# MM875033-11 zigbee Module Datasheet

| Revision | Date       | Description     | Author |
|----------|------------|-----------------|--------|
| 1.0      | 2016-11-11 | initial release |        |
|          |            |                 |        |
|          |            |                 |        |
|          |            |                 |        |
|          |            |                 |        |
|          |            |                 |        |

# contents

| 4 |
|---|
| 5 |
| 5 |
| 5 |
| 7 |
| 8 |
|   |

## 1. Introduction

MM875033-11 is a low-power Zigbee module for the Internet of Things, making the terminal more reliable, convenient and easy to use.

The MM875033-11 module contains a NXP JN5169 single-chip solution. the chip in software and hardware are used in low-power technology, the purpose is to lower the power consumption of the entire board, the product more competitive. The module makes up with rf circuit, antenna, zigebee SOC, power supply, crystals and other auxiliary circuit. At present, the module provides a complete serial interface functions and equipment to communicate, so you can through the serial port and mobile client to connect the cloud and equipment.

- 2.4 GHz IEEE802.15.4 compliant
- On-board antenna
- 2.0 V to 3.6 V battery operation
- Power saving technology with low consumption
- RX current 14.7 mA, in low power receive mode 13 mA
- Configurable transmit power
- Deep sleep current 140 nA (wake-up from IO)
- Compensation for temperature drift of crystal oscillator frequency
- The JN5169 features 512 kB embedded Flash, 32 kB RAM and 4 kB

EEPROM memoryand radio outputs up to 10 dBm.

## 1.1 1.1 Module System Block Diagram

As shown in Figure 1, The MM875033-11 module contains a NXP JN5169 single-chip solution, the chip highly integrated CPU, PMU, RAM, Transceiver, LNA, PA, memmory, and other major parts, thus greatly reducing the machine power, Amplitude reduces the layout area. The module uses the internal antenna design in PCB, both for customers to reduce the cost of the antenna, but also eliminates the need to consider the antenna assembly space.



figure 1. Module System Block Diagram

# 1.2 Module technical specifications

| Main chip               | JN5169                        |  |  |
|-------------------------|-------------------------------|--|--|
| Working frequency       | 2.40~2.485GHz                 |  |  |
| Supported standard      | IEEE802.15.4                  |  |  |
| Modulation              | O-QPSK MODEM                  |  |  |
| communication interface | UART                          |  |  |
| PCB layer structure     | 4 Layer                       |  |  |
| PCB size                | 22mm(L)x17mm(W)x2.0mm(H)      |  |  |
| Antenna                 | PCB internal antennas         |  |  |
| Operation temperature   | 0℃~+85℃                       |  |  |
| Storage temperature     | -40℃~+125℃                    |  |  |
| Hardware version number | Msmart-Zigbee(JN5169)-A[V1.1] |  |  |

# 2 Structure specification

2.1 Module structure size



The size of the module as shown above, length 22mm, width 17mm, thickness 2.0mm (error +/- 0.2mm)

## 2.2 Hardware interface definition



| 1  | ADC1    | ADC INPUT 1                    | 15 | GND    | Ground                |
|----|---------|--------------------------------|----|--------|-----------------------|
| 2  | SPICLK  | SPI BUS master clock out       | 16 | VCC    | Supply Input Pin      |
| 3  | SPIMISO | SPI BUS master in, slave out   | 17 | VCC    | Supply Input Pin      |
|    |         | input                          |    |        |                       |
| 4  | SPIMOSI | SPI BUS master out, slave in   | 18 | GND    | Ground                |
|    |         | output                         |    |        |                       |
| 5  | SSZ     | SPI BUS master select output 0 | 19 | DI011  | GPIO                  |
| 6  | DIO0    | GPIO&ADC INPUT 3               | 20 | DIO12  | GPIO                  |
| 7  | DIO1    | GPIO& ADC INPUT 4              | 21 | DIO13  | GPIO                  |
| 8  | DIO2    | GPIO& ADC INPUT 5              | 22 | RESETN | Reset pin, Active Low |
| 9  | DIO3    | GPIO& ADC INPUT 6              | 23 | DI014  | UART1-TX&I2C-SCL      |
| 10 | DIO4    | GPIO                           | 24 | DI015  | UART1-RX&I2C-SDA      |
| 11 | DIO5    | GPIO                           | 25 | DIO16  | I2C-SCL &GPIO         |
| 12 | DIO6    | UARTO-TX                       | 26 | DI017  | I2C-SDA &GPIO         |
| 13 | DIO7    | UARTO-RX                       | 27 | ADC2   | ADC INPUT 2           |
| 14 | DIO8    | GPIO                           |    |        |                       |

# 3 Wireless Specification

|              |                                            | reference       | section    | limit                                             |
|--------------|--------------------------------------------|-----------------|------------|---------------------------------------------------|
| Transmission | TX Maximum Power                           | ETSI EN 300 328 | 4.3.2.1    | 20dBm                                             |
|              | TX Spurious 30Mhz-1Ghz                     | ETSI EN 300 328 | 4. 3. 2. 8 | -36 or -54dbm(depends on<br>frequency)(100khz BW) |
|              |                                            | ETSI EN 300 328 | 4.3.2.8    | -30 dBm                                           |
|              | ECM                                        | 802.15.4        | 10.3.8     | 35%                                               |
|              | TX Frequency Tolerance                     | 802.15.4        | 10.3.9     | +/-40 ppm                                         |
|              | min of max power                           | 802.15.4        | 10.3.10    | -3dBm                                             |
|              | phase noise(unspread)                      | No reference    |            |                                                   |
| Reception    | RX spurious 30Mhz - 1GHz                   | ETSI EN 300 328 | 4.3.2.9.2  | -57dBm(100 Khz)                                   |
|              | RX spurious 1G - 12.5GHz                   | ETSI EN 300 328 | 4.3.2.9.2  | -47 dBm(1 Mhz)                                    |
|              | RX sensitivity                             | 802.15.4        | 10.3.4     | -85dBm                                            |
|              | Interference rejection<br>N+/-1(adjacent)  | 802.15.4        | 10. 3. 5   | 0dB                                               |
|              | Interference rejection<br>N+/-2(alternate) | 802.15.4        | 10.3.5     | 30dB                                              |
|              | RX Max input                               | 802.15.4_2011   | 10. 3. 11  | -20dBm                                            |

## **FCC Statement**

This equipment has been tested and found to comply with the limits for a Class B digital device, p ursuant to part 15 of FCC Rules. These limits are designed to provide reasonable protection again st harmful interference in a residential installation. This equipment generates and can radiate radi o frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to rad io or television reception, which can be determined by turning the equipment off and on, the use r is encouraged to try to correct the interference by one or more of the following measures: Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver is con nected.

Consult the dealer or an experienced radio/TV technician for help.

This device complies with Part 15 of FCC Rules. Operation is subject to the following two conditio ns: (1) This device may not cause harmful interference, and (2) This device must accept any interf erence received, including interference that may cause undesired operation.

## **FCC Warnings:**

**Modifications:** Modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment under FCC Rules.

#### **Radio Frequency Exposure:**

#### Notes:

1) For mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculators indicate the MPE distance is less.

2) This equipment has been evaluated in accordance with the FCC bulletin 56 "Hazards of radio frequency and electromagnetic fields" and bulletin 65 " Human exposure to radio frequency and electromagnetic fields.

3) Safe operation in an uncontrolled environment will result if the following distances from the device are maintained as a minimum.

## **Use of Modular Certification:**

For a host manufacture's using a certified modular, if (1) the module's FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module:

"Contains Transmitter Module FCC ID:2AIRV0003" or "Contains FCC ID:2AIRV0003" must be used.