fall under
Client Activity. You can monitor Client Activity as shown in Figure 4-4 by expanding the Client
Status node and selecting the Client Activity node in the left pane of the console. The Client
Activity node provides overall client activity for all systems located in the All Desktop and
Server Clients collection.

FIGURE 4-4 Client Activity node

Client Check displays clients that passed or failed the evaluation check. To configure the
settings for Client Check, complete the following steps:

1. In the Configuration Manager console, go to the Monitoring workspace.

2. In the Monitoring workspace, expand the Client Status folder, and click Client Check.

In the Client Check node, you can monitor clients that passed the check, clients that failed
the check, and clients with no results, as shown in Figure 4-5. This evaluation check is based on
the following client evaluation rules, which run as part of the task scheduler every day at
midnight by default. If any of the checks fail, then Client Evaluation (CCMEval.exe)
automatically tries to remediate and fix the issue.

 Verify/remediate WMI service startup and status

 WMI repository read/write test

 Verify/remediate client WMI provider

 WMI repository integrity test

 WMI event sink test

 Microsoft policy platform WMI integrity test

 Verify/remediate BITS startup type

60 CHAPTER 4 Monitoring software updates

 Verify/remediate client prerequisites

 Verify/remediate client installation

 Verify/remediate SMS agent host service startup and status

 Verify/remediate Microsoft Policy Platform service startup and status

 Verify/remediate antimalware service startup and status

 Verify/remediate Windows Update service startup type

 Verify/remediate Configuration Manager Remote Control service startup and status

 Verify/remediate Configuration Manager Proxy service startup and status

 Verify/remediate SQL CE database is healthy

FIGURE 4-5 Client Check node

You can view the rule that a client ran and its result by clicking on the number of clients
that passed or failed the check (for example, 5 Client Check Passed), which is located under
Collection in Figure 4-5. When you click this link, another temporary node opens on the left
side of the console under the Assets And Compliance workspace. Expand Devices, and then
click the Clients That Passed Client Check From All Desktop And Server Clients node, as shown
in Figure 4-6. On the right side of the console, select the client, and at the bottom of the
workspace, click the Client Check Detail tab to view the rule name and result, as shown in
Figure 4-6.

CHAPTER 4 Monitoring software updates 61

FIGURE 4-6 Client Check Detail tab

Tracking compliance data

The Configuration Manager Software Updates feature uses state messages to track compliance
data. State messaging is new in Configuration Manger and provides client status for software
updates, compliance settings, and network access protection. Additionally, administrators can
use status messages to track the flow of data through Configuration Manager. State messages
are very small and provide specific information regarding the condition of a Configuration
Manager client. Understanding state messaging is important since critical software update data
relies on it. Figure 4-7 describes the workflow of state messaging for software update
compliance data.

62 CHAPTER 4 Monitoring software updates

FIGURE 4-7 Software update state messages workflow

You can also run the following SQL query in the Configuration Manager database to get
the list of state messages and their descriptions, as shown in Figure 4-8:
Select * from v_StateNames where TopicType in (500, 501)

FIGURE 4-8 SQL query for state names

Software update summarization
The software update summarization task updates the status of software updates in the console
for all clients in the Configuration Manager hierarchy. The summarizer does not provide real-
time information in the console because it runs every hour by default, and there are other
processes running in the background to collect the information from the SQL database and
display it in the console. To initiate the data summarization, in the Software Library workspace,

CHAPTER 4 Monitoring software updates 63

click Software Update, click All Software Updates, and then click Run Summarization on the
ribbon.

Software update summarization runs the spTask_SUM_UpdateStatusSummarizer stored
procedure in the background. This stored procedure processes updates in a batch of the top
200 configuration items for best performance since less than 100 will impact overall
performance while more than 1,000 will make each loop longer and potentially block other
processes. It will also exclude from the summarization any configuration items that are already
up to date. You can monitor software update status summarization in Statesys.log on the
primary site server using the following entries:
SQL MESSAGE: spTask_SUM_UpdateStatusSummarizer - 12:36:52:017:

spTask_SUM_UpdateStatusSummarizer started with watermark:0 SMS_STATE_SYSTEM 12/5/2014

12:37:05 PM 6816 (0x1AA0)

SQL MESSAGE: spTask_SUM_UpdateStatusSummarizer - 12:36:52:200: processed to:37114,total

processed: 5 SMS_STATE_SYSTEM 12/5/2014 12:37:05 PM 6816 (0x1AA0)

SQL MESSAGE: spTask_SUM_UpdateStatusSummarizer - 12:36:52:203: processed to:37166,total

processed: 7 SMS_STATE_SYSTEM 12/5/2014 12:37:05 PM 6816 (0x1AA0)

SQL MESSAGE: spTask_SUM_UpdateStatusSummarizer - 12:36:52:327:

spTask_SUM_UpdateStatusSummarizer done. watermark:NULL,total count:7 SMS_STATE_SYSTEM

 12/5/2014 12:37:05 PM 6816 (0x1AA0)

Note how many configuration items have been processed and the time it took to complete
in Statesys.log entries. You can confirm the completion of the software update summarizer
task by reviewing the entry “spTask_SUM_UpdateStatusSummarizer done” in the same log.

Alerts
The new alerts feature in System Center 2012 R2 Configuration Manager is completely
different than Microsoft System Center Operations Manager (SCOM) monitoring. Alerts in
Configuration Manager are generated by some operations when a specific condition occurs.
You can view and monitor alerts in the Monitoring workspace of the Configuration Manager
console. You can also configure subscriptions for selected alerts to be emailed to you
automatically. There are different types of alert state in the Configuration Manager console:

 Active When the condition of an alert is met, the alert becomes active.

 Disabled When an alert is disabled by the Configuration Manager administrator, it
does not process any updates and the status of the alert does not change.

 Never triggered This alert state means the condition of the alert was never met, so
it was never triggered.

 Postponed A postponed active alert won’t indicate an evaluation of the state of an
alert until a specified date.

 Canceled An alert is canceled when its conditions are no longer met, although the
alert is still enabled and auto-resolved when the issue is fixed.

64 CHAPTER 4 Monitoring software updates

You can configure alerts for different objects in Configuration Manager. For software
updates, you can set an alert for a low deployment success rate of an update group or
individual update deployments. Figure 4-9 shows the Alerts page of the Deploy Software
Updates Wizard. You can set an alert if the client compliance percent falls below a certain
percentage after a certain deadline. For example, if your deployment is set to run as soon as
possible and you set the offset value from the deadline to seven days, the alert generation
time will be seven days from the deadline time.

FIGURE 4-9 Deploy Software Updates Wizard

Monitoring an individual update
You can monitor an individual update in the Monitoring workspace of the Configuration
Manager console. Select the Deployments node in the Monitoring workspace to review all the
deployments in the console. This includes all types of deployments, such as application or
software updates. Figure 4-10 shows completion statistics for software update KB2939576.

CHAPTER 4 Monitoring software updates 65

FIGURE 4-10 Deployment completion statistics

Click View Status under Completion Statistics to view the compliant status of the
deployment. There are four tabs under Deployment Status, as shown in Figure 4-11. Click the
In Progress tab to view the systems that are either installing the update or pending system
restart. This tab also shows the details of the system, such as device name, last logged on user,
last enforcement state, and last enforcement time. Click the More Details link located in lower-
right side of the window to open the Asset Message window, which includes two tabs: Details
and Software Updates. The Details tab provides a summary of the update, and the Software
Updates tab provides additional details of the software updates, such as the article ID, the
bulletin ID, and more.

FIGURE 4-11 Deployment status

After the system receives the deployment and installs the update, it then provides
notification in the task bar informing the end user that the updates are downloading and
installing. If an update requires a reboot, another notification appears with a countdown
message, as shown in Figure 4-12. The countdown time depends on the time set in the
Configuration Manager site settings.

66 CHAPTER 4 Monitoring software updates

FIGURE 4-12 Software Center restart countdown notification

Many Configuration Manager client side features are also involved during software update
deployment. Figure 4-13 shows the workflow of the main features involved during a software
update deployment on the client side.

FIGURE 4-13 Configuration Manager client side software update deployment flowchart

Monitoring a deployment
Monitoring an entire deployment that includes more than one update is almost the same as
monitoring an individual update. You can view the entire deployment by clicking the
Deployments node in the Monitoring workspace. Select the deployment on the right side of
the console to view completion statistics as described in the previous section, “Monitoring an
individual update.” Click View Status under Completion Statistics. For example, Figure 4-14

CHAPTER 4 Monitoring software updates 67

shows the completion statistics for the selected deployment called “Windows 7 Patches.” It also
shows five systems are compliant out of total asset count five.

FIGURE 4-14 Deployment completion statistics for an entire deployment

Click View Status under Completion Statistics to review the overall status of the
deployment, including the compliant, in progress, error, and unknown status of the
deployment, as well as asset details, including all systems in a specific state (see Figure 4-15).

FIGURE 4-15 Deployment status of an entire deployment

Double-click the number in the Total Assets column to open another temporary node with
a list of systems and their status, as shown in Figure 4-16. Click each system to review its
summary, client activity detail, and client check detail and to determine when a client
requested a policy, a heartbeat Data Discovery Record (DDR), and a hardware scan.

68 CHAPTER 4 Monitoring software updates

FIGURE 4-16 Compliant status devices from deploying Windows 7 Patches to all systems

Deployment Monitoring Tool
The Configuration Manager 2012 R2 toolkit can be used to monitor software updates and
other deployments. You can download the toolkit, including the Deployment Monitoring Tool,
from http://www.microsoft.com/en-us/download/details.aspx?id=36213. This toolkit can be
installed on any system running Windows 7 or higher. The Deployment Monitoring Tool is a
client side tool that allows an administrator to monitor all deployments on a specific system.
When the toolkit is installed, the Deployment Monitoring Tool (DeployMonitoringTool.exe)
can be found under the default installation path C:\Program Files (x86)\ConfigMgr 2012
Toolkit R2\ClientTools. By default, the Deployment Monitoring Tool connects to the local
machine where the toolkit is installed. To connect to the remote machine and monitor the
deployment, click Actions, click Connect To Remote Machine, and then enter the machine
name and proper credentials, as shown in Figure 4-17.

CHAPTER 4 Monitoring software updates 69

http://www.microsoft.com/en-us/download/details.aspx?id=36213

FIGURE 4-17 The Deployment Monitoring Tool and the Remote Connection Properties dialog box

In the Deployment Monitoring Tool, there are three tabs: Client Properties, Deployments,
and All Updates.

 Client Properties This tab provides information about the machine name, the
operating system and its version, physical and virtual memory, last bootup time, last
policy refresh cycle, and many other details.

 Deployments This tab provides a list of deployments targeted to the system,
deadline, state, and type of deployment.

 All Updates This tab provides a list of individual updates with article ID, bulletin ID,
status and title of the update, and scan time.

There is list of deployments on the Deployments tab, as shown in Figure 4-18. Click an
individual deployment to review its properties, policy, evaluation, and other details. In Figure
4-18, the SUM eBook – Microsoft Software Updates - 2014-12-08 05:06:30 PM is highlighted
and the Evaluation tab is selected. The current status of the deployment is Missing. If more
than one update is associated with the deployment, each update is listed on the Evaluation
tab. To determine the bulletin ID, article ID, title, and other details for an update listed in the
Value column on the Evaluation tab, use the following SQL query:
Select BulletinID, ArticleID, Title, DateRevised, DatePosted, ModelName, CI_ID,

CI_UniqueID from v_UpdateInfo where ModelName = '<insert model name>'

NOTE Replace ModelName in the above query with the model name similar to the string
'Site_67521D5D-8C56-43E4-AD90-F43BFDF88E8A/SUM_ced3293c-2613-41ff-bd6a-
d8525504c035'.

70 CHAPTER 4 Monitoring software updates

FIGURE 4-18 The Deployment Monitoring Tool showing deployment status

Different states are listed under each of the deployments in the Deployment Monitoring
Tool. For example, a state of a deployment might be set to
ASSIGNMENT_EVALUATION_ASSIGNMENT_EVALUATE_FAILED. This means that either the
client or the server is having an issue evaluating updates. To determine whether it is a server or
client side issue, review the client logs located in the CCM\Logs folder, such as
WUAHandler.log, ScanAgent.log, UpdateDeployment.log, or WindowsUpdate.log. If many
clients are experiencing the same issue, it is most likely a server side problem. If only a few
clients are having an issue, it could be related to a client side issue. In any case, logs can
provide more details.

On the client side, review the following logs:
WUAHandler.log:

OnSearchComplete - Failed to end search job. Error = 0x80072ee2. WUAHandler

 12/9/2014 4:19:31 PM 1904 (0x0770)

Scan failed with error = 0x80072ee2. WUAHandler 12/9/2014 4:19:31 PM

 1904 (0x0770)

ScanAgent.log:

ScanJob({1548AD46-F353-46DC-8312-783F2298BD8A}): CScanJob::OnScanComplete -Scan Failed

with Error=0x80072ee2 ScanAgent 12/9/2014 4:20:34 PM 3552 (0x0DE0)

ScanJob({1548AD46-F353-46DC-8312-783F2298BD8A}): CScanJobManager::OnScanComplete- failed

at CScanJob::OnScanComplete with error=0x80072ee2 ScanAgent 12/9/2014 4:20:34 PM

 3552 (0x0DE0)

CHAPTER 4 Monitoring software updates 71

WindowsUpdate.log:

2014-12-09 16:20:34:430 124 320 Misc WARNING: Send failed with hr

= 80072ee2.

2014-12-09 16:20:34:430 124 320 Misc WARNING: SendRequest failed

with hr = 80072ee2. Proxy List used: <(null)> Bypass List used : <(null)> Auth Schemes

used : <>

2014-12-09 16:20:34:430 124 320 Misc FATAL: SOAP/WinHttp -

SendRequest: SendRequestUsingProxy failed. error 0x80072ee2

2014-12-09 16:20:34:430 124 320 PT + Last proxy send request

failed with hr = 0x80072EE2, HTTP status code = 0

All of the logs show the same error code, 0x80072ee2. The Error Lookup tool in CMTrace
converts the error code into a meaningful name and reveals that it indicates that the operation
timed out. This means the client is timing out when trying to scan against the Windows Server
Update Services (WSUS) server, so most likely this is a server side issue.

Review the WCM.log on a primary site server.
WCM.log on Primary site server:

Verify Upstream Server settings on the Active WSUS Server

 SMS_WSUS_CONFIGURATION_MANAGER 12/9/2014 3:25:29 PM 1152 (0x0480)

System.Data.SqlClient.SqlException (0x80131904): A network-related or instance-specific

error occurred while establishing a connection to SQL Server. The server was not found

or was not accessible. Verify that the instance name is correct and that SQL Server is

configured to allow remote connections. (provider: Named Pipes Provider, error: 40 -

Could not open a connection to SQL Server)~~ at

Microsoft.UpdateServices.Internal.BaseApi.SoapExceptionProcessor.DeserializeAndThrow(Soa

pException soapException)~~ at

Microsoft.UpdateServices.Internal.DatabaseAccess.AdminDataAccessProxy.ExecuteSPGetConfig

uration()~~ at

Microsoft.UpdateServices.Internal.BaseApi.UpdateServerConfiguration.Load()~~ at

Microsoft.UpdateServices.Internal.ClassFactory.CreateWellKnownType(Type type, Object[]

args)~~ at Microsoft.UpdateServices.Internal.ClassFactory.CreateInstance(Type type,

Object[] args)~~ at

Microsoft.UpdateServices.Internal.BaseApi.UpdateServer.GetConfiguration()~~ at

Microsoft.SystemsManagementServer.WSUS.WSUSServer.SetUpstreamServerSettings(Boolean

SyncFromMicrosoftUpdate, Boolean ReplicaServer, String UpstreamWSUSServerName, Int32

UpstreamWSUSServerPortNumber, Boolean UseSSL, Boolean HostBinariesOnMU, Int32

ReportingLevel, Int32 MaximumAllowedComputers)~~ClientConnectionId:00000000-0000-0000-

0000-000000000000SMS_WSUS_CONFIGURATION_MANAGER 12/9/2014 3:26:29 PM 1152

(0x0480)

Remote configuration failed on WSUS Server. SMS_WSUS_CONFIGURATION_MANAGER

 12/9/2014 3:26:29 PM 1152 (0x0480)

72 CHAPTER 4 Monitoring software updates

Based on the WCM.log, the issue seems to be related to SQL Server. Verify that the SQL
Server service (MSSQLSERVER) is up and running and that you can connect to the SQL
database. Next make sure WSUS is up and running. In this case, it turned out that the WSUS
service on the primary site server was stopped, so the client could not scan against its WSUS
server. After the WSUS service was started, the software update scan started working on the
client.

Built-in and custom reports

Microsoft System Center 2012 R2 Configuration Manager includes a number of different built-
in reports that you can use to retrieve information from the Configuration Manager database.
These reports provide great visibility into your overall environment. Configuration Manager
uses Microsoft SQL Server as its backend database engine. During hardware and software
scans, Configuration Manager scans the local machine and sends the information collected to
the backend database to be stored there. Since the data collected resides in a SQL database,
Transact-SQL (T-SQL) queries can be used to query the database and retrieve information
about the data stored in it.

There is a total of 469 built-in reports in the Configuration Manager console. Of these, 30
built-in reports are just for software updates. These reports are helpful for troubleshooting any
kind of issue related to software updates. There are specific reports just for software update
troubleshooting as well.

Software update reports
To run and view software update reports, complete the following steps:

1. In the Configuration Manager console, in the Monitoring workspace, click Reporting.

2. Click Reports. All of the available reports display on the right side of the console.

3. Click the Add Criteria field, select Category, and then select Add.

4. In the Category Contains field, type Software Update, and then click Search to display
all reports related to software updates, as shown in Figure 4-19.

CHAPTER 4 Monitoring software updates 73

FIGURE 4-19 Software update reports

5. Sort by the Name column, and select the first report, Compliance 1 – overall
compliance.

6. Right-click Compliance 1 – Overall Compliance and select Run.

7. Specify the Update Group and Collection values, and then click View Report to display
overall compliance, as shown in Figure 4-20 for the SUM eBook – Software Update
Group.

FIGURE 4-20 Overall compliance report

The Overall Compliance report shows the percentage of compliant and non-compliant
systems, count of computers in each category, and total clients in the collection you selected.
Click either Compliant or Non-compliant state to drill down in the report and open another
report called Compliance 7 – Computers in a specific compliance state for an update group
(secondary). This report lists the computer names, assigned site, and client version for the state
you selected. Select the computer name to open the report called Compliance 5 – Specific
Computer, which displays all software updates that are either required or installed on the
computer you selected, so you can determine which updates are not installed and take
appropriate action.

74 CHAPTER 4 Monitoring software updates

You can also review the Scan 1 – Last Scan States By Collection report located under the
Software Update – D scan node to determine how many clients are running into a software
update scan issue. Another useful report for tracking software update deployment is
Management 3 – Updates In A Deployment. This report asks for the deployment name and
returns all of the updates that are part of the deployment along with the number of updates
installed, required, not required, unknown, failed, and pending.

Client status reports
To view and run client status reports, complete the following steps:

1. In the Configuration Manager console, in the Monitoring workspace, click Reporting.

2. Expand Reports, and then click Client Status.

3. On the right side of the console, right-click Client Status Summary Report and select
Run.

4. Specify the collection value and the client version, and then click View Report to
display a graphic view of active clients that passed client check or reported no results,
as shown in Figure 4-21

FIGURE 4-21 Client status summary report

You can also review other useful reports such as Clients With Failed Client Check Details,
Inactive Client Details, and Client Remediation Summary.

Custom reports
Configuration Manager creates several database tables and views during the site server
installation. These views and tables are queried by built-in queries to generate the reports. If
the default reports are not sufficient for your needs, however, you can generate custom
reports by creating custom T-SQL queries. If you are familiar with SQL queries then it is not
difficult to create a custom report using Report Builder. This section discusses the underlying
tables and views used for querying the database and generating custom reports.

CHAPTER 4 Monitoring software updates 75

This section features a couple of sample customer reports and how to create them. For
step-by-step details on how to create custom reports in Configuration Manager, download the
free ebook Microsoft System Center: Configuration Manager Field Experience from
http://blogs.msdn.com/b/microsoft_press/archive/2013/10/03/free-ebook-2-in-this-series-
microsoft-system-center-configuration-manager-field-experience.aspx and review Chapter 2
and Chapter 4.

When you want to determine how many computers in your environment are vulnerable
and non-compliant, a single built-in report may not provide all the details you need. Since you
may not be approving all the updates Microsoft releases every month, you’ll want to make
sure computers are compliant against the software update you approved within the
Configuration Manager console. The following SQL query provides a list of computers, total
targeted updates, total installed, total required, percent compliant, number of missing updates,
and update status, as shown in Figure 4-22.
SELECT

 rs.Netbios_name0 AS 'Computer',

SUM(CASE WHEN UCS.status=2 and ctm.ResourceID IS NOT NULL THEN 1 ELSE 0 END) AS

TotalTargeted,

SUM(CASE WHEN UCS.status=3 THEN 1 ELSE 0 END) AS TotalInstalled,

SUM(CASE WHEN UCS.status=2 THEN 1 ELSE 0 END) AS TotalRequired,

SUM(CASE WHEN ((UCS.status=2) or (UCS.status=3)) THEN 1 ELSE 0 END) AS Total,

 (STR((SUM(CASE WHEN UCS.status=3 THEN 1 ELSE 0 END) *100.0/SUM(CASE WHEN

((UCS.status=2) or (UCS.status=3)) THEN 1 ELSE 0 END)),5)) + '%' AS '%

Compliant',

SUM(CASE WHEN UCS.status=2 THEN 1 ELSE 0 END) AS 'Missing Updates',

 CASE

 WHEN (SUM(CASE WHEN UCS.status=2 THEN 1 ELSE 0 END)) > 0 THEN 'Non-Compliant'

 ELSE 'Compliant'

 END AS 'Updates Status',

SUM(CASE WHEN UCS.status=2 and ctm.ResourceID IS NOT NULL THEN 1 ELSE 0 END) AS

'Approved Updates',

 CASE

 WHEN gcs.UserName0 IS NULL THEN 'N/A'

 ELSE gcs.UserName0

 END AS 'Last Logged On User',

 CASE

 WHEN os.CSDVersion0 IS NULL THEN os.caption0

 WHEN os.caption0 IS NULL THEN 'N/A'

 ELSE os.caption0 + ' ' + os.CSDVersion0

 END AS OperatingSystem,

 rs.Client_Version0 AS 'Client Version',

 ws.lasthwscan AS 'Last Hardware Scan',

 uss.LastScanPackageLocation AS 'Last Scan Location',

 uss.LastScanPackageVersion AS 'Last Scan Pakage',

 st.StateName AS 'Status',

76 CHAPTER 4 Monitoring software updates

http://blogs.msdn.com/b/microsoft_press/archive/2013/10/03/free-ebook-2-in-this-series-microsoft-system-center-configuration-manager-field-experience.aspx
http://blogs.msdn.com/b/microsoft_press/archive/2013/10/03/free-ebook-2-in-this-series-microsoft-system-center-configuration-manager-field-experience.aspx

DATEDIFF(D, OS.LastBootUpTime0, GETDATE()) 'Last Boot (Days)'

FROM

 v_ClientCollectionMembers ccm

 LEFT JOIN v_R_System rs on rs.ResourceID = ccm.ResourceID

 LEFT JOIN v_UpdateComplianceStatus UCS on UCS.ResourceID = ccm.ResourceID

 LEFT OUTER JOIN v_CITargetedMachines ctm on ctm.CI_ID=UCS.CI_ID and ctm.ResourceID

= rs.ResourceID

 INNER JOIN v_GS_COMPUTER_SYSTEM GCS on GCS.ResourceID = rs.ResourceID

 JOIN v_UpdateInfo ui on ui.CI_ID=UCS.CI_ID

 JOIN v_CICategories_All catall2 on catall2.CI_ID=ui.CI_ID

 JOIN v_CategoryInfo catinfo2 on catall2.CategoryInstance_UniqueID =

catinfo2.CategoryInstance_UniqueID and catinfo2.CategoryTypeName='UpdateClassification'

 INNER JOIN v_gs_workstation_status ws on ws.resourceid=rs.resourceid

 INNER JOIN v_UpdateScanStatus uss on ws.resourceid = uss.ResourceID

 LEFT JOIN v_StateNames st on st.TopicType = 501 and st.StateID = (CASE WHEN

(ISNULL(uss.LastScanState, 0)=0 and Left(ISNULL(rs.Client_Version0, '4.0'),

1) < '4') THEN 7 ELSE ISNULL(uss.LastScanState, 0) END)

 JOIN v_Gs_Operating_System OS on ws.resourceid = OS.ResourceID

WHERE

 ccm.CollectionID = '<REPLACE WITH Collection ID>'

GROUP BY

 rs.Netbios_name0,

 gcs.UserName0,

 rs.Client_Version0,

 ws.lasthwscan,

 uss.LastScanPackageLocation,

 uss.LastScanPackageVersion ,

 st.StateName,

 OS.LastBootUpTime0,

 os.caption0,

 os.CSDVersion0

 ORDER BY [Computer]

NOTE Replace CollectionID with the collection ID from your Configuration Manager
environment.

CHAPTER 4 Monitoring software updates 77

FIGURE 4-22 SQL query results of a custom software update report

You can use the same SQL query with Report Builder to create custom reports for
Configuration Manager. You can save an .RDL file generated from Report Builder and import
it into Configuration Manager SQL Server Reporting Services (SSRS) Point http://<ConfigMgr
Server name>/Reports so you can access it directly from the web browser, as shown in
Figure 4-23.

FIGURE 4-23 Custom software update compliance report results

In the field, different customers have different business requirements for monitoring
software update compliance in the Configuration Manager environment. For example, one
customer may want a custom report that provides the following information:

 Number of updates required for the computers in a specific collection

 Number of critical and non-critical updates

 Computers pending reboot

The following custom SQL query can be used to create a report using SSRS. The query can
be customized so that administrators can use a drop-down menu in the report to select the
appropriate collection to compare to hardcoding in the query.
--Remove previous temporary table if exists

IF OBJECT_ID(N'TempDB.DBO.#temp_RequiredCollectionMembers') IS NOT NULL

BEGIN

 DROP TABLE #temp_RequiredCollectionMembers

END

--Create table to store key machine fields

CREATE TABLE #temp_RequiredCollectionMembers(

 [ResourceID] [int] NOT NULL,

 [Name] [nvarchar](50) NULL,

 [Last Uptime] [datetime] NULL,

 [Pending Reboot] [nvarchar](3) NOT NULL,

78 CHAPTER 4 Monitoring software updates

 PRIMARY KEY (ResourceID)

 --CONSTRAINT RequiredCollectionMembers_ResourceID_PK PRIMARY KEY NONCLUSTERED

(ResourceID)

)

--Insert query results into Temporary table

INSERT INTO #temp_RequiredCollectionMembers

SELECT DISTINCT

 ColMembers.ResourceID,

 ColMembers.Name,

 OS.LastBootUpTime0 'Last Uptime',

 CASE

 WHEN UIReboot.LastEnforcementMessageID IS NULL THEN 'No'

 ELSE 'Yes'

 END AS 'Pending Reboot'

FROM v_FullCollectionMembership as ColMembers

 LEFT JOIN v_GS_OPERATING_SYSTEM AS OS ON

 ColMembers.ResourceID = OS.ResourceID

 LEFT JOIN (SELECT DISTINCT UCSR.ResourceID, UCSR.LastEnforcementMessageID

 FROM v_Update_ComplianceStatusReported AS UCSR

 WHERE UCSR.LastEnforcementMessageID in (5,9)) AS

UIReboot ON

 ColMembers.ResourceID = UIReboot.ResourceID

WHERE ColMembers.ResourceType = 5 and

 ColMembers.CollectionID = '<Collection ID>'

--Remove previous temporary table if exists

IF OBJECT_ID(N'TempDB.DBO.#temp_UpdatesRequired') IS NOT NULL

BEGIN

 DROP TABLE #temp_UpdatesRequired

END

--Create table to store key update information per machine

CREATE TABLE #temp_UpdatesRequired(

 [ResourceID] [int] NOT NULL,

 [New Status] [nvarchar](50) NULL,

 [CI_ID] [int] NOT NULL,

 [UpdateClass] [nvarchar] (255) NULL,

 [SeverityLevel] [nvarchar](255) NOT NULL

)

--Insert query results into Temporary table

 INSERT INTO #temp_UpdatesRequired

 SELECT

CHAPTER 4 Monitoring software updates 79

 UCSA.ResourceID,

 CASE UCSA.STATUS

 WHEN '0' THEN 'Unknown'

 WHEN '2' THEN 'Required'

 END AS 'New Status',

 UI.CI_ID,

 UC.CategoryInstanceName as UpdateClass,

 Case UI.Severity

 WHEN '10' THEN 'Critical'

 WHEN '8' THEN 'Important'

 WHEN '6' THEN 'Moderate'

 WHEN '2' THEN 'Low'

 WHEN '0' THEN 'None'

 ELSE 'Unknown'

 END AS SeverityLevel

 FROM v_Update_ComplianceStatusReported UCSA

 INNER JOIN v_UpdateInfo UI ON

 UCSA.CI_ID = UI.CI_ID

 INNER JOIN (SELECT CI_ID, CategoryInstanceName

 FROM v_CICategoryInfo_All

 WHERE CategoryTypeName =

'UpdateClassification') as UC ON

 UI.CI_ID = UC.CI_ID

 WHERE ucsa.Status = 2 AND

 ui.CIType_ID in (1,8) AND

 ui.IsHidden=0 and

 UI.IsExpired=0 and

 ui.IsSuperseded=0

CREATE NONCLUSTERED INDEX [#temp_UpdatesRequired_IDX1] ON [#temp_UpdatesRequired]

(

 [ResourceID] ASC

)

CREATE NONCLUSTERED INDEX [#temp_UpdatesRequired_IDX2] ON [#temp_UpdatesRequired]

(

 [UpdateClass] ASC

)

CREATE NONCLUSTERED INDEX [#temp_UpdatesRequired_IDX3] ON [#temp_UpdatesRequired]

(

 [SeverityLevel] ASC

)

CREATE NONCLUSTERED INDEX [#temp_UpdatesRequired_IDX4] ON [#temp_UpdatesRequired]

(

 [ResourceID] ASC,

80 CHAPTER 4 Monitoring software updates

[UpdateClass] ASC,

[SeverityLevel] ASC

)

--Produce results query

SELECT

Results.Name,

-- Results.[Last Uptime],

Results.[Pending Reboot],

--updates.ArticleID,

--updates.Title,

COUNT(*) AS 'Total Patches Required',

SUM(case when UpdateClass = 'Critical Updates' then 1 when SeverityLevel =

'Critical' then 1 else 0 end) as 'Critical Patches Required',

SUM(case when UpdateClass = 'Critical Updates' then 0 when SeverityLevel =

'Critical' then 0 else 1 end) as 'Non-Critical Patches Required'

FROM #temp_RequiredCollectionMembers as Results

INNER JOIN #temp_UpdatesRequired as Updates ON

Results.ResourceID = Updates.ResourceID

GROUP BY

Results.Name,

Results.[Last Uptime],

Results.[Pending Reboot]

NOTE Replace <Collection ID> with appropriate CollectionID.

CHAPTER 4 Monitoring software updates 81

This page intentionally left blank

Software updates automation

his chapter covers some of the methods to automate various tasks within the Software
Updates feature of System Center 2012 Configuration Manager. Through the use of

automation to deploy software updates, significant time and money savings can be realized.
There are a number of predictably recurring software update deployment activities and
maintenance tasks that can be automated. Automation within any technology typically
translates into administrative overhead savings, and therefore into expenditure savings within
the IT organization. Automatic deployment rules can be used to systematically create and
maintain software update groups, dynamically create deployments meeting specific criteria
using defined options on a recurring schedule, and maintain the software update database.
Windows PowerShell is a powerful tool that can and should be utilized for automating
additional tasks, such as keeping the Windows Server Update Services (WSUS) database
optimized, as well as creating, modifying, deleting, or updating software update groups,
deployments, and packages. Implementing automation within the Software Updates feature of
Configuration Manager can ultimately reduce administrative workload, increase deployment
efficiency, and reduce the potential for human error.

Understanding automatic deployment rules

Automatic Deployment Rules is a new feature that was first introduced in the RTM version of
System Center 2012 Configuration Manager. By providing administrators with the ability to
design a customizable and automated solution to deliver software updates, automatic
deployment rules can significantly reduce the amount of administrative overhead required
during the monthly software update deployment process. Automatic deployment rules
automatically download software updates on a recurring interval from as often as once per
hour to as little as once per year, using a fully customizable set of search criteria. Automatic
deployment rules are most commonly used to deploy monthly software updates (commonly
referred to as “Patch Tuesday”) as well as System Center Endpoint Protection definition
updates.

When an automatic deployment rule runs, the updates that meet an administratively
defined set of criteria are added to either an existing software update group or to a new
software update group, which is created automatically by the rule. In the Create Automatic
Deployment Rule Wizard, if an existing software update group is selected, all existing updates
that currently exist in the group from the previous execution of each automatic deployment

CHAPTER 5 Software updates automation 83

rule are removed prior to adding the newly matched updates. The automatic deployment rule
then automatically downloads all associated software update content for each of the updates
into the specified software update package, distributes the package to the assigned
distribution points, and creates a required deployment to the target collection specified in the
wizard. An automatic deployment rule can also be configured to create the deployment in a
disabled state so that the deployment can be reviewed for accuracy and manually enabled
once it is confirmed to meet the desired outcome. While the deployment is disabled, the
disabled deployment can also be used to report on compliance in the target collection.

The criteria that is configurable within an automatic deployment rule is as follows:

 The target collection to deploy the updates to

 Whether to automatically enable the deployment or leave it disabled

 The criteria of the software updates to include in the deployment

 The evaluation and deployment schedules for the deployment

 The user experience for the deployment

 The download settings for the content included in the deployment

NOTE You cannot create a software update group manually and then create an
automatic deployment rule to add new updates to the manually created group.

Creating automatic deployment rules

To create a new automatic deployment rule, right-click the Automatic Deployment Rules node
in the Software Library located under the Software Updates node within the Configuration
Manager console. The Create Automatic Deployment Rule Wizard takes you through each of
the settings and optionally allows you to save the settings as a deployment template to be
used when creating additional automatic deployment rules in the future.

The first step in the Create Automatic Deployment Rule Wizard is to provide a name and,
optionally, a description for the automatic deployment rule. Next, a previously created and
saved template or a built-in template can be used to automatically define a set of criteria for
the automatic deployment rule. System Center Configuration Manager 2012 R2 comes with
two built-in templates: Definition Updates and Patch Tuesday. The Microsoft endpoint
definition pattern release cycle takes place at a frequency of three times per day. Therefore,
setting the software update point synchronization to run every eight hours will ensure
definitions are deployed to clients in the timeliest frequency possible.

The Patch Tuesday automatic deployment rule template provides a pre-defined template to
be used for automatically deploying monthly security updates, which are regularly released on
the second Tuesday of each month. This template creates a new software update group each
time the script runs and includes all security updates released within the previous day.

84 CHAPTER 5 Software updates automation

Therefore, it is intended to be run within 24 hours of the Patch Tuesday updates being
released. This template creates a new software update group each time it runs due to the
supported limit of 1,000 software updates for a single software update deployment. Each time
an automatic deployment rule runs, the updates that previously existed in the rule at the time
of the previous successful run of the rule are removed so that the deployment will never
exceed this supported limit.

The Definition Updates template is designed to be utilized for the automatic deployment of
System Center Endpoint Protection definition updates. This template adds to an existing
software update group. The primary reason for this difference is that definition updates are
released and downloaded as often as three times per day, which would cause a significant
number of software update groups to be created. Also, the previously released endpoint
definitions are more frequently superseded and expired, so these updates will automatically be
purged depending on the supersedence behavior configuration defined in the Site
Configuration, Sites, Configure Site Components, Software Update Point on the Supersedence
Rules tab. Review Table 5-1 for the pre-defined settings within each template.

TABLE 5-1 Built-in automatic deployment rule templates

TEMPLATE SETTING DEFINITION UPDATES PATCH TUESDAY

Create new or Use existing
software update group

Add to an existing software update
group

Create a new software update
group

Update state message detail Only error messages Success and error messages

Search criteria and
classification

Forefront Endpoint Protection 2010,
Definition Updates

Security updates released within
the last day

Rule evaluation schedule Run after each software update sync Run every 30 days

Deployment evaluation time
zone

UTC Client Local Time

Deployment scheduling Available after one hour; required as
soon as possible

Available after four hours;
required seven days later

User visual experience Hide all user notifications Display in Software Center and
show all notifications

Deadline behavior Install regardless of maintenance
window

Install only inside maintenance
window

Deployment alerting Do not generate alert Generate alert when compliance
is below 90% after installation
deadline plus seven days

Download and execute
behavior

Download on fast and slow
boundaries

Download on fast and slow
boundaries

Fallback behavior Fall back to Microsoft Update if not
available on Distribution Point

Fall back to Microsoft Update if
not available on Distribution
Point

CHAPTER 5 Software updates automation 85

See also For more information, see the description of Forefront endpoint security definition
updates at http://technet.microsoft.com/en-us/library/jj822983.aspx and
http://support.microsoft.com/kb/977939.

When an automatic deployment rule has been created and enabled, each time the rule
runs, all software updates that meet the criteria defined within the rule are automatically
downloaded from Microsoft, distributed to the assigned distribution points, and, finally,
deployed to the collection specified in the automatic deployment rule. You can monitor or
troubleshoot this activity by reviewing the RuleEngine.log on the primary site server.

NOTE The Systems Management Server (SMS) provider’s computer account and the user
that is running the wizard to download the software updates must both have Write NTFS
permissions on the download location.

Deployments that are automatically created by automatic deployment rules are, by design,
created only as required deployments. If you want to use the power of the automatic
deployment rule capabilities for deploying updates, but also want to allow end users or server
administrators the ability to apply the updates at their discretion, there are some alternative
options to achieving close variations of this goal. One option is to set the deployment
installation deadline defined within the rule for 12 months in the future. While this option
affords end users or server owners flexibility in when they manually apply their updates, if no
action is taken prior to the deadline, the potential for updates unexpectedly installing on these
machines 12 months from the start time of the deployment is a caveat and therefore this
option comes with some risk.

Another option is to clear the Enable The Deployment After This Rule Is Run check box on
the General page of the wizard (see Figure 5-1), and use a Windows PowerShell script to create
a deployment using any deployment options you choose.

The next step in creating a new automatic deployment rule is the Deployment Settings step
(Figure 5-2). This step allows you to enable or disable the Wake-on-LAN option for required
deployments, as well as the state message detail level for clients reporting back for each
deployment created by the rule. Additionally, you can choose whether or not to automatically
deploy software updates that include license agreements and whether or not to approve any
license agreements.

86 CHAPTER 5 Software updates automation

http://technet.microsoft.com/en-us/library/jj822983.aspx
http://support.microsoft.com/kb/977939

FIGURE 5-1 General page of the Create Automatic Deployment Rule Wizard

FIGURE 5-2 Create Automatic Deployment Rule Wizard (Deployment Settings)

CHAPTER 5 Software updates automation 87

Next, as shown in Figure 5-3, select the individual property filters and search criteria for the
updates to be automatically added to the associated software update group. One commonly
used best practice is to always add "Superseded = No" to the search criteria to ensure there
are no superseded updates included in the deployment.

FIGURE 5-3 Software Updates page of the Create Automatic Deployment Rule Wizard

Click Preview to display a list of the software updates that meet the defined search criteria,
ensuring there are no undesired updates included that might require further filtering (see
Figure 5-4).

88 CHAPTER 5 Software updates automation

FIGURE 5-4 The Preview Updates dialog box of the Create Automatic Deployment Rule Wizard

The next step in the wizard is to define the evaluation schedule for the rule (see Figure 5-5).
The Do Not Run This Rule Automatically option provides you the flexibility to manually run the
rule at your discretion. The Run The Rule After Any Software Update Point Synchronization
option triggers the rule to run each time the software update point completes a
synchronization of updates from its defined synchronization source. This is commonly used for
deploying regularly updated endpoint definition pattern files, but it is also useful for quickly
deploying Patch Tuesday updates after their release to a pilot collection of test machines. The
last option, Run The Rule On A Schedule, allows you to set a pre-defined recurring schedule
for running the rule. This option allows you to configure the re-run pattern for the rule to
never re-run, re-run only one time, as frequently as once per hour, or as infrequently as once
per year. Additionally, you can click Customize to select a specific numeric calendar day, a
specific weekday, the last day of the month, or from the first through the last weekday of each
month for the scheduling criteria.

On the next page of the wizard (see Figure 5-6), you specify whether the deployment
should be evaluated using Universal Coordinated Time (UTC) or the client's local time; when
the software updates should be available and distributed to the content server; and the
deadline for installing the required software updates.

CHAPTER 5 Software updates automation 89

FIGURE 5-5 The Evaluation Schedule page of the Create Automatic Deployment Rule Wizard

FIGURE 5-6 The Deployment Schedule page of the Create Automatic Deployment Rule Wizard

90 CHAPTER 5 Software updates automation

On the next wizard page, shown in Figure 5-7, you can customize the user experience for
the deployment by indicating whether to display or hide end-user notifications and by
controlling restarts for servers and workstations both inside and outside of defined
maintenance windows.

FIGURE 5-7 The User Experience page of the Create Automatic Deployment Rule Wizard

On the Alerts page of the wizard (see Figure 5-8), you can define alert options to leverage
alerting capabilities internally through Configuration Manager or externally through System
Center Operations Manager. You can configure Configuration Manager alerts using adjustable
thresholds so that you can monitor deployment success rates.

On the next wizard page, shown in Figure 5-9, you can configure the software updates
download behavior. Use the options on this page to control the content download behavior
when clients are within a slow or unreliable boundary and when the software update content is
not available on a preferred distribution point. Also on this page, you can select the check box
to allow downloading of the update content from Microsoft Update Servers. Additionally, you
can enable clients to share content with other clients in the same subnet. If this option is
enabled, clients leverage the BranchCache feature to share software update content, which
results in reduced bandwidth consumption across wide area networks. Finally, you can select
the check box to control whether clients can download content while on a metered Internet
connection in this step of the wizard.

CHAPTER 5 Software updates automation 91

FIGURE 5-8 The Software Update Alert Options page of the Create Automatic Deployment Rule Wizard

FIGURE 5-9 The Software Updates Download Behavior options page of the Create Automatic Deployment
Rule Wizard

92 CHAPTER 5 Software updates automation

On the next three pages of the wizard, you can create a new software update package or
add the updates to an existing package, indicate whether to download the updates from the
Internet or from a location on the network, and select one or more applicable languages
needed for the updates.

On the final page of the wizard, shown in Figure 5-10, you can save the selected settings to
a template. You can use the saved template later when creating additional rules to avoid
having to complete the full wizard when you want to use similar or the same options.

FIGURE 5-10 The Confirm the Settings page of the Create Automatic Deployment Rule Wizard

Automating software update database maintenance

Performing scheduled, routine maintenance on the software update point database is crucial
to ensuring the ability to deploy software updates on time during the monthly patch
deployment cycle. Keeping the WSUS database clean of expired metadata and regularly
indexed will proactively avoid software update synchronization issues due to a fragmented or
bloated database. Delivery of critical updates within the organization in a timely manner
should be viewed as one of the highest priority tasks. In lieu of this, the framework on which
software update deployments rely on should be maintained at a high priority.

It is recommended that you routinely perform WSUS cleanup actions on each software
update point in your hierarchy. Whether you're using Windows Internal Database or a full-

CHAPTER 5 Software updates automation 93

featured SQL Server database, it is recommended that you keep the Software Update Services
(SUSDB) database of WSUS utilized by each software update point as clean of expired and
superseded software update metadata as possible. An important procedural item to be aware
of in this overall process is that if you have more than one software update point, you should
run the cleanup process on the lowest tier servers first, then work your way up the hierarchy. If
there are multiple software update points in the same tier, maintenance can be performed on
them simultaneously. Additionally, selecting only the truly required update classifications and
products for your environment is important for keeping the SUSDB database from becoming
excessively large.

If an SUSDB database is hosted on Windows Internal Database, the operating system
version affects how the WSUS cleanup maintenance tasks are performed. New Windows
PowerShell cmdlets were introduced with the updated WSUS version that is included as a role
in Windows Server 2012 R2. These new cmdlets enable SUSDB cleanup without the need for
extensive custom scripts. Specifically, the Invoke-WsusServerCleanup cmdlet performs all of the
WSUS maintenance tasks that historically have been accomplished either manually through the
WSUS administrator console or via various community scripts. Windows Server versions prior
to Windows Server 2012 R2 continue to require these scripts to initiate the WSUS maintenance
tasks.

The Invoke-WsusServerCleanup cmdlet can be used to clean up obsolete computers,
obsolete updates, unneeded content files, as well as declining, expired, and superseded
updates. If WSUS is installed on an operating system version release earlier than Windows
Server 2012 R2, you can use the following Windows PowerShell script to perform the WSUS
metadata cleanup tasks:
[reflection.assembly]::LoadWithPartialName("Microsoft.UpdateServices.Administration")`

 | out-null

$wsus = [Microsoft.UpdateServices.Administration.AdminProxy]::GetUpdateServer();

$cleanupScope = new-object Microsoft.UpdateServices.Administration.CleanupScope;

$cleanupScope.DeclineSupersededUpdates = $true

$cleanupScope.DeclineExpiredUpdates = $true

$cleanupScope.CleanupObsoleteUpdates = $true

$cleanupScope.CompressUpdates = $true

$cleanupScope.CleanupObsoleteComputers = $true

$cleanupScope.CleanupUnneededContentFiles = $true

$cleanupManager = $wsus.GetCleanupManager();

$cleanupManager.PerformCleanup($cleanupScope);

In addition to the WSUS cleanup tasks, the SUSDB database should be regularly re-indexed
to ensure optimal efficiency. A sample script that can be used to re-index the database on any
version of WSUS is available at https://gallery.technet.microsoft.com/scriptcenter/6f8cde49-
5c52-4abd-9820-f1d270ddea61. Similar to the WSUS cleanup tasks, the process of connecting
to Windows Internal Database varies depending on which version of WSUS is installed.
Windows Internal Database running on WSUS 3.0 and higher is based on SQL Server 2005 and
can be managed using Microsoft SQL Server Management Studio Express, which can be

94 CHAPTER 5 Software updates automation

https://gallery.technet.microsoft.com/scriptcenter/6f8cde49-5c52-4abd-9820-f1d270ddea61
https://gallery.technet.microsoft.com/scriptcenter/6f8cde49-5c52-4abd-9820-f1d270ddea61

downloaded from http://www.microsoft.com/en-us/download/details.aspx?id=8961, or by using
the command-line tool SQLCMD.exe, which is provided within the Feature Pack for Microsoft
SQL Server 2005, downloadable from http://www.microsoft.com/en-
us/download/details.aspx?id=15748. A Windows Internal Database which is running on WSUS
4.0 and higher is based on SQL Server 2012 and can be managed using Microsoft SQL 2012
Server Management Studio Express, which can be downloaded from
http://www.microsoft.com/en-us/download/details.aspx?id=29062, or by using SQLCMD.exe
from the Microsoft SQL Server 2012 SP2 Feature Pack, which can be downloaded from
http://www.microsoft.com/en-us/download/details.aspx?id=43339. The appropriate version of
SQLCMD.exe can be run from a scheduled task to re-index the WSUS database at any
frequency and time.

To connect to a SQL Server 2005 Windows Internal Database running on an operating
system version of Windows Server 2008 R2 or earlier, use the following connection string from
the command-line query tool SQLCMD.exe or use the graphical user interface in SQL Server
Management Studio Express:
\\.\pipe\MSSQL$MICROSOFT##SSEE\sql\query

Below is a sample command line referencing the TechNet gallery script at
https://gallery.technet.microsoft.com/scriptcenter/6f8cde49-5c52-4abd-9820-f1d270ddea61,
which can be run from a scheduled task. It can be used to run the TechNet gallery
maintenance script against an SUSDB running on a SQL Server 2005 or SQL Server 2008
Windows Internal Database:

SQLCMD.exe -S \\.\pipe\MSSQL$MICROSOFT##SSEE\sql\query -i

"<scriptlocation>\WsusDBMaintenance.sql"

To connect to a Windows Internal Database based on SQL Server 2012 and run any
individual SQL queries or maintenance scripts, replace the preceding connection string with
the following connection string, which can also be run using SQLCMD.exe provided in the SQL
Server 2012 SP2 Feature Pack or SQL Server 2012 Management Studio Express:

\\.\pipe\MICROSOFT##WID\tsql\query

The following sample command line can be run from a scheduled task to run the same
TechNet gallery maintenance script, which can be run against a SQL Server 2012 Windows
Internal Database:

SQLCMD.exe -S \\.\pipe\Microsoft##WID\tsql\query -i

"<scriptlocation\WsusDBMaintenance.sql"

Performing Windows Internal Database backups on the SUSDB database is another
important task that should occur on a nightly recurring schedule. Similar to the SUSDB
database indexing process, regular database backups of the SUSDB database hosted on
Windows Internal Database can be accomplished using a scheduled task that runs
SQLCMD.exe with the appropriate switches. The following sample script can be saved with a

CHAPTER 5 Software updates automation 95

http://www.microsoft.com/en-us/download/details.aspx?id=8961
http://www.microsoft.com/en-us/download/details.aspx?id=15748
http://www.microsoft.com/en-us/download/details.aspx?id=15748
http://www.microsoft.com/en-us/download/details.aspx?id=29062
http://www.microsoft.com/en-us/download/details.aspx?id=43339
https://gallery.technet.microsoft.com/scriptcenter/6f8cde49-5c52-4abd-9820-f1d270ddea61

.SQL extension and run from SQLCMD.exe. This example query creates a full backup of the
SUSDB database and saves it to a path of C:\Backup\Susdb.bak.
BACKUP DATABASE [SUSDB] TO DISK = N'c:\backup\susdb.bak' WITH NOFORMAT, NOINIT, NAME =

N'SUSDB-Full Database Backup', SKIP, NOREWIND, NOUNLOAD, STATS = 10

GO

Site server software update automation
Familiarizing yourself with the various WMI classes that exist on a primary site server that can
be utilized for automating software update related tasks is helpful for things like automating
monthly software update group maintenance, as well as performing cleanup actions to keep
software update groups clean. This section covers the basics for communicating with the WMI
provider on a site server, and using the results and WMI methods to automatically create,
delete, or update new or existing software update groups and update packages.

A variety of tools can help find the applicable WMI namespaces, classes, and methods that
are applicable to automate any processes or tasks that you do manually. Assume your primary
site code is ABC. To query the provider on your site server, you would use the WMI namespace
root\sms\site_abc replacing the abc with the actual site code of the primary site you want to
run the query against. One popular tool for browsing and viewing WMI namespaces, classes,
instances, and properties is WMI Explorer, which can be downloaded from CodePlex at
http://wmie.codeplex.com.

Before diving into the various Configuration Manager WMI namespaces and classes, it is
helpful to understand some of the acronyms used when working with software updates. CI is
short for configuration item and can contain one or more elements along with their validation
criteria. A CI can be thought of as a discrete unit of configuration to assess for compliance. An
SDM package is short for service definition model package. An SDM package is sometimes
described as using SML, or service modelling language. SDM packages are connected with CIs
and provide further information about what configuration is affected during the evaluation or
implementation of various software update activities.

The first WMI class covered is SMS_SoftwareUpdate. This WMI class contains all of the
software updates that are visible in the All Software Updates node of the Configuration
Manager console. Each software update has its own unique property named CI_ID and
CI_UniqueID, which are properties that can be used when referencing a specific software
update within an automation script. It is helpful to add these two columns to your
Configuration Manager console so that you can more easily refer to these values when testing
or when automating a given task against a given update or updates. The following sample
Windows PowerShell script creates a new software update group named
Win7_Critical_Updates. To accomplish this task, two mandatory parameters, -SiteCode and -
SiteServer, must be provided either in the Windows PowerShell command line following the
script file name or when prompted after running the script. These two parameters make the
script portable, meaning they can run against any site code and target any site server. The site
server's WMI provider is first queried for all software updates. The results are then filtered to

96 CHAPTER 5 Software updates automation

http://wmie.codeplex.com

identify only the updates that apply to the Windows 7 operating system and which are of a
critical severity level. The results are returned as an array and set to a parameter named
$UpdateList. Each member of this array is then processed using a Foreach loop, which extracts
the CI_ID from each software update to build another array named $UL. Finally, the Set-
Location cmdlet sets the location to the primary site server name specified in the -SiteServer
parameter and the site code specified in the -SiteCode parameter. Finally, the New-
CMSoftwareUpdateGroup cmdlet is run to actually create the software update group. The
New-CMSoftwareUpdateGroup cmdlet includes the -Name parameter, which is used to
populate the name of the software update group, and the -Description parameter, which is
used to populate the description of the new software update group. The parameter $UL is an
array containing each of the CI_IDs returned by the Foreach loop. This array is provided to the
-UpdateID parameter so that the applicable software updates that meet the filtered criteria are
automatically added to the software update group.
Param(

 [Parameter(Mandatory = $true)]

 $SiteCode,

 [Parameter(Mandatory = $true)]

 $SiteServer

)

Import-Module ($Env:SMS_ADMIN_UI_PATH.Substring(0,$Env:SMS_ADMIN_UI_PATH.Length-5) +

'\ConfigurationManager.psd1')

$UL=@()

$UpdateList = @(Get-WmiObject -NameSpace root\SMS\Site_$($SiteCode) -ComputerName

$SiteServer -Query "Select * from SMS_SoftwareUpdate Where SeverityName='Critical' and

LocalizedCategoryInstanceNames='Windows 7' and IsExpired='False'")

Foreach ($Update in $UpdateList)

{

$UL+=$Update.CI_ID

}

CD "$($SiteCode):"

New-CMSoftwareUpdateGroup -Name "Win7_Critical_Updates" -Description "Windows 7 Critical

Updates" -UpdateId $UL

Whether you create a software update group manually with the administrator console or by
using a script, you can review the results from running the above script by reviewing the
SMSProv.log on the primary site server. An instance is created in the SMS_AuthorizationList
WMI class, which is an SMS provider server class that contains a collection of
SMS_SoftwareUpdate objects for the software updates available on the site and authorized for
deployment. If you have an existing software update group to add new software updates to,
you can use the Add-CMSoftwareUpdateToGroup cmdlet, as shown in the following example:
$Criticals = Get-WmiObject -NameSpace "root\SMS\Site_PRI" -Class "SMS_SoftwareUpdate" -

Filter "SeverityName='Critical' and LocalizedCategoryInstanceNames='Windows 7'"

CHAPTER 5 Software updates automation 97

foreach ($Update in $criticals)

{

Add-CMSoftwareUpdateToGroup -SoftwareUpdateGroupName "MyUpdateGroup" -SoftwareUpdateID

$Update.CI_ID

}

The following Windows PowerShell script sample creates a maintenance window based on a
specified number of days following Patch Tuesday for a specified length in hours, and applies
it to a specified collection. The SecondTuesday function used in this example can be re-used
for any other scripts that require programmatically determining which numeric day Patch
Tuesday falls on during the current month. The maintenance window created in this sample is
also configured to apply only to software updates.
Param(

 [Parameter(Mandatory=$true,

 HelpMessage="CollectionID?",Position=1)]

 [String]

 [ValidateNotNullOrEmpty()]

 $CollectionID = $(Throw "CollectionID is Required"),

 [Parameter(Mandatory=$true,

 HelpMessage="Hour of day between 0-23 to begin?",Position=2)]

 [INT]

 [ValidateNotNullOrEmpty()]

 $MilitaryStartHour = $(Throw "Hour of day between 0-23 to begin"),

 [Parameter(Mandatory=$true,

 HelpMessage="Length in hours of Maintenance Window?",Position=3)]

 [INT]

 [ValidateNotNullOrEmpty()]

 $WindowLengthInHours= $(Throw "Length in hours of Maintenance Window"),

 [Parameter(Mandatory=$true,

 HelpMessage="Days after Patch Tuesday to begin?",Position=4)]

 [INT]

 [ValidateNotNullOrEmpty()]

 $NumDaysAfterPatchTuesday = $(Throw "Number of days after Patch Tuesday to begin

is required")

)

#Get directory the script is running in

function Get-ScriptDirectory

{

 $Invocation = (Get-Variable MyInvocation -Scope 1).Value;

 if($Invocation.PSScriptRoot)

 {

 $Invocation.PSScriptRoot;

 }

98 CHAPTER 5 Software updates automation

 Elseif($Invocation.MyCommand.Path)

 {

 Split-Path $Invocation.MyCommand.Path

 }

 else

 {

$Invocation.InvocationName.Substring(0,$Invocation.InvocationName.LastIndexOf("\"));

 }

}

#Import ConfigMgr Module and CD to the site

 Import-Module ($Env:SMS_ADMIN_UI_PATH.Substring(0,$Env:SMS_ADMIN_UI_PATH.Length-5) +

'\ConfigurationManager.psd1')

 $PSD = Get-PSDrive -PSProvider CMSite

 CD "$($PSD):"

#Delete all existing maintenance windows

$WindowNames = Get-CMMaintenanceWindow -CollectionID $CollectionID | Select Name

foreach ($Window in $WindowNames)

{Remove-CMMaintenanceWindow -Name $Window.Name -CollectionID $CollectionID -Force}

#Figure out the date

$Date = Get-Date -DisplayHint Date

$TodayMonth = $Date.Month

$TodayYear = $Date.Year

#Returns a date object of the second tuesday of the month for given month and year

 function SecondTuesday ([int]$Month, [int]$Year) {

 [int]$Day = 1

 while((Get-Date -Day $Day -Hour 0 -Millisecond 0 -Minute 0 -Month $Month -Year

$Year -Second 0).DayOfWeek -ne "Tuesday") {

 $day++

 }

 $day += 7

 return (Get-Date -Day $Day -Hour 0 -Millisecond 0 -Minute 0 -Month $Month -Year

$Year -Second 0)

 }

$SecTues = SecondTuesday $TodayMonth $TodayYear

 #Add appropriate number of days following Patch Tuesday to begin and set start and end

time of maintenance window

CHAPTER 5 Software updates automation 99

 $StartDate = $SecTues.AddDays($NumDaysAfterPatchTuesday)

 $StartTime = $StartDate.AddHours($MilitaryStartHour)

 $EndTime = $StartTime.AddHours($WindowLengthInHours)

 #Dynamically name the maintenance window using the maintenance window start date and

time

 $MaintWindowName = $StartDate.ToShortDateString() + " " +

$StartTime.ToShortTimeString()

 #Create The ScheduleToken

 $Schedule = New-CMSchedule -Start $StartTime -End $EndTime -NonRecurring

 #Create the Maintenance Window on the appropriate collection

 New-CMMaintenanceWindow -CollectionID $CollectionID -ApplyToSoftwareUpdateOnly -Name

$MaintWindowName -Schedule $Schedule

One of the caveats regarding using the automatic deployment rule capability is that you are
not able to utilize an automatic deployment rule to create an available deployment; automatic
deployment rules are designed to create only required deployments. The following sample
script creates a customizable and automatic deployment based on an existing software update
group that was pre-created by an automatic deployment rule. It automatically determines the
exact date Patch Tuesday falls on during the current month and also allows you to define the
number of days following Patch Tuesday to make the deployment available to clients.
Customizing the parameters on the Start-CMSoftwareUpdateDeployment line at the end of
the following script allows you to create the deployment using any number of deployment
options by modifying the parameters, including deploying a software update group created
with an automatic deployment rule as an available deployment rather than as a required one.
<#

Disclaimer:

This Sample Code is provided for the purpose of illustration only and is not intended to

be used in a production environment. THIS SAMPLE CODE AND ANY RELATED INFORMATION ARE

PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A

PARTICULAR PURPOSE. We grant You a nonexclusive, royalty-free right to use and modify

the Sample Code and to reproduce and distribute the object code form of the Sample Code,

provided that You agree: (i) to not use Our name, logo, or trademarks to market Your

software product in which the Sample Code is embedded; (ii) to include a valid copyright

notice on Your software product in which the Sample Code is embedded; and (iii) to

indemnify, hold harmless, and defend Us and Our suppliers from and against any claims or

lawsuits, including attorneys’ fees, that arise or result from the use or distribution

of the Sample Code.

.SYNOPSIS

This script can be used to assist with automatically deploying an Automatic Deployment

100 CHAPTER 5 Software updates automation

Rule created Software Update Group based on a specified number of days after Patch

Tuesday for the current month.

.DESCRIPTION

This script will do the following:

1) Prompt for an existing Software Update Group Name

2) Prompt for an existing Collection Name

3) Prompt for a new deployment name and and a description to give to the deployment

4) Prompt for the number of days after "Patch Tuesday" to make the deployment available

5) Prompt if you want the deployment "Available" or "Required"

6) Prompt whether you want the deployment to be available in "UTC" or "LocalTime"

.PARAMETER UpdateGroupName

UpdateGroupName is the name of the existing Software Update Group to deploy

.PARAMETER CollectionName

CollectionName is the name of the existing collection to target the deployment

.PARAMETER DeploymentName

DeploymentName is the name to give to the new deployment that will be created

.PARAMETER DeploymentDescription

DeploymentDescription is the description for the new deployment that will be created

.PARAMETER AddDays

AddDays is the number of days following Patch Tuesday to make the deployment available

to clients

.PARAMETER DepType

DepType is used to specify whether to make the deployment "Available" or "Required"

.PARAMETER Time

Specify either 'LocalTime' or 'UTC' depending on the requirement

.EXAMPLE

.\PatchTuesdayCreator.ps1 -UpdateGroupName MyUpdateGroup -CollectionName "All Systems" -

DeploymentName "My Deployment" -DeploymentDescription "My Patch Tuesday Deployment" -

CHAPTER 5 Software updates automation 101

AddDays 7 -DepType Available -Time LocalTime

#>

Param(

 [Parameter(Mandatory=$true,

 HelpMessage="Please enter the Software Update Group Name",Position=0)]

 [String]

 [ValidateNotNullOrEmpty()]

 $UpdateGroupName = $(Throw "Software Update Group Required"),

 [Parameter(Mandatory=$true,

 HelpMessage="Please enter the Collection Name",Position=1)]

 [String]

 [ValidateNotNullOrEmpty()]

 $CollectionName = $(Throw "Collection Name is Required"),

 [Parameter(Mandatory=$true,

 HelpMessage="What would you like to name the deployment?",Position=2)]

 [String]

 [ValidateNotNullOrEmpty()]

 $DeploymentName = $(Throw "Deployment Name is Required"),

 [Parameter(Mandatory=$true,

 HelpMessage="What would you like for the Deployment

Description?",Position=3)]

 [String]

 [ValidateNotNullOrEmpty()]

 $DeploymentDescription = $(Throw "Deployment Description is Required"),

 [Parameter(Mandatory=$true,

 HelpMessage="What would you like for the Deployment Description?",Position=4)]

 [INT]

 [ValidateNotNullOrEmpty()]

 $AddDays = $(Throw "Number of Days following Patch Tuesday to make the

deployment available?"),

 [Parameter(Mandatory=$true,

 HelpMessage="Make the deployment available or required?",Position=5)]

 [String]

 [ValidateNotNullOrEmpty()]

 $DepType = $(Throw "Make the deployment Available or Required?"),

 [Parameter(Mandatory=$true,

 HelpMessage="LocalTime or UTC?",Position=6)]

102 CHAPTER 5 Software updates automation

 [String]

 [ValidateNotNullOrEmpty()]

 $Time = $(Throw "LocalTime or UTC?")

)

#Get today's date

$Date = Get-Date

#Convert it to MM/DD/YYYY format

$ShortDate = $Date.ToShortDateString()

$AvailableDate = ($Date.AddDays($AddDays)).ToShortDateString()

#This function returns a date object of the second Tuesday of the month for the current

month

 function SecondTuesday ([int]$Month, [int]$Year)

 {

 [int]$Day = 1

 while((Get-Date -Day $Day -Hour 0 -Millisecond 0 -Minute 0 -Month $Month -Year

$Year -Second 0).DayOfWeek -ne "Tuesday")

 {

 $day++

 }

 $day += 7

 Return (Get-Date -Day $Day -Hour 0 -Millisecond 0 -Minute 0 -Month $Month -Year

$Year -Second 0)

 }

#Determine the second Tuesday of the current month

$SecTues = (SecondTuesday $Date.Month $Date.Year).ToShortDateString()

#Make sure the second Tuesday hasn't already passed

If ((Get-Date $ShortDate) -le (Get-Date $SecTues))

{

 #Load ConfigMgr Powershell Module

 Import-Module ($Env:SMS_ADMIN_UI_PATH.Substring(0,$Env:SMS_ADMIN_UI_PATH.Length-5) +

'\ConfigurationManager.psd1')

 #Determine site code

 $PSD = Get-PSDrive -PSProvider CMSite

 #Change into ConfigMgr site namespace

 Set-Location "$($PSD):"

Try

 {

 #Create the deployment

 Start-CMSoftwareUpdateDeployment -SoftwareUpdateGroupName $UpdateGroupName -

CollectionName $CollectionName -DeploymentName $DeploymentName -Description

$DeploymentDescription -DeploymentType $DepType -VerbosityLevel

CHAPTER 5 Software updates automation 103

OnlySuccessAndErrorMessages -TimeBasedOn $Time -DeploymentAvailableDay $AvailableDate -

UserNotification DisplayAll -PersistOnWriteFilterDevice $false -

DisableOperationsManagerAlert $true -GenerateOperationsManagerAlert $false -

ProtectedType RemoteDistributionPoint -UnprotectedType UnprotectedDistributionPoint -

UseBranchCache $true -DownloadFromMicrosoftUpdate $true

 Write-Host "Deployment $DeploymentName Created against Collection Name

$CollectionName for an available date of $AvailableDate"

 }

Catch

 {

 Write-Host "$($_.Exception.Message) Please confirm you are using an existing

Software Update Group, and providing a valid Collection name"

 }

}

Else {Write-Host "Patch Tuesday has already passed. Please run prior to Patch

Tuesday."}

Client software update automation
Familiarizing yourself with the various WMI classes and namespaces that exist on Configuration
Manager installed clients that are utilized for software updates is helpful for automating a
variety of software update-related administrative tasks. Some examples of such tasks are
additional software updates actions following the application of a new image to a client or a
step during a System Center Orchestrator runbook. Having a thorough knowledge of the
various WMI classes that are applicable to the software update capability can help you better
understand what's required to implement a variety of software update-related actions. Also, it
is helpful to know that software updates are referenced using a unique update identifier in the
software update log files and that you can view the GUID of each update by adding the
Unique Update ID column to your Configuration Manager console when viewing software
updates.

A Windows PowerShell command line such as the one in the following example can be
used to determine which updates have been deployed but are not yet installed on the client.
The first step is to determine which updates are non-compliant. The WMI class
CCM_SoftwareUpdate in the WMI namespace root\CCM\ClientSDK provides all software
updates that are applicable but not yet installed. This namespace can be accessed remotely on
clients using Windows PowerShell Remote Management (WinRM). Below is a simple Windows
PowerShell command to display a grid of all the updates that are applicable to the client:
Get-WMIObject -Class CCM_SoftwareUpdate -Namespace root\CCM\ClientSDK | Select

ArticleID, Description | Out-Gridview

The list of non-compliant software updates can in turn be provided by invoking the WMI
method InstallUpdates within the WMI class CCM_SoftwareUpdatesManager to initiate the
installation of all non-compliant updates.

104 CHAPTER 5 Software updates automation

The first line of the following script retrieves all instances of CCM_SoftwareUpdate from the
root\CCM\ClientSDK WMI namespace. The second line retrieves the missing updates and turns
the single object into an array of WMI objects. Finally, the third line invokes the InstallUpdates
method in the CCM_SoftwareUpdate class and passes a flat array as the -ArgumentList
parameter.
$MissingUpdates = Get-WMIObject -Namespace root\CCM\ClientSDK -Class CCM_SoftwareUpdate

-Filter ComplianceState=0

$MissingUpdatesReformatted = @(MissingUpdates | Foreach-Object {if($_.ComplianceState -

eq 0){[WMI]$_.__PATH}})

$InstallReturn = Invoke-WMIMethod -Namespace root\CCM\ClientSDK -Class

CCM_SoftwareUpdatesManager -Name InstallUpdates -ArgumentList

(,$MissingUpdatesReformatted)

The WMI class CCM_AssignmentCompliance in the WMI namespace
root\CCM\SoftwareUpdates\DeploymentAgent provides all software update assignments
along with the associated assignment GUIDs for each software update. Running a Windows
PowerShell command such as the following example displays all software update assignments
targeted to the client and whether each assignment is compliant.
Get-WMIObject -Namespace root\ccm\SoftwareUpdates\DeploymentAgent -Class

CCM_AssignmentCompliance | Select AssignmentID, IsCompliant

The WMI class CCM_UpdateStatus in the namespace
root\CCM\SoftwareUpdates\UpdatesStore contains the most recent status for all updates on a
client. Running a Windows PowerShell command such as the following example displays all
updates on the client and whether they are installed or missing.
Get-WMIObject -Namespace root\ccm\SoftwareUpdates\UpdatesStore -Class CCM_UpdateStatus |

Select Title, Status

Along with the WMI Explorer tool, another tool that is helpful for accessing the client side
WMI namespaces remotely is Client Center for Configuration Manager, downloadable from
http://sccmclictr.codeplex.com. This tool is also helpful for learning the various Windows
PowerShell classes, namespaces, and commands to access client side software updates
information, since it displays the Windows PowerShell commands being run against the client
for each action, including various software update actions.

CHAPTER 5 Software updates automation 105

http://sccmclictr.codeplex.com

Community resources for software update automation
A variety of blogs offer software update automation scripts and information:

 Steve Rachui’s blog

http://blogs.msdn.com/b/steverac/archive/2014/06/12/automating-software-
updates.aspx

 Jason Githens’s blog

http://technet.microsoft.com/en-us/video/automating-deployments-of-software-
updates.aspx

 Deepak Singh Dhami’s blog

http://www.dexterposh.com/2014/06/powershell-sccm-2012-automate-patching.html

 David O’Brien’s blog

http://www.david-obrien.net/

In addition, see the following documentation on MSDN:

 http://msdn.microsoft.com/en-us/library/hh949569.aspx

 http://msdn.microsoft.com/en-us/library/jj217901.aspx

106 CHAPTER 5 Software updates automation

http://blogs.msdn.com/b/steverac/archive/2014/06/12/automating-softwareupdates.aspx
http://blogs.msdn.com/b/steverac/archive/2014/06/12/automating-softwareupdates.aspx
http://technet.microsoft.com/en-us/video/automating-deployments-of-softwareupdates.aspx
http://technet.microsoft.com/en-us/video/automating-deployments-of-softwareupdates.aspx
http://www.dexterposh.com/2014/06/powershell-sccm-2012-automate-patching.html
http://www.david-obrien.net/
http://msdn.microsoft.com/en-us/library/hh949569.aspx
http://msdn.microsoft.com/en-us/library/jj217901.aspx

About the authors
ANDRE DELLA MONICA is a Premier Field Engineer for Microsoft and has been
working with System Center Configuration Manager since it was known as SMS.
Before becoming a Premier Field Engineer, he was recognized as a top Support
Engineer on Consumer Technical Support for Microsoft Platform products. Andre
attended college at Sao Paulo, Brazil, and earned his technology degree in Computer

Network Management. He resides in Houston, Texas, with Rose his wife and his daughter Sarah. In
his free time, he enjoys producing and recording music, as well as being an Xbox gamer.

CHRIS SHILT is a Premier Field Engineer with Microsoft and has been working
with System Center Configuration Manager, in one iteration or another, for over
12 years. Prior to working at Microsoft, he managed software updates for a
major command with the U.S. Air Force. A lifelong resident of Ohio, he lives in a
small town north of Dayton with Annie, his wife of 21 years. He is the proud

father of Zach and Jessie, both of whom will graduate from college this spring.

RUSS RIMMERMAN is a Microsoft Premier Field Engineer with a primary focus
on System Center Configuration Manager. During his 12-year tenure working
with Configuration Manager, he has engaged with customers with moderately
simple to ultra-complex Configuration Manager hierarchies of all sizes in nearly
every industry. Before joining Microsoft, Russ spent five years in the U.S. Air Force

and also spent time as both a consultant and as a senior IT administrator. He currently resides
in Houston, Texas, and in his free time he enjoys swimming, anything involving computers,
and, most importantly, spending time with his wife and new twin boys, Owyn and Jaxen.

RUSHI FALDU, a Senior Premier Field Engineer supporting System Center
Configuration Manager and Microsoft Intune, has been with Microsoft for over
nine years. He has worked with the product since it was known as SMS 2.0. He is
a Technology Manager for Configuration Manager and Microsoft Intune
products. He is also a lead for the System Center Concepts and Administration

and Enterprise Mobility Suite: Managing Devices with InTune and Configuration Manager
workshops. He was lead author for the ebooks Microsoft System Center: Troubleshooting
Configuration Manager and Microsoft System Center: Configuration Manager Field Experience
from Microsoft Press. Rushi resides in New Jersey and enjoys P90X workouts and running
outside in his free time. He loves hiking, camping, and playing tennis with his daughters.

(CONTRIBUTING AUTHOR) SAMEER PATIL, a consultant for Microsoft Global Delivery, has
been working with System Center Configuration Manager since 2007. He has been working,
globally, on various deployment projects that use Configuration Manager as a key infrastructure
product in the solutions. Sameer attended college at Navi Mumbai, India, earning an engineering
degree. He resides in Mumbai, India, and travels for work most of the time.

About the series editor
MITCH TULLOCH is a well-known expert on Windows Server
administration and cloud computing technologies. He has published
hundreds of articles on a wide variety of technology sites and has written,
contributed to or been series editor for over 50 books. Mitch is one of the
most popular authors at Microsoft Press—the almost two dozen ebooks on
Windows Server and System Center he either wrote or was Series Editor on
have been downloaded more than 2.5 million times! For a complete list of

free ebooks from Microsoft Press, visit the Microsoft Virtual Academy at
http://www.microsoftvirtualacademy.com/ebooks.

Mitch has repeatedly received Microsoft's Most Valuable Professional (MVP) award for his
outstanding contributions to supporting the global IT community. He is a ten-time MVP in the
technology area of Windows Server Software Packaging, Deployment & Servicing. You can find
his MVP Profile page at http://mvp.microsoft.com/en-us/mvp/Mitch%20Tulloch-21182.

Mitch is also Senior Editor of WServerNews, a weekly newsletter focused on system admin
and security issues for the Windows Server platform. With almost 100,000 IT pro subscribers
worldwide, WServerNews is the most popular Windows Server–focused newsletter in the world.
Visit http://www.wservernews.com and subscribe to WServerNews today!

Mitch also runs an IT content development business based in Winnipeg, Canada, that
produces white papers and other collateral for the business decision maker (BDM) and
technical decision maker (TDM) audiences. His published content ranges from white papers
about Microsoft cloud technologies to reviews of third-party products designed for the
Windows Server platform. Before starting his own business in 1998, Mitch worked as a
Microsoft Certified Trainer (MCT) for Productivity Point.

For more information about Mitch, visit his website at http://www.mtit.com. You can also
follow Mitch on Twitter @mitchtulloch.

http://www.microsoftvirtualacademy.com/ebooks
http://mvp.microsoft.com/en-us/mvp/Mitch%20Tulloch-21182
http://www.wservernews.com
http://www.mtit.com

Microsoft Press

Free ebooks

From technical overviews to drilldowns on special topics, get

free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for

Kindle formats.

Look for other great resources at Microsoft Virtual Academy,

where you can learn new skills and help advance your career

with free Microsoft training delivered by experts.

http://www.microsoftvirtualacademy.com/ebooks

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

http://aka.ms/tellpress

	Contents
	Introduction
	Chapter 1 Understanding software update architecture: server side
	Fundamentals
	Configuration items
	Software update point
	Multiple software update points
	Software update point failover process
	Internet-based software update point
	Software updates on a secondary site
	Using an existing WSUS server
	Software update data

	The synchronization process
	Scheduled vs. manual synchronization
	The software update point features
	The metadata synchronization
	Configuration Manager inter-site replication
	Firewall considerations
	The flow of binary data

	Software Update policy deployment
	The policy creation flow

	Chapter 2 Understanding software update architecture: client side
	Software update client architecture features
	Windows Update Agent
	Windows Update data store

	Software update client architecture features
	Windows Update Agent
	Windows Update data store
	Configuration Manager Software Updates Client Agent
	Windows Management Instrumentation
	Configuration Manager client cache

	Software update scanning process
	Software update installation process

	Chapter 3 Managing software updates
	The patch management process model
	Phase 1: Assess
	Phase 2: Identify
	Phase 3: Evaluate and Plan
	Phase 4: Deploy

	Understanding software update groups
	Reporting groups
	Rollup groups
	Monthly groups
	Quarterly and yearly groups

	Using software update groups
	Using a phased rollout strategy
	Using deployment templates
	Using deployment packages
	Deploying software updates
	Automatic deployment of software updates
	Manual deployment of software updates

	Understanding superseded and expired updates
	Understanding the expired updates cleanup process
	Manually removing expired updates

	Configuring the maintenance window

	Chapter 4 Monitoring software updates
	Compliance accuracy
	Compliance states from the console
	Managing client health

	Tracking compliance data
	Software update summarization
	Alerts
	Monitoring an individual update
	Monitoring a deployment
	Deployment Monitoring Tool

	Built-in and custom reports
	Software update reports
	Client status reports
	Custom reports

	Chapter 5 Software updates automation
	Understanding automatic deployment rules
	Creating automatic deployment rules
	Automating software update database maintenance
	Site server software update automation
	Client software update automation
	Community resources for software update automation

