# MVME2300 Series VME Processor Module

# Programmer's Reference Guide

V2300A/PG5

Edition of June 2001

## © Copyright 2001 Motorola, Inc.

## All rights reserved.

## Printed in the United States of America.

 $\mathsf{Motorola}^{\circledast}$  and the Motorola logo are registered trademarks of Motorola, Inc.

 $PowerPC^{\circledR} \ is \ a \ registered \ trademark \ of \ International \ Business \ Machines \ Corporation \ and \ is \ used \ by \ Motorola \ with \ permission.$ 

All other products mentioned in this document are trademarks or registered trademarks of their respective holders.

## **Safety Summary**

The following general safety precautions must be observed during all phases of operation, service, and repair of this equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual could result in personal injury or damage to the equipment.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of the equipment in your operating environment.

#### Ground the Instrument.

To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground. If the equipment is supplied with a three-conductor AC power cable, the power cable must be plugged into an approved three-contact electrical outlet, with the grounding wire (green/yellow) reliably connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards and local electrical regulatory codes.

#### Do Not Operate in an Explosive Atmosphere.

Do not operate the equipment in any explosive atmosphere such as in the presence of flammable gases or fumes. Operation of any electrical equipment in such an environment could result in an explosion and cause injury or damage.

#### **Keep Away From Live Circuits Inside the Equipment.**

Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other qualified service personnel may remove equipment covers for internal subassembly or component replacement or any internal adjustment. Service personnel should not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, such personnel should always disconnect power and discharge circuits before touching components.

#### Use Caution When Exposing or Handling a CRT.

Breakage of a Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent CRT implosion, do not handle the CRT and avoid rough handling or jarring of the equipment. Handling of a CRT should be done only by qualified service personnel using approved safety mask and gloves.

## Do Not Substitute Parts or Modify Equipment.

Do not install substitute parts or perform any unauthorized modification of the equipment. Contact your local Motorola representative for service and repair to ensure that all safety features are maintained.

## **Observe Warnings in Manual.**

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed. You should also employ all other safety precautions which you deem necessary for the operation of the equipment in your operating environment.



To prevent serious injury or death from dangerous voltages, use extreme caution when handling, testing, and adjusting this equipment and its components.

## **Flammability**

All Motorola PWBs (printed wiring boards) are manufactured with a flammability rating of 94V-0 by UL-recognized manufacturers.

#### **EMI Caution**



This equipment generates, uses and can radiate electromagnetic energy. It may cause or be susceptible to electromagnetic interference (EMI) if not installed and used with adequate EMI protection.

## **Lithium Battery Caution**

This product contains a lithium battery to power the clock and calendar circuitry.



Danger of explosion if battery is replaced incorrectly. Replace battery only with the same or equivalent type recommended by the equipment manufacturer. Dispose of used batteries according to the manufacturer's instructions.



Il y a danger d'explosion s'il y a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d'un type équivalent recommandé par le constructeur. Mettre au rebut les batteries usagées conformément aux instructions du fabricant.



Explosionsgefahr bei unsachgemäßem Austausch der Batterie. Ersatz nur durch denselben oder einen vom Hersteller empfohlenen Typ. Entsorgung gebrauchter Batterien nach Angaben des Herstellers.

## **CE Notice (European Community)**

Motorola Computer Group products with the CE marking comply with the EMC Directive (89/336/EEC). Compliance with this directive implies conformity to the following European Norms:

EN55022 "Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment"; this product tested to Equipment Class B

EN50082-1:1997 "Electromagnetic Compatibility—Generic Immunity Standard, Part 1. Residential, Commercial and Light Industry"

System products also fulfill EN60950 (product safety) which is essentially the requirement for the Low Voltage Directive (73/23/EEC).

Board products are tested in a representative system to show compliance with the above mentioned requirements. A proper installation in a CE-marked system will maintain the required EMC/safety performance.

In accordance with European Community directives, a "Declaration of Conformity" has been made and is on file within the European Union. The "Declaration of Conformity" is available on request. Please contact your sales representative.

#### Notice

While reasonable efforts have been made to assure the accuracy of this document, Motorola, Inc. assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. Motorola reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to the Motorola Computer Group website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of Motorola, Inc.

It is possible that this publication may contain reference to or information about Motorola products (machines and programs), programming, or services that are not available in your country. Such references or information must not be construed to mean that Motorola intends to announce such Motorola products, programming, or services in your country.

## **Limited and Restricted Rights Legend**

If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation clause at DFARS 252.227-7014 (Jun. 1995).

Motorola, Inc. Computer Group 2900 South Diablo Way Tempe, Arizona 85282

# **Contents**

| About This Manual                                    |      |
|------------------------------------------------------|------|
| Summary of Changes                                   | xx   |
| Overview of Contents                                 |      |
| Comments and Suggestions                             | xxi  |
| Conventions Used in This Manual                      | xxii |
| CHAPTER 1 Board Description and Memory Maps          |      |
| Introduction                                         | 1-1  |
| Overview                                             | 1-1  |
| Summary of Features                                  | 1-2  |
| System Block Diagram                                 |      |
| Functional Description                               |      |
| VMEbus Interface                                     |      |
| Front Panel                                          |      |
| PCI interface                                        | 1-7  |
| P2 I/O                                               | 1-7  |
| Programming Model                                    | 1-7  |
| Processor Memory Maps                                | 1-7  |
| Default Processor Memory Map                         |      |
| Processor CHRP Memory Map                            |      |
| Processor PREP Memory Map                            | 1-11 |
| PCI Configuration Access                             |      |
| PCI Memory Maps                                      |      |
| Default PCI Memory Map                               | 1-13 |
| PCI CHRP Memory Map                                  |      |
| PCI PREP Memory Map                                  | 1-16 |
| VMEbus Mapping                                       |      |
| VMEbus Master Map                                    |      |
| VMEbus Slave Map                                     |      |
| Falcon-Controlled System Registers                   |      |
| System Configuration Register (SYSCR)                |      |
| Memory Configuration Register (MEMCR)                |      |
| System External Cache Control Register (SXCCR)       |      |
| Processor 0 External Cache Control Register (P0XCCR) |      |
| Processor 1 External Cache Control Register (P1XCCR) | 1-30 |

| CPU Control Register                         | 1-30 |
|----------------------------------------------|------|
| ISA Local Resource Bus                       | 1-31 |
| W83C553 PIB Registers                        | 1-31 |
| 16550 UART                                   | 1-31 |
| General-Purpose Readable Jumpers             | 1-32 |
| NVRAM/RTC and Watchdog Timer Registers       | 1-32 |
| Module Configuration and Status Registers    |      |
| CPU Configuration Register                   | 1-34 |
| Base Module Feature Register                 |      |
| Base Module Status Register (BMSR)           |      |
| Seven-Segment Display Register               |      |
| VME Registers                                |      |
| LM/SIG Control Register                      |      |
| LM/SIG Status Register                       |      |
| Location Monitor Upper Base Address Register |      |
| Location Monitor Lower Base Address Register |      |
| Semaphore Register 1                         |      |
| Semaphore Register 2                         |      |
| VME Geographical Address Register (VGAR)     |      |
| Emulated Z8536 CIO Registers and Port Pins   |      |
| Emulated Z8536 Registers                     |      |
| Z8536 CIO Port Pins                          |      |
| ISA DMA Channels                             | 1-45 |
|                                              |      |
| CHAPTER 2 Raven PCI Bridge ASIC              |      |
| Introduction                                 | 2-1  |
| Features                                     | 2-1  |
| Block Diagram                                | 2-2  |
| Functional Description                       |      |
| MPC Bus Interface                            |      |
| MPC Address Mapping                          |      |
| MPC Slave                                    |      |
| MPC Write Posting                            | 2-8  |
| MPC Master                                   |      |
| MPC Arbiter                                  | 2-10 |
| MPC Bus Timer                                |      |
| PCI Interface                                | 2-10 |
| PCI Address Mapping                          | 2-11 |
| PCI Slave                                    | 2-14 |
| PCI Write Posting                            | 2-17 |

| PCI Master                                          | 2-17 |
|-----------------------------------------------------|------|
| Generating PCI Cycles                               | 2-21 |
| Endian Conversion                                   |      |
| When MPC Devices are Big-Endian                     | 2-25 |
| When MPC Devices are Little-Endian                  |      |
| Raven Registers and Endian Mode                     | 2-27 |
| Error Handling                                      | 2-28 |
| Transaction Ordering                                | 2-29 |
| Raven Registers                                     | 2-30 |
| MPC Registers                                       | 2-30 |
| Vendor ID/Device ID Registers                       | 2-32 |
| Revision ID Register                                | 2-33 |
| General Control-Status/Feature Registers            | 2-33 |
| MPC Arbiter Control Register                        | 2-36 |
| Prescaler Adjust Register                           | 2-36 |
| MPC Error Enable Register                           | 2-37 |
| MPC Error Status Register                           | 2-39 |
| MPC Error Address Register                          | 2-40 |
| MPC Error Attribute Register - MERAT                | 2-41 |
| PCI Interrupt Acknowledge Register                  |      |
| MPC Slave Address (0,1 and 2) Registers             | 2-43 |
| MPC Slave Address (3) Register                      | 2-44 |
| MPC Slave Offset/Attribute (0,1 and 2) Registers    | 2-45 |
| MPC Slave Offset/Attribute (3) Registers            | 2-46 |
| General-Purpose Registers                           | 2-47 |
| PCI Registers                                       | 2-47 |
| Vendor ID/ Device ID Registers                      | 2-49 |
| PCI Command/ Status Registers                       | 2-50 |
| Revision ID/ Class Code Registers                   | 2-52 |
| I/O Base Register                                   | 2-52 |
| Memory Base Register                                | 2-53 |
| PCI Slave Address (0,1,2 and 3) Registers           | 2-54 |
| PCI Slave Attribute/ Offset (0,1,2 and 3) Registers |      |
| CONFIG_ADDRESS Register                             | 2-56 |
| CONFIG_DATA Register                                |      |
| Raven Interrupt Controller                          | 2-60 |
| Features                                            | 2-60 |
| Architecture                                        | 2-60 |
| Readability of CSR                                  | 2-61 |
| Interrupt Source Priority                           | 2-61 |
| Processor's Current Task Priority.                  | 2-61 |

|     | Nesting of Interrupt Events                      | 2-62 |
|-----|--------------------------------------------------|------|
|     | Spurious Vector Generation                       |      |
|     | Interprocessor Interrupts (IPI)                  | 2-62 |
|     | 8259 Compatibility                               | 2-62 |
|     | Raven-Detected Errors                            | 2-63 |
|     | Timers                                           | 2-63 |
|     | Interrupt Delivery Modes                         | 2-64 |
| Blo | ck Diagram Description                           | 2-65 |
|     | Program-Visible Registers                        | 2-66 |
|     | Interrupt Pending Register (IPR)                 | 2-66 |
|     | Interrupt Selector (IS)                          | 2-66 |
|     | Interrupt Request Register (IRR)                 | 2-67 |
|     | In-Service Register (ISR)                        | 2-67 |
|     | Interrupt Router                                 | 2-67 |
| MP  | IC Registers                                     | 2-69 |
|     | RavenMPIC Registers                              | 2-69 |
|     | Feature Reporting Register                       | 2-73 |
|     | Global Configuration Register                    | 2-74 |
|     | Vendor Identification Register                   |      |
|     | Processor Init Register                          | 2-75 |
|     | IPI Vector/Priority Registers                    | 2-76 |
|     | Spurious Vector Register                         | 2-77 |
|     | Timer Frequency Register                         |      |
|     | Timer Current Count Registers                    | 2-78 |
|     | Timer Base Count Registers                       | 2-78 |
|     | Timer Vector/Priority Registers                  | 2-79 |
|     | Timer Destination Registers                      |      |
|     | External Source Vector/Priority Registers        |      |
|     | External Source Destination Registers            |      |
|     | Raven-Detected Errors Vector/Priority Register   |      |
|     | Raven-Detected Errors Destination Register       |      |
|     | Interprocessor Interrupt Dispatch Registers      |      |
|     | Interrupt Task Priority Registers                |      |
|     | Interrupt Acknowledge Registers                  |      |
|     | End-of-Interrupt Registers                       |      |
| Pro | gramming Notes                                   |      |
|     | External Interrupt Service                       |      |
|     | Reset State                                      |      |
|     | Interprocessor Interrupts                        |      |
|     | Dynamically Changing I/O Interrupt Configuration |      |
|     | EOI Register                                     |      |
|     | Interrupt Acknowledge Register                   | 2-90 |

| 8259 Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-90 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Current Task Priority Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-90 |
| Architectural Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-91 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| CHAPTER 3 Falcon ECC Memory Controller Chip Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1  |
| Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-1  |
| Block Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-2  |
| Functional Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-5  |
| Bit Ordering Convention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-5  |
| Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Four-beat Reads/Writes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-5  |
| Single-beat Reads/Writes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-6  |
| DRAM Speeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-6  |
| ROM/Flash Speeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-10 |
| PowerPC 60x Bus Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-11 |
| Responding to Address Transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Completing Data Transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-11 |
| Cache Coherency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Cache Coherency Restrictions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| L2 Cache Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| ECC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| Cycle Types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Error Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Error Logging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| DRAM Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| ROM/Flash Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| Refresh/Scrub.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Blocks A and/or B Present, Blocks C and D Not Present, Blo |      |
| Blocks A and/or B Present, Blocks C and/or D Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| DRAM Arbitration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| Chip Defaults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| External Register Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| CSR Accesses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| Programming Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| CSR Architecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| Register Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| Detailed Register Bit Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Vendor/Device Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| Revision ID/ General Control Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-31 |

| DRAM Attributes Register                     | 3-33 |
|----------------------------------------------|------|
| DRAM Base Register                           | 3-35 |
| CLK Frequency Register                       |      |
| ECC Control Register                         | 3-36 |
| Error Logger Register                        | 3-39 |
| Error Address Register                       | 3-42 |
| Scrub/Refresh Register                       | 3-43 |
| Refresh/Scrub Address Register               | 3-44 |
| ROM A Base/Size Register                     | 3-45 |
| ROM B Base/Size Register                     | 3-48 |
| DRAM Tester Control Registers                | 3-50 |
| 32-Bit Counter                               |      |
| Test SRAM                                    |      |
| Power-Up Reset Status Register 1             |      |
| Power-Up Reset Status Register 2             |      |
| External Register Set                        |      |
| Software Considerations                      |      |
| Parity Checking on the PowerPC Bus           |      |
| Programming ROM/Flash Devices                |      |
| Writing to the Control Registers             |      |
| Sizing DRAM                                  |      |
| ECC Codes                                    |      |
| Data Paths                                   | 3-60 |
|                                              |      |
| CHAPTER 4 Universe (VMEbus to PCI) Chip      |      |
| Introduction                                 | 4-1  |
| Features                                     |      |
| Block Diagram                                |      |
| Functional Description                       |      |
| VMEbus Interface                             |      |
| Universe as VMEbus Slave                     |      |
| Universe as VMEbus Master                    |      |
| PCI Bus Interface                            |      |
| Universe as PCI Slave                        |      |
| Universe as PCI Master                       |      |
| Interrupter                                  |      |
| VMEbus Interrupt Handling                    |      |
| DMA Controller                               |      |
| Universe Control and Status Registers (UCSR) |      |
| Universe Register Map                        |      |

| Universe Chip Problems after PCI Reset                      | 4-14 |
|-------------------------------------------------------------|------|
| Description                                                 | 4-14 |
| Workarounds                                                 | 4-15 |
| Examples                                                    | 4-16 |
| Example 1: MVME2600 Series Board Exhibits PCI Reset Problem | 4-16 |
| Example 2: MVME3600 Series Board Acts Differently           | 4-17 |
| Example 3: Universe Chip is Checked at Tundra               | 4-19 |
| CHAPTER 5 Programming Details                               |      |
| Introduction                                                | 5-1  |
| PCI Arbitration.                                            | 5-1  |
| Interrupt Handling                                          | 5-2  |
| RavenMPIC                                                   |      |
| 8259 Interrupts                                             |      |
| ISA DMA Channels                                            |      |
| Exceptions                                                  |      |
| Sources of Reset                                            |      |
| Soft Reset                                                  |      |
| Universe Chip Problems after PCI Reset                      |      |
| Error Notification and Handling                             | 5-10 |
| Endian Issues                                               | 5-11 |
| Processor/Memory Domain                                     | 5-13 |
| Role of the Raven ASIC                                      |      |
| PCI Domain                                                  | 5-13 |
| PCI-SCSI                                                    | 5-13 |
| PCI/Ethernet                                                | 5-13 |
| PCI-Graphics                                                |      |
| Role of the Universe ASIC                                   | 5-14 |
| VMEbus Domain                                               | 5-14 |
| ROM/Flash Initialization                                    | 5-15 |
| APPENDIX A Related Documentation                            |      |
| Motorola Computer Group Documents                           | A-1  |
| Manufacturers' Documents                                    |      |
| Related Specifications                                      |      |
|                                                             |      |

# **List of Figures**

| Figure 1-1. MVME2300 Series System Block Diagram                  | 1-5  |
|-------------------------------------------------------------------|------|
| Figure 1-2. VMEbus Master Mapping                                 |      |
| Figure 1-3. VMEbus Slave Mapping                                  | 1-22 |
| Figure 1-4. General-Purpose Software-Readable Header              | 1-32 |
| Figure 2-1. Raven Block Diagram                                   | 2-3  |
| Figure 2-2. MPC-to-PCI Address Decoding                           | 2-5  |
| Figure 2-3. MPC to PCI Address Translation                        |      |
| Figure 2-4. PCI to MPC Address Decoding                           | 2-12 |
| Figure 2-5. PCI to MPC Address Translation                        |      |
| Figure 2-6. PCI Spread I/O Address Translation                    | 2-22 |
| Figure 2-7. Big- to Little-Endian Data Swap                       | 2-26 |
| Figure 2-8. RavenMPIC Block Diagram                               |      |
| Figure 3-1. Falcon Pair Used with DRAM in a System                | 3-2  |
| Figure 3-2. Falcon Internal Data Paths (Simplified)               |      |
| Figure 3-3. Overall DRAM Connections                              | 3-4  |
| Figure 3-4. Data Path for Reads from the Falcon Internal CSRs     | 3-22 |
| Figure 3-5. Data Path for Writes to the Falcon Internal CSRs      | 3-23 |
| Figure 3-6. Memory Map for Byte Reads to CSR                      | 3-24 |
| Figure 3-7. Memory Map for Byte Writes to Internal Register Set   |      |
| and Test SRAM                                                     | 3-25 |
| Figure 3-8. Memory Map for 4-Byte Reads to CSR                    | 3-26 |
| Figure 3-9. Memory Map for 4-Byte Writes to Internal Register Set |      |
| and Test SRAM                                                     | 3-26 |
| Figure 3-10. PowerPC Data to DRAM Data Correspondence             | 3-60 |
| Figure 4-1. Architectural Diagram for the Universe                | 4-4  |
| Figure 4-2. UCSR Access Mechanisms                                | 4-9  |
| Figure 5-1. MVME2300 Series Interrupt Architecture                | 5-2  |
| Figure 5-2. PIB Interrupt Handler Block Diagram                   | 5-5  |
| Figure 5-3. Big-Endian Mode                                       |      |
| Figure 5-4. Little-Endian Mode                                    | 5-12 |

# **List of Tables**

| Table 1-1. Features: MVME2300 Series                                  | 1-2   |
|-----------------------------------------------------------------------|-------|
| Table 1-2. Default Processor Memory Map                               | 1-8   |
| Table 1-3. CHRP Memory Map Example                                    | 1-9   |
| Table 1-4. Raven MPC Register Values for CHRP Memory Map              | .1-10 |
| Table 1-5. PREP Memory Map Example                                    | .1-11 |
| Table 1-6. Raven MPC Register Values for PREP Memory Map              | .1-12 |
| Table 1-7. PCI CHRP Memory Map                                        | .1-13 |
| Table 1-8. Raven PCI Register Values for CHRP Memory Map              | .1-15 |
| Table 1-9. Universe PCI Register Values for CHRP Memory Map           | .1-15 |
| Table 1-10. PCI PREP Memory Map                                       | .1-16 |
| Table 1-11. Raven PCI Register Values for PREP Memory Map             | .1-18 |
| Table 1-12. Universe PCI Register Values for PREP Memory Map          | .1-19 |
| Table 1-13. Universe PCI Register Values for VMEbus Slave Map Example | .1-23 |
| Table 1-14. VMEbus Slave Map Example                                  | .1-24 |
| Table 1-15. System Register Summary                                   | .1-24 |
| Table 1-16. 16550 Access Registers                                    | .1-31 |
| Table 1-17. M48T59/559 Access Registers                               | .1-33 |
| Table 1-18. Module Configuration and Status Registers                 | .1-33 |
| Table 1-19. VME Registers                                             | .1-38 |
| Table 1-20. Emulated Z8536 Access Registers                           | .1-43 |
| Table 1-21. Z8536 CIO Port Pin Assignments                            | .1-44 |
| Table 2-1. Features of the Raven ASIC                                 | 2-1   |
| Table 2-2. Command Types — MPC Slave Response                         | 2-7   |
| Table 2-3. MPC Transfer Types                                         | 2-9   |
| Table 2-4. Command Types — PCI Slave Response                         | .2-15 |
| Table 2-5. PCI Master Command Codes                                   | .2-18 |
| Table 2-6. Address Modification for Little-Endian Transfers           |       |
| Table 2-7. Raven MPC Register Map                                     | .2-31 |
| Table 2-8. Raven PCI Configuration Register Map                       | .2-48 |
| Table 2-9. Raven PCI I/O Register Map                                 | .2-49 |
| Table 2-10. RavenMPIC Register Map                                    | .2-69 |
| Table 3-1. Features of the Falcon Chip Set                            | 3-1   |
| Table 3-2. PowerPC 60x Bus to DRAM Access Timing — 70ns Page Devices  | 3-7   |
| Table 3-3. PowerPC 60x Bus to DRAM Access Timing — 60ns Page Devices  | 3-8   |

| Table 3-4. PowerPC Bus to DRAM Access Timing — 50ns Hyper Devices       | 3-9  |
|-------------------------------------------------------------------------|------|
| Table 3-5. PowerPC 60x Bus to ROM/Flash Access Timing — 64 Bits         |      |
| (32 Bits per Falcon)                                                    | 3-10 |
| Table 3-6. PowerPC 60x Bus to ROM/Flash Access Timing — 16 Bits (8 Bits |      |
| per Falcon)                                                             |      |
| Table 3-7. Error Reporting                                              | 3-13 |
| Table 3-8. PowerPC 60x to ROM/Flash Address Mapping — ROM/Flash         |      |
| 16 Bits Wide (8 Bits per Falcon)                                        | 3-16 |
| Table 3-9. PowerPC 60x to ROM/Flash Address Mapping — ROM/Flash         |      |
| 64 Bits Wide (32 Bits per Falcon)                                       |      |
| Table 3-10. Register Summary                                            | 3-28 |
| Table 3-11. ram spd1,ram spd0 and DRAM Type                             | 3-32 |
| Table 3-12. Block_A/B/C/D Configurations                                | 3-34 |
| Table 3-13. rtest Encodings                                             | 3-43 |
| Table 3-14. ROM Block A Size Encoding                                   | 3-46 |
| Table 3-15. rom_a_rv and rom_b_rv Encoding                              | 3-46 |
| Table 3-16. Read/Write to ROM/Flash                                     | 3-47 |
| Table 3-17. ROM Block B Size Encoding                                   | 3-49 |
| Table 3-18. Sizing Addresses                                            | 3-56 |
| Table 3-19. PowerPC 60x Address to DRAM Address Mappings                | 3-56 |
| Table 3-20. Syndrome Codes Ordered by Bit in Error                      | 3-57 |
| Table 3-21. Single-Bit Errors Ordered by Syndrome Code                  | 3-59 |
| Table 3-22. PowerPC Data to DRAM Data Mapping                           | 3-61 |
| Table 4-1. Features of the Universe ASIC                                |      |
| Table 4-2. Universe Register Map                                        |      |
| Table 5-1. PCI Arbitration Assignments                                  |      |
| Table 5-2. RavenMPIC Interrupt Assignments                              |      |
| Table 5-3. PIB PCI/ISA Interrupt Assignments                            |      |
| Table 5-4. Reset Sources and Devices Affected                           |      |
| Table 5-5. Error Notification and Handling.                             |      |
| Table 5-6 ROM/Flash Bank Default                                        | 5-15 |

# **About This Manual**

The MVME2300 Series VME Processor Module Programmer's Reference Guide provides board-level information and detailed ASIC information, including register bit descriptions, for the MVME2300 and MVME2300SC series of VME processor modules.

The MVME2300 series VME processor module is based on an MPC603 or MPC604 PowerPC microprocessor, and features dual PCI Mezzanine Card (PMC) slots with front panel and/or P2 I/O. In addition, the MVME2300SC versions of the board give both PMC slots access (via P2) to an SCSA (Signal Computing System Architecture) backplane bus, if the system supports one.

The MVME2300 series VME processor module is compatible with optional double-width or single-width PMCs, and with the PMCspan PCI expansion mezzanine module. By utilizing the two onboard PMC slots and stacking PMCspan(s), the MVME2300SC can provide support for up to six PMCs.

As of the publication date, the information presented in this manual applies to the following MVME2300 and MVME2300SC models:

| Model                                    | Memory         | Processor            |
|------------------------------------------|----------------|----------------------|
| MVME2301                                 | 16MB ECC DRAM  |                      |
| MVME2302                                 | 32MB ECC DRAM  | MPC603               |
| MVME2303                                 | 64MB ECC DRAM  | @ 200 MHz            |
| MVME2304                                 | 128MB ECC DRAM |                      |
| MVME2304-0111, -0113, MVME2305*          | 16MB ECC DRAM  |                      |
| MVME2304-0121, -0121SC, -0123, MVME2306* | 32MB ECC DRAM  | MPC604<br>@ 300*/333 |
| MVME2304-0131, -0131SC, -0133, MVME2307* | 64MB ECC DRAM  | MHz                  |
| MVME2304-0141, -0141SC, -0143, MVME2308* | 128MB ECC DRAM |                      |
| MVME2306SC-1                             | 32MB ECC DRAM  | MPC604               |
| MVME2307SC-1                             | 64MB ECC DRAM  | @ 300 MHz            |

This manual is intended for anyone who designs OEM systems, adds capability to an existing compatible system, or works in a lab environment for experimental purposes. A basic knowledge of computers and digital logic is assumed. To use this manual, you may also wish to become familiar with the publications listed in Appendix A, *Related Documentation*.

# **Summary of Changes**

This is the fifth edition of the *Programmer's Reference Guide*. It supersedes the March 2001 edition and incorporates the following updates.

| Date         | Description of Change                                                                                                                                                                                                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| January 2001 | A caution about DRAM component requirements was added to the <i>DRAM</i> Attributes Register and Sizing DRAM sections of Chapter 3.                                                                                                                                                      |
| January 2001 | In descriptions of the general-purpose software-readable header (J10/J17), such as Figure 1-4 in Chapter 1, information on bit 1 (SRH1) was updated to correctly reflect the functionality of that bit.                                                                                  |
| March 2001   | At various locations in the manual, such as <i>P2 I/O</i> on page 1-7, information has been added to accommodate the MVME2300SC variants of the board. The contents of the manual have also been reorganized somewhat to conform with present Computer Group practice for board manuals. |
| June 2001    | All data referring to the VME CSR Bit Set Register (VCSR_SET) and VME CSR Bit Clear Register (VCSR_CLR) has been deleted. These registers of the Universe II are unavailable for implementation as intended by the MVME materials and the Universe II User Manual.                       |

## **Overview of Contents**

Chapter 1, *Board Description and Memory Maps*, describes the board-level hardware features of MVME2300 series VME processor modules. It includes memory maps and a discussion of some general software considerations such as cache coherency, interrupts, and bus errors.

Chapter 2, *Raven PCI Bridge ASIC*, describes the Raven ASIC, the PCI local bus/PowerPC processor bus interface chip used on MVME2300 series boards.

Chapter 3, Falcon ECC Memory Controller Chip Set, describes the Falcon memory controller chip set, which provides the interface between the PowerPC processor bus and memory systems on MVME2300 series boards.

Chapter 4, *Universe (VMEbus to PCI) Chip*, describes the Universe ASIC, the VMEbus/PCI local bus interface chip used on MVME2300 series boards.

Chapter 5, *Programming Details*, examines aspects of several programming functions that are not tied to any specific ASIC on MVME2300 series boards.

Appendix A, *Related Documentation*, lists all documentation related to the MVME2300 and MVME2300SC series boards.

## **Comments and Suggestions**

Motorola welcomes and appreciates your comments on its documentation. We want to know what you think about our manuals and how we can make them better. Mail comments to:

Motorola Computer Group Reader Comments DW164 2900 S. Diablo Way Tempe, Arizona 85282

You can also submit comments to the following e-mail address: reader-comments@mcg.mot.com

In all your correspondence, please list your name, position, and company. Be sure to include the title and part number of the manual and tell how you used it. Then tell us your feelings about its strengths and weaknesses and any recommendations for improvements.

## **Conventions Used in This Manual**

The following typographical conventions are used in this document:

#### bold

is used for user input that you type just as it appears; it is also used for commands, options and arguments to commands, and names of programs, directories and files.

#### italic

is used for names of variables to which you assign values. Italic is also used for comments in screen displays and examples, and to introduce new terms.

#### courier

is used for system output (for example, screen displays, reports), examples, and system prompts.

### **<Enter>**, **<Return>** or **<CR>**

<**CR**> represents the carriage return or Enter key.

#### **CTRL**

represents the Control key. Execute control characters by pressing the Ctrl key and the letter simultaneously, for example, **Ctrl-d**.

Data and address parameters are preceded by a character identifying the numeric format as follows:

\$ dollar specifies a hexadecimal character

% percent specifies a binary number& ampersand specifies a decimal number

For example, "12" is the decimal number twelve, and "\$12" is the decimal number eighteen.

Unless otherwise specified, all address references are in hexadecimal.

In descriptions of the VMEbus interface, an asterisk (\*) following the signal name for signals which are *level significant* denotes that the signal is *true* or valid when the signal is low. An asterisk (\*) following the signal name for signals which are *edge significant* denotes that the actions initiated by that signal occur on high to low transition.

In references to other bus signals (such as PCI) found on MVME2300 series boards, an underscore (\_) or pound sign (#) following the signal name denotes an active low signal.

In this manual, *assertion* and *negation* signify the forcing of a signal to a particular state. In particular, assertion and assert refer to a signal that is active or true; negation and negate indicate a signal that is inactive or false. These terms are used independently of the voltage level (high or low) that they represent.

Data and address sizes for MPC60x chips are defined as follows:

- □ A *byte* is eight bits, numbered 0 through 7, with bit 0 being the least significant.
- □ A *half-word* is 16 bits, numbered 0 through 15, with bit 0 being the least significant.
- □ A *word* or *single word* is 32 bits, numbered 0 through 31, with bit 0 being the least significant.
- □ A *double word* is 64 bits, numbered 0 through 63, with bit 0 being the least significant.

Refer to *Endian Issues* in Chapter 5 for a discussion of which elements on MVME2300 series boards use *big-endian* byte ordering, and which use *small-endian* byte ordering.

The terms *control bit* and *status bit* are used extensively in this document. The term control bit is used to describe a bit in a register that can be set and cleared under software control. The term *true* is used to indicate that a bit is in the state that enables the function it controls. The term *false* is used to

indicate that the bit is in the state that disables the function it controls. In all tables, the terms 0 and 1 are used to describe the actual value that should be written to the bit, or the value that it yields when read. The term *status bit* is used to describe a bit in a register that reflects a specific condition. The status bit can be read by software to determine operational or exception conditions.

# Board Description and Memory Maps

## Introduction

This manual provides programming information for MVME2300 and MVME2300SC VME processor modules. Extensive programming information is provided for several Application-Specific Integrated Circuit (ASIC) devices used on the boards. Reference information is included in Appendix A for the Large Scale Integration (LSI) devices used on the boards and sources for additional information are listed.

This chapter briefly describes the board level hardware features of the MVME2300-series VME processor modules. The chapter begins with a board level overview and features list. Memory maps are next, and are the major feature of this chapter.

Programmable registers that reside in ASICs in the MVME2300 series are covered in the chapters on those ASICs. Chapter 2, *Raven PCI Bridge ASIC* covers the Raven chip, Chapter 3, *Falcon ECC Memory Controller Chip Set* covers the Falcon chip set, Chapter 4, *Universe (VMEbus to PCI) Chip* covers the Universe chip, and Chapter 5, *Programming Details* covers certain programming features, such as interrupts and exceptions. Appendix A, *Related Documentation* lists all related documentation.

## **Overview**

The MVME2300-series VME Processor Module family, hereafter sometimes referred to simply as the MVME230x or the MVME2300 series, provides many standard features required by a computer system: Ethernet interface, async serial port, boot Flash, and up to 128MB of ECC DRAM.

# **Summary of Features**

There are many models based on the MVME2300 series architecture. The following table summarizes the major features of the MVME2300 series:

Table 1-1. Features: MVME2300 Series

| Feature         | MVME2300                                                                                                                           | MVME2300SC                                                                                   |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Microprocessor  | 200 MHZ MPC603 PowerPC® processor (MVME2301 - 2304 models) 300 MHZ MPC604 PowerPC® processor (MVME2305 - 2308 models)              | 300 MHZ MPC604 PowerPC® processor (All models)                                               |  |  |
| Form factor     | 6U VI                                                                                                                              | MEbus                                                                                        |  |  |
| ECC DRAM        | Two-way interleaved, ECC-protected 16MB, 32MB, 64MB, or 128MB                                                                      | Two-way interleaved, ECC-protected 32MB or 64MB                                              |  |  |
|                 | Bank B: Two 32-pin PLCC sockets that can be populated with 1MB 8 Flash devices                                                     |                                                                                              |  |  |
| Flash memory    | Bank A: Four 16-bit Smart Voltage<br>SMT devices that can be populated<br>with 8Mbit Flash devices (4MB) or<br>4Mbit devices (2MB) | Bank A: Four 16-bit Smart Voltage<br>SMT devices populated with 8Mbit<br>Flash devices (4MB) |  |  |
| Real-time clock | 8KB NVRAM with RTC, battery<br>backup, and watchdog function<br>(SGS-Thomson M48T59/T559)                                          | 8KB NVRAM with RTC, battery<br>backup, and watchdog function<br>(SGS-Thomson M48T559)        |  |  |
| Switches        | Reset (RST) an                                                                                                                     | Reset (RST) and Abort (ABT)                                                                  |  |  |
| Status LEDs     | Four: Board fail (BFL), CPU, PMC (one for PMC slot 2, one for slot 1)                                                              | Four: Board Fail (BFL), CPU,<br>System Controller (SCON), Fuses<br>(FUS)                     |  |  |
| Timers          | One 16-bit timer in W83C553 PCI/ISA bridge; four 32-bit timers in Raven (MPIC) device                                              |                                                                                              |  |  |
|                 | Watchdog timer provided in SGS-Thomson M48T59/T559                                                                                 |                                                                                              |  |  |
| Interrupts      | Software interrupt handling via Raven (PCI/MPU bridge) and Winbond (PCI/ISA bridge) controllers                                    |                                                                                              |  |  |
| VME I/O         | VMEbus P2 connector                                                                                                                |                                                                                              |  |  |

Table 1-1. Features: MVME2300 Series (Continued)

| Feature                                                                    | MVME2300                                                                | MVME2300SC                                                                                                                |  |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Serial I/O                                                                 | One asynchronous debug port via<br>RJ45 connector on front panel        | One asynchronous debug port via DB9 connector on front panel, also via P2 and transition module                           |  |  |
| Ethernet I/O                                                               | 10BaseT/100BaseTX connections<br>via RJ45 connector on front panel      | 10BaseT/100BaseTX connections<br>via RJ45 connector on front panel;<br>AUI connections via P2 and<br>transition module    |  |  |
| DCI interfere                                                              | Two IEEE P1386.1 PCI Mezzanine width or two single-width PMCs           | Card (PMC) slots for one double-                                                                                          |  |  |
| PCI interface                                                              | Front panel and/or VMEbus P2 I/O                                        | on both PMC slots                                                                                                         |  |  |
|                                                                            | One 114-pin Mictor connector for o                                      | ptional PMCspan expansion module                                                                                          |  |  |
| SCSA I/O                                                                   | Not available                                                           | Connections from both PMC slots<br>to SCSA backplane TDM bus (if<br>present in system) via shared pins<br>on P2 connector |  |  |
|                                                                            | VMEbus system controller functions                                      | s                                                                                                                         |  |  |
|                                                                            | VME64 extension                                                         |                                                                                                                           |  |  |
| VMEbus-to-local-bus interface (A24/A32, D8/D16/D32/blocl [D8/D16/D32/D64]) |                                                                         | 4/A32, D8/D16/D32/block transfer                                                                                          |  |  |
|                                                                            | Local-bus-to-VMEbus interface (A16/A24/A32, D8/D16/D32)                 |                                                                                                                           |  |  |
| VMEbus interface                                                           | VMEbus interrupter                                                      |                                                                                                                           |  |  |
|                                                                            | VMEbus interrupt handler                                                | terrupt handler                                                                                                           |  |  |
|                                                                            | Global Control/Status Register (GCSR) for interprocessor communications |                                                                                                                           |  |  |
|                                                                            | DMA for fast local memory/VMEbus transfers (A16/A24/A32, D16/D32/D64)   |                                                                                                                           |  |  |

# **System Block Diagram**

The MVME2300 series *does not* provide any look-aside external cache option. The Falcon chip set controls the boot Flash and the ECC DRAM. The Raven ASIC functions as the 64-bit PCI host bridge and the MPIC interrupt controller. PCI devices include: VME, Ethernet, and two PMC

slots. Standard I/O functions are provided by the UART device which resides on the ISA bus. The NVRAM/RTC also resides on the ISA bus. The general system block diagram for MVME2300 series is shown below:

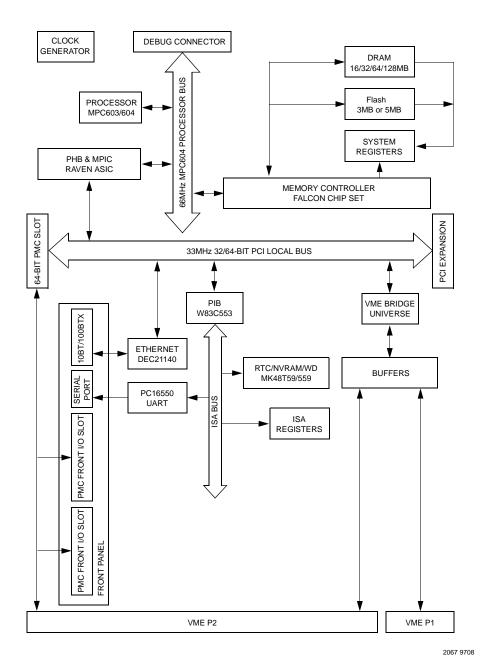



Figure 1-1. MVME2300 Series System Block Diagram

# **Functional Description**

The MVME2300 series is a family of single-slot VME processor modules. It consists of the MPC603/604 processor, the Raven PCI Bridge and Interrupt Controller, the Falcon ECC Memory Controller chip set, 3MB or 5MB of Flash memory, 16MB to 128MB of ECC-protected DRAM, and a rich set of I/O features.

I/O peripheral devices on the PCI bus are: Ethernet chip, Universe VMEbus interface ASIC, and two PMC slots. Functions provided from the ISA bus are: one asynchronous serial port, a real-time clock, counters/timers, and a software-readable header.

#### VMEbus Interface

MVME2300 series boards interface to the VMEbus via the P1 and P2 backplane connectors. MVME2300SC boards use the three-row 96-pin connectors specified in the original VMEbus standard; non-SCbus MVME2300 boards use the 5-row 160-pin connectors specified in the VME64 Extension standard.

Both types of boards draw +5V, +12V, and -12V power from the VMEbus backplane through these two connectors. 3.3V and 2.5V supplies are regulated onboard from the +5 power.

## **Front Panel**

Front panel connectors on the non-SCbus MVME2300 series boards include an RJ45 connector for the Ethernet 10BaseT/100BaseTX interface, and a second RJ45 connector for the asynchronous serial debug port.

Front panel connectors on the MVME2300SC include an RJ45 connector for the Ethernet 10BaseT/100BaseTX interface, and a 9-pin DB9 connector for the asynchronous serial debug port.

## **PCI** interface

MVME2300 and MVME2300SC boards are equipped with two IEEE 1386.1 PCI Mezzanine Card (PMC) slots. The PMC slots are 64-bit capable and support both front and rear I/O.

#### P2 I/O

Certain pins of each PMC slot connector are routed to VME backplane connector P2 for use in rear I/O configurations.

On **MVME2300** boards, pins 1-64 of PMC slot 1 connector J14 are routed to rows C and A of the 5-row DIN P2 connector. Pins 1-46 of PMC slot 2 connector J24 are routed to rows D and Z of connector P2.

On **MVME2300SC** boards, pins 1-32 of PMC slot 1 connector J14 are routed to rows C and A of the 3-row DIN P2 connector. Pins 1-32 of PMC slot 2 connector J24 (as with J14) are routed to rows C and A of connector P2.

Additional PCI expansion is supported with a 114-pin Mictor connector. This connection allows stacking of one or two PMCspan dual-PMC carrier boards, to increase the I/O capability. Each PMCspan board requires an additional VME slot.

# **Programming Model**

The following sections describe the memory maps for the MVME2300 series boards.

## **Processor Memory Maps**

The Processor memory map is controlled by the Raven ASIC and the Falcon chip set. The Raven ASIC and the Falcon chip set have flexible programming Map Decoder registers to customize the system for many different applications.

## **Default Processor Memory Map**

After a reset, the Raven ASIC and the Falcon chip set provide the default processor memory map as shown in the following table.

Table 1-2. Default Processor Memory Map

| Processo  | r Address | Size               | Definition                 | No    |
|-----------|-----------|--------------------|----------------------------|-------|
| Start     | End       | Size Definition    |                            | Notes |
| 0000 0000 | 7FFF FFFF | 2G                 | Not mapped                 |       |
| 8000 0000 | 8001 FFFF | 128K               | PCI/ISA I/O Space          | 1     |
| 8002 0000 | FEF7 FFFF | 2G - 16M -<br>640K | Not mapped                 |       |
| FEF8 0000 | FEF8 FFFF | 64K                | Falcon Registers           |       |
| FEF9 0000 | FEFE FFFF | 384K               | Not mapped                 |       |
| FEFF 0000 | FEFF FFFF | 64K                | Raven Registers            |       |
| FF00 0000 | FFEF FFFF | 15M                | Not mapped                 |       |
| FFF0 0000 | FFFF FFFF | 1M                 | ROM/Flash Bank A or Bank B | 2     |

#### **Notes**

- 1. This default map for PCI/ISA I/O space allows software to determine whether the system is MPC105-based or Falcon/Ravenbased by examining either the PIB Device ID or the CPU Type register.
- 2. The first Megabyte of ROM/Flash bank A appears at this range after a reset if the *rom\_b\_rv* control bit is cleared. If the *rom\_b\_rv* control bit is set, then this address range maps to ROM/Flash bank B.

## **Processor CHRP Memory Map**

The following table shows a recommended CHRP memory map from the point of view of the processor.

Table 1-3. CHRP Memory Map Example

| Processo  | r Address | Size      | e Definition                                                    |       |
|-----------|-----------|-----------|-----------------------------------------------------------------|-------|
| Start     | End       | Size      | Definition                                                      | Notes |
| 0000 0000 | top_dram  | dram_size | System Memory (onboard DRAM)                                    | 1, 2  |
| 4000 0000 | FCFF FFFF | 3G - 48M  | PCI Memory Space:<br>4000 0000 to FCFF FFFF                     | 3,4,8 |
| FD00 0000 | FDFF FFFF | 16M       | Zero-Based PCI/ISA Memory Space (mapped to 00000000 to 00FFFFF) | 3,8   |
| FE00 0000 | FE7F FFFF | 8M        | Zero-Based PCI/ISA I/O Space (mapped to 00000000 to 007FFFFF)   | 3,5,8 |
| FE80 0000 | FEF7 FFFF | 7.5M      | Reserved                                                        |       |
| FEF8 0000 | FEF8 FFFF | 64K       | Falcon Registers                                                |       |
| FEF9 0000 | FEFE FFFF | 384K      | Reserved                                                        |       |
| FEFF 0000 | FEFF FFFF | 64K       | Raven Registers                                                 | 9     |
| FF00 0000 | FF7F FFFF | 8M        | ROM/Flash Bank A                                                | 1,7   |
| FF80 0000 | FF8F FFFF | 1M        | ROM/Flash Bank B                                                | 1,7   |
| FF50 0000 | FFEF FFFF | 6M        | Reserved                                                        |       |
| FFF0 0000 | FFFF FFFF | 1M        | ROM/Flash Bank A or Bank B                                      | 7     |

#### **Notes**

- 1. Programmable via Falcon chip set. For the MVME2300 series, RAM size is limited to 128MB and ROM/Flash to 4MB.
- 2. To enable the "Processor-hole" area, program the Falcon chip set to ignore 0x000A0000 0x000BFFFF address range and program the Raven to map this address range to PCI memory space.

- 3. Programmable via Raven ASIC.
- 4. CHRP requires the starting address for the PCI memory space to be 256MB-aligned.
- 5. Programmable via Raven ASIC for either contiguous or spread-I/O mode.
- 6. The actual size of each ROM/Flash bank may vary.
- 7. The first Megabyte of ROM/Flash bank A appears at this range after a reset if the *rom\_b\_rv* control bit is cleared. If the *rom\_b\_rv* control bit is set then this address range maps to ROM/Flash bank B.
- 8. This range can be mapped to the VMEbus by programming the Universe ASIC accordingly. The map shown is the recommended setting which uses the Special PCI Slave Image and two of the four programmable PCI Slave Images.
- 9. The only method of generating a PCI Interrupt Acknowledge cycle (8259 IACK) is to perform a read access to the Raven's PIACK register at 0xFEFF0030.

The following table shows the programmed values for the associated Raven MPC registers for the processor CHRP memory map.

Table 1-4. Raven MPC Register Values for CHRP Memory Map

| Address   | Register Name   | Register Value |
|-----------|-----------------|----------------|
| FEFF 0040 | MSADD0          | 4000 FCFF      |
| FEFF 0044 | MSOFF0 & MSATT0 | 0000 00C2      |
| FEFF 0048 | MSADD1          | FD00 FDFF      |
| FEFF 004C | MSOFF1 & MSATT1 | 0300 00C2      |
| FEFF 0050 | MSADD2          | 0000 0000      |
| FEFF 0054 | MSOFF2 & MSATT2 | 0000 0002      |
| FEFF 0058 | MSADD3          | FE00 FE7F      |
| FEFF 005C | MSOFF3 & MSATT3 | 0200 00C0      |

## **Processor PREP Memory Map**

The Raven/Falcon chip set can be programmed for PREP-compatible memory map. The following table shows the PREP memory map of the MVME2300 series from the point of view of the processor.

Table 1-5. PREP Memory Map Example

| Processo  | r Address | - Size Definition |                                                       | Notes |  |
|-----------|-----------|-------------------|-------------------------------------------------------|-------|--|
| Start     | End       |                   |                                                       |       |  |
| 0000 0000 | top_dram  | dram_size         | System Memory (onboard DRAM)                          | 1     |  |
| 8000 0000 | BFFF FFFF | 1G                | Zero-Based PCI I/O Space:<br>0000 0000 - 3FFFF FFFF   | 2     |  |
| C000 0000 | FCFF FFFF | 1G - 48M          | Zero-Based PCI/ISA Memory Space: 0000 0000 - 3CFFFFFF | 2, 5  |  |
| FD00 0000 | FEF7 FFFF | 40.5M             | Reserved                                              |       |  |
| FEF8 0000 | FEF8 FFFF | 64K               | Falcon Registers                                      |       |  |
| FEF9 0000 | FEFE FFFF | 384K              | Reserved                                              |       |  |
| FEFF 0000 | FEFF FFFF | 64K               | Raven Registers                                       | 6     |  |
| FF00 0000 | FF7F FFFF | 8M                | ROM/Flash Bank A                                      | 1, 3  |  |
| FF80 0000 | FF8F FFFF | 1M                | ROM/Flash Bank B                                      | 1, 3  |  |
| FF90 0000 | FFEF FFFF | 6M                | Reserved                                              |       |  |
| FFF0 0000 | FFFF FFFF | 1M                | ROM/Flash Bank A or Bank B                            | 4     |  |

#### **Notes**

- 1. Programmable via Falcon chip set. For the MVME2300 series, RAM size is limited to 128MB and ROM/Flash to 4MB.
- 2. Programmable via Raven ASIC.
- 3. The actual size of each ROM/Flash bank may vary.

- 4. The first Megabyte of ROM/Flash bank A appears at this range after a reset if the *rom\_b\_rv* control bit is cleared. If the *rom\_b\_rv* control bit is set then this address range maps to ROM/Flash bank B.
- 5. This range can be mapped to the VMEbus by programming the Universe ASIC accordingly.
- 6. The only method of generating a PCI Interrupt Acknowledge cycle (8259 IACK) is to perform a read access to the Raven's PIACK register at 0xFEFF0030.

The following table shows the programmed values for the associated Raven MPC registers for the processor PREP memory map.

Table 1-6. Raven MPC Register Values for PREP Memory Map

| Address   | Register Name   | Register Value |
|-----------|-----------------|----------------|
| FEFF 0040 | MSADD0          | C000 FCFF      |
| FEFF 0044 | MSOFF0 & MSATT0 | 4000 00C2      |
| FEFF 0048 | MSADD1          | 0000 0000      |
| FEFF 004C | MSOFF1 & MSATT1 | 0000 0002      |
| FEFF 0050 | MSADD2          | 0000 0000      |
| FEFF 0054 | MSOFF2 & MSATT2 | 0000 0002      |
| FEFF 0058 | MSADD3          | 8000 BFFF      |
| FEFF 005C | MSOFF3 & MSATT3 | 8000 00C0      |

## **PCI Configuration Access**

PCI Configuration accesses are accomplished via the CONFIG\_ADD and CONFIG\_DAT registers. These two registers are implemented in the Raven ASIC. In the CHRP memory map example, the CONFIG\_ADD and CONFIG\_DAT registers are located at 0xFE000CF8 and 0xFE000CFC, respectively. With the PREP memory map, the CONFIG\_ADD register and the CONFIG\_DAT register are located at 0x80000CF8 and 0x80000CFC, respectively.

## **PCI Memory Maps**

The PCI memory map is controlled by the Raven ASIC and the Universe ASIC. The Raven ASIC and the Universe ASIC have flexible programming Map Decoder registers to customize the system to fit many different applications.

#### **Default PCI Memory Map**

After a reset, the Raven ASIC and the Universe ASIC turn all the PCI slave map decoders off. Software must program the appropriate map decoders for a specific environment.

#### **PCI CHRP Memory Map**

The following table shows a PCI memory map of the MVME2300 series that is CHRP-compatible from the point of view of the PCI local bus.

| <b>Table 1-7.</b> | PCI | CHRP | Memory | / Map |
|-------------------|-----|------|--------|-------|
|-------------------|-----|------|--------|-------|

| PCI Address |           | Sizo            | Size Definition                |       |  |
|-------------|-----------|-----------------|--------------------------------|-------|--|
| Start       | End       | Size Definition |                                | Notes |  |
| 0000 0000   | top_dram  | dram_size       | Onboard ECC DRAM               | 1     |  |
| 4000 0000   | EFFF FFFF | 3G - 256M       | VMEbus A32/D32 (Super/Program) | 3     |  |
| F000 0000   | F7FF FFFF | 128M            | VMEbus A32/D16 (Super/Program) | 3     |  |
| F800 0000   | F8FE FFFF | 16M - 64K       | VMEbus A24/D16 (Super/Program) | 4     |  |
| F8FF 0000   | F8FF FFFF | 64K             | VMEbus A16/D16 (Super/Program) | 4     |  |
| F900 0000   | F9FE FFFF | 16M - 64K       | VMEbus A24/D32 (Super/Data)    | 4     |  |
| F9FF 0000   | F9FF FFFF | 64K             | VMEbus A16/D32 (Super/Data)    | 4     |  |
| FA00 0000   | FAFE FFFF | 16M - 64K       | VMEbus A24/D16 (User/Program)  | 4     |  |
| FAFF 0000   | FAFF FFFF | 64K             | VMEbus A16/D16 (User/Program)  | 4     |  |
| FB00 0000   | FBFE FFFF | 16M - 64K       | VMEbus A24/D32 (User/Data)     | 4     |  |
| FBFF 0000   | FBFF FFFF | 64K             | VMEbus A16/D32 (User/Data)     | 4     |  |

Table 1-7. PCI CHRP Memory Map (Continued)

| PCI A     | ddress    | Size       | Definition                                                                          | Notes |
|-----------|-----------|------------|-------------------------------------------------------------------------------------|-------|
| Start     | End       | Size       | Definition                                                                          | Notes |
| FC00 0000 | FC03 FFFF | 256K       | RavenMPIC                                                                           | 1     |
| FC04 0000 | FCFF FFFF | 16M - 256K | PCI Memory Space                                                                    |       |
| FD00 0000 | FDFF FFFF | 16M        | PCI Memory Space<br>or System Memory Alias Space<br>(mapped to 00000000 to 00FFFFF) | 1     |
| FE00 0000 | FFFF FFFF | 48M        | Reserved                                                                            |       |

#### **Notes**

- 1. Programmable via the Raven's PCI Configuration registers. For the MVME2300 series, RAM size is limited to 128MB.
- 2. To enable the CHRP "io-hole", program the Raven to ignore the 0x000A0000 0x000FFFFF address range.
- 3. Programmable mapping via the four PCI Slave Images in the Universe ASIC.
- 4. Programmable mapping via the Special Slave Image (SLSI) in the Universe ASIC.

The following table shows the programmed values for the associated Raven PCI registers for the PCI CHRP memory map.

Table 1-8. Raven PCI Register Values for CHRP Memory Map

| Configuration<br>Address Offset | Configuration<br>Register Name | Register Value<br>(Aliasing OFF) | Register Value<br>(Aliasing ON) |
|---------------------------------|--------------------------------|----------------------------------|---------------------------------|
| \$14                            | RavenMPIC MBASE                | FC00 0000                        | FC00 0000                       |
| \$80                            | PSADD0                         | 0000 3FFF                        | 0100 3FFF                       |
| \$84                            | PSOFF0 & PSATT0                | 0000 00FX                        | 0000 00FX                       |
| \$88                            | PSADD1                         | 0000 0000                        | FD00 FDFF                       |
| \$8C                            | PSOFF1 & PSATT1                | 0000 0000                        | 0000 00FX                       |
| \$90                            | PSADD2                         | 0000 0000                        | 0000 0000                       |
| \$94                            | PSOFF2 & PSATT2                | 0000 0000                        | 0000 0000                       |
| \$98                            | PSADD3                         | 0000 0000                        | 0000 0000                       |
| \$9C                            | PSOFF3 & PSATT3                | 0000 0000                        | 0000 0000                       |

The next table shows the programmed values for the associated Universe PCI registers for the PCI CHRP memory map.

Table 1-9. Universe PCI Register Values for CHRP Memory Map

| Configuration<br>Address Offset | Configuration<br>Register Name | Register Value |
|---------------------------------|--------------------------------|----------------|
| \$100                           | LSI0_CTL                       | C082 5100      |
| \$104                           | LSI0_BS                        | 4000 0000      |
| \$108                           | LSI0_BD                        | F000 0000      |
| \$10C                           | LSI0_TO                        | XXXX 0000      |
| \$114                           | LSI1_CTL                       | C042 5100      |
| \$118                           | LSI1_BS                        | F000 0000      |
| \$11C                           | LSI1_BD                        | F800 0000      |

Table 1-9. Universe PCI Register Values for CHRP Memory Map (Continued)

| Configuration<br>Address Offset | Configuration Register Name Register Value |           |
|---------------------------------|--------------------------------------------|-----------|
| \$120                           | LSI1_TO                                    | XXXX 0000 |
| \$128                           | LSI2_CTL                                   | 0000 0000 |
| \$12C                           | LSI2_BS                                    | XXXX XXXX |
| \$130                           | LSI2_BD                                    | XXXX XXXX |
| \$134                           | LSI2_TO                                    | XXXX XXXX |
| \$13C                           | LSI3_CTL                                   | 0000 0000 |
| \$140                           | LSI3_BS                                    | XXXX XXXX |
| \$144                           | LSI3_BD                                    | XXXX XXXX |
| \$148                           | LSI3_TO                                    | XXXX XXXX |
| \$188                           | SLSI                                       | C0A053F8  |

## **PCI PREP Memory Map**

The following table shows a PCI memory map of the MVME2300 series boards that is PREP-compatible from the point of view of the PCI local bus.

Table 1-10. PCI PREP Memory Map

| PCI A     | ddress    | Size                                | Definition                     | Notes  |
|-----------|-----------|-------------------------------------|--------------------------------|--------|
| Start     | End       | Size                                | Definition                     | 110168 |
| 0000 0000 | 00FF FFFF | 16M                                 | PCI/ISA Memory Space           |        |
| 0100 0000 | 2FFF FFFF | 752M VMEbus A32/D32 (Super/Program) |                                | 3      |
| 3000 0000 | 37FF FFFF | 128M                                | VMEbus A32/D16 (Super/Program) | 3      |
| 3800 0000 | 38FE FFFF | 16M - 64K                           | VMEbus A24/D16 (Super/Program) | 4      |

Table 1-10. PCI PREP Memory Map (Continued)

| PCI A     | ddress    | Size       | Definition                     |       |  |
|-----------|-----------|------------|--------------------------------|-------|--|
| Start     | End       | Size       | Definition                     | Notes |  |
| 38FF 0000 | 38FF FFFF | 64K        | VMEbus A16/D16 (Super/Program) | 4     |  |
| 3900 0000 | 39FE FFFF | 16M - 64K  | VMEbus A24/D32 (Super/Data)    | 4     |  |
| 39FF 0000 | 39FF FFFF | 64K        | VMEbus A16/D32 (Super/Data)    | 4     |  |
| 3A00 0000 | 3AFE FFFF | 16M - 64K  | VMEbus A24/D16 (User/Program)  | 4     |  |
| 3AFF 0000 | 3AFF FFFF | 64K        | VMEbus A16/D26 (User/Program)  | 4     |  |
| 3B00 0000 | 3BFE FFFF | 16M - 64K  | VMEbus A24/D32 (User/Data)     | 4     |  |
| 3BFF 0000 | 3BFF FFFF | 64K        | VMEbus A16/D32 (User/Data)     | 4     |  |
| 3C00 0000 | 7FFF FFFF | 1G + 64M   | PCI Memory Space               |       |  |
| 8000 0000 | FBFF FFFF | 2G - 64M   | Onboard ECC DRAM               | 1     |  |
| FC00 0000 | FC03 FFFF | 256K       | RavenMPIC                      | 1     |  |
| FC04 0000 | FFFF FFFF | 64M - 256K | PCI Memory Space               |       |  |

#### **Notes**

- 1. Programmable via the Raven's PCI Configuration registers. For the MVME2300 series, RAM size is limited to 128MB.
- 2. To enabled the CHRP "io-hole", program the Raven to ignore the 0x000A0000 0x000FFFFF address range.
- 3. Programmable mapping via the four PCI Slave Images in the Universe ASIC.
- 4. Programmable mapping via the Special Slave Image (SLSI) in the Universe ASIC.

The following table shows the programmed values for the associated Raven PCI registers for the PREP-compatible memory map.

Table 1-11. Raven PCI Register Values for PREP Memory Map

| Configuration<br>Address Offset | Configuration<br>Register Name | Register Value |
|---------------------------------|--------------------------------|----------------|
| \$14                            | RavenMPIC MBASE                | FC00 0000      |
| \$80                            | PSADD0                         | 8000 FBFF      |
| \$84                            | PSOFF0 & PSATT0                | 8000 00FX      |
| \$88                            | PSADD1                         | 0000 0000      |
| \$8C                            | PSOFF1 & PSATT1                | 0000 0000      |
| \$90                            | PSADD2                         | 0000 0000      |
| \$94                            | PSOFF2 & PSATT2                | 0000 0000      |
| \$98                            | PSADD3                         | 0000 0000      |
| \$9C                            | PSOFF3 & PSATT3                | 0000 0000      |

The next table shows the programmed values for the associated Universe PCI registers for the PCI PREP memory map.

Table 1-12. Universe PCI Register Values for PREP Memory Map

| Configuration<br>Address Offset | Configuration<br>Register Name | Register Value |
|---------------------------------|--------------------------------|----------------|
| \$100                           | LSI0_CTL                       | C082 5100      |
| \$104                           | LSI0_BS                        | 0100 0000      |
| \$108                           | LSI0_BD                        | 3000 0000      |
| \$10C                           | LSI0_TO                        | XXXX 0000      |
| \$114                           | LSI1_CTL                       | C042 5100      |
| \$118                           | LSI1_BS                        | 3000 0000      |
| \$11C                           | LSI1_BD                        | 3800 0000      |
| \$120                           | LSI1_TO                        | XXXX 0000      |
| \$128                           | LSI2_CTL                       | 0000 0000      |
| \$12C                           | LSI2_BS                        | XXXX XXXX      |
| \$130                           | LSI2_BD                        | XXXX XXXX      |
| \$134                           | LSI2_TO                        | XXXX XXXX      |
| \$13C                           | LSI3_CTL                       | 0000 0000      |
| \$140                           | LSI3_BS                        | XXXX XXXX      |
| \$144                           | LSI3_BD                        | XXXX XXXX      |
| \$148                           | LSI3_TO                        | XXXX XXXX      |
| \$188                           | SLSI                           | C0A05338       |

## **VMEbus Mapping**

The processor can access any address range in the VMEbus with the help of the Universe ASIC's address translation capabilities. The *Processor Memory Map* section shows the recommended mapping.

### **VMEbus Master Map**

The figure below illustrates how VMEbus master mapping is accomplished. (Note that for MVME2300 series boards, RAM size is limited to 128MB.)

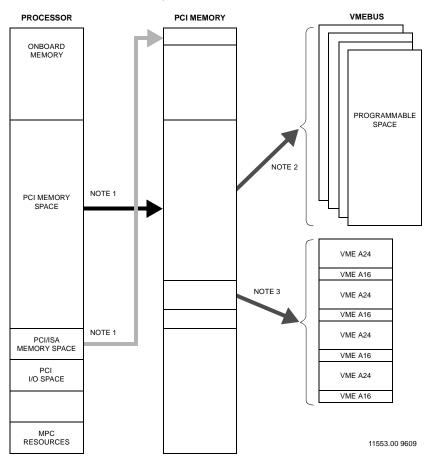



Figure 1-2. VMEbus Master Mapping

#### **Notes**

- 1. Programmable mapping done by the Raven ASIC.
- 2. Programmable mapping via the four PCI Slave Images in the Universe ASIC.
- 3. Programmable mapping via the Special Slave Image (SLSI) in the Universe ASIC.

#### **VMEbus Slave Map**

The four programmable VME Slave images in the Universe ASIC give other VMEbus masters access to any devices on the board. The combination of the four Universe VME Slave images and the four Raven PCI Slave decoders offers great flexibility in mapping the system resources as seen from the VMEbus.

In most applications, the VMEbus needs to see only the system memory and, perhaps, the software interrupt registers (SIR1 and SIR2 registers). For an example of the VMEbus slave map, refer to the figure below:

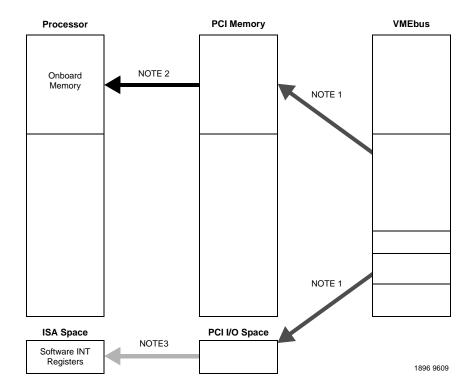



Figure 1-3. VMEbus Slave Mapping

#### **Notes**

- 1. Programmable mapping via the four VME Slave Images in the Universe ASIC.
- 2. Programmable mapping via PCI Slave Images in the Raven ASIC.
- 3. Fixed mapping via the PIB device.

The following table shows the programmed values for the associated Universe registers for the VMEbus slave function.

Table 1-13. Universe PCI Register Values for VMEbus Slave Map Example

| Configuration<br>Address Offset | Configuration<br>Register Name | Register Value<br>(CHRP) | Register Value<br>(PREP) |
|---------------------------------|--------------------------------|--------------------------|--------------------------|
| \$F00                           | VSI0_CTL                       | C0F2 0001                | C0F2 0001                |
| \$F04                           | VSI0_BS                        | 4000 0000                | 4000 0000                |
| \$F08                           | VSI0_BD                        | 4000 1000                | 4000 1000                |
| \$F0C                           | VSI0_TO                        | C000 1000                | C000 1000                |
| \$F14                           | VSI1_CTL                       | E0F2 00C0                | E0F2 00C0                |
| \$F18                           | VSI1_BS                        | 1000 0000                | 1000 0000                |
| \$F1C                           | VSI1_BD                        | 2000 0000                | 2000 0000                |
| \$F20                           | VSI1_TO                        | F000 0000                | 7000 0000                |
| \$F28                           | VSI2_CTL                       | 0000 0000                | 0000 0000                |
| \$F2C                           | VSI2_BS                        | XXXX XXXX                | XXXX XXXX                |
| \$F30                           | VSI2_BD                        | XXXX XXXX                | XXXX XXXX                |
| \$F34                           | VSI2_TO                        | XXXX XXXX                | XXXX XXXX                |
| \$F3C                           | VSI3_CTL                       | 0000 0000                | 0000 0000                |
| \$F40                           | VSI3_BS                        | XXXX XXXX                | XXXX XXXX                |
| \$F44                           | VSI3_BD                        | XXXX XXXX                | XXXX XXXX                |
| \$F48                           | VSI3_TO                        | XXXX XXXX                | XXXX XXXX                |

The register values in the table yield the following VMEbus slave map:

VMEbus Address Size CHRP Map PREP Map Mode Range 4000 0000 -A32 U/S/P/D PCI/ISA I/O Space: PCI/ISA I/O Space: 4K 4000 0FFF 0000 1000 - 0000 1FFF 0000 1000 - 0000 1FFF D08/16/32 A32 U/S/P/D PCI/ISA Memory Space PCI/ISA Memory Space 1000 0000 -D08/16/32/64 256M (On-board DRAM) (On-board DRAM) 1FFF FFFF 0000 0000 - 0FFF FFFF 8000 0000 - 8FFF FFFF **RMW** 

**Table 1-14. VMEbus Slave Map Example** 

## **Falcon-Controlled System Registers**

The Falcon chip set latches the states of the DRAM data lines onto the PR\_STAT1 and PR\_STAT2 registers. MVME2300 series boards use these status registers to provide the system configuration information. In addition, the Falcon chip set performs the decode and control for an external register port. This function is utilized by MVME2300 series boards to provide the system control registers.

 FEF80400
 System Configuration Register (Upper Falcon's PR\_STAT1)

 FEF80404
 System External Cache Control Register

 Control Register
 CPU Control Register

Table 1-15. System Register Summary

The following subsections describe these system registers in detail.

#### **System Configuration Register (SYSCR)**

The states of the RD[0:31] DRAM data pins, which have weak internal pull-ups, are latched by the upper Falcon chip at a rising edge of the power-up reset and stored in this System Configuration register to provide some information about the system. Configuration is accomplished with external pull-down resistors. This 32-bit read-only register is defined as follows:

| REG   | System Configuration Register - \$FEF80400 |               |                      |                      |                      |                      |                      |
|-------|--------------------------------------------|---------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| BIT   | 0 1 2 3                                    | 110<br>9<br>8 | 15<br>14<br>13<br>12 | 19<br>18<br>17<br>16 | 23<br>22<br>21<br>20 | 27<br>26<br>25<br>24 | 31<br>30<br>29<br>28 |
| FIELD | SYSID SYSCLK SYSXC POSTAT PISTAT           |               |                      |                      |                      |                      |                      |
| OPER  | Read Only                                  |               |                      |                      |                      |                      |                      |
| RESET | \$FD                                       | 1111          | 1111                 | 0111                 | 1111                 | 1 1                  | \$F                  |

System Identification. This field specifies the type of the overall system configuration so that the software may appropriately handle any software visible differences. For the MVME2300 series, this field returns a value of \$FD.

**SYSCLK** System Clock Speed. This field relays the system clock speed and the PCI clock speed information as follows:

| SYSCLK Value     | System Clock Speed | PCI Clock Speed |
|------------------|--------------------|-----------------|
| 0B0000 to 0B1100 | Reserved           | Reserved        |
| 0B1101           | 50MHz              | 25MHz           |
| 0B1110           | 60MHz              | 30MHz           |
| 0B1111           | 66.66MHz           | 33.33MHz        |

#### **SYSXC**

System External Cache Size. The MVME2300 series does not offer any external caching options. Reads from this field will always return a hardwired value of 0b1111 indicating the absence of external caching.

**P0/1STAT** Processor 0/1 Status. This field is encoded as follows:

| P0/1STAT Value   | Processor 0/1 Present | External In-line Cache<br>Size |
|------------------|-----------------------|--------------------------------|
| 0B0000 to 0B0011 | Reserved              | Reserved                       |
| 0B0100           | Yes                   | 1M                             |
| 0B0101           | Yes                   | 512K                           |
| 0B0110           | Yes                   | 256K                           |
| 0B0111           | Yes                   | None                           |
| 0B1000 to 0B1111 | No                    | N/A                            |

#### **Memory Configuration Register (MEMCR)**

The states of the RD[00:31] DRAM data pins, which have weak internal pull-ups, are latched by the lower Falcon chip at a rising edge of the power-up reset and stored in this Memory Configuration register to provide some information about the system memory. Configuration is accomplished with external pull-down resistors. This 32-bit read-only register is defined as follows:

| REG   |         | Memory Configuration Register - \$FEF80404 |    |        |    |    |        |        |    |          |          |          |    |          |          |          |          |          |         |          |         |         |      |      |    |    |              |         |         |    |    |    |
|-------|---------|--------------------------------------------|----|--------|----|----|--------|--------|----|----------|----------|----------|----|----------|----------|----------|----------|----------|---------|----------|---------|---------|------|------|----|----|--------------|---------|---------|----|----|----|
| BIT   | 32      | 33                                         | 34 | 35     | 36 | 37 | 38     | 39     | 40 | 41       | 42       | 43       | 44 | 45       | 46       | 47       | 48       | 49       | 50      | 51       | 52      | 53      | 54   | 55   | 56 | 57 | 58           | 59      | 60      | 61 | 62 | 63 |
| FIELD | M_SIZE0 | M_SIZE1                                    |    | M_FREF |    |    | M_SPD0 | M_SPD1 |    | R_A_TYP0 | R_A_TYP1 | R_A_TYP2 |    | R_B_TYP0 | R_B_TYP1 | R_B_TYP2 | L2_TYPE0 | L2_TYPE1 | L2_TYP2 | L3_TYPE3 | L2_PLL0 | L2_PLL1 | _PLL | _PLL |    |    | $FLSHP0_{-}$ | FLSHP1_ | FLSHP2- |    |    |    |
| OPER  |         |                                            |    |        |    |    |        |        |    |          |          |          |    |          |          |          |          |          |         |          |         |         |      |      |    |    |              |         |         |    |    |    |
| RESET | ×       | ×                                          | 1  | ×      | 1  | 1  | ×      | X      | 1  | X        | ×        | ×        | 1  | ×        | ×        | ×        | X        | ×        | ×       | ×        | ×       | ×       | ×    | ×    | 1  | 1  | ×            | ×       | ×       | 1  | 1  | 1  |

#### **M\_SIZE[0:1]**

Memory Size. This field is encoded as follows:

| M_SIZE[0:1] | Total Memory On Board |
|-------------|-----------------------|
| 0B00        | 16 Megabytes          |
| 0B01        | 32 Megabytes          |
| 0B10        | 64 Megabytes          |
| 0B11        | 128 Megabytes         |

# M\_FREF Block A/B/C/D Fast Refresh. When this bit is set, it indicates that a DRAM block requires faster refresh rate. If any of the four blocks requires faster refresh rate then

the **ram ref** control bit should be set.

#### M\_SPD[0:1]

Memory Speed. This field relays the memory speed information as follows:

| M_SPD[0:1] | DRAM Speed | DRAM Type |
|------------|------------|-----------|
| 0B00       | 70ns       | Past Page |
| 0B01       | 60ns       | Fast Page |
| 0B10       | Reserved   | Reserved  |
| 0B11       | 50ns       | EDO       |

These two bits reflect the combined status of the four blocks of DRAM. Initialization software uses this information to program the <a href="mailto:ram\_spd0">ram\_spd0</a> and <a href="mailto:ram\_spd0">ram\_spd1</a> control bits in the Falcon's Chip Revision register.

#### $R_A/B_TYP[0:2]$

ROM/Flash Type. This field is encoded as follows:

| ROM_A/B_TYP[0:2] | ROM/Flash Type                                        |
|------------------|-------------------------------------------------------|
| 0B000 to 0B101   | Reserved                                              |
| 0B110            | Intel 16-bit wide Flash with 16K Bottom Boot<br>Block |
| 0B111            | Unknown type (i.e. ROM/Flash sockets)                 |

## **Note** The device width differs from the width of the Flash bank. If the bank width is 64 bits and the device width is 16 bits, then the Flash bank consists of four Flash devices.

#### L2\_TYPE[0:3]

L2 Memory Type. This field is encoded as follows:

| L2_TYPE[0:3]     | Configuration        |
|------------------|----------------------|
| 0B0000           | Late write Sync      |
| 0B0001           | Pipelined Sync Burst |
| 0B0010 to 0B1111 | Reserved             |

#### L2\_PLL[0:3]

L2 Core Frequency to L2 Frequency divider. This field is encoded as follows:

| PLL Value]       | Size     |
|------------------|----------|
| 0B0000           | Disable  |
| 0B0001           | 1        |
| 0B0010           | 1.5      |
| 0B0011           | 2        |
| 0B0100           | 2.5      |
| 0B0101           | 3        |
| 0B0110 to 0B1111 | Reserved |

#### FLSHP[0:2]

Bank A Flash memory size. This field is encoded as follows:

| Flash Size | FLSHP0_ | FLSHP1_ | FLSHP2_ |
|------------|---------|---------|---------|
| 1MB        | 0       | 0       | 0       |
| 2MB        | 0       | 0       | 1       |
| 4MB        | 0       | 1       | 0       |
| 8MB        | 0       | 1       | 1       |
| 16MB       | 1       | 0       | 0       |
| 32MB       | 1       | 0       | 1       |
| 64MB       | 1       | 1       | 0       |
| No Flash   | 1       | 1       | 1       |

## System External Cache Control Register (SXCCR)

The MVME2300 and MVME2300SC boards do not implement this register. Writes to this register location (\$FEF88000) will have no system effects. Reads from this register location will return undefined data.

#### Processor 0 External Cache Control Register (P0XCCR)

The MVME2300 and MVME2300SC boards do not implement this register. Writes to this register location (\$FEF88100) will have no system effects. Reads from this register location will return undefined data.

#### Processor 1 External Cache Control Register (P1XCCR)

The MVME2300 and MVME2300SC boards do not implement this register. Writes to this register location (\$FEF88200) will have no system effects. Reads from this register location will return undefined data.

#### **CPU Control Register**

The CPU Control register is accessed via the RD[32:39] data lines of the upper Falcon device. This 8-bit register is defined as follows:

| REG   | CPU Control Register - \$FEF88300 |        |   |         |   |   |   |   |  |
|-------|-----------------------------------|--------|---|---------|---|---|---|---|--|
| BIT   | 0                                 | 1      | 2 | 3       | 4 | 5 | 6 | 7 |  |
| FIELD |                                   | LEMODE |   | P0_TBEN |   |   |   |   |  |
| OPER  | R                                 | R      | R | R/W     | R | R | R | R |  |
| RESET | 1                                 | 0      | 0 | 1       | X | X | X | X |  |

**LEMODE** Little Endian Mode. This bit must be set in conjunction with the LEND bit in the Rayen for little-endian mode.

**P0\_TBEN** Processor 0 Time Base Enable. When this bit is cleared, the TBEN pin of the processor will be driven low.

## **ISA Local Resource Bus**

## W83C553 PIB Registers

The PIB contains ISA Bridge I/O registers for various functions. These registers are actually accessible from the PCI bus. Refer to the W83C553 Data Book for details.

#### 16550 UART

The 16550 UART provides the MVME2300 series boards with an asynchronous serial port. Refer to the 16550 Data Sheet for additional details and programming information.

The following table shows the mapping of the 16550 registers within the MVME2300 series boards' ISA I/O space beginning at address 0x3F8:

Table 1-16. 16550 Access Registers

| ISA I/O Address | Function                                                 |
|-----------------|----------------------------------------------------------|
| 0000 03F8       | Receiver Buffer (Read);<br>Transmitter Holding (Write)   |
| 0000 03F9       | Interrupt Enable                                         |
| 0000 03FA       | Interrupt Identification (Read);<br>FIFO Control (Write) |
| 0000 03FB       | Line Control                                             |
| 0000 03FC       | MODEM control                                            |
| 0000 03FD       | Line Status                                              |
| 0000 03FE       | MODEM Status                                             |
| 0000 03FF       | Scratch                                                  |

## **General-Purpose Readable Jumpers**

Headers J10 (on the MVME2300SC) and J17 (on the MVME2300) provide eight software-readable jumpers. These jumpers can be read as a register at ISA I/O address \$801 (hexadecimal). Bit 0 is associated with header pins 1-2; bit 7 is associated with pins 15-16. The bit values are read as a **0** when a jumper is installed, and as a **1** when the jumper is removed. The PowerPC firmware, PPCBug, reserves all bits, SRH0 to SRH7. The board is shipped from the factory with J10 / J17 set to all **0**s (jumpers on all pins), as shown in Figure 1-4.

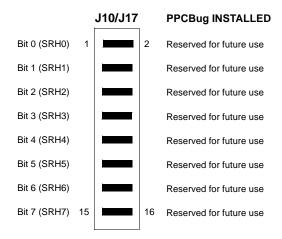



Figure 1-4. General-Purpose Software-Readable Header

## **NVRAM/RTC** and Watchdog Timer Registers

The M48T59/559 provides the MVME2300 series boards with 8K of non-volatile SRAM, a time-of-day clock, and a watchdog timer. Accesses to the M48T59/559 are accomplished via three registers:

- ☐ The NVRAM/RTC Address Strobe 0 register
- □ The NVRAM/RTC Address Strobe 1 register
- ☐ The NVRAM/RTC Data Port register

The NVRAM/RTC Address Strobe 0 register latches the lower 8 bits of the address and the NVRAM/RTC Address Strobe 1 register latches the upper 5 bits of the address.

Table 1-17. M48T59/559 Access Registers

| PCI I/O Address | Function                              |
|-----------------|---------------------------------------|
| 0000 0074       | NVRAM/RTC Address Strobe 0 (A7 - A0)  |
| 0000 0075       | NVRAM/RTC Address Strobe 1 (A15 - A8) |
| 0000 0077       | NVRAM/RTC Data Register               |

The NVRAM and RTC are accessed through the above three registers. When accessing an NVRAM/RTC location, follow this procedure:

- Write the low address (A7-A0) of the NVRAM to the NVRAM/RTC STB0 register,
- 2. Write the high address (A15-A8) of the NVRAM to the NVRAM/RTC STB1 register, and
- 3. Then read or write the NVRAM/RTC Data Port.

Refer to the M48T59 Data Sheet for additional details and programming information.

## **Module Configuration and Status Registers**

Four registers provide the configuration and status information about the board. These registers are listed in the following table:

Table 1-18. Module Configuration and Status Registers

| PCI I/O Address       | Function                       |
|-----------------------|--------------------------------|
| 0000 0800             | CPU Configuration Register     |
| 0000 0802             | Base Module Feature Register   |
| 0000 0803             | Base Module Status Register    |
| 0000 08C0 - 0000 08C1 | Seven-Segment Display Register |

The following subsections describe the configuration and status registers in detail.

#### **CPU Configuration Register**

The CPU Configuration register is an 8-bit register located at ISA I/O address x0800. This register is defined for the MVME2300 series to provide some backward compatibility with older MVME1600 products. The Base Module Status register should be used to identify the base module type and the System Configuration register should be used to obtain information about the overall system.

| REG   |     | Ol                                                                                      | d CPU Co | nfiguratio | n Register | - \$FE0008 | 00 |  |  |  |  |
|-------|-----|-----------------------------------------------------------------------------------------|----------|------------|------------|------------|----|--|--|--|--|
| BIT   | SD7 | SD7         SD6         SD5         SD4         SD3         SD2         SD1         SD0 |          |            |            |            |    |  |  |  |  |
| FIELD |     | СРИТҮРЕ                                                                                 |          |            |            |            |    |  |  |  |  |
| OPER  |     | I                                                                                       | ₹        |            |            | I          | 3  |  |  |  |  |
| RESET |     | \$                                                                                      | Е        |            |            | \$         | F  |  |  |  |  |

#### **CPUTYPE**

CPU Type. This field will always read as \$E for the MVME2300 series. (The whole register will read \$EF.) The System Configuration register should be used for additional information.

#### **Base Module Feature Register**

The Base Module Feature register is an 8-bit register providing the configuration information about the MVME2300-series VME processor module. This read-only register is located at ISA I/O address x0802.

| REG   |        | Base Module Feature Register - Offset \$0802 |        |        |       |     |       |     |  |  |  |
|-------|--------|----------------------------------------------|--------|--------|-------|-----|-------|-----|--|--|--|
| BIT   | SD7    | SD6                                          | SD5    | SD4    | SD3   | SD2 | SD1   | SD0 |  |  |  |
| FIELD | PCIXP_ |                                              | PMC2P_ | PMC1P_ | VMEP_ |     | LANP_ |     |  |  |  |
| OPER  | R      | R                                            | R      | R      | R     | R   | R     | R   |  |  |  |
| RESET | X      | 1                                            | X      | X      | X     | 1   | X     | 1   |  |  |  |

- PCIXP\_ PCI Expansion Slot present. If set, there is no PCIX device installed. If cleared, the PCIX slot contains a PCI Mezzanine Card.
- PMC2P\_ PMC Slot 2 present. If set, there is no PCI Mezzanine Card installed in PMC Slot 2. If cleared, PMC Slot 2 contains a PMC.
- PMC1P\_ PMC Slot 1 present. If set, there is no PCI Mezzanine Card installed in PMC Slot 1. If cleared, PMC Slot 1 contains a PMC.
- **VMEP**\_ VMEbus present. If set, there is no VMEbus interface. If cleared, VMEbus interface is supported.
- **LANP**\_ Ethernet present. If set, there is no Ethernet transceiver interface. If cleared, there is on-board Ethernet support.

#### **Base Module Status Register (BMSR)**

The Base Module Status register is an 8-bit read-only register located at ISA I/O address x0803.

| REG   |     | I                                                                                       | Base Modu | le Status R | Register - C | Offset \$080 | 3  |  |  |  |  |
|-------|-----|-----------------------------------------------------------------------------------------|-----------|-------------|--------------|--------------|----|--|--|--|--|
| BIT   | SD7 | SD7         SD6         SD5         SD4         SD3         SD2         SD1         SD0 |           |             |              |              |    |  |  |  |  |
| FIELD |     | BASE_TYPE                                                                               |           |             |              |              |    |  |  |  |  |
| OPER  |     |                                                                                         |           | F           | ₹            |              |    |  |  |  |  |
| RESET | 1   | 1                                                                                       | 1         | 1           |              | N            | /A |  |  |  |  |

#### BASE\_TYPE

Base Module Type. This four-bit field is used to provide the category of the base module and is defined as follows:

| BASE_TYPE Value | Base Module Type |
|-----------------|------------------|
| \$0 to \$8      | Reserved         |
| \$9             | MVME2300         |
| \$A to \$F      | Reserved         |

#### **Seven-Segment Display Register**

**Note** This register is *NOT USED* on the MVME2300-series boards.

This 16-bit register allows data to be sent to the 4-digit hexadecimal diagnostic display. The register also allows the data to be read back.

| REG   |      | 7-Segment Display Register - Offset \$08C0 |        |      |      |      |        |     |     |     |       |     |     |      |        |     |
|-------|------|--------------------------------------------|--------|------|------|------|--------|-----|-----|-----|-------|-----|-----|------|--------|-----|
| BIT   | SD15 | SD14                                       | SD13   | SD12 | SD11 | SD10 | SD9    | SD8 | SD7 | SD6 | SD5   | SD4 | SD3 | SD2  | SD1    | SD0 |
| FIELD |      | DIG3                                       | 3[3:0] |      |      | DIG2 | 2[3:0] |     |     | DIG | [3:0] |     |     | DIG( | )[3:0] |     |
| OPER  |      | R/W                                        |        |      |      |      |        |     |     |     |       |     |     |      |        |     |
| RESET | X    | X                                          | X      | X    | X    | X    | X      | X   | X   | X   | X     | X   | X   | X    | X      | X   |

**DIG3**[3:0] Hexadecimal value of the most significant digit.

**DIG2[3:0**] Hexadecimal value of the third significant digit.

**DIG1**[3:0] Hexadecimal value of the second significant digit.

DIG0[3:0] Hexadecimal value of the least significant digit.

## **VME Registers**

The registers listed in the table below provide the following functions for the VMEbus interface:

- □ A software interrupt capability
- □ A location monitor function
- □ A geographical address status

For these registers to be accessible from the VMEbus, the Universe ASIC must be programmed to map VMEbus Slave Image 0 into the appropriate PCI I/O address range. Refer to the *VMEbus Slave Map* section for additional details.

PCI I/O Address Function 0000 1000 SIG/LM Control Register 0000 1001 SIG/LM Status Register 0000 1002 VMEbus Location Monitor Upper Base Address 0000 1003 VMEbus Location Monitor Lower Base Address 0000 1004 VMEbus Semaphore Register 1 0000 1005 VMEbus Semaphore Register 2 0000 1006 VMEbus Geographical Address Status

Table 1-19. VME Registers

These registers are described in the following subsections.

#### LM/SIG Control Register

The LM/SIG Control register is an 8-bit register located at ISA I/O address x1000. This register provides a method to generate software interrupts. The Universe ASIC is programmed so that this register can be accessed from the VMEbus to generate software interrupts to the processor(s).

| REG   |             | LM/SIG Control Register - Offset \$1000                                                 |            |            |             |             |            |            |  |  |  |
|-------|-------------|-----------------------------------------------------------------------------------------|------------|------------|-------------|-------------|------------|------------|--|--|--|
| BIT   | SD7         | SD7         SD6         SD5         SD4         SD3         SD2         SD1         SD0 |            |            |             |             |            |            |  |  |  |
| FIELD | SET<br>SIG1 | SET<br>SIG0                                                                             | SET<br>LM1 | SET<br>LM0 | CLR<br>SIG1 | CLR<br>SIG0 | CLR<br>LM1 | CLR<br>LM0 |  |  |  |
| OPER  |             | WRITE-ONLY                                                                              |            |            |             |             |            |            |  |  |  |
| RESET | 0           | 0                                                                                       | 0          | 0          | 0           | 0           | 0          | 0          |  |  |  |

SET SIG1

Writing a 1 to this bit will set the SIG1 status bit.

SET SIG0

Writing a 1 to this bit will set the SIG0 status bit.

SET\_LM1

Writing a 1 to this bit will set the LM1 status bit.

SET\_LM0

Writing a 1 to this bit will set the LM0 status bit.

CLR\_SIG1

Writing a 1 to this bit will clear the SIG1 status bit.

CLR\_SIG0

Writing a 1 to this bit will clear the SIG0 status bit.

CLR\_LM1

Writing a 1 to this bit will clear the LM1 status bit.

CLR LM0

Writing a 1 to this bit will clear the LM0 status bit.

#### LM/SIG Status Register

The LM/SIG Status register is an 8-bit register located at ISA I/O address x1001. This register, in conjunction with the LM/SIG Control register, provides a method to generate interrupts. The Universe ASIC is programmed so that this register can be accessed from the VMEbus to provide a capability to generate software interrupts to the onboard processor(s) from the VMEbus.

| REG   |            |            | LM/SIG    | Status Reg | gister - Off | set \$1001 |     |     |
|-------|------------|------------|-----------|------------|--------------|------------|-----|-----|
| BIT   | SD7        | SD6        | SD5       | SD4        | SD3          | SD2        | SD1 | SD0 |
| FIELD | EN<br>SIG1 | EN<br>SIG0 | EN<br>LM1 | EN<br>LM0  | SIG1         | SIG0       | LM1 | LM0 |
| OPER  |            | R/         | READ      | -ONLY      |              |            |     |     |
| RESET | 0          | 0          | 0         | 0          | 0            | 0          | 0   | 0   |

**EN\_SIG1** When the EN\_SIG1 bit is set, an LM/SIG Interrupt 1 is generated if the SIG1 bit is asserted.

**EN\_SIG0** When the EN\_SIG0 bit is set, an LM/SIG Interrupt 0 is generated if the SIG0 bit is asserted.

- **EN\_LM1** When the EN\_LM1 bit is set, an LM/SIG Interrupt 1 is generated and the LM1 bit is asserted.
- **EN\_LM0** When the EN\_LM0 bit is set, an LM/SIG Interrupt 0 is generated and the LM0 bit is asserted.
- SIG1 SIG1 status bit. This bit can only be set by the SET\_LM1 control bit. It can only be cleared by a reset or by writing a 1 to the CLR\_LM1 control bit.
- SIG0 SIG0 status bit. This bit can only be set by the SET\_LM0 control bit. It can only be cleared by a reset or by writing a 1 to the CLR\_LM0 control bit.
- LM1 LM1 status bit. This bit can be set by either the location monitor function or the SET\_LM1 control bit. LM1 correspond to offset 3 from the location monitor base address. This bit can only be cleared by a reset or by writing a 1 to the CLR\_LM1 control bit.
- LM0 LM0 status bit. This bit can be set by either the location monitor function or the SET\_LM0 control bit. LM0 correspond to offset 1 from the location monitor base address. This bit can only be cleared by a reset or by writing a 1 to the CLR\_LM0 control bit.

#### **Location Monitor Upper Base Address Register**

The Location Monitor Upper Base Address register is an 8-bit register located at ISA I/O address x1002. The Universe ASIC is programmed so that this register can be accessed from the VMEbus to provide VMEbus location monitor function.

| REG   |      | Location Monitor Upper Base Address Register - Offset \$1002                            |   |    |   |   |   |   |  |  |  |  |
|-------|------|-----------------------------------------------------------------------------------------|---|----|---|---|---|---|--|--|--|--|
| BIT   | SD7  | SD7         SD6         SD5         SD4         SD3         SD2         SD1         SD0 |   |    |   |   |   |   |  |  |  |  |
| FIELD | VA15 | VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8                                                   |   |    |   |   |   |   |  |  |  |  |
| OPER  |      |                                                                                         |   | R/ | W |   |   |   |  |  |  |  |
| RESET | 0    | 0                                                                                       | 0 | 0  | 0 | 0 | 0 | 0 |  |  |  |  |

**VA[15:8**] Upper Base Address for the location monitor function.

#### **Location Monitor Lower Base Address Register**

The Location Monitor Lower Base Address register is an 8-bit register located at ISA I/O address x1003. The Universe ASIC is programmed so that this register can be accessed from the VMEbus to provide VMEbus location monitor function.

| REG   |     | Location Monitor Lower Base Address Register - Offset \$1003 |     |     |      |     |     |     |  |  |  |  |
|-------|-----|--------------------------------------------------------------|-----|-----|------|-----|-----|-----|--|--|--|--|
| BIT   | SD7 | SD6                                                          | SD5 | SD4 | SD3  | SD2 | SD1 | SD0 |  |  |  |  |
| FIELD | VA7 | VA6                                                          | VA5 | VA4 | LMEN |     |     |     |  |  |  |  |
| OPER  |     |                                                              | R/W |     |      | R   | R   | R   |  |  |  |  |
| RESET | 0   | 0                                                            | 0   | 0   | 0    | 0   | 0   | 0   |  |  |  |  |

**VA[7:4]** Lower Base Address for the location monitor function.

**LMEN** This bit must be set to enable the location monitor function.

#### **Semaphore Register 1**

Semaphore Register 1 is an 8-bit register located at ISA I/O address x1004. The Universe ASIC is programmed so that this register can be accessible from the VMEbus. This register can only be updated if bit 7 is low or if the new value has the most significant bit cleared. When bit 7 is high, this register will not latch in the new value if the new value has the most significant bit set.

| REG   |     |                                                                                         | Semaph | ore Regist | er 1 - Offs | et \$1004 |   |   |  |  |
|-------|-----|-----------------------------------------------------------------------------------------|--------|------------|-------------|-----------|---|---|--|--|
| BIT   | SD7 | SD7         SD6         SD5         SD4         SD3         SD2         SD1         SD0 |        |            |             |           |   |   |  |  |
| FIELD |     | SEM1                                                                                    |        |            |             |           |   |   |  |  |
| OPER  |     |                                                                                         |        | R/         | W           |           |   |   |  |  |
| RESET | 0   | 0                                                                                       | 0      | 0          | 0           | 0         | 0 | 0 |  |  |

#### Semaphore Register 2

Semaphore Register 2 is an 8-bit register located at ISA I/O address x1005. The Universe ASIC is programmed so that this register can be accessible from the VMEbus. This register can only be updated if bit 7 is low or if the new value has the most significant bit cleared. When bit 7 is high, this register will not latch in the new value if the new value has the most significant bit set.

| REG   |     |                                                                                         | Semaph | ore Regist | er 2 - Offse | et \$1005 |   |   |  |  |
|-------|-----|-----------------------------------------------------------------------------------------|--------|------------|--------------|-----------|---|---|--|--|
| BIT   | SD7 | SD7         SD6         SD5         SD4         SD3         SD2         SD1         SD0 |        |            |              |           |   |   |  |  |
| FIELD |     | SEM2                                                                                    |        |            |              |           |   |   |  |  |
| OPER  |     |                                                                                         |        | R/         | W            |           |   |   |  |  |
| RESET | 0   | 0                                                                                       | 0      | 0          | 0            | 0         | 0 | 0 |  |  |

#### VME Geographical Address Register (VGAR)

The VME Geographical Address register is an 8-bit read-only register located at ISA I/O address x1006. This register reflects the states of the geographical address pins at the P1 connector.

| REG   | VME Geographical Address Register - Offset \$1006 |     |      |      |      |      |      |      |
|-------|---------------------------------------------------|-----|------|------|------|------|------|------|
| BIT   | SD7                                               | SD6 | SD5  | SD4  | SD3  | SD2  | SD1  | SD0  |
| FIELD |                                                   |     | GAP# | GA4# | GA3# | GA2# | GA1# | GA0# |
| OPER  | READ ONLY                                         |     |      |      |      |      |      |      |
| RESET | X                                                 | X   | X    | X    | X    | X    | X    | X    |

## **Emulated Z8536 CIO Registers and Port Pins**

Although MVME2300 series boards do not use a Z8536 device, several of its functions are emulated within an ISA Register PLD. These functions are accessed by reading/writing the Port A, B, C Data registers and Control register. Note that the Pseudo IACK function is not implemented in the MVME2300 series.

#### **Emulated Z8536 Registers**

The MVME2300 series implements the Z8536 CIO functions according to the following table.

Table 1-20. Emulated Z8536 Access Registers

| PCI I/O Address | Function               |
|-----------------|------------------------|
| 0000 0844       | Port C's Data Register |
| 0000 0845       | Port B's Data Register |
| 0000 0846       | Port A's Data Register |
| 0000 0847       | Control Register       |

#### **Z8536 CIO Port Pins**

The following table shows the signal function and port mapping for the Z8536 CIO emulation. The signal directions are fixed in hardware.

Table 1-21. Z8536 CIO Port Pin Assignments

| Port<br>Pin | Signal<br>Name | Direction | Descriptions                                          |
|-------------|----------------|-----------|-------------------------------------------------------|
| PA0         |                | I/O       | Not used                                              |
| PA1         |                | I/O       | Not used                                              |
| PA2         |                | I/O       | Not used                                              |
| PA3         |                | I/O       | Not used                                              |
| PA4         |                | I/O       | Not used                                              |
| PA5         |                | I/O       | Not used                                              |
| PA6         | BRDFAIL        | Output    | Board Fail: When set, will illuminate <b>BFL</b> LED. |
| PA7         |                | I/O       | Not used                                              |
| PB0         |                | I/O       | Not used                                              |
| PB1         |                | I/O       | Not used                                              |
| PB2         |                | I/O       | Not used                                              |
| PB3         |                | I/O       | Not used                                              |
| PB4         |                | I/O       | Not used                                              |
| PB5         |                | I/O       | Not used                                              |
| PB6         |                | I/O       | Not used                                              |
| PB7         | ABORT_         | Input     | Status of ABORT# signal                               |
| PC0         |                | I/O       | Not used                                              |
| PC1         |                | I/O       | Not used                                              |

Table 1-21. Z8536 CIO Port Pin Assignments (Continued)

| Port<br>Pin | Signal<br>Name | Direction | Descriptions                                                                                                     |
|-------------|----------------|-----------|------------------------------------------------------------------------------------------------------------------|
| PC2         | BASETYP0       | Input     | Genesis Base Module Type:                                                                                        |
| PC3         | BASETYP1       | Input     | 00b = Genesis II (see Base Module Status Register)<br>01b = MVME1600-011<br>10b = Reserved<br>11b = MVME1600-001 |

### ISA DMA Channels

No ISA DMA channels are implemented on MVME2300 series boards.

## Introduction

This chapter describes the architecture and usage of the Raven ASIC, a PowerPC-to-PCI-Local-Bus bridge controller chip. The Raven is intended to provide PowerPC 60x (MPC60x) compliant devices access to devices residing on the PCI Local Bus. In the remainder of this chapter, the MPC60x bus is referred to as the "MPC bus" and the PCI Local Bus is referred to as "PCI". PCI is a high-performance 32-bit or 64-bit, burst mode, synchronous bus capable of transfer rates of 132 MB/sec in 32-bit mode or 264 MB/sec in 64-bit mode using a 33MHz clock.

## **Features**

The following table summarizes the characteristics of the Raven ASIC.

Table 2-1. Features of the Raven ASIC

| Function          | Features                                                     |
|-------------------|--------------------------------------------------------------|
| MPC Bus Interface | Direct interface to MPC603 or MPC604 processors              |
|                   | 64-bit data bus, 32-bit address bus                          |
|                   | Four independent software-programmable slave map decoders    |
|                   | Multi-level write-post FIFO for writes to PCI                |
|                   | Support for MPC bus clock speeds up to 66MHz                 |
|                   | Selectable big- or little-endian operation                   |
|                   | 3.3V signal levels                                           |
| PCI Interface     | Fully PCI Rev. 2.0 compliant                                 |
|                   | 32-bit or 64-bit address/data bus                            |
|                   | Support for accesses to all four PCI address spaces          |
|                   | Single-level write-posting buffers for writes to the MPC bus |
|                   | Read-ahead buffer for reads from the MPC bus                 |
|                   | Four independent software-programmable slave map decoders    |

Table 2-1. Features of the Raven ASIC (Continued)

| Function                  | Features                                                                                          |
|---------------------------|---------------------------------------------------------------------------------------------------|
| Interrupt Controller      | MPIC compliant                                                                                    |
|                           | Support for 16 external interrupt sources and two processors                                      |
|                           | Multiprocessor interrupt control allowing any interrupt source to be directed to either processor |
|                           | Multilevel cross-processor interrupt control for multiprocessor synchronization                   |
|                           | Four 31-bit tick timers                                                                           |
| Processor<br>Coordination | Two 64-bit general purpose registers for cross-processor messaging                                |

## **Block Diagram**

Figure 2-1 shows a functional block diagram of the Raven ASIC. The Raven control logic is subdivided into the following functions:

- □ PCI slave
- □ PCI master
- □ MPC slave
- □ MPC master

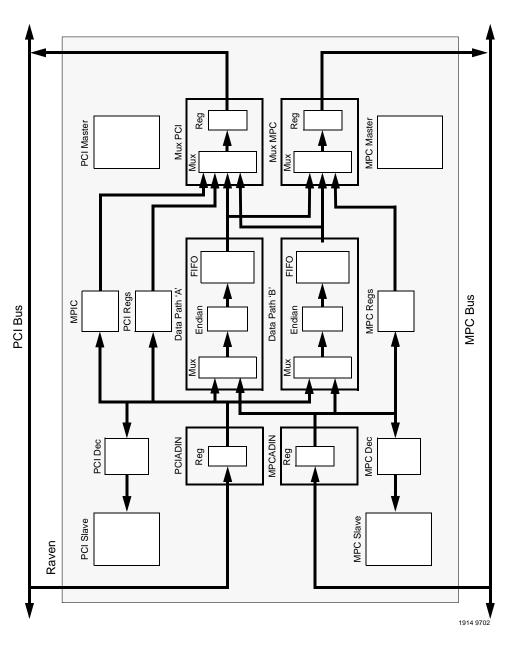



Figure 2-1. Raven Block Diagram

# **Functional Description**

The Raven data path logic is subdivided into the following functions:

- □ Data Path 'A' FIFOs/muxes
- □ Data Path 'B' FIFOs/muxes
- □ PCIADIN, MPCADIN, Mux PCI, and Mux MPC

Address decoding is handled in the PCI Decode and MPC Decode blocks. The control register logic is contained in the PCI Registers and MPC Registers blocks. The interrupt controller (RavenMPIC) and the MPC arbiter functions make up the remainder of the Raven design.

The data path function imposes some restrictions on access to the RavenMPIC, the PCI registers, and the MPC registers. The RavenMPIC and the PCI registers are only accessible to PCI-originated transactions. The MPC registers are only accessible to MPC-originated transactions.

# **MPC Bus Interface**

The MPC Bus interface is designed to be coupled directly to up to two MPC603 or MPC604 microprocessors as well as a memory/cache subsystem. It uses a subset of the capabilities of the MPC60*x* bus protocol.

# **MPC Address Mapping**

The Raven will map either PCI memory space or PCI I/O space into MPC address space using four programmable map decoders. These decoders provide windows into the PCI bus from the MPC bus. The most significant 16 bits of the MPC address are compared with the address range of each map decoder, and if the address falls within the specified range, the access is passed on to PCI. An example of this appears in Figure 2-2.

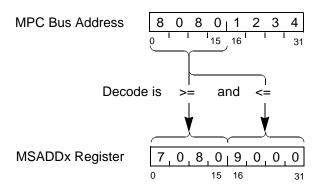



Figure 2-2. MPC-to-PCI Address Decoding

The Raven ASIC imposes no limits on how large an address space a map decoder can represent. There is a minimum of 64KB due to the resolution of the address compare logic.

For each map, there is an associated set of attributes. These attributes are used to enable read accesses, enable write accesses, enable write-posting, and define the PCI transfer characteristics.

Each map decoder also includes a programmable 16-bit address offset. The offset is added to the 16 most significant bits of the MPC address, and the result is used as the PCI address. This offset allows PCI devices to reside at any PCI address, independent of the MPC address map. An example of this appears in Figure 2-3.

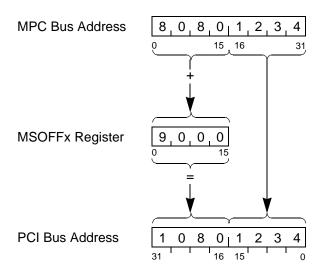



Figure 2-3. MPC to PCI Address Translation

You should take care to assure that all programmable decoders decode unique address ranges, since overlapping address ranges will lead to undefined operation.

#### **MPC Slave**

The MPC slave provides the interface between the MPC bus and the Raven FIFOs. The MPC slave is responsible for tracking and maintaining coherency to the 60x processor bus protocol.

The MPC slave divides MPC command types into three categories: Address Only; Write; and Read.

If a command is of type address-only and the address presented at the time of the command is a valid Raven address, the MPC slave will respond immediately. The Raven will not respond to address-only cycles where the address presented is not a Raven address. The response of the MPC slave to command types is listed in Table 2-2.

Table 2-2. Command Types — MPC Slave Response

| MPC Transfer Type                 | Transfer<br>Encoding | Transaction |
|-----------------------------------|----------------------|-------------|
| Clean Block                       | 00000                | Addr Only   |
| Flush Block                       | 00100                | Addr Only   |
| SYNC                              | 01000                | Addr Only   |
| Kill Block                        | 01100                | Addr Only   |
| EIEIO                             | 10000                | Addr Only   |
| ECOWX                             | 10100                | No Response |
| TLB Invalidate                    | 11000                | Addr Only   |
| ECIWX                             | 11100                | No Response |
| LWARX                             | 00001                | Addr Only   |
| STWCX                             | 00101                | Addr Only   |
| TLBSYNC                           | 01001                | Addr Only   |
| ICBI                              | 01101                | Addr Only   |
| Reserved                          | 1XX01                | No Response |
| Write-with-flush                  | 00010                | Write       |
| Write-with-kill                   | 00110                | Write       |
| Read                              | 01010                | Read        |
| Read-with-intent-to-modify        | 01110                | Read        |
| Write-with-flush-atomic           | 10010                | Write       |
| Reserved                          | 10110                | No Response |
| Read-atomic                       | 11010                | Read        |
| Read-with-intent-to-modify-atomic | 11110                | Read        |
| Reserved                          | 00011                | No Response |
| Reserved                          | 00111                | No Response |
| Read-with-no-intent-to-cache      | 01011                | Read        |
| Reserved                          | 01111                | No Response |
| Reserved                          | 1xx11                | No Response |

### **MPC Write Posting**

The MPC write FIFO stores up to eight data beats in any combination of single- and four-beat (burst) transactions. If write-posting is enabled, Raven stores the data necessary to complete an MPC write transfer to the PCI bus and immediately acknowledges the transaction on the MPC bus. This frees the MPC bus from waiting for the potentially long PCI arbitration and transfer. The MPC bus may be used for more useful work while the Raven manages the completion of the write-posted transaction on PCI.

All transactions will be completed on the PCI bus in the same order that they are completed on the MPC bus. A read or a compelled write transaction will force all previously issued write-posted transactions to be flushed from the FIFO. All write-posted transfers will be completed before a non-write-posted read or write is begun, to assure that all transfers are completed in the order issued. All write-posted transfers will also be completed before any access to the Raven's registers is begun.

#### **MPC Master**

The MPC master will attempt to move data using burst transfers wherever possible. A 64-bit-by-16 entry FIFO is used to hold data between the PCI slave and the MPC master to ensure that optimum data throughput is maintained. While the PCI slave is filling the FIFO with one cache line worth of data, the MPC master can be moving another cache line worth onto the MPC bus. This will allow the PCI slave to receive long block transfers without stalling.

When programmed in "read ahead" mode (the RAEN bit in the PSATTx register is set) and the PCI slave receives a Memory Read Line or Memory Read Multiple command, the MPC master will fetch data in bursts and store it in the FIFO. The contents of the FIFO will then be used to attempt to satisfy the data requirements for the remainder of the PCI block transaction. If the data requested is not in the FIFO, the MPC master will read another cache line. The contents of the FIFO are "invalidated" at the end of each PCI block transaction.

### **Notes**

- 1. Read-ahead mode should not be used when data coherency may be a problem, as there is no way to snoop all MPC bus transactions and invalidate the contents of the FIFO.
- Accesses near the top of local memory with read-ahead mode enabled could cause the MPC master to perform reads beyond the top of local memory, which could produce an MPC bus timeout error.

The MPC bus transfer types generated by the MPC master depend on the PCI command code and the INV/GBL bits in the PSATTx registers. The GBL bit determines whether or not the GBL\* signal is asserted for all portions of a transaction, and is fully independent of the PCI command code and INV bit. Table 2-3 shows the relationship between PCI command codes and the INV bit.

**Table 2-3. MPC Transfer Types** 

| PCI Command Code                                        | INV | MPC Transfer Type             | MPC Transfer Size | TT0-TT4 |
|---------------------------------------------------------|-----|-------------------------------|-------------------|---------|
| Memory Read<br>Memory Read Multiple<br>Memory Read Line | 0   | Read                          | Burst/Single Beat | 01010   |
| Memory Read<br>Memory Read Multiple<br>Memory Read Line | 1   | Read With Intent to<br>Modify | Burst/Single Beat | 01110   |
| Memory Write<br>Memory Write and<br>Invalidate          | X   | Write with Kill               | Burst             | 00110   |
| Memory Write<br>Memory Write and<br>Invalidate          | X   | Write with Flush              | Single Beat       | 00010   |

The MPC master incorporates an optional operating mode called Bus Hog. When Bus Hog is enabled, the MPC master will continually request the MPC bus for the entire duration of each PCI transfer. When Bus Hog is not

enabled, the MPC master will structure its bus request actions according to the requirements of the FIFO. Use this mode with caution, since the overgenerosity of bus ownership to the MPC master can be detrimental to the host CPU's performance. The Bus Hog mode can be controlled by the BHOG bit within the GCSR. The default state for BHOG is disabled.

#### **MPC Arbiter**

The MPC Arbiter is an optional feature in the Raven ASIC. It is not used on MVME2300 series boards. Arbitration for the MPC bus on the MVME2300 series is performed external to the Raven.

#### **MPC Bus Timer**

The MPC bus timer allows the current bus master to recover from a lockup condition resulting from no slave response to the transfer request.

The timeout duration of the bus timer is determined by the MBT field in the Global Control/Status register.

The bus timer starts ticking at the beginning of an address transfer (TS\* asserted). If the address transfer is not terminated (AACK\* asserted) before the timeout period has elapsed, the Raven will assert the MATO bit in the MPC Error Status register, latch the MPC address in the MPC Error Address register, and then terminate the cycle.

The MATO bit may be configured to generate an interrupt or a machine check through the MEREN register.

The timer is disabled if the transfer is intended for PCI. PCI-bound transfers will be timed by the PCI master.

# **PCI** Interface

The Raven PCI interface is designed for direct connection to a PCI Local Bus. It supports Master and Target transactions within Memory space, I/O space, and Configuration space.

The PCI interface may operate at any clock speed up to 33MHz. The PCLK input must be externally synchronized with the MCLK input, and the frequency of the PCLK input must be exactly half the frequency of the MCLK input.

### **PCI Address Mapping**

The Raven ASIC provides three resources to PCI:

- □ Configuration registers mapped into PCI Configuration space
- ☐ MPC bus address space mapped into PCI Memory space
- □ RavenMPIC control registers mapped into either PCI I/O space or PCI Memory space

### **Configuration Registers**

The Raven has no IDSEL pin. Instead, an internal connection made within the Raven logically associates the assertion of IDSEL with the assertion of AD31.

Raven provides a configuration space that is fully compliant with the PCI Local Bus Specification 2.0 definition for configuration space. Two base registers within the standard 64-byte header are used to control the mapping of RavenMPIC. One register is dedicated to mapping RavenMPIC into PCI I/O space; the other register is dedicated to mapping RavenMPIC into PCI Memory space. The mapping of MPC address space is handled by device-specific registers located above the 64-byte header. These control registers support a mapping scheme that is functionally similar to the PCI-to-MPC mapping scheme described in the section on MPC Address Mapping earlier in this chapter.

### **MPC Bus Address Space**

The Raven will map MPC address space into PCI Memory space using four programmable map decoders. The most significant 16 bits of the PCI address are compared with the address range of each map decoder; if the address falls within the specified range, the access is passed on to the MPC bus. An example of this appears in Figure 2-4.

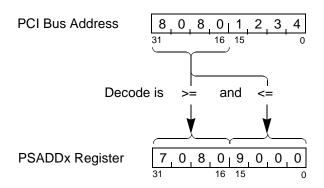



Figure 2-4. PCI to MPC Address Decoding

The Raven ASIC imposes no limits on how large an address space a map decoder can represent. There is a minimum of 64KB due to the resolution of the address compare logic.

For each map, there is an associated set of attributes. These attributes are used to enable read accesses, enable write accesses, enable write-posting, and define the MPC bus transfer characteristics.

Each map decoder also includes a programmable 16-bit address offset. The offset is added to the 16 most significant bits of the PCI address, and the result is used as the MPC address. This offset allows devices to reside at any MPC address, independent of the PCI address map. An example of this appears in Figure 2-5.

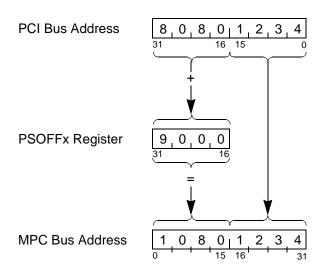



Figure 2-5. PCI to MPC Address Translation

All Raven address decoders are prioritized so that programming multiple decoders to respond to the same address is not a problem. When the PCI address falls into the range of more than one decoder, only the highest priority one will respond. The decoders are prioritized as shown below.

| Decoder     | Priority |
|-------------|----------|
| PCI Slave 0 | highest  |
| PCI Slave 1 |          |
| PCI Slave 2 |          |
| PCI Slave 3 | lowest   |

# **RavenMPIC Control Registers**

The RavenMPIC control registers are located within either PCI memory or PCI I/O space using traditional PCI-defined base registers within the predefined 64-byte header. Refer to the section on *Raven Interrupt Controller* for more information.

### **PCI Slave**

The PCI slave provides the control logic needed to interface the PCI bus to the Raven's FIFO buffers. The PCI slave can accept either 32-bit or 64-bit transactions, but it can accept only 32-bit addressing.

There is no limit to the length of the transfer that the slave can handle. During posted write cycles, the slave will continue to accept write data until the write-post FIFO is full. If the write-post FIFO is full, the slave will hold off the master with wait states until there is more room in the FIFO. The slave will not initiate a disconnect.

If the write transaction is compelled, the slave will hold off the master with wait states while each beat of data is being transferred. The slave will acknowledge the completion of the transfer only after the data transfer has successfully completed on the MPC bus.

If a read transaction is occurring within an address space marked for prefetching, the slave (in conjunction with the MPC master) will attempt to read far enough ahead on the MPC bus to allow for an uninterrupted burst transaction on the PCI bus. Read transactions within address spaces marked for no prefetching will be acknowledged on the PCI bus only after a single beat read has successfully completed on the MPC bus.

Each read on the MPC bus will begin only after the previous read has been acknowledged on the PCI bus and there is an indication that the PCI master wishes more data to be transferred.

The following paragraphs identify some associations between the operation of the PCI slave and the requirements of the PCI 2.0 Local Bus Specification.

## **Command Types**

Table 2-4 shows which types of PCI cycles the slave has been designed to accept.

Table 2-4. Command Types — PCI Slave Response

| <b>Command Type</b>         | Slave Response? |
|-----------------------------|-----------------|
| Interrupt Acknowledge       | No              |
| Special Cycle               | No              |
| I/O Read                    | Yes             |
| I/O Write                   | Yes             |
| Reserved                    | No              |
| Reserved                    | No              |
| Memory Read                 | Yes             |
| Memory Write                | Yes             |
| Reserved                    | No              |
| Reserved                    | No              |
| Configuration Read          | Yes             |
| Configuration Write         | Yes             |
| Memory Read Multiple        | Yes             |
| Dual Address Cycle          | No              |
| Memory Read Line            | Yes             |
| Memory Write and Invalidate | Yes             |

# Addressing

The slave will accept any combination of byte enables during read or write cycles. During write cycles, a discontinuity (i.e., a 'hole') in the byte enables will force the slave to issue a disconnect. During all read cycles, the slave will return an entire word of data regardless of the byte enables. During I/O read cycles, the slave will perform integrity checking of the byte enables against the address being presented and assert SERR\* in the event there is an error.

The slave will honor only the Linear Incrementing addressing mode. The slave will perform a disconnect with data if any other mode of addressing is attempted.

#### **Device Selection**

The PCI slave will always respond to valid decoded cycles as a medium responder.

### **Target-Initiated Termination**

The PCI slave normally strives to complete transactions without issuing disconnects or retries.

One exception is when the slave performs configuration cycles. All configuration cycles are terminated with a disconnect after one data beat has been transferred. Another exception is the issue of a disconnect when asked to perform a transaction with byte enable 'holes'.

### **Fast Back-to-Back Transactions**

The PCI slave supports both of the fundamental target requirements for fast back-to-back transactions. The PCI slave meets the first criteria of being able to successfully track the state of the PCI bus without the existence of an IDLE state between transactions. The second criteria, associated with signal turn-around timing, is met by default since the slave functions as a medium responder.

### Latency

The PCI slave has no hardware mechanisms in place to guarantee that the initial and subsequent target latency requirements are met. This is typically not a problem, since the bandwidth of the MPC bus far exceeds the bandwidth of the PCI bus. The Raven MPC arbiter has been designed to give the highest priority to its own transactions, which further reduces PCI bus latency.

#### **Exclusive Access**

The PCI slave has no mechanism to support exclusive access.

### **Parity**

The PCI slave supports address parity error detection, data parity generation and data parity error detection.

### **Cache Support**

The PCI slave does not participate in the PCI caching protocol.

# **PCI Write Posting**

If write-posting is enabled, the Raven stores the target address, attributes, and up to 128 bytes of data from one PCI write transaction and immediately acknowledges the transaction on the PCI bus. This allows the slower PCI to continue to transfer data at its maximum bandwidth, and the faster MPC bus to accept data in high-performance cache-line burst transfers.

Only one PCI transaction may be write-posted at any given time. If the Raven is busy processing a previous write-posted transaction when a new PCI transaction begins, the next PCI transaction is delayed (TRDY\* is not asserted) until the previous transaction has completed. If during a transaction the write-post buffer is filled, subsequent PCI data transfers are delayed (TRDY\* is not asserted) until the Raven has removed some data from the FIFO. Under normal conditions, the Raven should be able to empty the FIFO faster than the PCI bus can fill it.

PCI Configuration cycles intended for internal Raven registers are also delayed if the Raven is busy, so that control bits which may affect write-posting do not change until all write-posted transactions have completed.

#### **PCI Master**

The PCI master, in conjunction with the capabilities of the MPC slave, will attempt to move data in either single-beat or four-beat (burst) transactions. All single-beat transactions will be subdivided into one or two 32-bit transfers, depending on the alignment and size of the transaction. The PCI master will attempt to transfer all four-beat transactions in 64-bit mode if the PCI bus has 64-bit mode enabled. If at any time during the transaction the PCI target indicates that it cannot support 64-bit mode, the PCI master will continue to transfer the remaining data in 32-bit mode.

The PCI master can support Critical Word First (CWF) burst transfers. The PCI master will divide this transaction into two parts. The first part will start on the address presented with the CWF transfer request and continue up to the end of the current cache line. The second transfer will start at the beginning of the associated cache line and work its way up to (but not including) the word addressed by the CWF request.

It should be noted that even though the master can support burst transactions, a majority of the transaction types handled are single-beat transfers. Since PCI space is typically not configured as cacheable, burst transactions to PCI space would not naturally occur. Burst transactions must be supported, however, since it is conceivable that bursting could happen. For example, nothing prevents the processor from loading up a cache line with PCI write data and manually flushing the cache line.

The following paragraphs identify some associations between the operation of the PCI master and the requirements of the PCI 2.0 Local Bus Specification.

# **Command Types**

The PCI command codes generated by the PCI master depend on the type of transaction being performed on the MPC bus. Please refer to the *MPC Slave* section earlier in this chapter for a further description of MPC bus read and MPC bus write transactions. Table 2-5 summarizes the command types supported and shows how they are generated.

**Table 2-5. PCI Master Command Codes** 

| <b>Entity Addressed</b> | MPC<br>Transfer Type | TBST*        | MEM | C/BE | PCI Command           |
|-------------------------|----------------------|--------------|-----|------|-----------------------|
| PIACK                   | Read                 | X            | X   | 0000 | Interrupt Acknowledge |
| CONADD/CONDAT           | Write                | X            | X   | 0001 | Special Cycle         |
| MPC Mapped PCI Space    | Read                 | X            | 0   | 0010 | I/O Read              |
|                         | Write                | Х            | 0   | 0011 | I/O Write             |
| U                       | nsupported           |              |     | 0100 | Reserved              |
| U                       | nsupported           |              |     | 0101 | Reserved              |
| MPC Mapped PCI Space    | Read                 | 1            | 1   | 0110 | Memory Read           |
|                         | Write                | Memory Write |     |      |                       |

MPC **Entity Addressed** TBST\* **MEM** C/BE **PCI Command Transfer Type** -- Unsupported --1000 Reserved -- Unsupported --1001 Reserved CONADD/CONDAT 1010 Read Configuration Read X X CONADD/CONDAT Write Х Х 1011 Configuration Write -- Unsupported --1100 Memory Read Multiple -- Unsupported --1101 Dual Address Cycle MPC Mapped PCI Space 0 1110 Memory Read Line Read 1 -- Unsupported --1111 Memory Write and Invalidate

**Table 2-5. PCI Master Command Codes (Continued)** 

### Addressing

The PCI master will generate all memory transactions using the linear incrementing addressing mode.

### Combining, Merging, and Collapsing

The PCI master does not participate in any of these protocols.

#### **Master Initiated Termination**

The PCI master can handle any defined method of target retry, target disconnect, or target abort. If the target responds with a retry, the PCI master will wait for the required two clock periods and attempt the transaction again. The attempts will continue indefinitely until the transaction either completes, or is aborted by the target, or is aborted due to a Raven-detected bridge lock. The same happens if the target responds with a disconnect and there is still data to be transferred.

If the PCI master detects a target abort during a read, any untransferred read data will be filled with 1s. If the PCI master detects a target abort during a write, any untransferred portions of data will be dropped. The same rule applies if the PCI master generates a Master Abort cycle.

### **Arbitration**

The PCI master can support parking on the PCI bus. If the PCI master starts a transaction that is going to take more than one beat, the PCI master will continuously assert its request until the transaction has completed. The one exception is when the PCI master receives a disconnect or a retry.

#### **Fast Back-to-Back Transactions**

The PCI master does not generate fast back-to-back transactions.

### **Arbitration Latency**

Because the bulk of the transactions on PCI are limited to single-beat transfers, the PCI master does not implement a Master Latency timer.

#### **Exclusive Access**

The PCI master is not able to initiate exclusive access transactions.

### Address/Data Stepping

The PCI master does not participate in the Address/Data Stepping protocol.

### **Parity**

The PCI master supports address parity generation, data parity generation, and data parity error detection.

# **Cache Support**

The PCI master does not participate in the PCI caching protocol.

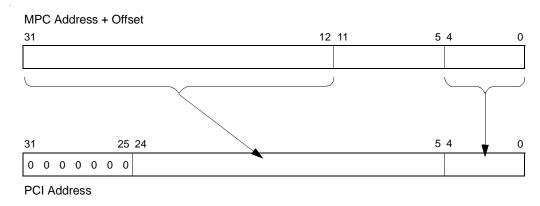
# **Generating PCI Cycles**

Four basic types of bus cycles can be generated on the PCI bus:

- □ Memory and I/O
- Configuration
- Special Cycle
- □ Interrupt Acknowledge

### Generating PCI Memory and I/O Cycles

Each programmable slave may be configured to generate PCI I/O or memory accesses through the MEM and IOM fields in its Attribute register as shown below.


| MEM | IOM | PCI Cycle Type |
|-----|-----|----------------|
| 1   | X   | Memory         |
| 0   | 0   | Contiguous I/O |
| 0   | 1   | Spread I/O     |

If the MEM bit is set, the Raven will perform Memory addressing on the PCI bus. The Raven will take the MPC bus address, apply the offset specified in the MSOFFx register, and map the result directly to the PCI bus.

The IBM CHRP specification describes two approaches for handling PCI I/O addressing: contiguous or spread address modes. When the MEM bit is cleared, the IOM bit is used to select between these two modes whenever a PCI I/O cycle is to be performed.

The Raven will perform contiguous I/O addressing when the MEM bit is clear and the IOM bit is clear. The Raven will take the MPC address, apply the offset specified in the MSOFFx register, and map the result directly to PCI.

The Raven will perform spread I/O addressing when the MEM bit is clear and the IOM bit is set. The Raven will take the MPC address, apply the offset specified in the MSOFFx register, and map the result to PCI as shown in Figure 2-6.



1915 9702

Figure 2-6. PCI Spread I/O Address Translation

Spread I/O addressing allows each PCI device's I/O registers to reside on a different MPC memory page, so device drivers can be protected from each other using memory page protection.

All I/O accesses must be performed within natural word boundaries. Any I/O access that is not contained within a natural word boundary will result in unpredictable operation. For example, an I/O transfer of four bytes starting at address \$80000010 is considered a valid transfer. An I/O transfer of four bytes starting at address \$80000011 is considered an invalid transfer since it crosses the natural word boundary at address \$80000013/\$80000014.

# **Generating PCI Configuration Cycles**

The Raven uses configuration mechanism #1 as defined in PCI Local Bus Specification 2.0 to generate configuration cycles. Please refer to the specification for a complete description of this function.

Configuration mechanism #1 uses an address register/data register format. Performing a configuration access is a two-step process. The first step is to place the address of the configuration cycle within the CONFIG\_ADDRESS register. Note that this action does not generate any cycles on the PCI bus. The second step is to either read or write configuration data into the CONFIG\_DATA register. If the CONFIG\_ADDRESS register has been set up correctly, the Raven will pass this access on to the PCI bus as a configuration cycle.

The addresses of the CONFIG\_ADDRESS and CONFIG\_DATA registers are actually embedded within PCI I/O space. If the CONFIG\_ADDRESS register has been set incorrectly or the access to either the CONFIG\_ADDRESS or CONFIG\_DATA register is not 1,2, or 4 bytes wide, the Raven will pass the access on to PCI as a normal I/O Space transfer.

The CONFIG\_ADDRESS register is located at offset \$CF8 from the bottom of PCI I/O space. The CONFIG\_DATA register is located at offset \$CFC from the bottom of PCI I/O space. The Raven address decode logic has been designed such that MSADD3 and MSOFF3 must be used for mapping to PCI Configuration (consequently I/O) space. The MSADD3/MSOFF3 register group is initialized at reset to allow PCI I/O access starting at address \$80000000. The powerup location (that is, little-endian disabled) of the CONFIG\_ADDRESS register is \$80000CF8, and the CONFIG\_DATA register is located at \$80000CFC.

The CONFIG\_ADDRESS register must be prefilled with four fields:

- 1. Register Number
- 2. Function Number
- 3. Device Number
- 4. Bus Number

The Register Number and Function Number are passed along to the PCI bus as portions of the lower address bits.

When performing a configuration cycle, the Raven uses the upper 20 address bits as IDSEL lines. During the address phase of a configuration cycle, only one of the upper address bits will be set. The device that has its

IDSEL connected to the address bit being asserted will be selected for a configuration cycle. The Raven decodes the Device Number to determine which of the upper address lines to assert. The decoding of the five-bit Device Number is show below:

| Device Number | Address Bit |
|---------------|-------------|
| 00000         | AD31        |
| 00001 - 01010 | All Zeros   |
| 01011         | AD11        |
| 01100         | AD12        |
| (etc.)        | (etc.)      |
| 11101         | AD29        |
| 11110         | AD30        |
| 11111         | All Zeros   |

The Bus Number determines which bus is the target for the configuration read cycle. The Raven will always host PCI bus #0. Accesses that are to be performed on the PCI bus connected to the Raven must have zero programmed into the Bus Number. If the configuration access is targeted for another PCI bus, then that bus number should be programmed into the Bus Number field. The Raven will detect a nonzero field and convert the transaction to a Type 1 Configuration cycle.

# **Generating PCI Special Cycles**

The Raven supports the method stated in PCI Local Bus Specification 2.0 to generate special cycles using Configuration Mechanism #1. To prime the Raven for a special cycle, the host processor must write a 32-bit value to the CONFIG\_ADDRESS register. The contents of the write are defined later in this chapter under the CONFIG\_ADDRESS register definition. After the write to CONFIG\_ADDRESS has been accomplished, the next write to the CONFIG\_DATA register causes the Raven to generate a special cycle on the PCI bus. The write data is driven onto AD[31:0] during the special cycle's data phase.

### **Generating PCI Interrupt Acknowledge Cycles**

Performing a read from the PIACK register will initiate a single PCI Interrupt Acknowledge cycle. Any single byte or combination of bytes may be read from, and the actual byte enable pattern used during the read will be passed on to the PCI bus. Upon completion of the PCI interrupt acknowledge cycle, the Raven will present the resulting vector information obtained from the PCI bus as read data.

# **Endian Conversion**

The Raven ASIC supports both big- and little-endian data formats. Since the PCI bus is inherently little-endian, conversion is necessary if all MPC devices are configured for big-endian operation. The Raven may be programmed to perform the endian conversion described below.

# When MPC Devices are Big-Endian

When all MPC devices are operating in big-endian mode, all data to/from the PCI bus must be swapped such that the PCI bus looks big-endian from the MPC bus's perspective. This association is true regardless of whether the transaction originates on the PCI bus or the MPC bus. Figure 2-7 illustrates the concept.

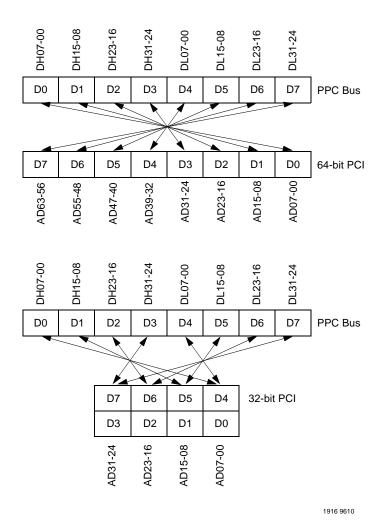



Figure 2-7. Big- to Little-Endian Data Swap

### When MPC Devices are Little-Endian

When all MPC devices are operating in little-endian mode, the originating address is modified to remove the exclusive-ORing applied by MPC60*x* processors before being passed on to the PCI bus. Note that no data swapping is performed. Address modification happens to the originating address regardless of whether the transaction originates from the PCI bus or the MPC bus. The three low-order address bits are exclusive-ORed with a three-bit value that depends on the length of the operand, as shown in Table 2-6.

Table 2-6. Address Modification for Little-Endian Transfers

| Data<br>Length<br>(bytes) | Address<br>Modification |
|---------------------------|-------------------------|
| 1                         | XOR with 111            |
| 2                         | XOR with 110            |
| 4                         | XOR with 100            |
| 8                         | No change               |

**Note** The only legal data lengths supported in little-endian mode are 1-, 2-, 4-, or 8-byte aligned transfers.

Since there are some difficulties with this method in dealing with unaligned PCI-originated transfers, the Raven MPC master will break up all unaligned PCI transfers into multiple aligned PCI transfers into multiple aligned transfers on the MPC bus.

# Raven Registers and Endian Mode

The Raven ASIC's registers are not sensitive to changes in big-endian and little-endian mode. With respect to the MPC bus (but not always the address internal to the processor), the MPC registers are always represented in big-endian mode. This means that the processor's internal view of the MPC registers will vary depending on the processor's operating mode.

With respect with the PCI bus, the RavenMPIC registers and the configuration registers are always represented in little-endian mode.

The CONFIG\_ADDRESS and CONFIG\_DATA registers are actually represented in PCI space to the processor and are subject to the endian functions. For example, the powerup location of the CONFIG\_ADDRESS register with respect to the MPC bus is \$80000CF8 when the Raven is in big-endian mode. When the Raven is switched to little-endian mode, the CONFIG\_ADDRESS register with respect to the MPC bus is \$80000CFC. Note that in both cases the address generated internal to the processor will be \$80000CF8.

The contents of the CONFIG\_ADDRESS register are not subject to the endian function.

The data associated with PIACK accesses is subject to the endian swapping function. Because the address of a PIACK cycle is undefined, address modification during little-endian mode is not an issue.

# **Error Handling**

The Raven is capable of detecting and reporting the following errors to one or more MPC masters:

- □ MPC address bus time-out
- □ PCI master signalled master abort
- □ PCI master received target abort
- □ PCI parity error
- □ PCI system error

Each of these error conditions will set an error status bit in the MPC Error Status register. If a second error is detected while any of the error bits is set, the OVFL bit is asserted, but none of the error bits are changed. You can clear each bit in the MPC Error Status register by writing a 1 to it; writing a 0 to it has no effect. New error bits may be set only when all previous error bits have been cleared.

When any bit in the MPC Error Status register is set, the Raven ASIC will attempt to latch as much information as possible about the error in the MPC Error Address and Attribute registers. Information is saved as follows:

| Error Status | Error Address and Attributes |
|--------------|------------------------------|
| MATO         | From MPC bus                 |
| SMA          | From PCI bus                 |
| RTA          | From PCI bus                 |
| PERR         | Invalid                      |
| SERR         | Invalid                      |

Each MERST error bit may be programmed to generate a machine check and/or a standard interrupt. The error response is programmed through the MPC Error Enable register on a source-by-source basis. When a machine check is enabled, either the MID field in the MPC Error Attribute register or the DFLT bit in the MEREN register determine the master to which the machine check is directed. For errors in which the master that originated the transaction can be determined, the MID field is used, provided the MID is%00 (processor 0), %01 (processor 1), or %10 (processor 2). For errors not associated with a particular MPC master, or associated with masters other than processor 0, 1, or 2, the DFLT bit is used. One example of an error condition which cannot be associated with a particular MPC master would be a PCI system error.

# **Transaction Ordering**

The Raven ASIC supports transaction ordering with an optional FIFO flushing option. The FLBRD (Flush Before Read) bit within the GCSR register controls the flushing of PCI write-posted data when performing MPC-originated read transactions.

When the FLBRD bit is set, Raven will handle read transactions originating from the MPC bus in the following manner:

- □ Write-posted transactions originating from the processor bus are flushed by the nature of the FIFO architecture. The Raven will hold the processor with wait states until the PCI-bound FIFO is empty.
- □ Write-posted transactions originating from the PCI bus are flushed whenever the PCI slave has accepted a write-posted transaction and the transaction has not completed on the MPC bus.

# **Raven Registers**

This section provides a detailed description of all registers in the Raven ASIC. The registers are organized in two groups: MPC registers and PCI Configuration registers. The MPC registers are accessible only from the MPC bus, but accept any valid transfer size. The PCI Configuration registers reside in PCI configuration space. They are accessible from the MPC bus through the Raven ASIC.

The MPC registers are described first; the PCI Configuration registers are described next. A complete discussion of the RavenMPIC registers can be found later in this chapter.

The following conventions are used in the Raven register charts:

R Read Only field.
 R/W Read/Write field.
 S Writing a ONE to this field sets this field.
 C Writing a ONE to this field clears this field.

# **MPC Registers**

The Raven MPC register map is shown in Table 2-7.

Table 2-7. Raven MPC Register Map

| Bit>       | 0     | 1      | 2 | 3 | 3 4 | ļ | 5 | 6 | 7  | 8   | 9   |       | 1<br>0 | 1<br>1 | 1 2 | 1 | 1 4 |    | 1<br>5 | 1<br>6 |       |  | 19 |  |  | 2 2 |    | 2 2 3 | 2 | 2 5 | <b>2 6</b> | 2<br>7 | 2<br>8 |    |  | 3<br>1 |
|------------|-------|--------|---|---|-----|---|---|---|----|-----|-----|-------|--------|--------|-----|---|-----|----|--------|--------|-------|--|----|--|--|-----|----|-------|---|-----|------------|--------|--------|----|--|--------|
| \$FEFF0000 | VENID |        |   |   |     |   |   |   |    |     |     | DEVID |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0004 |       |        |   |   |     |   |   |   |    |     |     |       | R      | E      | VII | D |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0008 |       |        |   |   |     |   |   | ( | GC | S   | R   |       |        |        |     |   |     |    |        |        |       |  |    |  |  | ]   | F  | ΕA    | Т |     |            |        |        |    |  |        |
| \$FEFF000C |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    | MARB   |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0010 |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     | ]          | PA     | D.     | ſ  |  |        |
| \$FEFF0014 |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0018 |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF001C |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0020 |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  | M   | 1F | ERI   | Ξ | V   |            |        |        |    |  |        |
| \$FEFF0024 |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        | MERST  |       |  |    |  |  |     |    |       | Т |     |            |        |        |    |  |        |
| \$FEFF0028 |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   | N   | 1F | ER     | RAD    |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF002C |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        | MERAT |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0030 |       |        |   |   |     |   |   |   |    | PIA |     |       |        |        |     |   |     |    |        |        | ACK   |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0034 |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0038 |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF003C |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0040 |       |        |   |   |     |   |   |   |    | MSA |     |       |        |        |     |   |     |    |        | ADD0   |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0044 |       |        |   |   |     |   | ] | M | SC | )F  | F0  |       |        |        |     |   |     |    | MSATT0 |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0048 |       | MSADD1 |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF004C |       | MSO    |   |   |     |   |   |   | SC | )F  | F1  |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     | M          | SA     | T      | Γ1 |  |        |
| \$FEFF0050 |       |        |   |   |     |   |   |   |    |     |     |       |        |        |     | M | S   | A  | ADD2   |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0054 |       | MSO    |   |   |     |   |   |   |    | F   | FF2 |       |        |        |     |   |     |    |        | MSATT2 |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF0058 |       | MSADD3 |   |   |     |   |   |   |    |     |     |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     |            |        |        |    |  |        |
| \$FEFF005C |       |        |   |   |     |   | ] | M | SC | F   | F3  |       |        |        |     |   |     |    |        |        |       |  |    |  |  |     |    |       |   |     | M          | SA     | Τ      | Г3 |  |        |

Table 2-7. Raven MPC Register Map (Continued)

| Bit>       | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1<br>0 | 1<br>1 | 1<br>2 | 1<br>3 | 1<br>4 | 1<br>5 | 1<br>6 | 1<br>7 | 1<br>8 | 1<br>9 | <b>2</b><br><b>0</b> | 2<br>1 | 2 2 | 2<br>4 |   | 2<br>6 |   |  | 3 3<br>0 1 |
|------------|---|---|---|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------------|--------|-----|--------|---|--------|---|--|------------|
| \$FEFF0060 |   |   |   |   |   |   |   |   | • | • |        | •      | •      | •      | •      |        | •      | •      |        | •      |                      |        |     |        | • | •      | • |  |            |
| \$FEFF0064 |   |   |   |   |   |   |   |   |   |   |        |        |        |        |        |        |        |        |        |        |                      |        |     |        |   |        |   |  |            |
| \$FFEF0068 |   |   |   |   |   |   |   |   |   |   |        |        |        |        |        |        |        |        |        |        |                      |        |     |        |   |        |   |  |            |
| \$FEFF006C |   |   |   |   |   |   |   |   |   |   |        |        |        |        |        |        |        |        |        |        |                      |        |     |        |   |        |   |  |            |
| \$FEFF0070 |   |   |   |   |   |   |   |   |   |   |        |        | C      | ЭPF    | RE     | GO     | )(L    | Jpp    | oer)   | )      |                      |        |     |        |   |        |   |  |            |
| \$FEFF0074 |   |   |   |   |   |   |   |   |   |   |        |        | C      | PF     | RE     | G0     | )(L    | OW     | ver    | )      |                      |        |     |        |   |        |   |  |            |
| \$FEFF078  |   |   |   |   |   |   |   |   |   |   |        |        | C      | ЭPF    | RE     | G1     | J)     | Jpp    | oer)   | )      |                      |        |     |        |   |        |   |  |            |
| \$FEFF07C  |   |   |   |   |   |   |   |   |   |   |        |        | C      | PF     | RE     | G1     | (L     | OW     | ver    | )      |                      |        |     |        |   |        |   |  |            |

# **Vendor ID/Device ID Registers**

| Address   | \$FEFF0000                                                      |
|-----------|-----------------------------------------------------------------|
| Bit       | 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| Name      | VENID DEVID                                                     |
| Operation | R R                                                             |
| Reset     | \$1057 \$4801                                                   |

**VENID Vendor ID.** Identifies the manufacturer of the device. The identifier is allocated by the PCI SIG to ensure uniqueness. \$1057 has been assigned to Motorola. This register is duplicated in the PCI Configuration registers.

**DEVID** Device ID. Identifies this particular device. The Raven will always return \$4801. This register is duplicated in the PCI Configuration registers.

# **Revision ID Register**

| Address   |                 | \$FEF               | F0004                              |      |
|-----------|-----------------|---------------------|------------------------------------|------|
| Bit       | 0 1 2 3 4 5 6 7 | 8 9 0 1 1 1 1 1 1 8 | 1 1 1 1 2 2 2 2<br>6 7 8 9 0 1 2 3 |      |
| Name      |                 | REVID               |                                    |      |
| Operation | R               | R                   | R                                  | R    |
| Reset     | \$00            | \$02                | \$00                               | \$00 |

**REVID** Revision ID. Identifies the Raven revision level. This register is duplicated in the PCI Configuration registers.

# **General Control-Status/Feature Registers**

| Address   |      |      |   |   |      |       |            |      |   |      |      |   |   | 9 | \$FI | EF   | F0   | 008   | 3     |       |     |     |     |     |     |     |     |     |     |       |     |       |
|-----------|------|------|---|---|------|-------|------------|------|---|------|------|---|---|---|------|------|------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-------|
| Bit       |      |      |   |   |      |       |            |      |   |      | 1    | 1 | 1 | 1 | 1    | 1    | 1    | 1     | 1     | 1     | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   |     |       | 3   | 3     |
|           | 0    | 1    | 2 | 3 | 4    | 5     | 6          | 7    | 8 | 9    | 0    | 1 | 2 | 3 | 4    | 5    | 6    | 7     | 8     | 9     | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9     | 0   | 1     |
| Name      |      | GCSR |   |   |      |       |            |      |   |      |      |   |   |   |      |      | FEAT |       |       |       |     |     |     |     |     |     |     |     |     |       |     |       |
|           | LEND |      |   |   | BHOG | FLBRD | MBT1       | MBT0 |   | MARB | MPIC |   |   |   | MID1 | MID0 |      | EXT14 | EXT13 | EXT12 | TX  | ΧI  | X   | X   | X   | XΊ  | XΊ  | ΓX  | ΙX  | EXT02 | Ϋ́  | EXT00 |
| Operation | R/W  | R    | R | ľ | _    | _     | $\searrow$ | R/W  | R | R    | R    | R | R | R | R    | R    | R    | R     | R     | R     | R   | R   | R   | R   | R   | R   | R   | R   | R   | R     | R   | R     |
| Reset     | 0    | 0    | 0 | 0 | 0    | 0     | 0          | 0    | 0 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0/1   | 0/1   | 0/1   | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1   | 0/1 | 0/1   |

# LEND

**Endian Select.** If set, the MPC bus is operating in little-endian mode. The MPC address will be modified as described in the *When MPC Devices are Little-Endian* section. When LEND is clear, the MPC bus is operating in big-endian mode, and all data to/from PCI is swapped as described in the *When MPC Devices are Big-Endian* section.

### **FLBRD**

**Flush Before Read.** If set, the Raven will guarantee that all PCI-initiated posted write transactions will complete before any MPC-initiated read transactions are allowed to complete. When FLBRD is clear, there is no correlation between these transaction types and their order of completion. Please refer to the *Transaction Ordering* section for more information.

#### **BHOG**

**Bus Hog.** If set, the Raven MPC master will operate in the Bus Hog mode. Bus Hog mode means the MPC master will continually request the MPC bus for the entire duration of each PCI transfer. If Bus Hog is not enabled, the MPC master will request the bus in a normal manner. Please refer to the *MPC Master* section for more information.

### **MBTx**

**MPC Bus Time-out.** Specifies the MPC bus time-out length. The time-out length is encoded as follows:

| MBT | Time-Out Length |
|-----|-----------------|
| 00  | 256 µsec        |
| 01  | 64 μsec         |
| 10  | 8 μsec          |
| 11  | Disabled        |

**P64** 

**64-bit PCI Mode Enable.** If set, the Raven is connected to a 64-bit PCI bus. This bit is set if REQ64\* is asserted on the rising edge of RESET\*.

**MARB** 

**MPC Arbiter Enable.** If set, the Raven internal MPC Arbiter is enabled. This bit is set if CPUID is %111 on the rising edge of RESET\*.

### **MPIC**

Multi-Processor Interrupt Controller Enable. If set, the Raven internal MPIC interrupt controller is enabled. This bit is set if EXT15 is high on the rising edge of RESET\*. If cleared, Raven-detected errors are passed on to the processor 0 INT pin.

**MID**x

Master ID. Encoded as shown below to indicate who is currently the MPC bus master. When the internal MPC arbiter is enabled (MARB is set), these bits are controlled by the internal arbiter. When the internal arbiter is disabled (MARB is clear) these bits reflect the status of the CPUID pins. In a multi- processor environment, these bits allow software to determine on which processor it is currently running. The internal MPC arbiter encodes this field as follows:

| MID | <b>Current MPC Data Bus Master</b> |
|-----|------------------------------------|
| 00  | Device on ABG0*                    |
| 01  | Device on ABG1*                    |
| 10  | Device on ABG2                     |
| 11  | Raven                              |

**FEAT Feature Register.** Each bit in this register reflects the state of one of the external interrupt input pins on the rising edge of RESET\*. This register may be used to report hardware configuration parameters to system software.

# **MPC Arbiter Control Register**

| Address   | \$FEFF000C |   |   |     |    |   |   |   |      |   |        |        |        |        |        |        |        |        |        |        |        |            |            |               |               |               |        |        |        |            |        |        |
|-----------|------------|---|---|-----|----|---|---|---|------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|------------|---------------|---------------|---------------|--------|--------|--------|------------|--------|--------|
| Bit       | 0          | 1 | 2 | 3   | 4  | 5 | 6 | 7 | 8    | 9 | 1<br>0 | 1<br>1 | 1<br>2 | 1<br>3 | 1<br>4 | 1<br>5 | 1<br>6 | 1<br>7 | 1<br>8 | 1<br>9 | 2<br>0 | 2<br>1     | 2 2        | 2 3           | 2<br>4        | 2<br>5        | 2<br>6 | 2<br>7 | 2<br>8 | <b>2 9</b> | 3<br>0 | 3<br>1 |
| Name      |            |   |   |     |    |   |   |   |      |   |        |        |        |        | MARB   |        |        |        |        |        |        |            |            |               |               |               |        |        |        |            |        |        |
|           |            |   |   |     |    |   |   |   |      |   |        |        |        |        |        |        |        |        |        |        |        | BREN2      | Ε          | $\sim$        | 7             | <b>7</b> 1    | L      | BAMD   |        |            | DEFM1  | DEFM0  |
| Operation |            |   |   | F   | ₹  |   |   |   |      |   |        | F      | ₹      |        |        |        | R      | R      | R      | R      |        | $\searrow$ | $\searrow$ | $\overline{}$ | $\overline{}$ | $\overline{}$ | $\sim$ | R/W    | R      |            |        | R/W    |
| Reset     |            |   |   | \$( | 00 |   |   |   | \$00 |   |        |        |        |        |        | 0      | 0      | 0      | 0      | 0      | 1      | _          | 1          | 0             | 0             | 0             | -      | 0      | 0      | 1          | _      |        |

This register is not used in MVME2300 series boards.

# **Prescaler Adjust Register**

| Address   |                 | \$FEF           | F0010                                                                                         |                               |  |  |  |  |  |  |  |
|-----------|-----------------|-----------------|-----------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|
| Bit       | 0 1 2 3 4 5 6 7 | 8 9 0 1 2 3 4 5 | 1     1     1     1     2     2     2     2       6     7     8     9     0     1     2     3 | _   _   _   _   _   _   _   _ |  |  |  |  |  |  |  |
| Name      |                 |                 |                                                                                               | PADJ                          |  |  |  |  |  |  |  |
| Operation | R               | R               | R                                                                                             | R/W                           |  |  |  |  |  |  |  |
| Reset     | \$00            | \$00            | \$00                                                                                          | \$B4                          |  |  |  |  |  |  |  |

**PADJ** 

**Prescaler Adjust.** Used to specify a scale factor for the prescaler to ensure that the time base for the bus timer is 1 MHz. The scale factor is calculated as follows:

PADJ = 256 - Clk,

where *Clk* is the frequency of the CLK input in MHz. This register should be written with the value \$BE, indicating a 66MHz MPC bus.

### **MPC Error Enable Register**

| Address   | \$FEFF0020 |   |   |     |    |   |   |   |   |   |        |        |        |        |        |        |        |        |        |        |               |        |          |            |        |        |            |            |               |               |        |      |
|-----------|------------|---|---|-----|----|---|---|---|---|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|----------|------------|--------|--------|------------|------------|---------------|---------------|--------|------|
| Bit       | 0          | 1 | 2 | 3   | 4  | 5 | 6 | 7 | 8 | 9 | 1<br>0 | 1<br>1 | 1<br>2 | 1<br>3 | 1<br>4 | 1<br>5 | 1<br>6 | 1<br>7 | 1<br>8 | 1<br>9 | 2<br>0        | 2<br>1 | 2 2      | <b>2 3</b> | 2<br>4 | 2<br>5 | <b>2 6</b> | <b>2 7</b> | 2<br>8        | <b>2 9</b>    | 3<br>0 |      |
| Name      |            |   |   |     |    |   |   |   |   |   |        |        |        |        | MEREN  |        |        |        |        |        |               |        |          |            |        |        |            |            |               |               |        |      |
|           |            |   |   |     |    |   |   |   |   |   |        |        |        |        |        |        |        | Ξ      | MATOM  |        | PERRM         | SERRM  | $\leq$ 1 | RTAM       |        |        | MATOII     |            | PERRI         | SERRI         | SMAI   | RTAI |
| Operation |            |   |   | F   | ₹  |   |   |   |   |   |        | F      | ₹      |        |        |        | R      | R/W    | R/W    | ľ      | $\overline{}$ |        | -        | R/W        | R      | ĺ      | R/W        |            | $\overline{}$ | $\overline{}$ |        | R/W  |
| Reset     |            |   |   | \$( | 00 |   |   |   |   |   |        | \$0    | 00     |        |        |        | 0      | 0      | 0      | 0      | 0             | 0      | 0        | 0          | 0      | 0      | 0          | 0          | 0             | 0             | 0      | 0    |

#### **DFLT**

**Default MPC Master ID.** This bit determines which MCHK\* pin will be asserted for error conditions in which the MPC master ID cannot be determined or the Raven was the MPC master. For example, in event of a PCI parity error for a transaction in which the Raven's PCI master was not involved, the MPC master ID cannot be determined. When DFLT is set, MCHK1\* is used. When DFLT is clear, MCHK0\* is used.

#### MATOM

MPC Address Bus Time-out Machine Check Enable. When this bit is set, the MATO bit in the MERST register is used to assert the MCHK output to the current address bus master. When this bit is clear, MCHK is not asserted.

#### PERRM

**PCI Parity Error Machine Check Enable.** When this bit is set, the PERR bit in the MERST register is used to assert the MCHK output to bus master 0. When this bit is clear, MCHK is not asserted.

#### SERRM

**PCI System Error Machine Check Enable.** When this bit is set, the SERR bit in the MERST register is used to assert the MCHK output to bus master 0. When this bit is clear, MCHK is not asserted.

### **SMAM** PCI Signalled Master Abort Machine Check Enable.

When this bit is set, the SMA bit in the MERST register is used to assert the MCHK output to the bus master which initiated the transaction. When this bit is clear, MCHK is not asserted.

### **RTAM** PCI Master Received Target Abort Machine Check

**Enable.**When this bit is set, the RTA bit in the MERST register is used to assert the MCHK output to the bus master which initiated the transaction. When this bit is clear, MCHK is not asserted.

### MATOI MPC Address Bus Time-out Interrupt Enable. When

this bit is set, the MATO bit in the MERST register is used to assert an interrupt through the MPIC interrupt controller. When this bit is clear, no interrupt is asserted.

# **PERRI PCI Parity Error Interrupt Enable.**When this bit is set,

the PERR bit in the MERST register is used to assert an interrupt through the MPIC interrupt controller. When this bit is clear, no interrupt is asserted.

# **SERRI PCI System Error Interrupt Enable.**When this bit is

set, the PERR bit in the MERST register is used to assert an interrupt through the MPIC interrupt controller. When this bit is clear, no interrupt is asserted.

### SMAI PCI Master Signalled Master Abort Interrupt

**Enable.**When this bit is set, the SMA bit in the MERST register is used to assert an interrupt through the MPIC interrupt controller. When this bit is clear, no interrupt is asserted.

### RTAI PCI Master Received Target Abort Interrupt

**Enable.** When this bit is set, the RTA bit in the MERST register is used to assert an interrupt through the MPIC interrupt controller. When this bit is clear, no interrupt is asserted.

# **MPC Error Status Register**

| Address   |     |   |     |   |   |   |   |   |   |        |        |        | \$     | FF     | EFI    | F00    | )24    | ļ      |     |   |  |   |            |        |            |    |      |      |     |        |
|-----------|-----|---|-----|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----|---|--|---|------------|--------|------------|----|------|------|-----|--------|
| Bit       | 0 1 | 2 | 3   | 4 | 5 | 6 | 7 | 8 | 9 | 1<br>0 | 1<br>1 | 1<br>2 | 1<br>3 | 1<br>4 | 1<br>5 | 1<br>6 | 1<br>7 | 1<br>8 |     |   |  |   | <b>2 4</b> | 2<br>5 | <b>2 6</b> |    |      |      | _   | 3<br>1 |
| Name      |     |   |     |   |   |   |   |   |   |        |        |        |        |        |        |        |        |        |     |   |  |   |            |        | N          | 1E | RS   | Т    |     |        |
|           |     |   |     |   |   |   |   |   |   |        |        |        |        |        |        |        |        |        |     |   |  |   | OVE        |        | MATO       |    | PERR | SERR | SMA | RTA    |
| Operation |     |   | R   | _ |   |   |   |   |   |        | F      | ?      |        |        |        |        |        |        | R   |   |  | ( | R/C        | R      | R/C        | R  | R/C  | R/C  | R/C | R/C    |
| Reset     |     |   | \$0 | 0 |   |   |   |   |   |        | \$0    | 00     |        |        |        |        |        |        | \$0 | 0 |  | 0 | 0          | 0      | 0          | 0  | 0    | 0    | 0   | 0      |

**OVF** 

**Error Status Overflow.** This bit is set when an error is detected and any of the error status bits are already set. The bit may be cleared by writing a 1 to it; writing a 0 to it has no effect.

MATO

MPC Address bus Time-Out. This bit is set when the MPC address bus timer times out. The bit may be cleared by writing it to a 1; writing it to a 0 has no effect. When the MATOM bit in the MEREN register is set, the assertion of this bit will assert MCHK to the master designated by the MID field in the MERAT register. When the MATOI bit in the MEREN register is set, the assertion of this bit will assert an interrupt through the MPIC interrupt controller.

**PERR** 

PCI Parity Error. This bit is set when the PCI PERR\* pin is asserted. The bit may be cleared by writing it to a 1; writing it to a 0 has no effect. When the PERRM bit in the MEREN register is set, the assertion of this bit will assert MCHK to the master designated by the DFLT bit in the MERAT register. When the PERRI bit in the MEREN register is set, the assertion of this bit will assert an interrupt through the MPIC interrupt controller.

2

### **SERR**

PCI System Error. This bit is set when the PCI SERR\* pin is asserted. The bit may be cleared by writing it to a 1; writing it to a 0 has no effect. When the SERRM bit in the MEREN register is set, the assertion of this bit will assert MCHK to the master designated by the DFLT bit in the MERAT register. When the SERRI bit in the MEREN register is set, the assertion of this bit will assert an interrupt through the MPIC interrupt controller.

### **SMA**

PCI Master Signalled Master Abort. This bit is set when the PCI master signals master abort to terminate a PCI transaction. The bit may be cleared by writing it to a 1; writing it to a 0 has no effect. When the SMAM bit in the MEREN register is set, the assertion of this bit will assert MCHK to the master designated by the MID field in the MERAT register. When the SMAI bit in the MEREN register is set, the assertion of this bit will assert an interrupt through the MPIC interrupt controller.

### **RTA**

PCI Master Received Target Abort. This bit is set when the PCI master receives target abort to terminate a PCI transaction. The bit may be cleared by writing it to a 1; writing it to a 0 has no effect. When the RTAM bit in the MEREN register is set, the assertion of this bit will assert MCHK to the master designated by the MID field in the MERAT register. When the RTAI bit in the MEREN register is set, the assertion of this bit will assert an interrupt through the MPIC interrupt controller.

# **MPC Error Address Register**

| Address   | \$FEFF0028                                                      |
|-----------|-----------------------------------------------------------------|
| Bit       | 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| Name      | MERAD                                                           |
| Operation | R                                                               |
| Reset     | \$0000000                                                       |

MERAD MPC Error Address. This register captures the MPC address when the MATO bit is set in the MERST register. It captures the PCI address when the SMA or RTA bits are set in the MERST register. Its contents are not defined when the PERR or SERR bits are set in the MERST register.

# **MPC Error Attribute Register - MERAT**

If the PERR or SERR bits are set in the MERST register, the contents of the MERAT register are zero. If the MATO bit is set, the register is defined by the following figure:

| Address   |                   |   |   |     |    |   |   |   |   |   |        |        |        | \$     | FE     | FF     | 00     | )20    | Z      |        |        |   |   |   |       |    |       |     |     |     |     |        |
|-----------|-------------------|---|---|-----|----|---|---|---|---|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|---|---|-------|----|-------|-----|-----|-----|-----|--------|
| Bit       | 0                 | 1 | 2 | 3   | 4  | 5 | 6 | 7 | 8 | 9 | 1<br>0 | 1<br>1 | 1<br>2 | 1<br>3 | 1<br>4 | 1<br>5 | 1<br>6 | 1<br>7 | 1<br>8 | 1<br>9 | 2<br>0 |   |   |   |       |    |       |     |     |     |     | 3<br>1 |
| Name      | MERAT SELLERIBERE |   |   |     |    |   |   |   |   |   |        |        |        |        |        |        |        |        |        |        |        |   |   |   |       |    |       |     |     |     |     |        |
|           |                   |   |   |     |    |   |   |   |   |   |        |        |        |        |        | Ī      |        |        | MID1   | MID0   |        |   |   |   | TSIZ0 | II | TSIZ2 | TT0 | TT1 | TT2 | TT3 | TT4    |
| Operation |                   |   |   | F   | ₹  |   |   |   |   |   |        | F      | ₹      |        |        | ;      | R      | R      | R      | R      | R      | R | R | R | R     | R  | R     | R   | R   | R   | R   | R      |
| Reset     |                   |   |   | \$0 | 00 |   |   |   |   |   |        | \$0    | 00     |        |        | C      | 0      | 0      | 0      | 0      | 0      | 0 | 0 | 0 | 0     | 0  | 0     | 0   | 0   | 0   | 0   | 0      |

MIDx MPC Master ID. Contains the ID of the MPC master which originated the transfer in which the error occurred. The encoding scheme is identical to that used in the GCSR register.

**TBST** Transfer Burst. This bit is set when the transfer in which the error occurred was a burst transfer.

**TSIZx Transfer Size.** Contains the transfer size of the MPC transfer in which the error occurred.

**TTx Transfer Type.** Contains the transfer type of the MPC transfer in which the error occurred.

If the SMA or RTA bits are set, the register is defined by the following figure:

| Address   |   |       |   |     |    |   |   |   |   |   |        |        |        | \$     | FF     | FF     | F00    | )20    | 7      |        |                      |        |       |            |        |        |        |        |    |       |        |       |
|-----------|---|-------|---|-----|----|---|---|---|---|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------------|--------|-------|------------|--------|--------|--------|--------|----|-------|--------|-------|
| Bit       | 0 | 1     | 2 | 3   | 4  | 5 | 6 | 7 | 8 | 9 | 1<br>0 | 1<br>1 | 1<br>2 | 1<br>3 | 1<br>4 | 1<br>5 | 1<br>6 | 1<br>7 | 1<br>8 | 1<br>9 | <b>2</b><br><b>0</b> | 2<br>1 | 2 2   | <b>2 3</b> | 2<br>4 | 2<br>5 | 2<br>6 | 2<br>7 |    |       | 3<br>0 | _     |
| Name      |   | MERAT |   |     |    |   |   |   |   |   |        |        |        |        |        |        |        |        |        |        |                      |        |       |            |        |        |        |        |    |       |        |       |
|           |   |       |   |     |    |   |   |   |   |   |        |        |        |        |        |        | WP     |        | MID1   | MID0   | COMM3                | COMM2  | COMM1 | COMM0      | Y      | Y      | Y      | ΥT     | ΥT | BYTE2 | YT     | BYTE0 |
| Operation |   |       |   | F   | λ  |   |   |   |   |   |        | F      | λ      |        |        |        | R      | R      | R      | R      | R                    | R      | R     | R          | R      | R      | R      | R      | R  | R     | R      | R     |
| Reset     |   |       |   | \$( | 00 |   |   |   |   |   |        | \$0    | 00     |        |        |        | 0      | 0      | 0      | 0      | 0                    | 0      | 0     | 0          | 0      | 0      | 0      | 0      | 0  | 0     | 0      | 0     |

**WP Write-Post Completion.** This bit is set when the PCI master detects an error while completing a write-post transfer.

MIDx MPC Master ID. Contains the ID of the MPC master which originated the transfer in which the error occurred. The encoding scheme is identical to that used in the GCSR register

**COMMx PCI Command.** Contains the PCI command of the PCI transfer in which the error occurred.

**BYTEx PCI Byte Enable.** Contains the PCI byte enables of the PCI transfer in which the error occurred. A set bit designates a selected byte.

# **PCI Interrupt Acknowledge Register**

| Address   | \$FEFF0030                                                      |  |  |  |  |  |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Bit       | 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |  |  |  |  |  |  |  |  |  |  |  |
| Name      | PIACK                                                           |  |  |  |  |  |  |  |  |  |  |  |
| Operation | R                                                               |  |  |  |  |  |  |  |  |  |  |  |
| Reset     | \$0000000                                                       |  |  |  |  |  |  |  |  |  |  |  |

### **PIACK**

**PCI Interrupt Acknowledge.** Performing a read from this register will initiate a single PCI Interrupt Acknowledge cycle. Any single byte or combination of bytes may be read from, and the actual byte enable pattern used during the read will be passed on to the PCI bus. Upon completion of the PCI interrupt acknowledge cycle, the Raven will present the resulting vector information obtained from the PCI bus as read data.

# MPC Slave Address (0,1 and 2) Registers

| Address   | MSADD0 - \$FEFF0040                                             |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
|           | MSADD1 - \$FEFF0048                                             |  |  |  |  |  |  |  |  |  |  |  |  |
|           | MSADD2 - \$FEFF0050                                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Bit       | 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| Name      | MSADDx                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
|           | START END                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| Operation | R/W R/W                                                         |  |  |  |  |  |  |  |  |  |  |  |  |
| Reset     | \$0000 \$0000                                                   |  |  |  |  |  |  |  |  |  |  |  |  |

To initiate a PCI cycle from the MPC bus, the MPC address must be greater than or equal to the START field and less than or equal to the END field.

2

### **START**

**Start Address.** Determines the start address of a particular memory area on the MPC bus which will be used to access PCI bus resources. The value of this field will be compared with the upper 16 bits of the incoming MPC address.

**END** 

**End Address.** Determines the end address of a particular memory area on the MPC bus which will be used to access PCI bus resources. The value of this field will be compared with the upper 16 bits of the incoming MPC address.

# MPC Slave Address (3) Register

| Address   |   |                   |   |   |   |   |   |   |   |   |        | N      | 1S.    | ΑD     | D3     | 3 -    | \$F    | EF     | FO     | 05     | 8      |        |     |  |  |            |  |        |  |
|-----------|---|-------------------|---|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----|--|--|------------|--|--------|--|
| Bit       | 0 | 1                 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1<br>0 | 1<br>1 | 1<br>2 | 1<br>3 | 1<br>4 | 1<br>5 | 1<br>6 | 1<br>7 | 1<br>8 | 1<br>9 | 2<br>0 | 2<br>1 | 2 2 |  |  | <b>2 7</b> |  | 3<br>0 |  |
| Name      |   |                   |   |   |   |   |   |   |   |   |        |        |        |        | M      | SA     | DΙ     | )3     |        |        |        |        |     |  |  |            |  |        |  |
|           |   | MSADD3  START END |   |   |   |   |   |   |   |   |        |        |        |        |        |        |        |        |        |        |        |        |     |  |  |            |  |        |  |
| Operation |   | R/W R/W           |   |   |   |   |   |   |   |   |        |        |        |        |        |        |        |        |        |        |        |        |     |  |  |            |  |        |  |
| Reset     |   |                   |   |   |   |   |   |   |   |   |        |        |        |        |        |        |        |        |        |        |        |        |     |  |  |            |  |        |  |

MSADD3, MSOFF3 and MSATT3 represent the only register group which can be used to initiate access to the PCI Configuration Address (\$80000CF8) and Configuration Data (\$80000CFC) registers. Note that this implies that MSxxx3 also represents the generation of PCI Special Cycles. The power-up default values of MSADD3, MSOFF3 and MSATT3 are set to allow access to PCI configuration space without MPC register initialization. For additional information, please refer to the description of the MSOFF3/MSATT3 registers under MPC Slave Offset/Attribute (3) Registers.

To initiate a PCI cycle from the MPC bus, the MPC address must be greater than or equal to the START field and less than or equal to the END field.

START Start Address. Determines the start address of a particular memory area on the MPC bus which will be used to access PCI bus resources. The value of this field will be compared with the upper 16 bits of the incoming MPC address.

**END** End Address. Determines the end address of a particular memory area on the MPC bus which will be used to access PCI bus resources. The value of this field will be compared with the upper 16 bits of the incoming MPC address.

# MPC Slave Offset/Attribute (0,1 and 2) Registers

| Address   |   |   |   |   |   |   |   |     |     | l  | MS | Ol | FF( | )/ <b>N</b> | IS. | ΑT | T0 | - 5  | \$F | EF  | F00 | )44 | ļ |   |               |     |   |      |   |    |                    |     |
|-----------|---|---|---|---|---|---|---|-----|-----|----|----|----|-----|-------------|-----|----|----|------|-----|-----|-----|-----|---|---|---------------|-----|---|------|---|----|--------------------|-----|
|           |   |   |   |   |   |   |   |     |     | N  | MS | Οŀ | F.  | l/N         | IS  | AΤ | T1 | - \$ | FI  | EF. | F00 | )40 |   |   |               |     |   |      |   |    |                    |     |
|           |   |   |   |   |   |   |   |     |     | 1  | MS | Ol | FF. | 2/N         | IS. | ΑT | T2 | - 5  | \$F | EF. | F00 | )54 | Ļ |   |               |     |   |      |   |    |                    |     |
| Bit       |   |   |   |   |   |   |   |     |     |    | 1  | 1  | 1   | 1           | 1   | 1  | 1  | 1    | 1   | 1   | 2   | 2   | 2 | 2 | 2             | 2   | 2 | 2    | 2 | 2  | 3                  | 3   |
|           | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8   | 9  | 0  | 1  | 2   | 3           | 4   | 5  | 6  | 7    | 8   | 9   | 0   | 1   | 2 | 3 | 4             | 5   | 6 | 7    | 8 | 9  | 0                  | 1   |
| Name      |   |   |   |   |   |   | M | SC  | FI  | Fx |    |    |     |             |     |    |    |      |     | •   |     |     | • |   |               |     | M | [SA  | T | Гх |                    |     |
|           |   |   |   |   |   |   |   |     |     |    |    |    |     |             |     |    |    |      |     |     |     |     |   |   | REN           | W   |   | W    |   |    | MEM                | MOI |
|           |   |   |   |   |   |   |   |     |     |    |    |    |     |             |     |    |    |      |     |     |     |     |   |   | Ž             | Ë   |   | WPEN |   |    | $\mathbf{M}^{\Xi}$ | Z   |
| Operation |   |   |   |   |   |   |   | R/  | W   |    |    |    |     |             |     |    |    |      |     | I   | R   |     |   |   | $\rightarrow$ | R/W | R | R/W  | R | R  | $\overline{}$      | R/W |
| Reset     |   |   |   |   |   |   | 9 | 500 | 000 | )  |    |    |     |             |     |    |    |      |     | \$( | 00  |     |   |   | 0             | 0   | 0 | 0    | 0 | 0  | 0                  | 0   |

MSOFFx MPC Slave Offset. A 16-bit offset that is added to the upper 16 bits of the MPC address to determine the PCI address used for transfers from the MPC bus to PCI. This offset allows PCI resources to reside at addresses that would not normally be visible from the MPC bus.

**REN** Read Enable. If set, the corresponding MPC slave is enabled for read transactions.

**WEN** Write Enable. If set, the corresponding MPC slave is enabled for write transactions.

2

**WPEN Write-Post Enable.** If set, write-posting is enabled for the corresponding MPC slave.

MEM PCI Memory Cycle. If set, the corresponding MPC slave will generate transfers to or from PCI memory space.

When clear, the corresponding MPC slave will generate transfers to or from PCI I/O space using the addressing mode defined by the IOM field.

IOM PCI I/O Mode. If set, the corresponding MPC slave will generate PCI I/O cycles using spread addressing as defined in the section on *Generating PCI Memory and I/O Cycles*. When clear, the corresponding MPC slave will generate PCI I/O cycles using contiguous addressing. This field only has meaning when the MEM bit is clear.

# MPC Slave Offset/Attribute (3) Registers

| Address   |   |   |   |   |   |   |   |    |     | N  | ЛS | OF | ŦF3 | 3/N | ISA | AΤ | Т3 | - \$ | SFE | EFF | 700 | 5C | 7 |   |               |     |   |     |              |    |   |     |
|-----------|---|---|---|---|---|---|---|----|-----|----|----|----|-----|-----|-----|----|----|------|-----|-----|-----|----|---|---|---------------|-----|---|-----|--------------|----|---|-----|
| Bit       |   |   |   |   |   |   |   |    |     |    | 1  | 1  | 1   | 1   | 1   | 1  | 1  | 1    | 1   | 1   | 2   | 2  | 2 | 2 | 2             | 2   |   |     |              |    | 3 |     |
|           | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8   | 9  | 0  | 1  | 2   | 3   | 4   | 5  | 6  | 7    | 8   | 9   | 0   | 1  | 2 | 3 | 4             | 5   | 6 | 7   | 8            | 9  | 0 | 1   |
| Name      |   |   |   |   |   |   | M | SC | FF  | 73 |    |    |     |     |     |    |    |      |     |     |     |    |   |   |               |     | M | SA  | <b>\</b> T'. | Г3 |   |     |
|           |   |   |   |   |   |   |   |    |     |    |    |    |     |     |     |    |    |      |     |     |     |    |   | • | REN           | WEN |   | WPE |              |    |   | MOI |
|           |   |   |   |   |   |   |   |    |     |    |    |    |     |     |     |    |    |      |     |     |     |    |   |   |               | I   |   | N   |              |    |   |     |
| Operation |   |   |   |   |   |   |   | R/ | W   |    |    |    |     |     |     |    |    |      |     | F   | 2   |    |   |   | $\rightarrow$ | R/W | R | R/W | R            | R  | R | R/W |
| Reset     |   |   |   |   |   |   | 5 | 88 | 000 | )  |    |    |     |     |     |    |    |      |     | \$0 | 00  |    |   |   | 1             | 1   | 0 | 0   | 0            | 0  | 0 | 0   |

MSOFF3 MPC Slave Offset. Contains a 16-bit offset that is added to the upper 16 bits of the MPC address to determine the PCI address used for transfers from the MPC bus to PCI. This offset allows PCI resources to reside at addresses that would not normally be visible from the MPC bus. It is initialized to \$8000 to facilitate a zero-based access to PCI space.

**REN** Read Enable. If set, the corresponding MPC slave is enabled for read transactions.

**WEN** Write Enable. If set, the corresponding MPC slave is

enabled for write transactions.

**WPEN Write-Post Enable.** If set, write-posting is enabled for the

corresponding MPC slave.

**IOM PCI I/O Mode.** If set, the corresponding MPC slave will

generate PCI I/O cycles using spread addressing as defined in the section on *Generating PCI Memory and I/O Cycles*. When clear, the corresponding MPC slave will generate PCI I/O cycles using contiguous addressing.

## **General-Purpose Registers**

| Address   |   |                                                                                                                                     |   |   |   |   |   |   |   |  | GI<br>GI<br>GI<br>GF | PR<br>PR | EG<br>EG | 0 (<br>1 ( | Lo<br>(Ul | we<br>ope | er)<br>er) | - \$<br>- \$ | FE<br>FE | FF<br>FF | 00<br>00 | 74<br>78 |   |   |     |     |            |        |        |        |        |        |
|-----------|---|-------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|--|----------------------|----------|----------|------------|-----------|-----------|------------|--------------|----------|----------|----------|----------|---|---|-----|-----|------------|--------|--------|--------|--------|--------|
| Bit       | 0 | 1                                                                                                                                   | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  | 1                    | 1        | 1        | 1          | 1         | 1         | 1          | 1            | 1        | 1        | 2        | 2        | 2 | 2 | 2 4 | 2 5 | <b>2</b> 6 | 2<br>7 | 2<br>8 | 2<br>9 | 3<br>0 | 3<br>1 |
| Name      |   | 1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8   9   0   1    GPREGX |   |   |   |   |   |   |   |  |                      |          |          |            |           |           |            |              |          |          |          |          |   |   |     |     |            |        |        |        |        |        |
| Operation |   | R/W                                                                                                                                 |   |   |   |   |   |   |   |  |                      |          |          |            |           |           |            |              |          |          |          |          |   |   |     |     |            |        |        |        |        |        |
| Reset     |   | \$0000000                                                                                                                           |   |   |   |   |   |   |   |  |                      |          |          |            |           |           |            |              |          |          |          |          |   |   |     |     |            |        |        |        |        |        |

These general-purpose read/write registers are provided for inter-process message passing or general-purpose storage. They do not control any hardware.

# **PCI** Registers

The PCI Configuration registers are compliant with the configuration register set described in the PCI Local Bus Specification, Revision 2.0. The CONFIG\_ADDRESS and CONFIG\_DATA registers described in this section are accessed within PCI I/O space.

All write operations to reserved registers will be treated as no-ops. That is, the access will be completed normally on the bus and the data will be discarded. Read accesses to reserved or unimplemented registers will be completed normally and a data value of 0 returned.

The Raven PCI Configuration Register map appears in Table 2-8. The Raven PCI I/O Register map appears in Table 2-9.

Table 2-8. Raven PCI Configuration Register Map

| 3     3     2     2     2     2     2     2     2     2     2     2     2     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <th>1 1 1 1 1 1 5 4 3 2 1 0 9 8</th> <th>7 6 5 4 3 2 1 0</th> <th>&lt; Bit</th> | 1 1 1 1 1 1 5 4 3 2 1 0 9 8 | 7 6 5 4 3 2 1 0 | < Bit       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|-------------|
| DEVID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VEI                         | NID             | \$00        |
| PSTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PCO                         | MM              | \$04        |
| CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | REVID           | \$08        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                 | \$0C        |
| IOB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ASE                         |                 | \$10        |
| MEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BASE                        |                 | \$14        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                 | \$18 - \$7F |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DD0                         |                 | \$80        |
| PSOFF0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | PSATT0          | \$84        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DD1                         |                 | \$88        |
| PSOFF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | PSATT1          | \$8C        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DD2                         |                 | \$90        |
| PSOFF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | PSATT2          | \$94        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DD3                         |                 | \$98        |
| PSOFF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | PSATT3          | \$9C        |

Table 2-9. Raven PCI I/O Register Map

| 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1                                                                                                                                                     | < Bit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1     0     9     8     7     6     5     4     3     2     1     0     9     8     7     6     5     4     3     2     1     0     9     8     7     6     5     4     3     2     1     0 |       |
| CONFIG_ADDRESS                                                                                                                                                                              | \$CF8 |
| CONFIG_DATA                                                                                                                                                                                 | \$CFC |

# **Vendor ID/ Device ID Registers**

| Offset    |   |                                    |   |   |   |   |     |   |   |   |   |   |   |   |        | \$( | 00     |        |     |        |   |        |      |     |   |   |   |   |   |   |   |   |
|-----------|---|------------------------------------|---|---|---|---|-----|---|---|---|---|---|---|---|--------|-----|--------|--------|-----|--------|---|--------|------|-----|---|---|---|---|---|---|---|---|
| Bit       | 3 | 3                                  | 2 | 2 | 2 | 2 | 2 5 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1<br>7 | 1   | 1<br>5 | 1<br>4 | 1 3 | 1<br>2 | 1 | 1<br>0 | 9    | 8   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Name      |   | 0 9 8 7 6 5 4 3 2 1 0 9 8<br>DEVID |   |   |   |   |     |   |   |   |   |   |   |   |        |     | •      |        |     | _      | Ů |        |      | VII |   |   | • |   | _ | _ |   |   |
| Operation |   | R                                  |   |   |   |   |     |   |   |   |   |   |   |   |        |     |        |        |     |        |   |        | F    | 2   |   |   |   |   |   |   |   |   |
| Reset     |   | \$4801                             |   |   |   |   |     |   |   |   |   |   |   |   |        |     |        |        |     |        |   | 9      | \$1( | )57 | 7 |   |   |   |   |   |   |   |

**VENID Vendor ID.** Identifies the manufacturer of the device. This identifier is allocated by the PCI SIG to ensure uniqueness. \$1057 has been assigned to Motorola. This register is duplicated in the MPC registers.

**DEVID Device ID.** Identifies the particular device. The Raven will always return \$4801. This register is duplicated in the MPC registers.

# **PCI Command/ Status Registers**

| Offset    |        |        |            |        |        |         |         |            |      |     |        |        |        |        |        | \$(    | )4     |        |        |        |        |        |    |      |   |      |   |   |   |               |       |      |
|-----------|--------|--------|------------|--------|--------|---------|---------|------------|------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|------|---|------|---|---|---|---------------|-------|------|
| Bit       | 3<br>1 | 3<br>0 | <b>2 9</b> | 2<br>8 | 2<br>7 | 2<br>6  | 2<br>5  | <b>2 4</b> | 2 3  | 2 2 | 2<br>1 | 2<br>0 | 1<br>9 | 1<br>8 | 1<br>7 | 1<br>6 | 1<br>5 | 1<br>4 | 1<br>3 | 1<br>2 | 1<br>1 | 1<br>0 | 9  | 8    | 7 | 6    | 5 | 4 | 3 | 2             | 1     | 0    |
| Name      |        |        |            |        |        |         | P       | ST         | ΤAΤ  | Γ   |        |        |        |        |        |        |        |        |        |        |        |        | PO | CO   | M | M    |   |   |   |               |       |      |
|           | RCVPE  | SIGSE  | RCVMA      | RCVTA  | 54     | SELTIM1 | SELTIM0 | DPAR       | FAST |     |        |        |        |        |        |        |        |        |        |        |        |        |    | SERR |   | PERR |   |   |   | MSTR          | MEMSP | IOSP |
| Operation | R/C    | R/C    | R/C        | R/C    | R/C    | R       | R       | R/C        | R    | R   | R      | R      | R      | R      | R      | R      | R      | R      | R      | R      | R      | R      |    | W/M  |   | R/W  | R | R |   | $\overline{}$ |       | R/W  |
| Reset     | 0      | 0      | 0          | 0      | 0      | 0       | 1       | 0          | 1    | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0  | 0    | 0 | 0    | 0 | 0 | 0 | 1             | 0     | 0    |

**IOSP IO Space Enable.** If set, the Raven will respond to PCI I/O accesses when appropriate. If cleared, the Raven will not respond to PCI I/O space accesses.

**MEMSP Memory Space Enable.** If set, the Raven will respond to PCI memory space accesses when appropriate. If cleared, the Raven will not respond to PCI memory space accesses.

**MSTR Bus Master Enable.** If set, the Raven may act as a master on PCI. If cleared, the Raven may not act as a PCI master.

**PERR** Parity Error Response. If set, the Raven will check parity on all PCI transfers. If cleared, the Raven will ignore any parity errors that it detects and will continue normal operation.

**SERR System Error Enable.** This bit enables the SERR\* output pin. If clear, the Raven will never drive SERR\*. If set, the Raven will drive SERR\* active when a system error is detected.

**FAST** Fast Back-to-Back Capable. This bit indicates that the Raven is capable of accepting fast back-to-back transactions with different targets.

DPAR Data Parity Detected. This bit is set when three conditions are met: 1) the Raven asserted PERR\* itself or observed PERR\* asserted; 2) the Raven was the PCI master for the transfer in which the error occurred; 3) the PERR bit in the PCI Command register is set. This bit is cleared by writing it to 1; writing a 0 has no effect.

**SELTIM DEVSEL Timing.** This field indicates that the Raven will always assert DEVSEL\* as a 'medium' responder.

**SIGTA Signalled Target Abort.** This bit is set by the PCI slave whenever it terminates a transaction with a target-abort. The bit is cleared by writing it to 1; writing a 0 has no effect.

**RCVTA** Received Target Abort. This bit is set by the PCI master whenever its transaction is terminated by a target-abort. The bit is cleared by writing it to 1; writing a 0 has no effect.

**RCVMA** Received Master Abort. This bit is set by the PCI master whenever its transaction (except for Special Cycles) is terminated by a master-abort. The bit is cleared by writing it to 1; writing a 0 has no effect.

**SIGSE** Signaled System Error. This bit is set whenever the Raven asserts SERR\*. The bit is cleared by writing it to 1; writing a 0 has no effect.

RCVPE Detected Parity Error. This bit is set whenever the Raven detects a parity error, even if parity error checking is disabled (see bit PERR in the PCI Command register). The bit is cleared by writing it to 1; writing a 0 has no effect.

# **Revision ID/ Class Code Registers**

| Offset    | \$08                                            |                   |
|-----------|-------------------------------------------------|-------------------|
| Bit       | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1         |                   |
|           | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 | 8 7 6 5 4 3 2 1 0 |
| Name      | CLASS                                           | REVID             |
| Operation | R                                               | R                 |
| Reset     | \$060000                                        | \$02              |

**REVID** Revision ID. Identifies the Raven revision level. This

register is duplicated in the MPC registers.

**CLASS** Class Code. Identifies the Raven as follows:

Base Class Code \$06 PCI Bridge Device Subclass Code \$00 PCI Host Bridge

Program Class Code \$00 Not Used

# I/O Base Register

| Offset    |                                                            | \$10                                                    |
|-----------|------------------------------------------------------------|---------------------------------------------------------|
| Bit       | 3 3 2 2 2 2 2 2 2 2 2 2 1 1<br>1 0 9 8 7 6 5 4 3 2 1 0 9 8 | 1 1 1 1 1 1 1 1 1 1 1 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 |
| Name      |                                                            | IOBASE                                                  |
|           | IOBA                                                       | RES                                                     |
| Operation | R/W                                                        | R R                                                     |
| Reset     | \$0000                                                     | \$0000                                                  |

This register controls the mapping of the MPIC control registers in PCI I/O space.

**IO/MEM IO Space Indicator.** This bit is hard-wired to a logic **1** to indicate PCI I/O space.

**RES** Reserved. This bit is hard-wired to **0**.

**IOBA I/O Base Address.** These bits define the I/O space base address of the MPIC control registers. The IOBASE decoder is disabled when the IOBASE value is zero.

# **Memory Base Register**

| Offset    |        |        |            |   |        |            |        |            |     |  |        |  |        |        |        | \$1    | 14     |        |        |        |        |        |   |   |   |   |   |   |     |       |       |        |
|-----------|--------|--------|------------|---|--------|------------|--------|------------|-----|--|--------|--|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|---|---|---|---|---|-----|-------|-------|--------|
| Bit       | 3<br>1 | 3<br>0 | <b>2 9</b> | _ | 2<br>7 | <b>2 6</b> | 2<br>5 | <b>2 4</b> | 2 3 |  | 2<br>1 |  | 1<br>9 | 1<br>8 | 1<br>7 | 1<br>6 | 1<br>5 | 1<br>4 | 1<br>3 | 1<br>2 | 1<br>1 | 1<br>0 | 9 | 8 | 7 | 6 | 5 | 4 | 3   | 2     | 1     | 0      |
| Name      |        |        | MEMO       |   |        |            |        |            |     |  |        |  |        |        | ЛE     | M      | BA     | SE     | 3      |        |        |        |   |   |   |   |   |   |     |       |       | ı      |
|           |        | MEMBA  |            |   |        |            |        |            |     |  |        |  |        |        |        |        |        |        |        |        |        |        |   |   |   |   |   |   | PRE | MTYP1 | MTYP0 | IO/MEM |
| Operation |        | R/W    |            |   |        |            |        |            |     |  |        |  |        |        |        |        |        |        |        | R      | 2      |        |   |   |   |   |   | R | R   | R     | R     |        |
| Reset     |        | \$0000 |            |   |        |            |        |            |     |  |        |  |        |        |        |        |        |        | \$     | 00     | 000    | )      |   |   |   |   |   | 0 | 0   | 0     | 0     |        |

This register controls the mapping of the MPIC control registers in PCI memory space.

**IO/MEM IO Space Indicator.** This bit is hard-wired to a logic **0** to indicate PCI memory space.

MTYPx Memory Type. These bits are hard-wired to 0 to indicate that the MPIC registers can be located anywhere in the 32-bit address space

**PRE Prefetch**. This bit is hard-wired to **0** to indicate that the MPIC registers are not prefetchable.

**MEMBA** Memory Base Address. These bits define the memory space base address of the MPIC control registers. The MBASE decoder is disabled when the MBASE value is zero.

# PCI Slave Address (0,1,2 and 3) Registers

| Offset    | PSADE                                                              | 00 - \$80                         |  |  |  |  |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|--|--|--|
|           | PSADE                                                              | 01 - \$88                         |  |  |  |  |  |  |  |  |  |  |
|           | PSADE                                                              | 02 - \$90                         |  |  |  |  |  |  |  |  |  |  |
|           | PSADE                                                              | 03 - \$98                         |  |  |  |  |  |  |  |  |  |  |
| Bit       | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1<br>1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 | 1 1 1 1 1 1 0 9 8 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |  |
| Name      | PSA                                                                | DDx                               |  |  |  |  |  |  |  |  |  |  |
|           | START END                                                          |                                   |  |  |  |  |  |  |  |  |  |  |
| Operation | R/W                                                                | R/W R/W                           |  |  |  |  |  |  |  |  |  |  |
| Reset     | \$0000                                                             | \$0000                            |  |  |  |  |  |  |  |  |  |  |

To initiate an MPC cycle from the PCI bus, the PCI address must be greater than or equal to the START field and less than or equal to the END field.

# START Start Address. Determines the start address of a particular memory area on the PCI bus which will be used to access MPC bus resources. The value of this field will be compared with the upper 16 bits of the incoming PCI address.

END End Address. Determines the end address of a particular memory area on the PCI bus which will be used to access MPC bus resources. The value of this field will be compared with the upper 16 bits of the incoming PCI address.

# PCI Slave Attribute/ Offset (0,1,2 and 3) Registers

| Offset    |   |               |                                          |  |  |  |   |      |     |   |  | P<br>F | SA<br>SA | TT<br>TT | Γ1/<br>Γ2/ | PS<br>PS | OF<br>SOI | FF2 | 0 -<br>1 -<br>2 -<br>3 - | \$80<br>\$9 | C<br>4 |  |     |     |      |      |   |   |               |     |
|-----------|---|---------------|------------------------------------------|--|--|--|---|------|-----|---|--|--------|----------|----------|------------|----------|-----------|-----|--------------------------|-------------|--------|--|-----|-----|------|------|---|---|---------------|-----|
| Bit       | 3 | _             | 3/2/3/1/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/ |  |  |  |   |      |     |   |  |        |          |          |            |          | 0         |     |                          |             |        |  |     |     |      |      |   |   |               |     |
| Name      |   | PSOFFX PSATTX |                                          |  |  |  |   |      |     |   |  |        |          |          |            |          |           |     |                          |             |        |  |     |     |      |      |   |   |               |     |
|           |   |               |                                          |  |  |  |   |      |     |   |  |        |          |          |            |          |           |     |                          |             |        |  | REN | WEN | WPEN | RAEN |   |   | GBL           | V   |
| Operation |   |               | R/W                                      |  |  |  |   |      |     |   |  |        |          |          |            |          |           |     |                          | F           | ?      |  |     | _   |      | R/W  | R | R | $\overline{}$ | R/W |
| Reset     |   |               |                                          |  |  |  | 5 | \$00 | 000 | ) |  |        |          |          |            |          |           |     |                          | \$(         | 00     |  | 0   | 0   | 0    | 0    | 0 | 0 | 0             | 0   |

**INV Invalidate Enable.** If set, the MPC master will issue a transfer type code which specifies the current transaction should cause an invalidate for each MPC transaction originated by the corresponding PCI slave. The transfer type codes generated are shown in Table 2-3.

**GBL Global Enable.** If set, the MPC master will assert the GBL\* pin for each MPC transaction originated by the corresponding PCI slave.

**RAEN** Read Ahead Enable. If set, read-ahead is enabled for the corresponding PCI slave.

**WPEN Write-Post Enable.** If set, write-posting is enabled for the corresponding PCI slave.

**WEN Write Enable.** If set, the corresponding PCI slave is enabled for write transactions.

**REN Read Enable.** If set, the corresponding PCI slave is enabled for read transactions.

**PSOFFx PCI Slave Offset.** Contains a 16-bit offset that is added to the upper 16 bits of the PCI address to determine the MPC address used for transfers from PCI to the MPC bus. This offset allows MPC resources to reside at addresses that would not normally be visible from PCI.

# **CONFIG\_ADDRESS** Register

The description of the CONFIG\_ADDRESS register is presented in three perspectives: from the PCI bus, from the MPC bus in big-endian mode, and from the MPC bus in little-endian mode. Note that the view from the PCI bus is purely conceptual, since there is no way to access the CONFIG ADDRESS register from the PCI bus.

# Conceptual perspective from the PCI bus

| Offset    |        |   | 9 | \$C | FΒ     |            |   |   |   | į | \$C | FΑ |    |        |     |        |    | 9          | \$C | F9     |    |     |   |   |   | 9   | CI | F8 |   |         |   |
|-----------|--------|---|---|-----|--------|------------|---|---|---|---|-----|----|----|--------|-----|--------|----|------------|-----|--------|----|-----|---|---|---|-----|----|----|---|---------|---|
| Bit       | 3<br>1 | 3 | 9 |     | 2<br>7 | <b>2 6</b> | 1 | 2 | 3 | _ | 0   |    | 8  | 1<br>7 | 1   | 1<br>5 | 14 | 1          | 1 2 | 1<br>1 | 10 | 9   | 8 | 7 | 6 | 5   | 4  | 3  | 2 | 1       | 0 |
| Name      |        |   |   |     |        |            |   |   |   |   | (   | CC | )N | FIC    | j_, | AD     | DF | RE         | SS  |        |    |     |   |   |   |     |    |    |   |         |   |
|           | EN     |   |   |     |        |            |   |   |   |   | BI  | JS |    |        |     |        | D  | ΕV         | I   |        | F  | UN  | 1 |   | ] | RE  | G  |    |   |         |   |
| Operation | R/W    |   |   |     | R      |            |   |   |   |   | R/  | W  |    |        |     |        | R  | / <b>W</b> | 7   |        | R  | 2/W | 7 |   | ] | R/\ | W  |    | × | ָט<br>י | Я |
| Reset     | 1      |   |   | 9   | 600    | )          |   |   |   |   | \$( | 00 |    |        |     |        | \$ | 00         | )   |        |    | \$0 |   |   |   | \$0 | 0  |    | 0 | 0       | 0 |

# Perspective from the MPC bus in Big-Endian mode

| Offset    | \$CF8       |     | \$CF9     |       | \$CFA             | \$CFB           |
|-----------|-------------|-----|-----------|-------|-------------------|-----------------|
| Bit (DH)  | 0 1 2 3 4 5 | 6 7 | 1 1 1     | 1 1 1 | 1 1 1 1 2 2 2 2 2 | 1 7 7 7 7 7 7 9 |
|           | 0 1 2 3 4 5 | 6 7 | 8 9 0 1 2 | 3 4 5 | 67890123          | 45678901        |
| Name      |             |     | CC        | NFIG_ | ADDRESS           |                 |
|           | REG         |     | DEV       | FUN   | BUS               | EN              |
| Operation | R/W         | R   | R/W       | R/W   | R/W               | R/W             |
| Reset     | \$00        | 0   | \$00      | \$0   | \$00              | - \$00          |

|           |     | <b>P</b>    |                   |                        |                |             |                |  |  |  |  |  |
|-----------|-----|-------------|-------------------|------------------------|----------------|-------------|----------------|--|--|--|--|--|
| Offset    |     | \$CFC       | \$CFD             | \$CFF                  | Ξ              | \$CFF       |                |  |  |  |  |  |
| Bit (DL)  | 0   | 1 2 3 4 5 6 | 7 8 9 0 1 2 3 4 5 | 1 1 1 1 2<br>6 7 8 9 0 | 2 2 2<br>1 2 3 | 1 7 7 7 7 7 | 2 3 3<br>9 0 1 |  |  |  |  |  |
| Name      |     |             | CONFIG_ADDRESS    |                        |                |             |                |  |  |  |  |  |
|           | EN  |             | BUS               | DEV                    | FUN            | REG         |                |  |  |  |  |  |
| Operation | R/W | R           | R/W               | R/W                    | R/W            | R/W         | R              |  |  |  |  |  |
| Reset     | 1   | \$00        | \$00              | \$00                   | \$0            | \$00        | 0              |  |  |  |  |  |

## Perspective from the MPC bus in Little-Endian mode

The register fields are defined as follows:

# **REG** Register Number.

Configuration Cycles: Identifies a target double word within a target's configuration space. This field is copied to the PCI AD bus during the address phase of a Configuration cycle.

Special Cycles: This field must be written with all 0s.

### **FUN** Function Number.

Configuration Cycles: Identifies a function number within a target's configuration space. This field is copied to the PCI AD bus during the address phase of a Configuration cycle.

Special Cycles: This field must be written with all 1s.

## **DEV** Device Number.

Configuration Cycles: Identifies a target's physical PCI device number. Refer to the section on *Generating PCI Configuration Cycles* for a description of how this field is encoded.

Special Cycles: This field must be written with all 1s.

## **BUS** Bus Number.

Configuration Cycles: Identifies a targeted bus number. If written with all zeros, a Type 0 Configuration Cycle will be generated. If written with any value other than all 0s, then a Type 1 Configuration Cycle will be generated.

Special Cycles: Identifies a targeted bus number. If written with all 0s, a Special Cycle will be generated. If written with any value other than all 0s, then a Special Cycle translated into a Type 1 Configuration Cycle will be generated.

#### EN Enable.

Configuration Cycles: Writing a 1 to this bit enables CONFIG\_DATA to Configuration Cycle translation. If this bit is a 0, subsequent accesses to CONFIG\_DATA will be passed though as I/O cycles.

Special Cycles: Writing a 1 to this bit enables CONFIG\_DATA to Special Cycle translation. If this bit is a 0, subsequent accesses to CONFIG\_DATA will be passed though as I/O cycles.

# **CONFIG\_DATA** Register

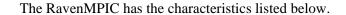
The description of the CONFIG\_DATA register is also presented in three perspectives: from the PCI bus, from the MPC bus in big-endian mode, and from the MPC bus in little-Indian mode. Note that the view from the PCI bus is purely conceptual, since there is no way to access the CONFIG\_DATA register from the PCI bus.

# Conceptual perspective from the PCI bus

| Offset    | \$CFF                             | \$CFE                              | \$CFD                         | \$CFC           |  |  |  |  |  |  |  |  |
|-----------|-----------------------------------|------------------------------------|-------------------------------|-----------------|--|--|--|--|--|--|--|--|
| Bit       | 3 3 2 2 2 2 2 2 1 1 0 9 8 7 6 5 4 | 2 2 2 2 1 1 1 1<br>3 2 1 0 9 8 7 6 | 1 1 1 1 1 1 1 5 4 3 2 1 0 9 8 | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |
| Name      | CONFIG_DATA                       |                                    |                               |                 |  |  |  |  |  |  |  |  |
|           | Data 'D'                          | Data 'C'                           | Data 'B'                      | Data 'A'        |  |  |  |  |  |  |  |  |
| Operation | R/W                               | R/W                                | R/W                           | R/W             |  |  |  |  |  |  |  |  |
| Reset     | n/a                               | n/a                                | n/a                           | n/a             |  |  |  |  |  |  |  |  |

# Perspective from the MPC bus in Big-Endian mode

| Offset    | \$CFC           | \$CFD                          | \$CFE                              | \$CFF                              |  |  |  |  |  |  |  |  |
|-----------|-----------------|--------------------------------|------------------------------------|------------------------------------|--|--|--|--|--|--|--|--|
| Bit (DL)  | 0 1 2 3 4 5 6 7 | 1 1 1 1 1 1<br>8 9 0 1 2 3 4 5 | 1 1 1 1 2 2 2 2<br>6 7 8 9 0 1 2 3 | 2 2 2 2 2 2 3 3<br>4 5 6 7 8 9 0 1 |  |  |  |  |  |  |  |  |
| Name      | CONFIG_DATA     |                                |                                    |                                    |  |  |  |  |  |  |  |  |
|           | Data 'A'        | Data 'B'                       | Data 'C'                           | Data 'D'                           |  |  |  |  |  |  |  |  |
| Operation | R/W             | R/W                            | R/W                                | R/W                                |  |  |  |  |  |  |  |  |
| Reset     | n/a             | n/a                            | n/a                                | n/a                                |  |  |  |  |  |  |  |  |


# Perspective from the MPC bus in Little-Endian mode

| Offset    | \$CF8           | \$CF9                         | \$CFA                              | \$CFB                              |
|-----------|-----------------|-------------------------------|------------------------------------|------------------------------------|
| Bit (DH)  | 0 1 2 3 4 5 6 7 | 1 1 1 1 1 1 1 8 9 0 1 2 3 4 5 | 1 1 1 1 2 2 2 2<br>6 7 8 9 0 1 2 3 | 2 2 2 2 2 2 3 3<br>4 5 6 7 8 9 0 1 |
| Name      |                 | CONFIC                        | G_DATA                             |                                    |
|           | Data 'D'        | Data 'C'                      | Data 'B'                           | Data 'A'                           |
| Operation | R/W             | R/W                           | R/W                                | R/W                                |
| Reset     | n/a             | n/a                           | n/a                                | n/a                                |

# **Raven Interrupt Controller**

This section describes the general implementation of the Raven Interrupt Controller (RavenMPIC).

# **Features**



- □ MPIC programming model
- □ Support for two processors
- □ Support for 16 external interrupts
- □ Support for 15 programmable Interrupt and Processor Task priority levels
- □ Support for the connection of an external 8259 for ISA/AT compatibility
- □ Distributed interrupt delivery for external I/O interrupts
- Direct/Multicast interrupt delivery for Interprocessor and timer interrupts
- □ Four Interprocessor Interrupt sources
- Four timers
- □ Processor initialization control

# **Architecture**

The Raven PCI Slave implements two address decoders for placing the RavenMPIC registers in PCI IO or PCI Memory space. Access to these registers require MPC and PCI bus mastership. These accesses include interrupt and timer initialization and interrupt vector reads.

## The RavenMPIC receives interrupt inputs from:

- □ 16 external sources
- □ Four interprocessor sources
- □ Four timer sources
- □ One Raven internal error detection source

Externally sourced interrupts 1 through 15 have two modes of activation: low level or active high positive edge. External interrupt 0 can be either level- or edge-activated with either polarity. The Interprocessor and timer interrupts are event-activated.

# Readability of CSR

Unless explicitly specified, all registers are readable and return the last value written. The exceptions are the IPI dispatch registers and the EOI registers which return 0s on reads, the interrupt source ACT bit which returns current interrupt source status, the interrupt acknowledge register which returns the vector of the highest-priority currently pending interrupt, and reserved bits which return 0s. The interrupt acknowledge register is also the only register which exhibits any read side-effects.

# **Interrupt Source Priority**

Each interrupt source is assigned a priority value in the range from 0 to 15, where 15 is the highest priority level. For delivery of an interrupt to take place, the priority of the source must be greater than that of the destination processor. Therefore, setting a source priority to zero inhibits that interrupt.

# **Processor's Current Task Priority**

Each processor has a task priority register which is set by system software to indicate the relative importance of the task running on that processor. The processor will not receive interrupts with a priority level equal to or lower than its current task priority. Therefore, setting the current task priority to 15 prohibits the delivery of all interrupts to the associated processor.

# **Nesting of Interrupt Events**

A processor is guaranteed never to have an in-service interrupt preempted by an equal- or lower-priority source. An interrupt is considered to be in service from the time its vector is returned during an interrupt acknowledge cycle until an EOI is received for that interrupt. The EOI cycle indicates the end of processing for the highest-priority in-service interrupt.

# **Spurious Vector Generation**

Under certain circumstances the RavenMPIC will not have a valid vector to return to the processor during an interrupt acknowledge cycle. In these cases, the spurious vector from the spurious vector register will be returned. The following cases would cause a spurious vector fetch.

- □ INT is asserted in response to an externally sourced interrupt which is activated with level sensitive logic and the asserted level is negated before the interrupt is acknowledged.
- □ INT is asserted for an interrupt source which is masked using the mask bit in the Vector-Priority register before the interrupt is acknowledged.

# Interprocessor Interrupts (IPI)

Processors 0 and 1 can generate interrupts which are targeted for the other processor or both processors. There are four Interprocessor Interrupt (IPI) channels. The interrupts are initiated by writing a bit in the IPI dispatch registers. If subsequent IPIs are initiated before the first is acknowledged, only one IPI will be generated. The IPI channels deliver interrupts in Direct mode and can be directed to more than one processor.

# 8259 Compatibility

The RavenMPIC provides a mechanism to support PC-AT compatible chip sets using the 8259 interrupt controller architecture. After power-on reset, the RavenMPIC defaults to 8259 pass-through mode. In this mode, interrupts from external source number 0 (the interrupt signal from the 8259 is connected to this external interrupt source on the RavenMPIC) are

passed directly to processor 0. If the pass-through mode is disabled, the 8259 interrupts are delivered using the priority and distribution mechanisms of the RayenMPIC.

The RavenMPIC does not interact with the vector fetch from the 8259 interrupt controller.

## **Raven-Detected Errors**

Raven-detected errors are grouped together and sent to the interrupt logic as a single interrupt source. The interrupt delivery mode for this interrupt is distributed. The Raven Error Vector Priority register should be programmed for high true level sensitive activation.

For system implementations where the RavenMPIC controller is not used, the Raven-Detected Error condition will be made available by a signal which is external to the Raven ASIC. Presumably this signal would be connected to an externally sourced interrupt input of a MPIC controller in a different device. Since the MPIC specification defines external I/O interrupts to operate in the distributed mode, the delivery mode of this error interrupt should be consistent.

### **Timers**

There is a divide-by-eight prescaler which is synchronized to the Raven clock (MPC processor clock). The output of the prescaler enables the decrement of the four timers. The timers may be used for system timing or to generate periodic interrupts. Each timer has four registers which are used for configuration and control. They are:

- 1. Current Count register
- 2. Base Count register
- 3. Vector Priority register
- 4. Destination register

# **Interrupt Delivery Modes**

The *direct* and *distributed* interrupt delivery modes are supported. Note that the direct delivery mode has sub modes of multicast or non-multicast. The Interprocessor Interrupts (IPIs) and Timer interrupts operate in the direct delivery mode. The externally sourced or I/O interrupts operate in the distributed mode.

In direct delivery mode, the interrupt is directed to one or both processors. If it is directed to two processors (i.e. multicast), it will be delivered to two processors. The interrupt is delivered to the processor when the priority of the interrupt is greater than the priority contained in the task register for that processor, and when the priority of the interrupt is greater than any interrupt which is in-service for that processor. An interrupt is considered to be in service from the time its vector is returned during an interrupt acknowledge cycle until an EOI is received for that interrupt. The EOI cycle indicates the end of processing for the highest-priority in-service interrupt.

In distributed delivery mode, the interrupt is pointed to one or more processors but it will be delivered to only one processor. Therefore, for externally sourced or I/O interrupts, multicast delivery is not supported. The interrupt is delivered to a processor when the priority of the interrupt is greater than the priority contained in the task register for that processor, and when the priority of the interrupt is greater than any interrupt which is in-service for that processor, and when the priority of that interrupt is the highest of all interrupts pending for that processor, and when that interrupt is not in-service for the other processor. If both destination bits are set for each processor, the interrupt will be delivered to the processor that has a lower task register priority.

#### Note

Because a deadlock condition can occur when the task register priorities for each processor are the same and both processors are targeted for interrupt delivery, the interrupt will be delivered to processor 0.

# **Block Diagram Description**

The description of the block diagram focuses on the theory of operation for the interrupt delivery logic. If the preceding section is a satisfactory description of the interrupt delivery modes and the reader is not interested in the logic implementation, this section can be skipped.

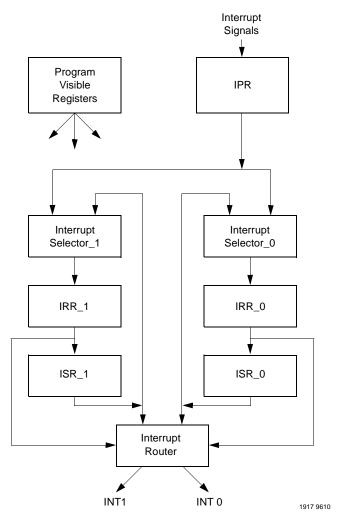



Figure 2-8. RavenMPIC Block Diagram

# **Program-Visible Registers**

These are the registers which software can access. They are described in detail in the *Raven Registers* section.

# **Interrupt Pending Register (IPR)**

The interrupt signals to the RavenMPIC are qualified and synchronized to the clock by the IPR. If the interrupt source is internal to the Raven ASIC or external with their Sense bit = 0 (edge sensitive), a bit is set in the IPR. That bit is cleared when the interrupt associated with that bit is acknowledge. If the interrupt source is external and level activated, the output from the IPR is not negated until the level into the IPR is negated.

Externally sourced interrupts are qualified based upon their Sense and/or Pol bits in the Vector Priority register. IPI and Timer Interrupts are generated internally to the Raven ASIC and are qualified by their Destination bit. Since the internally generated interrupts use direct delivery mode with multicast capability, there are two bits in the IPR, one for each processor, associated with each IPI and Timer interrupt source.

The MASK bits from the Vector Priority registers are used to qualify the output of the IPR. Therefore, if an interrupt condition is detected when the MASK bit is set, that interrupt will be requested when the MASK bit is lowered.

# Interrupt Selector (IS)

There is an Interrupt Selector (IS) for each processor. The IS receives interrupt requests from the IPR. If the interrupt request are from an external source, they are qualified by the destination bit for that interrupt and processor. If they are from an internal source, they have been qualified. The output of the IS will be the highest priority interrupt that has been qualified. This output is the priority of the selected interrupt and its source identification. The IS will resolve an interrupt request in two Raven clock ticks.

The IS also receives a second set of inputs from the ISR. During the End Of Interrupt cycle, these inputs are used to select which bits are to be cleared in the ISR.

# **Interrupt Request Register (IRR)**

There is an Interrupt Request register (IRR) for each processor. The IRR always passes the output of the IS except during Interrupt Acknowledge cycles. This guarantees that the vector which is read from the Interrupt Acknowledge register is not changing due to the arrival of a higher priority interrupt. The IRR also serves as a pipeline register for the two tick propagation time through the IS.

# In-Service Register (ISR)

There is an In-Service register (ISR) for each processor. The contents of the ISR is the priority and source of all interrupts which are in-service. The ISR receives a bit-set command during Interrupt Acknowledge cycles and a bit-clear command during End Of Interrupt cycles.

The ISR is implemented as a 40 bit register with individual bit set and clear functions. Fifteen bits are used to store the priority level of each interrupt which is in-service. Twenty-five bits are used to store the source identification of each interrupt which is in service. Therefore there is one bit for each possible interrupt priority and one bit for each possible interrupt source.

# Interrupt Router

The Interrupt Router monitors the outputs from the ISRs, Current Task Priority registers, Destination registers, and the IRRs to determine when to assert a processor's INT pin.

When considering the following rule sets, it is important to remember that there are two types of inputs to the Interrupt Selectors. If the interrupt is a distributed class interrupt, there is a single bit in the IPR associated with this interrupt and it is delivered to both Interrupt Selectors. This IPR bit is qualified by the destination register contents for that interrupt before the Interrupt Selector compares its priority to the priority of all other requesting interrupts for that processor. If the interrupt is programmed to be edge sensitive, the IPR bit is cleared when the vector for that interrupt is returned when the Interrupt Acknowledge register is examined. On the other hand, if the interrupt is a direct/multicast class interrupt, there are two bits in the IPR associated with this interrupt: one bit for each processor.

Then one of these bits is delivered to each Interrupt Selector. Since this interrupt source can be multicast, each of these IPR bits must be cleared separately when the vector is returned for that interrupt to a particular processor.

If one of the following sets of conditions is true, the interrupt pin for processor 0 is driven active.

### □ Set1

The source ID in IRR\_0 is from an external source.

The destination bit for processor 1 is a 0 for this interrupt.

The priority from IRR\_0 is greater than the highest priority in ISR 0.

The priority from IRR\_0 is greater than the contents of task register 0.

## □ Set2

The source ID in IRR\_0 is from an external source.

The destination bit for processor 1 is a 1 for this interrupt.

The source ID in IRR\_0 is not present is ISR\_1.

The priority from IRR\_0 is greater than the highest priority in ISR\_0.

The priority from IRR\_0 is greater than the Task Register\_0 contents.

The contents of Task Register\_0 is less than the contents of Task Register 1.

### □ Set3

The source ID in IRR\_0 is from an internal source.

The priority from IRR\_0 is greater than the highest priority in ISR\_0.

The priority from IRR\_0 is greater than the Task Register\_0 contents.

There is the possibility of a priority tie between the two processors when resolving external interrupts. In such cases the interrupt is always delivered to processor 0. This case is not defined in the above rule set.

# **MPIC Registers**

The following conventions are used in the Raven register charts:

- □ R Read Only field.
- □ R/W Read/Write field.
- $\Box$  S Writing a 1 to this field sets this field.
- □ C Writing a 1 to this field clears this field.

# **RavenMPIC Registers**

The RavenMPIC register map is shown in the following table. The Off field is the address offset from the base address of the RavenMPIC registers in the MPC-IO or MPC-MEMORY space. Note that this map does not depict linear addressing. The Raven PCI-SLAVE has two decoders for generating the RavenMPIC select. These decoders will generate a select and acknowledge all accesses which are in a reserved 256K byte range. If the index into that 256K block does not decode a valid RavenMPIC register address, the logic will return \$00000000.

The registers are 8-, 16-, or 32-bit accessible.

Table 2-10. RavenMPIC Register Map

| 3<br>1 | 3<br>0                              |  | - 1 | 2<br>7 | _ |  | 2<br>4 |                                 | _  | 2<br>1 |     | 1<br>9 | 1<br>8  | 1<br>7 | 1<br>6 | 1<br>5 | 1<br>4 | 1<br>3 | 1<br>2 | 1<br>1  | 1<br>0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0       | Off     |
|--------|-------------------------------------|--|-----|--------|---|--|--------|---------------------------------|----|--------|-----|--------|---------|--------|--------|--------|--------|--------|--------|---------|--------|---|---|---|---|---|---|---|---|---|---------|---------|
|        |                                     |  |     |        |   |  |        | F                               | ΈA | ΛTU    | JR  | ΕI     | RE      | РО     | R'     | ΓIN    | IG     | RI     | EG     | IS      | ΤЕ     | R | 0 |   |   |   |   |   |   |   |         | \$01000 |
|        |                                     |  |     |        |   |  |        |                                 |    |        |     |        |         |        |        |        |        |        |        |         |        |   |   |   |   |   |   |   |   |   |         |         |
|        |                                     |  |     |        |   |  |        | GLOBAL CONFIGURATION REGISTER 0 |    |        |     |        |         |        |        |        |        |        |        | \$01020 |        |   |   |   |   |   |   |   |   |   |         |         |
|        |                                     |  |     |        |   |  |        |                                 |    |        |     |        |         |        |        |        |        |        |        |         |        |   |   |   |   |   |   |   |   |   |         |         |
|        | MPIC VENDOR IDENTIFICATION REGISTER |  |     |        |   |  |        |                                 |    |        |     |        | \$01080 |        |        |        |        |        |        |         |        |   |   |   |   |   |   |   |   |   |         |         |
| PROC   |                                     |  |     |        |   |  |        |                                 |    |        | CE. | SS     | OR      | I      | ΓĪΝ    | R      | EC     | GIS    | TI     | ER      |        |   |   |   |   |   |   |   |   |   | \$01090 |         |

| 3       3       2       2       2       2       2       2       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | Off     |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|--|--|--|--|--|
| IPI0 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$010A0 |  |  |  |  |  |  |  |  |  |  |  |
| IPI1 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$010B0 |  |  |  |  |  |  |  |  |  |  |  |
| IPI2 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$010C0 |  |  |  |  |  |  |  |  |  |  |  |
| IPI3 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$010D0 |  |  |  |  |  |  |  |  |  |  |  |
| SP REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$010E0 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER FREQUENCY REPORTING REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$010F0 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 0 CURRENT COUNT REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$01100 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 0 BASE COUNT REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$01110 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 0 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$01120 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 0 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$01130 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 1 CURRENT COUNT REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$01140 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 1 BASE COUNT REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 1VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$01160 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 1DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$01170 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 2 CURRENT COUNT REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$01180 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 2 BASE COUNT REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$01190 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 2 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$011A0 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 2 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$011B0 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 3 CURRENT COUNT REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$011C0 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 3 BASE COUNT REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$011D0 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 3 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$011E0 |  |  |  |  |  |  |  |  |  |  |  |
| TIMER 3 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$011F0 |  |  |  |  |  |  |  |  |  |  |  |
| INT. SRC. 0 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$10000 |  |  |  |  |  |  |  |  |  |  |  |
| INT. SRC. 0 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$10010 |  |  |  |  |  |  |  |  |  |  |  |
| INT. SRC. 1 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$10020 |  |  |  |  |  |  |  |  |  |  |  |
| INT. SRC. 1 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$10030 |  |  |  |  |  |  |  |  |  |  |  |

| 3     3     2     2     2     2     2     2     2     2     2     2     2     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <th>Off</th> | Off     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| INT. SRC. 2 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$10040 |
| INT. SRC. 2 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$10050 |
| INT. SRC. 3 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$10060 |
| INT. SRC. 3 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$10070 |
| INT. SRC. 4 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$10080 |
| INT. SRC. 4 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$10090 |
| INT. SRC. 5 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$100A0 |
| INT. SRC. 5 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$100B0 |
| INT. SRC. 6 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$100C0 |
| INT. SRC. 6 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$100D0 |
| INT. SRC. 7 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$100E0 |
| INT. SRC. 7 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$100F0 |
| INT. SRC. 8 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$10100 |
| INT. SRC. 8 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$10110 |
| INT. SRC. 9 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$10120 |
| INT. SRC. 9 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$10130 |
| INT. SRC. 10 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$10140 |
| INT. SRC. 10 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$10150 |
| INT. SRC. 11 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$10160 |
| INT. SRC. 11 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$10170 |
| INT. SRC. 12 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$10180 |
| INT. SRC. 12 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$10190 |
| INT. SRC. 13 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$101A0 |
| INT. SRC. 13 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$101B0 |
| INT. SRC. 14 VECTOR-PRIORITY REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$101C0 |
| INT. SRC. 14 DESTINATION REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$101D0 |

| 3<br>1 | 3 2 0 9 | 2<br>8 | 2<br>7 | 2<br>6 | 2 5 | 2  | 2 2 |    | 2    | 2<br>1 | 2 0 | 19  | 1   |    |    |     |     |     |    | 1 1 |          |     |    |     | ,  | 8   | 7  | 6         | 5  | 5   | 4        | 3 | 2  | 1  | 0 | Off     |
|--------|---------|--------|--------|--------|-----|----|-----|----|------|--------|-----|-----|-----|----|----|-----|-----|-----|----|-----|----------|-----|----|-----|----|-----|----|-----------|----|-----|----------|---|----|----|---|---------|
|        | J       |        |        |        |     | IN | JT. | S  | RO   | ζ.     | 15  | V   | Έ   | СТ | Ю  | R-  | .Pl | RI  | OI | RIT | []       | 7 I | RE | GI  | S  | TF  | ER |           |    | l   |          |   |    |    |   | \$101E0 |
|        |         |        |        |        |     |    | IN  | Γ  | `. S | SR     | C.  | 1:  | 5 I | ÞΕ | ES | ГП  | N/  | AΤ  | IC | N   | R        | E   | GI | ST  | Έ  | R   |    |           |    |     |          |   |    |    |   | \$101F0 |
|        |         | R      | ΑV     | /E     | N]  | DI | ET. | EC | СТ   | Έl     | D ] | ER  | RR  | Ol | RS | S V | Έ   | C'  | ГС | R-  | P        | RI  | Ю  | RΙ΄ | T  | Y l | RF | EG        | IS | ST. | EF       | ? |    |    |   | \$10200 |
|        |         |        | R      | A      | VΕ  | N  | D   | Ξ7 | ГΕ   | C'     | ГΕ  | D   | El  | RF | RC | R   | S I | DE  | ES | TII | V.       | ΑΊ  | П  | ΟN  | F  | RE  | Gl | ST        | ГЕ | ER  |          |   |    |    |   | \$10210 |
|        |         |        |        |        |     |    |     |    |      |        |     |     |     |    |    |     |     |     |    |     |          |     |    |     |    |     |    |           |    |     |          |   |    |    |   |         |
|        |         |        |        |        |     |    |     | IP | PI ( | ) [    | SIC | SP  | ΆΊ  | С  | Η  | RI  | EC  | SIS | ST | ER  | l        | PR  | RO | C.  | 0  |     |    |           |    |     |          |   |    |    |   | \$20040 |
|        |         |        |        |        |     |    |     | IP | PI 1 | 1 I    | SIC | SP  | ΑΊ  | C  | Η  | RI  | EC  | SIS | ST | ER  | l        | PR  | RO | C.  | 0  |     |    |           |    |     |          |   |    |    |   | \$20050 |
|        |         |        |        |        |     |    |     | ΙP | PI 2 | 2 [    | SIC | SP  | ΆΊ  | С  | Η  | RI  | EC  | SIS | ST | ER  | l        | PR  | RO | C.  | 0  |     |    |           |    |     |          |   |    |    |   | \$20060 |
|        |         |        |        |        |     |    |     | ΙP | Ή.   | 3 I    | SIC | SP. | ΑΊ  | C  | Η  | Rl  | EC  | SIS | ST | ER  | l        | PR  | RO | C.  | 0  |     |    |           |    |     |          |   |    |    |   | \$20070 |
|        |         |        |        |        | C   | Ul | RR  | E  | NΊ   | ΓΊ     | Ά   | Sŀ  | ζ F | PR | IC | R   | IT  | Y   | R  | EG  | IS       | ST  | E  | R F | PF | RO  | C. | 0         |    |     |          |   |    |    |   | \$20080 |
|        |         |        |        |        |     |    |     |    |      |        |     |     |     |    |    |     |     |     |    |     |          |     |    |     |    |     |    |           |    |     |          |   |    |    |   |         |
|        |         |        |        |        |     |    |     |    |      |        |     |     |     |    |    |     |     |     |    |     |          |     |    |     |    |     | L  | AC        | K  |     | E<br>P(  |   | S  | ГΕ | R | \$200A0 |
|        |         |        |        |        |     |    |     |    |      |        |     |     |     |    |    |     |     |     |    |     |          |     |    |     |    |     | ]  | EC        | Ι  |     | EC<br>P( |   | ST | EF | 2 | \$200B0 |
|        |         |        |        |        |     |    |     | ΙP | PI ( | ) [    | OIS | SP. | 'nΠ | C  | Н  | RI  | EC  | SIS | ST | ER  | <u> </u> | PR  | RO | C.  | 1  |     |    |           |    |     |          |   |    |    |   | \$21040 |
|        |         |        |        |        |     |    |     | IP | PI 1 | 1 I    | SIC | SP  | ΑΊ  | С  | Η  | RI  | EC  | SIS | ST | ER  | l        | PR  | RO | C.  | 1  |     |    |           |    |     |          |   |    |    |   | \$21050 |
|        |         |        |        |        |     |    |     | IP | PI 2 | 2 I    | SIC | SP  | ΑΊ  | C  | Η  | RI  | EC  | SIS | ST | ER  | l        | PR  | RO | C.  | 1  |     |    |           |    |     |          |   |    |    |   | \$21060 |
|        |         |        |        |        |     |    |     | ΙP | PI 3 | 3 I    | SIC | SP  | ΆΊ  | С  | Η  | RI  | EC  | SIS | ST | ER  | l        | PR  | RO | C.  | 1  |     |    |           |    |     |          |   |    |    |   | \$21070 |
|        |         |        |        |        | C   | U] | RR  | E. | NΊ   | Г 7    | Ā   | Sŀ  | ΚF  | PR | IC | R   | ΙT  | Ϋ́  | R  | EG  | IS       | ST  | E  | R F | PF | RO  | Ċ. | 1         |    |     |          |   |    |    |   | \$21080 |
|        | _       |        |        |        |     |    |     |    |      |        |     |     |     |    |    |     |     |     |    |     |          |     |    |     |    |     |    |           |    |     |          |   |    |    |   |         |
|        |         |        |        |        |     |    |     |    |      |        |     |     |     |    |    |     |     |     |    |     |          |     |    |     |    |     | L  | <b>AC</b> | K  |     | RE<br>P1 |   | S  | ГΕ | R | \$210A0 |
|        |         |        |        |        |     |    |     |    |      |        |     |     |     |    |    |     |     |     |    |     |          |     |    |     |    |     | ]  | EC        | Ι  |     | EC<br>P1 |   | ST | EF | } | \$210B0 |

# **Feature Reporting Register**

| Offset    | \$01000                                 |                   |  |  |  |  |  |  |  |  |  |  |  |  |  | 00  | 0 |      |   |    |   |  |  |  |     |    |   |  |  |  |
|-----------|-----------------------------------------|-------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|-----|---|------|---|----|---|--|--|--|-----|----|---|--|--|--|
| Bit       | 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 |                   |  |  |  |  |  |  |  |  |  |  |  |  |  | 1   | 0 |      |   |    |   |  |  |  |     |    |   |  |  |  |
|           | 1                                       |                   |  |  |  |  |  |  |  |  |  |  |  |  |  |     | 1 | v    |   |    |   |  |  |  |     |    |   |  |  |  |
| Name      |                                         | FEATURE REPORTING |  |  |  |  |  |  |  |  |  |  |  |  |  |     |   |      |   |    |   |  |  |  |     |    |   |  |  |  |
|           |                                         | NIRQ              |  |  |  |  |  |  |  |  |  |  |  |  |  |     |   |      | N | CP | U |  |  |  | V]  | ID |   |  |  |  |
| Operation |                                         | R R               |  |  |  |  |  |  |  |  |  |  |  |  |  |     | R |      |   |    | R |  |  |  |     | F  | ? |  |  |  |
| Reset     |                                         | \$0 \$00F         |  |  |  |  |  |  |  |  |  |  |  |  |  | \$0 |   | \$01 |   |    |   |  |  |  | \$( | )2 |   |  |  |  |

NIRQ NUMBER OF IRQs. The number of the highest external IRQ source supported. The IPI, Timer, and Raven Detected Error interrupts are excluded from this count.

NCPU NUMBER OF CPUs. The number of the highest physical CPU supported. This design supports two CPUs (CPU 0 and CPU 1).

VID VERSION ID. Version ID for this interrupt controller.

This value reports what level of the specification is supported by this implementation. A version level of 02 is used for the initial release of the MPIC specification.

# **Global Configuration Register**

| Offset    | \$01020  |                                           |     |  |  |   |  |  |  |   |  |  |  |  |  |  |   |     |   |  |  |     |    |   |   |  |  |  |
|-----------|----------|-------------------------------------------|-----|--|--|---|--|--|--|---|--|--|--|--|--|--|---|-----|---|--|--|-----|----|---|---|--|--|--|
| Bit       | 3<br>1   | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 |     |  |  |   |  |  |  |   |  |  |  |  |  |  | 1 | 0   |   |  |  |     |    |   |   |  |  |  |
| Name      |          | GLOBAL CONFIGURATION                      |     |  |  |   |  |  |  |   |  |  |  |  |  |  |   |     |   |  |  |     |    |   |   |  |  |  |
|           | RESET    |                                           | M   |  |  |   |  |  |  |   |  |  |  |  |  |  |   |     |   |  |  |     |    |   |   |  |  |  |
| Operation | С        |                                           | R/W |  |  | R |  |  |  | R |  |  |  |  |  |  |   |     | F |  |  |     |    | I | ? |  |  |  |
| Reset     | 000 \$00 |                                           |     |  |  |   |  |  |  |   |  |  |  |  |  |  |   | \$0 | 0 |  |  | \$( | 00 |   |   |  |  |  |

- R Reset Controller. Writing a 1 to this bit forces the controller logic to be reset. The bit is cleared automatically when the reset sequence is complete. While this bit is set, the values of all other register are undefined.
- M Cascade Mode. Allows cascading of an external 8259 pair connected to the first interrupt source input pin (0). This bit will always be set to 1, indicating mixed mode. In mixed mode, 8259 interrupts are delivered using the priority and distribution mechanism of the RavenMPIC. The Vector/Priority and Destination registers for interrupt source 0 are used to control the delivery mode for all 8259-generated interrupt sources.

### **Vendor Identification Register**

| Offset    |        |                                                                                                          |            |        |        |        |        |        |            |   |   |     |    |        | \$     | 01     | 080    | 0      |        |        |        |        |   |   |   |   |   |     |    |   |   |   |
|-----------|--------|----------------------------------------------------------------------------------------------------------|------------|--------|--------|--------|--------|--------|------------|---|---|-----|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|---|---|---|---|-----|----|---|---|---|
| Bit       | 3<br>1 | 3<br>0                                                                                                   | <b>2 9</b> | 2<br>8 | 2<br>7 | 2<br>6 | 2<br>5 | 2<br>4 | <b>2 3</b> | _ | _ | _   | _  | 1<br>8 | 1<br>7 | 1<br>6 | 1<br>5 | 1<br>4 | 1<br>3 | 1<br>2 | 1<br>1 | 1<br>0 | 9 | 8 | 7 | 6 | 5 | 4   | 3  | 2 | 1 | 0 |
| Name      | !      | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2<br>VENDOR IDENTIFICATION |            |        |        |        |        |        |            |   |   |     |    |        |        |        | l      |        |        |        |        |        |   |   |   |   |   |     |    |   |   |   |
|           |        |                                                                                                          |            |        |        |        |        |        |            |   |   | Sī  | ГР |        |        |        |        |        |        |        |        |        |   |   |   |   |   |     |    |   |   |   |
| Operation |        |                                                                                                          |            | F      | ₹      |        |        |        |            |   |   | F   | ₹  |        |        |        |        |        |        | F      | ₹      |        |   |   |   |   |   | F   | λ. |   |   |   |
| Reset     |        |                                                                                                          |            | \$0    | 00     |        |        |        |            |   |   | \$( | )2 |        |        |        |        |        |        | \$(    | 00     |        |   |   |   |   |   | \$( | 00 |   |   |   |

Two of the fields in the Vendor Identification register are not defined for the RavenMPIC implementation, but are defined in the MPIC specification. They are the vendor identification and device ID fields.

**STP Stepping.** The stepping or silicon revision number is initially 0.

### **Processor Init Register**

| Offset    |        |            |            |        |    |   |     |   |     |  |        |    |        | \$     | 01     | 090    | 0   |     |        |        |        |   |   |   |   |     |    |   |     |    |     |
|-----------|--------|------------|------------|--------|----|---|-----|---|-----|--|--------|----|--------|--------|--------|--------|-----|-----|--------|--------|--------|---|---|---|---|-----|----|---|-----|----|-----|
| Bit       | 3<br>1 | <b>3 0</b> | <b>2 9</b> | 2<br>8 | _  | _ | 2 5 | _ | 2 3 |  | 2<br>0 |    | 1<br>8 | 1<br>7 | 1<br>6 | 1<br>5 | 14  | 1 3 | 1<br>2 | 1<br>1 | 1<br>0 | 9 | 8 | 7 | 6 | 5   | 4  | 3 | 2   | 1  | 0   |
| Name      |        |            |            |        |    |   |     |   |     |  |        | Pl | RO     | CF     | ESS    | SO     | R I | [N] | Т      |        |        |   |   |   |   |     |    |   |     |    |     |
|           |        |            |            |        |    |   |     |   |     |  |        |    |        |        |        |        |     |     |        |        |        |   |   |   |   |     |    |   |     | P1 | P0  |
| Operation |        |            |            | F      | ξ. |   |     |   |     |  | F      | ξ. |        |        |        |        |     |     | F      | 2      |        |   |   |   |   | F   | {  |   | - 1 | 5  | R/W |
| Reset     |        |            |            | \$(    | 00 |   |     |   |     |  | \$(    | 00 |        |        |        |        |     |     | \$0    | 00     |        |   |   |   |   | \$0 | 00 |   |     | 0  | 0   |

**P1 Processor 1.** Writing a 1 to P1 will assert the Soft Reset input of processor 1. Writing a 0 to it will negate the SRESET signal.

**Processor 0.** Writing a 1 to P0 will assert the Soft Reset input of processor 0. Writing a 0 to it will negate the SRESET signal.

The Soft Reset input to the MPC603 or MPC604 is negative-edgesensitive.

### **IPI Vector/Priority Registers**

| Offset    |      |                                         |   |   |   |   |     |    |   |   |   |    |    | ΙP  | Ι0  | - 5 | 801  | 0.4 | 0  |     |    |   |   |   |   |   |   |     |    |   |   |   |
|-----------|------|-----------------------------------------|---|---|---|---|-----|----|---|---|---|----|----|-----|-----|-----|------|-----|----|-----|----|---|---|---|---|---|---|-----|----|---|---|---|
|           |      |                                         |   |   |   |   |     |    |   |   |   |    |    | IP  | I 1 | - 5 | \$01 | OF  | 30 |     |    |   |   |   |   |   |   |     |    |   |   |   |
|           |      | IPI 2 - \$010C0<br>IPI 3 - \$010D0      |   |   |   |   |     |    |   |   |   |    |    |     |     |     |      |     |    |     |    |   |   |   |   |   |   |     |    |   |   |   |
|           |      | IPI 3 - \$010D0                         |   |   |   |   |     |    |   |   |   |    |    |     |     |     |      |     |    |     |    |   |   |   |   |   |   |     |    |   |   |   |
| Bit       | 3    | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 |   |   |   |   |     |    |   |   |   |    |    |     |     |     |      |     |    |     |    |   |   |   |   |   |   |     |    |   |   |   |
|           | 1    | 0                                       | 9 | 8 | 7 | 6 | 5   | 4  | 3 | 2 | 1 | 0  | 9  | 8   | 7   | 6   | 5    | 4   | 3  | 2   | 1  | 0 | 9 | 8 | 7 | 6 | 5 | 4   | 3  | 2 | 1 | 0 |
| Name      |      |                                         |   |   |   |   |     |    |   |   |   | ΙP | ΙV | Æ   | СТ  | OF  | R/P  | RI  | OF | RIT | Ϋ́ |   |   |   |   |   |   |     |    |   |   |   |
|           | M    | AC                                      |   |   |   |   |     |    |   |   |   |    | F  | PRI | OI  | ?   |      |     |    |     |    |   |   |   |   |   | V | EC  | TC | R |   |   |
|           | MASK | ij                                      |   |   |   |   |     |    |   |   |   |    |    |     |     |     |      |     |    |     |    |   |   |   |   |   |   |     |    |   |   |   |
| Operation | R/W  | R                                       |   |   |   |   | F   | ?  |   |   |   |    |    | R/  | W   |     |      |     |    | F   | ?  |   |   |   |   |   |   | R/  | W  |   |   |   |
| Reset     | 1    | 0                                       |   |   |   |   | \$0 | 00 |   |   |   |    |    | \$  | 0   |     |      |     |    | \$( | 00 |   |   |   |   |   |   | \$( | 00 |   |   |   |

MASK Mask. Setting this bit disables any further interrupts from this source. If the mask bit is cleared while the bit associated with this interrupt is set in the IPR, the interrupt request will be generated.

**ACT Activity.** The activity bit indicates that an interrupt has been requested or that it is in-service. The ACT bit is set to a 1 when its associated bit in the Interrupt Pending register or In-Service register is set.

**PRIOR** Interrupt Priority. Priority 0 is the lowest and 15 is the highest. Note that a priority level of 0 will not enable interrupts.

**VECTOR Interrupt Vector**. This vector is returned when the Interrupt Acknowledge register is examined during a request for the interrupt associated with this vector.

### **Spurious Vector Register**

| Offset    | \$010E0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Bit       | 3     3     2     2     2     2     2     2     2     2     2     2     2     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <th>2 1 0</th> | 2 1 0 |
| Name      | VECTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R     |
| Operation | R R R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Reset     | \$00 \$00 \$00 \$FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |

**VECTOR Interrupt Vector**. This vector is returned when the Interrupt Acknowledge register is read during a spurious vector fetch.

## **Timer Frequency Register**

| Offset    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |   |    |    | \$   | 01  | 0F  | 0   |    |    |   |  |  |  |  |  |  |  |
|-----------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|---|----|----|------|-----|-----|-----|----|----|---|--|--|--|--|--|--|--|
| Bit       | 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |   |    |    |      |     |     |     |    |    |   |  |  |  |  |  |  |  |
|           | 1 | 3     3     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2 <th>1</th> <th>0</th> |  |  |  |  |  |  |  |  |  |   |    |    |      |     | 1   | 0   |    |    |   |  |  |  |  |  |  |  |
| Name      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  | Τ | II | 1E | R I  | FR. | EQ  | Ul  | EN | CY | 7 |  |  |  |  |  |  |  |
| Operation |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |   |    |    |      | R/  | W   |     |    |    |   |  |  |  |  |  |  |  |
| Reset     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |   |    | ,  | \$00 | 000 | 000 | 000 | )  |    |   |  |  |  |  |  |  |  |

This register is used to report the frequency (in Hz) of the clock source for the global timers. Following a reset, this register contains zero. For the Raven implementation of MPIC on the MVME2300 series, this register must be written with a value of \$7DE290 (that is, 66/8 MHz or 8.25 MHz), which corresponds to a 66MHz MPC bus.

## **Timer Current Count Registers**

| Offset    |   |   |                   |   |   |   |   |   |   |   |   |    | -   | Гiп | ner | 0 - | - \$ | 01  | 10 | 0  |     |   |   |   |   |   |   |   |   |   |   |   |
|-----------|---|---|-------------------|---|---|---|---|---|---|---|---|----|-----|-----|-----|-----|------|-----|----|----|-----|---|---|---|---|---|---|---|---|---|---|---|
|           |   |   |                   |   |   |   |   |   |   |   |   |    | -   | Гiп | ner | 1 - | - \$ | 01  | 14 | 0  |     |   |   |   |   |   |   |   |   |   |   |   |
|           |   |   | Timer 2 - \$01180 |   |   |   |   |   |   |   |   |    |     |     |     |     |      |     |    |    |     |   |   |   |   |   |   |   |   |   |   |   |
|           |   |   | Timer 3 - \$011C0 |   |   |   |   |   |   |   |   |    |     |     |     |     |      |     |    |    |     |   |   |   |   |   |   |   |   |   |   |   |
| Bit       | 3 | 3 | 2                 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2  | 1   | 1   | 1   | 1   | 1    | 1   | 1  | 1  | 1   | 1 |   |   |   |   |   |   |   |   |   |   |
|           | 1 | 0 | 9                 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0  | 9   | 8   | 7   | 6   | 5    | 4   | 3  | 2  | 1   | 0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Name      |   |   |                   |   |   |   | • | • |   | • | T | ΊM | ſΕΙ | R C | CU  | RR  | E    | NT  | C  | OU | JN' | Γ |   |   |   |   |   |   |   |   |   |   |
|           | Τ |   |                   |   |   |   |   |   |   |   |   |    |     |     |     | (   | CC   | 7   |    |    |     |   |   |   |   |   |   |   |   |   |   |   |
| Operation | R |   |                   |   |   |   |   |   |   |   |   |    |     |     |     |     | R    |     |    |    |     |   |   |   |   |   |   |   |   |   |   |   |
| Reset     | 0 |   |                   |   |   |   |   |   |   |   |   |    |     |     | \$( | )00 | )00  | )00 | 00 |    |     |   |   |   |   |   |   |   |   |   |   |   |

Toggle. This bit toggles when ever the current count decrements to zero.

CC Current Count. The Current Count field decrements while the Count Inhibit bit in the Base Count register is zero. When the timer counts down to zero, the Current Count register is reloaded from the Base Count register.

## **Timer Base Count Registers**

| Offset    |     |                   |   |   |   |   |   |   |   |   |   |   |     | Tin | nei | 0  | - \$ | 01  | 110 | 0  |   |   |   |   |   |   |   |   |   |   |   | _ |
|-----------|-----|-------------------|---|---|---|---|---|---|---|---|---|---|-----|-----|-----|----|------|-----|-----|----|---|---|---|---|---|---|---|---|---|---|---|---|
|           |     |                   |   |   |   |   |   |   |   |   |   |   |     | Tin | ner | 1  | - \$ | 01  | 150 | 0  |   |   |   |   |   |   |   |   |   |   |   |   |
|           |     | Timer 2 - \$01190 |   |   |   |   |   |   |   |   |   |   |     |     |     |    |      |     |     |    |   |   |   |   |   |   |   |   |   |   |   |   |
|           |     | Timer 3 - \$011D0 |   |   |   |   |   |   |   |   |   |   |     |     |     |    |      |     |     |    |   |   |   |   |   |   |   |   |   |   |   |   |
| Bit       | 3   | 3                 | 2 | 2 | 2 | 2 | 2 |   | 2 |   |   |   |     |     | 1   | 1  | 1    | 1   | 1   | 1  | 1 | 1 |   |   |   |   |   |   |   |   |   |   |
|           | 1   | 0                 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 9   | 8   | 7   | 6  | 5    | 4   | 3   | 2  | 1 | 0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Name      |     |                   |   |   | • |   |   | • |   |   |   | 7 | ΓIN | ЛE  | R I | BA | SE   | EC  | JC  | JN | Γ |   |   |   |   |   | • |   | • | • | • |   |
|           | CI  |                   |   |   |   |   |   |   |   |   |   |   |     |     |     |    | BC   | 1   |     |    |   |   |   |   |   |   |   |   |   |   |   |   |
| Operation | R/W |                   |   |   |   |   |   |   |   |   |   |   |     |     |     | I  | R/V  | V   |     |    |   |   |   |   |   |   |   |   |   |   |   |   |
| Reset     | _   |                   |   |   |   |   |   |   |   |   |   |   |     |     | \$  | 00 | 000  | )00 | 00  |    |   |   |   |   |   |   |   |   |   |   |   |   |

**CI Count Inhibit.** Setting this bit to 1 inhibits counting for this timer. Setting the bit to 0 allows counting to proceed.

Base Count. This field contains the 31-bit count for this timer. When a value is written into this register and the CI bit transitions from a 1 to a 0, the value is copied into the corresponding Current Count register and the toggle bit in the Current Count register is cleared. When the timer counts down to zero, the Current Count register is reloaded from the Base Count register.

### **Timer Vector/Priority Registers**

| Offset    |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  |     |    |  |  |   |    | ,  | Γin | ner | 0   | - \$  | 01  | 120 | )   |    |   |  |  |   |     |    |   |  |  |
|-----------|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|-----|----|--|--|---|----|----|-----|-----|-----|-------|-----|-----|-----|----|---|--|--|---|-----|----|---|--|--|
|           |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  |     |    |  |  |   |    | ,  | Гin | ner | 1   | - \$  | 01  | 160 | )   |    |   |  |  |   |     |    |   |  |  |
|           |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  |     |    |  |  |   |    |    | Γin | ner | 2 - | - \$( | 011 | A   | 0   |    |   |  |  |   |     |    |   |  |  |
|           |     |    | Timer 3 - \$011E0 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |  |  |     |    |  |  |   |    |    |     |     |     |       |     |     |     |    |   |  |  |   |     |    |   |  |  |
| Bit       | 3   | 3  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 |  |  |     |    |  |  |   |    |    |     |     |     |       |     |     |     |    |   |  |  |   |     |    |   |  |  |
|           | 1   | 0  | 2     2     2     2     2     2     2     2     2     2     2     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <th>1</th> <th>0</th> |                                         |  |  |     |    |  |  |   |    |    |     |     |     |       | 1   | 0   |     |    |   |  |  |   |     |    |   |  |  |
| Name      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  |     |    |  |  | T | ΙM | EF | R V | ΈC  | СТ  | OR    | /P  | RI  | OR  | IT | Y |  |  |   |     |    |   |  |  |
|           | M   | AC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  |     |    |  |  |   |    | F  | PRI | OI  | ?   |       |     |     |     |    |   |  |  | V | EC  | TC | R |  |  |
|           | ASK | Ť  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  |     |    |  |  |   |    |    |     |     |     |       |     |     |     |    |   |  |  |   |     |    |   |  |  |
| Operation | R/W | R  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  | F   | ₹  |  |  |   |    |    | R/  | W   |     |       |     |     | F   | ₹  |   |  |  |   | R/  | W  |   |  |  |
| Reset     | 1   | 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  | \$0 | 00 |  |  |   |    |    | \$  | 0   |     |       |     |     | \$( | 00 |   |  |  |   | \$( | 00 |   |  |  |

MASK Mask. Setting this bit disables any further interrupts from this source. If the mask bit is cleared while the bit associated with this interrupt is set in the IPR, the interrupt request will be generated.

**ACT Activity.** The activity bit indicates that an interrupt has been requested or that it is in-service. The ACT bit is set to a 1 when its associated bit in the Interrupt Pending register or In-Service register is set.

2

**PRIOR** Interrupt Priority. Priority 0 is the lowest and 15 is the highest. Note that a priority level of 0 will not enable interrupts.

**VECTOR Interrupt Vector**. This vector is returned when the Interrupt Acknowledge register is examined upon acknowledgment of the interrupt associated with this vector.

### **Timer Destination Registers**

| Offset    |        |                   |            |     |        |  |  |  |  |     |  |     | ,  | Tin    | ner    | . 0    | - \$   | 01     | 130    | О   |        |        |   |   |   |   |     |    |   |   |               |     |
|-----------|--------|-------------------|------------|-----|--------|--|--|--|--|-----|--|-----|----|--------|--------|--------|--------|--------|--------|-----|--------|--------|---|---|---|---|-----|----|---|---|---------------|-----|
|           |        |                   |            |     |        |  |  |  |  |     |  |     | ,  | Tin    | ner    | 1      | - \$   | 01     | 170    | C   |        |        |   |   |   |   |     |    |   |   |               |     |
|           |        |                   |            |     |        |  |  |  |  |     |  |     | -  | Гin    | ner    | 2      | - \$0  | 011    | 1B     | 0   |        |        |   |   |   |   |     |    |   |   |               |     |
|           |        | Timer 3 - \$011F0 |            |     |        |  |  |  |  |     |  |     |    |        |        |        |        |        |        |     |        |        |   |   |   |   |     |    |   |   |               |     |
| Bit       | 3<br>1 |                   | <b>2 9</b> |     | 2<br>7 |  |  |  |  | 2 2 |  |     |    | 1<br>8 | 1<br>7 | 1<br>6 | 1<br>5 | 1<br>4 | 1<br>3 | 1 2 | 1<br>1 | 1<br>0 | 9 | 8 | 7 | 6 | 5   | 4  | 3 | 2 | 1             | 0   |
| Name      |        |                   |            |     |        |  |  |  |  |     |  | T   | IV | IEI    | R D    | E      | ST     | [N     | AT     | Ю   | N      |        |   |   |   |   |     |    |   |   |               |     |
|           |        |                   |            |     |        |  |  |  |  |     |  |     |    |        |        |        |        |        |        |     |        |        |   |   |   |   |     |    |   |   | Ρ1            | P0  |
| Operation |        |                   |            | F   | {      |  |  |  |  |     |  | I   | 2  |        |        |        |        |        |        | I   | 3      |        |   |   |   |   | I   | 2  |   |   | $\overline{}$ | R/W |
| Reset     |        |                   |            | \$0 | 00     |  |  |  |  |     |  | \$( | 00 |        |        |        |        |        |        | \$( | 00     |        |   |   |   |   | \$( | 00 |   |   | 0             | 0   |

This register indicates the destinations for this timer's interrupts. Timer interrupts operate in the Directed delivery interrupt mode. This register may specify multiple destinations (multicast delivery).

**P1 PROCESSOR 1**. The interrupt is directed to processor 1.

**PO PROCESSOR 0.** The interrupt is directed to processor 0.

### **External Source Vector/Priority Registers**

| Offset    |        |                                       |  |  |     |    |  |   |               |       |    |     | I   | nt S | Src | 0   | - \$ | 10   | 00  | 0    |    |      |     |    |   |    |     |    |   |  |  |
|-----------|--------|---------------------------------------|--|--|-----|----|--|---|---------------|-------|----|-----|-----|------|-----|-----|------|------|-----|------|----|------|-----|----|---|----|-----|----|---|--|--|
|           |        |                                       |  |  |     |    |  |   | In            | t S   | rc | 2 - | > I | nt : | Src | :15 | - 5  | \$10 | 002 | 20 - | >  | \$10 | )1I | Ξ0 |   |    |     |    |   |  |  |
| Bit       | 3<br>1 | 3   3   2   2   2   2   2   2   2   2 |  |  |     |    |  |   |               |       |    |     |     |      |     |     | 1    | 0    |     |      |    |      |     |    |   |    |     |    |   |  |  |
| Name      |        |                                       |  |  | 1   |    |  | Е | XΊ            | ſΕΙ   | RN | ΙΑΙ | S   | OU   | JR  | CE  | V    | EC   | СТ  | OR   | /P | RIO  | OR  | IT | Y |    |     |    |   |  |  |
|           | MASK   | ACT                                   |  |  |     |    |  |   |               | SENSE |    |     | F   | PRI  | OI  | 3   |      |      |     |      |    |      |     |    |   | V] | EC  | TC | R |  |  |
| Operation | R/W    | R                                     |  |  | F   | ?  |  |   | $\rightarrow$ | R/W   | R  | R   |     | R/   | W   |     |      |      |     | F    | ₹  |      |     |    |   |    | R/  | W  |   |  |  |
| Reset     | 1      | 0                                     |  |  | \$0 | 00 |  |   | 0             | 0     | 0  | 0   |     | \$   | 0   |     |      |      |     | \$(  | 00 |      |     |    |   |    | \$( | 00 |   |  |  |

MASK Mask. Setting this bit disables any further interrupts from this source. If the mask bit is cleared while the bit associated with this interrupt is set in the IPR, the interrupt request will be generated.

**ACT Activity.** The activity bit indicates that an interrupt has been requested or that it is in-service. The ACT bit is set to a 1 when its associated bit in the Interrupt Pending register or In-Service register is set.

POL Polarity. This bit sets the polarity for external interrupts. Setting this bit to a 0 enables active low or negative edge. Setting this bit to a 1 enables active high or positive edge. Only External Interrupt Source 0 uses this bit in this register.

SENSE Sense. This bit sets the sense for external interrupts.

Setting this bit to a zero enables edge-sensitive interrupts.

Setting this bit to a one enables level-sensitive interrupts.

For external interrupt sources 1 through 15, setting this bit to a 0 enables positive edge-triggered interrupts. Setting this bit to a one enables active-low level-triggered interrupts.

2

**PRIOR** Interrupt Priority. Priority 0 is the lowest and 15 is the highest. Note that a priority level of 0 will not enable interrupts.

**VECTOR Interrupt Vector**. This vector is returned when the Interrupt Acknowledge register is examined upon acknowledgment of the interrupt associated with this vector.

### **External Source Destination Registers**

| Offset    | Int Src 0 - \$10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Int Src 2 -> Int Src 15 - \$10030 -> \$101F0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bit       | 3     3     2     2     2     2     2     2     2     2     2     2     2     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 |
| Name      | EXTERNAL SOURCE DESTINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | P1 P0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Operation | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Reset     | \$00 \$00 \$00 \$00 \$00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

This register indicates the possible destinations for the external interrupt sources. These interrupts operate in the Distributed interrupt delivery mode.

**P1 Processor 1**. The interrupt is pointed to processor 1.

**P0 Processor 0.** The interrupt is pointed to processor 0.

### **Raven-Detected Errors Vector/Priority Register**

| Offset    |      |     |   |   |     |    |    |    |    |       |    |    |    |     | \$ | 10 | 200 | ) |    |     |    |     |    |   |    |    |    |     |    |   |   |   |
|-----------|------|-----|---|---|-----|----|----|----|----|-------|----|----|----|-----|----|----|-----|---|----|-----|----|-----|----|---|----|----|----|-----|----|---|---|---|
| Bit       | 3    | 3   | 2 | 2 | 2   | 2  | 2  | 2  | 2  | 2     | 2  | 2  | 1  | 1   | 1  | 1  | 1   | 1 | 1  | 1   | 1  | 1   |    |   |    |    |    |     |    |   |   |   |
|           | 1    | 0   | 9 | 8 | 7   | 6  | 5  | 4  | 3  | 2     | 1  | 0  | 9  | 8   | 7  | 6  | 5   | 4 | 3  | 2   | 1  | 0   | 9  | 8 | 7  | 6  | 5  | 4   | 3  | 2 | 1 | 0 |
| Name      |      |     |   |   |     | ]  | RA | VF | EN | DI    | ET | EC | TE | ED  | ER | R  | OR  | S | VE | EC. | ГО | R/l | PR | Ю | Rľ | ГΥ | -  |     |    |   |   |   |
|           | MASK | ACT |   |   |     |    |    |    |    | SENSE |    |    | P  | RI  | OF | 2  |     |   |    |     |    |     |    |   |    |    | VI | EC  | TC | R |   |   |
| Operation | R/W  | R   |   |   | F   | ₹  |    |    | R  | R/W   | R  | R  |    | R/  | W  |    |     |   |    | F   | ?  |     |    |   |    |    |    | R/  | W  |   |   |   |
| Reset     | 1    | 0   |   |   | \$0 | 00 |    |    | 0  | 0     | 0  | 0  |    | \$( | 0  |    |     |   |    | \$0 | 00 |     |    |   |    |    |    | \$( | 00 |   |   |   |

MASK Mask. Setting this bit disables any further interrupts from this source. If the mask bit is cleared while the bit associated with this interrupt is set in the IPR, the interrupt request will be generated.

**ACT Activity.** The activity bit indicates that an interrupt has been requested or that it is in-service. The ACT bit is set to a 1 when its associated bit in the Interrupt Pending register or In-Service register is set.

**SENSE** Sense. This bit sets the sense for external interrupts. Setting this bit to a 0 enables positive edge sensitive interrupts. Setting this bit to a 1 enables active low level sensitive interrupts.

**PRIOR** Interrupt Priority. Priority 0 is the lowest and 15 is the highest. Note that a priority level of 0 will not enable interrupts.

**VECTOR Interrupt Vector**. This vector is returned when the Interrupt Acknowledge register is examined upon acknowledgment of the interrupt associated with this vector.

### **Raven-Detected Errors Destination Register**

| Offset    |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |    |  |  |  |  |  |  |     |    |  | \$ | 10 | 210 | 0 |     |    |  |  |     |    |  |     |     |
|-----------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----|--|--|--|--|--|--|-----|----|--|----|----|-----|---|-----|----|--|--|-----|----|--|-----|-----|
| Bit       | 3<br>1 | 3<br>0 | 2       2       2       2       2       2       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 |                                  |    |  |  |  |  |  |  |     |    |  |    |    |     |   |     |    |  |  |     |    |  |     |     |
| Name      |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RAVEN DETECTED ERROR DESTINATION |    |  |  |  |  |  |  |     |    |  |    |    |     |   |     |    |  |  |     |    |  |     |     |
|           |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |    |  |  |  |  |  |  |     |    |  |    |    |     |   |     |    |  |  |     |    |  | P1  | P0  |
| Operation |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                | ξ. |  |  |  |  |  |  | F   | ₹  |  |    |    |     |   | F   | 2  |  |  | I   | ?  |  | R/W | R/W |
| Reset     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$(                              | 00 |  |  |  |  |  |  | \$( | 00 |  |    |    |     |   | \$( | 00 |  |  | \$( | 00 |  | 0   | 0   |

This register indicates the possible destinations for the Raven-detected error interrupt source. These interrupts operate in the Distributed interrupt delivery mode.

**P1 Processor 1**. The interrupt is pointed to processor 1.

**Position Processor 0.** The interrupt is pointed to processor 0.

### **Interprocessor Interrupt Dispatch Registers**

| Offset    |      | Processor 0 \$20040, \$20050, \$20060, \$20070<br>Processor 1 \$21040, \$21050,\$21060, \$21070 |                                                                                             |                 |  |  |  |  |  |  |  |  |  |  |
|-----------|------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|--|--|--|
|           | Г    | 100008801 1 \$21040, \$2                                                                        | 21030,\$21000, \$2107                                                                       | U               |  |  |  |  |  |  |  |  |  |  |
| Bit       |      | 2 2 2 2 1 1 1 1<br>3 2 1 0 9 8 7 6                                                              | 1     1     1     1     1     1     1     1     1     1     1     1     1     0     9     8 | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |  |
| Name      |      | IPI DISPATCH                                                                                    |                                                                                             |                 |  |  |  |  |  |  |  |  |  |  |
|           |      |                                                                                                 |                                                                                             | PO<br>P1        |  |  |  |  |  |  |  |  |  |  |
| Operation | R    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                           |                                                                                             |                 |  |  |  |  |  |  |  |  |  |  |
| Reset     | \$00 | \$00 \$00 \$00 \$00                                                                             |                                                                                             |                 |  |  |  |  |  |  |  |  |  |  |

There are four Interprocessor Interrupt Dispatch registers. Writing to an IPI Dispatch register with the P0 and/or P1 bit set causes an interprocessor interrupt request to be sent to one or more processors. Note that each IPI

Dispatch register has two addresses. These registers are considered to be per-processor registers and there is one address per processor. Reading these registers returns zeros.

**P1 Processor 1**. The interrupt is directed to processor 1.

**Processor 0.** The interrupt is directed to processor 0.

### **Interrupt Task Priority Registers**

| Offset    |                                 | Processor           | 0 \$20080    |   |     |  |  |  |  |  |  |  |  |  |
|-----------|---------------------------------|---------------------|--------------|---|-----|--|--|--|--|--|--|--|--|--|
|           |                                 | Processor 1 \$21080 |              |   |     |  |  |  |  |  |  |  |  |  |
| Bit       | 3 3 2 2 2 2 2 2 1 0 9 8 7 6 5 4 |                     |              |   |     |  |  |  |  |  |  |  |  |  |
| Name      |                                 | INTERRUPT TA        | ASK PRIORITY |   |     |  |  |  |  |  |  |  |  |  |
|           |                                 |                     |              |   | TP  |  |  |  |  |  |  |  |  |  |
| Operation | R                               | R                   | R            | R | R/W |  |  |  |  |  |  |  |  |  |
| Reset     | \$00                            | \$00 \$00 \$0 \$F   |              |   |     |  |  |  |  |  |  |  |  |  |

There is one Task Priority register per processor. Priority levels from 0 (lowest) to 15 (highest) are supported. Setting the Task Priority register to 15 masks all interrupts to this processor. Hardware will set the task register to \$F when it is reset, or when the Init bit associated with this processor is written to a 1.

### **Interrupt Acknowledge Registers**

| Offset    |   | Processor 0 \$200A0                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |    |    |   |  |  |
|-----------|---|-----------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----|----|----|---|--|--|
|           |   | Processor 1 \$210A0                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |    |    |   |  |  |
| Bit       | 3 | 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |    |    |   |  |  |
| Name      |   |                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | VI | EC | TC | R |  |  |
| Operation |   | R R R                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |    |    |   |  |  |
| Reset     |   | \$00 \$00 \$FF                          |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |    |    |   |  |  |

On PowerPC-based systems, Interrupt Acknowledge is implemented as a read request to a memory-mapped Interrupt Acknowledge register.

Reading the Interrupt Acknowledge register returns the interrupt vector corresponding to the highest-priority pending interrupt. Reading this register also has the following side effects.

- ☐ The associated bit in the Interrupt Pending register is cleared.
- □ Reading this register will update the In-Service register.

Reading this register without a pending interrupt will return a value of \$FF hexadecimal.

### **End-of-Interrupt Registers**

**EOI** 

| Offset    |                                    | Processor 0 \$200B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
|           |                                    | Processor 1 \$210B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |
| Bit       | 3 3 2 2 2 2 2 2<br>1 0 9 8 7 6 5 4 | 3     2     2     2     2     2     2     2     2     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 |  |  |  |  |  |  |  |  |  |  |  |  |
| Name      |                                    | EOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |
| Operation | R                                  | R R R W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Reset     | \$00                               | \$00 \$00 \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |

**End Of Interrupt.** There is one EOI register per processor. EOI code values other than 0 are currently undefined. Data values written to this register are ignored; zero is assumed. Writing to this register signals the end of

processing for the highest-priority interrupt currently in service by the associated processor. The write operation will update the In-Service register by retiring the highestpriority interrupt. Reading this register returns zeros.

# **Programming Notes**

This section includes a number of items of information that should prove helpful in programming your MVME2300 series board for a variety of applications.

### **External Interrupt Service**

The following summarizes how an external interrupt is serviced:

- 1. An external interrupt occurs.
- 2. The processor state is saved in the machine status save/restore registers. A new value is loaded into the Machine State register (MSR). The External Interrupt Enable bit in the new MSR (MSRee) is set to zero. Control is transferred to the O/S external interrupt handler.
- 3. The external interrupt handler calculates the address of the Interrupt Acknowledge register for this processor (RavenMPIC Base Address + 0x200A00 + (processor ID shifted left 12 bits)).
- 4. The external interrupt handler issues an Interrupt Acknowledge request to read the interrupt vector from the RavenMPIC. If the interrupt vector indicates the interrupt source is the 8259, the interrupt handler issues a second Interrupt Acknowledge request to read the interrupt vector from the 8259. The RavenMPIC does not interact with the vector fetch from the 8259.
- 5. The interrupt handler saves the processor state and other interruptspecific information in system memory and re-enables for external interrupts (the MSRee bit is set to 1). The RavenMPIC blocks interrupts from sources with equal or lower priority until an End-of-Interrupt is received for that interrupt source. Interrupts from higher-priority interrupt sources continue to be enabled. If the

interrupt source was the 8259, the interrupt handler issues an EOI request to the RavenMPIC. This resets the In-Service bit for the 8259 within the RavenMPIC and allows it to recognize higher-priority interrupt requests, if any, from the 8259. If none of the nested interrupt modes of the 8259 are enabled, the interrupt handler issues an EOI request to the 8259.

- a. The device driver interrupt service routine associated with this interrupt vector is invoked.
- b. If the interrupt source was not the 8259, the interrupt handler issues an EOI request for this interrupt vector to the RavenMPIC. If the interrupt source was the 8259 and any of the nested interrupt modes of the 8259 are enabled, the interrupt handler issues an EOI request to the 8259.

Normally, interrupts from ISA devices are connected to the 8259 interrupt controller. ISA devices typically rely on the 8259 Interrupt Acknowledge to flush buffers between the ISA device and system memory. If interrupts from ISA devices are directly connected to the RavenMPIC (bypassing the 8259), the device driver interrupt service routine must read status from the ISA device to ensure buffers between the device and system memory are flushed.

#### **Reset State**

After a power-on reset, the RavenMPIC state is as follows:

- □ Current task priority for all CPUs set to 15.
- $\Box$  All interrupt source priorities set to 0.
- □ All interrupt source mask bits set to 1.
- □ All interrupt source activity bits cleared.
- □ Processor Init register cleared.
- □ All counters stopped and interrupts disabled.
- □ Controller mode set to 8259 pass-through.

### **Interprocessor Interrupts**

Four interprocessor interrupt (IPI) channels are provided for use by all processors. During system initialization, the IPI vector/priority registers for each channel should be programmed to set the priority and vector returned for each IPI event. During system operation a processor may generate an IPI by writing a destination mask to one of the IPI dispatch registers.

Note that each IPI dispatch register is shared by both processors. Each IPI dispatch register has two addresses but they are shared by both processors. That is, there is a total of four IPI dispatch registers in the RavenMPIC.

The IPI mechanism may be used for self-interrupts by programming the dispatch register with the bit mask for the originating processor.

### Dynamically Changing I/O Interrupt Configuration

The interrupt controller provides a mechanism for safely changing the vector, priority, or destination of I/O interrupt sources. This is provided to support systems which allow dynamic configuration of I/O devices. In order to change the vector, priority, or destination of an active interrupt source, the following sequence should be performed:

- 1. Mask the source using the MASK bit in the vector/priority register.
- 2. Wait for the activity bit (ACT) for that source to be cleared.
- 3. Make the desired changes.
- 4. Unmask the source.

This sequence ensures that the vector, priority, destination, and mask information remain valid until all processing of pending interrupts is complete.

### **EOI Register**

Each processor has a private EOI register which is used to signal the end of processing for a particular interrupt event. If multiple nested interrupts are in service, the EOI command terminates the interrupt service of the highest priority source. Once an interrupt is acknowledged, only sources of higher priority will be allowed to interrupt the processor until the EOI command is received. This register should always be written with a value of zero which is the nonspecific EOI command.

### Interrupt Acknowledge Register

Upon receipt of an interrupt signal, the processor may read this register to retrieve the vector of the interrupt source which caused the interrupt.

#### 8259 Mode

The 8259 mode bits control the use of an external 8259 pair for PC-AT compatibility. Following a reset, this mode is set for pass-through, which essentially disables the advanced controller and passes an 8259 input on external interrupt source 0 directly through to processor 0. During interrupt controller initialization this channel should be programmed for mixed mode in order to take advantage of the interrupt delivery modes.

## **Current Task Priority Level**

Each processor has a separate Current Task Priority Level register. The system software uses this register to indicate the relative priority of the task running on the corresponding processor. The interrupt controller will not deliver an interrupt to a processor unless it has a priority level which is greater than the current task priority level of that processor. This value is also used in determining the destination for interrupts which are delivered using the distributed deliver mode.

### **Architectural Notes**

The hardware and software overhead required to update the Task Priority register synchronously with instruction execution may far outweigh the anticipated benefits of the Task Priority register. To minimize this overhead, the interrupt controller architecture should allow the Task Priority register to be updated asynchronously with respect to instruction execution. Lower-priority interrupts may continue to occur for an indeterminate number of cycles after the processor has updated the Task Priority register. If this is not acceptable, the interrupt controller architecture should recommend that if the Task Priority register is not implemented with the processor, the Task Priority register should be updated only when the processor enter or exits an idle state.

Only when the Task Priority register is integrated within the processor, (such that it can be accessed as quickly as the MSRee bit defined in the *Programming Notes* section, for example), should the architecture require the Task Priority register to be updated synchronously with instruction execution.

# Introduction

The Falcon DRAM controller ASIC is designed for the MVME2300 family of boards. It is used in sets of two to provide the interface between the PowerPC 60*x* bus (also called MPC60*x* bus or MPC bus) and a 144-bit ECC-DRAM memory system. It also provides an interface to ROM/Flash.

This chapter provides a functional description and programming model for the Falcon chip set. Most of the information necessary to use the device in a system, program it in a system, and test it can be found here.

# **Features**

The following table summarizes the characteristics of the Falcon chip set.

Table 3-1. Features of the Falcon Chip Set

| Function               | Features                                                           |
|------------------------|--------------------------------------------------------------------|
| DRAM Interface         | Double-bit error detect/Single-bit error correct on 72-bit basis   |
|                        | Up to four blocks                                                  |
|                        | Programmable base address for each block                           |
|                        | Two-way interleave factor                                          |
|                        | Built-in Refresh/Scrub                                             |
| Error Notification for | Software-programmable Interrupt on Single/Double-Bit error         |
| DRAM                   | Error address and Syndrome Log Registers for Error Logging         |
|                        | Does not provide TEA_ on Double-Bit Error. (Chip has no TEA_ pin.) |
| ROM/Flash Interface    | Two blocks with two 8-bit devices, or two 32-bit devices per block |

# **Block Diagrams**

Figure 3-1 depicts a Falcon pair as it would be connected in a system. Figure 3-2 shows the Falcon's internal data paths. Figure 3-3 shows the overall DRAM connections.

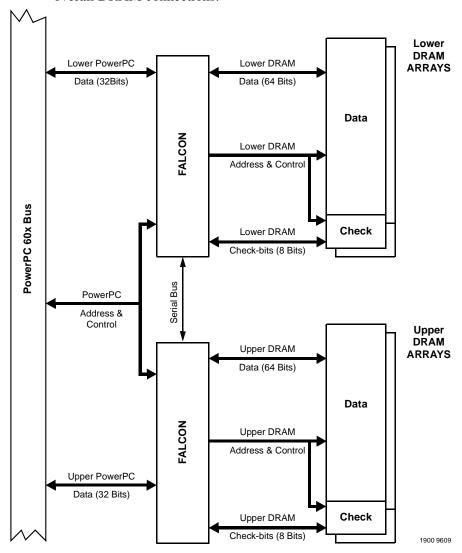



Figure 3-1. Falcon Pair Used with DRAM in a System

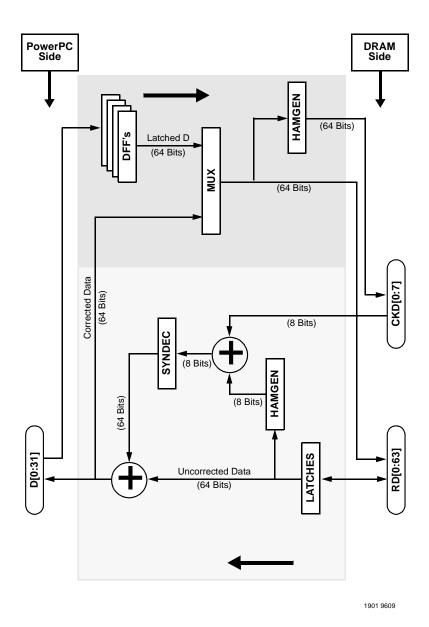
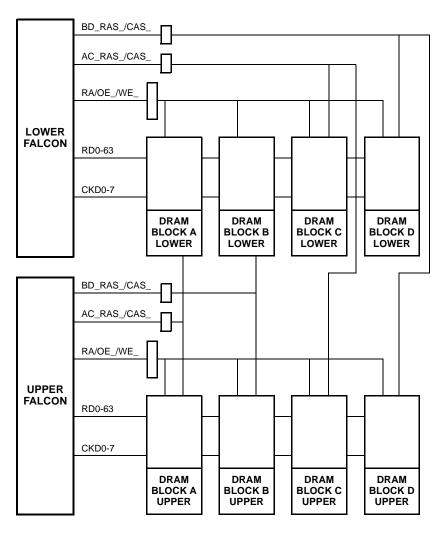




Figure 3-2. Falcon Internal Data Paths (Simplified)



1902 9609

Figure 3-3. Overall DRAM Connections

# **Functional Description**

The following sections describe the logical function of the Falcon ASIC. The Falcon is designed to be used as a set of two chips. A pair of Falcons works with xI or wider DRAM memory devices to form a memory system for the PowerPC 60x bus. A pair of Falcons that is connected to implement a memory control function is referred to in this document as a "Falcon pair".

# **Bit Ordering Convention**

All Falcon bused signals are named using big-endian bit ordering (bit 0 is the most significant bit).

### **Performance**

The following sections describe the Falcon pair's data transfer characteristics in various configurations.

### Four-beat Reads/Writes

The Falcon pair is specifically designed to provide maximum performance for cache line (four-beat) cycles to and from the PowerPC 60x bus at 66MHz. This is done by providing a two-way interleave between the 64-bit PowerPC 60x data bus and the 128-bit (144 with check-bits) DRAM bus. When a PowerPC 60x bus master begins a quad-aligned, four-beat read to DRAM, the Falcon pair accesses the full 144-bit width of DRAM at once so that when the DRAM access time is reached, not only is the first 64-bit double-word of data ready to be transferred to the PowerPC 60x bus master, but so is the next. While the Falcon pair is presenting the first two double-words to the PowerPC 60x bus, it cycles CAS without cycling RAS to obtain the next two double-words. The Falcon pair transfers the next two double-words to the PowerPC 60x bus after 0 or more idle clocks.

The Falcon pair also profits from the fact that PowerPC 60x processors can do address pipelining. Many times while a data cycle is finishing, the PowerPC 60x processor begins a new address cycle. The Falcon pair can begin the next DRAM access earlier when this happens, thus shortening

the access time. Further savings come when the new address cycle is to an address close enough to the previous one that it falls within the same row in the DRAM array. When this happens, the Falcon pair can transfer the data for the next cycle by cycling CAS without cycling RAS.

### Single-beat Reads/Writes

Single-beat cycles to and from the PowerPC 60x bus do not achieve data rates as high as do four-beat cycles. The Falcon pair does take advantage of the PowerPC 60x address pipelining as much as possible for single-beat accesses.

Single-beat writes are the slowest type of accesses because they require that the Falcon pair perform first a read cycle, then a write cycle to the DRAM in order to complete. When the Falcon pair can take advantage of address pipelining, back-to-back single-beat writes take 10 clocks to complete.

### **DRAM Speeds**

The Falcon pair can be configured for three different DRAM speeds: 50ns, 60ns and 70ns. When the Falcon pair is configured for 50ns DRAMs, it assumes that the devices are Hyper-Page parts. When the Falcon pair is configured for 70ns DRAMs, it assumes that the devices are Page parts. When the pair is configured for 60ns DRAMs, it allows the devices to be either Page or Hyper-Page parts. Performance summaries using the different devices are shown in Table 3-2, Table 3-3, and Table 3-4.

Table 3-2. PowerPC 60x Bus to DRAM Access Timing — 70ns Page Devices

|                                                      | Cl          | ock Periods | Required F  | or:         | Total  |
|------------------------------------------------------|-------------|-------------|-------------|-------------|--------|
| Access Type                                          | 1st<br>Beat | 2nd<br>Beat | 3rd<br>Beat | 4th<br>Beat | Clocks |
| 4-Beat Read after Idle (Quadword aligned)            | 10          | 1           | 3           | 1           | 15     |
| 4-Beat Read after Idle (Quadword misaligned)         | 10          | 4           | 1           | 1           | 16     |
| 4-Beat Read after 4-Beat Read<br>(Quad-word aligned) | 9/3 1       | 1           | 3           | 1           | 14/8   |
| 4-Beat Read after 4-Beat Read (misaligned)           | 7/2 1       | 4           | 1           | 1           | 13/8   |
| 4-Beat Write after Idle                              | 4           | 1           | 1           | 1           | 7      |
| 4-Beat Write after 4-Beat Write (Quad-word aligned)  | 10/6 1      | 1           | 1           | 1           | 13/9   |
| 1-Beat Read after Idle                               | 10          | -           | -           | -           | 10     |
| 1-Beat Read after 1-Beat Read                        | 11/7 1      | -           | -           | -           | 11/7   |
| 1-Beat Write after Idle                              | 4           | -           | -           | -           | 4      |
| 1-Beat Write after 1-Beat Write                      | 15/11       | -           | -           | -           | 15/11  |

### **Notes**

- 1. These numbers assume that the PowerPC 60x bus master is doing address pipelining with TS\_ occurring at the minimum time after AACK\_ is asserted. Also, the two numbers shown in the **1st Beat** column are for page miss/page hit.
- 2. In some cases, the numbers shown are averages and specific instances may be longer or shorter.

Table 3-3. PowerPC 60x Bus to DRAM Access Timing — 60ns Page Devices.

|                                                      | Cl          | ock Periods | Required F  | or:         | Total           |
|------------------------------------------------------|-------------|-------------|-------------|-------------|-----------------|
| Access Type                                          | 1st<br>Beat | 2nd<br>Beat | 3rd<br>Beat | 4th<br>Beat | Total<br>Clocks |
| 4-Beat Read after Idle (Quadword aligned)            | 9           | 1           | 2           | 1           | 13              |
| 4-Beat Read after Idle (Quadword misaligned)         | 9           | 3           | 1           | 1           | 14              |
| 4-Beat Read after 4-Beat Read<br>(Quad-word aligned) | 7/3 1       | 1           | 2           | 1           | 11/7            |
| 4-Beat Read after 4-Beat Read (misaligned)           | 6/2 1       | 3           | 1           | 1           | 11/7            |
| 4-Beat Write after Idle                              | 4           | 1           | 1           | 1           | 7               |
| 4-Beat Write after 4-Beat Write (Quad-word aligned)  | 7/3 1       | 1           | 1           | 1           | 10/6            |
| 1-Beat Read after Idle                               | 9           | -           | -           | -           | 9               |
| 1-Beat Read after 1-Beat Read                        | 9/6 1       | -           | -           | -           | 9/6             |
| 1-Beat Write after Idle                              | 4           | -           | -           | -           | 4               |
| 1-Beat Write after 1-Beat Write                      | 13/10       | -           | -           | -           | 13/10           |

### **Notes**

- 1. These numbers assume that the PowerPC 60x bus master is doing address pipelining with TS\_ occurring at the minimum time after AACK\_ is asserted. Also, the two numbers shown in the **1st Beat** column are for page miss/page hit.
- 2. In some cases, the numbers shown are averages and specific instances may be longer or shorter.

Table 3-4. PowerPC Bus to DRAM Access Timing — 50ns Hyper Devices

|                                                      | Cl          | ock Periods | Required F  | or:         | Total           |
|------------------------------------------------------|-------------|-------------|-------------|-------------|-----------------|
| Access Type                                          | 1st<br>Beat | 2nd<br>Beat | 3rd<br>Beat | 4th<br>Beat | Total<br>Clocks |
| 4-Beat Read after Idle (Quadword aligned)            | 8           | 1           | 1           | 1           | 11              |
| 4-Beat Read after Idle (Quadword misaligned)         | 8           | 2           | 1           | 1           | 12              |
| 4-Beat Read after 4-Beat Read<br>(Quad-word aligned) | 5/2 1       | 1           | 1           | 1           | 8/5             |
| 4-Beat Read after 4-Beat Read (misaligned)           | 4/2 1       | 2           | 1           | 1           | 8/6             |
| 4-Beat Write after Idle                              | 4           | 1           | 1           | 1           | 7               |
| 4-Beat Write after 4-Beat Write (Quad-word aligned)  | 4/3 1       | 1           | 1           | 1           | 7/6             |
| 1-Beat Read after Idle                               | 8           | -           | -           | -           | 8               |
| 1-Beat Read after 1-Beat Read                        | 7/5 1       | -           | -           | -           | 7/5             |
| 1-Beat Write after Idle                              | 4           | -           | -           | -           | 4               |
| 1-Beat Write after 1-Beat Write                      | 9/7 1       | -           | -           | -           | 9/7             |

### **Notes**

- 1. These numbers assume that the PowerPC 60x bus master is doing address pipelining with TS\_ occurring at the minimum time after AACK\_ is asserted. Also, the two numbers shown in the **1st Beat** column are for page miss/page hit.
- 2. In some cases, the numbers shown are averages and specific instances may be longer or shorter.

### **ROM/Flash Speeds**

The Falcon pair provides the interface for two blocks of ROM/Flash. Each block can address up to 64MB of memory depending on the width implemented for that block (16 bits or 64 bits). Bank A is 64 bits wide and bank B is 16 bits wide. The access times for ROM/Flash are listed in Table 3-5 and Table 3-6.

Table 3-5. PowerPC 60x Bus to ROM/Flash Access Timing — 64 Bits (32 Bits per Falcon)

|              | Cle         | Total       |             |             |        |
|--------------|-------------|-------------|-------------|-------------|--------|
| Access Type  | 1st<br>Beat | 2nd<br>Beat | 3rd<br>Beat | 4th<br>Beat | Clocks |
| 4-Beat Read  | 20          | 16          | 16          | 16          | 68     |
| 4-Beat Write | N/A         | N/A         | N/A         | N/A         | N/A    |
| 1-Beat Read  | 20          | -           | -           | -           | 20     |
| 1-Beat Write | 19          | -           | -           | -           | 19     |

Table 3-6. PowerPC 60x Bus to ROM/Flash Access Timing — 16 Bits (8 Bits per Falcon)

|                                  | Cl          | Total       |             |             |        |
|----------------------------------|-------------|-------------|-------------|-------------|--------|
| Access Type                      | 1st<br>Beat | 2nd<br>Beat | 3rd<br>Beat | 4th<br>Beat | Clocks |
| 4-Beat Read                      | 68          | 64          | 64          | 64          | 260    |
| 4-Beat Write                     | N/A         | N/A         | N/A         | N/A         | N/A    |
| 1-Beat Read (2 bytes to 8 bytes) | 68          | -           | -           | -           | 68     |
| 1-Beat Read (1 byte)             | 20          | -           | -           | -           | 20     |
| 1-Beat Write                     | 19          | -           | -           | -           | 19     |

### PowerPC 60x Bus Interface

The Falcon pair has a PowerPC slave interface only. It has no PowerPC master interface. The slave interface is the mechanism for all accesses to DRAM, ROM/Flash, and Falcon registers/SRAM.

### **Responding to Address Transfers**

When the Falcon pair detects an address transfer to which it should respond, it asserts AACK\_ immediately if there is no uncompleted PowerPC 60x bus data transfer in progress. If a transfer is in progress, the Falcon pair waits and asserts AACK\_ coincident with the uncompleted data transfer's last data beat if the Falcon pair is the slave for the previous data. If it is not the slave for the previous data, the Falcon pair holds off AACK\_ until the CLOCK after the previous data transfer's last data beat.

### **Completing Data Transfers**

If an address transfer to the Falcon pair will have an associated data transfer, the Falcon pair begins a read or write cycle to the accessed entity (DRAM/ROM/Flash/internal register) as soon as the entity is free. If the data transfer will be a read, the Falcon pair begins providing data to the PowerPC 60x bus as soon as the entity has data ready and the PowerPC 60x data bus is granted. If the data transfer will be a write, the Falcon pair begins latching data from the PowerPC data bus as soon as any previously latched data is no longer needed and the PowerPC 60x data bus has been granted.

### **Cache Coherency**

The Falcon pair supports cache coherency by monitoring the ARTRY\_control signal on the PowerPC 60x bus and behaving appropriately when it is asserted. When ARTRY\_is asserted, if the access is a read, the Falcon pair does not source the data for that access. If the access is a write, the Falcon does not write the data for that access to the DRAM array. Depending upon when the retry occurs however, the Falcon pair may cycle the DRAM even though the data transfer does not happen.

### **Cache Coherency Restrictions**

The PowerPC 60x GBL\_ signal must not be asserted in the CSR areas.

## **L2 Cache Support**

The Falcon pair provides support for a look-aside L2 cache by implementing a hold-off input, L2CLM\_. On cycles that select the Falcon pair, the Falcon pair samples L2CLM\_ on the second rising edge of CLOCK after the assertion of TS\_. If L2CLM\_ is high, the Falcon pair responds normally to the cycle. If it is low, the Falcon pair ignores the cycle.

**Note** The MVME2300 series boards have no L2 cache.

### **ECC**

The Falcon pair performs single-bit error correction and double-bit error detection for DRAM. (No checking is provided for ROM/Flash.) The 64-bit wide PowerPC 60x data bus is divided into upper (DH0-DH31) and lower (DL0-DL31) halves. Each half is routed through a Falcon which multiplexes it with half of the DRAM data bus. Each Falcon connects to 64 DRAM data-bits and to 8 DRAM check-bits. The total DRAM array width is 144 bits (2×[64+8]).

## **Cycle Types**

To support ECC, the Falcon pair always deals with DRAM using full width (144-bit) accesses. When the PowerPC 60x bus master requests any size read of DRAM, the Falcon pair reads 144 bits at least once. When the PowerPC 60x bus master requests a four-beat write to DRAM, the Falcon pair writes all 144 bits twice. When the PowerPC 60x bus master requests a single-beat write to DRAM, the Falcon pair performs a 144-bit wide read cycle to DRAM, merges in the appropriate PowerPC 60x bus write data, and writes 144 bits back to DRAM.

### **Error Reporting**

The Falcon pair checks data from the DRAM during single- and four-beat reads, during single-beat writes, and during scrubs. Table 3-7 shows the actions taken by the Falcon pair for different errors during these accesses.

Note that the Falcon pair does not assert TEA\_ on double-bit errors. In fact, the Falcon pair does not have a TEA\_ signal pin and it assumes that the system does not implement TEA\_. The Falcon can, however, assert machine check (MCP\_) on double-bit errors.

Table 3-7. Error Reporting

| Error Type           | Single-Beat/<br>Four-Beat Read                                                                                                                                                      | Single-Beat Write                                                                                         | Four-Beat Write  | Scrub                                                                    |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------|
| Single-Bit<br>Error  | Terminate the PowerPC 60x bus cycle normally.                                                                                                                                       | Terminate the PowerPC 60x bus cycle normally.                                                             |                  | This cycle is not seen on the PowerPC 60x bus.                           |
|                      | Provide corrected data to the PowerPC 60 <i>x</i> bus master.                                                                                                                       | Correct the data read from DRAM, merge with the write data, and write the corrected, merged data to DRAM. | N/A <sup>1</sup> | Write corrected data<br>back to DRAM if so<br>enabled.                   |
|                      | Assert INT_ if so enabled.                                                                                                                                                          | Assert INT_ if so enabled.                                                                                |                  | Assert INT_ if so enabled.                                               |
| Double-Bit<br>Error  | Terminate the PowerPC 60x bus cycle normally.                                                                                                                                       | Terminate the PowerPC 60x bus cycle normally.                                                             |                  | This cycle is not seen on the PowerPC 60x bus.                           |
|                      | Provide miss-corrected, raw DRAM data to the PowerPC 60x bus master.  Assert INT_ if so                                                                                             | Do not perform the write portion of the read-modify-write cycle to DRAM.                                  | N/A <sup>1</sup> | Do not perform the write portion of the read-modify-write cycle to DRAM. |
|                      | enabled. Assert MCP_ if so enabled.                                                                                                                                                 | Assert INT_ if so enabled. Assert MCP_ if so enabled.                                                     |                  | Assert INT_ if so enabled.                                               |
| Triple- (or greater) | Some of these errors are detected correctly and are treated the same as double-bit errors. The rest could show up as "no error" or "single-bit error", both of which are incorrect. |                                                                                                           |                  |                                                                          |
| Bit Error            |                                                                                                                                                                                     |                                                                                                           |                  |                                                                          |

**Notes** 1. No opportunity for error, since no read of DRAM occurs during a four-beat write.

### **Error Logging**

ECC error logging is facilitated by the Falcon because of its internal latches. When an error (single- or double-bit) occurs in the DRAMs to which a Falcon is connected, it records the address and syndrome bits associated with the data in error. Each Falcon performs this logging function independently of the other. Once a Falcon has logged an error, it does not log any more until the *elog* control /status bit has been cleared by software unless the currently logged error is single-bit and a new, double-bit error is encountered. The logging of errors that occur during scrub can be enabled/disabled in software. Refer to the *Error Logger Register* section of this chapter.

### **DRAM Tester**

The DRAM tester is for factory testing purposes only; it should not be used by customers.

### **ROM/Flash Interface**

The Falcon pair provides the interface for two blocks of ROM/Flash. Each block provides addressing and control for up to 64MB. Note that no error checking (ECC or Parity) is provided for the ROM/Flash.

The ROM/Flash interface allows each block to be individually configured by jumpers and/or by software as follows:

1. Access for each block is controlled by two software-programmable control register bits: an overall enable, a write enable, and a reset vector enable. The overall enable controls normal read accesses. The write enable is used to program Flash devices. The reset vector enable controls whether the block is also enabled at \$FFF00000 - \$FFFFFFFF. The overall enable and write enable bits are always cleared at reset. The reset vector enable bit is cleared or set at reset depending on external jumper configuration. This allows the board designer to use external jumpers to enable/disable Block A/B ROM/Flash as the source of reset vectors.

The write enable bit is cleared at reset for both blocks.

2. The base address for each block is software programmable. At reset, Block A's base address is \$FF000000 and Block B's base address is \$FF400000.

As noted above, in addition to appearing at the programmed base address, the first 1Mbyte of Block A/B also appears at \$FFF00000-\$FFFFFFF if the reset vector enable bit is set.

- 3. The assumed size for each block is software-programmable. It is initialized to its smallest setting at reset.
- 4. The assumed device type for Block A/B is determined by an external jumper at reset time. It also is available as a status bit and cannot be changed by software.

When the width status bit is cleared, the block's ROM/Flash is considered to be 16 bits wide, where each Falcon interfaces to 8 bits. In this mode, the following rules are enforced:

- a. Only single-byte writes are allowed (all other sizes are ignored).
- b. All reads are allowed (multiple accesses are performed to the ROM/Flash devices when the read is for greater than one byte).

When the width status bit is set, the block's ROM/Flash is considered to be 64 bits wide, where each Falcon interfaces with 32 bits. In this mode, the following rules are enforced:

- a. Only aligned, 4-byte writes should be attempted (all other sizes are ignored).
- b. All reads are allowed (multiple accesses to the ROM/Flash device are performed for burst reads).

More information about ROM/Flash can be found in the *Programming Model* section of this chapter.

In order to place code correctly in the ROM/Flash devices, address mapping information is required. Table 3-8 shows how PowerPC 60*x* addresses map to the ROM/Flash addresses when ROM/Flash is 16 bits wide (8 bits per Falcon). Table 3-9 shows how they map when Flash is 64 bits wide (32 bits per Falcon).

Table 3-8. PowerPC 60x to ROM/Flash Address Mapping — ROM/Flash 16 Bits Wide (8 Bits per Falcon)

| Upper Upper Upper Upper |
|-------------------------|
| Upper                   |
|                         |
| Upper                   |
|                         |
| Lower                   |
| Lower                   |
| Lower                   |
| Lower                   |
| Upper                   |
| Upper                   |
| Upper                   |
| Upper                   |
| Lower                   |
| Lower                   |
| Lower                   |
| Lower                   |
|                         |
| •                       |
| Upper                   |
| Upper                   |
| Upper                   |
| Upper                   |
| Lower                   |
| Lower                   |
| Lower                   |
| Lower                   |
|                         |

Table 3-9. PowerPC 60x to ROM/Flash Address Mapping — ROM/Flash 64 Bits Wide (32 Bits per Falcon)

| PowerPC 60x A0-A31 | ROM/Flash A22-A0 | ROM/Flash Device Selected |
|--------------------|------------------|---------------------------|
| \$X0000000         | \$000000         | Upper                     |
| \$X000001          | \$000000         | Upper                     |
| \$X0000002         | \$000000         | Upper                     |
| \$X0000003         | \$000000         | Upper                     |
| \$X0000004         | \$000000         | Lower                     |
| \$X0000005         | \$000000         | Lower                     |
| \$X0000006         | \$000000         | Lower                     |
| \$X000007          | \$000000         | Lower                     |
| \$X0000008         | \$000001         | Upper                     |
| \$X0000009         | \$000001         | Upper                     |
| \$X000000A         | \$000001         | Upper                     |
| \$X000000B         | \$000001         | Upper                     |
| \$X00000C          | \$000001         | Lower                     |
| \$X000000D         | \$000001         | Lower                     |
| \$X000000E         | \$000001         | Lower                     |
| \$X000000F         | \$000001         | Lower                     |

.

| \$X3FFFF0  | \$7FFFE | Upper |
|------------|---------|-------|
| \$X3FFFFF1 | \$7FFFE | Upper |
| \$X3FFFFF2 | \$7FFFE | Upper |
| \$X3FFFFF3 | \$7FFFE | Upper |
| \$X3FFFFF4 | \$7FFFE | Lower |
| \$X3FFFF5  | \$7FFFE | Lower |
| \$X3FFFF6  | \$7FFFE | Lower |
| \$X3FFFF7  | \$7FFFE | Lower |
| \$X3FFFF8  | \$7FFFF | Upper |

Table 3-9. PowerPC 60x to ROM/Flash Address Mapping — ROM/Flash 64 Bits Wide (32 Bits per Falcon) (Continued)

| PowerPC 60x A0-A31 | ROM/Flash A22-A0 | ROM/Flash Device Selected |
|--------------------|------------------|---------------------------|
| \$X3FFFF9          | \$7FFFF          | Upper                     |
| \$X3FFFFA          | \$7FFFF          | Upper                     |
| \$X3FFFFB          | \$7FFFF          | Upper                     |
| \$X3FFFFC          | \$7FFFF          | Lower                     |
| \$X3FFFFD          | \$7FFFF          | Lower                     |
| \$X3FFFFE          | \$7FFFF          | Lower                     |
| \$X3FFFFF          | \$7FFFF          | Lower                     |

### Refresh/Scrub

The Refresh/Scrub operation varies according to which DRAM blocks are populated: (A and/or B) but not (C and D); or (A and/or B) and (C and/or D).

### Blocks A and/or B Present, Blocks C and D Not Present

The Falcon pair performs refreshes by doing a burst of four RAS\_cycles approximately once every 60µs. This increases to once every 30µs when certain DRAM devices are used. (The refresh rate is controlled by the ram\_fref bit in the status registers.) RAS\_ is asserted to both of Blocks A and B during each of the 4 cycles. Along with RAS\_, the Falcon pair also asserts CAS\_ with (OE\_ then WE\_) to one of the blocks during one of the four cycles. This forms a read-modify-write which is a scrub cycle to that location.

After each of the 4 cycles, the DRAM row address increments by one. When it reaches all 1s, it rolls over and starts anew at 0. Each time the row address rolls over, the block that is scrubbed toggles between A and B. Every second time that the row address rolls over, which of the 4 cycles that is a scrub changes from 1st to 2nd, from 2nd to 3rd, from 3rd to 4th, or from 4th to 1st. Every eighth time that the row address rolls over, the column address increments by one. When the column address reaches all ones, it rolls over and starts over at 0. Each time the column address rolls over, the SC1, SC0 bits in the scrub/refresh register increment by 1.

### Blocks A and/or B Present, Blocks C and/or D Present

The Falcon pair performs refreshes by doing a burst of four RAS\_cycles approximately once every 30µs. This increases to once every 15µs when certain DRAM devices are used. (The refresh rate is controlled by the ram\_fref bit in the status registers.) RAS\_ is asserted to blocks A and B during the first cycle, to blocks C and D during the second cycle, back to blocks A and B during the third cycle and to blocks C and D during the fourth cycle. Along with RAS, the Falcon pair also asserts CAS\_ (with OE\_ then WE\_) to one of the blocks during one of the four cycles. This forms a read-modify-write which is a scrub cycle to that location.

After the second and fourth cycles, the DRAM row address increments by one. When it reaches all 1s, it rolls over and starts anew at 0. Each time the row address rolls over, the block that is scrubbed toggles between A/C and B/D. Every second time the row address rolls over, which of the 4 cycles that is a scrub changes from 1st to 2nd, from 2nd to 3rd, from 3rd to 4th, or from 4th to 1st. Every eighth time that the row address rolls over, the column address increments by 1. When the column address reaches all ones, it rolls over and starts anew at 0. Each time the column address rolls over, the SC1, SC0 bits in the scrub/refresh register increment by 1.

Note that an entire refresh of DRAM is achieved every time the row address rolls over, and that an entire scrub of DRAM is achieved every time the column address rolls over.

During scrub cycles, if the SWEN bit is cleared, the Falcon pair *does not* perform the write portion of the read-modify write cycle. If the SWEN bit is set, the Falcon pair *does* perform the write unless it encounters a double-bit error during the read.

If so enabled, single- and double-bit scrub errors are logged, and the PowerPC 60x bus master is notified via interrupt.

### **DRAM Arbitration**

The Falcon pair has 3 different entities that can request use of the DRAM cycle controller:

- $\Box$  The PowerPC 60x bus master
- □ The tester
- □ The refresher/scrubber

The Falcon pair's arbiters assign priority with the refresher/scrubber highest, the tester next, and the PowerPC 60x bus lowest. When no requests are pending, the arbiter defaults to providing a PowerPC 60x bus grant. This provides fast response for PowerPC 60x bus cycles. Although the arbiter operates on a priority basis, it also performs a pseudo roundrobin algorithm in order to prevent starving any of the requesting entities. Note that PowerPC DRAM or ROM/Flash accesses should not be attempted while the tester is in operation.

# **Chip Defaults**

Some jumper option kinds of parameters need to be configured by software in the Falcon pair. These parameters include DRAM and ROM/Flash attributes. In order to set up these parameters correctly, software needs some way of knowing about the devices that are being used with the Falcon pair. One way of providing this information is by using the power-up status registers in the Falcon pair. At power-up reset, each Falcon latches the level on its RD0-RD63 signal pins into its power-up status registers. Since the RD signal pins are high impedance during reset, their power-up reset level can be controlled by pullup/pulldown resistors. (They are pulled up internally.)

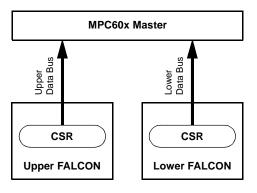
# **External Register Set**

Each chip in the Falcon pair has an external register chip select pin which enables it to talk to an external set of registers. This interface is like the ROM/Flash interface but with less flexibility. It is intended for the system designer's use in implementing general-purpose status/control signals. Refer to the *Programming Model* section of this chapter for a description of the external register set.

### **CSR Accesses**

An important part of the operation of a Falcon pair is that the value written to the internal control registers and SRAM in each of the two chips must be the same at all times. To facilitate this, writes to the pair itself are restricted to the upper Falcon only. When software writes to the upper Falcon, hardware in the two chips shifts this same value into the lower Falcon before the cycle completion is acknowledged. The shifting is done in holding registers such that the actual update of the control register happens on the same CLOCK cycle in both chips. Writes to the upper Falcon can be single-byte or 4-byte. Writes to the lower Falcon are ignored.

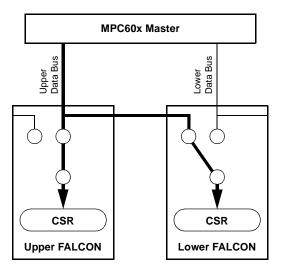
This duplicating of writes from upper to lower applies to the Falcon's internal registers and SRAM only. No duplication is performed for writes to DRAM, ROM/Flash, or the External Register set.


# **Programming Model**

The following sections describe the programming model for the Falcon chip set.

## **CSR Architecture**

The CSR (Control/Status Register set) consists of the chip's internal register set, its test SRAM, and its external register set. The base address of the CSR is hard coded to the address \$FEF80000 (or \$FEF90000 if the SIO pin is low at reset).

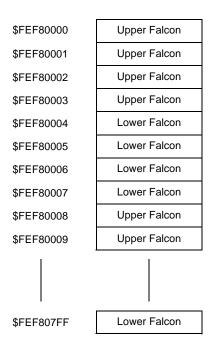

Accesses to the CSR are mapped differently depending on whether they are reads or writes. For reads, CSR data read on the upper half of the data bus comes from the upper Falcon while CSR data read on the lower half of the data bus comes from the lower Falcon. (See Figure 3-4.)



1903 9609

Figure 3-4. Data Path for Reads from the Falcon Internal CSRs

For writes, internal register or test SRAM data written on the upper half of the data bus goes to the upper Falcon *and is automatically copied by hardware to the lower Falcon*. Internal register or test SRAM data written on the lower half of the data bus does not go to either Falcon in the pair, but the access is terminated normally with TA\_. (See Figure 3-5.)




1904 9609

Figure 3-5. Data Path for Writes to the Falcon Internal CSRs

External register data that is written on the upper data bus goes through the upper Falcon, while data that is written on the lower data bus goes through the lower Falcon. Unlike the internal register set, *there is no automatic copying of upper data to lower data for the external register set*.

CSR read accesses can have a size of 1, 2, 4, or 8 bytes with any alignment. CSR write accesses are restricted to a size of 1 or 4 bytes and they must be aligned. Some Tester registers are limited to 4-byte only accesses. Figure 3-6 through Figure 3-9 show the memory maps for the different kinds of access.



1905 9609

Figure 3-6. Memory Map for Byte Reads to CSR

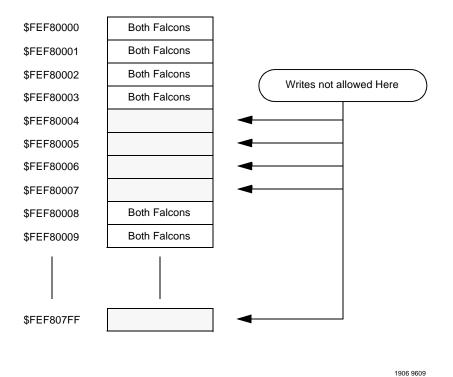



Figure 3-7. Memory Map for Byte Writes to Internal Register Set and Test SRAM



1907 9609

Figure 3-8. Memory Map for 4-Byte Reads to CSR

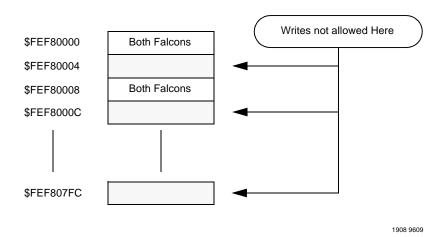



Figure 3-9. Memory Map for 4-Byte Writes to Internal Register Set and Test SRAM

# **Register Summary**

Table 3-10 shows a summary of the CSR. Note that the table shows only addresses for accesses to the upper Falcon. To get the addresses for accesses to the lower Falcon, add 4 to the address shown. Since the only way to write to the lower Falcon's internal register set and test SRAM is to duplicate what is written to the upper Falcon, only the addresses shown in the table should be used for writes to them. Writes to the external register set are not duplicated from upper to lower, so writes to them can be via the upper or lower Falcon.

# **Detailed Register Bit Descriptions**

The sections following Table 3-10 describe the registers and their bits in detail. The possible operations for each bit in the register set are as follows:

- R The bit is a read-only status bit.
- R/W The bit is readable and writable.
- R/C The bit is cleared by writing a 1 to itself.
- C The bit is readable. Writing a 0 to the bit will clear it.

The possible states of the bits after local and power-up reset are as defined below.

- P The bit is affected by power-up reset.
- L The bit is affected by local reset.
- X The bit is not affected by reset.
- V The effect of reset on the bit is variable.

# Table 3-10. Register Summary

| BIT #>   | 0           | _    | 2   | w  | 4    | O1          | 6         | 7    | 00       | 9     | 10  | ⇉   | 12           | 13          | 1 1 4       | 15     | 16       | 17    | 18     | 19     | 20 | 21         | 22       | 23       | 24       | 25  | 26  | 72   | 28       | 29       | 30              | 31           |
|----------|-------------|------|-----|----|------|-------------|-----------|------|----------|-------|-----|-----|--------------|-------------|-------------|--------|----------|-------|--------|--------|----|------------|----------|----------|----------|-----|-----|------|----------|----------|-----------------|--------------|
| FEF80000 |             |      |     |    |      |             | ν         | ΈN   | DID      | ,     |     |     |              |             | 1           |        |          |       | I      |        |    | I          |          | DE       | VID      | )   |     |      |          |          | I               |              |
| FEF80008 |             |      |     |    |      |             |           |      |          |       | F   | RE  | VID          | )           |             |        |          |       |        |        |    |            | aonly_en | isa_hole |          |     |     | adis | ram fref | ram spd0 | ram spd1        | chipu        |
| FEF80010 | ram a en    |      |     |    |      |             | AM<br>SIZ | A    | ram b en |       |     |     |              | F           | RAM<br>SIZ  |        | ram c en |       |        |        |    | <u>R</u> A | M<br>SIZ |          | ram d en |     |     |      |          |          | AM<br>SIZ       |              |
| FEF80018 |             | R    | RAM | Α  | ВА   | SE          | :         |      |          | F     | RAN | 1 B | BA           | ٩S          | E           |        |          | F     | RAN    | ΛС     | BA | SE         |          |          |          | Ī   | RAI | ΜI   | D B      | ASE      | Ξ.              |              |
| FEF80020 | (           | CLK  | (FR | EC | QUI  | EΝ          | CY        |      |          |       |     |     |              |             |             |        |          |       |        |        |    |            |          |          |          |     |     |      |          |          |                 | por          |
| FEF80028 |             |      |     |    |      | 102         | rwcb      | derc |          |       |     |     | <u>scien</u> | <u>tien</u> | <u>sien</u> | mien_  |          |       |        |        |    |            |          |          |          |     |     |      |          |          |                 | <u>mcken</u> |
| FEF80030 | elog        |      |     |    | escb | <u>esen</u> | embt      | esbt | ER       | RR    | OR_ | _S` | ΥN           | DI          | RON         | 1E     |          |       | esblk0 | esblk1 |    |            |          | scof     |          |     | SB  | E    | COL      | JNT      | _               |              |
| FEF80038 |             |      |     |    |      |             |           |      |          |       | Ε   | RF  | ROI          | R_          | ADI         | DRI    | ESS      | 3     |        |        |    |            |          |          |          |     |     |      |          |          |                 |              |
| FEF80040 | scb0        | scb1 |     |    |      |             |           | swen |          |       |     |     |              | rtesto      | rtest1      | rtest2 |          |       |        |        |    |            |          |          |          |     |     |      |          |          |                 |              |
| FEF80048 |             |      |     |    |      |             | <u> </u>  | ROI  | N A      | DE    | RE  | SS  | 3            |             |             |        |          |       |        |        |    |            |          | СО       | L A      | DE  | DRE | ES   | <u>s</u> |          |                 |              |
| FEF80050 |             |      |     | R  | ON   | 1 A         | BA        | ASE  | _        |       |     |     | rom_a_64     | F           | ROM<br>SIZ  |        |          |       |        |        |    |            |          |          |          |     |     |      |          | rom a rv | <u>rom a en</u> | rom a we     |
| FEF80058 |             |      |     | R  | ON   | ИΒ          | BA        | ASE  | 1        |       |     |     | rom_b_64     | F           | ROM<br>SIZ  |        |          |       |        |        |    |            |          |          |          |     |     |      |          | rom b rv | rom b en        | rom b we     |
| FEF80060 | <u>trun</u> | tsse |     |    |      |             |           |      | tpass    | tfail |     |     |              |             |             |        | tzbit    |       |        |        |    |            |          |          |          |     |     |      |          |          | tb0             | <u>tb1</u>   |
| FEF80068 |             |      |     | TE | EST  | ГР          | C         |      |          |       |     |     |              |             |             |        |          |       |        |        |    |            | 7        | ES       | T II     | R   |     |      |          |          |                 |              |
| FEF80070 |             |      |     |    |      |             |           |      |          |       |     |     |              | _           | TES         | T A    | 0        |       |        |        |    |            |          |          |          |     |     |      |          |          |                 |              |
| FEF80078 |             |      |     |    |      |             |           |      |          |       |     |     |              | -           | TES         | T A    | 1        |       |        |        |    |            |          |          |          |     |     |      |          |          |                 |              |
| FEF80080 |             |      |     |    |      |             |           |      |          |       |     |     |              |             |             |        |          |       |        |        |    |            |          |          |          |     |     |      |          |          |                 |              |
| FEF80088 |             |      |     |    |      |             |           |      |          |       |     |     |              |             |             |        |          |       |        |        |    |            |          |          | TE       | :57 | T D | 0 (  | Upp      | er 8     | 3 B             | its)         |
| FEF80090 |             |      |     |    |      |             |           |      |          |       |     |     | TE.          | Sī          | D0          | (M     | iddi     | le 3  | 2 E    | its)   |    |            |          |          |          |     |     |      |          |          |                 |              |
| FEF80098 |             |      |     |    |      |             |           |      |          |       |     | -   | ΤE           | S           | T DO        | (L     | owe      | er 3. | 2 B    | its)   |    |            |          |          |          |     |     |      |          |          |                 |              |

**Table 3-10. Register Summary (Continued)** 

| FEF800A0 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|---|-------------|----------------|------|-------------|---------------|--|--|--|--|--|--|--|
| FEF800A8 |                                                                                                                                      |   |             |                |      | TEST D1 (U  | Jpper 8 Bits) |  |  |  |  |  |  |  |
| FEF800B0 |                                                                                                                                      | - | TEST D1 (M  | iddle 32 Bits) | 1    |             |               |  |  |  |  |  |  |  |
| FEF800B8 |                                                                                                                                      |   | TEST D1 (Lo | ower 32 Bits)  |      |             |               |  |  |  |  |  |  |  |
| FEF800C0 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF800C8 |                                                                                                                                      |   |             |                |      | TEST D2 (U  | Jpper 8 Bits) |  |  |  |  |  |  |  |
| FEF800D0 |                                                                                                                                      | - | TEST D2 (M  | iddle 32 Bits) | 1    |             |               |  |  |  |  |  |  |  |
| FEF800D8 |                                                                                                                                      |   | TEST D2 (Lo | ower 32 Bits)  |      |             |               |  |  |  |  |  |  |  |
| FEF800E0 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF800E8 |                                                                                                                                      |   |             |                |      | TEST D3 (L  | Jpper 8 Bits) |  |  |  |  |  |  |  |
| FEF800F0 |                                                                                                                                      |   | TEST D3 (M  | iddle 32 Bits) | )    |             |               |  |  |  |  |  |  |  |
| FEF800F8 | TEST D2 (Middle 32 Bits)  TEST D2 (Lower 32 Bits)  TEST D3 (Lower 32 Bits)  TEST D3 (Middle 32 Bits)  TEST D3 (Lower 32 Bits)  CTR32 |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF80100 | TEST D2 (Lower 32 Bits)  TEST D3 (Upper 8  TEST D3 (Middle 32 Bits)  TEST D3 (Lower 32 Bits)                                         |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF80200 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
|          |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF803F8 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF80400 |                                                                                                                                      | T | PR_S        | STAT1          |      | ı           |               |  |  |  |  |  |  |  |
| FEF80408 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF804F8 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF80500 |                                                                                                                                      |   | PR_S        | STAT2          |      |             |               |  |  |  |  |  |  |  |
| FEF80508 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
|          |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF807F8 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF80800 |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |
| FEF80BF8 |                                                                                                                                      |   |             |                | TEST | <u>SRAM</u> |               |  |  |  |  |  |  |  |
| L        |                                                                                                                                      |   |             |                |      |             |               |  |  |  |  |  |  |  |

**Table 3-10. Register Summary (Continued)** 

| FEF80C00 |   |                       |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----------|---|-----------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|          |   |                       |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| FEF87FF8 |   |                       |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| FEF88000 |   |                       |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|          |   | EXTERNAL REGISTER SET |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| FEF8FFF8 |   |                       |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| BIT #>   | 0 | 1                     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

**Notes** 1. All shaded bit fields are reserved and read as zeros.

- 2. All status bits are shown in italics.
- 3. All control bits are shown with underline.
- 4. All control and status bits are shown with italics and underline.

### Vendor/Device Register

| Address   | \$FEF                                                   | 80000                                                                                |
|-----------|---------------------------------------------------------|--------------------------------------------------------------------------------------|
| Bit       | 0 1 2 3 4 4 5 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 31<br>30<br>30<br>229<br>229<br>227<br>227<br>227<br>227<br>227<br>227<br>227<br>227 |
| Name      | VENDID                                                  | DEVID                                                                                |
| Operation | READ ONLY                                               | READ ONLY                                                                            |
| Reset     | X                                                       | X                                                                                    |

**VENDID** This read-only register contains the value \$1507. It represents the vendor number assigned to Motorola Inc.

**Note** The current value of *VENDID* (\$1507) is incorrect. The correct vendor ID is \$1057. This error is presently handled as an erratum.

**DEVID** This read-only register contains the value \$4802. It is the device number for the Falcon.

### **Revision ID/ General Control Register**

| Address   | \$FEF80008  229 ram sp 227 adis 23 ram fre 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                               |    |    |    |    |    |    |          |      |    |    |    |             |          |      |      |
|-----------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|----|----|----|----|----|----|----------|------|----|----|----|-------------|----------|------|------|
| Bit       | 0 1 2 3 4 5 6 7                                                                     | 8 9 10 11 13 13 15 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 | 16 | 17 | 18 | 19 | 20 | 21 | 22       | 23   | 24 | 25 | 26 | 27          | 28       | 29   | 30   |
| Name      |                                                                                     | REVID                                                         | 0  | 0  | 0  | 0  | 0  | 0  | aonly_en |      | 0  | 0  | 0  | <u>adis</u> | ram fref | r ir | - 12 |
| Operation | READ ZERO                                                                           | READ ONLY                                                     | R  | R  | R  | R  | R  | R  | R        | R/W  | R  | R  | R  | R/W         | R/W      | R/W  | R/W  |
| Reset     | X                                                                                   | X                                                             | X  | X  | X  | X  | X  | X  | VΡ       | 0 PL | X  | X  | X  | 0 P         | 1 P      | _    | 4 U  |

**REVID** 

The *REVID* bits are hard-wired to indicate the revision level of the Falcon. The values are \$01 for the first revision, \$02 for the second.

aonly en

Normally, the Falcon pair responds to address-only cycles only if they fall within the address range of one of its enabled map decoders. When the *aonly\_en* bit is set, the Falcon pair also responds to address-only cycles that fall outside of the range of its enabled map decoders provided they are not acknowledged by some other slave within 8 clock periods. *aonly\_en* is read-only and reflects the level that was on the CKD4 pin at power-up reset.

isa hole

When it is set, <u>isa hole</u> disables any of the DRAM or ROM/Flash blocks from responding to PowerPC accesses in the range from \$000A0000 to \$000BFFFF. This has the effect of creating a hole in the DRAM memory map for accesses to ISA. When <u>isa hole</u> is cleared, there is no hole created in the memory map.

adis

When <u>adis</u> is clear, fast page mode operation is used for back-to-back pipelined accesses to the same page within DRAM. When it is set, RAS is cycled between accesses. This bit should normally be cleared unless the Falcon has a problem operating that way.

### ram fref

Some DRAMs require that they be refreshed at the rate of 7.8µs per row rather than the standard 15.6µs per row. If any of the DRAM devices require the higher rate, then the **ram fref** bit should be left set, otherwise, it can be cleared.

### ram spd0,ram spd1

Together <u>ram spd0,ram spd1</u> control DRAM timing used by the Falcon pair. They are encoded as shown:

Table 3-11. ram spd1,ram spd0 and DRAM Type

| ram spd0, ram spd1 | DRAM Speed | DRAM Type |
|--------------------|------------|-----------|
| %00                | 70ns       | Page Mode |
| %01                | 60ns       | Page Mode |
| %10                | -          | Reserved  |
| %11                | 50ns       | EDO       |

EDO refers to DRAMs that use an output latch on data. Sometimes these parts are referred to as Hyper-Page Mode DRAMs.

To ensure reliable operation, the system should always be configured so that these two bits are encoded to match the slowest devices used. Also, if any parts do not support EDO, then these bits must set for Page Mode. The only case in which it is permissible to set <a href="ram spd0,ram spd1">ram spd0,ram spd1</a> for "50ns, EDO" is when all parts are 50ns and all support EDO.

### chipu

*chipu* indicates which of the two positions within the Falcon pair is occupied by this chip. When *chipu* is low, this chip is connected to the lower half of the PowerPC 60x data bus and it does not drive TA\_ or AACK\_. When *chipu* is high, this chip is connected to the upper half of the PowerPC 60x data bus, and it drives TA\_ and AACK\_. *chipu* reflects the level that was on the ERCS\_ pin during power-up reset.

### **DRAM Attributes Register**



To satisfy DRAM component requirements before the memory is used at start-up, software must always wait at least  $500\mu s$  after the initial setting of a bank's size bits to a nonzero value before the initial access to that bank. These settings are stored in the DRAM Attributes register (offset \$FEF80010). The delay is introduced to ensure that the bank has been refreshed at least eight times before use. The  $500\mu s$  interval is sufficient, as the CLK Frequency register (offset \$FEF80020) is within a factor of two of matching the actual processor clock frequency.

| ADDRESS       |          |   |   |   |   |            |            |            |          |   |   |   |   | 9   | FI     | EF  | 800      | )1( | ) |   |   |       |      |     |          |   |   |   |   |     |     |            |
|---------------|----------|---|---|---|---|------------|------------|------------|----------|---|---|---|---|-----|--------|-----|----------|-----|---|---|---|-------|------|-----|----------|---|---|---|---|-----|-----|------------|
| BIT           | 0        |   |   |   |   |            |            |            |          |   |   |   |   |     |        | 31  |          |     |   |   |   |       |      |     |          |   |   |   |   |     |     |            |
| NAME          | ram a en | 0 | 0 | 0 | 0 | ram a siz0 | ram a siz1 | ram a siz2 | ram b en | 0 | 0 | 0 | 0 |     | b      | b   | ram c en | 0   | 0 | 0 | 0 | c siz | c si | С   | ram d en | 0 | 0 | 0 |   | d   | d   | ram d siz2 |
| OPERATI<br>ON | R/W      | R | R | R | R | R/W        | R/W        | $\sim$     | R/W      | R | R | R | R | R/W | $\leq$ | R/W |          | R   | R | R | R | R/W   | R/W  | R/W | $\sim$   | R | R | R | R | R/W | R/W | R/W        |
| RESET         | 0 PL     | X | X | X | X | 0 P        | 0 P        | 0 P        | 0 PL     | X | X | X | X | 0 P | 0 P    |     | 0 PL     | X   | X | X | X | 0 P   | 0 P  |     | 0 PL     | X | X | X | X | 0 P | 0 P | 0 P        |

### ram a/b/c/d en

Control bits that enable accesses to the corresponding block of DRAM when set, and disable them when cleared.

### ram a/b/c/d siz0-2

These control bits define the size of their corresponding block of DRAM. Table 3-12 shows the block configuration assumed by the Falcon pair for each value of ram siz0-ram siz2.

Table 3-12. Block\_A/B/C/D Configurations

| ram a/b/c/d<br>siz0-2 | Block Size | Ι                                                                                     | )evi                                                                                                     | ces Used | Technology | Comments          |
|-----------------------|------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------|------------|-------------------|
| %000                  | 0MB        | -                                                                                     | 5 - 1Mx4s<br>8 - 1Mx18s<br>4 - 1Mx36s<br>8 - 2Mx8s<br>4 - 4Mx1s<br>5 - 4Mx4s<br>8 - 4Mx18s<br>4 - 4Mx36s |          | -          | Block Not Present |
|                       |            | 36                                                                                    | -                                                                                                        | 1Mx4s    | 4Mb        |                   |
| %001                  | 16MB       | B 8 - 1Mx18s<br>4 - 1Mx36s<br>B 18 - 2Mx8s<br>144 - 4Mx1s<br>36 - 4Mx4s<br>8 - 4Mx18s |                                                                                                          | 16Mb     |            |                   |
|                       |            |                                                                                       |                                                                                                          | 1Mx36s   | 4Mb/1Mb    | SIMM/DIMM         |
| %010                  | 32MB       | 18                                                                                    | - 1Mx18s - 1Mx36s - 2Mx8s - 4Mx1s - 4Mx4s - 4Mx18s                                                       |          | 16Mb       |                   |
|                       |            | 144                                                                                   | -                                                                                                        | 4Mx1s    | 4Mb        |                   |
| %011                  | 64MB       | 36                                                                                    | - 1Mx36s<br>- 2Mx8s<br>- 4Mx1s<br>- 4Mx4s<br>- 4Mx18s                                                    |          | 16Mb       |                   |
| %011                  | 041/110    | 8                                                                                     | -                                                                                                        | 4Mx18s   | 64Mb       |                   |
|                       |            | 4                                                                                     | -                                                                                                        | 4Mx36s   | 16Mb/4Mb   | SIMM/DIMM         |
| %100                  | 128MB      | 18                                                                                    | -                                                                                                        | 8Mx8s    | 64Mb       |                   |
|                       |            | 144                                                                                   | -                                                                                                        | 16Mx1s   | 16Mb       |                   |
| %101                  | 256MB      | 36                                                                                    | -                                                                                                        | 16Mx4s   | 64Mb       |                   |
|                       |            | 4                                                                                     | -                                                                                                        | 16Mx36s  | 64Mb/16Mb  | SIMM/DIMM         |
| %110                  | 1024MB     | 144                                                                                   | -                                                                                                        | 64Mx1s   | 64Mb       |                   |
| %111                  | 0MB        | -                                                                                     | -                                                                                                        | -        | -          | Reserved          |

It is important that all of the <u>ram a/b/c/d siz0-2</u> bits be set to accurately match the actual size of their corresponding blocks. This includes clearing them to %000 if their corresponding blocks are not present. Failure to do so will cause problems with addressing and with scrub error logging.

### **DRAM Base Register**

| Address   |                 | \$FEF                                       | 80018                                        |                                              |
|-----------|-----------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|
| Bit       | 0 1 2 3 4 5 6 7 | 15<br>14<br>13<br>13<br>12<br>11<br>10<br>9 | 23<br>22<br>21<br>21<br>20<br>19<br>19<br>16 | 31<br>30<br>29<br>28<br>27<br>26<br>25<br>24 |
| Name      | RAM A BASE      | RAM B BASE                                  | RAM C BASE                                   | RAM D BASE                                   |
| Operation | READ/WRITE      | READ/WRITE                                  | READ/WRITE                                   | READ/WRITE                                   |
| Reset     | 0 PL            | 0 PL                                        | 0 PL                                         | 0 PL                                         |

#### RAM A/B/C/D BASE

These control bits define the base address for their block's DRAM. **RAM A/B/C/D BASE** bits 0-7/8-15/16-23/24-31 correspond to PowerPC 60x address bits 0 - 7. For larger DRAM sizes, the lower significant bits of **A/B/C/D BASE** are ignored. This means that the block's base address will always appear at an even multiple of its size. Note that bit 0 is MSB.

Also note that the combination of **RAM X BASE** and **ram x siz** should never be programmed such that DRAM responds at the same address as the CSR, ROM/Flash, External Register Set, or any other slave on the PowerPC bus.

### **CLK Frequency Register**

| Address   |   |    |    |         |   |    |   |   |   |    |    |    |    | \$FI | EF | 800 | )20 | )  |    |    |    |    |    |    |    |    |    |    |    |    |     |
|-----------|---|----|----|---------|---|----|---|---|---|----|----|----|----|------|----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| Bit       | 0 | 2  | 3  | 4       | S | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14   | 15 | 16  | 17  | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31  |
| Name      | F | RE |    | K<br>IF |   | 'V |   |   |   |    |    |    |    |      |    |     |     |    |    |    |    |    |    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | por |
| Operation | _ | EA |    |         |   |    |   |   | R | EΑ | ۸D | Z  | ER | О    |    |     | R   | EA | ۸D | ZF | ER | О  |    | R  | R  | R  | R  | R  | R  | R  | R/C |
| Reset     |   |    | 42 | P       |   |    |   |   |   |    | 2  | X  |    |      |    |     |     |    | 7  | K  |    |    |    | X  | ×  | X  | X  | X  | X  | ×  | 1 P |

#### **CLK FREQUENCY**

These bits should be programmed with the hexadecimal value of the operating CLOCK frequency in MHz (i.e. \$42 for 66MHz). When these bits are programmed this way, the chip's prescale counter produces a 1MHz output.

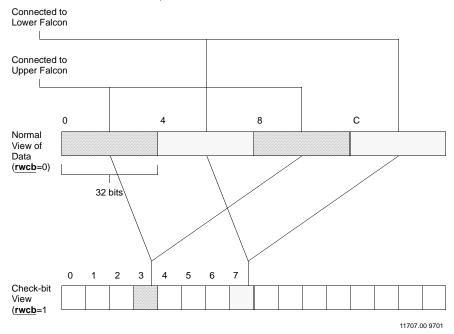
The output of the chip prescale counter is used by the refresher/scrubber and the 32-bit counter. After power-up, this register is initialized to \$42 (for 66MHz).

por

**por** is set by the occurrence of power-up reset. It is cleared by writing a 1 to it. Writing a 0 to it has no effect.

### **ECC Control Register**

| Address   |   |   |   |   |   |        |             |      |   |   |    |    |       | 9           | \$F         | EF            | 800 | )28 | 3  |    |    |    |    |    |    |    |    |    |    |    |    |       |
|-----------|---|---|---|---|---|--------|-------------|------|---|---|----|----|-------|-------------|-------------|---------------|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|
| Bit       | 0 | 1 | 2 | S | 4 | 5      | 9           | 7    | 8 | 9 | 10 | 11 | 12    | 13          | 14          | 15            | 16  | 17  | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31    |
| Name      | 0 | 0 | 0 | 0 | 0 | refdis | <u>rwcb</u> | derc | 0 | 0 | 0  | 0  | scien | <u>tien</u> | <u>sien</u> | mien          |     |     |    |    |    |    |    |    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | mcken |
| Operation | R | R | R | R | R | R/W    | R/W         | R/W  | R | R | R  | R  | R/W   | R/W         | R/W         | $\rightarrow$ |     | R   | EΑ | ΔD | ZF | ER | О  |    | R  | R  | R  | χ, | æ  | R  | R  | R/W   |
| Reset     | X | X | X | X | X | 0 PL   | 14 0        | 1 PL | X | X | X  | X  | 0 PL  |             | 0 PL        | 0 PL          |     |     |    | Σ  | ζ  |    |    |    | X  | X  | Χ  | X  | X  | Χ  | X  | 0PL   |


refdis

When set, **refdis** causes the refresher and all of its associated counters and state machines to be cleared and maintained that way until **refdis** is removed (cleared). If a refresh cycle is in process when **refdis** is updated by a write to this register, the update does not take effect until the refresh cycle has completed. This prevents the generation of illegal cycles to the DRAM when **refdis** is updated.

rwcb

**rwcb**, when set, causes reads and writes to DRAM from the PowerPC 60x bus to access check-bit data rather than normal data. The data path used for this mode is DH24-31 for check-bit data controlled by the upper Falcon, and DL24-31 for check-bit data controlled by the lower Falcon. Each 8-bit check-bit location services 64 bits of normal data. The 64 bits of data are all within the same Falcon. Each Falcon provides every other 32 bits of data in the normal mode. The following figure shows the relationship between normal data and check-bit data.

So, for example, the check-bits that correspond to the 64 bits of data found in normal mode (**rwcb**=0) at \$00001000-\$00001003 and \$00001008-\$0000100b are written and read in check-bit mode (**rwcb**=1) at location \$00001003.



Note that if test software wishes to force a single-bit error to a location using the <a href="mailto:rwcb">rwcb</a> function, the scrubber may correct the location before the test software gets a chance to check for the single-bit error. This can be avoided by disabling scrub writes. Also note that writing bad checkbits can set the <a href="mailto:elog">elog</a> bit in the Error Logger register. The writing of check-bits causes the Falcon to perform a read-modify-write to DRAM. If the location to which checkbits are being written has a single- or double-bit error, data in the location may be altered by the write check-bits operation. To avoid this, it is recommended that the <a href="mailto:deerc">derc</a> bit also be set while the <a href="mailto:rwcb">rwcb</a> bit is set. A possible sequence for performing read-write check-bits is as follows:

- 1. Disable scrub writes by clearing the **swen** bit if it is set.
- 2. Stop all DRAM Tester operations by clearing the **trun** bit.
- 3. Make sure software is not using DRAM at this point, because while **rwcb** is set, DRAM will not function as normal memory.
- 4. Set the **derc** and **rwcb** bits in the Data Control register.
- 5. Perform the desired read and/or write check-bit operations.
- 6. Clear the **derc** and **rwcb** bits in the Data Control register.
- 7. Perform the desired testing related to the location/locations that have had their check-bits altered.
- 8. Enable scrub writes by setting the **swen** bit if it was set before.

**<u>derc</u>** Setting <u>derc</u> to 1 alters Falcon pair operation as follows:

- 1. During reads, data is presented to the PowerPC 60x data bus uncorrected from the DRAM array.
- 2. During single-beat writes, data is written without correcting single-bit errors that may occur on the read portion of the read-modify-write. Check-bits <u>are</u> generated for the data being written.
- 3. During single-beat writes, the write portion of the read-modify-write happens regardless of whether there is a multiple-bit error during the read portion. No correction of data is attempted. Checkbits <u>are</u> generated for the data being written.
- 4. During refresh/scrub cycles, if <u>swen</u> is set, a read-write to DRAM happens with no attempt to correct data bits. Check-bits <u>are</u> generated for the data being written.

**<u>derc</u>** is useful for initializing DRAM after power-up and for testing DRAM, but it should be cleared during normal system operation.

when <u>scien</u> is set, the rolling over of the <u>SBE COUNT</u> register causes the INT\_ signal pin to pulse true.

<u>tien</u> When <u>tien</u> is set, the setting of the <u>tpass</u> or the <u>tfail</u> bit causes the INT\_ signal pin to pulse true.

**<u>sien</u>** When <u>sien</u> is set, the logging of a single-bit error causes the INT signal pin to pulse true.

<u>mien</u> When <u>mien</u> is set, the logging of a non-correctable error causes the INT\_ signal pin to pulse true.

When mcken is set, the detection of a multiple-bit error during a PowerPC read or write causes the Falcon to pulse its machine check interrupt request pin (MCP\_) true.
 When mcken is cleared, the Falcon does not ever assert its MCP\_ pin.

The Falcon never asserts its MCP\_ pin in response to a multiple-bit error detected during a scrub cycle.



The INT\_ and MCP\_ pins are the only non-polled notification that a multiple-bit error has occurred. The Falcon pair does not assert TEA as a result of a multiple bit error. In fact, the Falcon pair does not have a TEA\_ signal pin and it assumes that the system does not implement TEA\_.

### **Error Logger Register**

| Address   |      |                                                                                             |   |   |      |      |      |      |  |   |     |    |    |     | \$Fl | EF | 800 | )30 | ) |   |   |   |   |     |   |    |    |    |     |   |  |
|-----------|------|---------------------------------------------------------------------------------------------|---|---|------|------|------|------|--|---|-----|----|----|-----|------|----|-----|-----|---|---|---|---|---|-----|---|----|----|----|-----|---|--|
| Bit       | 0    | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 12 12 12 12 12 12 12 12 12 12 12 12 |   |   |      |      |      |      |  |   |     |    |    |     |      |    | 30  | 31  |   |   |   |   |   |     |   |    |    |    |     |   |  |
| Name      | elog | 0                                                                                           | 0 | 0 | escb | esen | embt | esbt |  |   |     |    |    |     |      |    |     |     |   |   |   |   |   | ,   |   |    |    |    |     |   |  |
| Operation | R/C  | R                                                                                           | R | R | R    | R/W  | R    | R    |  | F | REA | ΑD | ON | 1LY | 7    |    | R   | R   | R | R | R | R | R | R/C | R | EA | D/ | WR | ITI | Ξ |  |
| Reset     | 0 P  | X                                                                                           | X | X | ΧP   | 0 PL | ΧP   | ΧP   |  |   |     | X  | P  |     |      |    | X   | X   | X | X | X | X | X | 0 P |   |    | 0  | P  |     |   |  |

The Error Logger and Error Address registers behave the same as the other registers, in that data written to the upper Falcon is automatically duplicated in the lower Falcon. They also behave the same as the other registers, in that status read from the upper Falcon pertains to the upper Falcon, and status read from the lower Falcon pertains to the lower Falcon.

Unlike most of the other registers, however, it is normal for this status to differ between the two. This is due to the fact that each Falcon is connected to its own set of DRAMs. The upper Falcon can log an error during a cycle and the local Falcon not, or vice-versa. Or they can both log an error during the same cycle and have the attributes of the errors differ.

Due to the above characteristics, software must monitor both the upper and lower Falcon's Error Logger and Error Address registers. This includes checking the <u>elog</u> bit from the upper Falcon and from the lower Falcon. When the upper Falcon logs an error, it updates its attribute bits (escb, embt, esbt, ERROR\_SYNDROME, eblk0, eblk1, and ERROR\_ADDRESS) to match the results of the read cycle for its portion of the DRAM array. When the lower Falcon logs an error, it updates its attribute bits to match the results of the read cycle for its portion of the DRAM array.

While the logging of errors by one Falcon in a pair does not affect the logging of errors by the other, writing to the Error Logger Register control bits affects both Falcons. This is of particular interest as regards the *elog* bit. Writing a 1 to the *elog* bit clears the *elog* bit for both the upper and lower Falcons. Because of this, software needs to check the status of both upper and lower Error Logger and Error Address registers before it clears the *elog* bits. Otherwise, it could miss a logged error.

elog

When set, <u>elog</u> indicates that a single- or multiple-bit error has been logged by <u>its</u> Falcon. If <u>elog</u> is set by a multiple-bit error, then no more errors will be logged until software clears it. If <u>elog</u> is set by a single-bit error, then no more single-bit errors will be logged until software clears it, however if <u>elog</u> is set by a single-bit error and a multiple-bit error occurs, the multiple-bit error will be logged and the single-bit error information overwritten. <u>elog</u> can only be set by the logging of an error and cleared by the writing of a 1 to itself or by power-up reset.

esch

**escb** indicates the entity that was accessing DRAM at the last logging of a single- or multiple-bit error by its Falcon. If **escb** is 1, it indicates that the scrubber was accessing

DRAM. If *escb* is 0, it indicates that the PowerPC 60x bus master was accessing DRAM. Note that the DRAM Tester cannot cause an error to be logged.

esen

When set, <u>esen</u> allows errors that occur during scrubs to be logged. When cleared, <u>esen</u> does not allow errors that occur during scrubs to be logged.

embt

*embt* is set by the logging of a multiple-bit error in its Falcon. It is cleared by the logging of a single-bit error in its Falcon. It is undefined after power-up reset. A Falcon's syndrome code is meaningless if its *embt* bit is set.

esbt

*esbt* is set by the logging of a single-bit error in its Falcon. It is cleared by the logging of a multiple-bit error in its Falcon. When a Falcon logs a single-bit error, its syndrome code indicates which bit was in error. (Refer to the section on *ECC Codes*.)

#### ERROR SYNDROME

**ERROR\_SYNDROME** reflects the syndrome value at the last logging of an error by its Falcon. This eight-bit code indicates the position of the data error. When all the bits are zero, there was no error. Note that if the logged error was non-correctable, then these bits are meaningless. Refer to the *ECC Codes* section for a decoding of the syndromes.

#### esblk0,esblk1

Together these two bits indicate which block of DRAM was being accessed when their Falcon logged a scrub error. *esblk0,esblk1* are 0,0 for Block A; 0,1 for Block B; 1,0 for Block C; and 1,1 for Block D.

<u>scof</u>

**scof** is set by the **SBE COUNT** register rolling over from \$FF to \$00. It is cleared by software writing a 1 to it.

#### SBE COUNT

This register keeps track of the number of single-bit errors that have occurred since it was last cleared. It counts up by one each time its half of the Falcon pair detects a singlebit error (independent of the state of the elog bit). It is cleared by power-up reset and by software writing all 0s to it. When <u>SBE COUNT</u> rolls over from \$FF to \$00, its Falcon sets the *scof* bit. It also pulses the INT\_ signal low if the **scien** bit is set.

### **Error Address Register**

| Address   | \$FEF80038                                                                |    |    |    |    |  |  |  |
|-----------|---------------------------------------------------------------------------|----|----|----|----|--|--|--|
| Bit       | 0 1 2 3 4 4 5 6 7 8 8 9 9 10 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13 | 28 | 29 | 30 | 31 |  |  |  |
| Name      | ERROR_ADDRESS (                                                           |    |    |    |    |  |  |  |
| Operation | READ ONLY                                                                 |    |    |    |    |  |  |  |
| Reset     | X P                                                                       | X  | X  | X  | X  |  |  |  |

#### ERROR\_ADDRESS

These bits reflect the value that corresponds to bits 0-27 of the PowerPC 60x address bus when their Falcon last logged an error during a PowerPC access to DRAM. They reflect the value of the DRAM row and column addresses if the error was logged during a scrub cycle. In this case, bits 2-14 correspond to row address signals 0-12 respectively and bits 15-27 correspond to column address signals 0-12 respectively. Refer to Table 3-19 in the Sizing DRAM subsection under Software Considerations. It shows how PowerPC addresses correspond to DRAM row and column addresses.

### Scrub/Refresh Register

| Address   |      | \$FEF80040 |   |   |   |   |   |      |   |   |    |    |    |        |            |        |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |    |
|-----------|------|------------|---|---|---|---|---|------|---|---|----|----|----|--------|------------|--------|----|----|----|----|----|----|----|----|----|----|-----|----|----|-----|----|----|
| Bit       | 0    | 1          | 2 | 3 | 4 | S | 6 | 7    | 8 | 9 | 10 | 11 | 12 | 13     | 14         | 15     | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26  | 27 | 28 | 29  | 30 | 31 |
| Name      | scb0 | scb1       | 0 | 0 | 0 | 0 | _ | swen | 0 | 0 | 0  | 0  | 0  | rtest0 | rtest1     | rtest2 |    |    |    |    |    |    |    |    |    |    |     |    |    |     |    |    |
| Operation | R    | R          | R | R | R | R | R | R/W  | R | R | R  | R  | R  | R/W    | $\searrow$ | R/W    |    | R  | EΑ | ΔD | ZE | RC | )  |    |    | F  | REA | ΑD | ZE | ERC | )  |    |
| Reset     | 0 P  | 0 P        | X | X | X | X | X | 0 P  | X | X | X  | X  | X  | 0 P    | 0 P        | 0 P    |    |    |    | Х  | ζ. |    |    |    |    |    |     | Σ  | K  |     |    |    |

scb0,scb1

These bits increment every time the scrubber completes a scrub of the entire DRAM. When these bits reach binary 11, they roll over to binary 00 and continue. They are cleared by power-up reset.

swen

When set, <u>swen</u> allows the scrubber to perform write cycles. When cleared, <u>swen</u> prevents scrubber writes.

<u>rtest0,1,2</u> The <u>rtest</u> bits enable certain refresh counter test modes. Table 3-13 shows their encodings. Note that these test modes are not intended to be used once the chip is in a system.

Table 3-13. rtest Encodings

| rtest0,rtest1,rtest2 | Test Mode selected                |
|----------------------|-----------------------------------|
| %000                 | Normal counter operation          |
| %001                 | RA counts at 16x                  |
| %010                 | RA counts at 256x                 |
| %011                 | RA is always at roll value for CA |
| %100                 | CA counts at 16x                  |
| %101                 | CA counts at 256x                 |
| %110                 | Reserved                          |
| %111                 | Reserved                          |

### Refresh/Scrub Address Register

| Address   |   |   |   |       |     |    |      |     |    | \$FE | F80      | 048 | 3  |    |    |    |    |    |      |     |    |          |    |    |
|-----------|---|---|---|-------|-----|----|------|-----|----|------|----------|-----|----|----|----|----|----|----|------|-----|----|----------|----|----|
| Bit       | 0 | 1 | 2 | 3 4 8 | 7   | 8  | 9    | 11  | 13 | 14   | 16<br>15 | 17  | 18 | 19 | 20 | 22 | 23 | 24 | 25   | 36  | 27 | 29<br>28 | 30 | 31 |
| Name      | 0 | 0 | 0 |       | ROV | VA | DDR  | ESS |    |      | 0        | 0   | 0  |    |    | (  | CO | LA | DD   | RE  | SS | •        |    |    |
| Operation | R | R | R |       | RE  | ΑD | /WRI | TE  |    |      | R        | R   | R  |    |    |    | RE | AΓ | )/W] | RIT | ГΕ |          |    |    |
| Reset     | X | X | X |       |     | (  | ) P  |     |    |      | X        | X   | X  |    |    |    |    |    | 0 P  |     |    |          |    |    |

#### **ROW ADDRESS**

These bits form the row address counter used by the refresher/scrubber for all blocks of DRAM. The row address counter increments by one after each refresh/scrub cycle. When it reaches all 1s, it rolls back over to all 0s and continues counting. *ROW ADDRESS* is readable and writable for test purposes.

Note that within each block, the most significant bits of <u>ROW ADDRESS</u> are used only when their DRAM devices are large enough to require them.

#### **COL ADDRESS**

These bits form the column address counter used by the refresher/scrubber for all blocks of DRAM. The counter increments by 1 every eighth time the *ROW ADDRESS* rolls over. *COL ADDRESS* is readable and writable for test purposes.

Note that within each block, the most significant bits of <u>COLADDRESS</u> are only used when their DRAM devices are large enough to require them.

### **ROM A Base/Size Register**

| Address   |   |   |     |     |      |     |     |   |    |           |        | \$            | FF   | EF         | 800 | 050 | )   |    |    |     |    |    |    |    |    |    |    |          |          |          |
|-----------|---|---|-----|-----|------|-----|-----|---|----|-----------|--------|---------------|------|------------|-----|-----|-----|----|----|-----|----|----|----|----|----|----|----|----------|----------|----------|
| Bit       | 1 | 2 | 4 6 | 5   | 6    | 7 0 | × \ | 9 | 10 | 11        | 13     | 13            | 14   | 15         | 16  | 17  | 18  | 19 | 20 | 21  | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29       | 30       | 31       |
| Name      |   | • | RON | И А | BA   | ASI | 3   | • |    | 101124_01 | 2      | 2             | а    | rom a siz2 |     |     |     |    |    |     |    |    | 0  | 0  | 0  | 0  | 0  | rom a rv | rom a en | rom a we |
| Operation |   |   | REA | \D/ | WR   | ITE | Ξ   |   |    | ;         | ָ<br>ק | $\rightarrow$ | R/W  | R/W        |     | F   | REA | ΑD | ZI | ERO | Э  |    | R  | R  | R  | R  | R  | R/W      | R/W      | R/W      |
| Reset     |   |   | \$  | FF( | ) PL | ,   |     |   |    | ,         |        |               | 0 PL | 0 PL       |     |     |     | 2  | X  |     |    |    | X  | X  | X  | X  | X  | VΡ       | 0  PL    | 0 PL     |

#### **ROM A BASE**

These control bits define the base address for ROM/Flash Block A. <u>ROM A BASE</u> bits 0-11 correspond to PowerPC 60x address bits 0 - 11 respectively. For larger ROM/Flash sizes, the lower significant bits of <u>ROM A BASE</u> are ignored. This means that the block's base address will always appear at an even multiple of its size. <u>ROM A BASE</u> is initialized to \$FF0 at power-up or local bus reset.

Note that in addition to the programmed address, the first 1Mbyte of Block A also appears at \$FFF00000 - \$FFFFFFFF if the <u>rom a rv</u> bit is set and the <u>rom b rv</u> bit is cleared.

Also note that the combination of **ROM\_A\_BASE** and **rom\_a\_siz** should never be programmed such that ROM/Flash Block A responds at the same address as the CSR, DRAM, External Register set, or any other slave on the PowerPC bus.

#### rom a 64

rom\_a\_64 indicates the width of the ROM/Flash
device(s) being used for Block A. When rom\_a\_64 is
cleared, Block A is 16 bits wide, where each Falcon
interfaces to 8 bits. When rom\_a\_64 is set, Block A is 64

bits wide, where each Falcon interfaces to 32 bits. *rom\_a\_64* matches the value that was on the CKD2 pin at power-up reset. It cannot be changed by software.

rom a siz The rom a siz control bits are the size of ROM/Flash for Block A. They are encoded as shown in Table 3-14.

Table 3-14. ROM Block A Size Encoding

| rom a siz | Block Size |
|-----------|------------|
| %000      | 1MB        |
| %001      | 2MB        |
| %010      | 4MB        |
| %011      | 8MB        |
| %100      | 16MB       |
| %101      | 32MB       |
| %110      | 64MB       |
| %111      | Reserved   |

<u>rom a rv</u> and <u>rom b rv</u> determine which (if either) of Blocks A and B is the source of reset vectors or any other access in the range \$FFF00000 - \$FFFFFFFF as shown in the table below.

Table 3-15. <u>rom a rv</u> and <u>rom b rv</u> Encoding

| rom_a_rv | rom_b_rv | Result                                        |
|----------|----------|-----------------------------------------------|
| 0        | 0        | Neither block is the source of reset vectors. |
| 0        | 1        | Block B is the source of reset vectors.       |
| 1        | 0        | Block A is the source of reset vectors.       |
| 1        | 1        | Block B is the source of reset vectors.       |

<u>rom a rv</u> is initialized at power-up reset to match the value on the CKD0 pin.

rom a en When rom a en is set, accesses to Block A ROM/Flash in the address range selected by ROM A BASE are enabled.
When rom a en is cleared, they are disabled.

rom a we When rom a we is set, writes to Block A ROM/Flash are enabled. When rom a we is cleared, they are disabled. Note that if rom\_a\_64 is cleared, only one-byte writes are allowed. If rom\_a\_64 is set, only four-byte writes are allowed. The Falcon ignores other writes. If a valid write is attempted and rom a we is cleared, the write does not happen but the cycle is terminated normally. Refer to Table 3-16 for details of ROM/Flash accesses.

Table 3-16. Read/Write to ROM/Flash

| Cycle | Transfer<br>Size        | Alignment  | rom_x_64 | rom_x_we | Falcon Response                                     |
|-------|-------------------------|------------|----------|----------|-----------------------------------------------------|
| Write | 1-byte                  | X          | 0        | 0        | Normal termination, but no write to ROM/Flash       |
| Write | 1-byte                  | X          | 0        | 1        | Normal termination,<br>write occurs to<br>ROM/Flash |
| Write | 1-byte                  | X          | 1        | X        | No Response                                         |
| Write | 4-byte                  | Misaligned | X        | X        | No Response                                         |
| Write | 4-byte                  | Aligned    | 0        | X        | No Response                                         |
| Write | 4-byte                  | Aligned    | 1        | 0        | Normal termination, but no write to ROM/Flash       |
| Write | 4-byte                  | Aligned    | 1        | 1        | Normal termination,<br>write occurs to<br>ROM/Flash |
| Write | 2,3,5,6,7,<br>8,32-byte | X          | X        | X        | No Response                                         |
| Read  | X                       | X          | X        | X        | Normal Termination                                  |

### **ROM B Base/Size Register**

| Address   |   |   |     |     |      |     |     |   |    |    |          | (    | FI               | EF               | 800 | )58 | 8   |    |    |     |    |    |    |    |    |    |    |          |          |              |
|-----------|---|---|-----|-----|------|-----|-----|---|----|----|----------|------|------------------|------------------|-----|-----|-----|----|----|-----|----|----|----|----|----|----|----|----------|----------|--------------|
| Bit       | 0 | 2 | 4 & | 5   | 6    | 7   | × ' | 9 | 10 | 11 | 12       | 13   | 14               | 15               | 16  | 17  | 18  | 19 | 20 | 21  | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29       | 30       | 31           |
| Name      |   |   | ROI | ΜВ  | B BA | SI  | 3   |   |    | ľ  | rom b 64 |      | b si             | rom b siz2       |     |     |     |    |    |     |    |    | 0  | 0  | 0  | 0  | 0  | rom b rv | rom b en | rom b we     |
| Operation |   |   | REA | AD/ | WR   | ITI | Ε   |   |    |    | R        | M/M  | $\sim$           | R/W              |     | F   | REA | ΑD | ZF | ERO | )  |    | R  | R  | R  | R  | R  | R/W      | R/W      | R/W          |
| Reset     |   |   | \$  | FF4 | 4 PL | ,   |     |   |    |    | VΡ       | 0 PL | $0  \mathrm{PL}$ | $0  \mathrm{PL}$ |     |     |     | 2  | K  |     |    |    | X  | X  | X  | X  | X  | VΡ       | 0 PL     | 1 <b>d</b> 0 |

#### ROM B BASE

These control bits define the base address for ROM/Flash Block B. <u>ROM B BASE</u> bits 0-11 correspond to PowerPC 60x address bits 0-11 respectively. For larger ROM/Flash sizes, the lower significant bits of <u>ROM B BASE</u> are ignored. This means that the block's base address will always appear at an even multiple of its size. <u>ROM B BASE</u> is initialized to \$FF4 at power-up or local bus reset.

Note that in addition to the programmed address, the first 1Mbyte of Block B also appears at \$FFF00000 - \$FFFFFFFF if the *rom b rv* bit is set.

Also note that the combination of **ROM B BASE** and **rom b siz** should never be programmed such that ROM/Flash block B responds at the same address as the CSR, DRAM, External Register set, or any other slave on the PowerPC bus.

### *rom\_b\_64*

rom\_b\_64 indicates the width of the ROM/Flash device(s) being used for block B. When rom\_b\_64 is cleared, block B is 16 bits wide, where each Falcon interfaces to 8 bits. When rom\_b\_64 is set, block B is 64 bits wide, where each Falcon interfaces to 32 bits.

**rom\_b\_64** matches the *inverse* of the value that was on the CKD3 pin at power-up reset. It cannot be changed by software.

rom b siz The rom b siz control bits are the size of ROM/Flash for block B. They are encoded as shown in Table 3-17.

Table 3-17. ROM Block B Size Encoding

| rom b siz | Block Size |
|-----------|------------|
| %000      | 1MB        |
| %001      | 2MB        |
| %010      | 4MB        |
| %011      | 8MB        |
| %100      | 16MB       |
| %101      | 32MB       |
| %110      | 64MB       |
| %111      | Reserved   |

<u>rom b rv</u> and <u>rom a rv</u> determine which if either of Blocks A and B is the source of reset vectors or any other access in the range \$FFF00000 - \$FFFFFFFF as shown in Table 3-15.

<u>rom b rv</u> is initialized at power-up reset to match the *inverse* of the value on the CKD1 pin.

rom b en When rom b en is set, accesses to block B ROM/Flash in the address range selected by ROM B BASE are enabled.
When rom b en is cleared they are disabled.

**rom b we** When **rom b we** is set, writes to block B ROM/Flash are enabled. When **rom b we** is cleared they are disabled. Refer back to Table 3-16 for more details.

### **DRAM Tester Control Registers**



The tester should not be used by software. The  $\underline{trun}$  and  $\underline{tsse}$  bits (bits 0 and 1 of the register at address \$FEF80060) should never be set.

#### 32-Bit Counter

| Address   | \$FEF80100                         |
|-----------|------------------------------------|
| Bit       | 0123456789911111311456178999111123 |
| Name      | <u>CTR32</u>                       |
| Operation | READ/WRITE                         |
| Reset     | 0 PL                               |

CTR32

<u>CTR32</u> is a 32-bit, free-running counter that increments once per microsecond if the CLK\_FREQUENCY register has been programmed properly. Notice that <u>CTR32</u> is cleared by power-up and local reset. It does not exist in Revision 1 of Falcon.

Note

When the system clock is a fractional frequency, such as 66.67MHz, <u>CTR32</u> will count at a fractional amount faster or slower than 1MHz, depending on the programming of the CLK\_FREQUENCY register.

#### **Test SRAM**

(Deleted)

### **Power-Up Reset Status Register 1**

| Address   | \$FEF80400                                                           |
|-----------|----------------------------------------------------------------------|
| Bit       | 0 1 2 3 4 4 5 6 6 7 8 9 9 10 11 12 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Name      | PR_STAT1                                                             |
| Operation | READ                                                                 |
| Reset     | V P                                                                  |

### PR\_STAT1

**PR\_STAT1** (power-up reset status) reflects the value that was on the RD0-RD31 signal pins at power-up reset. This register is read-only.

**Note** For descriptions of how this register is used in the MVME2300 series boards, refer to the *Falcon-Controlled System Registers* section in Chapter 1, especially to *System Configuration Register* (SYSCR) and Memory Configuration Register (MEMCR).

### Power-Up Reset Status Register 2

| Address   | \$FEF80500                                                                                            |
|-----------|-------------------------------------------------------------------------------------------------------|
| Bit       | 0 1 2 3 4 4 5 6 7 8 9 9 10 11 12 13 14 15 6 6 7 8 9 9 10 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13 |
| Name      | PR_STAT2                                                                                              |
| Operation | READ                                                                                                  |
| Reset     | V P                                                                                                   |

### PR\_STAT2

**PR\_STAT2** (power-up reset status) reflects the value that was on the RD32-RD63 signal pins at power-up reset. This register is read-only.

### **External Register Set**

| Address   | \$FEF88000 - \$FEF8FFF8                                  |
|-----------|----------------------------------------------------------|
| Bit       | 0 1 2 3 4 5 6 7 8 9 9 1 11 11 11 11 11 11 11 11 11 11 11 |
| Name      |                                                          |
|           | EXTERNAL REGISTER SET                                    |
|           | EATERNAL REGISTER SET                                    |
|           |                                                          |
| Operation | READ/WRITE                                               |
| Reset     | X PL                                                     |

### EXTERNAL REGISTER SET

The **EXTERNAL REGISTER SET** is user-provided and is external to the Falcon pair. The Falcon pair provides a static RAM style interface for the external registers. The external registers can be SRAM, ROM, Flash or some other user device. There can be one device connected to either the upper or lower Falcon, or there can be two devices with one connected to each Falcon. The devices can be 8, 16, or 32 bits wide. The data path to the external devices is via the RD32-RD63 pins. Reads to the external devices can be any size except burst. Note that if the devices are less than 32 bits wide, reads to unused data lanes will yield undefined data. Note that writes are restricted to one- or four-byte length only. Four-byte writes can be used for any size device; data should be placed on the correct portion of the data bus so that valid data is written to the device. Data duplication is turned off for the EXTERNAL REGISTER SET so writes can be to either the upper Falcon, or to the lower Falcon.

#### Note

For descriptions of how these registers are used in the MVME2300 series boards, refer to the *Falcon-Controlled System Registers* section of Chapter 1, especially to *System External Cache Control Register* (SXCCR) and CPU Control Register.

# **Software Considerations**

This section contains information that may be helpful in making efficient use of the Falcon pair when programming.

# Parity Checking on the PowerPC Bus

The Falcon does not generate parity on the PowerPC address or data buses. Because of this, the appropriate registers in the MPC60x should be programmed to disable parity checking for the address bus and for the data bus.

# **Programming ROM/Flash Devices**

Those who program devices to be controlled by the Falcon should make note of the address mapping that is shown in Table 3-8 and in Table 3-9. When using eight-bit devices, for example, the code will be split so that every other four-byte segment goes in each device.

# **Writing to the Control Registers**

Software should not change control register bits that affect DRAM operation while DRAM is being accessed. Because of pipelining, software should always make sure that the two accesses before and after the updating of critical bits are not DRAM accesses. A possible scenario for trouble would be to execute code out of DRAM while updating the critical DRAM control register bits. The preferred method is to be executing code out of ROM/Flash and avoiding DRAM accesses while updating these bits.

Since software has no way of controlling refresh accesses to DRAM, the hardware is designed so that updating control bits coincidentally with refreshes is not a problem. An exception to this is the *ROW ADDRESS* and *COL ADDRESS* bits. In any event, however, it is not intended that software write to these bits.

As with DRAM, software should not change control register bits that affect ROM/Flash while the affected block is being accessed. This generally means that the ROM/Flash size, base address, enable, write enable, etc. are changed only during initial execution in the reset vector area (\$FFF00000 - \$FFFFFFFF).

# Sizing DRAM



To satisfy DRAM component requirements before the memory is used at start-up, software must always wait at least 500 µs after the initial setting of a bank's size bits to a nonzero value before the initial access to that bank. These settings are stored in the DRAM Attributes register (offset \$FEF80010). The delay is introduced to ensure that the bank has been refreshed at least eight times before use. The 500 µs interval is sufficient, as the CLK Frequency register (offset \$FEF80020) is within a factor of two of matching the actual processor clock frequency.

The following routine can be used to size DRAM for the Falcon.

First, initialize the Falcon control register bits to a known state as follows:

- 1. Clear the isa hole bit.
- 2. Make sure that ram\_fref and ram\_spd0,ram\_spd1 are correct.
- 3. Set CLK\_FREQUENCY to match the operating frequency.
- 4. Clear the refdis, rwcb bits.
- 5. Set the derc bit.
- 6. Clear the scien, tien, sien, and mien bits.
- 7. Clear the mcken bit.
- 8. Clear the swen and rtest0,rtest1,rtest2 bits.
- 9. Make sure that ROM/Flash banks A and B are not enabled to respond in the range from \$00000000 to \$40000000.

10. Make sure that no other devices respond in the range from \$00000000 to \$40000000.

### Then, for each block:

- 1. Set the block's base address to \$00000000.
- 2. Enable the block and make sure that the other three blocks are disabled.
- 3. Set the block's size control bits. Start with the largest possible (1024MB).
- 4. Write differing 64-bit data patterns to certain addresses within the block. The data patterns do not matter as long as each 64-bit data pattern is unique. The addresses to be written vary depending on the size that is currently being checked and are specified in Table 3-18. Table 3-19 shows how PowerPC addresses correspond to DRAM row/column addresses.
- 5. Read back all of the addresses that have been written.
  - If all of the addresses still contain exactly what was written, then the block's size has been found. It is the size for which the block is currently programmed.
  - If any of the addresses do not match exactly, then the amount of memory is less than that for which it is currently programmed. Sizing needs to continue for this block by programming its control bits to the next smaller size and repeating steps 4 and 5.
- 6. If no match is found for any size, then the block is unpopulated and has a size of 0MB.

Each size that is checked has a specific set of locations that must be written and read. The following table shows the addresses that go with each size.

Table 3-18. Sizing Addresses

| 1024MB                   | 256MB                                                | 128MB                                                                                          | 64MB                                                 | 32MB                                                                                           | 16MB       |
|--------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|------------|
| \$00000000<br>\$20000000 | \$00000000<br>\$02000000<br>\$08000000<br>\$0A000000 | \$00000000<br>\$00002000<br>\$02000000<br>\$02002000<br>\$04000000<br>\$04002000<br>\$06002000 | \$00000000<br>\$00002000<br>\$02000000<br>\$02002000 | \$00000000<br>\$00001000<br>\$00002000<br>\$00003000<br>\$01001000<br>\$01002000<br>\$01003000 | \$00000000 |

Table 3-19. PowerPC 60x Address to DRAM Address Mappings

| RA><br>Block Siz | ze  | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 16MB             | ROW |     | A19 | A18 | A8  | A9  | A10 | A11 | A12 | A13 | A14 | A15 | A16 | A17 |
| TOMB             | COL |     |     |     | A18 | A19 | A20 | A21 | A22 | A23 | A24 | A25 | A26 | A27 |
| 32MB             | ROW |     | A18 | A7  | A8  | A9  | A10 | A11 | A12 | A13 | A14 | A15 | A16 | A17 |
| 32MD             | COL |     |     |     | A18 | A19 | A20 | A21 | A22 | A23 | A24 | A25 | A26 | A27 |
| 64MB             | ROW | A18 | A6  | A7  | A8  | A9  | A10 | A11 | A12 | A13 | A14 | A15 | A16 | A17 |
| 041011           | COL |     |     | A6  | A18 | A19 | A20 | A21 | A22 | A23 | A24 | A25 | A26 | A27 |
| 128MB            | ROW | A6  | A5  | A7  | A8  | A9  | A10 | A11 | A12 | A13 | A14 | A15 | A16 | A17 |
| 120MD            | COL |     |     | A6  | A18 | A19 | A20 | A21 | A22 | A23 | A24 | A25 | A26 | A27 |
| 256MB            | ROW | A4  | A5  | A7  | A8  | A9  | A10 | A11 | A12 | A13 | A14 | A15 | A16 | A17 |
| 230WID           | COL |     | A4  | A6  | A18 | A19 | A20 | A21 | A22 | A23 | A24 | A25 | A26 | A27 |

RA ----> 0 1 2 3 5 6 7 8 9 10 11 12 **Block Size** V ROW **A**3 A5 A7 A8 Α9 A10 A11 A12 A13 A14 A15 A16 A17 1024MB A24 COL A2 A4 **A6** A18 A19 A20 A21 A22 A23 A25 A26 A27

Table 3-19. PowerPC 60x Address to DRAM Address Mappings

## **ECC Codes**

When the Falcon reports a single-bit error, software can use the syndrome that was logged by the Falcon (upper or lower depending where the error occurred) to determine which bit was in error. Table 3-20 shows the syndrome for each possible single bit error. Table 3-21 shows the same information ordered by syndrome. In order to relate this information to PowerPC addresses and bit numbers, the user needs to understand how the Falcon pair positions PowerPC data in DRAM. See the section on *Data Paths* for an explanation of this.

Note that these tables are the same whether the Falcon is configured as upper or as lower device.

Table 3-20. Syndrome Codes Ordered by Bit in Error

| Bit | Syndrome | Bit  | Syndrome | Bit  | Syndrome | Bit  | Syndrome | Bit  | Syndrome |
|-----|----------|------|----------|------|----------|------|----------|------|----------|
| rd0 | \$4A     | rd16 | \$92     | rd32 | \$A4     | rd48 | \$29     | ckd0 | \$01     |
| rd1 | \$4C     | rd17 | \$13     | rd33 | \$C4     | rd49 | \$31     | ckd1 | \$02     |
| rd2 | \$2C     | rd18 | \$0B     | rd34 | \$C2     | rd50 | \$B0     | ckd2 | \$04     |
| rd3 | \$2A     | rd19 | \$8A     | rd35 | \$A2     | rd51 | \$A8     | ckd3 | \$08     |
| rd4 | \$E9     | rd20 | \$7A     | rd36 | \$9E     | rd52 | \$A7     | ckd4 | \$10     |
| rd5 | \$1C     | rd21 | \$07     | rd37 | \$C1     | rd53 | \$70     | ckd5 | \$20     |
| rd6 | \$1A     | rd22 | \$86     | rd38 | \$A1     | rd54 | \$68     | ckd6 | \$40     |
| rd7 | \$19     | rd23 | \$46     | rd39 | \$91     | rd55 | \$64     | ckd7 | \$80     |

Table 3-20. Syndrome Codes Ordered by Bit in Error

| Bit  | Syndrome | Bit  | Syndrome | Bit  | Syndrome | Bit  | Syndrome | Bit | Syndrome |
|------|----------|------|----------|------|----------|------|----------|-----|----------|
| rd8  | \$25     | rd24 | \$49     | rd40 | \$52     | rd56 | \$94     |     |          |
| rd9  | \$26     | rd25 | \$89     | rd41 | \$62     | rd57 | \$98     |     |          |
| rd10 | \$16     | rd26 | \$85     | rd42 | \$61     | rd58 | \$58     |     |          |
| rd11 | \$15     | rd27 | \$45     | rd43 | \$51     | rd59 | \$54     |     |          |
| rd12 | \$F4     | rd28 | \$3D     | rd44 | \$4F     | rd60 | \$D3     |     |          |
| rd13 | \$0E     | rd29 | \$83     | rd45 | \$E0     | rd61 | \$38     |     |          |
| rd14 | \$0D     | rd30 | \$43     | rd46 | \$D0     | rd62 | \$34     |     |          |
| rd15 | \$8C     | rd31 | \$23     | rd47 | \$C8     | rd63 | \$32     |     |          |

Table 3-21. Single-Bit Errors Ordered by Syndrome Code

| Syn-<br>drome | Bit  |
|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|
| \$00          | -    | \$20          | ckd5 | \$40          | ckd6 | \$60          | -    | \$80          | ckd7 | \$A0          | -    | \$C0          | -    | \$E0          | rd45 |
| \$01          | ckd0 | \$21          | -    | \$41          | -    | \$61          | rd42 | \$81          | -    | \$A1          | rd38 | \$C1          | rd37 | \$E1          | -    |
| \$02          | ckd1 | \$22          | -    | \$42          | -    | \$62          | rd41 | \$82          | -    | \$A2          | rd35 | \$C2          | rd34 | \$E2          | -    |
| \$03          | -    | \$23          | rd31 | \$43          | rd30 | \$63          | -    | \$83          | rd29 | \$A3          | -    | \$C3          | -    | \$E3          | -    |
| \$04          | ckd2 | \$24          | -    | \$44          | -    | \$64          | rd55 | \$84          | -    | \$A4          | rd32 | \$C4          | rd33 | \$E4          | -    |
| \$05          | -    | \$25          | rd8  | \$45          | rd27 | \$65          | -    | \$85          | rd26 | \$A5          | -    | \$C5          | -    | \$E5          | -    |
| \$06          | -    | \$26          | rd9  | \$46          | rd23 | \$66          | -    | \$86          | rd22 | \$A6          | -    | \$C6          | -    | \$E6          | -    |
| \$07          | rd21 | \$27          | -    | \$47          | -    | \$67          | -    | \$87          | -    | \$A7          | rd52 | \$C7          | -    | \$E7          | -    |
| \$08          | ckd3 | \$28          | -    | \$48          | -    | \$68          | rd54 | \$88          | -    | \$A8          | rd51 | \$C8          | rd47 | \$E8          | -    |
| \$09          | -    | \$29          | rd48 | \$49          | rd24 | \$69          | -    | \$89          | rd25 | \$A9          | -    | \$C9          | -    | \$E9          | rd4  |
| \$0A          | -    | \$2A          | rd3  | \$4A          | rd0  | \$6A          | -    | \$8A          | rd19 | \$AA          | -    | \$CA          | -    | \$EA          | -    |
| \$0B          | rd18 | \$2B          | -    | \$4B          | -    | \$6B          | -    | \$8B          | -    | \$AB          | -    | \$CB          | -    | \$EB          | -    |
| \$0C          | -    | \$2C          | rd2  | \$4C          | rd1  | \$6C          | -    | \$8C          | rd15 | \$AC          | -    | \$CC          | -    | \$EC          | -    |
| \$0D          | rd14 | \$2D          | -    | \$4D          | -    | \$6D          | -    | \$8D          | -    | \$AD          | -    | \$CD          | -    | \$ED          | -    |
| \$0E          | rd13 | \$2E          | -    | \$4E          | -    | \$6E          | -    | \$8E          | -    | \$AE          | -    | \$CE          | -    | \$EE          | -    |
| \$0F          | -    | \$2F          | -    | \$4F          | rd44 | \$6F          | -    | \$8F          | -    | \$AF          | -    | \$CF          | -    | \$EF          | -    |
| \$10          | ckd4 | \$30          | -    | \$50          | -    | \$70          | rd53 | \$90          | -    | \$B0          | rd50 | \$D0          | rd46 | \$F0          | -    |
| \$11          | -    | \$31          | rd49 | \$51          | rd43 | \$71          | -    | \$91          | rd39 | \$B1          | -    | \$D1          | -    | \$F1          | -    |
| \$12          | -    | \$32          | rd63 | \$52          | rd40 | \$72          | -    | \$92          | rd16 | \$B2          | -    | \$D2          | -    | \$F2          | -    |
| \$13          | rd17 | \$33          | -    | \$53          | -    | \$73          | -    | \$93          | -    | \$B3          | -    | \$D3          | rd60 | \$F3          | -    |
| \$14          | -    | \$34          | rd62 | \$54          | rd59 | \$74          | -    | \$94          | rd56 | \$B4          | -    | \$D4          | -    | \$F4          | rd12 |
| \$15          | rd11 | \$35          | -    | \$55          | -    | \$75          | -    | \$95          | -    | \$B5          | -    | \$D5          | -    | \$F5          | -    |
| \$16          | rd10 | \$36          | -    | \$56          | -    | \$76          | -    | \$96          | -    | \$B6          | -    | \$D6          | -    | \$F6          | -    |
| \$17          | -    | \$37          | -    | \$57          | -    | \$77          | -    | \$97          | -    | \$B7          | -    | \$D7          | -    | \$F7          | -    |
| \$18          | -    | \$38          | rd61 | \$58          | rd58 | \$78          | -    | \$98          | rd57 | \$B8          | -    | \$D8          | -    | \$F8          | -    |
| \$19          | rd7  | \$39          | -    | \$59          | -    | \$79          | -    | \$99          | -    | \$B9          | -    | \$D9          | -    | \$F9          | -    |
| \$1A          | rd6  | \$3A          | -    | \$5A          | -    | \$7A          | rd20 | \$9A          | -    | \$BA          | -    | \$DA          | -    | \$FA          | -    |
| \$1B          | -    | \$3B          | -    | \$5B          | -    | \$7B          | -    | \$9B          | -    | \$BB          | -    | \$DB          | -    | \$FB          | -    |
| \$1C          | rd5  | \$3C          | -    | \$5C          | -    | \$7C          | -    | \$9C          | -    | \$BC          | -    | \$DC          | -    | \$FC          | -    |
| \$1D          | -    | \$3D          | rd28 | \$5D          | -    | \$7D          | -    | \$9D          | -    | \$BD          | -    | \$DD          | -    | \$FD          | -    |
| \$1E          | -    | \$3E          | -    | \$5E          | -    | \$7E          | -    | \$9E          | rd36 | \$BE          | -    | \$DE          | -    | \$FE          | -    |
| \$1F          | -    | \$3F          | -    | \$5F          | -    | \$7F          | -    | \$9F          | -    | \$BF          | -    | \$DF          | -    | \$FF          | -    |

## **Data Paths**

Because of the Falcon "pair" architecture, data paths can be confusing. Figure 3-10 attempts to show the placement of data that is written by a PowerPC master to DRAM. Table 3-22 shows the same information in tabular format.

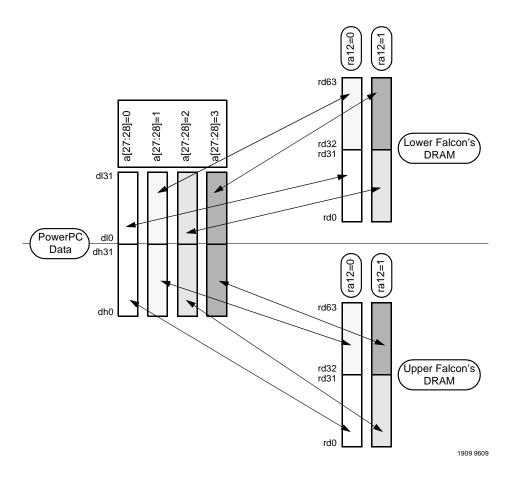



Figure 3-10. PowerPC Data to DRAM Data Correspondence

Table 3-22. PowerPC Data to DRAM Data Mapping

|       | Power | PC        |        | DRAM Array                     |                                |  |  |  |  |  |  |
|-------|-------|-----------|--------|--------------------------------|--------------------------------|--|--|--|--|--|--|
| A[27] | A[28] | Data Bits | RA[12] | Upper Falcon DRAM<br>Data Bits | Lower Falcon DRAM<br>Data Bits |  |  |  |  |  |  |
| 0     | 0     | dh[00:07] | 0      | rd[00:07]                      | -                              |  |  |  |  |  |  |
| 0     | 0     | dh[08:15] | 0      | rd[08:15]                      | -                              |  |  |  |  |  |  |
| 0     | 0     | dh[16:23] | 0      | rd[16:23]                      | -                              |  |  |  |  |  |  |
| 0     | 0     | dh[24:31] | 0      | rd[24:31]                      | -                              |  |  |  |  |  |  |
| 0     | 0     | dl[00:07] | 0      | -                              | rd[00:07]                      |  |  |  |  |  |  |
| 0     | 0     | dl[08:15] | 0      | =                              | rd[08:15]                      |  |  |  |  |  |  |
| 0     | 0     | dl[16:23] | 0      | =                              | rd[16:23]                      |  |  |  |  |  |  |
| 0     | 0     | dl[24:31] | 0      | =                              | rd[24:31]                      |  |  |  |  |  |  |
| 0     | 1     | dh[00:07] | 0      | rd[32:39]                      | -                              |  |  |  |  |  |  |
| 0     | 1     | dh[08:15] | 0      | rd[40:47]                      | -                              |  |  |  |  |  |  |
| 0     | 1     | dh[16:23] | 0      | rd[48:55]                      | -                              |  |  |  |  |  |  |
| 0     | 1     | dh[24:31] | 0      | rd[56:63]                      | -                              |  |  |  |  |  |  |
| 0     | 1     | dl[00:07] | 0      | -                              | rd[32:39]                      |  |  |  |  |  |  |
| 0     | 1     | dl[08:15] | 0      | =                              | rd[40:47]                      |  |  |  |  |  |  |
| 0     | 1     | dl[16:23] | 0      | =                              | rd[48:55]                      |  |  |  |  |  |  |
| 0     | 1     | dl[24:31] | 0      | -                              | rd[56:63]                      |  |  |  |  |  |  |
| 1     | 0     | dh[00:07] | 1      | rd[00:07]                      | -                              |  |  |  |  |  |  |
| 1     | 0     | dh[08:15] | 1      | rd[08:15]                      | -                              |  |  |  |  |  |  |
| 1     | 0     | dh[16:23] | 1      | rd[16:23]                      | -                              |  |  |  |  |  |  |
| 1     | 0     | dh[24:31] | 1      | rd[24:31]                      | -                              |  |  |  |  |  |  |
| 1     | 0     | dl[00:07] | 1      | =                              | rd[00:07]                      |  |  |  |  |  |  |
| 1     | 0     | dl[08:15] | 1      | =                              | rd[08:15]                      |  |  |  |  |  |  |
| 1     | 0     | dl[16:23] | 1      | =                              | rd[16:23]                      |  |  |  |  |  |  |
| 1     | 0     | dl[24:31] | 1      | =                              | rd[24:31]                      |  |  |  |  |  |  |
| 1     | 1     | dh[00:07] | 1      | rd[32:39]                      | -                              |  |  |  |  |  |  |
| 1     | 1     | dh[08:15] | 1      | rd[40:47]                      | -                              |  |  |  |  |  |  |
| 1     | 1     | dh[16:23] | 1      | rd[48:55]                      | -                              |  |  |  |  |  |  |
| 1     | 1     | dh[24:31] | 1      | rd[56:63]                      | -                              |  |  |  |  |  |  |
| 1     | 1     | dl[00:07] | 1      | -                              | rd[32:39]                      |  |  |  |  |  |  |
| 1     | 1     | dl[08:15] | 1      | =                              | rd[40:47]                      |  |  |  |  |  |  |
| 1     | 1     | dl[16:23] | 1      | =                              | rd[48:55]                      |  |  |  |  |  |  |
| 1     | 1     | dl[24:31] | 1      | =                              | rd[56:63]                      |  |  |  |  |  |  |

# Universe (VMEbus to PCI) Chip

# Introduction

This chapter describes the VMEbus interface on MVME2300 series boards, the CA91C042 Universe ASIC. The Universe chip interfaces the 32/64-bit PCI local bus to the VMEbus. It provides a PCI-bus-to-VMEbus interface, a VMEbus-to-PCI-bus interface, and the DMA controller functions of the local VMEbus.

Note that all of the information in this chapter (except the section entitled *Universe Chip Problems after PCI Reset*) is taken from the *Universe User Manual*, which is listed under *Manufacturers' Documents* in Appendix A, *Related Documentation*. Refer to that manual for detailed information on the Universe ASIC.

# **Features**

The Universe VMEbus interface chip (CA91C042) provides a reliable high-performance 64-bit VMEbus-to-PCI interface in one device.

Designed by Tundra Semiconductor Corporation in consultation with Motorola, the Universe is compliant with the VME64 specification and is tuned to the new generation of high-speed processors.

The Universe is ideally suited for CPU boards acting as both master and slave in the VMEbus system, and is particularly fitted for PCI local systems. The Universe is manufactured in a CMOS process.

4-1

The following table summarizes the characteristics of the Universe ASIC.

Table 4-1. Features of the Universe ASIC

| Function                    | Features                                                                                                                                                                                            |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VMEbus Interface            | Fully compliant, high-performance 64-bit VMEbus interface                                                                                                                                           |
|                             | VMEbus transfer rates of 60-70 MB/sec                                                                                                                                                               |
|                             | Full VMEbus system controller functionality                                                                                                                                                         |
|                             | Integral FIFOs for write-posting to maximize bandwidth utilization                                                                                                                                  |
|                             | Automatic initialization for slave-only applications:  - A32/A24/A16 master and slave  - D64 (MBLT)/D32/D16/D08 master and slave  - D64 (MBLT)/D32/D16/D08 master and slave  - BLT, ADOH, RMW, LOCK |
|                             | Complete suite of VMEbus address and data transfer modes                                                                                                                                            |
| PCI Local Bus               | Fully compliant, 64-bit, 33 MHz PCI local bus interface                                                                                                                                             |
| Interface                   | Integral FIFOs for write-posting to maximize bandwidth utilization                                                                                                                                  |
|                             | Automatic initialization for slave-only applications                                                                                                                                                |
| DMA Controller              | Programmable DMA controller with linked list support                                                                                                                                                |
| Additional<br>Functionality | Flexible register set, programmable from both the PCI bus and VMEbus ports                                                                                                                          |
|                             | IEEE 1149.1 JTAG testability support                                                                                                                                                                |
|                             | Available in 313-pin Plastic BGA and 324-pin contact Ceramic BGA                                                                                                                                    |

# **Block Diagram**

The descriptions in the following sections make reference to the functional block diagram supplied in Figure 4-1. Notice that for each interface, VMEbus and PCI bus, there are three functionally distinct modules: master module, slave module, and interrupt module.

These three modules are connected to the different functional channels operating in the Universe. These channels are:

- □ VME Slave channel
- □ PCI Bus Slave channel
- □ DMA channel
- Interrupt channel
- Register channel

# **Functional Description**

The functional description is organized into the following sections:

- VMEbus Interface
- □ PCI Bus Interface
- □ Interrupter and Interrupt Handler
- DMA Controller

These sections describe the operation of the Universe in terms of the different modules and channels listed above and illustrated in Figure 4-1.

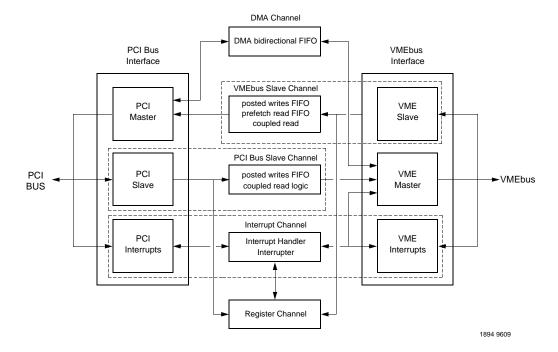



Figure 4-1. Architectural Diagram for the Universe

## **VMEbus Interface**

This section examines the Universe ASIC's VMEbus interface function, from the standpoint of the Universe as VMEbus slave as well as VMEbus master.

### Universe as VMEbus Slave

The Universe VME Slave channel accepts all of the addressing and data transfer modes documented in the VME64 specification (except A64 and those intended to support 3U applications, that is, A40 and MD32). Incoming write transactions from the VMEbus may be treated as either coupled or posted, depending upon the programming of the VMEbus slave image. (Refer to *VME Slave Images* in the *Universe User Manual*.) With posted write transactions, data is written to a Posted Write Receive FIFO (RXFIFO), and the VMEbus master receives data acknowledgment from

the Universe. Write data is transferred to the PCI resource from the RXFIFO without the involvement of the initiating VMEbus master (Refer to *Posted Writes* in the *Universe User Manual* for a full explanation of this operation.). With a coupled cycle, the VMEbus master only receives data acknowledgment when the transaction is complete on the PCI bus. This means that the VMEbus is unavailable to other masters while the PCI bus transaction is executed.

Read transactions may be prefetched or coupled. If enabled by the user, a prefetched read is initiated when a VMEbus master requests a block read transaction (BLT or MBLT) and this mode is enabled. When the Universe receives the block read request, it begins to fill its Read Data FIFO (RDFIFO) using burst transactions from the PCI resource. The initiating VMEbus master then acquires its block read data from the RDFIFO rather than from the PCI resources directly.

#### Universe as VMEbus Master

The Universe becomes VMEbus master when the VME Master interface is internally requested by the PCI Bus Slave channel, the DMA channel, or the Interrupt channel. The Interrupt channel always has priority over the other two channels. Several mechanisms are available to configure the relative priority that the PCI Bus Slave channel and DMA channel have over ownership of the VMEbus Master interface.

The Universe's VME Master interface generates all of the addressing and data transfer modes documented in the VME64 specification (except A64 and those intended to support 3U applications, that is, A40 and MD32). The Universe is also compatible with all VMEbus modules conforming to pre-VME64 specifications. As VMEbus master, the Universe supports Read-Modify-Write (RMW), and Address-Only-with-Handshake (ADOH) but does not accept RETRY\* as a termination from the VMEbus slave. The ADOH cycle is used to implement the VMEbus Lock command, allowing a PCI master to lock VMEbus resources.

# **PCI Bus Interface**

This section examines the Universe ASIC's PCI bus interface function, from the standpoint of the Universe as PCI slave as well as PCI master.

#### Universe as PCI Slave

Read transactions from the PCI bus are always processed as coupled. Write transactions may be either coupled or posted, depending upon the setting of the PCI bus slave image. (Refer to PCI Bus Slave Images in the Universe User Manual.) With a posted write transaction, write data is written to a Posted Write Transmit FIFO (TXFIFO) and the PCI bus master receives data acknowledgment from the Universe with zero wait states. Meanwhile, the Universe obtains the VMEbus and writes the data to the VMEbus resource independent of the initiating PCI master. (Refer to Posted Writes in the Universe User Manual for a full description of this operation.)

To allow PCI masters to perform RMW and ADOH cycles, the Universe provides a Special Cycle Generator. The Special Cycle Generator can be used in combination with a VMEbus ownership function to guarantee PCI masters exclusive access to VMEbus resources over several VMEbus transactions. (Refer to *Exclusive Accesses* and *RMW and ADOH Cycles* in the *Universe User Manual* for a full description of this functionality.)

#### Universe as PCI Master

The Universe becomes PCI master when the PCI Master Interface is internally requested by the VME Slave Channel or the DMA Channel. There are mechanisms provided which allow the user to configure the relative priority of the VME Slave Channel and the DMA Channel.

## Interrupter

The Universe interrupt channel provides a flexible scheme to map interrupts to either the PCI bus or VMEbus interface. Interrupts are generated from either hardware or software sources (refer to the *Interrupter* section of the *Universe User Manual* for a full description of hardware and software sources). Interrupt sources can be mapped to any of the PCI bus or VMEbus interrupt output pins. Interrupt sources mapped to VMEbus interrupts are generated on the VMEbus interrupt output pins VIRQ\*[7:1]. When a software and hardware source are assigned the same VIRQn\* pin, the software source always has higher priority.

Interrupt sources mapped to PCI bus interrupts are generated on one of the INT\*[7:0] pins. To be fully PCI compliant, all interrupt sources must be routed to a single INT\* pin.

For VMEbus interrupt outputs, the Universe interrupter supplies an 8-bit STATUS/ID to a VMEbus interrupt handler during the IACK cycle, and optionally generates an internal interrupt to signal that the interrupt vector has been provided. (Refer to VMEbus Interrupt Generation in the Universe User Manual.)

Interrupts mapped to PCI bus outputs are serviced by the PCI interrupt controller. The CPU determines which interrupt sources are active by reading an interrupt status register in the Universe. The source negates its interrupt when it has been serviced by the CPU. (Refer to PCI Interrupt Generation in the Universe User Manual.)

### VMEbus Interrupt Handling

A VMEbus interrupt triggers the Universe to generate a normal VMEbus IACK cycle and generate the specified interrupt output. When the IACK cycle is complete, the Universe releases the VMEbus and the interrupt vector is read by the PCI resource servicing the interrupt output. Software interrupts are ROAK, while hardware and internal interrupts are RORA.

## **DMA Controller**

The Universe provides an internal DMA controller for high-performance data transfer between the PCI bus and VMEbus. DMA operations between the source and destination bus are decoupled through the use of a single bidirectional FIFO (DMAFIFO). Parameters for the DMA transfer are software configurable in the Universe registers. (Refer to DMA Controller in the Universe User Manual.)

The principal mechanism for DMA transfers is the same for operations in either direction (PCI to VME, or VME to PCI); only the relative identity of the source and destination bus changes. In a DMA transfer, the Universe gains control of the source bus and reads data into its DMAFIFO.

Following specific rules of DMAFIFO operation (refer to *FIFO Operation and Bus Ownership* in the *Universe User Manual*), it then acquires the destination bus and writes data from its DMAFIFO.

The DMA controller can be programmed to perform multiple blocks of transfers using entries in a linked list. The DMA will work through the transfers in the linked-list following pointers at the end of each linked-list entry. Linked-list operation is initiated through a pointer in an internal Universe register, but the linked list itself resides in PCI bus memory.

# **Universe Control and Status Registers (UCSR)**

The Universe Control and Status Registers (UCSR) facilitate host system configuration and allow the user to control Universe operational characteristics. The UCSR set is divided into three groups:

- □ PCI Configuration Space (PCICS)
- □ VMEbus Control and Status Registers (VCSR)
- ☐ Universe Device-Specific Status Registers (UDSR)

The Universe registers are little-endian.

Figure 4-2 summarizes the supported register access mechanisms.

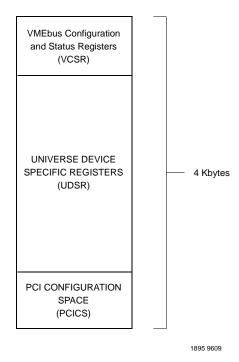



Figure 4-2. UCSR Access Mechanisms

# **Universe Register Map**

Table 4-2 lists the Universe registers by address offset. Tables in the *Universe User Manual* provide detailed descriptions of each register.

Address offsets in Table 4-2 below apply to accesses from the PCI bus and to accesses from the VMEbus side using the VMEbus Register Access Image (Refer to *Registers* in the *Universe User Manual*.). For register accesses in CR/CSR space, be sure to add 508KB (0x7F00) to the address offsets provided in the table.

Table 4-2. Universe Register Map

| Offset    | Register                                            | Name      |  |  |  |  |
|-----------|-----------------------------------------------------|-----------|--|--|--|--|
| 000       | PCI Configuration Space ID Register                 | PCI_ID    |  |  |  |  |
| 004       | PCI Configuration Space Control and Status Register | PCI_CSR   |  |  |  |  |
| 008       | PCI Configuration Class Register PCI_CLASS          |           |  |  |  |  |
| 00C       | PCI Configuration Miscellaneous 0 Register          | PCI_MISC0 |  |  |  |  |
| 010       | PCI Configuration Base Address Register             | PCI_BS    |  |  |  |  |
| 014       | PCI Unimplemented                                   | 1         |  |  |  |  |
| 018       | PCI Unimplemented                                   |           |  |  |  |  |
| 01C       | PCI Unimplemented                                   |           |  |  |  |  |
| 020       | PCI Unimplemented                                   |           |  |  |  |  |
| 024       | PCI Unimplemented                                   |           |  |  |  |  |
| 028       | PCI Reserved                                        |           |  |  |  |  |
| 02C       | PCI Reserved                                        |           |  |  |  |  |
| 030       | PCI Unimplemented                                   |           |  |  |  |  |
| 034       | PCI Reserved                                        |           |  |  |  |  |
| 038       | PCI Reserved                                        |           |  |  |  |  |
| 03C       | PCI Configuration Miscellaneous 1 Register          | PCI_MISC1 |  |  |  |  |
| 040 - 0FF | PCI Unimplemented                                   |           |  |  |  |  |
| 100       | PCI Slave Image 0 Control                           | LSI0_CTL  |  |  |  |  |
| 104       | PCI Slave Image 0 Base Address Register             | LSI0_BS   |  |  |  |  |
| 108       | PCI Slave Image 0 Bound Address Register            | LSI0_BD   |  |  |  |  |
| 10C       | PCI Slave Image 0 Translation Offset                | LSI0_TO   |  |  |  |  |
| 110       | Universe Reserved                                   | •         |  |  |  |  |
| 114       | PCI Slave Image 1 Control                           | LSI1_CTL  |  |  |  |  |
| 118       | PCI Slave Image 1 Base Address Register             | LSI1_BS   |  |  |  |  |

Table 4-2. Universe Register Map (Continued)

| Offset    | Register                                   | Name      |
|-----------|--------------------------------------------|-----------|
| 11C       | PCI Slave Image 1 Bound Address Register   | LSI1_BD   |
| 120       | PCI Slave Image 1 Translation Offset       | LSI1_TO   |
| 124       | Universe Reserved                          |           |
| 128       | PCI Slave Image 2 Control                  | LSI2_CTL  |
| 12C       | PCI Slave Image 2 Base Address Register    | LSI2_BS   |
| 130       | PCI Slave Image 2 Bound Address Register   | LSI2_BD   |
| 134       | PCI Slave Image 2 Translation Offset       | LSI2_TO   |
| 138       | Universe Reserved                          |           |
| 13C       | PCI Slave Image 3 Control                  | LSI3_CTL  |
| 140       | PCI Slave Image 3 Base Address Register    | LSI3_BS   |
| 144       | PCI Slave Image 3 Bound Address Register   | LSI3_BD   |
| 148       | PCI Slave Image 3 Translation Offset       | LSI3_TO   |
| 14C - 16C | Universe Reserved                          | •         |
| 170       | Special Cycle Control Register             | SCYC_CTL  |
| 174       | Special Cycle PCI bus Address Register     | SCYC_ADDR |
| 178       | Special Cycle Swap/Compare Enable Register | SCYC_EN   |
| 17C       | Special Cycle Compare Data Register        | SCYC_CMP  |
| 180       | Special Cycle Swap Data Register           | SCYC_SWP  |
| 184       | PCI Miscellaneous Register                 | LMISC     |
| 188       | Special PCI Slave Image                    | SLSI      |
| 18C       | PCI Command Error Log Register             | L_CMDERR  |
| 190       | PCI Address Error Log                      | LAERR     |
| 194 - 1FC | Universe Reserved                          | •         |
| 200       | DMA Transfer Control Register              | DCTL      |
| 204       | DMA Transfer Byte Count Register           | DTBC      |
| 208       | DMA PCI bus Address Register               | DLA       |
| 20C       | Universe Reserved                          | •         |
| 210       | DMA VMEbus Address Register                | DVA       |
| 214       | Universe Reserved                          | •         |

Table 4-2. Universe Register Map (Continued)

| Offset    | Register                                   | Name      |
|-----------|--------------------------------------------|-----------|
| 218       | DMA Command Packet Pointer                 | DCPP      |
| 21C       | Universe Reserved                          |           |
| 220       | DMA General Control and Status Register    | DGCS      |
| 224       | DMA Linked List Update Enable Register     | D_LLUE    |
| 228 - 2FC | Universe Reserved                          | •         |
| 300       | PCI Interrupt Enable                       | LINT_EN   |
| 304       | PCI Interrupt Status                       | LINT_STAT |
| 308       | PCI Interrupt Map 0                        | LINT_MAP0 |
| 30C       | PCI Interrupt Map 1                        | LINT_MAP1 |
| 310       | VMEbus Interrupt Enable                    | VINT_EN   |
| 314       | VMEbus Interrupt Status                    | VINT_STAT |
| 318       | VMEbus Interrupt Map 0                     | VINT_MAP0 |
| 31C       | VMEbus Interrupt Map 1                     | VINT_MAP1 |
| 320       | Interrupt Status/ID Out                    | STATID    |
| 324       | VIRQ1 STATUS/ID                            | V1_STATID |
| 328       | VIRQ2 STATUS/ID                            | V2_STATID |
| 32C       | VIRQ3 STATUS/ID                            | V3_STATID |
| 330       | VIRQ4 STATUS/ID                            | V4_STATID |
| 334       | VIRQ5 STATUS/ID                            | V5_STATID |
| 338       | VIRQ6 STATUS/ID                            | V6_STATID |
| 33C       | VIRQ7 STATUS/ID                            | V7_STATID |
| 340 - 3FC | Universe Reserved                          | •         |
| 400       | Master Control                             | MAST_CTL  |
| 404       | Miscellaneous Control                      | MISC_CTL  |
| 408       | Miscellaneous Status                       | MISC_STAT |
| 40C       | User AM Codes Register                     | USER_AM   |
| 410 - EFC | Universe Reserved                          | ·         |
| F00       | VMEbus Slave Image 0 Control               | VSI0_CTL  |
| F04       | VMEbus Slave Image 0 Base Address Register | VSI0_BS   |

Table 4-2. Universe Register Map (Continued)

| Offset    | Register                                      | Name     |
|-----------|-----------------------------------------------|----------|
| F08       | VMEbus Slave Image 0 Bound Address Register   | VSI0_BD  |
| F0C       | VMEbus Slave Image 0 Translation Offset       | VSI0_TO  |
| F10       | Universe Reserved                             | 1        |
| F14       | VMEbus Slave Image 1 Control                  | VSI1_CTL |
| F18       | VMEbus Slave Image 1 Base Address Register    | VSI1_BS  |
| F1C       | VMEbus Slave Image 1 Bound Address Register   | VSI1_BD  |
| F20       | VMEbus Slave Image 1 Translation Offset       | VSI1_TO  |
| F24       | Universe Reserved                             | 1        |
| F28       | VMEbus Slave Image 2 Control                  | VSI2_CTL |
| F2C       | VMEbus Slave Image 2 Base Address Register    | VSI2_BS  |
| F30       | VMEbus Slave Image 2 Bound Address Register   | VSI2_BD  |
| F34       | VMEbus Slave Image 2 Translation Offset       | VSI2_TO  |
| F38       | Universe Reserved                             | <b>-</b> |
| F3C       | VMEbus Slave Image 3 Control                  | VSI3_CTL |
| F40       | VMEbus Slave Image 3 Base Address Register    | VSI3_BS  |
| F44       | VMEbus Slave Image 3 Bound Address Register   | VSI3_BD  |
| F48       | VMEbus Slave Image 3 Translation Offset       | VSI3_TO  |
| F4C - F6C | Universe Reserved                             | 1        |
| F70       | VMEbus Register Access Image Control Register | VRAI_CTL |
| F74       | VMEbus Register Access Image Base Address     | VRAI_BS  |
| F78       | Universe Reserved                             | 1        |
| F7C       | Universe Reserved                             |          |
| F80       | VMEbus CSR Control Register                   | VCSR_CTL |
| F84       | VMEbus CSR Translation Offset                 | VCSR_TO  |
| F88       | VMEbus AM Code Error Log                      | V_AMERR  |
| F8C       | VMEbus Address Error Log                      | VAERR    |
| F90 - FEC | Universe Reserved                             | <b>'</b> |

Table 4-2. Universe Register Map (Continued)

| Offset | Register                         | Name     |  |
|--------|----------------------------------|----------|--|
| FF0    | VME CR/CSR Reserved              |          |  |
| FF4    | VMEbus CSR Bit Clear Register    | VCSR_CLR |  |
| FF8    | VMEbus CSR Bit Set Register      | VCSR_SET |  |
| FFC    | VMEbus CSR Base Address Register | VCSR_BS  |  |



Register space marked as "Reserved" should not be overwritten. Unimplemented registers return a value of 0 on reads; writes complete normally.

#### Note

The VMEbus CSR Bit Clear Register and the VMEbus CSR Bit Set Register are not supported on the MVME2300. Writing a 1 to the VMEbus CSR Bit Set Register reset bit will cause the board to go into a permanent reset condition.

# **Universe Chip Problems after PCI Reset**

Customers who overwrite the firmware settings for the Universe chip, or who replace the MCG firmware with their own, may find that under the conditions described below, there are problems with the Universe chip after a PCI reset.

## **Description**

The Universe chip is being enabled on the PCI bus after a PCI reset (the problem does not occur after a board reset or power up).

The Universe is causing the "bye" command to hang the system. The Universe Master Enable and Memory Enable in the PCI\_CSR (Configuration Space register) are enabled, even before the PCI\_BS register has been initialized. The symptoms can be alleviated by modifying the PCI probe list such that the Universe PCI configuration is done first.

The Configuration Space enables are not the only things enabled after a PCI reset. The LSI0 image may also not be disabled by a PCI reset, regardless of the enable bit's power-up condition. If the image is active at the time the reset occurs, it will remain enabled through the reset. Additionally, the image does not remain in the same VME or PCI address range.

How many of the Power-Up (P/U) option bits actually get latched as the Universe manual indicates they should, is uncertain. In any case, the EN bit in the LSIO\_CTL register is not latched; on MVME2300 series boards, its P/U state is disabled but is not honored.

### Workarounds

The software cannot completely correct this problem, but can minimize the effects of it. Two possible solutions are presented:

#### Method 1

- 1. Modify the PCI probe code to disable each PCI device prior to writing its configuration space BS registers. This will prevent the Universe from being active on the PCI bus while it has a base address of 0.
- 2. Once the Universe has been assigned a valid PCI Base Address, enable register space access and disable the LSI0 slave image by clearing the EN bit of the LSI0\_CTL register.

#### Method 2

Modify the port 92 reset code to disable the LSI0 image before propagating the reset. This will cause the LSI0 image to come up disabled.

MCG understands that both of these methods are awkward, because the PCI probe/reset code should not contain any device-specific patches. It should only need to follow the probing conventions of the PCI specification. However, the only other option appears to be avoidance of the LSI0 image altogether.

Tundra engineering describes the problem as follows:

"Following are the most recently discovered bugs which will be addressed in Universe 1.1.

### 1. LSIO image

Description: After a PCI reset, the LSIO image is still enabled, but the base, bound, and translation offset changes value.

Workground: None."

Motorola Firmware Engineering has implemented Method 1 in its firmware workaround in PPCBug debugger release 3.1.

#### Note

As mentioned at the start of this section, the preceding notes describing this Universe chip PCI reset problem are meant to assist those customers who replace the MCG firmware with their own, or who overwrite the firmware settings for the Universe chip. Customers who do that may encounter this problem.

Those who leave Motorola's PPCBug firmware intact should not experience any difficulties.

# **Examples**

In this section you will find some representative solutions implemented as workarounds for the Universe PCI reset problem described above.

## Example 1: MVME2600 Series Board Exhibits PCI Reset Problem

Use an MVME2600 series board to exhibit the problem.

#### Conditions:

The board is an MVME260x running PPCOF2.0 Ir05. All the Universe code which initializes the Universe has been disabled (the driver code, not the PCI code). The Probe list has been modified to d,c,e,f,10. The **env** parameters are set such that an LSI0 image will be enabled.

#### Procedure:

1. Manually call each Universe initialization word, to duplicate typical operation.

With the LSIO enabled, the registers are:

CTL BS BD TO 80821000 1012000 21012000 3efee000

- 2. Execute a bye command.
- 3. Manually enable access to the Universe register set, and read the LSI0 registers:

| CTL      | BS | BD      | TO |
|----------|----|---------|----|
| 80820000 | 0  | 2000000 | 0  |

This means that the PCI reset has changed the image as follows:

- From supervisor address modifier to user
- From PCI space base address 1012000 to 0 (size of 2000.0000 constant)
- From VME address range 4000.0000 through 5FFF.FFFF to a new VMEbus range of 0 through 1FFF.FFFF

It is still enabled.

## **Example 2: MVME3600 Series Board Acts Differently**

In this example, portions of the earlier example are repeated on an MVME3600 series board. This particular board had customized values for the LSI0 setup parameters. It had not previously been seen to hang upon PCI reset.

#### Conditions:

The Universe register init code is still disabled, and must be manually called. The PCI init code is enabled, so the Universe PCI memory space requirement defined by its Configuration Space register at offset 0x10 is being accommodated and enabled during PCI probing. The PCI probe list is set to d,c,e,f,10.

#### Procedure:

1. After a power-up reset, before the init code has written the registers, the LSI0 register settings are:

4

CTL BS BD TO 800000 0 0 0

2. Run the init code and the LSI0 registers become:

CTL BS BD TO 80821000 3000000 300a000 4d000000

3. After a bye, before the init code has run:

CTL BS BD TO 80820000 0 0 0

Therefore the PCI reset caused the following changes in the LSI0 image:

- From supervisor to user
- From PCI space base address 300.0000 to 0
- From PCI space size of A000 to size of 0
- From a VME base address of 5000.0000 to 0

This explains why the PCI reset problem had never arisen on this particular MVME360x. The fact that the PCI base and PCI bound registers are both 0 makes the effective size of the image 0 bytes. Therefore this "enabled" image will never utilize any PCI address space.

4. Now try modifying the LSI0 **env** parameters to match those on the MVME260x which failed:

printenv

 vme3\_lsi0\_vmeaddr
 1073741824
 1073741824

 vme3\_lsi0\_size
 536870912
 536870912

 vme3 lsi0 phi
 77
 77

After a power-up, before the init code has run, the LSI0 values are:

800000 0 0

5. Do NOT run the init code, but press the **RESET** button, and the values become:

830001 f0000000 f0000000 0

6. Run the vme3 init code, and the values are set to accommodate env parameters:

80821000 3000000 23000000 3d000000

### 7. Do a bye.

The values before the init code runs are:

```
80820000 0 20000000 0
```

This produces the same results with the MVME360x as with the MVME260x, and the difference seen earlier is related to the values of the LSI0 slave at the time the PCI reset occurred.

### **Example 3: Universe Chip is Checked at Tundra**

An engineer at Tundra Semiconductor Corporation had run a simulation on the LSI0\_CTL register, and could see that it was going to be enabled after a port 92 reset. Motorola engineers mentioned that the problem was primarily with the \_BS, \_BD, and \_TO registers. He said he would run more simulations to look at the outcome on those registers. Motorola engineers explained what they had seen.

The engineer at Tundra re-ran the simulation based on the information given him. He saw exactly what the Motorola engineers had seen, i.e., that the LSI0\_BS, LSI0\_BD, and LSI0\_TO values changed, as well as the LSI0\_CTL fields for program, super, and vct. He checked to see whether this was in fact what the Universe is supposed to do.

The following are his results:

| Register | Before RST# | After RST# |
|----------|-------------|------------|
|          |             |            |
| LSI0_CTL | 8082_5FFF   | 8082_0001  |
| LSI0_BS  | FFFF_FFFF   | F000_0000  |
| LSI0_BD  | FFFF_FFFF   | F000_0000  |
| LSIO_TO  | FFFF_FFFF   | 0000_0000  |

### Explanation:

All the fields in the LSI0 registers which are "Power-up Options" cannot be reset by assertion of RST# (PCI reset).

The following fields in the LSIO registers cannot be reset by a PCI reset:

LSI0\_CTL register: EN, VAS, LAS LSI0\_BS register: Bits [31:28] LSI0\_BD register: Bits [31:28]

All the other fields in the LSI0 registers are reset to 0, which explains why the PGM and SUPER fields changed, the translation offset reset to 0, etc.

# Introduction

This chapter discusses details of several programming functions that are not tied to any specific ASIC chip.

# **PCI** Arbitration

PCI arbitration is performed by the PCI-to-ISA Bridge (PIB) which supports six PCI external PCI masters. The PIB can also be a PCI master for ISA DMA functions. The arbitration assignments on the MVME2300 series are as follows:

Table 5-1. PCI Arbitration Assignments

| Pci Bus Request | PCI Master(s)          |  |  |
|-----------------|------------------------|--|--|
| PIB (internal)  | PIB                    |  |  |
| CPU             | Raven ASIC             |  |  |
| Request 0       | PMC Slot 2             |  |  |
| Request 1       | PMC Slot 1             |  |  |
| Request 2       | PCIX Slot              |  |  |
| Request 3       | Ethernet               |  |  |
| Request 4       | Universe ASIC (VMEbus) |  |  |

Upon power-up, the PIB defaults to a "round-robin" arbitration mode. The relative priority of each request/grant pair can be customized via PCI Priority Control Register 1. Refer to the W83C553 Data Book for additional details, in Appendix A, *Related Documentation*.

5-1

# **Interrupt Handling**

The interrupt architecture of the MVME2300 series VME processor module is illustrated in the following figure:

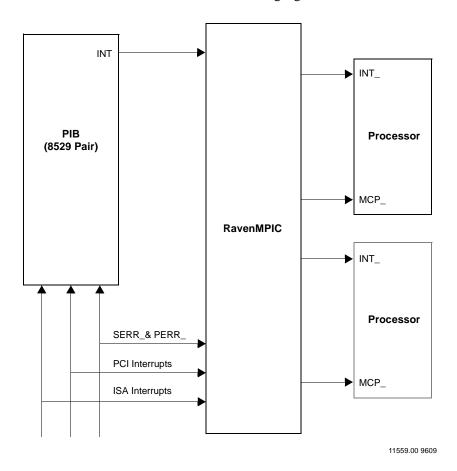



Figure 5-1. MVME2300 Series Interrupt Architecture

### **RavenMPIC**

The Raven ASIC has a built-in interrupt controller that meets the Multi-Processor Interrupt Controller (MPIC) specification. This MPIC supports up to two processors and 16 external interrupt sources. There are also six other interrupt sources inside the MPIC: Two cross-processor interrupts and four timer interrupts.

All ISA interrupts go through the 8259 pair in the PIB. The output of the PIB then goes through the MPIC in the Raven. Refer to Chapter 2, *Raven PCI Bridge ASIC* for details on the RavenMPIC. The following table shows the interrupt assignments for the RavenMPIC on MVME2300 series boards:

Table 5-2. RavenMPIC Interrupt Assignments

| MPIC<br>IRQ | Edge/<br>Level | Polarity | Interrupt Source                       | Notes |
|-------------|----------------|----------|----------------------------------------|-------|
| IRQ0        | Level          | High     | PIB (8259)                             | 1     |
| IRQ1        | Edge           | Low      | Falcon-ECC Error                       | 2     |
| IRQ2        | Level          | Low      | PCI-Ethernet                           | 4     |
| IRQ3        | N/A            | N/A      | Not used                               |       |
| IRQ4        | N/A            | N/A      | Not used                               |       |
| IRQ5        | Level          | Low      | PCI-VME INT 0 (Universe LINT0#)        | 3, 4  |
| IRQ6        | Level          | Low      | PCI-VME INT 1 (Universe LINT1#)        | 3     |
| IRQ7        | Level          | Low      | PCI-VME INT 2 (Universe LINT2#)        | 3     |
| IRQ8        | Level          | Low      | PCI-VME INT 3 (Universe LINT3#)        | 3     |
| IRQ9        | Level          | Low      | PCI-PMC1 INTA#, PMC2 INTD#, PCIX INTA# | 4     |
| IRQ10       | Level          | Low      | PCI-PMC1 INTB#, PMC2 INTA#, PCIX INTB# |       |
| IRQ11       | Level          | Low      | PCI-PMC1 INTC#, PMC2 INTB#, PCIX INTC# |       |
| IRQ12       | Level          | Low      | PCI-PMC1 INTD#, PMC2 INTC#, PCIX INTD# |       |
| IRQ13       | Level          | Low      | LM/SIG Interrupt 0                     | 4     |

MPIC Edge/ **Polarity** Notes **Interrupt Source IRQ** Level IRQ14 Level Low LM/SIG Interrupt 1 4 IRQ15 N/A N/A Not used

Table 5-2. RavenMPIC Interrupt Assignments (Continued)

#### **Notes**

- 1. Interrupt from the PCI/ISA Bridge.
- 2. Interrupt from the Falcon chip set for a single and/or double bit memory error.
- 3. The mapping of interrupt sources from the VMEbus and Universe internal interrupt sources is programmable via the Local Interrupt Map 0 Register and the Local Interrupt Map 1 Register in the Universe ASIC.
- 4. These interrupts also appear at the PIB for backward compatibility with older MVME1600 and PM603/4 modules.

# 8259 Interrupts

There are 15 interrupt requests supported by the PIB. These 15 interrupts are ISA-type interrupts that are functionally equivalent to two 82C59 interrupt controllers. Except for IRQ0, IRQ1, IRQ2, IRQ8\_, and IRQ13, each of the interrupt lines can be configured for either edge-sensitive mode or level-sensitive mode by programming the appropriate ELCR registers in the PIB.

There is also support for four PCI interrupts, PIRQ3\_-PIRQ0\_. The PIB has four PIRQ Route Control registers to allow each of the PCI interrupt lines to be routed to any of eleven ISA interrupt lines (IRQ0, IRQ1, IRQ2, IRQ8\_, and IRQ13 are reserved for ISA system interrupts). Since PCI interrupts are defined as level-sensitive, software must program the selected IRQ(s) for level-sensitive mode. Note that more than one PCI

interrupt can be routed to the same ISA IRQ line. The PIB can be programmed to handle the PCI interrupts if the RavenMPIC is either not present or not used.

The following figure shows the interrupt structure of the PIB.

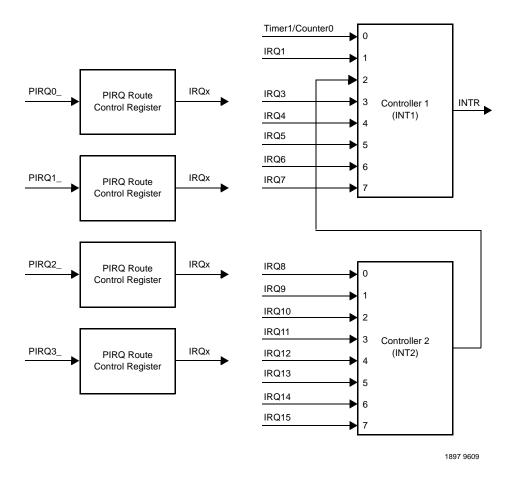



Figure 5-2. PIB Interrupt Handler Block Diagram

The assignments of the PCI and ISA interrupts supported by the PIB are as follows:

Table 5-3. PIB PCI/ISA Interrupt Assignments

| PRI  | ISA<br>IRQ | PCI<br>IRQ | Controller | Edge/<br>Level | Polarity | Interrupt Source            | Notes |
|------|------------|------------|------------|----------------|----------|-----------------------------|-------|
| 1    | IRQ0       |            | INT1       | Edge           | High     | Timer 1 / Counter 0         | 1     |
| 2    | IRQ1       |            |            | N/A            | N/A      | Not used                    |       |
| 3-10 | IRQ2       |            |            | Edge           | High     | Cascade Interrupt from INT2 |       |
| 3    | IRQ8_      |            | INT2       | Edge           | Low      | ABORT Switch Interrupt      |       |
| 4    | IRQ9       |            |            | N/A            | N/A      | Not used                    |       |
| 5    | IRQ10      | PIRQ0_     |            | Level          | Low      | PCI-Ethernet Interrupt      | 2,3,4 |
| 6    | IRQ11      | PIRQ1_     |            | Level          | Low      | Universe Interrupt (LINT0#) | 2,3,4 |
| 7    | IRQ12      |            |            | N/A            | N/A      | Not used                    |       |
| 8    | IRQ13      |            |            | N/A            | N/A      | Not used                    |       |
| 9    | IRQ14      | PIRQ2_     |            | N/A            | N/A      | Not used                    |       |
| 10   | IRQ15      | PIRQ3_     |            | Level          | Low      | PMC/PCIX Interrupt          | 2,3,4 |
| 11   | IRQ3       |            | INT1       | N/A            | N/A      | Not used                    |       |
| 12   | IRQ4       |            |            | Edge           | High     | COM1 (16550)                |       |
| 13   | IRQ5       |            |            | Level          | High     | LM/SIG Interrupt 0/1        | 4     |
| 14   | IRQ6       |            |            | N/A            | N/A      | Not used                    |       |
| 15   | IRQ7       |            |            | N/A            | N/A      | Not used                    |       |

#### **Notes**

- 1. Internally generated by the PIB.
- After a reset, all ISA IRQ interrupt lines default to edge-sensitive mode.
- 3. These PCI interrupts are routed to the ISA interrupts by programming the PRIQ Route Control registers in the PIB. The PCI-to-ISA interrupt assignments in this table are suggested. Each ISA IRQ to which a PCI interrupt is routed *must* be programmed for level-sensitive mode. Use this routing for PCI interrupts only when the RavenMPIC is either not present or not used.
- 4. The RavenMPIC, when present, should be used for these interrupts.

# ISA DMA Channels

The MVME2300 series boards do not implement any ISA DMA channels.

# **Exceptions**

### **Sources of Reset**

There are eight potential sources of reset on MVME2300 series boards. They are:

- 1. Power-On reset
- 2. **RESET** switch
- 3. Watchdog Timer reset via the MK48T59/559 Timekeeper device
- 4. Port 92 Register via the PIB
- 5. I/O Reset via the Clock Divisor register in the PIB
- 6. VMEbus SYSRESET\* signal
- 7. Local software reset via the Universe ASIC (MISC\_CTL register)
- 8. VME System Reset Via the Universe ASIC (MISC\_CTL register)

The following table shows which devices are affected by the various reset sources:

Table 5-4. Reset Sources and Devices Affected

| Devices Affected  Sources of Reset            | Processor (s) | Raven ASIC | Falcon Chip Set | PCI Devices | ISA Devices | VMEbus (System<br>Controller) |
|-----------------------------------------------|---------------|------------|-----------------|-------------|-------------|-------------------------------|
| Power-On                                      | ✓             | 1          | 1               | ✓           | 1           | ✓                             |
| Reset Switch                                  | ✓             | 1          | 1               | ✓           | 1           | ✓                             |
| Watchdog (MK48T59/559)                        | ✓             | 1          | 1               | ✓           | ✓           | 1                             |
| VME System Reset (SYSRESET* Signal)           | ✓             | 1          | 1               | ✓           | ✓           | 1                             |
| VME System Software Reset (MISC_CTL Register) | ✓             | 1          | ✓               | ✓           | 1           | 1                             |
| VME Local Software Reset (MISC_CTL Register)  | ✓             | 1          | 1               | 1           | 1           |                               |
| Hot Reset (Port 92 Register)                  | ✓             | 1          | 1               | ✓           | ✓           |                               |
| PCI/ISA Reset (Clock Divisor Register)        |               |            |                 | ✓           | 1           |                               |

### **Soft Reset**

Software can assert the SRESET\* pin of any processor by programming the Processor Init register of the RavenMPIC appropriately.

## **Universe Chip Problems after PCI Reset**

Under certain conditions, there may be problems with the Universe chip after a PCI reset. Refer to *Universe Chip Problems after PCI Reset* in Chapter 4 for details.

## **Error Notification and Handling**

The Raven ASIC and Falcon chip set can detect certain hardware errors and can be programmed to report these errors via the RavenMPIC interrupts or Machine Check Interrupt. Note that the TEA\* signal is not used at all by the MVME2300 series. The following table summarizes how hardware errors are handled by the MVME2300 series boards:

Table 5-5. Error Notification and Handling

| Cause            | Action                                                                                                                                                                                                                                     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single-bit ECC   | Store: Write corrected data to memory.  Load: Present corrected data to the MPC master.  Generate interrupt via RavenMPIC if so enabled.                                                                                                   |
| Double-bit ECC   | Store: Terminate the bus cycle normally without writing to DRAM.  Load: Present un-corrected data to the MPC master.  Generate interrupt via RavenMPIC if so enabled.  Generate Machine Check Interrupt to the processor(s) if so enabled. |
| MPC Bus Time Out | Store: Discard write data and terminate bus cycle normally.  Load: Present undefined data to the MPC master.  Generate interrupt via RavenMPIC if so enabled.  Generate Machine Check Interrupt to the processor(s) if so enabled.         |
| PCI Target Abort | Store: Discard write data and terminate bus cycle normally.  Load: Return all ones and terminate bus cycle normally.  Generate interrupt via RavenMPIC if so enabled.  Generate Machine Check Interrupt to the processor(s) if so enabled. |
| PCI Master Abort | Store: Discard write data and terminate bus cycle normally Load: Return all ones and terminate bus cycle normally Generate interrupt via RavenMPIC if so enabled Generate Machine Check Interrupt to the processor(s) if so enabled        |
| PERR# Detected   | Generate interrupt via RavenMPIC if so enabled<br>Generate Machine Check Interrupt to the processor(s) if so enabled                                                                                                                       |
| SERR# Detected   | Generate interrupt via RavenMPIC if so enabled<br>Generate Machine Check Interrupt to the processor(s) if so enabled                                                                                                                       |

## **Endian Issues**

The MVME2300 series supports both little-endian and big-endian software. Because the PowerPC processor is inherently big-endian, PCI is inherently little-endian, and the VMEbus is big-endian, there is potential for confusion. The figures below illustrate how the MVME2300 series boards handle the endian issue in big-endian and little-endian modes.

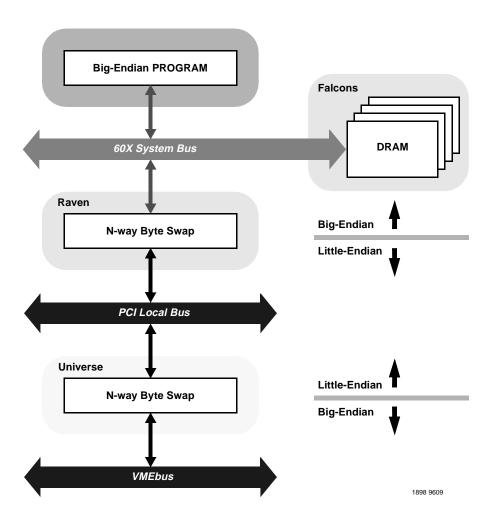



Figure 5-3. Big-Endian Mode

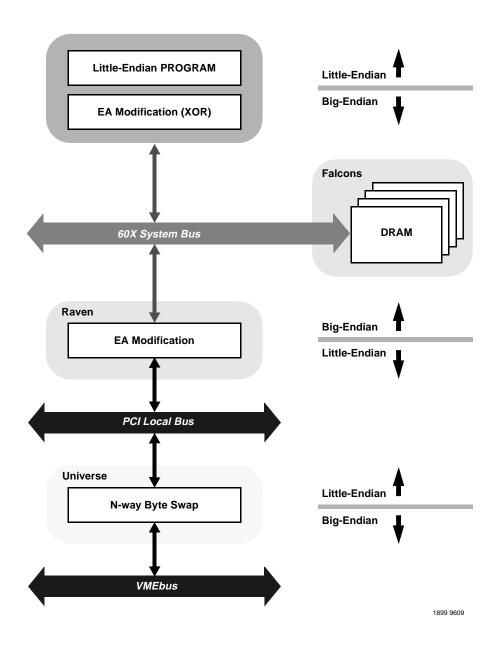



Figure 5-4. Little-Endian Mode

### **Processor/Memory Domain**

The MPC603 and MPC604 processors can operate in both big-endian and little-endian mode. However, they always treat the external processor/memory bus as big-endian by performing *address* rearrangement and reordering when running in little-endian mode.

The MPC registers inside the Raven, the registers inside the Falcon chip set, the DRAM, the ROM/Flash, and the system registers always appear as big-endian.

#### Role of the Raven ASIC

Since PCI is little-endian, the Raven PowerPC-to-PCI-Local-Bus bridge controller chip performs byte swapping in both directions (from PCI to memory and from the processor to PCI) to maintain address invariance when it is programmed to operate in big-endian mode with the processor and the memory subsystem.

In little-endian mode, it *reverse-rearranges* the address for PCI-bound accesses and *rearranges* the address for memory-bound accesses (from PCI). In this case, no byte swapping is done.

### **PCI Domain**

The PCI bus is inherently little-endian and all devices connected directly to PCI will operate in little-endian mode, regardless of the mode of operation in the processor's domain.

#### **PCI-SCSI**

The MVME2300 series boards do not implement SCSI.

#### **PCI/Ethernet**

Ethernet is byte-stream-oriented, with the byte having the lowest address in memory being the first one transferred regardless of endian mode. Since address invariance is maintained by the Raven in both little-endian and big-endian mode, there should be no endian issues for Ethernet data. Bigendian software, however, must still take the byte-swapping effect into account when accessing the registers of the PCI-Ethernet device.

#### **PCI-Graphics**

Big-endian software must take the effects of byte swapping on big-endian software into account.

Note

On MVME2300 series boards this is not presently a consideration, as no graphics are implemented on these boards.

#### Role of the Universe ASIC

Since PCI is little-endian and the VMEbus is big-endian, the Universe VMEbus interface chip performs byte swapping in both directions (from PCI to VMEbus and from VMEbus to PCI) to maintain address invariance, regardless of the mode of operation in the processor's domain.

#### **VMEbus Domain**

The VMEbus is inherently big-endian. All devices connected directly to the VMEbus are expected to operate in big-endian mode, regardless of the mode of operation in the processor's domain.

In big-endian mode on the MVME2300 series boards, byte swapping is performed by the Universe and then by the Raven. The result has the desirable effect of being transparent to the big-endian software.

In little-endian mode, however, software must take the byte-swapping effect of the Universe ASIC and the address reverse-rearranging effect of the Rayen into account.

## **ROM/Flash Initialization**

There are two methods of injecting code into the Flash in bank A:

- 1. In-circuit programming
- 2. Loading it from ROM/Flash bank B

For the second method, hardware must direct the Falcon chip set to map the FFF00000-FFFFFFF address range to Flash bank B following a hard reset. Bank A then can be programmed by code from bank B.

Software can determine the mapping of the FFF00000-FFFFFFF address range by examining the *rom\_b\_rv* bit in the Falcon's Rom B Base/Size register.

Table 5-6. ROM/Flash Bank Default

| rom_b_rv | Default Mapping for FFF00000-FFFFFFFF |
|----------|---------------------------------------|
| 0        | ROM/FLASH Bank A                      |
| 1        | ROM/FLASH Bank B                      |

# **Related Documentation**



## **Motorola Computer Group Documents**

The Motorola publications listed below are referenced in this manual. You can obtain paper or electronic copies of Motorola Computer Group publications by:

- □ Contacting your local Motorola sales office
- □ Visiting MCG's World Wide Web literature site, http://www.motorola.com/computer/literature

| Document Title                                                    | Publication<br>Number      |
|-------------------------------------------------------------------|----------------------------|
| MVME2300SC VME Processor Module Installation and Use              | V2300SCA/IH                |
| MVME2300-Series VME Processor Module Installation and Use         | V2300A/IH                  |
| MVME2300-Series VME Processor Module Programmer's Reference Guide | V2300A/PG                  |
| PPCBug Firmware Package User's Manual (Parts 1 and 2)             | PPCBUGA1/UM<br>PPCBUGA2/UM |
| PPCBug Diagnostics Manual                                         | PPCDIAA/UM                 |
| PMCspan PMC Adapter Carrier Module Installation and Use           | PMCSPANA/IH                |

To locate and view the most up-to-date product information in PDF or HTML format, visit http://www.motorola.com/computer/literature.

## Manufacturers' Documents

For additional information, refer to the following table for manufacturers' data sheets and user's manuals. For your convenience, a source for the listed document is also provided.

It is important to note that in many cases, the information shown is preliminary and the revision levels of the documents are subject to change without notice.

| Document Title and Source                                                                                                                                                                                                                                                                                 | Publication<br>Number        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| PowerPC 603e <sup>®</sup> RISC Microprocessor Technical Summary<br>PowerPC 604e <sup>®</sup> RISC Microprocessor Technical Summary                                                                                                                                                                        | MPC603E/D<br>MPC604E/D       |
| Literature Distribution Center for Motorola Telephone: 1-800- 441-2447 FAX: (602) 994-6430 or (303) 675-2150 WebSite: http://e-www.motorola.com/webapp/DesignCenter/ E-mail: ldcformotorola@hibbertco.com                                                                                                 |                              |
| PowerPC 603e® RISC Microprocessor User's Manual PowerPC 604e® RISC Microprocessor User's Manual Literature Distribution Center for Motorola Telephone: 1-800- 441-2447 FAX: (602) 994-6430 or (303) 675-2150 WebSite: http://e-www.motorola.com/webapp/DesignCenter/ E-mail: ldcformotorola@hibbertco.com | MPC603EUM/AD<br>MPC604EUM/AD |
| OR  IBM Microelectronics  PowerPC603e User Manual  PowerPC604e User Manual  Web Site:  http://www.chips.ibm.com/techlib/products/powerpc/manuals                                                                                                                                                          | G522-0297-00<br>G522-0330-00 |

| Document Title and Source                                                                                                                                                                                                                                                                          | Publication<br>Number    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| PowerPC® Microprocessor Family: The Programming Environments for 32-Bit Microprocessors  Literature Distribution Center for Motorola Telephone: 1-800- 441-2447 FAX: (602) 994-6430 or (303) 675-2150 WebSite: http://e-www.motorola.com/webapp/DesignCenter/ E-mail: ldcformotorola@hibbertco.com | MPCFPE/AD                |
| OR                                                                                                                                                                                                                                                                                                 |                          |
| IBM Microelectronics Programming Environment Manual Web Site: http://www.chips.ibm.com/techlib/products/powerpc/manuals                                                                                                                                                                            | G522-0290-01             |
| PC16550 UART National Semiconductor Corporation http://www.national.com/                                                                                                                                                                                                                           | PC16550DV                |
| 21140 Fast Etherworks PCI 10-Flash-100 Ethernet Adapter Owner's Manual Compaq Telephone: 1-800.at.compaq http://www3.compaq.com/support                                                                                                                                                            | EK-DE500-OM              |
| W83C553 Enhanced System I/O Controller with PCI Arbiter (PIB) Winbond Electronics Corporation; http://www.winbond.com.tw/product/                                                                                                                                                                  | W83C553F                 |
| M48T59 CMOS 8K x 8 TIMEKEEPER <sup>TM</sup> SRAM Data Sheet STMicroelectronics; http://eu.st.com/stonline/index.shtml                                                                                                                                                                              | M48T59                   |
| Universe User Manual Tundra Semiconductor Corporation http://www.tundra.com/page.cfm?tree_id=100008#Universe II (CA91C042)                                                                                                                                                                         | 8091042_MD300_<br>05.pdf |
| Universe User Manual Tundra Semiconductor Corporation http://www.tundra.com/page.cfm?tree_id=100008#Universe II (CA91C042)                                                                                                                                                                         | 8091042_MD300_<br>05.pdf |

## **Related Specifications**

For additional information, refer to the following table for related specifications. For your convenience, a source for the listed document is also provided. It is important to note that in many cases, the information is preliminary and the revision levels of the documents are subject to change without notice.

| Document Title and Source                                                                            | Publication<br>Number |
|------------------------------------------------------------------------------------------------------|-----------------------|
| VME64 Specification                                                                                  | ANSI/VITA 1-1994      |
| VITA (VMEbus International Trade Association) Web Site: http://www.vita.com/                         |                       |
| Versatile Backplane Bus: VMEbus                                                                      | ANSI/IEEE             |
| Institute of Electrical and Electronics Engineers, Inc. OR                                           | Standard 1014-1987    |
| Microprocessor system bus for 1 to 4 byte data                                                       |                       |
| Bureau Central de la Commission Electrotechnique Internationale 3, rue de Varembé                    |                       |
| Geneva, Switzerland                                                                                  | IEC 821 BUS           |
| Web Site: http://standards.ieee.org/catalog/                                                         |                       |
| IEEE - Common Mezzanine Card Specification (CMC)                                                     | P1386 Draft 2.0       |
| Institute of Electrical and Electronics Engineers, Inc. Web Site: http://standards.ieee.org/catalog/ |                       |
| IEEE - PCI Mezzanine Card Specification (PMC)                                                        | P1386.1 Draft 2.0     |
| Institute of Electrical and Electronics Engineers, Inc. Web Site: http://standards.ieee.org/catalog/ |                       |
| Bidirectional Parallel Port Interface Specification                                                  | IEEE Standard         |
| Institute of Electrical and Electronics Engineers, Inc. Web Site: http://standards.ieee.org/catalog/ | 1204                  |

| Document Title and Source                                                                                                                                                                                                                                                                                                                                                                                                                               | Publication<br>Number          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Peripheral Component Interconnect (PCI) Local Bus Specification, Revision 2.0 PCI Special Interest Group Web Site: http://www.pcisig.com/                                                                                                                                                                                                                                                                                                               | PCI Local Bus<br>Specification |
| PowerPC Reference Platform (PRP) Specification, Third Edition, Version 1.0, Volumes I and II International Business Machines Corporation Web Site: http://www.ibm.com                                                                                                                                                                                                                                                                                   | MPR-PPC-RPU-02                 |
| PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture (CHRP), Version 1.0  Literature Distribution Center for Motorola Telephone: 1-800- 441-2447 FAX: (602) 994-6430 or (303) 675-2150  Web Site: http://e-www.motorola.com/webapp/DesignCenter/ E-mail: ldcformotorola@hibbertco.com  OR  Morgan Kaufmann Publishers, Inc. Telephone: (415) 392-2665 Telephone: 1-800-745-7323 Web Site: http://www.mkp.com/books_catalog/ | ISBN<br>1-55860-394-8          |
| Interface Between Data Terminal Equipment and Data Circuit- Terminating Equipment Employing Serial Binary Data Interchange Electronic Industries Alliance Web Site: http://www.eia.org/ Web Site: http://global.ihs.com/index.cfm (for publications)                                                                                                                                                                                                    | TIA/EIA-232<br>Standard        |

## **Glossary**

**10Base-5** An Ethernet implementation in which the physical medium is a

doubly shielded, 50-ohm coaxial cable capable of carrying data at 10 Mbps for a length of 500 meters (also referred to as thicknet). Also

known as thick Ethernet.

**10Base-2** An Ethernet implementation in which the physical medium is a

single-shielded, 50-ohm RG58A/U coaxial cable capable of carrying data at 10 Mbps for a length of 185 meters (also referred to

as AUI or thinnet). Also known as thin Ethernet.

**10Base-T** An Ethernet implementation in which the physical medium is an

unshielded twisted pair (UTP) of wires capable of carrying data at 10 Mbps for a maximum distance of 185 meters. Also known as

twisted-pair Ethernet.

**100Base-TX** An Ethernet implementation in which the physical medium is an

unshielded twisted pair (UTP) of wires capable of carrying data at 100 Mbps for a maximum distance of 100 meters. Also known as

fast Ethernet.

Advanced Interactive eXecutive (IBM version of UNIX).

**architecture** The main overall design in which each individual hardware

component of the computer system is interrelated. The most common uses of this term are 8-bit, 16-bit, or 32-bit architectural

design systems.

American Standard Code for Information Interchange; a 7-bit code

used to encode alphanumeric information. In the IBM-compatible world, this is expanded to eight bits to encode a total of 256

alphanumeric and control characters.

ASIC Application-Specific Integrated Circuit.

AUI Attachment Unit Interface.

BBRAM Battery Backed-up Random Access Memory.

**bi-endian** Having big-endian and little-endian byte ordering capability.

**big-endian** A byte-ordering method in memory where the address n of a word

corresponds to the most significant byte. In an addressed memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0 being the

most significant byte.

BLock Transfer.

The pathway used to communicate between the CPU, memory, and

various input/output devices, including floppy and hard disk drives. Available in various widths (8-, 16-, and 32-bit), with accompanying

increases in speed.

**cache** A high-speed memory that resides logically between a central

processing unit (CPU) and the main memory. This temporary memory holds the data and/or instructions that the CPU is most likely to use over and over again and avoids accessing the slower

hard or floppy disk drive.

Column Address Strobe. The clock signal used in dynamic RAMs to

control the input of column addresses.

CISC Complex-Instruction-Set Computer. A computer whose processor

is designed to sequentially run variable-length instructions, many of which require several clock cycles, that perform complex tasks and

thereby simplify programming.

**CPU** Central Processing Unit. The master computer unit in a system.

Data Circuit-terminating Equipment.

**D**ual Inline Memory Module.

**DMA** Direct Memory Access. A method by which a device may read or

write to memory directly without processor intervention. DMA is

typically used by block I/O devices.

**DRAM** Dynamic Random Access Memory. A memory technology that is

characterized by extreme high density, low power, and low cost. It must be more or less continuously refreshed to avoid loss of data.

Data Terminal Equipment.

**ECC** Error Correction Code

**EEPROM** Electrically Erasable Programmable Read-Only Memory. A

memory storage device that can be written repeatedly with no special erasure fixture. EEPROMs do not lose their contents when

they are powered down.

Enhanced Integrated Drive Electronics. An improved version of

**IDE**, with faster data rates, 32-bit transactions, and DMA. Also

known as Fast ATA-2.

Extended Industry Standard Architecture (bus) (IBM). An

architectural system using a 32-bit bus that allows data to be transferred between peripherals in 32-bit chunks instead of 16-bit or 8-bit that most systems use. With the transfer of larger bits of information, the machine is able to perform much faster than the

standard ISA bus system.

**EPROM** Erasable Programmable Read-Only Memory. A memory storage

device that can be written once (per erasure cycle) and read many

times.

Electro-Static Discharge/Damage

**Ethernet** A local area network standard that uses radio frequency signals

carried by coaxial cables.

**Falcon** The DRAM controller chip developed by Motorola for the

MVME2600 and MVME3600 series of boards. It is intended to be used in sets of two to provide the necessary interface between the Power PC60*x* bus and the 144-bit ECC DRAM (system memory

array) and/or ROM/Flash.

fast Ethernet See 100Base-TX.

FDDI Fiber Distributed Data Interface. A network based on the use of

optical-fiber cable to transmit data in non-return-to-zero, invert-on-

1s (NRZI) format at speeds up to 100 Mbps.

**firmware** The program or specific software instructions that have been more

or less permanently burned into an electronic component, such as a ROM (read-only memory) or an EPROM (erasable programmable

read-only memory).

hardware A computing system is normally spoken of as having two major

components: hardware and software. Hardware is the term used to describe any of the physical embodiments of a computer system, with emphasis on the electronic circuits (the computer) and electromechanical devices (peripherals) that make up the system.

**IDE** Integrated **D**rive Electronics. A disk drive interface standard. Also

known as ATA (Advanced Technology Attachment).

Institute of Electrical and Electronics Engineers

**ISA (bus)** Industry Standard Architecture (bus). The de facto standard system

bus for IBM-compatible computers until the introduction of VESA and PCI. Used in the reference platform specification. (IBM)

and I CI. Osca in the reference platform spe

Integrated Services Digital Network. A standard for digitally

ISA Super Input/Output device

transmitting video, audio, and electronic data over public phone

networks.

LAN Local Area Network

LED Light-Emitting Diode

**ISASIO** 

**little-endian** A byte-ordering method in memory where the address n of a word

corresponds to the least significant byte. In an addressed memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3 being the

most significant byte.

MPC603, MPC604 Motorola's component designations for the PowerPC 603 and

PowerPC 604 microprocessors.

MPIC Multi-Processor Interrupt Controller

MPU MicroProcessing Unit

**nonvolatile memory** A memory in which the data content is maintained whether the

power supply is connected or not.

NVRAM Non-Volatile Random Access Memory

OEM Original Equipment Manufacturer

Operating System. The software that manages the computer

resources, accesses files, and dispatches programs.

parallel port A connector that can exchange data with an I/O device eight bits at

a time. This port is more commonly used for the connection of a

printer to a system.

PCI (local bus) Peripheral Component Interconnect (local bus) (Intel). A high-

performance, 32-bit internal interconnect bus used for data transfer to peripheral controller components, such as those for audio, video,

and graphics.

Personal Computer Memory Card International Association (bus).

A standard external interconnect bus which allows peripherals adhering to the standard to be plugged in and used without further

system modification.

PHB PCI Host Bridge

**physical address** A binary address that refers to the actual location of information

stored in secondary storage.

PIB PCI-to-ISA Bridge

PMC PCI Mezzanine Card

POWER Performance Optimized With Enhanced RISC architecture (IBM)

**PowerPC™** The trademark used to describe the **P**erformance **O**ptimized **W**ith

Enhanced RISC microprocessor architecture for Personal Computers developed by the IBM Corporation. PowerPC is

superscalar, which means it can handle more than one instruction per clock cycle. Instructions can be sent simultaneously to three types of independent execution units (branch units, fixed-point units, and floating-point units), where they can execute concurrently, but finish out of order. PowerPC is used by Motorola, Inc. under license from

IBM.

**RAM** Random-Access Memory. The temporary memory that a computer

uses to hold the instructions and data currently being worked with.

All data in RAM is lost when the computer is turned off.

**RAS** Row Address Strobe. A clock signal used in dynamic RAMs to

control the input of the row addresses.

Raven The PowerPC-to-PCI local bus bridge chip developed by Motorola

for the MVME2600 and MVME3600 series of boards. It provides the necessary interface between the PowerPC 60x bus and the PCI

bus, and acts as interrupt controller.

Reduced-Instruction-Set Computer (RISC)

A computer in which the processor's instruction set is limited to

constant-length instructions that can usually be executed in a single

clock cycle.

RFI Radio Frequency Interference

ROM Read-Only Memory

RTC Real-Time Clock

SBC Single Board Computer

SCSA Signal Computing System Architecture. A hardware model for

computer telephony servers. A key SCSA element is a TDM (time division multiplexed) telephony bus for voice and video signals, known as the SCbus<sup>TM</sup> in VME implementations of this architecture.

SCSI Small Computer Systems Interface. An industry-standard high-

speed interface primarily used for secondary storage. SCSI-1

provides up to 5 Mbps data transfer.

SCSI-2 (Fast/Wide) An improvement over plain SCSI; and includes command queuing.

Fast SCSI provides 10 Mbps data transfer on an 8-bit bus. Wide SCSI provides up to 40 Mbps data transfer on a 16- or 32-bit bus.

**serial port** A connector that can exchange data with an I/O device one bit at a

time. It may operate synchronously or asynchronously, and may

include start bits, stop bits, and/or parity.

SIM Serial Interface Module

SiMM Single Inline Memory Module. A small circuit board with RAM

chips (normally surface mounted) on it designed to fit into a standard

slot.

Super I/O controller

SMT Surface Mount Technology. A method of mounting devices (such as

integrated circuits, resistors, capacitors, and others) on a printed circuit board, characterized by not requiring mounting holes. Rather, the devices are soldered to pads on the printed circuit board. Surface-mount devices are typically smaller than the equivalent

through-hole devices.

**software** A computing system is normally spoken of as having two major

components: hardware and software. Software is the term used to describe any single program or group of programs, languages, operating procedures, and documentation of a computer system. Software is the real interface between the user and the computer.

SRAM Static Random Access Memory

**TDM** Time **D**ivision **M**ultiplexing. A multiplexing scheme in which

individual I/O ports or channels share slices of time on an aggregate channel, Receivers and transmitters are synchronized. The SCbus<sup>TM</sup> is a TDM implementation that provides up to 2048 time slots, the

equivalent of 1024 voice conversations at 64 Kbps.

thick Ethernet See 10base-5.

thin Ethernet See 10base-2. twisted-pair Ethernet See 10Base-T.

Universal Asynchronous Receiver/Transmitter

Universe ASIC developed by Tundra in consultation with Motorola which

provides the complete interface between the PCI bus and the

VMEbus.

VESA (bus) Video Electronics Standards Association (or VL bus). An internal

interconnect standard for transferring video information to a

computer display system.

virtual address A binary address issued by a CPU that indirectly refers to the

location of information in primary memory, such as main memory. When data is copied from disk to main memory, the physical address

is changed to the virtual address.

VL bus See VESA Local bus (VL bus).

**volatile memory** A memory in which the data content is lost when the power supply

is disconnected.

# Index

| Numerics                                     | big-endian byte ordering xxiii, 5-11           |
|----------------------------------------------|------------------------------------------------|
| 16550 UART registers 1-31                    | in Raven PCI Bridge ASIC 2-25                  |
| 8259 mode (Raven interrupt controller) 2-90, | binary number, symbol for xxii                 |
| 5-4                                          | bit ordering conventions (Falcon chip set) 3-5 |
| _                                            | block diagrams                                 |
| Α                                            | Falcon ECC Memory Controller chip set          |
| access timing                                | 3-2                                            |
| DRAM 3-7, 3-8, 3-9                           | MVME2300 series boards 1-5                     |
| ROM/Flash 3-10                               | PIB interrupt handler 5-5                      |
| address mapping                              | Raven interrupt controller function 2-65       |
| PowerPC to DRAM 3-56                         | Raven PCI Bridge ASIC 2-2                      |
| PowerPC to ROM/Flash 3-16, 3-17              | board connectors 1-6                           |
| address transfers (PowerPC bus) 3-11         | bus interface (PowerPC 60x bus) 3-11           |
| addresses, sizing of 3-56                    | byte ordering conventions 5-11                 |
| addressing PCI slave 2-15                    | MVME2300 series xxiii                          |
| Application-Specific Integrated Circuits     | PCI domain 5-13                                |
| (ASICs) 1-1                                  | PCI/Ethernet 5-13                              |
| Falcon ECC Memory Controller chip set        | PCI/graphics 5-14                              |
| 3-1                                          | processor/memory domain 5-13                   |
| Raven PCI Bridge 2-1                         | Universe ASIC 5-14                             |
| Universe VMEbus/PCI interface 4-1            | VMEbus domain 5-14                             |
| architecture                                 | byte, definition of xxiii                      |
| Falcon ECC Memory Controller chip set        | С                                              |
| Raven interrupt controller 2-60              | cache coherency (PowerPC 60x bus) 3-11,        |
| Universe ASIC 4-4                            | 3-12                                           |
| ARTRY_ signal (PowerPC 60x bus) 3-11         | changing I/O interrupt configurations (Raven   |
| assertion, definition of xxiii               | interrupt controller) 2-89                     |
| asterisk (*), meaning of xxiii               | CIO port pins (Z8536 emulation) 1-44           |
| dsterisk ( ), meaning or AAm                 | CLK Frequency register (Falcon chip set)       |
| В                                            | 3-35                                           |
| Base Module Feature register 1-35            | clock frequency (Falcon chip set) 3-35         |
| Base Module Status register (BMSR) 1-36      | CONFIG_ADDRESS register 2-56                   |
|                                              |                                                |

| CONFIG_DATA register 2-58 configuration registers (Raven PCI Bridge                                                                                                                                                                                                                                                                                                                                                                        | DRAM Tester Control registers (Falcon chip set) 3-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASIC) 2-11 connectors, MVME2300 series boards 1-6 control bit, definition of xxiii control registers, writing to (Falcon chip set) 3-53 control/status registers (Falcon chip set) 3-21 CPU Configuration register 1-34 CPU Control register 1-30 CSR accesses (Falcon chip set) 3-21 CSR base address (Falcon chip set) 3-21 current task priority level (Raven interrupt                                                                 | ECC codes (Falcon chip set) 3-57 ECC Control register (Falcon chip set) 3-36 ECC implementation 3-12 emulated Z8536 registers 1-43 endian conversion (Raven PCI Bridge ASIC) 2-25 endian data swaps 2-26 endian issues 5-11 End-of-Interrupt registers (Raven MPIC) 2-86, 2-90                                                                                                                                                                                                                                                                                |
| controller) 2-90                                                                                                                                                                                                                                                                                                                                                                                                                           | error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| cycle types (Falcon chip set) 3-12                                                                                                                                                                                                                                                                                                                                                                                                         | correction (Falcon chip set) 3-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| data paths, PowerPC/DRAM 3-60 data transfers (PowerPC 60x bus) 3-11 decimal number, symbol for xxii default memory maps PCI 1-13 processor 1-8 defaults (Falcon chip set) 3-20 Disable Error Correction control bit (Falcon chip set) 3-38 DMA controller (Universe ASIC) 4-7 documentation, related A-1 double word, definition of xxiii double-bit errors (Falcon chip set) 3-13 DRAM addressing 3-56 arbitration (Falcon chip set) 3-20 | correction codes (Falcon chip set) 3-57 detection (Falcon chip set) 3-12 handling (Raven PCI Bridge ASIC) 2-28 logging (Falcon chip set) 3-14 notification and handling 5-10 reporting (Falcon chip set) 3-13 Error Address register (Falcon chip set) 3-42 Error Logger register (Falcon chip set) 3-39 examples, Universe/PCI reset problem 4-16 external interrupt service (Raven MPIC) 2-87 register set (Falcon chip set) 3-21, 3-52 External Source Destination registers (Raven MPIC) 2-82 External Source Vector/Priority registers (Raven MPIC) 2-81 |
| arbitration (Falcon chip set) 3-20 connection diagrams 3-2, 3-3, 3-4 size control bits (Falcon chip set) 3-33 sizing 3-54 speed control bits (Falcon chip set) 3-32 speeds 3-6 DRAM Attributes register (Falcon chip set) 3-33 DRAM Base register (Falcon chip set) 3-35                                                                                                                                                                   | Falcon ECC Memory Controller chip set address pipelining 3-5, 3-6 control/status registers 3-21 external register set 3-21, 3-52 features 3-1 four-beat reads/writes 3-5 functional description 3-5 programming model 3-21                                                                                                                                                                                                                                                                                                                                    |

| reading internal CSRs 3-22                                          | I                                                    |
|---------------------------------------------------------------------|------------------------------------------------------|
| single-beat reads/writes 3-6                                        | I/O Base register 2-52                               |
| software considerations 3-53                                        | initializing ROM/Flash 5-15                          |
| writing to internal CSRs 3-23                                       | In-Service register (ISR) 2-67                       |
| Falcon-controlled system registers 1-24                             | Interprocessor Interrupt Dispatch registers          |
| false, definition of xxiii                                          | (Raven MPIC) 2-84                                    |
| fast refresh control bit (Falcon chip set) 3-32                     | interprocessor interrupts 2-89                       |
| Feature Reporting register (RavenMPIC)                              | Interrupt Acknowledge registers (Raven               |
| 2-73                                                                | MPIC) 2-86, 2-90                                     |
| features                                                            | interrupt delivery modes (Raven ASIC) 2-64           |
| Falcon ECC Memory Controller chip set 3-1                           | Interrupt Enable control bits (Falcon chip set) 3-38 |
| MVME2300 series boards 1-2                                          | interrupt handling, MVME2300 boards 5-2              |
| Raven PCI Bridge ASIC 2-1                                           | Interrupt Pending register (IPR) 2-66                |
| Universe ASIC 4-1, 4-2                                              | Interrupt Request register (IRR) 2-67                |
| Flash (see ROM/Flash interface) 3-14                                | interrupt router (Raven ASIC) 2-67                   |
| functional description                                              | interrupt selector (IS) 2-66                         |
| Falcon ECC Memory Controller chip set 3-5                           | Interrupt Task Priority registers (Raven-MPIC) 2-85  |
| Raven PCI Bridge ASIC 2-4                                           | interrupter and interrupt handler (Universe          |
| Universe ASIC 4-3                                                   | ASIC) 4-6                                            |
| G                                                                   | IPI Vector/Priority registers (Raven MPIC) 2-76      |
| General Control/Status and Feature registers 2-33                   | ISA local resource bus 1-31                          |
| General-Purpose registers 2-47                                      | J                                                    |
| general-purpose software-readable header                            | jumper headers                                       |
| (J10/J17) 1-32                                                      | J10/J17 (general-purpose software-read-              |
| generating PCI cycles (Raven PCI Bridge                             | able header) 1-32                                    |
| ASIC) 2-21                                                          |                                                      |
| Global Configuration register (RavenMPIC)                           | L                                                    |
| 2-74                                                                | Large Scale Integration (LSI) 1-1                    |
| П                                                                   | little-endian byte ordering xxiii, 5-12              |
| <b>H</b>                                                            | LM/SIG Control register 1-38                         |
| half-word, definition of xxiii                                      | LM/SIG Status register 1-39                          |
| headers                                                             | Location Monitor                                     |
| J10/J17 (general-purpose software-read-                             | Lower Base Address register 1-41                     |
| able header) 1-32                                                   | Upper Base Address register 1-41                     |
| hexadecimal character, symbol for xxii<br>hints for programming 5-1 | M                                                    |
| mins for programming 3-1                                            | manual terminology xxiii                             |
|                                                                     | manufacturers' documents A-2                         |
|                                                                     | manuracturers documents A-2                          |

| Memory Base register 2-53                                            | master function (Raven PCI Bridge                                             |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Memory Configuration register (MEMCR)                                | ASIC) 2-8                                                                     |
| 1-27                                                                 | Slave Address (0,1 and 2) registers 2-43                                      |
| memory maps                                                          | Slave Address (3) register 2-44                                               |
| byte reads to CSRs (Falcon chip set) 3-24                            | slave function (Raven PCI Bridge ASIC) 2-6                                    |
| byte writes to internal register set and test SRAM (Falcon chip set) | Slave Offset/Attribute (0,1 and 2) registers 2-45                             |
| 3-25                                                                 | Slave Offset/Attribute (3) registers 2-46                                     |
| default processor 1-8                                                | write posting (Raven PCI Bridge ASIC)                                         |
| four-byte reads to CSR (Falcon chip set)                             | 2-8                                                                           |
| 3-26                                                                 | MPC-to-PCI address decoding 2-5                                               |
| four-byte writes to internal register set                            | MPC-to-PCI address translation 2-6                                            |
| and test SRAM (Falcon chip                                           | MPIC registers (Raven ASIC) 2-69                                              |
| set) 3-26                                                            | MVME2300 series interrupt architecture 5-2                                    |
| PCI bus 1-13                                                         | A.I                                                                           |
| PCI PREP 1-16                                                        | N                                                                             |
| processor CHRP 1-9                                                   | negation, definition of xxiii                                                 |
| processor PREP 1-11                                                  | NVRAM/RTC 1-32                                                                |
| Raven PCI configuration registers 2-48                               | Р                                                                             |
| Raven PCI I/O registers 2-49                                         | P2 signal routing 1-7                                                         |
| VMEbus master 1-20                                                   | parity checking and Falcon chip set 3-53                                      |
| VMEbus slave 1-21                                                    | PCI                                                                           |
| MK48T59/559 access registers 1-33                                    | address mapping (Raven PCI Bridge                                             |
| module configuration and status registers 1-33                       | ASIC) 2-11                                                                    |
| MPC                                                                  | arbitration 5-1                                                               |
| address mapping 2-4                                                  | CHRP memory map 1-13 Command/ Status registers 2-50                           |
| arbiter (Raven PCI Bridge ASIC) 2-10                                 | configuration access 1-12                                                     |
| Arbiter Control register 2-36                                        | interface function (Raven PCI Bridge                                          |
| bus address space (Raven PCI Bridge ASIC) 2-12                       | ASIC) 2-10                                                                    |
| bus interface (Raven PCI Bridge ASIC) 2-4                            | interface function (Universe ASIC) 4-5<br>Interrupt Acknowledge register 2-43 |
| bus timer (Raven PCI Bridge ASIC) 2-10                               | master function (Raven PCI Bridge ASIC) 2-17                                  |
| bus transfer types (Raven PCI Bridge<br>ASIC) 2-9                    | memory maps 1-13 PREP memory map 1-16                                         |
| Error Address register 2-40                                          | registers (Raven ASIC) 2-47                                                   |
| Error Attribute register (MERAT) 2-41                                | reset problems with Universe ASIC 4-14                                        |
| Error Enable register 2-37                                           | Slave Address (0,1,2 and 3) registers                                         |
| Error Status register 2-39                                           | 2-54                                                                          |

| Slave Attribute/ Offset (0,1,2 and 3) reg-    | for PREP memory map 1-12                    |
|-----------------------------------------------|---------------------------------------------|
| isters 2-55                                   | Raven PCI                                   |
| slave command types 2-15                      | configuration register map 2-48             |
| slave function (Raven PCI Bridge ASIC)        | I/O register map 2-49                       |
| 2-14                                          | register values for CHRP memory map         |
| write posting 2-17                            | 1-15                                        |
| PCI/ISA interrupt assignments 5-6             | register values for PREP memory map         |
| PIB interrupt handler                         | 1-18                                        |
| block diagram 5-5                             | Raven PCI Bridge ASIC, description of 2-1   |
| PCI/ISA interrupt assignments 5-6             | Raven-Detected Errors                       |
| pound sign (#), meaning of xxiii              | Destination register (Raven MPIC) 2-84      |
| PowerPC to DRAM                               | Vector/Priority register (Raven MPIC)       |
| access timing 3-7, 3-8, 3-9                   | 2-83                                        |
| address mapping 3-56                          | RavenMPIC                                   |
| data mapping 3-61                             | control registers 2-13                      |
| PowerPC to ROM/Flash                          | interrupt controller 5-3                    |
| address mapping 3-16, 3-17                    | register map 2-69                           |
| Power-Up Reset status bit (Falcon chip set)   | Read/Write Checkbits control bit (Falcon    |
| 3-36                                          | chip set) 3-36                              |
| Power-Up Reset Status registers (Falcon chip  | read/write cycles to ROM/Flash (Falcon      |
| set) 3-51                                     | chipset) 3-47                               |
| Prescaler Adjust register 2-36                | readable jumpers 1-32                       |
| priority level, current task (Raven interrupt | Refresh Counter Test control bits (Falcon   |
| controller) 2-90                              | chip set) 3-43                              |
| processor CHRP memory map 1-9                 | Refresh/Scrub Address register (Falcon chip |
| Processor Init register (RavenMPIC) 2-75      | set) 3-44                                   |
| processor memory maps 1-7                     | refresh/scrub implementation (Falcon chip   |
| processor PREP memory map 1-11                | set) 3-18, 3-19                             |
| programming details 5-1                       | register descriptions, locations of 1-1     |
| programming model                             | register maps                               |
| Falcon chip set 3-21                          | Falcon chip set 3-27                        |
| MVME2300 series boards 1-7                    | Raven ASIC 2-30                             |
| programming notes 2-87                        | Universe ASIC 4-9                           |
| programming ROM/Flash 3-53                    | registers                                   |
| program-visible registers (Raven interrupt    | 16550 UART 1-31                             |
| controller) 2-66                              | Base Module Features 1-35                   |
| D                                             | Base Module Status 1-36                     |
| R                                             | CPU Configuration 1-34                      |
| Raven interrupt controller implementation     | CPU Control 1-30                            |
| 2-60<br>P. MPG 1 1 1                          | emulated Z8536 1-43                         |
| Raven MPC register values                     | Falcon-controlled 1-24                      |
| for CHRP memory map 1-10                      | LM/SIG Control 1-38                         |
|                                               |                                             |

| LM/SIG Status 1-39                    | CONFIG_ADDRESS 2-56                       |
|---------------------------------------|-------------------------------------------|
| Location Monitor Lower Base Address   | CONFIG_DATA 2-58                          |
| 1-41                                  | End-of-Interrupt registers (Raven         |
| Location Monitor Upper Base Address   | MPIC) 2-86                                |
| 1-41                                  | External Source Destination registers     |
| Memory Configuration (MEMCR) 1-27     | (Raven MPIC) 2-82                         |
| MK48T59/559 access 1-33               | External Source Vector/Priority registers |
| module configuration and status 1-33  | (Raven MPIC) 2-81                         |
| NVRAM/RTC and Watchdog Timer          | Feature Reporting register (Raven-        |
| 1-32                                  | MPIC) 2-73                                |
| Raven configuration 2-11              | General Control/Status and Features       |
| Raven MPC 1-10, 1-12                  | 2-33                                      |
| RavenMPIC control 2-13                | General-Purpose 2-47                      |
| Semaphore Register 1 1-42             | Global Configuration register (Raven-     |
| Semaphore Register 2 1-42             | MPIC) 2-74                                |
| System Configuration (SYSCR) 1-25     | I/O Base 2-52                             |
| System External Cache Control (SXC-   | In-Service register (ISR) 2-67            |
| CR) 1-29                              | Interprocessor Interrupt Dispatch regis-  |
| Universe Control and Status registers | ters (Raven MPIC) 2-84                    |
| (UCSR) 4-8                            | Interrupt Acknowledge registers (Raven    |
| VME Geographical Address (VGAR)       | MPIC) 2-86                                |
| 1-43                                  | Interrupt Pending register (IPR) 2-66     |
| W83C553 PIB 1-31                      | Interrupt Request register (IRR) 2-67     |
| registers and endian mode (Raven PCI  | interrupt selector (IS) 2-66              |
| Bridge ASIC) 2-27                     | Interrupt Task Priority registers (Raven- |
| registers, Falcon chip set            | MPIC) 2-85                                |
| CLK Frequency 3-35                    | IPI Vector/Priority registers (Raven      |
| CSR summary 3-27                      | MPIC) 2-76                                |
| DRAM Attributes 3-33                  | Memory Base 2-53                          |
| DRAM Base 3-35                        | MPC 2-30                                  |
| DRAM Tester Control 3-50              | MPC Arbiter Control 2-36                  |
| ECC Control 3-36                      | MPC Error Address 2-40                    |
| Error Address 3-42                    | MPC Error Attributes 2-41                 |
| Error Logger 3-39                     | MPC Error Enable 2-37                     |
| Power-Up Reset Status 3-51            | MPC Error Status 2-39                     |
| RAM/Flash Block A Base/Size 3-45      | MPC Slave Address (0,1 and 2) 2-43        |
| Refresh/Scrub 3-44                    | MPC Slave Address (3) 2-44                |
| Revision ID/General Control 3-31      | MPC Slave Offset/Attribute (0,1 and 2)    |
| ROM/Flash Block B Base/Size 3-48      | 2-45                                      |
| Scrub/Refresh 3-43                    | MPC Slave Offset/Attribute (3) 2-46       |
| Vendor/Device 3-30                    | PCI Command/ Status 2-50                  |
| registers, Raven ASIC                 | PCI Interrupt Acknowledge 2-43            |

| PCI Slave Address (0,1,2 and 3) 2-54         | interface (Falcon chip set) 3-14                 |
|----------------------------------------------|--------------------------------------------------|
| PCI Slave Attribute/ Offset (0,1,2 and 3)    | programming 3-53                                 |
| 2-55                                         | speed 3-10                                       |
| Prescaler Adjust 2-36                        | ROM/FLASH bank default mapping 5-15              |
| Processor Init register (RavenMPIC)          | ROM/Flash Block A                                |
| 2-75 Raven-Detected Errors Destination reg-  | Base Address control bits (Falcon chip set) 3-45 |
| ister (Raven MPIC) 2-84                      | Base/Size register (Falcon chip set) 3-45        |
| Raven-Detected Errors Vector/Priority        | size encoding (Falcon chip set) 3-46             |
| register (Raven MPIC) 2-83                   | Width control bit (Falcon chip set) 3-45         |
| Revision ID 2-33                             | ROM/Flash Block B                                |
| Revision ID/ Class Code 2-52                 | Base Address control bits (Falcon chip           |
| Spurious Vector register (Raven MPIC)        | set) 3-48                                        |
| 2-77                                         | Base/Size register (Falcon chipset) 3-48         |
| Timer Base Count registers (Raven            | size encoding (Falcon chip set) 3-49             |
| MPIC) 2-78                                   | Width control bit (Falcon chip set) 3-48         |
| Timer Current Count registers (Raven         | Width control of (1 arcon chip set) 5 10         |
| MPIC) 2-78                                   | S                                                |
| Timer Destination registers (Raven           | scrub counter (Falcon chip set) 3-43             |
| MPIC) 2-80                                   | Scrub Write Enable control bit (Falcon chip      |
| Timer Frequency register (Raven MPIC)        | set) 3-43                                        |
| 2-77                                         | Scrub/Refresh register (Falcon chip set) 3-43    |
| Timer Vector/Priority registers (Raven       | SCSA bus xix, 1-3, 1-6, 1-7                      |
| MPIC) 2-79                                   | Semaphore Register 1 1-42                        |
| Vendor ID/Device ID 2-32, 2-49               | Semaphore Register 2 1-42                        |
| Vendor Identification register (Raven-       | signal routing, P2 connector 1-7                 |
| MPIC) 2-75                                   | single word, definition of xxiii                 |
| registers, writing to (Falcon chip set) 3-53 | single-bit error counter (Falcon chip set) 3-41  |
| related documentation A-1                    | single-bit errors (Falcon chip set) 3-13         |
| related specifications A-4                   | ordered by syndrome code 3-59                    |
| reset sources on MVME2300 boards 5-8         | sizing addresses 3-56                            |
| devices affected 5-9                         | sizing DRAM 3-54                                 |
| reset state (Raven MPIC) 2-88                | soft resets 5-9                                  |
| revision ID (Falcon chip set) 3-31           | software considerations (Falcon chip set)        |
| Revision ID register (Raven ASIC) 2-33       | 3-53                                             |
| Revision ID/Class Code registers (Raven      | software-readable jumpers 1-32                   |
| ASIC) 2-52                                   | sources of reset 5-8                             |
| Revision ID/General Control register (Falcon | specifications, related A-4                      |
| chip set) 3-31                               | spread I/O addressing (Raven PCI Bridge          |
| ROM 5-15                                     | ASIC) 2-22                                       |
| ROM/Flash                                    | Spurious Vector register (Raven MPIC) 2-77       |
| initialization 5-15                          | SRAM base address (Falcon chip set) 3-21         |
|                                              |                                                  |

| status bit, definition of xxiii                   | upper/lower chip status bit (Falcon chip set)   |
|---------------------------------------------------|-------------------------------------------------|
| symbols, use of xxii                              | 3-32                                            |
| syndrome codes, ECC (Falcon chip set) 3-57        |                                                 |
| System Configuration register (SYSCR) 1-25        | V                                               |
| System External Cache Control register (SX-       | Vendor ID/Device ID registers 2-32, 2-49        |
| CCR) 1-29                                         | Vendor Identification register (RavenMPIC) 2-75 |
| T                                                 | Vendor/Device register (Falcon chip set)        |
| Timer registers (Raven MPIC)                      | 3-30                                            |
| Base Count registers 2-78                         | VME Geographical Address register               |
| Current Count registers 2-78                      | (VGAR) 1-43                                     |
| Destination registers 2-80                        | VME registers 1-37                              |
| Frequency register 2-77                           | VMEbus                                          |
| Vector/Priority registers 2-79                    | interface 4-4                                   |
| timing (DRAM access) 3-7, 3-8, 3-9                | interrupt handling (Universe ASIC) 4-7          |
| timing (ROM/Flash access) 3-10                    | mapping 1-20                                    |
| transaction ordering (Raven PCI Bridge            | master map 1-20                                 |
| ASIC) 2-29                                        | slave map 1-21, 1-24                            |
| triple- (or greater) bit errors (Falcon chip set) | Universe ASIC and 4-1                           |
| 3-13                                              |                                                 |
| true, use of xxiii                                | W                                               |
|                                                   | W83C553 PIB registers 1-31                      |
| U                                                 | Watchdog Timer registers 1-32                   |
| UCSR access mechanisms 4-9                        | word, definition of xxiii                       |
| underscore (_), meaning of xxiii                  | write posting (Raven PCI Bridge ASIC) 2-17      |
| Universe (VMEbus to PCI) interface chip 4-1       | writing to control registers (Falcon chip set)  |
| architectural diagram 4-4                         | 3-53                                            |
| as PCI master 4-6                                 | _                                               |
| as PCI slave 4-5                                  | Z                                               |
| as VMEbus master 4-5                              | Z8536 emulation (CIO port pins) 1-44            |
| as VMEbus slave 4-4                               |                                                 |
| byte ordering 5-14                                |                                                 |
| chip problems after PCI reset 4-14, 5-9           |                                                 |
| Control and Status registers (UCSR) 4-8           |                                                 |
| interrupter and interrupt handler 4-6             |                                                 |
| PCI Register values for CHRP memory               |                                                 |
| map 1-15                                          |                                                 |
| PCI register values for PREP memory               |                                                 |
| map 1-19                                          |                                                 |
| PCI register values for VMEbus slave              |                                                 |
| i di register varues for vivillous slave          |                                                 |
| map 1-23                                          |                                                 |
|                                                   |                                                 |