SD-161 / SD-164

Data Radio

User Instruction Manual

FCC RF Exposure Compliance Requirements

The Federal Communications Commission (FCC), with its action in General Docket 93-62, November 7, 1997, has adopted a safety standard for human exposure to Radio Frequency (RF) electromagnetic energy emitted by FCC regulated equipment. Topaz3 / Maxon subscribes to the same safety standard for the use of its products. Proper operation of this radio will result in user exposure far below the Occupational Safety and Health Act (OSHA) and Federal Communications Commission limits.

Power listed is conducted. This device must not exceed a maximum transmitting duty factor of 50%. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 49cm (19 inches) from all persons, must not be co-located or operating in conjunction with any other antenna or transmitter, and must not exceed a gain of 5 dBd for SD-161 and 7 dBd for SD-164. Failure to observe these restrictions will result in exceeding the FCC RF exposure limits.

About your SD-160 Series Data Radio

The SD-160 Series of RF Link Modules from Topaz3 utilize the latest technology in their designs and manufacturing. SD-160 models are Phase Lock Loop Synthesizer (PLL) / microprocessor controlled and offer two (2) watts of power with 16-channel capability. Multiple functions including 1200 to 9600 baud rates, AC and/or DC audio coupling, GMSK, FFSK and FSK modulation are standard in these fully programmable RF Link Module units. Programmable sub-audio squelch system (CTCSS & DCS) and two-tone squelch system are added to the signal level detect squelch system (RSSI). GPS Data handling is provided to interface and control an internal GPS receiver.

To assure satisfaction from the radio, we urge you to thoroughly read the operation and function information in this manual before operating your SD-161/SD-164.

Applications of some of the functions described in this manual are determined by the system you use. Your Topaz3 dealer will program your radio so that you have the greatest number of functions possible relative to your needs.

Should you have questions regarding the operation of the radio, please consult your Topaz3 Dealer.

Specifications

GENERAL

Equipment Type Data rac	dio
Performance SpecificationsTIA / EIA	A-603
Band VHF(SD	0-161) / UHF(SD-164)
Channel Spacings	12.5 kHz programmable
RF Output Power	nly
Modulation Type F2D, F3	E
Intermediate Frequency	lz & 455 kHz
Number of Channels16	
Frequency Source Synthes	izer
Operation Rating	ent 5 (Standby: RX: TX)
Power Supply Ext. Pov. 7.2V - 1	ver Supply(12 VDC Nominal) 8.0V DC EXTREME
Temperature Range Storage from - 4 Operating from - 3	
Current Consumption Standby (Muted)< 65 mA Transmit 2 Watt RF power< 1.0 A	
Frequency Bands:	
VHF: V2 148.000 - 174.000 MHz	
Lock Time< 10 mS	3
TX to RX attack time < 20 mS RX to TX attack time < 20 mS	
Dimensions	H x (58 mm)W x (125 mm)D
Weight	ms

TRANSMITTER Specification

2W < 3W > 1.5W

Time: 5 10 30 Sec. Power: >90% >85% >80%

Frequency Error< 0.75 kHz Nominal condition for UHF

±5.0 ppm Extreme condition for UHF

Frequency Deviation:

Audio Frequency Response......Within +1/-3dB of 6dB octave

@ 300 Hz to 2.55 kHz for 12.5 kHz C.S.@ 300 Hz to 3.0 kHz for 25 kHz C.S.

Adjacent Channel Power

< 65 dBc @ Extreme Condition

< 55 dBc @ Extreme Condition

Conducted Spurious Emission < -60 dBc

Hum & Noise:

25 kHz Channel Spacing > 40 dB (with no PSOPH) **12.5 kHz Channel Spacing** > 40 dB (with PSOPH)

for nominal dev +20dB

antenna

No destroy at ≥ 20:1 all phase angle

Peak Deviation Range Adjustment @ 1 kHz, Nom. Dev +20dB:

25 kHz Channel Spacing Min. 3.5, Max. 6.0 **12.5 kHz Channel Spacing** Min. 1.5, Max. 4.0

RECEIVER Specification

Sensitivity (12dB Sinad)	Standard B.W < -118 dBm, Narrow B.W <-117 dBm @ Nom. Condition
	Standard B.W < -115 dBm, Narrow B.W <-114 dBm @ Extreme Condition
Amplitude Characteristic	<±3 dB
Adjacent Channel Selectivity:	
25 kHz Channel Spacing	
Spurious Response Rejection	> 60 dB (100 kHz - 4 GHz)
Image Response	> 60
IF Response	. > 60
Others.	. > 60
Intermodulation Response Rejection:	
±25 kHz/ 50 kHz ±50 kHz/ 100 kHz	
±50 KHZ/ 100 KHZ	00 UB
Conducted Spurious Emission @ Nominal Conditions:	. F7 dD
9 kHz - 1 GHz 1 GHz - 4 GHz.	
DV Courieus Emissieus (Dedicted) @ Neminal Conditions	
RX Spurious Emissions (Radiated) @ Nominal Conditions 9 kHz - 1 GHz	< -57 dBm
1 GHz - 12.75 GHz	. < -47 dBm
AF Distortion.	. < 5% @ Nom., < 10 % @ Extreme condition
RX Hum & Noise:	
25.0 kHz CP	
Receiver Response Time	< 16 mS
Squelch Opening Range:	RF level for 6 to 14 dB Sinad
Squelch Closing Range (Hysteresis):	. 0 - 6 dB Sinad @ Nominal Condition
Squelch Attack Time:	
RF Level at ThresholdRF Level at Threshold + 20 dB	
Kr Level at Tillesiloiu + 20 ub	< 30 1113
Squelch Decay Time	5 mS Min., 20 mS Max.
Antenna Socket Input Match	. > 10 dB Return Loss
L.O. Frequency Temperature Stability	1st < 5 ppm, 2nd < 15 ppm from -30° to + 60° C

Unpacking information

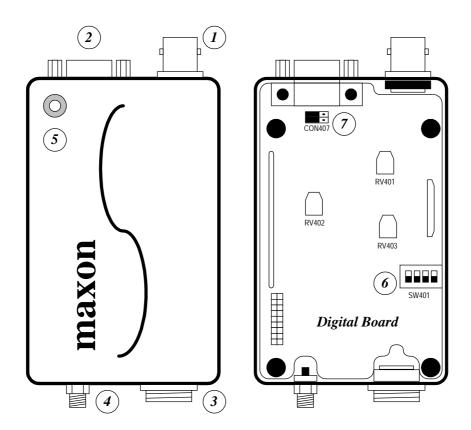
Remove and carefully inspect the contents of your package(s) for the following items:

Radio

Fused power cord

User manual

If any items are missing, please contact the Topaz3 dealer from which you purchased the radios, or contact Topaz3 at phone number 1-800-821-7848 or local 1-816-891-6320.


SD-161 / SD-164 Features

- · Synthesized Operation with 16 channel capability
- 2 Watt output power
- Programmable 12.5 / 25KHz channel spacing
- · Channel scan
- · Busy channel lockout
- Tx Time-out timer
- Power Save
- Marked Idle
- Tx Delay
- Data transmission and reception through GMSK modem
- Data transmission and reception through FFSK modem
- · Support transmission of global position data

Description of radio components

- Antenna connector
- 2 DB-15 connector
- B Power connector
- **4** GPS Antenna connector (option)
- **6** LED (Busy / Tx indicator)

Exterior View

Antenna installation

Fasten the antenna to the radio by turning the antenna cable clockwise into the receptacle on left of radio when looking at front of radio.

Powering the data radio

Your data radio accepts many sources of DC power to permit more versatile use. This radio operates from 7.2V to 18V DC and standard voltage for test is 12V DC.

Connecting the data radio to DC power

Connect DC power plug of power cable to radio's DC IN power connector and then fasten power plug to the radio by turning the ring clockwise.

SD-160 Series Operation

Channel select / SCAN

Your radio's channel can be selected by inner DIP-S/W or serial command inputted from external control system. To change channel by inner DIP-S/W (③), you should open the upper cover and then look for the DIP-S/W(③) on the digital board of the bottom cover. Once located change the DIP-S/W to select wanted channel according to channel dip switch chart.

To use a serial command for channel selection, it should be inputted by external equipment or device(ex. Personal computer) through Pin 8 of DB-15 connector. See the message format for serial command for full details.

If your radio has been programmed the channel scan, you must enter the scan mode by serial command.

Transmit

The transmission will be made by various inputs such as PTT signal (Pin 3 of DB-15 connector), TX serial command and Serial data input (Pin 10 of DB-15 connector: This input is only available when a modem option board is installed). TTL level is used as PTT signal and is active low. If you installed an option modem board, you can use RS-232 level as a PTT signal instead of TTL level. To maintain transmission, continuous PTT signal input is required. If you use Tx serial command for transmission, normally, it's released by Rx serial command. Before the transmission, check the color of the radio's top-panel LED(⑤). It will glow orange if RF activity is present; it will not be illuminated if the radio indicates a "clear" channel. When the channel is "clear", input the PTT signal or Tx serial command and transmit data or audio. Remove the PTT signal or input Rx serial command when you have finished transmission.

CAUTION: Operation of the transmitter without a proper antenna installed may result in permanent damage to the radio.

Receive

When you have finished transmission, remove the PTT signal or input Rx serial command. You will receive data from another radio or hear another person talking from the connected external speaker.

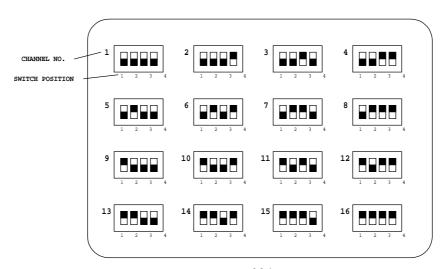
Scan modes

Scanning is a dealer programmable feature that allows you to monitor a number of channels. Your dealer will help you define a scanning mode and your channel "scan list"

Channel scan

Once the scan list has been established, initiate scan by serial commands. If a conversation is detected on any of the channels in the scan list, the radio will stop on that channel and you will be able to hear the conversation. At that time, busy channel data is sent to external equipment or device through serial command. So, you can identify busy channel data as decoding of received serial command from your radio in the external equipment or device.

Normally, if you try to transmit during scanning, the transmission will be made on the channel that the call was received during the programmable scan delay time. (The scan delay time is the amount of time the radio will stay on that channel once activity has ceased. Dealer programming of 4 ~ 7 seconds is typical). The radio will resume scanning once the scan delay time has expired, and will continue to scan until the serial command for scan stop is inputted by external equipment. After the scan resumes, if a transmission is made, the radio will transmit on the selected priority channel. This feature is similar to priority scan TX except for selection of priority channel. You can assign a priority channel by inner dip switch only.


Scan channel delete

To temporarily delete a channel from the scan list, simply input the serial command for scan deletion to the radio while scanning and stopped on the channel to be deleted. This will temporarily remove that channel from the scan list until the scan is closed or the radio's power is reset.

CTCSS / DCS Scanning

To help to block out unwanted calls to your radio, the SD-160 series can be programmed by your dealer to scan for tones.

Channel dip switch chart

SW401 CHANNEL SELECT SWITCH

Serial command

Serial RX/TX Data Format

(1) Asynchronous Serial Data Transfer

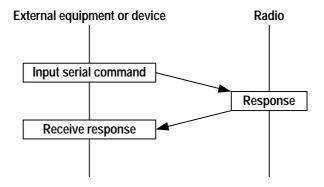
(2) Baud Rate: 4,800 bit/sec

(3) Data Bit: 8bit, Non Parity

(4) Stop Bit: 1bit

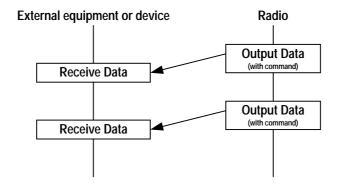
(5) MSB first transmission

Each serial command is consist of 3 bytes.


 1_{st} byte is command and 2_{nd} is data required by command and 3_{rd} is check sum to decide validity of total contents.

Ву	Byte0						
	ST	1 _{st} Byte (Command)	SP				
Byte1							
	ST	2 _{nd} Byte (Data)	SP				
Ву	te2						
	ST	3 rd Byte (Check Sum)	SP				

Data Protocol


Protocol for input Serial command

Protocol of data transmission from external equipment or device (: PC) to radio :

Protocol for output data

Protocol of data transmission from radio to external equipment or device (: PC) :

Serial Commands

Transmit Command & data

	Mode		Transmit Command (BYTE0)	Transmit data(BYTE1)	Check sum(BYTE2) : Transmit Command + data
1.	Channel Change		0x64	0x??:Current channel	(0x64 + Channel)
2.	RTX Mode Send.		0x61	R(0x72) : Rx mode T(0x74) : TX mode	(0x61+0x72) (0x61+ 0x74)
3.	Scan Mode	From PC To Radio	0x62	F(0x46) : Scan Stop S(0x73) : Scan Start O(0x4F) : Scan Delete	(0x62+ 0x46) (0x62+ 0x73) (0x62+ 0x4F)

	,				,
			0x66	0x00 : 1 Channel	0x66 + 0x00
		From Radio		0x01 : 2 Channel	0x66 + 0x01
		To Pc		0x02 : 3 Channel	
		10 PC			*Only for Unmute Channel,
				0x0f : 16 Channel	Correct Call Channel
			0x65	 It is occurred when 	Scan Delete command comes
				except for Busy/Correct	ct Call
		Error			PTT key is pushed except for
		Message		Busy/Correct Call.	, , ,
		Ü			channel change command exists
				during Scanning.	3
4.		Control of	0x6a	0x00 : GPS Power Off	(0x6a + 0x00)
		GPS Power		0x01 : GPS Power On	(0x6a + 0x01)
	CDC		0x63	0x00 : GPS Data Disable	(0x63 + 0x00)
	GPS	0 1 - 1 - 1		0x01 : Release GPS Data	(0x63 + 0x01)
	mode	Control of GPS Data		to DB-15	,
				0x02 : Release GPS Data	(0x63 + 0x02)
				to Modem	,
5.	Modem tes	t modo	0x75	0x78 : Enable test data	(0x75 + 0x78)
	Wiodellites	t mode		0x79 : Disable test data	(0x75 + 0x79)
6.		GMSK	0x7a	0x00 : Disable	(0x7a + 0x00)
	Modem	GIVISIC		0x01 : Enable	(0x7a + 0x01)
	alignment		0x7c	0x00 : Disable	(0x7c + 0x00)
		FFSK		0x01 : Enable Mark data	(0x7c + 0x01)
	mode	IIJN	0x7e	0x00 : Disable	(0x7e + 0x00)
				0x01 : Enable Space data	(0x7e + 0x01)

Receive Command & data

	Mode	Transmit Command (BYTE0)	Transmit data (BYTE1)	Check sum(BYTE2) : Transmit Command + data
1	Process Complete	0xaa	ACK	
	Commands	0x55	NACK	

Note)

This command is return signal for receiving command.

If Byte2 and sum of Byte0 and Byte1 among received data are same, Radio would send ACK data and execute command. If not, Radio sends Nack data.

User would go into next step if receives ACK data. If user receives Nack data, user should send command again.

example) If user changes from 1st Channel to 2nd Channel,

User should send Channel Change Command (0x64,0x02, (0x64+0x2)) to Radio.

If Byte2 and sum of Byte0 and Byte1 among received data are same, Radio sends ACK data to user and changes to 2^{nd} channel. If not, Radio would send Nack data.

Status indicators and audible alert tones

Your SD-160 series data radio has a sophisticated microprocessor control which provides a range of LED displays. LED displays operation mode, current status of radio, warning, and etc. Moreover, if you connect the Speaker filtered OUT (Pin 9 of DB-15 connector) to an external speaker, you can hear audible tones at the following conditions:

- Attempt to transmit on a channel that is already in use when busy channel lockout has been programmed into the radio
- Transmission time has exceeded time-out timer programmed length
- When the other group or people finished transmission using repeater

See the status indicators and audible alert tones chart for full details.

STATUS	DESCRIPTION	LED COLOR	AUDIBLE TONE
5 II II G	POWER ON	-	7.05.522 * 0.112
	Busy Channel	Yellow	
NORMAL	Correct Call	Green	
	Transmit	Yellow	
	Transmit Not Allowed		
	1		-
	Normal Scan Mode	Green LED Flash	
SCANNING	Scan Delete	one times Red LED	
	Scan All Delete	Two times Red LED	
	•	•	•
	Busy Channel lockout	two times Green LED	Single Beep Tone
	Time out Time	one times Green LED	
	Before 5S T-O-T	one times Green LED	Single Beep Tone
	EEPROM Error	one times Yellow LED	
	Unlock	Four times Yellow LED	
WARNING	Communication error with	Green LED flash	
	Modem MCU		
	Transmit Hang on time	-	Single Beep Tone
	At transmission, if Audio	Two times Green LED	
	sound is not heard or		
	Modem is not placed		
PROGRAM	Read Mode	Red LED flash	
T NO OTO WI	Write Mode	Green LED flash	
AUTO TEST		Yellow	
	Open Squelch Mode	three times Green LED	
SQUELCH PROGRAM	Close Squelch Mode	Two times Green LED	
MODE	Save Squelch Mode	One times Green LED	
	Init Data Load	one times Green LED	

DB 15 PIN descriptions with input/output level

D-Type Pin No.	Function	Description	Signal Type	Input/ Output
1	Data modulation IN (Tx Mod)	Signal is directly injected to MOD through data low pass filter without pre-emphasis.	Analog signal 1KHz audio at 60% peak system deviation input level = 100 to 120mVrms	I/P
2	Data unfiltered OUT (RX disc)	Discriminator audio from the SD-160. This is the unprocessed AF signal prior to tone filtering and de-emphasis.	Analog signal 1KHz audio at 60% peak system deviation produces 200 to 300mVrms	O/P
3	PTT In (Tx Key)	Signal from the 'external device' to key the SD-160 transmitter. This line has an internal pull up resistor to +5V. Pulling the line to 0V turns on the transmitter. Note: If you installed option modem board, you can select RS-232 signal level by Jumper (CON407, ©) on the digital board.	TTL level 0V = Tx 0/c = Rx RS-232 level (option) +12V = Tx -12V = Rx	I/P
4	Ground	Ground connection to chassis of the radio.	0V (Chassis)	
5	Serial Data Out (TXD)	Serial data output for radio control or program. It uses asynchronous data format.	TTL level	O/P
6	Busy (CD)	Logic level output from SD-160 to indicate whether a carrier is present or not Note: If you installed an option modem board, you can select RS-232 signal level by Jumper (CON407,) on the digital board.	TTL level 0V = carrier 5V = no carrier RS-232 level (option) +12V = carrier -12V = no carrier	O/P
7	Microphone filtered audio IN	This signal is injected to the MOD at the point through audio-amplification, pre-emphasis and high pass filtering where sub-audio tone is mixed with audio.	Audio 1KHz audio at 60% peak system deviation input level = 6 to 8Vrms	I/P
8	Serial data IN (RXD)	Serial command or data input for radio control or program. It uses asynchronous data format.	TTL level	I/P
9	Speaker filtered OUT	Audio output from the audio amplifier. It's filtered by tone-filter, de-emphasis circuit.	Audio 1KHz audio at 60% peak system deviation produces Nominal 1Vrms @ 8 •	O/P
10	Serial data IN for option modem	The Serial data to be transmitted is input to this pin. It's only available when option modem board is installed. Inputted data are modulated by modem IC and then injected to MOD. It uses asynchronous data format.	RS-232 level	I/P
11	Serial data Out for option modem	The recovered asynchronous serial data output from the receiver. It's only available when option modem board is installed. It uses asynchronous data format.	RS-232 level	O/P
12	Serial data busy for option modem (reserved)	To eliminate data loss according to buffer overrun of slave MCU's memory, it indicates buffer status.	RS-232 level	O/P

13	GPS data input	Data input for initial setting of GPS module. It follows NMEA 0183 format and uses asynchronous data format.	TTL level	I/P
14	DGPS data input	Data input for DGPS Correction of GPS module. It follows NMEA 0183 format and uses asynchronous data format.	TTL level	I/P
15	GPS data output	Position data output from the GPS module. It follows NMEA 0183 format and uses asynchronous data format.	TTL level	O/P

Modem option for data communication

Descriptions

Internal optional modems can be applied to SD-160 series. One is the FFSK modem and the other is the GMSK modem.

The most obvious method of increasing data efficiency is to maximize the data signaling speed in the limited channel bandwidth. FFSK has a very wide transmission bandwidth requirement. To solve this problem, use the GMSK (Gaussian Filtered Minimum Shift Keying) modem option.

In the case of data, its frequency spectra conflict with sub-audio frequency spectra. If tones are required, only the FFSK modem can be used.

Our internal modem option boards consist of a Slave MCU, Modem IC, and extra circuitry. The modem option directly communicates with the DTE (Data Terminal Equipment) to send and receive the meaningful data through the D-sub connector.

Communication between DTE and Option-Board

These modem option boards support only asynchronous communication between the DTE and modem option boards to minimize loss of data during the transmission.

Your dealer will help you define a TX On/Off Delay time, RX On Delay time, Baud Rate, Modem Enabled, Modem Baud Rate, RTS Control Mode, and Test Mode.

Table for modem speed

Channel Space	UART Baud Rate of DTE	Modem Baud Rate
Narrow (12.5KHz)	1200	1200
Natiow (12.3KHZ)	2400	2400
	1200	1200
Standard (25KHz)	2400	2400
	4800	4800

Table 1. Available Baud rate for FFSK modem

Channel Space	UART Baud Rate of DTE	Modem Baud Rate
Narrow (12.5KHz)	4800	4800
Standard (25KHz)	4800	4800
Statiuatu (25KHZ)	9600	9600

Table 2. Available Baud rate for GMSK modem

Transmission GPS Data through Modem

If the GPS option board is installed in your SD-160 series data radio, you can obtain your position data through GPS data output of your radio (Pin 15 of DB-15 connector). You can also transmit received GPS data to another radio or base station if installed with a modem board and GPS board.

Your dealer will help you install the GPS option board and define related parameter set-up.

Option board pin-out chart

FFSK Modem Option board

Connector No.	Pin No.	Function	Description	Input/ Output
	1	VCC	6V to 12V Power Input	I/P
	2	GND	Ground	
	3	PTT	Signal from the digital board to transmit data key the SD-160 transmitter	I/P
	4	TXD_EN	It ensures that the radio has stabilized in transmission before the data is processed for modulation.	I/P
	5	TX_END	To finish transmission, it indicates memory buffer of Master MCU of digital board is empty.	O/P
	6	MUTE (Busy)	Logic level input from digital board to indicate whether a carrier is present or not	I/P
Connector 1	7	CORRECT_CALL	It indicates that received signal has wanted tone or code if you apply tone squelch.	I/P
	8	POWER_SAVE	Power save input for modem board.	I/P
	9	CMD_EN	It indicates that command for Modem programming is effective.	I/P
	10	CMD_IN/OUT	Data Input and Output for Modem programming.	I/P, O/P
	11	CMD_CLK	Clock Input for Modem programming.	I/P
	12	MODEM_SEL	It Indicates modem type to Master MCU for programming.	O/P
	13	RX_IN	The FFSK/MSK signal input for the receiver of modem IC.	I/P
	14	TX_OUT	The FFSK/MSK signal output when the transmitter is enabled.	O/P
	1	Serial_IN	The Serial data to be transmitted is input to this pin.	I/P
	2	Serial_OUT	The recovered asynchronous serial data output from the receiver.	O/P
Connector 2	3	Busy	To eliminate data loss according to buffer overrun of slave MCU's memory, it indicates buffer status.	O/P
CONNECTOR 2	4	Carrier_Detect	Handshake signal for RTS control mode. It indicates whether Slave MCU of modem has decoded data or not.	O/P
	5	PTT_IN	Handshake signal for RTS control mode. It requests data transmission to Slave MCU of modem.	I/P
	6	PROGRAM	It's reserved input for firmware upgrade.	I/P

GMSK Modem Option board

Connector No.	Pin No.	Function	Description	Input/ Output
Connector 1	1	VCC	6V to 12V Power Input	I/P
	2	GND	Ground	
	3	PTT	Signal from the digital board to enable transmitter circuit of modem board.	I/P
	4	TXD_EN	It ensures that the radio has stabilized in transmission before the data is processed for modulation.	I/P

	5	TX_END	To finish transmission, it indicates memory buffer of Master MCU of digital board is empty.	O/P
	6	MUTE (Busy)	Logic level input from digital board to indicate whether a carrier is present or not	I/P
	7	N/C	Not Connected	
	8	POWER_SAVE	Power save input for modem board.	I/P
	9	CMD_EN	It indicates that command for Modem programming is effective.	I/P
	10	CMD_IN/OUT	Data Input and Output for Modem programming.	I/P,
				O/P
	11	CMD_CLK	Clock Input for Modem programming.	I/P
	12	MODEM_SEL	It Indicates modem type to Master MCU for programming.	O/P
	13	RX_IN	The GMSK signal input for the receiver of modem IC.	I/P
	14	TX_OUT	The GMSK filtered Tx output signal.	O/P
	1	Serial_IN	The Serial data to be transmitted is input to this pin.	I/P
Connector 2	2	Serial_OUT	The recovered asynchronous serial data output from the receiver.	O/P
	3	Busy	To eliminate data loss according to buffer overrun of slave MCU's memory, it indicates buffer status.	O/P
	4	Carrier_Detect	Handshake signal for RTS control mode. It indicates whether Slave MCU of modem has decoded data or not.	O/P
	5	PTT_IN	Handshake signal for RTS control mode. It requests data transmission to Slave MCU of modem.	I/P
	6	PROGRAM	It's reserved input for firmware upgrade.	I/P

GPS Option board

Pin	Function	Description	Input/ Output
No.	Tunction	Description	
1	VCC	6V to 12V Power Input	I/P
2	VBAT		I/P
3	ENABLE		I/P
4	PSAVE		I/P
5	GND	Ground	
6	GPS_OUT		O/P
7	DGPS_IN		I/P
8	GPS_IN		I/P
9	+5 V		I/P

Compatible accessory list

ACC-513 9600 baud GMSK modem

ACC-514 4800 baud FFSK modem

ACC-515 GPS receiver

ACC-160 GPS antenna

ACC-516 PCB Interface - used to separate digital and RF board for alignment.

ACC-916 Personality programming software.

ACC-2016 Individual programming cable