

PLC FUNCTION PROGRAMMING MANUAL

CONTENTS

1. PLC	FUNCTION 1
1.1	Function Block Diagram2
1.2	PLC Function Specifications3
1.3	System Configuration4
1.4	Wiring of the Inverter and Personal Computer Using
	GX Developer for RS-485 Communication5
1.5	Prior to Sequence Program Creation6
1.5.1	Precautions for sequence program creation6
1.5.2	2 Usable main GX Developer functions
1.5.3	Sequence program execution key
1.5.4	Sequence program write
1.5.5	5 Setting list of built-in PLC function parameter9
1.6	Device Map10
1.6.1	I/O device map10
1.6.2	2 Internal relay (M) device map
1.6.3	B Data register (D) device map12
1.6.4	Special relays
1.6.5	5 Special registers14
1.7	Inverter Status Monitoring, Special Registers for Control20
1.7.1	Data that can be read at all times20
1.7.2	2 Data that are read by controlling (OFF to ON) the read command
1.7.3	B How to write data by controlling (OFF to ON) the write
	command25
1.7.4	Inverter operation status control
1.7.5	5 Inverter parameter access error (D9150)
1.7.6	5 Inverter status (D9151)
1.8	Inverter Parameter Read/Write Method
1.8.1	Reading the inverter parameters
1.8.2	2 Writing the inverter parameters
1.9	User Area Read/Write Method38
1.9.1	User parameter read/write method
1.10	Analog I/O function
1.10	.1 Analog input
1.10	.2 Analog output
1.11	Paluse train input function40
1.12	PID control41
1.13	Inverter Operation Lock Mode Setting43

2. CC-Link COMMUNICATION

2.1 S	ystem Configuration	
2.1.1	System configuration example	
2.1.2	Function block diagram	47
2.2 C	C-Link Parameters	
2.2.1	CC-Link Extended Setting (Pr. 544)	
2.3 C	C-Link I/O Specifications	50
2.4 B	uffer Memory	57
2.4.1	Remote output signals	
	(Master module to inverter(FR-A7NC))	57
2.4.2	Remote input signals Pr.544=100	
	(Inverter(FR-A7NC) to master module)	58
2.4.3	Remote registers Pr.544=100	
	(Master module to inverter(FR-A7NC))	59
2.4.4	Remote registers Pr.544=100	
	(Inverter(FR-A7NC) to master module)	60

45

61

3. SEQUENCE PROGRAMMING

3.1 (Overview	62
3.1.1	Outline of Operation Processings	62
3.2 F	RUN and STOP Operation Processings	64
3.3 F	Program Makeup	64
3.4 F	Programming Languages	65
3.4.1	Relay symbolic language (Ladder mode)	65
3.4.2	Logic symbolic language (List mode)	67
3.5 0	Operation Processing Method of PLC Function	68
3.6 I	/O Processing Method	69
3.6.1	What is refresh system?	69
3.6.2	Response delay in refresh system	70
3.7 \$	Scan Time	71
3.8 I	Numerical Values Usable in Sequence Program	72
3.8.1	BIN (Binary Code)	73
3.8.2	HEX (HEX Decimal)	74
3.9	Description of devices	75
3.9.1	Device List	75
3.9.2	Inputs, Outputs X, Y	
3.9.3	Internal Relays M	79
3.9.4	Timers T	80

11

3.9.	5	100ms, 10ms and 100ms retentive timers	80
3.9.	6	Timer processing method and accuracy	81
3.10	С	ounters C	83
3.10).1	Count processing in refresh system	84
3.10).2	Maximum counting speed of counter	85
3.11	D	ata Registers D	86
3.12	S	pecial Relays, Special Registers	87
3.13	F	unction List	89
3.14	H	ow to RUN/STOP the Built-in PLC Function from Outside	(Re-
	m	ote RUN/STOP)	90
3.15	W	Atchdog Timer (Operation clog up monitor timer)	92
3.16	S	elf-diagnostic Function	93
3.16	6.1	Error-time operation mode	94
3.17	K	eyword Registration	95
3.18	S	etting of Output (Y) Status at Switching from STOP Statu	is to
	R	UN Status	96
3.19	In	struction Format	97
3.20	В	it Device Processing Method	99
3.20).1	1-bit processing	99
3.20).2	Digit designation processing	99
3.21	H	andling of Numerical Value	101
3.22	0	peration Error	102
3.23	In	structions List	103
3.23	3.1	How to use the instruction list	. 103
3.23	3.2	Sequence instruction	. 105
3.23	3.3	Basic instructions	. 107
3.23	3.4	Application instructions	. 109
3.24	D	escription of the Instructions	110
3.25	S	equence Instructions	111
3.25	5.1	Contact Instructions :	
		Operation start, series connection, parallel connection LD, LDI, AND, OR, ORI	ANI, . 111
3.25	5.2	Contact Instructions : Ladder block series connection, parallel connection	n
2.25	; २	AND, UKD	. 113
5.20	.0	Ladder block series connection, parallel connection ANB. ORB.	. 117
3.25	5.4	Connection Instructions :	
		Operation result, push, read, pop MPS, MRD, MPP	. 120
2 2 2	5 5	Output Instructions : Bit device timer counter OUT	123

4.1 H	אוס	175
4.1 H		172
	ow to Read the Error Code	172
4. ERRO	R CODE LIST	171
	BIN 16-bit 2's complement NEG, NEGP	168
3.27.6	Logical Operation Instructions :	
	16-bit NOT Exclusive Logical Add WXNR, WXNRP	165
3.27.5	Logical Operation Instructions :	
0.27.4	16-bit Exclusive Logical Add WXOR. WXORP	162
3 27 4	logical Operation Instructions :	159
3.27.3	Logical Operation Instructions :	150
0.07.0	16-bit Logical Product WAND, WANDP	156
3.27.2	Logical Operation Instructions :	1 - 6
3.27.1	Logical Operation Instructions	155
3.27 A	pplication instructions	155
	16-bit data transfer MOV, MOVP	153
3.26.7	Data Transfer Instructions :	
3.26.6	Data Transfer Instructions	153
	BIN 16-bit multiplication, division *, *P, /, /P	149
3.26.5	Arithmetic Operation Instructions :	
	BIN 16-bit addition, subtraction +, +P, -, -P	145
3.26.4	Arithmetic Operation Instructions :	
3.26.3	Arithmetic Operation Instructions	144
0.20.2	16-bit data comparison $= <> > <= < >=$	142
3 26 2	Comparison Operation Instructions :	140
2 26 1	Comparison Operation Instructions	140
3 26 B	asic Instructions	140
3 25 1	1 Other Instructions · No operation NOP	137 138
3.20.9	Master Control Instructions . Master Control set, reset MC, MCR	133 137
3.25.8	Shift Instructions : Bit device shift SFT, SFTP	131
0.05.0	PLF	129
3.25.7	Output Instructions : Leading edge, trailing edge differential outputs	. PLS,
~ ~		

1. PLC FUNCTION

This manual describes the functions and devices necessary for programming.

1.1	Function Block Diagram	2
1.2	PLC Function Specifications	3
1.3	System Configuration	4
1.4	Wiring of the Inverter and Personal Computer Using GX Developer for RS-485 Communication	5
1.5	Prior to Sequence Program Creation	6
1.6	Device Map	10
1.7	Inverter Status Monitoring, Special Registers for Control	20
1.8	Inverter Parameter Read/Write Method	34
1.9	User Area Read/Write Method	38
1.10	Analog I/O function	39
1.11	Paluse train input function	40
1.12	PID control	41
1.13	Inverter Operation Lock Mode Setting	43

Chapter 1

Chapter 2

Chapter 3

Chapter 4

How I/O data are transferred to/from the inverter by the built-in PLC function is explained using function blocks.

- (1) I/O data read, write, etc. can be performed by accessing the inverter in the predetermined method using special relays, special registers, etc.
- (2) Operation, parameter read/write, etc. can be performed in accordance with the created sequence programs (built in the inverter) using input data from the control input terminals.

With the output signals, output data can be output to outside the inverter from the control output terminals as not only the inverter's status signals but also pilot lamp on/off, interlock and other control signals set freely by the user.

PLC Function Specifications 1.2

Contr I/O co	rol method		A700 Sequence Section			
Contr I/O co	rol method		•			
I/O cu			Repeated operation (by stored program)			
	ontrol method		Refresh			
Progr	ramming langua	age	Relay symbolic language (ladder mode) Logic symbolic language (list mode)			
τc	PLC instructions		23			
Ë ē	Basic instructions		32			
Nump	Application instructions		18			
Proce	essing speed		PLC instruction 1.9µs to 12µs/step(*2)			
Numt	ber of I/O points	5	128 (X: 64 points, Y: 64 points) 19 points installed, X: 12 points, Y: 7 points (*1) FR-A7AX, X: 16 points FR-A7AY, Y: 6 points FR-A7AR, Y: 3 points			
Num	ber of analog I/	O points	5 points installed, Input: 3 points, Output: 2 points FR-A7AY output: 2 points			
Watc	hdog timer		10 to 2000(ms)			
Mem	ory capacity		6k bytes used by sequence and parameters.			
Progr	ram capacity		1k step			
	Internal relay (M)		64(M0 to M63)			
-	Latch relay (L)		None (Can be set with parameters but will not latch)			
-	Step relay (S)		None (Can be set with parameters but will operate as M)			
	Link relay (B)		None			
-	Points		16			
	Timer (T)	Specifications	100ms timer: Set time 0.1 to 3276.7s (T0 to T15) 10ms timer: Set time 0.01 to 327.67s 100ms retentive timer: Set time 0.1 to 3276.7s			
-		Points	16			
vices	Counter (C) Specifications		Normal counter: Setting range 1 to 32767 (C0 to C15) Interrupt program counter: None			
)e	Data device (D)		120(D0 to D119)			
	Link register (V	V)	None			
	Annunciator (F)		None			
	File register (R)		None			
	Accumulator (A	A)	None			
-	Index register ((Ź, V)	None			
	Pointer (P)		None			
	Interrupt pointe	er (I)	None			
	Special relav (I	N)	256 (M9000 to 9255) with function limit			
	Special registe	, r (D)	256 (D9000 to 9255) with function limit			

common specifications of the inverter.

One point is always necessary for a sequence start (RUN/STOP). *2 As inverter control is also performed actually, the scan time is approximately 40ms at 500 steps.

1.3 System Configuration

The following shows the system configuration for use of the PLC function. **<System configuration example>**

Communication specifications

Set the following setting in communication parameters of the inverter.

Inverter Parameter	GX Developer Setting	Inverter initial setting
Pr.118 PU communication speed	96 (9600bps)	192 (19200bps)
Pr.119 PU communication stop bit length	0 (data length: 8 bits, stop bit: 1 bit)	1 (data length: 8 bits, stop bit: 2 bit)
Pr.120 PU communication parity check	1 (with odd parity check)	2 (with even parity check)
<i>Pr.122 PU communication check time interval</i>	9999 (without communication check)	9999 (without communication check)

REMARKS

•For futher details, refer to the Inverter instruction manual (applied).

•Support GX Developer ver.8 •GX Developer Setting	3.0 or more		
PLC series	ACPU		
PLC type	A0J2H		
[Project data list]→[Parameter]→[→«Memory capacity» tab→"Prog	PLC parameter]→[/ ram capacity"→"Se	A parameter] quence"→"main"	1k step

REMARKS

- •Refer to the Inverter instruction manual (applied) for wiring.
- •Refer to the GX Developer manuals for the specifications related to GX Developer and the personal computer that uses GX Developer.

GX Developer Version xx Operating manual

GX Developer Version xx Operating manual (startup)

•The programming tool that can be used is GX Developer only. (The A6GPP, A7PHP, etc. cannot be used.)

1.4 Wiring of the Inverter and Personal Computer Using GX Developer for RS-485 Communication

Personal computer - inverter connection cable
 Make connection after conversion between RS-232C and RS-485.

Examples of commercially available products (as of Sep., '05)

Туре	Maker
SC-FRPC	BEIJERS

REMARKS

When fabricating the cable on the user side, refer to the *inverter instruction manual (applied)*.

1.5.1 Precautions for sequence program creation

POINT

•Online change of the sequence program and access to other stations are not allowed.

In addition, program read/write from other stations and all PLC memory clear cannot be performed.

•Back up the ladder configured with the protective function of GX Developer.

If any of the instructions (*refer to page 103*) and devices (*refer to page 3*) that cannot be used with the built-in PLC function exists in a sequence program, an instruction code error occurs at the execution of that instruction.

Error code D9008=10 Operation error step D9010 D9011

REMARKS

•*Refer to page 22* for the error codes.

1.5.2 Usable main GX Developer functions

- Parameter or sequence program read/write
- Ladder monitor
- Device monitor
- Device test
- All device memory clear
- Remote RUN/STOP

- CAUTION -

Device test ([Online] - [Debug] - [Device test]) of GX Developer can be performed, but if devices corresponding to control terminal (e.g. STF, STR) signals are tested, the devices turn on in the sequence but the inverter does not perform the corresponding operation.

1.5.3 Sequence program execution key

The sequence program execution key (STOP/RUN) of the PLC is switched by turning off/on the SQ signal.

POINT

•For the terminal used for SQ signal input, set "50" in any of *Pr.178* to *Pr. 189* to assign the function.

•SQ-SD must be shorted to execute the built-in PLC function.

- CAUTION -

If the SQ signal is not turned on, the start signal of the inverter is designed to become valid by the factory setting of *Pr.415 Inverter operation lock mode setting*.

Open (STOP) the SQ signal-SD terminals when writing a sequence program, for example.

When executing the sequence program, short (RUN) the SQ signal-SD terminals. Remote run/stop of the built-in PLC function can be executed in any of the following methods:

- · Setting using the built-in PLC function parameter (contact)
- Using GX Developer
- Via CC-Link communication (refer to page 49)

REMARKS

•The validity limit of the SQ signal can be controlled using *Pr:415 Inverter operation lock mode setting*. (*Refer to page 43.*)

The outputs (Y) are cleared by turning the SQ signal off (STOP) after sequence program execution (SQ signal on).

The other devices retain the device data prior to STOP. When you want to clear the remaining device data, power off or reset (short RES-SD for 0.1s, then open) the inverter.

PLC FUNCTION

1.5.4 Sequence program write

POINT

Sequence program write can be performed in any operation mode.

When rewriting the PLC function parameters and sequence program using GX Developer, check the following:

- 1) Check that the sequence program execution key is in the STOP position (SQ signal is off) (*refer to page 7*).
- 2) Check that the inverter is at a stop.
- 3) Check that the communication specification setting parameters (*Pr*.117 to *Pr*.124) are set correctly. If any of these parameters is set incorrectly, communication with GX Developer cannot be made.

REMARKS

Check and set the communication specification parameter (*Pr. 117* to *Pr. 124*) using the parameter unit (FR-PU04/FR-PU07). (Refer to the FR-PU04/FR-PU07 instruction manual for the handling of the FR-PU04/FR-PU07.) GX Developer and the FR-PU04/FR-PU07 cannot be connected and used simultaneously.

4) Check the PLC series and sequence program capacity in the GX Developer

parameters (refer to page 4).

5) Refer to the GX Developer manual and write the sequence program.

____ CAUTION

- •A sequence program cannot be written with its steps specified. If written, the sequence program does not run. (The program outside the specified range is initialized.)
- •Do not read the built-in PLC function parameters and sequence program without writing them to the inverter once using GX Developer. Since the inverter does not have normal data, always write the built-in PLC function parameters and sequence program once.
- •Since the built-in PLC function parameters and sequence program are written to the flash ROM, there are restrictions on the number of write times. (Approximately 100,000 times)

1.5.5 Setting list of built-in PLC function parameter

The built-in PLC function parameters are designed to specify the ranges of using the PLC function, e.g. program capacity, device assignment and various functions.

ltom	CX Developer Defeult	Setting Range	
nem	GA Developer Delault	<usable device="" range=""></usable>	
Sequence program capacity	6k steps	1k step	
File register capacity	None	Cannot be set (default)	
Comment capacity	None	Cannot be set (default)	
Status latch	None	Cannot be set (default)	
Sampling trace	None	Cannot be set (default)	
Microcomputer program capacity	None	Cannot be set (default)	
Latch range setting	L1000 to L2047	Cannot be set (invalid if set)	
Link range setting	None	Cannot be set (default)	
I/O assignment	None	Cannot be set (default)	
Internal relay, latch relay, step relay setting	M0 to 999 L1000 to 2047 None for S	L and S cannot be set. (Operates as M if set) <m0 m63="" to=""></m0>	
Watchdog timer setting	200ms	10 to 2000ms	
Timer setting	100ms: T0 to 199 10ms: T200 to 255 (100ms timers since only T0 to 7 are available)	16 points for 100ms, 10ms and retentive timers. Timers have consecutive numbers. <t0 t15="" to=""></t0>	
Counter setting	Without interrupt counters	Cannot be set (default) <c0 c15="" to=""></c0>	
Remote run/pause	None	Can be set using X0 to 1F. Otherwise invalid. Pause does not function.	
	Fuse blow: Continued	Setting invalid (since there are no fuses)	
Error-time operation mode	I/O verify error: Stop	Setting invalid (since there are no I/O modules)	
	Operation error: Continued	Stop/Continued	
	Special function module check error: Stop	Setting invalid (since there are no special modules)	
$STOP \to RUN \text{ output mode}$	Operation status prior to STOP is re-output.	Prior to STOP/after operation execution	
Print title registration	None	Cannot be set	
Keyword registration	None	Online setting cannot be made but parameter setting is valid.	

REMARKS

- •The following functions are not supported.
- 1. Constant scan, 2. Latch (device data backup for power failure), 3. Pause,
- 4. Status latch, 5. Sampling trace, 6. Offline switch
- If parameter clear of the inverter is performed, the above built-in PLC function parameters are not cleared.
- •For the built-in PLC function parameter setting operation, refer to the GX Developer Operating Manual.

1.6 Device Map

1.6.1 I/O device map

\setminus	Device	Name	Remarks	Device	Name	Remarks
	No.	Hamo	I tomai to	No.	Numo	Romanico
	X00	STF terminal		Y00	RUN terminal	-
	X01	STR terminal		Y01	SU terminal	
	X02	RH terminal		Y02	OL terminal	External
	X03	RM terminal		Y03	IPF terminal	terminal
	X04	RL terminal		Y04	FU terminal	terrinida
	X05	JOG terminal	External	Y05	ABC1 terminal	
0	X06	RT terminal	terminal	Y06	ABC2 terminal	
a	X07	AU terminal		Y07		
err	X08	CS terminal		Y08		
ШĂ	X09	MRS terminal		Y09		
	X0A	STOP terminal		Y0A		
	X0B	RES terminal		Y0B	Empty	
	X0C			Y0C		
	X0D	Empty		Y0D		
	X0E	Empty		Y0E		
	X0F			Y0F		
	X10	X0 terminal		Y10	DO0 terminal	
	X11	X1 terminal		Y11	DO1 terminal	
	X12	X2 terminal		Y12	DO2 terminal	Dgital
	X13	X3 terminal		Y13	DO3 terminal	output
	X14	X4 terminal		Y14	DO4 terminal	FR-A7AY
0	X15	X5 terminal		Y15	DO5 terminal	
L	X16	X6 terminal	16bit	Y16	DO6 terminal	
ptic	X17	X7 terminal	digital	Y17	RA1 terminal	Relay
0 U	X18	X8 terminal	Input	Y18	RA2 terminal	output
D	X19	X9 terminal	FR-A7AX	Y19	RA3 terminal	FR-A7AR
Ы	X1A	X10 terminal		Y1A		
	X1B	X11 terminal		Y1B		
	X1C	X12 terminal		Y1C	Empty	
	X1D	X13 terminal		Y1D	Linkry	
	X1E	X14 terminal	1	Y1E		
	X1F	X15 terminal	1	Y1F		

 \mathbb{Z}

\setminus	Device	Namo	Remarks	Device	Name	Remarks	
\backslash	No.	Name	Remarks	No.	Name	Remarks	
	X20	Operation mode setting read completion	D9140	Y20	Operation mode setting read command	D9140	
	X21	Set frequency read completion (RAM)	D9141	Y21	Set frequency read command (RAM)	D9141	
	X22	Set frequency read completion (E ² PROM)	D9142	Y22	Set frequency read command (E ² PROM)	D9142	
	X23	Operation mode setting write completion	D9143	Y23	Operation mode setting write command	D9143	
	X24	X24 Set frequency write completion (RAM)		Y24	Set frequency write command (RAM)	D9144	
	X25	Set frequency write completion (E ² PROM)	D9145	Y25	Set frequency write command (E ² PROM)	D9145	
m I/O	X26	Alarm definition batch clear completion	D9146	Y26	Alarm definition batch clear command	D9146	
Syste	X27	Parameter clear completion	D9147	Y27	Parameter clear command	D9147	
	X28	Parameter read completion (RAM)	D9241,	Y28	Parameter read request (RAM)	D9241,	
	X29	Parameter write completion (RAM)	D9234 D9234	Y29	Parameter write request (RAM)	D9234	
	X2A	Parameter read completion (EEPROM)	D9243, -D9244, D9235	Y2A	Parameter read request (EEPROM)	D9243,	
	X2B	Parameter write completion (EEPROM)		Y2B	Parameter write request (EEPROM)	D9235	
	X2C			Y2C	_		
	X2D	System area		Y2D	System area		
	X2E			Y2E			
	X2F			Y2F	D 1/0		
	X30	RYU	_	Y30	RXU	-	
	X31 X22	RY1	_	¥31 ¥22	RX1	-	
	 			132			
~	×33	RV/	_	133 V34	RXJ RXJ	-	
Ň	X35	RY5	_	¥35	RX5		
lote	X36	RY6		Y36	RX6	-	
len	X37	RY7	_	Y37	RX7	-	
õ	X38	RY8	FR-A7NC	Y38	RX8	FR-A7NC	
Ч Ч	X39	RY9	_	Y39	RX9		
Ļ	X3A	RYA	_	Y3A	RXA	-	
S	X3B	RYB		Y3B	RXB	-	
1	X3C	RYC	1	Y3C	RXC		
	X3D	RYD	1	Y3D	RXD		
	X3E	RYE	1	Y3E	RXE	-	
	X3F	RYF		Y3F	RXF		

7

PLC FUNCTION

1.6.2 Internal relay (M) device map

Device No.	Description	
M0 to M63	Use freely on user side.	

7

1.6.3 Data register (D) device map

Data Register (D)	Inverter Pr. Number	Parameter Name	Reference Page
D0 to D99	Use freely on u	—	
D100 to D119	Pr.506 to Pr.515	User parameters. Use freely on user side.	38

1.6.4 Special relays

The special relays are internal relays with special applications and therefore should not be switched on-off in the program.

M9008Self-diagnostic errorTurned on by self-diagnosed error.M9010Operation error flagTurned on by an instruction execution error. Turned on by an instruction execution error. Turned on by an instruction execution error. Remains on after normal status is restored.M9036Normally ON M9037Mormally OFFM9038On only for 1 scan after RUNM9036 and M9037 are turned on and off independently of STOP or RUN. M9038 and M9039 change depending on the STOP or RUN status. In other than the STOP status, M9038 is on for one scan only and M9039 is off for one scan only.M9200Inverter operation status control flag (STF)Control the STF terminal of the inverter from PLC functionM9202Inverter operation status control flag (STR)Control the RH terminal of the inverter from PLC functionM9204Inverter operation status control flag (RH)Control the RM terminal of the inverter from PLC functionM9205Inverter operation status control flag (QL)Control the RL terminal of the inverter from PLC functionM9204Inverter operation status control flag (QDG)Control the RT terminal of the inverter from PLC functionM9208Inverter operation status control flag (RT)Control the AU terminal of the inverter from PLC functionM9209Inverter operation status control flag (RD)Control the RT terminal of the inverter from PLC functionM9209Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MS)Control the CS terminal of the inverter from P	Number	Name	Description
M9010Operation error flagTurned on by an instruction execution error. Turned off when error is removed.M9011Operation error flagTurned on by an instruction execution error. Remains on after normal status is restored.M9036Normally ONM9036 and M9037 are turned on and off independently of STOP or RUN.M9038On only for 1 scan after RUNM9038 and M9039 change depending on the STOP or RUN status. In other than the STOP status, M9038 is on for one scan only and M9039 is off for one scan only.M9200Inverter operation status control flag (STF)Control the STF terminal of the inverter from PLC functionM9201Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9203Inverter operation status control flag (RH)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RM)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (GR)Control the RL terminal of the inverter from PLC functionM9206Inverter operation status control flag (QG)Control the AU terminal of the inverter from PLC functionM9204Inverter operation status control flag (ST)Control the AU terminal of the inverter from PLC functionM9205Inverter operation status control flag (QG)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (RT)Control the AU terminal of the inverter from PLC functionM9209Inverter operation status con	M9008	Self-diagnostic error	Turned on by self-diagnosed error.
MooreOperation error flagTurned off when error is removed.M9011Operation error flagTurned on by an instruction execution error. Remains on after normal status is restored.M9036Normally ONM9037Normally OFFM9038On only for 1 scan after RUNM9039Off only for 1 scan after RUNM9030Off only for 1 scan after RUNM9200Inverter operation status control flag (STF)M9201Inverter operation status control flag (STR)M9202Inverter operation status control flag (RH)M9203Inverter operation status control flag (RH)M9204Inverter operation status control flag (RH)M9205Inverter operation status control flag (RM)M9206Inverter operation status control flag (RM)M9207Inverter operation status control flag (RM)M9208Inverter operation status control flag (RM)M9204Inverter operation status control flag (RL)M9205Inverter operation status control flag (QG)M9206Inverter operation status control flag (JOG)M9207Inverter operation status control flag (QU)M9208Inverter operation status control flag (CS)M9209Inverter operation status control flag (CS) <t< td=""><td>M9010</td><td>Operation error flag</td><td>Turned on by an instruction execution error.</td></t<>	M9010	Operation error flag	Turned on by an instruction execution error.
M9011Operation error flagTurned on by an instruction execution error. Remains on after normal status is restored.M9036Normally ONM9037Normally OFFM9038On only for 1 scan after RUNM9039Off only for 1 scan after RUNM9030Inverter operation status control flag (STF)M9201Inverter operation status control flag (STR)M9202Inverter operation status control flag (RH)M9203Inverter operation status control flag (RH)M9204Inverter operation status control flag (RH)M9205Inverter operation status control flag (RL)M9206Inverter operation status control flag (RH)M9207Inverter operation status control flag (RH)M9208Inverter operation status control flag (RL)M9209Inverter operation status control flag (RL)M9204Inverter operation status control flag (RL)M9205Inverter operation status control flag (RT)M9206Inverter operation status control flag (QG)M9207Inverter operation status control flag (QG)M9208Inverter operation status control flag (QG)M9209Inverter operation status control flag (QS)M9209Inverter operation status control flag (CS)M9209Inverter operation status control flag (CS)M9209Inverter operation status control flag (MS)M9209Inverter operation status control flag (MS)M9209Inverter operation status control flag (MS)	10000	operation error hag	Turned off when error is removed.
M9036Normally ONM9036 and M9037 are turned on and off independently of STOP or RUN.M9038On only for 1 scan after RUNM9036 and M9039 change depending on the STOP or RUN status. In other than the STOP status, M9038 is on for one scan only and M9039 is off for one scan only.M9039Off only for 1 scan after RUNRun status. In other than the STOP status, M9038 is on for one scan only and M9039 is off for one scan only.M9200Inverter operation status control flag (STF)Control the STF terminal of the inverter from PLC functionM9201Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9203Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (QG)Control the RL terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RL terminal of the inverter from PLC functionM9204Inverter operation status control flag (QG)Control the RL terminal of the inverter from PLC functionM9207Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9208Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9209Inverter operation status control flag (CS)Control the RT terminal of the inverter from PLC functionM9209 <t< td=""><td>M9011</td><td>Operation error flag</td><td>Turned on by an instruction execution error.</td></t<>	M9011	Operation error flag	Turned on by an instruction execution error.
M9036Normally ONM9036 and M9037 are turned on and off independently of STOP or RUN.M9038On only for 1 scan after RUNM9038 and M9039 change depending on the STOP or RUN status. In other than the STOP status, M9038 is on for one scan only and M9039 is off for one scan only.M9030Off only for 1 scan after RUNM9036 control the STF terminal of the inverter from PLC functionM9200Inverter operation status control flag (STF)Control the STF terminal of the inverter from PLC functionM9201Inverter operation status control flag (STR)Control the STR terminal of the inverter from PLC functionM9202Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9203Inverter operation status control flag (RH)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (RT)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status c			Remains on after normal status is restored.
M9037Normally OFFof STOP or RUN. M9038M9038On only for 1 scan after RUNof STOP or RUN. M9038 and M9039 change depending on the STOP or RUN status. In other than the STOP status, M9038 is on for one scan only and M9039 is off for one scan only.M9039Off only for 1 scan after RUNControl flag (STF)M9200Inverter operation status control flag (STF)Control the STF terminal of the inverter from PLC functionM9201Inverter operation status control flag (RTR)Control the STR terminal of the inverter from PLC functionM9202Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9203Inverter operation status control flag (RM)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (RT)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (AU)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the STOP terminal of the inverter from P	M9036	Normally ON	M9036 and M9037 are turned on and off independently
M9038On only for 1 scan after RUNM9038 and M9039 change depending on the STOP or RUN status. In other than the STOP status, M9038 is on for one scan only and M9039 is off for one scan only.M9039Off only for 1 scan after RUNControl frag (STF)Control the STF terminal of the inverter from PLC functionM9200Inverter operation status control flag (STF)Control the STR terminal of the inverter from PLC functionM9201Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9203Inverter operation status control flag (RH)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (QG)Control the RL terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RL terminal of the inverter from PLC functionM9209Inverter operation status control flag (QG)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (AU)Control the RT terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9	M9037	Normally OFF	of STOP or RUN.
M9039Off only for 1 scan after RUNfor one scan only and M9039 is off for one scan only.M9200Inverter operation status control flag (STF)Control the STF terminal of the inverter from PLC functionM9201Inverter operation status control flag (STR)Control the STR terminal of the inverter from PLC functionM9202Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9203Inverter operation status control flag (RM)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (JOG)Control the RL terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9206Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the RR terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC <td>M9038</td> <td>On only for 1 scan after RUN</td> <td>M9038 and M9039 change depending on the STOP or RUN status. In other than the STOP status, M9038 is on</td>	M9038	On only for 1 scan after RUN	M9038 and M9039 change depending on the STOP or RUN status. In other than the STOP status, M9038 is on
M9200Inverter operation status control flag (STF)Control the STF terminal of the inverter from PLC functionM9201Inverter operation status control flag (STR)Control the STR terminal of the inverter from PLC functionM9202Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9203Inverter operation status 	M9039	Off only for 1 scan after RUN	for one scan only and M9039 is off for one scan only.
M9201Inverter operation status control flag (STR)Control the STR terminal of the inverter from PLC functionM9202Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9203Inverter operation status control flag (RM)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (JOG)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the STOP terminal of the inverter from PLC function	M9200	Inverter operation status	Control the STF terminal of the inverter from PLC function
M9201Interfor operation status control flag (STR)Solution the offer terminal of the inverter hold the offer terminal of the inverter hold the offer terminal of the inverter from PLC functionM9202Inverter operation status control flag (RH)Control the RM terminal of the inverter from PLC functionM9203Inverter operation status control flag (RM)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (JOG)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the STOP terminal of the inverter from PLC function		Inverter operation status	Control the STR terminal of the inverter from PLC
M9202Inverter operation status control flag (RH)Control the RH terminal of the inverter from PLC functionM9203Inverter operation status control flag (RM)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (JOG)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9209Inverter operation status control flag (STOP)Control the STOP terminal of the inverter from PLC function	M9201	control flag (STR)	function
M9202control flag (RH)functionM9203Inverter operation status control flag (RM)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (JOG)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9210Inverter operation status control flag (STOP)Control the STOP terminal of the inverter from PLC function	140000	Inverter operation status	Control the RH terminal of the inverter from PLC
M9203Inverter operation status control flag (RM)Control the RM terminal of the inverter from PLC functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (JOG)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9210Inverter operation status control flag (STOP)Control the STOP terminal of the inverter from PLC function	M9202	control flag (RH)	function
INS203control flag (RM)functionM9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (JOG)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9210Inverter operation status control flag (STOP)Control the STOP terminal of the inverter from PLC function	M0203	Inverter operation status	Control the RM terminal of the inverter from PLC
M9204Inverter operation status control flag (RL)Control the RL terminal of the inverter from PLC functionM9205Inverter operation status control flag (JOG)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9210Inverter operation status control flag (STOP)Control the STOP terminal of the inverter from PLC function	1019203	control flag (RM)	function
M9205Inverter operation status control flag (JOG)Control the JOG terminal of the inverter from PLC functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9210Inverter operation status control flag (STOP)Control the STOP terminal of the inverter from PLC function	M9204	Inverter operation status control flag (RL)	Control the RL terminal of the inverter from PLC function
Investescontrol flag (JOG)functionM9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9210Inverter operation status control flag (STOP)Control the STOP terminal of the inverter from PLC function	M9205	Inverter operation status	Control the JOG terminal of the inverter from PLC
M9206Inverter operation status control flag (RT)Control the RT terminal of the inverter from PLC functionM9207Inverter operation status control flag (AU)Control the AU terminal of the inverter from PLC functionM9208Inverter operation status control flag (CS)Control the CS terminal of the inverter from PLC functionM9209Inverter operation status control flag (MRS)Control the MRS terminal of the inverter from PLC functionM9210Inverter operation status control flag (STOP)Control the STOP terminal of the inverter from PLC function	10200	control flag (JOG)	function
M9207 Inverter operation status control flag (AU) Control the AU terminal of the inverter from PLC function M9208 Inverter operation status control flag (CS) Control the CS terminal of the inverter from PLC function M9209 Inverter operation status control flag (MRS) Control the MRS terminal of the inverter from PLC function M9210 Inverter operation status control flag (STOP) Control the STOP terminal of the inverter from PLC function	M9206	Inverter operation status control flag (RT)	Control the RT terminal of the inverter from PLC function
M9208 Inverter operation status control flag (CS) Control the CS terminal of the inverter from PLC function M9209 Inverter operation status control flag (MRS) Control the MRS terminal of the inverter from PLC function M9210 Inverter operation status control flag (STOP) Control the STOP terminal of the inverter from PLC function	M9207	Inverter operation status	Control the AU terminal of the inverter from PLC function
M9208 Inverter operation status Control fue control fue operation status M9209 Inverter operation status Control the MRS terminal of the inverter from PLC control flag (MRS) M9210 Inverter operation status Control the STOP terminal of the inverter from PLC function		Inverter operation status	Control the CS terminal of the inverter from PLC
M9209 Inverter operation status control flag (MRS) Control the MRS terminal of the inverter from PLC function M9210 Inverter operation status control flag (STOP) Control the STOP terminal of the inverter from PLC function	M9208	control flag (CS)	function
M9209 control flag (MRS) function M9210 Inverter operation status control flag (STOP) Control the STOP terminal of the inverter from PLC function		Inverter operation status	Control the MRS terminal of the inverter from PLC
M9210 Inverter operation status Control the STOP terminal of the inverter from PLC function	M9209	control flag (MRS)	function
control flag (STOP) function	M0210	Inverter operation status	Control the STOP terminal of the inverter from PLC
	1019210	control flag (STOP)	function

Number	Name	Description
M0211	Inverter operation status	Control the RES terminal of the inverter from PLC
1019211	control flag (RES)	function
M9216	Inverter status (RUN)	Inverter running
M9217	Inverter status (FWD)	Forward running
M9218	Inverter status (REV)	Reverse running
M9219	Inverter status (SU)	Up to frequency
M9220	Inverter status (OL)	Overload alarm
M9221	Inverter status (IPF)	Instantaneous power failure/undervoltage
M9222	Inverter status (FU)	Output frequency detection
M9223	Inverter status (ALM)	Alarm output
M9224	Inverter status (LF)	Minor fault output
M9225	Inverter status (DO0)	Status of output terminal function set in Pr. 313 is stored *1
M9226	Inverter status (DO1)	Status of output terminal function set in Pr. 314 is stored *1
M9227	Inverter status (DO2)	Status of output terminal function set in Pr. 315 is stored *1
M9228	Inverter status (DO3)	Status of output terminal function set in Pr. 316 is stored *1
M9229	Inverter status (DO4)	Status of output terminal function set in Pr. 317 is stored *1
M9230	Inverter status (DO5)	Status of output terminal function set in Pr. 318 is stored *1
M9231	Inverter status (DO6)	Status of output terminal function set in Pr. 319 is stored *1
M9232	Inverter status (RA1)	Status of output terminal function set in Pr. 320 is stored *1
M9233	Inverter status (RA2)	Status of output terminal function set in Pr. 321 is stored *1
M9234	Inverter status (RA3)	Status of output terminal function set in Pr. 322 is stored *1
		Select the inverter status control command from M9200
M9255	Inverter operation status	to M9211 or D9148.
1010200	control selection	OFF: Special relay selection
		ON : Special register selection

*1. Even if the FR-A7AY, FR-A7AR is not mounted, *Pr. 313* to *Pr. 322* are accessible during PLC function operation, and status of output terminal functions are stored in each device. (virtual output terminal)

Device Map

1.6.5 Special registers

The special registers are data registers with special applications and therefore data should not be written to the special registers in the program.

ľ	Number	Name	Description	Page
	D9008	Self-diagnostic error	Stores the self-diagnosed error number in BIN. (<i>Refer</i> to page 22 for the error codes.)	22
	D9010	Operation error step	Stores the step number in BIN, at which an instruction execution error occurred. After that, data is updated each time operation error occurs.	_
	D9011	Operation error step	Stores the step number in BIN, at which an instruction error occurred. Since data is stored into D9011 when M9011 turns from off to on, D9011 data is not updated unless M9011 is cleared by the user program.	_
	D9014	I/O control method	3 (fixed): Both input and output refreshes	
Special registers	D9015	CPU operating status	Stores the operating status of the PLC function.	_
	D9016	Program number	Stores the number that indicates which sequence program is currently in execution. 1 (fixed): Main program (RAM)	
	D9017	Minimum scan time (10ms units)	Stores the scan time at every END that is smaller than D9017 data, i.e. stores the minimum scan time in BIN.	—
	D9018	Scan time (10ms units)	Stores and updates the scan time at every END in BIN.	_
	D9019	Maximum scan time (10ms units)	Stores the scan time at every END that is greater than D9019 data, i.e. stores the maximum scan time in BIN.	_
	D9062 to D9093	Remote registers	Special registers for communication with the master station in CC-Link.	50

1	Number	Name	Description	Page
	D9133	Output frequency monitor	Stores the current output frequency. 0.01Hz units	
	D9134	Output current monitor	Stores the current output current. 0.01A units	20
	D9135	Output voltage monitor	Stores the current output voltage. 0.1V units	
	D9136	Error history 1, 2		
	D9137	Error history 3, 4	Store the errors that occurred in the inverter in order	21
	D9138	Error history 5, 6	of occurrence.	21
ters for control	D9139	Error history 7, 8	*	
	D9140	Operation mode setting read	Stores the current operation mode.	
	D9141	Set frequency read (RAM)	Reads and stores the set frequency (RAM).	
	D9142	Set frequency read (E ² PROM)	Reads and stores the set frequency (EEPROM).	24
l regis	D9143	Operation mode setting write	e Sets a new operation mode.	
specia	D9144	9144 Set frequency write (RAM) Sets the running frequency (RAM).		27
0	D9145	Set frequency write (E ² PROM)	Sets the running frequency (EEPROM).	
	D9146	Alarm definition batch clear	Write H9696 to clear the error history.	29
	D9147	Parameter clear H9696 write: Parameter clear H545A write:Parameter clear except communication parameters H55AA write:All clear except communication parameters During GX Developer communication, perform clearing by H545A or H55AA		30

7/

N	lumber	Name	Description	Page
	D9148	Inverter operation status control	Turn on/off the corresponding bits to control the inverter operation status. The initial value: All "0". When M9255 is off, this device does not function. B15B12B11B8B7B4B3B0 1:ON Invalid Unvali	31
0	D9149	Inverter operation status control enable/disable setting	Enable/disable the inverter operation status control using D9148 and M9200 to M9211 by turning on/off the corresponding bits. Bit image is the same as D9148. The initial value: All "0" (invalid)	32
for contrc	D9150	Inverter parameter access error	Stores the error No. when an error occurs because the data stored in the parameter or special register is not reflected on the inverter.	33
Special registers t	D9151	Inverter status	Stores the running status and operating status of the inverter. B15····· B8B7····· B4B3····· B0 0:OFF 1:ON Inverter running Reverse running Overload alarm(OL) Instantaneous power failure /undervoltage(IPF) Output frequency detection(FU) Alarm output(ALM) Minor fault output(LF)	33
	D9152	Frequency setting	0.01Hz units	_
	D9153	Running speed	1(0.1)r/min unit	—
	D9154	Motor torque	0.1% units	—
	D9155	Converter output voltage	0.1V units	_
	D9156	brake duty	0.1% units	—
	D9157	relay function load	0.1% units	—
	D9158	Output current peak value	0.01A/0.1A units	_

 \mathbb{Z}

Device Map

١	lumber	Name	Description	Page
	D9159	Converter output voltage peak value	0.1V units	_
	D9160	Input power	0.01kW/0.1kW units	
	D9161	Output power	0.01kW/0.1kW units	—
	D9162	Input terminal status	Input terminal status details B15·····B12B11·····B8B7·····B4B3·····B0 0:OFF 1:ON 1:ON STF STR AU RT RH JOG MRS STOP RES CS	_
ers for control	D9163	Output terminal status	Output terminal status details	_
gist	D9164	Load meter	0.1% units	_
ial re	D9165	Motor excitation current	0.01A/0.1A units -7	—
bed	D9166	Position pulse		—
S	D9167	Cumulative energization time	1h units	_
	D9169		Always 0	—
	D9170	Actual operation time	1h unit	—
	D9171	Motor load factor	0.1% units	_
	D9172	Cumulative power	1kW unit	—
	D9179	Torque command	0.1% units	—
	D9180	Torque current command	0.1% units	—
	D9181	Motor output	0.01kW units	—
	D9182	Feedback pulse	1 unit	—
	D9197	Power saving effect	Variable according to parameters	—
	D9198	Cumulative saving power		_
	D9199	PID set point	0.1% units	_
	D9200	PID measured value	0.1% units	_
	D9201	PID deviation	0.1% units	—

7

Device Map

1

١	Number	Name	Description	Page
	D9205	Option input terminal status 1	The input status of the FR-A7AX is stored. All off (0) when an option is not fitted. D9205 D9205 D920	_
ial registers for control	D9206	Option input terminal status 2	X8 X9 X10 X11 X12 X13 X14 X15 D9206 D9206 D9206 D9206 D9206 D9206	_
Spe	D9207	Option output terminal status	The output status of the FR-A7AY, FR-A7AR is stored. All off (0) when an option is not fitted. B15B12B11B8B7B4B3B0 0:OFF 1:ON Y0 Y1 Y2 Y3 Y4 Y5 Y6 RA1 RA2 RA3	_

 $\overline{}$

١	lumber	Name	Description	Page	
	D9234	Second parameter changing (RAM)	When setting the calibration(bias/gain) parameters.		
	D9235	Second parameter changing (EEPROM)	H01: Parameter-set analog value H02: Analog value input from terminal	34, 36	
	D9236	Pulse train input sampling pulse	The number of pulses counted in count cycle is stored. (0 to 32767)		
	D9237	Pulse train input cumulative count value L	The cumulative value of the number of sampling		
	D9238	Pulse train input cumulative count value H	pulses is stored. (0 to 99999999)	40	
	D9239	Reset request of pulse train input count	The sampling pulses and cumulative count value are cleared. Automatically changes to "0" after reset. (1: count clear)		
	D9240	Count start of the pulse train input	Start counting the sampling pulses and cumulative count value. (0: count stop, 1: count start)		
cial registers for control	D9241	Parameter number (RAM)	Set the number of parameter read or written of the inverter.		
	D9242	Parameter description (RAM)	The parameter description of the inverter (RAM value) specified by D9241 is stored. Set the parameter setting for parameter write.		
	D9243	Parameter number (EEPROM)	Set the number of parameter read or written of the inverter.	34, 36	
	D9244	Parameter description (EEPROM)	The parameter description of the inverter (EEPROM value) specified by D9243 is stored. Set the parameter setting for parameter write.		
Spe	D9245	Terminal 1 input	Analog input value of terminal 1 (0.1% increments) is stored.		
	D9246	Terminal 2 input	Analog input value of terminal 2 (0.1% increments) is stored.	39	
	D9247	Terminal 4 input	Analog input value of terminal 4 (0.1% increments) is stored.		
	D9248	PID set point / PID deviation	Set the PID set point or PID deviation (0.01% units)		
	D9249	PID measurement value	Set the PID measurement value (0.01% units)	41	
	D9250	PID manipulated variable	Stores the PID manipulated variable (0.01% units)		
	D9251	Terminal FM output	When <i>Pr. 54</i> is set to "70", pulse train can be output from terminal FM. High speed pulse train output can be performed. (0.1% increments)		
	D9252	Terminal AM output	When <i>Pr. 158</i> is set to "70", analog output can be performed from terminal AM. (0.1% increments)	39	
	D9253	AM0 output	Analog output can be performed from terminal AM0		
	D9254	AM1 output	and AM1 of the FR-A7AY. (0.1% increments)		
	D9255	PID operation control	Setting 1 starts PID control.	41	

Device Map

1

PLC FUNCTION

1.7 Inverter Status Monitoring, Special Registers for Control

You can assign the data for grasping and changing the inverter's operation status to D9133 - D9147 and read/write them from the user sequence. (*Refer to page 14 for the list.*)

1.7.1 Data that can be read at all times

The following data can always be read. They are automatically refreshed every time the END instruction is executed.

(1) Operation monitor

The following data devices are always read-enabled (write-disabled) to allow you to monitor the output frequency, output current and output voltage of the inverter. Note the setting units.

Device No.	Name	Setting Unit	Data Example	Data Access Enable Condition
D9133	Output frequency monitor	0.01Hz	Device data $6000 \rightarrow 60.00$ Hz	
D9134	Output current monitor	0.01A	Device data $200 \rightarrow 2.00A$	Always
D9135	Output voltage monitor	0.1V	Device data $1000 \rightarrow 100.0V$	

CAUTION =

The frequency can be set in increments of 0.01Hz but actual operation is performed in increments of 0.1Hz.

, Inverter Status Monitoring, Special Registers for Control

(2) Error history (error codes and error definitions)

The inverter stores the error codes of the errors that occurred.

The error codes of up to eight errors are stored in the order as shown below and are always read-enabled (write-disabled).

Data

H90

H91

HA0 HA3

HB0

HB1

HB2

HB3

HC0

HC1

HC2

HC4

HC5

HC6

HC7

HC8

HD0

HD1

<Error code storing method details>

b15 to b8	b7 to b0
	E h ' . l

D9136 Error history 2 Error history 1 D9137 Error history 4 Error history 3

D9138 Error history 6 Error history 5

D9139 Error history 8 Error history 7

Data	Description
H00	No alarm
H10	E.OC1
H11	E.OC2
H12	E.OC3
H20	E.OV1
H21	E.OV2
H22	E.OV3
H30	E.THT
H31	E.THM
H40	E.FIN
H50	E.IPF
H51	E.UVT
H52	E.ILF
H60	E.OLT
H70	E.BE
H80	E.GF
H81	E.LF

		-Newer
		~
Older -	\sim	-

Description

E.OHT

E.PTC E.OPT

E.OP3

E.PE

E.PUE

E.RET

E.PE2

E.CPU

E.CTE

E.P24

E.CDO

E.IOH

E.SER

E.AIE

E.USB

E.OS

E.OSD

Da	ata	Description
HI	D2	E.ECT
H	D3	E.OD
H	D5	E.MB1
H	D6	E.MB2
H	D7	E.MB3
H	D8	E.MB4
HI	D9	E.MB5
H	DA	E.MB6
H	DВ	E.MB7
H	C	E.EP
H	F1	E.1
H	F2	E.2
H	F3	E.3
H	F6	E.6
H	F7	E.7
HI	=B	E.11
H	=D	E.13
H H H H	F6 F7 FB FD	E.6 E.7 E.11 E.13

Refer to the *Inverter instruction manual (applied)* for alarm definition details.

The following program reads the latest alarm definition of the inverter to D0.

Alarm definition read request	[WANDP	D9136	HOFF	DO	Stores only the lower 8 bits of error history 1, 2 (D9136) into D0. (The latest error information
0					is stored into D0.)

<Regarding the error No. and details of the self-diagnostic errors>

During execution of a sequence program, any of the following error No. is stored into D9008 due to an operation error.

At occurrence of a self-diagnostic error, the P.RUN indication (LED) flickers.

Error No.	Error Name	Details				
10	INSTRCT CODE ERR.	There is an instruction code that cannot be decoded. Unusable device is specified.				
11	PARAMETER ERR	Main program capacity setting is over 1k step. Unusable function is set.				
22	WDT ERR	Scan time is longer than the time that can be monitored by the watchdog timer.				
24	END NOT EXECUTE	END instruction was not executed.				

_ CAUTION _

- 1. For the LD, AND, OR, logical comparison operation and OUT instructions, device checks are always made. For the other instructions (SET, RST, MOV, etc.), however, device checks are made when the execution condition holds.
- 2. Operation at error stop

The outputs (Y) are cleared.

The other devices hold the states prior to an error stop.

When you want to clear them, power off or reset (short RES-SD (0.1s), then open) the inverter.

1.7.2 Data that are read by controlling (OFF to ON) the read command

You can read the operation mode and set frequency of the inverter.

Device	Name	Read	Write	Data Access
No.		Command	Completion	Enable Condition
D9140	Operation mode setting read	Y20	X20	
D9141	Set frequency read (RAM)	Y21	X21	Always
D9142	Set frequency read (EEPROM)	Y22	X22	

Data are stored into the above data devices as soon as the read completion turns from off to on after the read command has turned from off to on.

If the read command remains on, data is not refreshed. (Data is not updated.) Turn the device off once, then on again to refresh data.

Data read timing chart

(1) Operation mode setting read (D9140)

Data Setting	Operation Mode
H0000	NET operation mode
H0001	External operation mode
H0002	PU operation mode

REMARKS

When the *Pr*: 79 "operation mode selection" setting is other than "0", the operation mode is as set. However, when *Pr*: 79 = "3" or "4", the operation mode is "H0002" (PU operation mode).

<Operation mode setting read program example>

The following program reads the operation mode data to D0.

	XOF	- Operation mode read setting request		F 01.0		J Turns on operation mode
0				-Lhrz	MO	 read request pulse.
4)	[MOV	D9140	DO	Stores operation mode data to D0 when operation mode setting read completion signal turns on.
11	┝┤Ĩ┝┯╤╫	; 			—(MI	> Turns on operation mode setting
	MI					read command. (Until operation
	-iii				(Y20	signal turns on)
16					-FEND	1

PLC FUNCTION

Inverter Status Monitoring, Special Registers for Control

(2) Set frequency (RAM) (D9141)

The frequency set to the RAM is read to D9141. The unit is 0.01Hz.

(For example, 6000 indicates 60.00Hz.)

When the speed is set, the speed is either 1r/min or 0.1r/min.

<Set frequency (RAM) read program example>

The following program reads the set frequency (RAM) to D0.

Set frequency read (RAM) setting request	[PLS	NO	Turns on set frequency read (RAM) request pulse.
Mi X21 4	D9141	DO	Stores data to D0 when set frequency read (RAM) completion signal turns on.
		(MI	Turns on set frequency read (RAM) command. (Until set frequency read (RAM) completion signal turns on)
16		(121 [END]
I			

REMARKS

The read frequency is not the command value of the external signal.

(3) Set frequency (EEPROM) (D9142)

The frequency set to the EEPROM is read to D9142. The unit is 0.01Hz. (For example, 6000 indicates 60.00Hz.)

When the speed is set, the speed is either 1r/min or 0.1r/min.

<Set frequency read (EEPROM) program example>

The following program reads the set frequency (E²PROM) to D0.

The following program reads the set frequency (E ² PROM) to D0.								
		—[PLS	MO] (E ² PROM) setting request				
4 X22 4 X22 4 X22	[MOV	D9142	DO	Stores data to D0 when set frequency read (E ² PROM) completion signal turns on.				
			-(MI) Turns on set frequency read (E ² PROM)				
			CY22) (E ² PROM) completion signal turns on)				
16			-[END	3				

REMARKS

The read frequency is not the command value of the external signal.

1.7.3 How to write data by controlling (OFF to ON) the write command

You can write the operation mode and set frequency to the inverter, batch-clear the alarm definitions, and clear all parameters.

Device No.	Name	Write Command	Write Completion	Data Access Enable Condition
D9143	Operation mode setting write	Y23	X23	Pr:79 =0, 2
D9144	Set frequency write (RAM)	Y24	X24	PU operation mode
D9145	Set frequency write (E ² PROM)	Y25	X25	(PU LED on) or CC- Link operation mode (PU and EXT LEDs flicker slowly)
D9146	Alarm definition batch clear	Y26	X26	Always
D9147	All parameter clear	Y27	X27	As set in Pr. 77

The above data are written as soon as the write completion turns on after the write command has turned from off to on.

(Alarm definition batch clear (D9146) and all parameter clear (D9147) turn on at completion of clear.)

To write the data again, the write command must be turned off once, then on again.

Data write timing chart

(1) Operation mode setting write (D9143)

Data are as follows:

Data Setting	Operation Mode
H0000	NET operation mode
H0001	External operation mode
H0002	PU operation mode

The operation mode switching method is as shown below when the *Pr*.79 *Operation mode selection* value is "0".

REMARKS

When Pr. 79 is other than 0, the mode is fixed.

There are no restrictions on operation mode switching.

On normal completion of operation mode setting, the write completion signal (X23) turns on, and at the same time, 0 is set to D9150.

If the value written is other than H0000 to H0002 or write is performed during inverter operation, HFFFF is set to D9150 as soon as the write completion signal (X23) turns on, resulting in abnormal completion.

If abnormal completion occurs, the operation mode is not changed.

<Operation mode setting write program example>

The following program changes the operation mode to the NET mode.

Inverter Status Monitoring, Special Registers for Control

(2) Set frequency (RAM) (D9144)

The D9144 data is written to the RAM as a set frequency. The unit is 0.01Hz. (For example, 6000 indicates 60.00Hz.)

When the speed is set, the speed is either 1r/min or 0.1r/min.

The range where the frequency can be set is 0 to 12000 (0 to 120.00Hz).

When the frequency setting is written normally, the write completion signal (X24) turns on, and at the same time, 0 is set to D9150.

If any value outside the range is written, HFFFF is set to D9150 as soon as the write completion signal (X24) turns on, resulting in abnormal completion. If abnormal completion occurs, the set frequency is not changed.

POINT

• The frequency can be set in the PU operation mode and NET operation mode. Refer to the *inverter instruction manual (applied)*.

<Set frequency write (RAM) program example>

The following program changes the set frequency (RAM) to 30Hz.

Set frequency write (RAM) setting request	[PLS M0] Turns on set frequency write (RAM) command pulse.
К К К К 09150 1000 1000 1000	Check whether set frequency Normal write Wite (RAM) completion signal turned on to judge whether write was performed normally or not.
	Abitornia wite Stores 3000 (30Hz) into D9144, and turns on set frequency write [MWP K3000 09144 (RAM) command. (Until completion signal turns on) (Until completion signal turns on)
30	[END]

PLC FUNCTION

Inverter Status Monitoring, Special Registers for Control

(3) Set frequency (EEPROM) (D9145)

The D9145 data is written to the EEPROM as a set frequency. The unit is 0.01Hz. (For example, 6000 indicates 60.00Hz.)

When the speed is set, the speed is either 1r/min or 0.1r/min.

The range where the frequency can be set is 0 to 12000 (0 to 120.00Hz).

When the frequency setting is written normally, the write completion signal (X25) turns on, and at the same time, 0 is set to D9150.

If any value outside the range is written, HFFFF is set to D9150 as soon as the write completion signal (X25) turns on, resulting in abnormal completion. If abnormal completion occurs, the set frequency is not changed.

POINT

• Setting is enabled in the PU operation mode and NET operation mode.

(Refer to the Inverter instruction manual (applied).)

<Set frequency write (EEPROM) program example>

The following program changes the set frequency (EEPROM) to 10Hz.

CAUTION

When rewriting the set frequency frequently, use device D9144 "set frequency (RAM)". There are restrictions on the number of write times of the EEPROM. (Approximately 100,000 times)

nverter Status Monitoring, Special Registers for Control

(4) Alarm definition batch clear (D9146)

Writing H9696 to D9146 batch-clears the alarm definitions.

At completion of clear, the write completion signal (X26) turns on, and at the same time, 0 is set to D9150. If any value outside the setting range is written or write is performed during inverter operation, HFFFF is set to D9150 as soon as the write completion signal (X26) turns on, resulting in abnormal completion. If abnormal completion occurs, the alarm definitions are not cleared.

<Alarm definition batch clear program example>

The following program batch-clears the alarm history.

	arm defin	ition ba	tch clear request		—[PLS	MO	Turns on alarm definition batch clear request pulse.
4 X26 [= [<	KO KO	D9150 D9150]		Nor	–(MI) mal write –(M2) mal write	Check whether alarm definition batch clear signal turned on to judge whether write was performed normally or not.
				[WOVP	H9696	-QM3 2 D9146 2	Stores H9696 (batch clear code) to D9146 and turns on alarm definition batch clear command. (Until completion signal turns on)
30						-[END]	8

Inverter Status Monitoring, Special Registers for Control

(5) Parameter clear (D9147)

Writing H9696 or H9966 to D9147 clears all parameters. Writing H5A5A or H55AA to D9147 clears the parameters other than the communication parameters (Refer to the *Inverter instruction manual (applied)*).

Device No.	Setting	Description	Details
D9147	H9696	All parameter clear	Terminal functions are not cleared.
	H9966		Terminal functions are cleared.
	H5A5A	Parameters other than	Terminal functions are not cleared.
	H55AA	are cleared.	Terminal functions are cleared.

At completion of clear, the write completion signal (X27) turns on, and at the same time, 0 is set to D9150. If any value outside the setting range is written or write is performed during inverter operation, HFFFF is set to D9150 as soon as the write completion signal (X27) turns on, resulting in abnormal completion. If abnormal completion occurs, the parameters are not cleared.

REMARKS

Check the terminal function parameters and communication-related parameters in the parameter list (Refer to the Inverter instruction manual (applied)).

POINT

Setting is enabled in the PU operation mode and NET operation mode. Refer to the inverter instruction manual (applied).

<All parameter clear program example>

The following program clears all parameters.

Device D9150: Parameter access error code (refer to page 33)

1.7.4 Inverter operation status control

Device No.	Name	Data Access Enable Condition		
D9148	Inverter operation status control	Always		
D9149	Inverter operation status control enable/disable	Note that this function is enabled in the external/NET operation mode. (Not enabled in the PU operation mode.)		

(1) Inverter operation status control (D9148)

Device for inverter operation status control. The operation of the inverter can be controlled by turning on/off (1, 0) bits b0 to b11 of D9148. All bits are factory-set to "0".

Example: When 5 is set to D9148, bits b0 and b2 are 1 (ON), and STF and RH therefore turn on to give a high-speed forward rotation command.

— CAUTION

As in the external input terminals, functions can be assigned to the bits of D9148 using Pr.178 to Pr.189. However, no function can be assigned to SQ (sequence RUN setting: 50).
(2) Inverter operation status control enable/disable setting (D9149)

You can enable or disable D9148 "inverter operation status control". The controls of the corresponding bits of D9148 are enabled by turning on/off (1, 0) bits b0 to b11 of D9149. All bits are factory-set to "0".

Example: When H1F is set to D9149, bits b0 to b11 are 1 (ON), the external terminal inputs are therefore all disabled, and operation control using the inverter operation status control (D9148) can be performed.

- CAUTION

- •When D9148 "inverter operation status control" is enabled using D9149, the control performed by external terminal inputs and the control performed by CC-Link remote inputs are disabled for the enabled bits. (Same as when "No functions" are set to Pr.178 to Pr.189.)
- •When the terminal is made valid from PLC function, control from external terminal is made invalid.

<Operation command setting program example>

The following program example runs the inverter at high speed in forward rotation direction.

1.7.5 Inverter parameter access error (D9150)

Device No.	Name	Data Access Enable Condition
D9150	Inverter parameter access error	Always

If any value outside the setting range is written during parameter write, set frequency write, parameter clear, etc. from the sequence program of the inverter, or if write is performed when write is disabled, a write alarm occurs and the corresponding alarm code is stored into D9150.

<Parameter>

The parameter No. + H8000 is stored into D9150.

Example: If an error occurs during write of *Pr.0 Torque boost*, H8000 (H0 + H8000) is stored into D9150.

If an error occurs during write of *Pr:10 DC injection brake operation frequency*, H800A is stored into D9150.

<Operation mode, set frequency, alarm definition batch clear, all parameter clear>

HFFFF is stored into D9150. (Normal 0)

POINT

If write is completed normally after error occurrence, D9150 is not cleared (D9150 data is held at error occurrence). When using D9150 to stop operation, etc., the user must clear it.

1.7.6 Inverter status (D9151)

Device No.	Name	Data Access Enable Condition
D9151	Inverter status	Always

The running status and operating status of the inverter are stored. The corresponding bits are set according to the inverter status.

1.8 Inverter Parameter Read/Write Method

1.8.1 Reading the inverter parameters

Device No.	Name	Command	Completion	Data Access Enable Condition (Operation mode)
D9241	Parameter number (RAM)			
D9242	Parameter description (RAM)	V28	¥28	Always
D9234	Second parameter changing (RAM)	120	720	Always
D9243	Parameter number (EEPROM)			
D9244	Parameter description (EEPROM)	Y2A	X2A	PU, NET operation mode
D9235	Second parameter changing (EEPROM			(as 111 F1.77)

When reading the parameter, the parameter description is stored to D9242(D9244) by storing the parameter number to D9241(D9243) and turning Y28 (Y2A) on. When reading is completed, X28 (X2A) turns ON to notify the completion. (The device number within parentheses is used to read the parameter setting value from EEPROM.)

When reading the calibration parameter (*Pr. 902* to *Pr. 939*), set the following value to D9234 (D9235) to read each calibration parameter value.

- 0: Setting value (Frequency/Toruque)
- 1: Parameter-set analog value

2: Analog value input from terminal

When access error occurs such as "parameter does not exist", value obtained by adding the parameter number and 8000H is stored to D9150. (*Refer to page 33*)

Inverter parameter data read timing chart

1.8.2 Writing the inverter parameters

Device No.	Name	Command	Completion	Data Access Enable Condition (Operation mode)
D9241	Parameter number (RAM)			
D9242	Parameter description (RAM)	V20	X29	Always
D9234	Second parameter changing (RAM)	129		
D9243	Parameter number (EEPROM)			
D9244	Parameter description (EEPROM)	Y2B	X2B	PU, NET operation mode (as in <i>Pr</i> .77)
D9235	Second parameter changing (EEPROM			

Parameter writing is performed when the parameter number is stored to D9241 (D9243) and parameter writing value to D9242 (D9244), and turns ON the Y29 (Y2B). When writing is completed, X29 (X2B) turns ON to notify the completion. (The device number within parentheses is used to write the parameter setting value to EEPROM.) When writing the calibration parameter (*Pr. 902* to *Pr. 939*), set the following value to D9234 (D9235) to write each calibration parameter value.

0: Setting value (Frequency/Toruque)

1: Parameter-set analog value

2: Analog value input from terminal

As soon as the inverter parameter write completion (X29 (RAM) or X2B (EEPROM)) turns on, 0 is set to D9150 on normal completion.

If an error occurs during access to the parameters, e.g. if any value outside the setting range is written or write is performed during inverter operation, the value of parameter No. + H8000 is set to D9150 as soon as the write completion signal (X29 (RAM) or X2B (EEPROM)) turns on, resulting in abnormal completion. If abnormal completion occurs, the parameters are not written. (For example, if an error occurs in the torque boost, H8000 is written to D9150.)

For whether inverter parameter write can be performed or not, refer to *Pr*:77 *Parameter write selection*.

POINT

Inverter parameter write must be performed in the PU operation mode or NET operation mode. (Refer to the *inverter instruction manual (applied)*.)

Inverter parameter data write timing chart

1.9 User Area Read/Write Method

Inverter parameters *Pr.506* to *Pr.515* can be used as user parameters.

Since this parameter area and the devices used with the PLC function, D110 to D119, are accessible to each other, the values set in *Pr.506* to *Pr.515* can be used in a sequence program. The result of operation performed in the sequence program can also be monitored using *Pr.506* to *Pr.515*.

Device No.	Inverter Parameter No.	Name	Initial Value	Setting Range	Minimum Setting Unit	Data Access
D110 to D119	506 to 515	User parameters	0	0 to 65535	1	Always enabled

POINT

Example of using the user parameter area

When the timing is to be changed for machine adjustment using D110 that stores the timer setting, setting Pr. 506 without modifying the program enters the set data into D110, enabling adjustment.

1.9.1 User parameter read/write method

User parameter (*Pr.506* to *Pr.515*) and device (D110 to D119) data can be read/written freely. Data transfer between *Pr.506* to *Pr.515* and D110 to D119 is executed automatically.

1) User parameter write processing

When values are written to *Pr.506* to *Pr.515* using the FR-PU04 or computer link communication, they are written to the parameter storing RAM area and EEPROM area, and further to D110 to D119 simultaneously.

2) User parameter read processing

When values are written to D110 to D119 from the PLC function side, they are written to the parameter storing RAM area (*Pr.506* to *Pr.515*) and read using the FR-PU04/FR-PU07 or communication(RS-485 or communication option). (Since data are not written to the EEPROM, making power-on reset returns the data to the original values.)

3) Processing performed at inverter reset or power restoration

When the inverter is reset, the *Pr.506* to *Pr.515* values stored in the EEPROM are transferred to the RAM area and D110 to D119.

1.10 Analog I/O function

1.10.1 Analog input

Analog input value of termianl 1, 2, 4 can be read from D9245 to D9247.

Device No.	Terminal Name	Setting Unit	Data Access Enable Condition
D9245	Terminal 1 input	0.1%	
D9246	Terminal 2 input	0.1%	Always
D9247	Terminal 4 input	0.1%	

Actual read processing is performed at the END processing of the sequence.

REMARKS

Full-scale value of analog input is determined by the setting of *Pr. 73* Analog input selection, *Pr. 267* Terminal 4 input selection. Refer to the inverter instruction manual (applied).

1.10.2 Analog output

Analog output from each terminal can be performed by setting value on D9251 to D9254.

Output from PLC function can be performed by setting "7" in output signal selection parameters of each terminal (terminal FM: *Pr. 54*, terminal AM: *Pr. 158*, terminal AMO, AM1: *Pr. 306, Pr. 310*).

Device No.	Terminal Name	Setting Unit	Data Access Enable Condition
D9251	Terminal FM	0.1%	
D9252	Terminal AM	0.1%	
D9253	Terminal AM0 (FR-A7AY)	0.1%	Always
D9254	Terminal AM1 (FR-A7AY)	0.1%	

Actual read processing is performed at the END processing of the sequence.

REMARKS

High speed pulse train output (*Pr. 291*) from terminal FM can be performed. (Refer to the *inverter instruction manual (applied)*.)

1.11 Paluse train input function

Pulse train (the number of sampling pulses) from terminal JOG is stored to D9236. When the sampling pulses overflow, make adjustment with the setting of Pr. 416 and Pr. 417.

7

The number of sampling pulses

= the number of input pulses per count cycle x Pre-scale setting value (*Pr. 417*) x increments scaling factor (*Pr. 416*)

Parameter	Name	Initial Value	Setting Range	Description
201	Pulse train input	0	0, 10,20	Terminal JOG
291	selection	0	1,11,21,100	Pulse train input
			0 to 5	Pre-scale function selection
	Pre-scale function selection	0		(increments scaling factor)
				0: No function
116				1: ×1
410				2: ×0.1
				3: ×0.01
				4: ×0.001
				5: ×0.0001
417	Pre-scale setting value	1	0 to 32767	Set the pre-scale value to calcute the number of sampling pulse when inputting the pulse train.

Device No.	Name	Setting Range	Description
D9236	Pulse train input sampling pulse	0 to 32767	The number of pulses counted in count cycle is stored.
D9237	Pulse train input cumulative count value L	0 to	The cumulative value of the number
D9238	Pulse train input cumulative count value H	999999999	of sampling pulses is stored.
0230	Reset request of pulse train	0	Not clear
00200	input count	1	Count clear
09240	Count start of the pulse train	0	Stop counting
00240	input	1	Start counting

1.12 PID control

With PLC function, PID set point/PID deviation value, PID process value can be set by setting Pr. 128.

Performing the PID operation using the value of D9248 and D9249 as PID set point/ PID deviation value, PID process value, manipulated variable is stored to D9250. When performing PID control with PLC function, "1" is set on D9255 instead of X14 signal.

Parameter	Name	Initial Value	Setting Range	Description																								
			10	PID reverse action	Deviation value																							
			11	PID forward action	signal input (terminal 1)																							
			20	PID reverse action	Measured value																							
				21	PID forward action	(terminal 4) Set point (terminal 2 or <i>Pr</i> : <i>133</i>)																						
			50	PID reverse action	Deviation value																							
	PID action selection	10	51	PID forward action	signal input (LONWORKS , CC-Link communication)																							
			60	PID reverse action	Measured value,																							
128			10	10	10	10	10	10	10	61	PID forward action	set point input (LONWORKS, CC-Link communication)																
			70	PID reverse action	Deviation value																							
			71	PID forward action	signal input (PLC function)																							
			80	PID reverse action	Measured value,																							
																											81	PID forward action
			90	PID reverse action	Deviation value																							
		Ì	91	PID forward action	signal input (PLC function)																							
			100	PID reverse action	Measured value,																							
			101	PID forward action	Set point input (PLC function)																							

PLC FUNCTION

Device No.	Name	Setting Range	Description
D9248	PID set point / PID deviation	-100 to 100%	Set the PID set point or PID deviation (0.01% units)
D9249	PID measurement value	0 to 100%	Set the PID measurement value (0.01% units)
D9250	PID manipulated variable	-100 to 100%	Stores the PID manipulated variable (0.01% units)
D0255	PID operation control	0	PID operation stop
09233		1	PID operation start

— CAUTION —

- The PID set point/PID deviation value of D9248 automatically switches over by Pr. 128 setting.
- If Pr. 128 is set to deviation input (70, 71, 90, 91), setting value of PID process value (D9249) is made invalid.
- Operates in the maximum value (the minimum value) of the setting range if the value outside the range is set.

1.13 Inverter Operation Lock Mode Setting

You can disable a sequence program from being executed until the sequence program execution key is set to RUN (SQ signal is turned on).

POINT When you want to perform only inverter operation without using the PLC function, set "0" (inverter start signal enable) in this parameter.

Parameter	Name	initial Setting	Setting Range	Minimum Setting Unit
415	Inverter operation lock mode setting	0	0, 1	1

Setting	Description
0	The inverter start signal is made valid regardless of the sequence program execution key.
1	The inverter start signal is made valid only when the sequence program execution key is set to RUN (SQ signal is turned on). When the sequence program execution key is in the STOP position (SQ signal is off), the inverter does not start if the inverter start signal STF or STR is turned on. (If the key is switched from RUN to STOP during inverter operation, the inverter is decelerated to a stop.)

•Independently of the *Pr*: 77 setting, this parameter value cannot be rewritten during inverter operation.

•During automatic operation performed using D9148(or M9200 to M9211) in the sequence program, the inverter comes to a stop when the sequence is set to a STOP status with "1" set in Pr.415. However, when "0" is set in Pr.415, the device data are held and the operation status does not change if the sequence is set to a STOP status. (Inverter operation is continued.)

REMARKS

This parameter setting is also valid for the start signal from the operation panel or FR-PU04/FR-PU07.

MEMO

2. CC-Link COMMUNICATION

2.1	System Configuration	46
2.2	CC-Link Parameters	49
2.3	CC-Link I/O Specifications	50
2.4	Buffer Memory	57

	Chapter 1
I	
	Chapter 2
	Chapter 3
	Chapter 4

2.1 System Configuration

2.1.1 System configuration example

(1) PLC side

Mount the "Control & Communication Link system master/local module" on the main base unit or extension base unit of the PLC CPU that will act as the master station.

(2) Connect the PLC CC-Link module master station and inverters by CC-Link dedicated cables.

REMARKS

Refer to the FR-A7NC indtruction manual for the CC-Link communication wiring and CC-Link cables.

2.1.2 Function block diagram

How I/O data are transferred to/from the inverter in CC-Link will be described using function blocks.

- (1) Between the master station and inverter in the CC-Link system, link refresh is always made at 3.5 to 18ms (512 points).
- (2) I/O refresh and master station's sequence program are executed asynchronously.
- (3) Data read from the inverter are read from the buffer memory of the CC-Link system master/local module using the FROM instruction.
- (4) Data to be written to the inverter are written to the buffer memory of the CC-Link system master/local module using the TO instruction.

- I/O signals assigned to the CC-Link system master/local module. These signals are used to make communication between the PLC CPU and CC-Link system master/local module.
- 2) Input data from the inverter can be read, and output data from the inverter can be written. Buffer memory read/write is performed using the FROM/TO instruction of the sequence program. *Refer to page 57* for details of the buffer memory.
- PLC link start is commanded from the sequence program. After PLC link has started, link refresh is always made asynchronously with the sequence program execution.
- I/O data are transferred between the CC-Link system master/local module and inverter CPU via the sequence program.
- I/O data are transferred between the inverter CPU and sequence program. (5) indicates the operation performed when CC-Link is not used, and is irrelevant to 1) to 4).)

REMARKS

Programs cannot be read/written via CC-Link communication.

POINT The difference between CC-Link communication (Pr. 544 = 100, 112, 114, 118) with PLC function and normal CC-Link communication (Pr. 544 =1, 2, 12, 14, 18) is indicated below. -Inverte Pr.544=0,1,12,14,18 module I/O (RX, RY) Inverter CPU PLC CPU CC-Link master RWw RWr Parameter read/write, monitor, operation commands, etc. have been assigned in advance. Inverte Pr.544=100,112,114,118 Built-in CC-Link module Built-in CC-Link master module I/O (RX, RY) sequence program СРU PLC CPU Inverter User RWw RWr assignment Using built-in sequence program, parameters, monitor, etc. must be assigned. Other data read/write, etc. can be assigned freely as user areas. *Operation and speed commands have been assigned in advance.

2.2 CC-Link Parameters

2.2.1 CC-Link Extended Setting (Pr. 544)

Remote register function can be extended.

Parameter Number	Name	Initial Value	Setting Range	CC-Link Ver.	Description									
			0	1	Occupies one station (FR-A5NC compatible) *1									
			1		Occupies one station									
		0	12 *2		Occupies one station double									
	CC-Link extended setting		14 *2	2	Occupies one station quadrople									
			0	18 *2		Occupies one station octuple								
544				0	0	0	0	0	0	0	0	100	1	Occupies one station (PLC function)
										112 *2		Occupies one station double (PLC function)		
						114 *2	2	Occupies one station quadrople (PLC function)						
			118 *2		Occupies one station octuple (PLC function)									

*1 The program used for conventional series inverter (FR-A5NC) can be used.

*2 When using double, quadruple and octuple settings of the CC-Link Ver.2, station data of the master station must be set to double, quadruple and octuple also. (If the master station is CC-Link Ver.1 compatible station, the above setting can not be made.)

REMARKS

The setting change is reflected after an inverter reset.

2.3 CC-Link I/O Specifications

2.3.1 I/O signal when CC-Link Ver.1 one station is occupied (Pr. 544 = 100)

7

The device points usable in CC-Link communication are 32 input (RX) points (16 points are available for PLC function), 32 output (RY) points (16 points are available for PLC function), 4 remote register (RWr) points and 4 remote register (RWw) points.

(1) Remote I/O

PLC function device No.	Remote output device No.	Signal	PLC function device No.	Remote input device No.	Signal
X30	RYn0	Forward rotation command	X30	RXn0	Forward running
X31	RYn1	Reverse rotation command	X31	RXn1	Reverse running
X32	RYn2	High-speed operation command (terminal RH function) *1	X32	RXn2	Running (terminal RUN function) *2
X33	RYn3	Middle-speed operation command (terminal RM function) *1	X33	RXn3	Up to frequency (terminal SU function) *2
X34	RYn4	Low-speed operation command (terminal RL function) *1	X34	RXn4	Overload alarm (terminal OL function) *2
X35	RYn5	Jog operation command (terminal JOG function) *1	X35	RXn5	Instantaneous power failure (terminal IPF function) *2
X36	RYn6	Second function selection (terminal RT function) *1	X36	RXn6	Frequency detection (terminal FU function) *2
X37	RYn7	Current input selection (terminal AU function) *1	X37	RXn7	Error (terminal ABC1 function) *2
X38	RYn8	Selection of automatic restart after instantaneous power failure (terminal CS function)*1	X38	RXn8	— (terminal ABC2 function) *2
X39	RYn9	Output stop	X39	RXn9	<i>Pr: 313</i> assignment function (DO0)
ХЗА	RYnA	Start self-holding selection (terminal STOP function) *1	ХЗА	RXnA	<i>Pr: 314</i> assignment function (DO1)
X3B	RYnB	Reset (terminal RES function) *1	X3B	RXnB	<i>Pr: 315</i> assignment function (DO2)
X3C	RYnC		X3C	RXnC	
X3D	RYnD	General-purpose remote input	X3D	RXnD	General-purpose remote input
X3E	RYnE	available in PLC function	X3E	RXnE	available in PLC function
X3F	RYnF		X3F	RXnF	
—	RY(n+1)0 to RY(n+1)7	Reserved	_	RX(n+1)0 to RX(n+1)7	Reserved
	RY(n+1)8	Not used (initial data process completion flag)	_	RX(n+1)8	Not used (initial data process request flag)
	RY(n+1)9	Not used (initial data process request flag)	_	RX(n+1)9	Not used (initial data process completion flag)
—	RY(n+1)A	Error reset request flag		RX(n+1)A	Error status flag

PLC function device No.	Remote output device No.	Signal	PLC function device No.	Remote input device No.	Signal
_	RY(n+1)B to RY(n+1)F	Reserved		RX(n+1)B	Remote station Ready
			_	RX(n+1)C to RX(n+1)F	Reserved

("n" indicates a value determined according to the station number setting.)

*1 Signal names are initial values. Using *Pr. 180* to *Pr. 186, Pr. 188,* and *Pr. 189,* you can change input signal functions. Signals of the RYn0, RYn1, and RYn9 can not be changed. Even when changed using *Pr. 178, Pr. 179,* and *Pr. 187,* the settings are invalid. *Refer to the inverter manual (applied)* for details of *Pr. 178* to *Pr. 189.*

*2 Signal names are initial values. Using *Pr. 190* to *Pr .196*, you can change output signal functions.
Befor to the invertor manual (applied) for dotails of *Pr. 100* to *Pr .106*.

Refer to the inverter manual (applied) for details of Pr. 190 to Pr. 196.

(2) Remote resister

PLC function device No.	Address	Description	PLC function device No.	Address	Description
D9062	RWwn	Registers designed to	D9078	RWrn	Registers designed to
D9063	RWwn+1	read data received	D9079	RWrn+1	write data to be sent
D9064	RWwn+2	from the master	D9080	RWrn+2	to the master station.
D9065	RWwn+3	station	D9081	RWrn+3	

("n" indicates a value determined according to the station number setting.)

(3) Data I/O image

Automatically refreshed at every END.

REMARKS

Use the remote registers freely since they are all user areas.

2.3.2 I/O signal when CC-Link Ver.2 double setting is selected (Pr. 544 = 112)

7

The device points usable in CC-Link communication are 32 input (RX) points (12 points are available for PLC function), 32 output (RY) points (12 points are available for PLC function), 4 remote register (RWr) points and 4 remote register (RWw) points.

(1) Remote I/O

PLC function device No.	Remote output device No.	Signal	PLC function device No.	Remote input device No.	Signal
X30	RYn0	Forward rotation command	X30	RXn0	Forward running
X31	RYn1	Reverse rotation command	X31	RXn1	Reverse running
X32	RYn2	High-speed operation command (terminal RH function) *1	X32	RXn2	Running (terminal RUN function) *2
X33	RYn3	Middle-speed operation command (terminal RM function) *1	X33	RXn3	Up to frequency (terminal SU function) *2
X34	RYn4	Low-speed operation command (terminal RL function) *1	X34	RXn4	Overload alarm (terminal OL function) *2
X35	RYn5	Jog operation command (terminal JOG function) *1	X35	RXn5	Instantaneous power failure (terminal IPF function) *2
X36	RYn6	Second function selection (terminal RT function) *1	X36	RXn6	Frequency detection (terminal FU function) *2
X37	RYn7	Current input selection (terminal AU function) *1	X37	RXn7	Error (terminal ABC1 function) *2
X38	RYn8	Selection of automatic restart after instantaneous power failure (terminal CS function)*1	X38	RXn8	— (terminal ABC2 function) *2
X39	RYn9	Output stop	X39	RXn9	<i>Pr: 313</i> assignment function (DO0)
ХЗА	RYnA	Start self-holding selection (terminal STOP function) *1	X3A	RXnA	<i>Pr. 314</i> assignment function (DO1)
ХЗВ	RYnB	Reset (terminal RES function) *1	X3B	RXnB	<i>Pr. 315</i> assignment function (DO2)
—	RYnC	Monitor command	_	RXnC	Monitoring
_	RYnD	Frequency setting command (RAM)		RXnD	Frequency setting completion (RAM)
—	RYnE	Frequency setting command (RAM, EEPROM)	—	RXnE	Frequency setting completion (RAM, EEPROM)
—	RYnF	Instruction code execution request	—	RXnF	Instruction code execution completion
_	RY(n+1)0 to RY(n+1)7	Reserved		RX(n+1)0 to RX(n+1)7	Reserved
_	RY(n+1)8	Not used (initial data process completion flag)	_	RX(n+1)8	Not used (initial data process request flag)
_	RY(n+1)9	Not used (initial data process request flag)	_	RX(n+1)9	Not used (initial data process completion flag)
	RY(n+1)A	Error reset request flag		RX(n+1)A	Error status flag
	RY(n+1)R			RX(n+1)B	Remote station Ready
-	to RY(n+1)F	Reserved	—	RX(n+1)C to RX(n+1)F	Reserved

("n" indicates a value determined according to the station number setting.)

*1 Signal names are initial values. Using *Pr. 180* to *Pr. 186, Pr. 188,* and *Pr. 189,* you can change input signal functions. Signals of the RYn0, RYn1, and RYn9 can not be changed. Even when changed using *Pr. 178, Pr. 179,* and *Pr. 187,* the settings are invalid.

Refer to the inverter manual (applied) for details of *Pr. 178* to *Pr.189*.

*2 Signal names are initial values. Using *Pr. 190* to *Pr .196*, you can change output signal functions.

Refer to the inverter manual (applied) for details of Pr. 190 to Pr.196.

(2) Remote resister

DI O famation		Description		DI O function			
device No.	Address	Upper 8 Bits	Lower 8 Bits	device No.	Address	Description	
_	RWwn	Monitor code 2	Monitor code 1		RWrn	First mon	itor value
—	RWwn+1	Set frequency (0.01Hz increments)		—	RWrn+1	Second va	monitor lue
_	RWwn+2	Link parameter expansion setting	Instruction code		RWrn+2	Reply code2	Reply code1
_	RWwn+3	Write	e data	_	RWrn+3	Read	data
D9062	RWwn+4	Registers designed to		D9078	RWrn+4	Registers	designed
D9063	RWwn+5	read data received		D9079	RWrn+5	to write da	ta to be
D9064	RWwn+6	from the master		D9080	RWrn+6	sent to the	master
D9065	RWwn+7	station		D9081	RWrn+7	station.	

("n" indicates a value determined according to the station number setting.)

2.3.3 I/O signal when CC-Link Ver.2 quadruple setting is selected (Pr. 544 = 114)

 \mathbb{Z}

The device points usable in CC-Link communication are 32 input (RX) points (12 points are available for PLC function), 32 output (RY) points (12 points are available for PLC function), 8 remote register (RWr) points and 8 remote register (RWw) points.

(1) Remote I/O

Same as when Pr. 544 = 112 (The Refer to page 52)

(2) Remote resister

DI O function		Description		DI O function			
device No.	Address	Upper 8 Bits	Lower 8 Bits	device No.	Address	Description	
_	RWwn	Monitor code 2	Monitor code 1	_	RWrn	First mon	itor value
	RWwn+1	Set frequer increr	ncy (0.01Hz ments)		RWrn+1	Second va	monitor lue
	RWwn+2	Link parameter expansion setting	Instruction code	_	RWrn+2	Reply code2	Reply code1
	RWwn+3	Write	e data	_	RWrn+3	Read data	
_	RWwn+4	Monito	r code 3		RWrn+4	Third monitor value	
_	RWwn+5	Monitor	r code 4		RWrn+5	Fourth mo	nitor value
	RWwn+6	Monitor	r code 5		RWrn+6	Fifth mor	itor value
	RWwn+7	Monitor	r code 6		RWrn+7	Sixth mor	nitor value
D9062	RWwn+8			D9078	RWrn+8		
D9063	RWwn+9			D9079	RWrn+9		
D9064	RWwn+A	Registers of	lesigned to	D9080	RWrn+A	Registers	designed
D9065	RWwn+B	read data r	eceived	D9081	RWrn+B	to write da	ta to be
D9066	RWwn+C	from the master		D9082	RWrn+C	sent to the	master
D9067	RWwn+D	station		D9083	RWrn+D	station.	
D9068	RWwn+E			D9084	RWrn+E		
D9069	RWwn+F			D9085	RWrn+F		

("n" indicates a value determined according to the station number setting.)

2.3.4 I/O signal when CC-Link Ver.2 octuple setting is selected (Pr. 544 = 118)

The device points usable in CC-Link communication are 32 input (RX) points (12 points are available for PLC function), 32 output (RY) points (12 points are available for PLC function), 16 remote register (RWr) points and 16 remote register (RWw) points.

(1) Remote I/O

Same as when *Pr.* 544 = 112 (\mathbb{R} *Refer to page 52*)

(2) Remote resister

		Description						
device No.	Address	Upper 8	Lower 8		device No.	Address	Descr	iption
		Bits	Bits					
	R \Wwn	Monitor	Monitor			₽\\/rn	First monitor value	
		code 2	code 1		_		1 1131 111011	
	RWwn+1	Set fre	quency			RWrn+1	Second	monitor
		(0.01Hz ir	crements)				va	ue
		Link						
	RWwn+2	parameter	Instruction		_	RWrn+2	Reply	Reply
		expansion	code				code2	code1
		setting	1.1.			DM	D I	1.1.
	RWwn+3	VVrite	e data		_	RWrn+3	Read	data
	RWwn+4	Monito	r code 3		—	RWrn+4	Third monitor value	
	RWwn+5	Monitor code 4			—	RWrn+5	Fourth monitor value	
_	RWwn+6	Monitor code 5			_	RWrn+6	Fifth monitor value	
_	RWwn+7	Monito	r code 6			RWrn+7	Sixth monitor value	
		Alarm					Alarm	Alarm
	RWwn+8	definition	H00		—	RWrn+8	definition	definition
		No.					No.	data
	R\//wn+9	PID se	et point			R\\/rn+0	Alarm d	efinition
	1000011-3	(0.01% inc	rements) *1		_	1.00111-3	(output fr	equency)
	RWwn+4	PID meas	ured value			R\Wrn+∆	Alarm d	efinition
	1000011070	(0.01% inc	rements) *1			1.000111.77	(output	current)
	RWwn+B	PID de	eviation			RWrn+B	Alarm d	efinition
		(0.01% inc	rements) *1				(output	voltage)
	RWwn+C	toruqe com	mand / limit			RWrn+C	Alarm d	efinition
		(0.01% in	crements)				(energiza	tion time)
	RWwn+D				—	RWrn+D		
	RWwn+E	H00 ((Free)		_	RWrn+E	H00 (Free)
—	RWwn+F					RWrn+F		
+4 \\\()	~			·				

*1 When *Pr. 128* = "50, 51, 60, 61", they are valid.

PLOT		Description				
device No.	Address	Upper 8 Bits	Lower 8 Bits	device No.	Address	Description
D9062	RWwn+10			D9078	RWrn+10	
D9063	RWwn+11			D9079	RWrn+11	
D9064	RWwn+12			D9080	RWrn+12	
D9065	RWwn+13			D9081	RWrn+13	
D9066	RWwn+14			D9082	RWrn+14	
D9067	RWwn+15			D9083	RWrn+15	
D9068	RWwn+16	Registers of	designed to	D9084	RWrn+16	Registers designed
D9069	RWwn+17	read data r	received	D9085	RWrn+17	to write data to be
D9070	RWwn+18	from the m	aster	D9086	RWrn+18	sent to the master
D9071	RWwn+19	station		D9087	RWrn+19	station.
D9072	RWwn+1A			D9088	RWrn+1A	
D9073	RWwn+1B			D9089	RWrn+1B	
D9074	RWwn+1C			D9090	RWrn+1C	
D9075	RWwn+1D			D9091	RWrn+1D	
D9076	RWwn+1E			D9092	RWrn+1E	1
D9077	RWwn+1F			D9093	RWrn+1F	

("n" indicates a value determined according to the station number setting.)

2.4 Buffer Memory

2.4.1 Remote output signals (Master module to inverter(FR-A7NC))

•Input states to the remote device station are stored.

•Two words are used for each station.

(Do not use address 16n (n = 2(X - 1) + 1, X = station No.))

	FR-A700 series	6
	Remote device station	
Master Station	(Station No. 1: 1 station occupied)	Inverter
Master Station Addresses Remote inputs (RY) For station 160+ RY _ F to RY _ 0 No.1 161+ RY _ F to RY _ 0 For station 162+ RY _ 2F to RY _ 20 No.2 163+ RY _ 3F to RY _ 30 For station 164+ RY _ 4F to RY _ 40 No.3 165+ RY _ 9F to RY _ 50 For station 166+ RY _ 9F to RY _ 90 For station 168+ RY _ 9F to RY _ 90 For station 168+ RY _ 9F to RY _ 90 For station 168+ RY _ 9F to RY _ 90 For station 168+ RY _ 9F to RY _ 90 For station 168+ RY _ 9F to RY _ 90 For station 168+ RY _ 9F to RY _ 90 For station 168+ RY _ 9F to RY _ 90 No.6 168+ RY _ 9F to RY _ 90 For station 168+ RY _ 9F to RY _ 90 No.8 167+ RY _ FF to RY _ F0 No.9 171+ RY1F to RY 10 No.9 <td< td=""><td>Remote device station (Station No. 1: 1 station occupied) RY OF to RY 00</td><td>Inverter X3F to X30</td></td<>	Remote device station (Station No. 1: 1 station occupied) RY OF to RY 00	Inverter X3F to X30
For station 1DEH RY7EF to RY7E0 No.64 1DFH RY7FF to RY7F0		
·		

Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address
1	160н	17	180н	33	1А0н	49	1С0н
2	162н	18	182н	34	1А2н	50	1C2н
3	164н	19	184н	35	1А4н	51	1С4н
4	166н	20	186н	36	1А6н	52	1С6н
5	168 н	21	188н	37	1А8н	53	1C8н
6	16Ан	22	18А н	38	1AAн	54	1САн
7	16С н	23	18С н	39	1ACн	55	1CCн
8	16 Ен	24	18 Ен	40	1AEн	56	1CEн
9	170н	25	190н	41	1B0н	57	1D0н
10	172н	26	192н	42	1B2н	58	1D2н
11	174н	27	194н	43	1В4н	59	1D4н
12	176н	28	196н	44	1В6н	60	1D6н
13	178н	29	198н	45	1B8н	61	1D8н
14	17Ан	30	19Ан	46	1BAн	62	1DAн
15	17Сн	31	19Сн	47	1BCн	63	1DCн
16	17Ен	32	19Ен	48	1ВЕн	64	1DEн

Buffer Memory

- Input states from the remote device station are stored.
- Two words are used for each station.

(Do not use address En (n = 2(X - 1) + 1, X = station No.))

	FR-A700 series
	Remote device station
Master station	(Station No. 1: 1 station occupied) Inverter
	[]
Addresses Remote inputs (RX)	i i i i
For station E0H RX F to RX 0	RX 0F to RX 00 Y3F to Y30
No.1 E1H RX 1F to RX 10	
For station ∫ E2H RX 2F to RX 20	
No.2 E3H RX 3F to RX 30	
For station E4H RX 4F to RX 40	
No.3 E5H RX 5F to RX 50	
For station ∫ E6H RX 6F to RX 60	
No.4 E7H RX 7F to RX 70	
For station E8H RX 8F to RX 80	
No.5 E9H RX 9F to RX 90	
For station EAH RX AF to RX A0	
No.6 EBH RX BF to RX B0	
For station ECH RX CF to RX C0	
No.7 EDH RX DE to RX D0	
For station EEH RX EF to RX E0	
No.8 EFH RX FF to RX F0	
For station F0H RX10F to RX100	
No.9 F1H RX11F to RX110	
F2H	
to to	
15BH	
For station 15CH BX7CE to BX7C0	
No.63 15DH BX7DE to BX7D0	
For station 15FH BX7EF to BX7E0	
No 64 15E BX7EE to BX7E0	
·	

Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address
1	Е0н	17	100н	33	120н	49	140н
2	Е2н	18	102н	34	122н	50	142 н
3	Е4н	19	104н	35	124н	51	144н
4	Е6н	20	106н	36	126н	52	146 н
5	Е8н	21	108 н	37	128н	53	148 н
6	ЕАн	22	10Ан	38	12Ан	54	14Ан
7	ECн	23	10С н	39	12С н	55	14С н
8	EEн	24	10Eн	40	12E н	56	14Е н
9	F0 н	25	110 н	41	130н	57	150 н
10	F2 н	26	112н	42	132н	58	152 н
11	F4 н	27	114н	43	134н	59	154 н
12	F6 н	28	116н	44	136н	60	156н
13	F8 н	29	118 н	45	138н	61	158 н
14	FAн	30	11Ан	46	13Ан	62	15Ан
15	FСн	31	11Сн	47	13Сн	63	15Сн
16	FEн	32	11Ен	48	13Ен	64	15Ен

2.4.3 Remote registers Pr.544=100 (Master module to inverter(FR-A7NC))

- Data to be sent to the remote registers (RWW) of the remote device station are stored.
- Four words are used for each station.

Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address
1	1E0н to 1E3н	17	220н to 223н	33	260н to 263н	49	2A0н to 2A3н
2	1E4н to 1E7н	18	224н to 227н	34	264н to 267н	50	2A4н to 2A7н
3	1E8H to 1EBH	19	228н to 22Вн	35	268н to 26Вн	51	2A8н to 2ABн
4	1ECH to 1EFH	20	22Cн to 22Fн	36	26Сн to 26Fн	52	2ACH to 2AFH
5	1F0н to 1F3н	21	230н to 233н	37	270н to 273н	53	2B0н to 2B3н
6	1F4н to 1F7н	22	234н to 237н	38	274н to 277н	54	2B4н to 2B7н
7	1F8н to 1FBн	23	238н to 23Вн	39	278н to 27Вн	55	2B8н to 2BBн
8	1FCн to 1FFн	24	23Сн to 23Fн	40	27Сн to 27Fн	56	2BCн to 2BFн
9	200н to 203н	25	240н to 243н	41	280н to 283н	57	2C0н to 2C3н
10	204н to 207н	26	244н to 247н	42	284н to 287н	58	2C4н to 2C7н
11	208н to 20Вн	27	248н to 24Вн	43	288н to 28Вн	59	2C8н to 2CBн
12	20Cн to 20Fн	28	24Cн to 24Fн	44	28Cн to 28Fн	60	2CCн to 2CFн
13	210н to 213н	29	250н to 253н	45	290н to 293н	61	2D0н to 2D3н
14	214н to 217н	30	254н to 257н	46	294н to 297н	62	2D4н to 2D7н
15	218н to 21Вн	31	258н to 25Вн	47	298н to 29Вн	63	2D8н to 2DBн
16	21Cн to 21Fн	32	25Cн to 25Fн	48	29Cн to 29Fн	64	2DCн to 2DFн

2.4.4 Remote registers Pr.544=100 (Inverter(FR-A7NC) to master module)

- Data sent from the remote registers (RWR) of the remote device station are stored.
- Four words are used for each station.

Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address
1	2E0н to 2E3н	17	320н to 323н	33	360н to 363н	49	3A0н to 3A3н
2	2E4н to 2E7н	18	324н to 327н	34	364н to 367н	50	3А4н to 3А7н
3	2E8н to 2EBн	19	328н to 32Bн	35	368н to 36Bн	51	3A8H to 3ABH
4	2ECн to 2EFн	20	32Cн to 32Fн	36	36Cн to 36Fн	52	ЗАСн to ЗАFн
5	2F0н to 2F3н	21	330н to 333н	37	370н to 373н	53	3B0н to 3B3н
6	2F4н to 2F7н	22	334н to 337н	38	374н to 377н	54	3B4н to 3B7н
7	2F8н to 2FBн	23	338н to 33Вн	39	378н to 37Вн	55	3B8H to 3BBH
8	2FCн to 2FFн	24	33Сн to 33Fн	40	37Cн to 37Fн	56	3BCн to 3BFн
9	300н to 303н	25	340н to 343н	41	380н to 383н	57	3C0н to 3C3н
10	304н to 307н	26	344н to 347н	42	384н to 387н	58	3C4н to 3C7н
11	308н to 30Вн	27	348н to 34Вн	43	388н to 38Вн	59	3C8н to 3CBн
12	30Cн to 30Fн	28	34Cн to 34Fн	44	38Cн to 38Fн	60	3CCн to 3CFн
13	310н to 313н	29	350н to 353н	45	390н to 393н	61	3D0н to 3D3н
14	314н to 317н	30	354н to 357н	46	394н to 397н	62	3D4н to 3D7н
15	318н to 31Вн	31	358н to 35Вн	47	398н to 39Вн	63	3D8H to 3DBH
16	31Cн to 31Fн	32	35Cн to 35Fн	48	39Cн to 39Fн	64	3DCн to 3DFн

3. SEQUENCE PROGRAMMING

3.1	Overview	62	
3.2	RUN and STOP Operation Processings	64	
3.3	Program Makeup	64	
3.4	Programming Languages	65	
3.5	Operation Processing Method of PLC Function	68	
3.6	I/O Processing Method	69	
3.7	Scan Time	71	
3.8	Numerical Values Usable in Sequence Program	72	
3.9	Description of devices	75	
3.10	Counters C	83	
3.11	Data Registers D	86	
3.12	Special Relays, Special Registers	87	
3.13	Function List	89	
3.14	How to RUN/STOP the Built-in PLC Function		
	from Outside (Remote RUN/STOP)	90	
3.15	Watchdog Timer (Operation clog up monitor		
	timer)	92	Chapter 1
3.16	Self-diagnostic Function	93	
3.17	Keyword Registration	95	
3.18	Setting of Output (Y) Status at Switching from		
	STOP Status to RUN Status	96	Chapter 2
3.19	Instruction Format	97	
3.20	Bit Device Processing Method	99	
3.21	Handling of Numerical Value	101	
3.22	Operation Error	102	Chapter 2
3.23	Instructions List	103	Chapter 3
3.24	Description of the Instructions	110	
3.25	Sequence Instructions	111	
3.26	Basic Instructions	140	
3.27	Application instructions	155	Chapter 4

3.1 Overview

3.1.1 Outline of Operation Processings

This section outlines processings performed from when the inverter is powered on until a sequence program is executed.

The built-in PLC function processings are roughly classified into the following three types.

(1) Initial processing

Pre-processing for executing sequence operation. This processing is executed only once when power is switched on or a reset is performed.

- (a) The inputs/outputs are reset and initialized.
- (b) The data memories are initialized (the bit devices are turned off and the word devices are cleared to 0).
- (c) Self-diagnostic checks are made on the built-in PLC function parameter setting, operation circuit, etc.

REMARKS

The built-in PLC function parameters can be confirmed from GX Developer. (Refer to the GX Developer Operating Manual.)

(2) Sequence program operation processing

The sequence program written to the built-in PLC function is executed from step 0 to an END instruction.

(3) END processing

Post-processing for terminating one sequence program operation processing and return the sequence program execution to step 0.

- (a) Self-diagnostic checks are performed.
- (b) The present values of the timers are updated and their contacts are turned on/off, and the present values of the counters are updated and their contacts are turned on.

Fig 3.1 Operation Processings of Built-in PLC function

3

3.2 RUN and STOP Operation Processings

The built-in PLC function has two different operation statuses: RUN status and STOP status.

This section explains the operation processings of the built-in PLC function in each operating status.

(1) Operation processing in RUN status

A RUN status indicates that a sequence program repeats its operation in order of step 0 to END (FEND) instruction to step 0 when SQ-SD are shorted. (P.RUN is on) When entering the RUN status, the function outputs the output status saved at STOP according to the "STOP to (RUN-time output mode setting" (*refer to page 96*).

(2) Operation processing in STOP status A STOP status indicates that a sequence program stops its operation when SQ-SD are opened or remote STOP is commanded. (P.RUN is off) When entering the STOP status, the function saves the output status and turns off all outputs. The contents of the data memories other than the outputs (Y) are maintained.

POINT

In either the RUN or STOP status, the built-in PLC function is performing I/O refresh processings. In the STOP status, therefore, I/O monitoring and test operation can be performed from the peripheral device.

3.3 Program Makeup

(1) Program classification

The program that can be used by the built-in PLC function is a main sequence program only. Microcomputer, interrupt and SFC programs cannot be used.

(2) Program capacity

A program capacity indicates the capacity of the program storage memory, and it is 1k steps. Set the program capacity in the built-in PLC function parameter.

3.4 Programming Languages

The built-in PLC function has two different programming methods: one that uses ladders and the other that uses dedicated instructions.

- Programming that uses ladders is performed in the relay symbolic language. *1
- Programming that uses dedicated instructions is performed in the logic symbolic language. *2

Whether the relay symbolic language or logic symbolic language is used, the same program is created.

REMARKS

- *1. When using GX Developer for programming, perform programming in the "ladder mode".
- *2. When using GX Developer for programming, perform programming in the "list mode".

3.4.1 Relay symbolic language (Ladder mode)

The relay symbolic language is based on the concept of a relay control circuit. You can perform programming in the representation close to the sequence circuit of relay control.

(1) Ladder block

A ladder block is the minimum unit for performing sequence program operation. It starts with the left hand side vertical bus and ends with the right hand side vertical bus.

Fig 3.2 Ladder Blocks

3

Programming Languages

(2) Sequence program operation method

Sequence program operation repeats execution from a ladder block at step 0 to an END instruction.

In a single ladder block, operation is performed from the left hand side vertical bus to the right, and from the top to the bottom.

Fig 3.3 Operation Processing Sequence

3.4.2 Logic symbolic language (List mode)

The logic symbolic language uses dedicated instructions for programming contacts, coils, etc. instead of their symbols used by the relay symbolic language.

(1) Program operation method

Sequence program operation is executed from an instruction at step 0 to an END instruction in due order. When the END instruction is executed, operation is executed from the instruction at step 0 again.

3
3.5 Operation Processing Method of PLC Function

The operation processing method is the repeated operation of a stored program.

- (1) Stored program system
 - 1) In a stored program system, a sequence program to be operated is stored in the internal memory beforehand.
 - 2) When sequence program operation is executed, the sequence program stored in the built-in PLC function is read to the CPU instruction by instruction to execute the operation, and the corresponding devices are controlled according to the results.
- (2) Repeated operation system

In a repeated operation system, a sequence of operations is repeated.

The built-in PLC function repeats the following processings.

- 1) The built-in PLC function executes the sequence program stored in the internal memory from step 0 in due order.
- 2) When the END instruction is executed, internal processings, such as timer/ counter present value updating and self-diagnostic checks, are performed, and the execution returns to step 0 of the sequence program again.

REMARKS

A processing from step 0 to next step 0 or from END to next END is called one scan. Therefore, one scan is the sum of the processing time of a user-created program (step 0 to END) and the internal processing time of the built-in PLC function.

3.6 I/O Processing Method

The control system is a refresh system.

3.6.1 What is refresh system?

In the refresh system, control input terminal changes are batch-imported into the input data memory of the CPU before execution of each scan, and the data of this input data memory are used as the input data for operation execution.

Each program operation result of the output (Y) is output to the output data memory, and after the END instruction is executed, the contents of the output data memory are batch-output from the control output terminal.

Input refresh

Before execution of step 0, input data are batch-read from the input module (1)) and stored into the input (X) data memory.

- Output refresh Before execution of step 0, the data of the output (Y) data memory (2)) are batchoutput to the output module.
- When input contact instruction is executed Input data are read from the input (X) data memory (3)) and the sequence program is executed.
- When output contact instruction is executed Output data are read from the output (Y) data memory (4)) and the sequence program is executed.
- When output OUT instruction is executed The operation result (5) of the sequence program is stored into the output (Y) data memory.

Fig 3.6 I/O Data Flows in Refresh System

3.6.2 Response delay in refresh system

This section describes a delay of an output change in response to an input change. An output change in response to an input change has a delay of up to two scans as shown in Fig. 2.6.

The Y1E output turns on earliest when the control input terminal turns from OFF to ON immediately before a refresh. X5 turns on at an input refresh, Y1E turns on at step 0, and the control output terminal turns on at an output refresh after execution of the END instruction.

In this case, therefore, a delay of a control output terminal change in response to a control input terminal change is one scan.

When Y1E turns on latest

The Y1E output turns on latest when the control input terminal turns from OFF to ON immediately after a refresh. X5 turns on at the next input refresh, Y1E turns on at step 0, and the control output terminal turns on at an output refresh after execution of the END instruction.

In this case, therefore, a delay of a control output terminal change in response to a control input terminal change is two scans.

3.7 Scan Time

(1) Scan time

A scan time is a time from when sequence program operation is executed from step 0 until step 0 is executed again.

The scan time of each scan is not equal, and changes depending on whether the used instructions are executed or not.

Fig 3.8 Scan Time

- (2) Scan time confirmation
 - (a)The scan time from the END instruction to the next END instruction is timed in the PLC, and stored into the special registers D9017 to D9019 in units of 10ms.
 - 1) Data stored into special registers D9017 to D9019
 - D9017 Minimum value of scan time
 - D9018 Present value of scan time
 - D9019 Maximum value of scan time
 - 2) Scan time accuracy

The accuracy of the scan time observed in the PLC is \pm 10ms.

For example, when the D9018 data is 5, the actual scan time is 40ms to 60ms.

3

3.8 Numerical Values Usable in Sequence Program

The built-in PLC function represents numerical values, alphabets and other data in two statuses: 0 (OFF) and 1 (ON).

The data represented by these 0s and 1s are called BIN (binary code).

The built-in PLC function can also use HEX (hexadecimal code) that represents BIN data in blocks of four bits.

Table 2.1 indicates the numerical representations of BIN, HEX and decimal code.

Table 3.1 Numerical Representations of BIN, HEX and Decimal Code

3.8.1 BIN (Binary Code)

(1) Binary code

BIN is a numerical value represented by 0s (OFF) and 1s (ON).

In the decimal code, a number is incremented from 0 to 9, and at this point, a carry occurs and the number is incremented to 10.

In BIN, 0, 1 are followed by a carry, and the number is incremented to 10 (2 in decimal).

Table 2.2 indicates the numerical representations of BIN and decimal code.

 Table 3.2 Differences between Numerical

DEC (Decimal Code)	BIN (Binary Code)	
0	0000	
1	0001	Carry
2	0010	↓
3	0011	Carry
4	0100	↓
5	0101	
6	0110	
7	0111	Carry
8	1000	↓
9	1001	
10	1010	
11	1011	

Representations of BIN and Decimal Code

(2) Numerical representation of BIN

1) Each register (e.g. data register) of the built-in PLC function consist of 16 bits. Each bit of the register is assigned a 2ⁿ value.

However, the most significant bit is used to judge whether the value is positive or negative.

- Most significant bit is 0 Positive
- Most significant bit is 1 Negative

The numerical representation of each register of the built-in PLC function is shown in Fig. 2.8.

Fig 3.9 Numerical Representation of Each Register of Built-in PLC Function 2) Numerical data usable with the built-in PLC function

In the numerical representation shown in Fig. 2.8, values can be represented in

the range -32768 to 32767.

Therefore, each register of the built-in PLC function can store any value between -32768 and 32767.

3.8.2 HEX (HEX Decimal)

(1) HEX

HEX represents four bits of BIN data as one digit. Using four bits in BIN, you can represent 16 values from 0 to 15. Since HEX represents any of 0 to 15 in a single digit, 9 is followed by alphabets A (instead of 10), B (11)..., and F (15) is followed by a carry. *Refer to page 72* for the correspondences between BIN, HEX and decimal code.

(2) Numerical representation of HEX Each register (e.g. data register) of the built-in PLC function consist of 16 bits. Therefore, the value that can be stored into each register is represented as any of 0 to HFFFF in HEX.

3.9 Description of devices

3.9.1 Device List

The following table indicates the device names usable with the built-in PLC function and their ranges of use.

Input (X)		64 (X0 to X3F) <12 points installed>		
Output (Y)		64 (Y0 to Y3F) <7 points installed>		
Internal relay (M)		64 (M0 to M63)		
Latch relay (L)		None (Can be set with built-in PLC function parameters but will not latch)		
Step relay (S)		None (Can be set with built-in PLC function parameters but will operate as M)		
Link relay (B)		None		
	Points	16(T0 to T15)		
Timer (T)	Specifications	100ms timer: Set time 0.1 to 3276.7s 10ms timer: Set time 0.01 to 327.67s 100ms retentive timer: Set time 0.1 to 3276.7s		
	Points	16(C0 to T15)		
Counter (C)	Specifications	Normal counter: Setting range 1 to 32767 Interrupt program counter: None		
Data device (D)		120(D0 to D119)		
Link register (W)		None		
Annunciator (F)		None		
File register (R)		None		
Accumulator (A)		None		
Index register (Z, V)		None		
Pointer (P)		None		
Interrupt pointer (I)		None		
Special relay (M)		256 (M9000 to 9255) with function limit		
Special register (D)		256 (D9000 to 9255) with function limit		

Table 3.3 Device List

3.9.2 Inputs, Outputs X, Y

Inputs and outputs are devices designed to transfer data between the inverter and external devices.

Inputs provide ON/OFF data given to the corresponding control input terminals from outside the inverter. In a program, they are used as contacts (normally open, normally closed contacts) and the source data of basic instructions. Outputs are used when the operation results of a program are output from the control output terminals to outside the inverter.

Fig 3.10 Inputs (X), Outputs (Y)

(1) Inputs X

- (a) Inputs are designed to give commands and data from external devices, such as pushbuttons, select switches, limit switches and digital switches, to the inverter (built-in PLC function).
- (b) On the assumption that the PLC function contains a virtual relay Xn for one input point, the normally open (N/O) or normally closed (N/C) contact of that Xn is used in the program.

Fig 3.11 Concept of Inputs (X)

(c) There are no restrictions on the number of N/O and N/C contacts of Xn used in the program.

Fig 3.12 Use of Contacts in Input (X) Program

When no external devices are connected to the control input terminals, "X" can be used as the internal relay "M".

(2) Outputs Y

- (a) Outputs are designed to output the control results of a program to outside the inverter (signal lamps, digital indicators, magnetic switches (contactors), solenoids, etc.).
- (b) An output can be exported to outside the inverter as equivalent to one N/O contact.
- (c) There are no restrictions on the number of N/O and N/C contacts of output Yn used in the program, if they are used within the program capacity range.

Fig 3.13 Concept of Outputs (Y)

When no external devices are connected to the control output terminals, "Y" can be used as the internal relay "M".

3.9.3 Internal Relays M

Internal relays are auxiliary relays that are used in the PLC function and cannot latch data (backup for power failure).

All internal relays are turned off when:

- Power is switched from off to on; or
- Reset is performed.

There are no restrictions on the number of contacts (N/O and N/C contacts) used in the program.

Use outputs (Y) when outputting the operation results of the sequence program to outside the inverter.

Fig 3.14 Internal Relay

Description of devices

3.9.4 Timers T

The timers of the PLC function are count up timers.

The count up timer starts timing the present value when its coil turns on, and the contact of that timer turns on when the present value reaches the setting (time-out).

3.9.5 100ms, 10ms and 100ms retentive timers

(1) 100ms and 10ms timers

The timer starts timing the present value when its coil turns on, and the present value is reset to 0 and the contact turns off when the coil turns off.

Fig 3.15 Timing Chart

REMARKS

100ms, 10ms and 100ms retentive timers can be changed using the built-in PLC function parameter. (The default is a 100ms timer.)

Since the FR-C500 has 8 timers (T0 to T7), it can use only any one type of 100ms, 10ms and 100ms retentive timers.

(2) 100ms retentive timers

1) A 100ms retentive timer is designed to time the ON period of the timer coil. When its coil turns on, the timer starts timing the present value and maintains the present value and contact ON/OFF state if the coil turns off.

When the coil turns on again, the timer resumes timing from the maintained present value.

2) Use the RST T instruction to clear the present value and turn off the contact.

Fig 3.16 Timing Chart

3.9.6 Timer processing method and accuracy

(1) Timer processing method

The coil of the timer is turned on/off at execution of the OUT T \Box instruction, and the timer's present value is updated and its contact turned on/off at execution of the END instruction.

- 1) When the coil of the timer turns on, the present value of that timer is updated after execution of the END instruction, and when the timer times out, its contact turns on.
 - (a) When the coil of the 10ms or 100ms timer turns off, the present value of that timer is reset to 0 and the contact is also turned off after execution of the END instruction.
 - (b) If its coil turns off, the 100ms retentive timer maintains the prevent value and contact ON/OFF state.
- 2) When the timer is reset by the RST instruction, the present value of the timer is reset to 0 and the contact turns off too at execution of the RST T□ instruction.

If the timer setting is "0", the setting becomes infinite and the timer does not time out.

Description of devices

- (2) Present value update timing and accuracy in refresh system
 - 1) The timer accuracy is +2 scan times independently of the used timer and scan time.
 - 2) The following shows the present value update timing and accuracy when the 10ms timer is used in a program where the scan time is 10ms or more.

Fig 3.17 Timer Timing Method

- In Fig. 3.8, the time-out period of the 10ms timer T3 has the following errors.
 - *1...... 10ms timer error (+1 scan time)
 - *2.....Error produced by timer's input condition ON timing and OUT T instruction's program position (+1 scan time)
- The accuracy is +2 scan time (+0.05s in Fig. 3.8)
- 3) When the timer times out, its contact remains on until END even if the coil turns off, and turns off at execution of the END instruction.

3.10 Counters C

The counters of the built-in PLC function are up counters.

An up counter stops counting and its contact turns on when the count value reaches the setting.

- (1) Count processing
 - 1) The coil of the counter is turned on/off at execution of the OUT C□ instruction, and its present value is updated and its contact turns on after execution of the END instruction.
 - The counter counts on detection of the leading edge (OFF to ON) of the coil. It does not count if the coil remains on.
- (2) Counter resetting
 - 1) The count value is not cleared even if the coil turns off. Use the RST C□ instruction to clear the count value and turn off the contact.
 - 2) When the counter is reset by the RST instruction, the present value and contact of the counter are cleared at execution of the RST instruction.

Ladder example			
X5 2 1	[RST	 C0 counts on leading edge (OFF to ON) of input X5. Resets C0 when input X6 turns on. 	

3.10.1 Count processing in refresh system

The counter counts on the leading edge of the input condition of the counter imported at an input refresh.

7/

Ladder exa	mple
0 }	(C3 ^{K2}) When OFF to ON of X5 is counted twice, C3 contact turns on.
Counting	g method
X5 X5 (Image) C3 coil C3 present value C3 contact	Input (X) refresh Does not count since X5 remains on.

Fig 3.19 Counter Counting Method

REMARKS

Refer to page 85 for the maximum counting speed of the counter.

3.10.2 Maximum counting speed of counter

The maximum counting speed of the counter is determined by the scan time, and the counter can count only when the ON/OFF period of the input condition is longer than the scan time.

Maximum counting speed Cmax =
$$\frac{n}{100} \times \frac{1}{ts}$$
 [times/s] n: Duty (%) ts: Scan time [s]

REMARKS

The duty n is a percent (%) ratio of ON/OFF period to (ON + OFF period) of the count input signal.

3.11 Data Registers D

 Data registers are memories that can store numerical data (-32768 to 32767 or H0000 to HFFFF) in the built-in PLC function.

One point of data register consists of 16 bits and allows data to be read/written in units of 16 bits.

Fig 3.20 Data Register Structure

- (2) The data stored once by the sequence program is maintained until other data is stored.
- (3) If more data registers are needed, the unused timers (T) and counters (C) can be used as data registers.

7/

3.12 Special Relays, Special Registers

Special relays and special registers are internal relays and data registers, respectively, whose applications are predetermined by the built-in PLC functions.

They have the following main applications.

(1) Sequence operation check

The special relays and special registers can be used to:

(a)Check the operating status (RUN/STOP)

(b)Detect a fault by the self-diagnostic function

(c)Detect an operation error

(d)Check the scan time

(2) Timing contact

There are special relays that can be used in a sequence program and differ in operating status.

(a)Normally ON/OFF flag

(b)RUN flag (OFF for 1 scan)

(c)Initial processing flag (ON for 1 scan)

REMARKS

For the special relays and special registers usable with the built-in PLC function, *refer to page 10.*

Table3.4 Special Relay Application List

 \mathbb{Z}

Special Relay	Application/Description
	(1)This relay turns on for one scan when the built-in PLC function switches from STOP to RUN.
	Sequence program 1 scan
M9038	ON M9038 OFF Switching from STOP to RUN
	(2) Using M9038, you can create a sequence program to be executed only once without using the PLS instruction at switching from STOP to RUN.
	M9038
M9037	This relay remains off while power is on. Can be used to temporarily disable execution for debugging, etc.
M9036	This relay is on while power is on. Can be used to create a program to be executed only once after power-on.
M9039	This relay turns on at the second scan of the sequence program when SQ-SD are shorted. Sequence 0 END/0 program M9039 OFF ON OFF
	Special Relay M9038 M9037 M9036 M9039

3.13 Function List

Function	Description
Remote RUN/STOP	•This function performs remote RUN/STOP from outside the inverter when SQ-SD are shorted (PLC function in RUN status (P.RUN lit)).
Watchdog timer variable (10 to 2000ms)	•The watchdog timer is an internal timer of the sequence function designed to detect hardware or program faults and can be changed in setting.
Self-diagnostic function	•The built-in PLC function itself diagnoses faults and performs fault detection, indication, built-in sequence function stop, etc.
STOP to RUN-time output setting	•This setting is made to determine the output (Y) state when the function has switched from the STOP status to the RUN status.
Keyword registration	•This setting is made to inhibit read/interrupt of a program (parameters and main/sub program) and comments.

— CAUTION -

The following functions are unavailable.

Constant scan, latch (backup for power failure), PAUSE, status latch, sampling trace, step run, clock, interrupt processing, comment, microcomputer mode, print title registration, annunciator display mode, ERROR LED priority setting

3.14 How to RUN/STOP the Built-in PLC Function from Outside (Remote RUN/STOP)

The built-in PLC function is RUN/STOPped by shorting/opening SQ-SD. Remote RUN/STOP is to RUN/STOP the built-in PLC function from outside the

inverter with SQ-SD shorted (RUN status).

- (1) Applications of remote RUN/STOP
 - In the following cases, the function can be RUN/STOPped by remote operation using remote RUN/STOP.

1) When the inverter is out of reach.

- 2) When the inverter in a control box is RUN/STOPped from outside the control box.
- (2) Operation performed at remote RUN/STOP

The operation of the sequence program for performing remote RUN/STOP is as described below.

- Remote STOP...... The function enters the STOP status after the sequence program is executed up to the END instruction.
- Remote RUN When remote RUN is performed after the function has been put in the "STOP status" by remote STOP, the function enters the RUN status again and executes the sequence program from step 0.
- (3) Remote RUN/STOP method

There are the following remote RUN/STOP methods.

1) Setting using built-in PLC function parameter (using contact)

Remote RUN/STOP can be performed by turning the remote RUN contact off/on. For example, this method can be used to STOP the PLC function with the emergency stop contact.

- When the remote RUN contact turns off, the function enters the "RUN" status.
- When the remote RUN contact turns on, the function enters the "STOP" status.

Fig 3.21 Timing Chart for RUN/STOP Using Remote RUN Contact

2) Method using GX Developer

RUN/STOP can be performed by remote RUN/STOP operation from GX Developer.

For example, this method can be used to STOP the function for sequence program write in a place where the inverter is out of reach.

Fig 3.22 Timing Chart for RUN/STOP Using GX Developer

(4) Instructions

Note the following points since the built-in PLC function gives priority to STOP.

- The built-in PLC function enters the STOP status when remote STOP is performed from any of the remote RUN contact, GX Developer, etc.
- To place the built-in PLC function in the RUN status again after it has been put in the STOP status by remote STOP, all external factors (remote RUN contact, GX Developer, etc.) for remote STOP must be set to RUN.

REMARKS

What are RUN and STOP statuses?

•RUN status......Status where a sequence program is repeating operation from step 0 to END instruction.

•STOP status Status where sequence program operation is at a stop and the outputs (Y) are all off.

(1) Watchdog timer

A watchdog timer is the internal timer of the built-in PLC function designed to detect hardware or sequence program faults. Its default value is set to 200ms.

(2) Watchdog timer resetting

The built-in PLC function resets the watchdog timer before execution of step 0 (after execution of END processing).

When the built-in PLC function operates properly and the END instruction is executed within the setting in the sequence program, the watchdog timer does not time out.

If the hardware fault of the built-in PLC function occurs or the scan time of the sequence program is too long to execute the END instruction within the setting, the watchdog timer times out.

Fig 3.23 Watchdog Timer Resetting

(3) Processing performed when watchdog timer times out

If the scan time exceeds the watchdog timer setting, a watchdog timer error occurs and:

- 1) The built-in PLC function turns off all outputs.
- 2) The P.RUN LED goes off or flickers.
- 3) M9008 turns on and the error code is stored into D9008.

REMARKS

The watchdog timer setting can be changed by built-in PLC function parameter setting of GX Developer. (Refer to the GX Developer manual for details.)

3.16 Self-diagnostic Function

The self-diagnostic function diagnoses faults by the built-in PLC function itself.

(1) Self-diagnostic timing

The self-diagnostic function is performed at power-on, at reset, at execution of any instruction, or at execution of the END instruction.

1) At power-on, at reset

Whether operation can be executed or not is diagnosed.

2) At execution of any instruction

An error occurs if the operation of any instruction in the sequence program is not executed properly.

- CAUTION =

For the LD, AND, OR, logical comparison operation, and OUT instructions, the set devices are always checked. For the other instructions (SET, RST, MOV, etc.), a check is made as soon as the execution condition holds and the instruction is ready to be executed.

- At execution of END instruction Operation clog up monitor timer
- (2) Operation mode at fault detection

There are two different PLC operation modes at detection of a fault by the selfdiagnostic: operation stop mode and operation continuation mode.

The operation continuation mode includes a fault that enables operation to be stopped by built-in PLC function parameter setting. (*Refer to page 94*)

- 1) If an operation stop error is detected by the self-diagnostic, operation is stopped and outputs (Y) are all turned off as soon as the error is detected. The other devices maintain their states at occurrence of the error.
- 2) If an operation continuation error is detected, only the faulty program part is not executed and the program at the next step is executed.
- (3) Error definition checking

When M9008 (self-diagnostic error) turns on at detection of an error, the error code is stored into D9008 (self-diagnostic error). Especially in the continuation mode, use it in the program to prevent a mechanical system malfunction.

For the errors detected by the self-diagnostic, refer to the error code list on *page 172*.

The built-in PLC function allows you to set whether the sequence program operation will be stopped or continued at occurrence of an operation error.

Use the built-in PLC function parameter to set whether operation will be stopped or continued.

Default value of error-time operation mode

The following table indicates the default value (initial value) of the error-time operation mode and the status of the built-in PLC function.

		CPU Status					
Eri	Error Definition		P.RUN	Special	Special registers for data storage	Self- diagnostic error No. (D9008)	
		Default value	LED	relays turned on			
Operation error	An error occurred in the sequence program, e.g. an attempt was made to make BCD conversion of any value outside the range 0 to 9999 (or 0 to 99999999).	Continuation	Flicker	M9010 M9011	D9010 D9011	50	

Table 3.5 Error-time Operation Mode

3.17 Keyword Registration

The keyword is designed to inhibit the read and rewrite of the program and comments in the built-in PLC function using GX Developer.

- (1) Read/write from built-in PLC function where keyword has been registered When the keyword has been registered, the built-in PLC function parameters, main program and comments cannot be read/written from the built-in PLC function to the GX Developer device unless the keyword registered to the built-in PLC function is entered.
- (2) Registration and cancel of keyword A keyword of up to six digits can be set in hexadecimal (0 to 9, A to F). Make built-in PLC function parameter setting to register or cancel the keyword.

3.18 Setting of Output (Y) Status at Switching from STOP Status to RUN Status

When the RUN status is switched to the STOP status, the outputs (Y) in the RUN status are stored into the built-in PLC function.

Using the built-in PLC function parameter, you can set whether the outputs (Y) will be output again or will be output after execution of operation when the STOP status is switched to the RUN status.

"Output (Y) status at STOP is output"

The sequence program operation is performed after the output (Y) status at the time of entering the STOP status is output.

"Outputs (Y) are cleared (output one scan later)"

The outputs (Y) are all cleared, and after execution of the sequence program operation, the outputs are provided.

Fig 3.24 Processing Performed when STOP Status Is Switched to RUN Status

3.19 Instruction Format

(Example) END

(1) Many of the instructions can be divided into an instruction part and a device, and their applications are as described below.

Instruction part Indicates the function of that instruction. Device Indicates the data used with the instruction.

- (2) The instruction format can be roughly classified as follows according to the instruction part and device combinations.
 - 1) Instruction partThis instruction does not change the device status and mainly controls the program.
 - Instruction part + DeviceThis instruction performs ON/OFF control of the device, controls the execution condition according to the ON/OFF status of the device, and branches the program.
 Example LD X0 Device Instruction part

4) Others Combinations other than the above 1) to 3).

(3) Source (S)

The source contains the data to be used for operation.

The data changes depending on the specified device.

- Constant Specify the numerical value to be used for operation. Since this value is set at the time of program creation, it is fixed and cannot be changed during program execution.

(4) Destination (D)

The destination stores the data resulting from operation. Note that if the format

consists of	Instruction part	+	Source device	+	Destination device
-------------	------------------	---	---------------	---	--------------------

the data to be used for operation must have been stored into the destination before operation.

At the destination, always specify the device for storing data.

REMARKS

•In this manual, the source and destination are abbreviated as follows.

Source	S
Source 1	S1
Source 2	S2
Destination	\bigcirc
Destination 1	D1)

3.20 Bit Device Processing Method

As the processing method when the bit device (X, Y, M) is specified, 1-bit processing and 16-bit processing using digit designation processing are available.

3.20.1 1-bit processing

When a PLC instruction is used, the device used as the target of operation processing is one bit (one point) of bit device, and multiple bits cannot be specified.

Example LD XO,OUT

3.20.2 Digit designation processing

When a basic or application instruction is used, the bit device used as the target of operation processing may have to be specified by digit designation. When the instruction whose processing unit is 16 bits is specified by this digit designation, up to 16 points can be specified in units of four points.

(1) 16-bit instruction: K1 to 4 (4 to 16 points)

(Example) Setting ranges of 16-bit data, X0 to F, by digit designation

Fig 3.25 Digit Designation Setting Range for 16-bit Instruction (a) When there is digit designation on the source (S) side, the numerical values

that can be handled as the source data are as indicated in Table 3.6.

Table 3.6 List of Designated Digits and Numerical Values That Can Be Handled

Number of Designated Digits	16-bit Instruction
K1 (4 points)	0 to 15
K2 (8 points)	0 to 255
K3 (12 points)	0 to 4095
K4 (16 points)	-32768 to 32767

Ladder Example		Processing	
For 16-bit instruction	–[M0VP K1X0 D0] ↑ Source (S) data	Turn to 0s. b15 b15 b10 0 </th	

Fig 3.26 Ladder Example and Processing

(b) When there is digit designation on the destination (D) side, the number of points specified by digit designation is the target on the destination side.

Fig 3.27 Ladder Examples and Processingse

3.21 Handling of Numerical Value

The built-in PLC function has instructions that handle numerical values indicated in 16 bits.

The most significant bit of the 16 bits is used to judge whether the value is positive or negative. Therefore, the numerical values that can be handled as 16 bits are as follows.

16 bits: -32768 to 32767

The decimal notation and hexadecimal notation correspond as indicated below.

Decimal Notation	Hexadecimal Notation
32767	H7FFF
to	to
5	H0005
4	H0004
3	H0003
2	H0002
1	H0001
0	H0000
-1	HFFFF
-2	HFFFE
-3	HFFFD
-4	HFFFC
-5	HFFFB
to	to
-32768	H8000

3.22 Operation Error

When a basic instruction is used, an operation error will occur in the following case.

(a) If any error described in the description of the corresponding instruction occurs.

POINT Note that if the device designation range is outside the corresponding device range, an operation error does not occur and data is written to other than the specified device.

K4M50

D0

0 X10 0 MOV M50 to M65 are the targets, but actual setting range is M0 to M63, and error occurs since M64 and M65 do not exist.

(1) Error processing

If an operation error occurred at execution of a basic instruction, the error flag turns on and the error step number is stored into the error step storage register.

Error flag	M9010 Turns on at an operation error and turns off if the next basic instruction is normal.
	M9011 Turns on at the first operation error.
Error step	Opo10 Stores the first step number of the instruction where an operation error occurred.
	D9011 Stores the first step number of the instruction where an operation error occurred first.

- 1)D9011 stores the step number of the instruction where an operation error occurred when M9011 turned from OFF to ON. Therefore, D9011 data does not change if M9011 remains on.
- 2) To reset M9011 and D9011, program as shown below.

Reset command	[RST	M9011	Resets (turns off) M9011.
Reset command	[RST	D9011	Resets D9011. (Clears D9011 to 0.)

Fig 3.28 Special Relay and Register Resetting Ladder

3)Whether sequence processing will be stopped or continued at occurrence of an operation error can be selected by built-in PLC function parameter setting. *Refer to page 94* for details.

3.23 Instructions List

Example

3.23.1 How to use the instruction list

- 1)..... Classifies the instruction by application.
- 2)..... Indicates the instruction symbol used for programming.
 - The instructions are based on 16-bit data instructions.

- 16-bit transfer instruction
- Add P to the end of the instruction to define it as executed only on the leading edge of the preceding condition.

3)..... Indicates the symbol used in the ladder diagram.

Destination:	Indicates	the	destination	of	the
	operation	operation result.			
Source:	Indicates	the s	ource of the	data	a for
	the operat	ion.			
4).....Indicates the operation.

```
(S) \longrightarrow (D)
\downarrow
Indicates 16 bits.
```

5)......Indicates the condition of execution for each instruction as described below:

Symbol	Execution Condition
No entry	The instruction is always executed independently of whether its preceding condition is on or off. When the preceding condition is off, the instruction is off.
	The instruction is executed continuously only while its preceding condition is on. When the preceding condition is off, the instruction is not executed and not processed.
ſ	The instruction is executed once only when the preceding condition turns from off to on. If the condition remains on after that, the instruction is not executed and not processed.
	The instruction is executed continuously only while its preceding condition is off. When the preceding condition is on, the instruction is not executed and not processed.
	The instruction is executed once only when the preceding condition turns from on to off. If the condition remains off after that, the instruction is not executed and not processed.

6).....Indicates the number of program steps required for each instruction. The number of steps that changes depending on conditions is two.

3.23.2 Sequence instruction

Classification	Instruction Symbol	Symbol	Processing	Executi on Conditi on	Number of Steps	Reference page
	LD	┥	Logical operation start (Operation start at N/O contact)		1	
	LDI	↓	Logical NOT operation start (Operation start at N/C contact)		1	
	AND		Logical product (N/O contact series connection)		1	
Contacts	ANI		Logical product NOT (N/C contact series connection)		1	111
	OR	L	Logical sum (N/O contact parallel connection)		1	
	ORI	L/f	Logical sum NOT (N/C contact parallel connection)		1	
	ANB		AND between logical blocks (series connection between blocks)		1	117
	ORB	 +	OR between logical blocks (parallel connection between blocks)		1	117
n	MPS		Stores the operation result.		1	
	MRD		Reads the operation result stored in MPS.		1	120
	MPP		Reads and resets the operation result stored in MPS.		1	
	OUT		Outputs device.		1 3	123
	SET	SET D	Sets device.		1 3	126
Outputs	RST	RST D	Resets device.		1 3	120
	PLS	PLS D	Produces a pulse lasting one program scan time on the leading edge of input signal.	1	3	129
	PLF	PLF D	Produces a pulse lasting one program scan time on the trailing edge of input signal.	ł	3	.20
Shift	SFT	SFTD	1-hit device shift		3	131
Shift	SFTP	SFTP D			3	101

SEQUENCE PROGRAMMING

Classification	Instruction Symbol	Symbol	Processing	Executi on Conditi on	Number of Steps	Reference page
Master	MC	MC n D	Master control start		5	133
control	MCR	MCR n	Master control reset		3	100
Program end	END	_	Must be written at the end of sequence program to return to step 0.		1	137
No	NOP	_	No operation For program deletion or space		1	138
operation	NOPLF	_	No operation Line feed instruction for printer output		1	-

3.23.3 Basic instructions

Classification	Instruction Symbol	Symbol	Processing	Executi On Conditi On Vumper O	Reference page	
	LD=	= \$1 \$2		5		
	AND=	- = <u>\$1</u> <u>\$2</u> -	Continuity when $(S1) = (S2)$ Non-continuity when $(S1) \neq (S2)$	5		
	OR=	L_ = <u>\$1</u> <u>\$2</u>		5		
	LD<>	<> \$1 \$2		5		
	AND<>	- <> \$1 \$2-	Continuity when $(S1) \frac{1}{4} (S2)$ Non-continuity when $(S1) = (S2)$	5	-	
	OR<>	L <> §1 §2	-	5		
	LD>	► > \$1 \$2 -		5		
16-bit data comparison	AND>	-> \$1 \$2-	Continuity when $(S1) > (S2)$ Non-continuity when $(S1) \pounds (S2)$	5	140	
	OR>	└ <u>> \$1 \$2</u>	-	5	-	
	LD<=	< = (S1) (S2)		5		
	AND<=	- <= (51) (52)	Continuity when $(S1) \pounds (S2)$ Non-continuity when $(S1) > (S2)$	5		
	OR<=	<= <u>(51)</u> (52)		5		
	LD<	< \$1 \$2		5		MING
	AND<	- < \$1 \$2-	Continuity when (S1) < (S2) Non-continuity when (S1) Š (S2)	5		OGRAN
	OR<	- < <u>\$1</u> <u>\$2</u> -		5		CE PR(
	LD>=	>= \$1 \$2		5		QUEN
16-bit data comparison	AND>=	->= \$1 \$2-	Continuity when (S1) Š (S2) Non-continuity when (S1) < (S2)	5	140	SE
	OR>=			5		3
Transfer	MOV	MOV (S) (D)	$(S) \rightarrow (D)$	5	152	
Transfer	MOVP	MOVP S D	$(0) \rightarrow (D)$	5	100	

107

Instructions	Instructions List									
	Instruction									

Classification	Instruction Symbol	Symbol	Processing	Executi on Conditi on	Number of Steps	Reference page
	+	+ (S) (D) +	$(S) + (D) \rightarrow (D)$		5	
BIN 16-bit addition/ subtraction	+P	+P (S (D)		5	5	
	+	+ (\$1) (\$2) (D)	(S1) + (S2) → (D)		7	
	+P	+P \$1 \$2 D	$(31) + (32) \rightarrow (D)$	1	7	145
	-	- SD-	(S) (D) (D)		5	145
	-P	PSD-	$(\mathbf{S}) \stackrel{\cdot}{\to} (\mathbf{D}) \stackrel{\rightarrow}{\to} (\mathbf{D})$	1	5	
	-	SI S2 D-	(S1) (S2) (D)		7	
	-P		$(31) - (32) \rightarrow (D)$		7	
	*	- * \$1 \$2 D	(S1) x (S2) (D+1 D)	Л	7	
BIN 16bit	*P		$(31) \times (32) \rightarrow (D11, D)$	5	7	140
multiplication /division	/	- / S1 S2 D-+	$(S1) / (S2) \rightarrow Quotient (D)$	Л	7	149
	/P	- / P S1 S2 D	,Remainder (D+1)	ſ	7	

 $\overline{}$

3.23.4 Application instructions

Classification	Instruction Symbol	Symbol	Processing	Executi on Conditi on	Number of Steps	Reference page
	WAND	WAND SD			5	
Logical	WANDP	WANDP S D	$(D) \text{AND} (3) \rightarrow (D)$	5	5	156
product	WAND	WAND S1 S2 D	(S1) AND (S2) \(D)		7	100
	WANDP		(31) AND $(32) \rightarrow (0)$	ſ	7	
	WOR	WOR SD	$(D) \cap R(S) \to (D)$		5	
Logical	WORP	WORP S D		1	5	150
sum	WOR		(S1) OP (S2) (D)		7	100
	WORP		(31) OR $(32) \rightarrow (D)$	1	7	
	WXOR	WXOR SD			5	
Exclusive	WXORP	WXORP SD		ſ	5	162
logical sum	WXOR		$-(S1) \text{ XOR } (S2) \rightarrow (D)$		7	102
	WXORP	-WXORP S1 S2 D		ſ	7	
	WXNR	WXNR SD			5	
NOT exclusive	WXNRP	WXNRP S D	$(D) \times O((3) \rightarrow (D))$		5	165
logical sum	WXNR	WXNR S1 S2 D			7	105
Jun	WXNRP	WXNRP \$1 \$2 D	(31) XOI($(32) \rightarrow (D)$		7	
2's complement	NEG	NEG D			3	169
	NEGP	NEGP D	$0 - (\Box) \rightarrow (\Box)$	<u>_</u>	3	100

SEQUENCE PROGRAMMING

In Chapter 6, the instructions are described in the following format.

Description

1) Indicates the section number, instruction outlines and instruction symbols.

- 2) The devices usable with the instructions are marked.
- 3) The digit designation that can be set is indicated for the instruction that requires digit designation when a bit device is used.
- 4) The instruction for which the error flag turns on at operation error occurrence is marked.
- 5) Shows the format in the ladder mode.
- 6) Explains the instruction.
- 7) Indicates the execution conditions of the instructions.
- 8) Shows program examples in the ladder mode and list mode.

3.25 Sequence Instructions

Sequence instructions are used for relay control circuits, etc.

3.25.1 Contact Instructions : Operation start, series connection, parallel connection ... LD, LDI, AND, ANI, OR, ORI

		Digit	Error Elog							
Bit devices			Word (16-bit) devices			Cons	Constants		Desig	EITOFFIAG
Х	Y	М	Т	С	D	к	Н	Ν	nation	(M9010,M9011)
0	0	0	0	0						

3

Functions

LD, LDI

(1) LD is an N/O contact operation start instruction, and LDI is an N/C contact operation start instruction. Each of them imports the ON/OFF data of the specified device and uses it as an operation result.

AND, ANI

- (1) AND is an N/O contact series connection instruction, and ANI is an N/C contact series connection instruction. Each of them imports the ON/OFF data of the specified device, ANDs it with the previous operation result, and uses the resultant value as an operation result.
- (2) There are no restrictions on the use of AND and ANI, but there are the following conditions in the ladder mode.
 - 1) Write...... When contacts are connected in series by AND or ANI, a ladder of up to 21 contacts can be created.
 - 2) Read....... When contacts are connected in series by AND or ANI, a ladder of up to 24 contacts can be displayed. If the ladder has more than 24 contacts, up to 24 contacts are displayed.

OR, ORI

- (1) OR is an N/O contact parallel connection instruction, and ORI is an N/C contact parallel connection instruction. Each of them imports the ON/OFF data of the specified device, ORs it with the previous operation result, and uses the resultant value as an operation result.
- (2) There are no restrictions on the use of OR and ORI, but there are the following conditions in the ladder mode.
 - 1) Write...... A ladder of up to 23 contacts connected consecutively by OR or ORI can be created.
 - 2) Read....... A ladder of up to 23 contacts connected consecutively by OR or ORI can be displayed. If the ladder has more than 23 contacts, it cannot be displayed properly.

Execution Conditions

Executed every scan independently of the device ON/OFF and preceding operation result.

3.25.2 Contact Instructions : Ladder block series connection, parallel connection ... ANB, ORB

		Digit	Error Elog							
Bit devices			Word (16-bit) devices			Constants Level			Desig	Entor Flag
Х	Y	М	Т	С	D	κ	н	Ν	nation	(M9010,M9011)

SEQUENCE PROGRAMMING

Functions

ANB

- (1) ANDs blocks A and B and uses the resultant value as an operation result.
- (2) The symbol of ANB is not a contact symbol but a connection symbol.
- (3) ANB can be written up to seven instructions (eight blocks) consecutively. If ANB is written consecutively more than the above, the PLC cannot perform normal operation.

ORB

- (1) ORs blocks A and B and uses the resultant value as an operation result.
- (2) ORB connects in parallel the ladder blocks of two or more contacts. Use OR or ORI to connect in parallel the ladder blocks of only one contact.

- (3) The symbol of ORB is not a contact symbol but a connection symbol.
- (4) ORB can be written up to seven instructions (eight blocks) consecutively. If ORB is written consecutively more than the above, the PLC cannot perform normal operation.

Program Examples

ANB

Though there are the following two different program coding methods for connecting ladder blocks in series consecutively, use the coding example 1.

Z

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X4 X6 	X8 X9			(M7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Co	ding example	e 1	 Coding exam 	ple 2	
	0 1 2 3 4 5 6 7 7 8 9 10 11 12 13	LD OR LD OR ANB LD OR ANB LD OR ANB LD OR ANB	X0 X1 X2 X3 X4 X5 X6 X7 X8 X9	0 LD 1 OR 2 LD 3 OR 4 LD 5 OR 6 LD 7 OR 8 LD 9 OR 10 ANB 11 ANB 12 ANB 13 ANB	X0 X1 X2 X3 X4 X5 X6 X7 X8 X9	

ORB

Though there are the following two different program coding methods for connecting ladder blocks in parallel consecutively, use the coding example 1.

Y0 X1	 Coding ex 	ample 1	 Codi 	ng exar	nple 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 LD 1 AND 2 LD 3 AND 4 ORB 5 LD 6 AND 7 ORB 8 LD 9 AND 10 ORB	X0 X1 X2 X3 X4 X5 X6 X7	- Coar 0 1 2 3 4 5 6 7 8 9 10	LD AND LD AND LD AND LD AND ORB ORB ORB	X0 X1 X2 X3 X4 X5 X6 X7
	11 OUT 12 END	M7	11 12	OUT END	М7

3.25.3 Connection Instructions : Ladder block series connection, parallel connection ... ANB, ORB

		Digit	Error Elag							
Bit devices			Word (16-bit) devices			Cons	Constants I		Desig	EITOFFlag
Х	Y	М	Т	С	D	κ	н	Ν	nation	(M9010,M9011)

Functions

ANB

- (1) ANDs blocks A and B and uses the resultant value as an operation result.
- (2) The symbol of ANB is not a contact symbol but a connection symbol.
- (3) ANB can be written up to seven instructions (eight blocks) consecutively. If ANB is written consecutively more than the above, the PLC cannot perform normal operation.

ORB

- (1) ORs blocks A and B and uses the resultant value as an operation result.
- (2) ORB connects in parallel the ladder blocks of two or more contacts. Use OR or ORI to connect in parallel the ladder blocks of only one contact.

- (3) The symbol of ORB is not a contact symbol but a connection symbol.
- (4) ORB can be written up to seven instructions (eight blocks) consecutively. If ORB is written consecutively more than the above, the PLC cannot perform normal operation.

)

Program Examples

ANB

Though there are the following two different program coding methods for connecting ladder blocks in series consecutively, use the coding example 1.

X0 X2 X X1 X3 X X1 X3 X	X4 X6 	X8 				— C M7
- Codi	ing example	: 1	 Coding 	g example	2	
0 1 2 3 4 5 6 7 7 8 9 10	LD OR LD OR ANB LD OR ANB LD OR ANB	X0 X1 X2 X3 X4 X5 X6 X7 X8	0 LI 1 OI 2 LI 3 OI 4 LI 5 OI 6 LI 7 OI 8 LI 9 OI 10 A	D R D R D R D R D R D R D R D R D R D R	X0 X1 X2 X3 X4 X5 X6 X6 X7 X8 X9	
12 13 14	OR ANB OUT END	Х9 M7	12 Al 13 Al 14 Ol 15 Fl	NB NB UT ND	M7	

ORB

Though there are the following two different program coding methods for connecting ladder blocks in parallel consecutively, use the coding example 1.

L X0 X1		1	 Coding example 1 		mple 1	 Coding example 2 			
₀ <u>⊢</u> ı̃⊢ı́Ì⊢	C M7	C	0	LD	XO	0	LD	XO	
X2 X3			1	AND	X1	1	AND	X1	
	-		2	LD	X2	2	LD	X2	
			3	and	X3	3	AND	X3	
X4 X5			4	ORB		4	LD	X4	
			5	LD	X4	5	and	X5	
X6 X7			6	AND	X5	6	LD	X6	
	1		7	ORB		7	and	X7	
			8	LD	X6	8	ORB		
			9	AND	X7	9	ORB		
			10	ORB		10	ORB		
			11	OUT	M7	11	OUT	M7	
			12	FND		12	END		

3.25.4 Connection Instructions : Operation result, push, read, pop ... MPS, MRD, MPP

			Usa	ble Dev	ices	es Digit Error								
В	it device	es	Word (16-bit) d	levices	Constants Level		Desig	Enorriag					
Х	Y	М	Т	С	D	κ	Н	N	nation	(M9010,M9011)				

Functions

MPS

- (1) Stores the operation result (ON/OFF) immediately before itself.
- (2) The MPS instruction can be used consecutively up to 12 times. In the ladder mode, however, it can be used up to 11 times. When the MPP instruction is used midway, the number of used MPS instructions is decremented by 1.

MRD

(1) Reads the operation result stored by the MPS instruction, and continues operation from the next step with that operation result.

MPP

- (1) Reads the operation result stored by the MPS instruction, and continues operation from the next step with that operation result.
- (2) Clears the operation result stored by the MPS instruction.

3

Program Example

1) Program using MPS, MRD and MPP

AND

0UT

MPP

0UT END

10)28

29 30

M18 Y7

Y8

3.25.5 Output Instructions : Bit device, timer, counter ... OUT

\backslash					Usa	ble De	vices					Error
		Bit devices			Wo	Word (16-bit) devices			Constants		Digit	Flag
		х	Y	м	т	С	D	к	н	Ν	Beolgnation	(M9010, M9011)
Bit device			0	0								
Timor	Device				0							
Iimer	Setting						0	0				
Counter	Device					0						
	Setting						0	0				

Functions

OUT (Y, M)

(1) Outputs the operation result up to OUT instruction to the specified device.

	OUT Instruction						
Operation Result	Cail	Contacts					
	COII	N/O contact	N/C contact				
OFF	OFF	Not energize	Energize				
ON	ON	Energize	Not energize				

REMARKS

Three steps are used for the OUT instruction only when the following device is used.

• Special relay (M)

OUT(T)

(1) When the operation result up to the OUT instruction is ON, the coil of the timer turns on and the timer times up to the setting, and when the timer times out (timing value ≥ setting), the contact operates as indicated below.

N/O contact	Energize
N/C contact	Not energize

(2) When the operation result up to the OUT instruction turns from ON to OFF, the timer operates as indicated below.

	Timor	Present	Before 1	lime-out	After Time-out		
Timer Type	Coil	Value of Timer	N/O contact	N/C contact	N/O contact	N/C contact	
100ms timer	OFF	0	Not	Energize	Not	Energize	
10ms timer	0.1	· ·	energize		energize		
100ms retentive timer	OFF	Maintained	Not energize	Energize	Energize	Not energize	

- (3) After a time-out, the contact state of the retentive timer remains unchanged until the RST instruction is executed.
- (4) A negative number (-32768 to -1) cannot be specified for the setting.
- (5) If the setting is 0, it is timed as infinity. Hence, the timer does not time out.
- (6) *Refer to page 81* for the timing method of the timer.

OUT(C)

(1) When the operation result up to the OUT instruction turns from OFF to ON, the present value (count value) is incremented by 1, and when the counter stops counting (present value = setting), the contact operates as indicated below.

N/O contact	Energize
N/C contact	Not energize

- (2) The counter does not count if the operation result remains ON. (Count inputs need not be converted into pulses.)
- (3) After the counter has stopped counting, the count value and contact state remain unchanged until the RST instruction is executed.
- (4) A negative number (-32768 to -1) cannot be specified for the setting. If the setting is 0, processing is the same as when the setting is 1.
- (5) Refer to page 83 for the counting method of the counter.

Execution Conditions

Executed every scan independently of the operation result up to the OUT instruction.

Program Examples

OUT

1) Program that outputs to the output module.

2) Program that turns on Y10 and Y14 10s after X0 has turned on.

3) Program that turns on Y0 when X0 turns on 10 times and turns off Y0 when X1 turns on.

4) Program that changes the C0 setting to 10 when X0 turns on and to 20 when X1 turns on.

Stores 10 into D0 when X0 turns on.

Stores 20 into D0 when X1 turns on.

C0 counts data stored in D0 as setting.

When C0 stops counting, Y0 turns on.

\backslash					Usa	ble De	vices					Error
		Bit devices			Word (16-bit) devices			Constants		Level	Digit	Flag
		x	Y	м	т	С	D	к	н	N	Designation	(M9010, M9011)
SET			0	0								
RS T	D		0	0	0	0	0					

Functions

SET

- (1) Turns on the specified device when the SET input turns on.
- (2) The device turned on is held on if the SET input turns off. It can be turned off by the RST instruction.

(3) When the SET input is off, the device status does not change.

RST

(1) When the RST input turns on, the specified device operates as described below.

Device	Status
Y, M	The coil and contact are turned off.
T, C	The present value is reset to 0 and the coil and contact are turned off.
D	Cleared to 0.

(2) When the RST input is off, the device status does not change.

(3) The function of RST (D) is the same as that of the following ladder.

Execution Conditions

The SET and RST instructions are executed every scan.

REMARKS

Three steps are used when the following device is used. SET instruction ... Special relay (M) RST instruction ... Special relay (M), all word devices

Program Examples

SET , RST

1) Program that sets (turns on) Y8 when X8 turns on and resets (turns off) Y8 when X9 turns on.

Operations of SET and RST instructions

2) Program that resets the data register contents to 0.

Stores X10 to 1F contents into D8 when X0 turns on.

Resets D8 contents to 0 when X5 turns on.

3) Program that resets the 100ms retentive timer and counter.

When T5 is set as retentive timer, T5 turns on when ON period of X4 reaches 30 minutes.

Counts the number of times T5 turned on.

Resets T5 when T5 turns on.

When C0 stops counting, Y5 turns on.

When X5 turns on, C0 is reset.

Cod	ing		
0	LD	Х4	
1	0UT	T5	K18000
2	LD	T5	
3	OUT	CO	K16
4	RST	T5	
7	LD	CO	
8	OUT	Y5	
9	LD	X5	
10	RST	CO	
13	END		

3.25.7 Output Instructions : Leading edge, trailing edge differential outputs ... PLS, PLF

\backslash						Error					
	Bi	t devic	devices		Word (16-bit) devices			Constants		Digit	Flag
	x	Y	м	т	С	D	к	Н	N	Designation	(M9010, M9011)
D		0	0								

Functions

PLS

(1) Turns the specified device on when the PLS command turns from OFF to ON, and turns it off except when the PLS command turns from OFF to ON.

When there is one PLS instruction for the device specified at \bigcirc during one scan, the specified device turns on for one scan.

Do not execute the PLS instruction for the same device more than once during one scan.

(2) If the status is switched to STOP and switched to RUN again after execution of the PLS instruction, the PLS instruction is not executed.

PLF

(1) Turns the specified device on one scan when the PLF command turns from ON to OFF, and turns it off except when the PLF command turns from ON to OFF.

When there is one PLF instruction for the device specified at D during one scan, the specified device turns on for one scan.

Do not execute the PLF instruction for the same device more than once during one scan.

(2) If the status is switched to STOP and switched to RUN again after execution of the PLF instruction, the PLF instruction is not executed.

Program Examples

```
PLS
```

Program that executes the PLS instruction when X9 turns on.

PLF

Program that executes the PLF instruction when X9 turns off.

3.25.8 Shift Instructions : Bit device shift ... SFT, SFTP

				Error							
	Bit devices			Word (16-bit) c	6-bit) devices Constants			Level	Digit	Flag
	x	Y	м	т	С	D	к	н	N	Designation	(M9010, M9011)
D		0	0								

Functions

- (1) Shifts the ON/OFF status of the device preceding the one specified at (D) to the specified device, and turns off the preceding device.
- (2) Use the SET instruction to turn on the first device from which data will be shifted.
- (3) When using the SFT or SFTP instructions consecutively, program in order of larger to smaller device numbers.

*At M8 to 15, 1 indicates ON and 0 indicates OFF.

Program Example

Coc	ling	
0	LD	X8
1	SFTP	YOB
4	SFTP	YOA
7	SFTP	Y9
10	SFTP	Y8
13	LD	X7
14	PLS	M8
17	LD	M8
18	SET	Y7
19	END	

3.25.9 Master Control Instructions : Master control set, reset ... MC, MCR

					Error						
	Bit devices			Word (rd (16-bit) devices Cor			Constants Level		Digit	Flag
	x	Y	м	т	С	D	к	н	N	Designation	(M9010, M9011)
n									0		
D		0	0								

Functions

(1) The master control instructions are designed to create an efficient ladder switching sequence program by switching on/off the common bus of the ladder. The ladder that uses master control is as shown below.

SEQUENCE PROGRAMMING

MC

- (1) When the MC ON/OFF command is on at the start of master control, the operation results between MC and MCR are as performed by the instructions (ladder).
- (2) If the MC instruction is off, the scan between the MC and MCR instructions is executed, and therefore, the scan time does not become short. When the MC instruction is off, the operation results between MC and MCR are as described below.

100ms, 10ms timer	The count value is reset to 0 and both the coil and contact turn off.				
100ms retentive timer, counter	The coil turns off but both the count value and contact maintain the current states.				
Devices in OUT instruction	All turn off.				
SET, RST, SFT or device in instruction basic	Maintains the current state.				

- (3) By changing the device at (D), the MC instruction can use the same nesting (N) number any number of times.
- (4) When the MC instruction is on, the coil of the device specified at (D) turns on. Since using the same device in the OUT instruction, etc. will result in double coils,

the device specified at (D) should not be used in any other instruction.

MCR

- (1) This instruction is designed to reset the master control and indicates the end of the master control range.
- (2) Do not provide a contact instruction in front of the MCR instruction.

The master control instructions can be nested. Their master control ranges are differentiated by the nesting (N). The nesting can be used from N0 to N7.

Using the nesting structure, you can create a ladder that restricts the program execution conditions in order.

The ladder using the nesting structure is as shown below.

Note the following when nesting the instructions.

(1) The instructions can be nested to a level of eight (N0 to 7). When nesting them, use MC from lower to higher nesting (N) numbers and MCR from higher to lower numbers. In the opposite order, the PLC function cannot perform normal operation since the instructions cannot be nested.

Nesting numbers of opposite. Since buses cross each other, normal master control ladder cannot be created.

(2) When the MCR instructions are gathered in one place in the nesting structure, all master controls can be terminated by one lowest nesting (N) number.

3.25.10 End Instruction : Sequence program end ... END

			Error							
Bit devices Word (16-bit) devices Constants Level							Digit	Flag		
X	Y	М	т	С	D	к	н	N	Designation	(M9010, M9011)

Functions

(1) Indicates the end of a program. Execution terminates scanning at this step and returns to step 0.

(2) The END instruction cannot be used halfway through the sequence program.

- CAUTION

If the END instruction does not exist in the program, an operation error occurs and the PLC function does not operate.

3.25.11 Other Instructions : No operation ... NOP

			Error							
В	it device	es	Word (16-bit) c	levices	Cons	stants	Level	Digit	Flag
x	Y	М	т	С	D	к	н	N	Designation	(M9010, M9011)
										0

Functions

NOP

- (1) No-operation instruction that has no influence on the preceding operation.
- (2) Use NOP to:
 - 1) Provide space for debugging of a sequence program.
 - 2) Delete an instruction without changing the number of steps. (Change the instruction for NOP)
 - 3) Delete an instruction temporarily.

Program Examples

1) Contact short-circuit (AND, ANI)

2) Contact short-circuit (LD, LDI)......Note that if LD or LDI is replaced by NOP, the ladder will be completely changed.

3.26 Basic Instructions

The basic instructions can handle numerical data represented in 16 bits.

3.26.1 Comparison Operation Instructions

- (1) The comparison operation instruction is handled as a contact, compares the magnitudes of two pieces of data (e.g. =, >, <), and turns on when the condition holds.
- (2) Use the comparison operation instructions in the same manner as the contact instructions of the PLC instructions as indicated below.
 - LD, LDI LD=
 - AND, ANI AND=
 - OR, ORI OR=
- (3) There are the following 18 different comparison operation instructions. *Refer to page 142* for details.

Classification	Instruction Symbol	Classification	Instruction Symbol	Classification	Instruction Symbol
	LD=		LD>		LD<
=	AND=	>	AND>	<	AND<
	OR=		OR>		OR<
	LD<>		LD<=		LD>=
≠	AND<>	\leq	AND<=	≥	AND>=
	OR<>		OR<=		OR>=

(4) The conditions that the comparison operation instructions turn on are as follows.

	98	99	100	101	102
	•			1	
Dn = K100	OF	F	ON	C	DFF
Dn≠K100	O	N	OFF	(NC
				1	
Dn > K100		OFF		(NC
			1	 	
Dn≤K100		ON		C	DFF
Dn < K100	OI	N		OFF	
				1	
Dn≥K100	OF	F		ON	

CAUTION

The comparison instruction regards the specified data as BIN values. Hence, if the value whose most significant bit (b15) is 1 (8 to F) is specified for comparison of hexadecimal data, it is regarded as a negative BIN value.

(Example)

Comparison of 4-digit HEX values

Therefore, the result is -32767 < 1384 and Y10 does not turn on.

3.26.2 Comparison Operation Instructions : 16-bit data comparison ... =, <>, >, <=, <, >=

\backslash				Usa	ble Dev	vices					Error	
	Bi	t devic	es	Word (16-bit) c	levices	Cons	tants	Level	Digit	Flag (M9010, M9011)	
	х	Y	м	т	С	D	к	н	N	Designation		
S1	0	0	0	0	0	0	0	0		K1 to K4	0	
S2	0	0	0	0	0	0	0	0		1110114	U	

Functions

- (1) Handled as an N/O contact and performs 16-bit comparison operation.
- (2) The comparison operation results are as indicated below.

Instruction symbol in	Condition	Comparison Operation Result	Instruction symbol in	Condition	Comparison Operation Result
=	S1) = S2		=	S1 ≠ S2	
\diamond	S1 ≠ S2		<>	S1) = S2	
>	S1 > S2	Energize	Fnergize > S1 ≤		Not energize
<=	$1 \le 2$	- Energize	<=	S1 > S2	Not energize
<	S1 < S2		<	$1 \ge 2$	
>=	$1 \ge 2$		>=	S1 < S2	

Execution Conditions

The execution conditions of LD ____, AND ____ and OR ____ are as indicated below.

Instruction	Execution Condition
LD 🔄	Executed every scan.
AND	Executed only when the preceding contact instruction is on.
OR 🔄	Executed every scan.

REMARKS

- Seven steps are used when:
 The digit designation of a bit device is not K4.
 The beginning of a bit device is not a multiple of 8.

Program Examples

<>

2) Program that compares the BCD value 100 and D3 data.

<=

4) Program that compares the D0 and D3 data.

3.26.3 Arithmetic Operation Instructions

The arithmetic operation instructions are instructions which perform the addition, subtraction, multiplication, and division of two BIN data.

(1) Arithmetic operation with BIN (Binary)

- If the operation result of an addition instruction exceeds 32767, the result becomes a negative value.
- If the operation result of a subtraction instruction is less than 32768, the result becomes a positive value.
- The operation of a positive value and a negative value is as follows:

 $\begin{array}{c} 5+8 \to 13 \\ 5-8 \to -3 \\ 5 \times 3 \to 15 \\ -5 \times 3 \to -15 \\ -5 \times (-3) \to 15 \\ -5 / 3 \to -1 \text{ and remainder } -2 \\ 5 / (-3) \to -1 \text{ and remainder } 2 \\ -5 / (-3) \to 1 \text{ and remainder } -2 \end{array}$

3.26.4 Arithmetic Operation Instructions : BIN 16-bit addition, subtraction ... +, +P, -, -P

\setminus				Usa	ble De	vices								
Bit devices				Word (16-bit) devices			Constants Level			Digit Designation	Error Flag			
	х	Y	м	т	С	D	к	н	N	Deergnation	(M9010, M9011)			
S	0	0	0	0	0	0	0	0						
D		0	0	0	0	0								
S1	0	0	0	0	0	0	0	0		K1 to K4	0			
S2	0	0	0	0	0	0	0	0						
D		0	0	0	0	0								

SEQUENCE PROGRAMMING

3

Functions

+

(2) Performs the addition of BIN data specified at S1 and the BIN data specified at S2, and stores the addition result into the device specified at D1.

- (3) At (S), (S1), (S2) and (D), -32768 to 32767 (BIN 16 bits) can be specified.
- (4) The judgment of whether the data of (S), (S1), (S2) and (D) are positive or negative is made at the highest bit (b15).

0 Positive

1 Negative

(5) When the 0th bit has underflown, the carry flag does not turn on. When the 15th bit has overflown, the carry flag does not turn on.

Functions

- -
- Performs the subtraction of BIN data specifies at D and the BIN data specified at S, and stores the subtraction result into the device specified at D.

(2) Performs the subtraction of BIN data specified at (S_1) and the BIN data specified at (S_2) , and stores the subtraction result into the device specified at (D_1) .

- (3) At (S), (S1), (S2) and (D), -32768 to 32767 (BIN 16 bits) can be specified.
- (4) The judgment of whether the data of (S), (S1), (S2) and (D) are positive or negative is made at the highest bit (b15).

0 Positive

1 Negative

(5) When the 0th bit has underflown, the carry flag does not turn on. When the 15th bit has overflown, the carry flag does not turn on.

Execution Conditions

Addition/subtraction command.

Program Examples

+

Program which adds the content of A0 to the content of D3 and outputs the result to Y38 to 3F when X5 turns on.

-

Program which outputs the difference between the set value and present value timer T3 to Y40 to 53 in BCD.

3.26.5 Arithmetic Operation Instructions : BIN 16-bit multiplication, division ... *, *P, /, /P

\backslash				Usa								
	Bit devices			Word (16-bit) devices			Constants		Level	Digit Designation	Error Flag	
	x	Y	м	т	С	D	к	н	N	Deergridteer	(M9010, M9011)	
S1	0	0	0	0	0	0	0	0				
S2	0	0	0	0	0	0	0	0		K1 to K4	0	
D		0	0	0	0	0				Ţ		

Functions

*

Performs the multiplication of BIN data specified at S1 and the BIN data specified at S2, and stores the multiplication result into the device specified at D.

(2) When D is a bit device, specify the bits, beginning with the lower bits. Example

> K1: Lower 4 bits (b0 to 3) K4: Lower 16 bits (b0 to 15)

- (3) At (51) and (52), -32768 to 32767 (BIN 16 bits) can be specified.
- (4) The judgment of whether the data of (51) and (52) are positive or negative is made at the highest bit (b15) and that of (D), at (b31).
 0 Positive
 - 1 Negative

Performs the division of BIN data specified at S1 and the BIN data specified at S2, and stores the result into the device specified at D.

(2) In regards to the operation result, the quotient and remainder are stored by use of 32 bits in the case of word device, and only the quotient is stored by use of 16 bits in the case of bit device.

 Quotient :
 Stored to the lower 16 bits.

 Remainder :
 Stored to the upper 16 bits. (Storable only in the case of word device)

- (3) At (S1) and (S2), -32768 to 32767 (BIN 16 bits) can be specified.
- (4) The judgment of whether the data of \$1, \$2, D and D+1 are positive or negative is made at the highest bit (b15).
 (Both quotient and remainder have sign.)
 0 Positive
 - 1 Negative

/

Execution Conditions

The execution conditions of the transfer instructions are as shown below.

Operation Errors

In the following case, operation error occurs and the error flag turns on.

- A1 or V has been specified at (D).
- The divisor (\$2) is 0.

Program Examples

1)Program which stores the multiplication result of 5678 and 1234 in BIN to D3 and 4 when X5 turns on.

2) Program which outputs the multiplication result of the BIN data of X8 to F and the BIN data of X10 to 1B to Y30 to 3F.

/

Program which outputs the quotient, obtained by dividing the data of X8 to F by 3.14, to Y30 to 3F when X3 turns on.

3.26.6 Data Transfer Instructions

The data transfer instructions are designed to transfer data.

The data moved by the data transfer instruction is maintained until new data is transferred.

3.26.7 Data Transfer Instructions : 16-bit data transfer ... MOV, MOVP

\backslash					Usa	ble De	vices					Error	
		Bit devices			Word (16-bit) devices			Constants		Level	Digit Designation	Flag	
		х	Y	м	т	С	D	к	н	N	Designation	(M9010, M9011)	
MOV	S	0	0	0	0	0	0	0	0		K1 to K4	0	
WUUV	D		0	0	0	0	0				KT 10 K4		

Functions

MOV

Transfers the 16-bit data of the device specified at (S) to the device specified at (D).

		-							16	bits						_	
Before transfer	S	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1	1
Aftor									र	T	rans	fer					
transfer	\bigcirc	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1	1

Execution Conditions

The execution conditions of the transfer instructions are as shown below.

Program Examples

MOV

1) Program that stores the input X0-B data into D8.

2) Program that stores 155 into D8 in binary when X8 turns on.

3.27 Application instructions

Application instructions are used when special processing is required.

3.27.1 Logical Operation Instructions

- (1) The logical operation instructions are instructions which perform the logical operations such as logical add and logical product.
- (2) The logical operation instructions are available in the following 10 types.

Classification	Instruction Symbol	Classification	Instruction Symbol	Classification	Instruction Symbol
Logical	WAND		WXOR	2's	NEG
product	WANDP	Exclusive OR	WXORP	(Sign reversal)	NEGP
	WOR	Exclusive	WXNR		
Logical add	WORP	NOR	WXNRP		

REMARKS

The logical operation instructions perform the following processings in units of one bit.

Classification	Brocossing	Operation	E	xampl	е
Classification	Flocessing	Expression	Α	В	Υ
			0	0	0
Logical product	Set to 1 only when both inputs A	V-A.R	0	1	0
Logical product	and B are 1. Set to 0 otherwise.	I-A-D	1	0	0
			1	1	1
			0	0	0
Logical add	Set to 0 only when both inputs A	V-A+B	0	1	1
Logical add	otherwise.	I-A'D	1	0	1
			1	1	1
			0	0	0
	Set to 0 when inputs A and B are		0	1	1
	different.		1	0	1
			1	1	0
			0	0	1
	Set to 1 when inputs A and B are	$V = (\overline{A} + B) (A + \overline{B})$	0	1	0
Exclusive NOR	different.	т – (Атв) (Атв)	1	0	0
			1	1	1

3.27.2 Logical Operation Instructions : 16-bit Logical Product ... WAND, WANDP

					Usa	ble De	vices					Error	
		Bit devices			Word (16-bit) devices			Constants		Level	Digit	Flag	
		x	Y	м	т	С	D	к	н	N	Designation	(M9010, M9011)	
	S	0	0	0	0	0	0	0	0		 K1 to K4		
	D		0	0	0	0	0						
WAND	S1	0	0	0	0	0	0	0	0			0	
	S2	0	0	0	0	0	0	0	0				
	D		0	0	0	0	0						

Functions

WAND

ANDs the 16-bit data of the device specified at D and the 16-bit data of the device specified at S on a bit-by-bit basis, and stores the result into the device specified at D.

(2) ANDs the 16-bit data of the device specified at S1 and the 16-bit data of the device specified at S2 on a bit-by-bit basis, and stores the result into the device specified at D1.

(3) More than the digit designation of a bit device is regarded as 0 for operation.

Execution Conditions

The execution conditions of the logical product instructions are as shown below.

Program Examples

WAND

 Program that masks the tenth digit (second place from the least significant digit) with 0 among the four BCD digits of D10 when XA turns on.

2)Program that ANDs the X10-1B and D33 data and outputs the result to Y0-B when XA turns on.

3) Program that ANDs the X10-1B and D33 data and outputs the result to Y0-B when XA turns on.

3.27.3 Logical Operation Instructions : 16-bit Logical Add ... WOR, WORP

\backslash					Usa	ble De	vices					Error
		Bit devices			Word (16-bit) devices			Constants		Level	Digit	Flag
		x	Y	м	т	с	D	к	н	N	Designation	(M9010, M9011)
	S	0	0	0	0	0	0	0	0		_	
	D		0	0	0	0	0					
WOR	S1)	0	0	0	0	0	0	0	0		K1 to K4	0
	S2	0	0	0	0	0	0	0	0			
	D		0	0	0	0	0					

Functions

WOR

(1) ORs the 16-bit data of the device specified at (D) and the 16-bit data of the device specified at (S) on a bit-by-bit basis, and stores the result into the device specified at (D).

(2) ORs the 16-bit data of the device specified at S1 and the 16-bit data of the device specified at S2 on a bit-by-bit basis, and stores the result into the device specified at D1.

(3) More than the digit designation of a bit device is regarded as 0 for operation.

Execution Conditions

The execution conditions of the logical add instructions are as shown below.

Program Examples

WOR

1)Program that ORs the D10 and D20 data and stores the result into D10 when XA turns on.

 Program that ORs the X10-1B and D33 data and outputs the result to Y0-F when XA turns on.

3) Program that ORs the D10 and D20 data and stores the result into D33 when XA turns on.

4) Program that ORs the X10-1B and D33 data and outputs the result to Y0-B when XA turns on.

3.27.4 Logical Operation Instructions : 16-bit Exclusive Logical Add ... WXOR, WXORP

\backslash					Usa	ble De	vices					Error
		Bit devices			Word (16-bit) devices			Constants		Level	Digit	Flag
		x	Y	м	т	С	D	к	н	N	Designation	(M9010, M9011)
	S	0	0	0	0	0	0	0	0		K1 to K4	0
	D		0	0	0	0	0					
WXOR	SI	0	0	0	0	0	0	0	0			
	S2	0	0	0	0	0	0	0	0			
	\mathbb{D}		0	0	0	0	0					

Functions

WXOR

(2) Performs the exclusive OR of the 16-bit data of device specified at (51) and the 16-bit data of device specified at (52) per bit, and stores the result into the device specified at (D).

(3) When operation is performed, the digits of bit device higher than the specified are regarded as 0.

Execution Conditions

The execution conditions of the exclusive logical add instructions are as shown below.

Program Examples

WXOR

1)Program which performs exclusive OR of the data of D10 and that of D20, and stores the result to D10 when XA turns on.

2) Program which performs the exclusive OR of the data of X10 to 1B and data of D33, and sends the result to the Y30 to 3B when XA turns on.

3)Program which performs exclusive OR of the data of D10 and that of D20, and stores the result to D33 when XA turns on.

					• Co	ding			
	D10	D20	D22	,	0	LD	X00A		
	DIO	DZU	033	Ч	1	WXORP	D10	D20	D33
I				I	8	END			

4) Program which performs exclusive OR of the data of X10 to 1B and the data of D33, and sends the result to the Y30 to 3B when XA turns on.

3.27.5 Logical Operation Instructions : 16-bit NOT Exclusive Logical Add ... WXNR, WXNRP

\backslash					Usa	ble De	vices					Error
		Bit devices			Word (16-bit) devices			Constants		Level	Digit Designation	Flag
		х	Y	м	т	с	D	к	н	N	Designation	(M9010, M9011)
	S	0	0	0	0	0	0	0	0		K1 to K4	0
	D		0	0	0	0	0					
WXNR	S1	0	0	0	0	0	0	0	0			
	S2	0	0	0	0	0	0	0	0			
	\mathbb{D}		0	0	0	0	0					

Functions

WXNR

(2) Performs the exclusive NOR of the 16-bit data of device specified at (S1) and the 16-bit data of device specified at (S2) per bit, and stores the result into the device specified at (D).

(3) When operation is performed, the digits of bit device higher than the specified are regarded as 0.

Execution Conditions

The execution conditions of the not exclusive logical add instructions are as shown below.

Program Examples

WXNR

1) Program which compares the bit pattern of the 16-bit data of X30 to 3F and that of the 16-bit data of D99 and stores the number of the same bit patterns and the number of different bit patterns to D7 and 8, respectively, when XC turns on.

		[w;	P K KNR X	(4 (030	D99	Ъ	Exclusive NOR of the 16-bit data of X30 to 3F and the data of D99 is performed and the result is stored into D99.
-			[SUN	P /I	D99	Ъ	Comparing the 16-bit data of D99, the total number of "1" bits is stored into A0.
-		[MC	P DV A	.0	D7	Н	Data of A0 (number of the same bits) is stored into D7.
-		[MC	PK DV 1	(6	D8	Н	16 is stored into D8 in BIN.
-		[-	P A	.0	D8	Н	Operation of 16 - A0 is performed and the result (number of different bits) is stored into D8.
I						I	
	• Co	ding					
	0	LD	X00C				
	1	WXNRP	K4X030	D99			
	6	SUMP	D99				
	9	MOVP	A0	D7			

- 9 MOVP A0 D7 14 MOVP K16 D8 19 -P A0 D8 24 END
- 2) Program which compares the bit pattern of the 16-bit data of X30 to 3F and that of the data of D99 and stores the result to D7 when X0 turns on.

						• Co	ding			
	X000 F	2 K4	ngg	D7	-	0	LD	X000		
۲Ľ		X X030	033	07	7	1	WXNRP	K4X030	D99	D7
					1	8	END			

3.27.6 Logical Operation Instructions : BIN 16-bit 2's complement ... NEG, NEGP

					Digit	Francis						
		Bit devices				Word (16-bit) devices			Constants		Level	Flag
		х	Y	м	т	С	D	к	н	N	Designation	(M9010, M9011)
NEG	D		0	0	0	0	0	0	0		K1 to K4	0

Functions

(1) Reverses the sign of the 16-bit data of device specified at (D) and stores the result in device specified at (D).

(2) Used to reverse the positive sign to the negative sign and vice versa.

Execution Conditions

Program Examples

NEG

1) Program which calculates "D10 - D20" when XA turns on, and obtains the absolute value when the result is negative.

MEMO

4. ERROR CODE LIST

4.1 How to Read the Error Code 172

Chapter 1
Chapter 2
Chapter 3
Chapter 4

When the built-in PLC function is in the RUN status or if an alarm occurs during RUN, the self-diagnostic function displays the error and stores the error code and error step into the special registers. This chapter describes the error definitions and corrective actions.

4.1 How to Read the Error Code

When an error has occurred, the error code can be read with the peripheral device. For the operation method, refer to the operating manual of the peripheral device. The following table indicates the error names, error codes, definitions, causes and corrective actions.

The error code and error step are stored into the following special registers.

Error code......D9008

Error step...... D9010, D9011

Table 4.1 Error Code List

Error Name	Error Code (D9008)	Status	Definition and Cause	Corrective Action
"INSTRCT CODE ERR." [Checked at instruction execution]	10	Stop	The instruction code that cannot be decoded is included in the program.The memory contents changed for some reason.	Read the error step using GX Developer, and correct that step in the program.
"PARAMETER ERROR" [Checked at power-on or STOP to RUN]	11	Stop	 Write to the CPU was performed after the capacity larger than the memory capacity of the CPU was set using GX Developer. The parameter data of the CPU memory changed due to noise or memory loading fault. 	Check the memory capacity of the CPU with the memory capacity set using GX Developer, and re-set using GX Developer.
"WDT ERROR" [Checked at END processing execution]	22	Stop	The scan time exceeds the watchdog error monitor time.The user program scan time has increased.	Calculate/check the user program scan time and reduce the scan time.
"END NOT EXECUTE" [Checked at END instruction execution]I	24	Stop	 The END instruction has been read as another instruction code due to noise, etc. The END instruction has changed into another instruction code for some reason. 	Reset and RUN again. If the same error appears again, the cause is a CPU hardware fault. Consult the Mitsubishi representative.

Error Name	Error Code (D9008)	Status	Definition and Cause	Corrective Action
"OPERATION ERROR" [Checked at instruction execution]	50	Run (Stop)	Divided by zero	Read the error step by use of peripheral device, and check and correct the program at that step.

MEMO

APPENDIX

Appendix1Instruction Processing Time 176

 \mathbb{Z}

Instruction	Condition (Device)	Number of Steps	Processing Time (us)	Instruction	Condition (Device)	Number of Steps	Processing Time (μs)
ID	(1	2.6	WOR		7	10.2
LDI		1	2.7	WORP		7	10.6
AND		1	2.8	WXOR		5	10.4
ANI		1	2.8	WXORP		5	10.8
OR		1	2.7	WXOR		7	10.3
ORI		1	2.8	WXORP		7	10.7
ORB		1	2.0	WXNR		5	10.5
ANB		1	2.0	WXNRP		5	10.9
MPS		1	1.9	WXNR		7	10.3
MRD		1	1.9	WXNRP		7	10.7
MPP		1	2.0	NEG		3	7.7
MC		5	3.7	NEGP		3	8.1
MCR		3	2.4	LD=		5	7.7
NOP		1	2.1	LD=		7	8.3
NOPLF		1	2.1	LD<>		5	7.8
END		1	1.3	LD<>		7	8.3
PLS		3	3.6	LD>		5	7.7
PLF		3	3.5	LD>		7	8.3
SFT		3	3.6	LD<=		5	7.8
SFTP		3	4.1	LD<=		7	8.3
OUT	Y,M	1	2.5	LD<		5	7.8
	Special M	3	3.2	LD<		7	8.3
	Т	1	2.5	LD>=		5	7.9
	С	1	2.6	LD>=		7	8.3
SET	Y,M	1	2.5	AND=		5	7.3
	Special M	3	3.1	AND=		7	7.5
RST	Y,M	1	2.6	AND<>		5	7.4
	Special M	3	3.3	AND<>		7	7.5
	Т	3	3.8	AND>		5	7.4
	С	3	3.8	AND>		7	7.5
	D	3	3.2	AND<=		5	7.5
MOV		5	7.7	AND<=		7	7.7
MOVP		5	8.5	AND<		5	7.4
WAND		5	10.3	AND<		7	7.7
WANDP		5	10.7	AND>=		5	7.5
WAND		7	10.1	AND>=		7	7.7
WANDP		7	10.7	OR=		5	7.4
WOR		5	10.3	OR=		7	8.1
WORP		5	10.7	OR<>		5	7.5

Instruction	Condition (Device)	Number of Steps	Processing Time (μs)	
OR<>		7	8.2	
OR>		5	7.5	
OR>		7	8.2	
OR<=		5	7.5	
OR<=		7	8.2	
OR<		5	7.5	
OR<		7	8.2	
OR>=		5	7.6	
OR>=		7	8.2	
+		5	10.3	
+P		5	10.7	
+		7	10.3	
+P		7	10.7	
-		5	10.3	
-P		5	10.7	
-		7	10.4	
-P		7	10.8	
*		7	10.8	
*P		7	11.3	
1		7	11.3	
/P		7	11.8	

REMARKS

As inverter control is also performed actually, the scan time is approximately 40ms at 500 steps.

REVISIONS

Print Date	*Manual Number	Revision
Sep., 2005	IB(NA)-0600262ENG-A	First edition
	1	