USER GUIDE

Trimble ${ }^{\oplus}$ TS635 Construction Total Station

Trimble

NORTH AMERICA	EUROPE	ASIA-PACIFIC
Trimble Construction Division	Trimble GmbH	Trimble Navigation
5475 Kellenburger Road	Am Prime Parc 11	Singapore Pty Limited
Dayton, Ohio 45424	65479 Raunheim	80 Marine Parade Road
USA	GERMANY	\#22-06, Parkway Parade
800-538-7800 (Toll Free)	$+49-6142-2100-0$ Phone	Singapore 449269
$+1-937-245-5154$ Phone	$+49-6142-2100-550$ Fax	SINGAPORE
$+1-937-233-9441$ Fax		$+65-6348-2212$ Phone
		$+65-6348-2232$ Fax

www.trimble.com

USER GUIDE

Trimble ${ }^{\circledR}$ TS635 Construction Total Station

Corporate Office

Construction Division
5475 Kellenburger Road
Dayton，Ohio 45424－1099
USA
800－538－7800（toll free in USA）
＋1－937－245－5600 Phone
＋1－937－233－9004 Fax
www．trimble．com

Legal Notices

Copyright and Trademarks

© 2006－2009，Nikon－Trimble Co．Limited．All rights reserved．
© 2007－2009，Trimble Navigation Limited．All rights reserved．
Trimble and the Globe \＆Triangle logo are trademarks of Trimble Navigation Limited registered in the United States and in other countries．Nikon is a registered trademark of the Nikon Corporation． All other trademarks are the property of their respective owners．

Release Notice

This is the February 2009 release（Revision A）of the Trimble TS635 Construction Total Station User Guide．It applies to version 1.00 of the TS635 construction total station．

Manufacturer

Nikon－Trimble Co．，Ltd．
Technoport Mituiseimei Bldg
16－2，Minamikamata 2－chome，Ota－ku
Tokyo 144－0035 Japan

Product Limited Warranty Information

For applicable product Limited Warranty information，please refer to the Limited Warranty Card included with this Trimble product，or consult your local Trimble authorized dealer．

Notices

Class B Statement－Notice to Users．This equipment has been tested and found to comply with the limits for a Class B digital device，pursuant to Part 15 of the FCC rules．These limits are designed to provide reasonable protection against harmful interference in a residential installation．This equipment generates，uses，and can radiate radio frequency energy and，if not installed and used in accordance with the instructions，may cause harmful interference to radio communication． However，there is no guarantee that interference will not occur in a particular installation．If this equipment does cause harmful interference to radio or television reception，which can be determined by turning the equipment off and on，the user is encouraged to try to correct the interference by one or more of the following measures：
－Reorient or relocate the receiving antenna．
－Increase the separation between the equipment and the receiver．
－Connect the equipment into an outlet on a circuit different from that to which the receiver is connected．
－Consult the dealer or an experienced radio／TV technician for help．
Changes and modifications not expressly approved by the manufacturer or registrant of this equipment can void your authority to operate this equipment under Federal Communications Commission rules．

WARNING－This equipment has been certified to comply with the limits for a Class B personal computer and peripherals，pursuant to Subpart B of Part 15 of FCC Rules．Only peripherals（computer input／output devices，terminals，printers，etc．）certified to comply with the Class B limits may be attached to this equipment．Operation with non－certified personal computer and／or peripherals is likely to result in interference to radio and TV reception．The connection of a non－ shielded equipment interface cable to this equipment will invalidate the FCC Certification of this device and may cause interference levels which exceed the limits established by the FCC for this equipment． You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment．

Canada

This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian Department of Communications．
Le présent appareil numérique német pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de Classe B prescrites dans le règlement sur le brouillage radioélectrique édicté par le Ministère des Communications du Canada．

Europe

This product has been tested and found to comply with the requirements for a Class B device pursuant to European Council Directive 2004／108／EC on EMC，thereby satisfying the requirements for CE Marking and sale within the European Economic Area（EEA）．These requirements are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential or commercial environment．

Representative in Europe

Trimble GmbH
Am Prime Parc 11
65479 Raunheim，Germany

Australia and New Zealand

This product conforms with the regulatory requirements of the Australian Communications Authority（ACA）EMC framework， thus satisfying the requirements for C－Tick Marking and sale within Australia and New Zealand．

Taiwan Battery Recycling Requirements

The product contains a removable Ni－MH battery． Taiwanese regulations require that waste batteries are recycled．

涝指抮㥁名澗

Notice to Our European Union Customers
For product recycling instructions and more information，please go to：www．trimble．com／environment／summary．html．

Recycling in Europe

To recycle Trimble WEEE，call：＋31 49753 2430，and ask for the
＂WEEE associate，＂or mail a request for recycling instructions to：
Trimble Europe BV
c／o Menlo Worldwide Logistics
Meerheide 45
5521 DZ Eersel，NL

For the Bluetooth unit

USA
FCC Part 15 Subpart／RSS－210，OET bulletin 65 supplement C satisfied
CAUTION：Any changes or modifications not expressly approved by the party responsible for compliance could void the user＇s authority to operate the equipment．
NOTE：This equipment has been tested and found to comply with the limits for a Class B digital device，pursuant to part 15 of the FCC Rules．These limits are designed to provide reasonable protection against harmful interference in a residential installation．This equipment generates，uses and can radiate radio frequency energy and，if not installed and used in accordance with the instructions，may cause harmful interference to radio communications．However，there is no guarantee that interference will not occur in a particular installation．If this equipment does cause harmful interference to radio or television reception，which can be determined by turning the equipment off and on，the user is encouraged to try to correct the interference by one or more of the following measures：
－Reorient or relocate the receiving antenna．
－Increase the separation between the equipment and receiver．
－Connect the equipment into an outlet on a circuit different from that to which the
receiver is connected．
－Consult the dealer or an experienced radio／TV technician for help．

Canada

RSS－210 Low Power Device
Operation is subject to the following two conditions：（1）This device may not cause interference，and（2）this device must accept any interference， including interference that may cause undesired operation of the device．
European Union countries，Iceland，Norway，Liechtenstein，Turkey， Switzerland
EN300 328v17．1，EN50360 satisfied
Hereby，Nikon－Trimble Co．，Ltd．，declares that this instrument is in compliance with the essential requirements and other relevant provisions of Directive 1999／5／EC．
Declaration of Conformity available at http：／／www．nikon－trimble．com／．

RF exposure compliance

1．To comply with FCC／IC RF exposure compliance requirements，a separation distance of at least 20 cm must be maintained between the antenna of this device and all persons．
2．This transmitter must not be co－located or operated in conjunction with any other antenna or transmitter．

Contents

Safety 7
Warnings and Cautions 7
Rechargeable Lithium-ion (Li-ion) batteries 7
Warnings 8
Cautions 9
Laser safety 10
Specifications for laser emission 10
Conforming standards 11
Labels 11
1 Introduction 13
System diagram 14
Care and maintenance. 15
Storage 15
Environmental conditions 15
Cleaning 16
Adjusting and tightening 16
Related information 17
2 Setting up the Instrument 19
Unpacking and repacking the instrument 20
Charging the battery pack 20
Applying power 22
Charging the battery 22
Conditioning / calibrating a battery 23
Detaching the battery pack 23
Attaching the battery pack 24
Setting up the tripod 25
Centering the instrument 26
Centering with the optical plummet 26
Centering with the laser plummet 26
Centering with a plumb bob 27
Leveling the instrument 28
Focusing the telescope. 29
Setting the measurement mode and preparing the target 30
Measurement with a prism. 30
Measurement in reflectorless (N-Prism) mode 31
Viewing and changing the measurement settings. 32
Target field 32
Prism constant 32
3 Getting Started. 33
Instrument keyboard and display 36
Instrument keyboard 36
Status bar. 37
LCD backlight, laser pointer, beep sound, and contrast adjustment 39
[DSP] button 40
[MODE] button 41
[HOT] key 42
Bubble indicator 42
Laser plummet 43
Turning on the instrument 44
Turning off the instrument 44
Sleep mode 44
Regional configuration. 45
List available jobs or data 46
Entering data. 46
Entering a point name or number 46
Entering a code 49
Entering values in feet and inches 51
Creating or opening a job 51
Creating a new job 52
Creating a control job 52
Measuring distances 53
Sighting a prism reflector. 53
Taking a distance measurement 53
Viewing and changing the measurement settings 54
4 Applications 55
HA reset and angle operations 56
Setting the horizontal angle to 0 56
Entering the horizontal angle 56
Station setup 56
Baseline 57
Known. 58
Base XYZ 60
Remote BM 60
BS Check 61
Layout menu 62
L-O to Point 62
L-O from Line 63
L-O from Arc. 64
XYZ 65
Programs menu 67
Remote distance measurement (RDM) - overview 68
RDM (Radial) 69
RDM (Cont) 69
REM 70
V-Plane 70
Cogo 71
Recording measurement data 83
Switching between display screens 83
5 Menu Screen 85
Job 86
Opening an existing job 86
Creating a new job 86
Deleting a job 88
Setting the control job 89
Displaying job information 89
Settings (basic job settings). 90
Angle 90
Distance 90
Coordinate 93
Communications 93
Unit 93
Power saving 94
Recording. 94
Other settings 94
Data 95
Viewing coordinate data 95
UP, MP, CC, SS, and SO records 96
Deleting coordinate records 96
Editing coordinate records 96
Searching coordinate records 97
Entering coordinates 98
Communication 99
Downloading coordinate data 99
Uploading coordinate data 99
1sec-Key 101
[MSR] button settings 101
[DSP] button settings 101
Calibration 102
Time 102
6 Checking and Adjusting 103
Adjusting the electronic level 104
Checking and adjusting the circular level 104
Checking and adjusting the optical/laser plummet. 104
Zero point errors of vertical scale and horizontal angle corrections 105
Checking the calibration 105
Adjusting the calibration 106
The instrument constant 107
Checking and adjusting the laser pointer 108
A Specifications. 109
Main body. 110
Telescope 110
Measurement range 110
Distance precision 111
Measurement intervals 111
Angle measurement 112
Tilt sensor 112
Tangent screws 112
Tribrach. 112
Level. 112
Optical plumment (Optional) 112
Laser plummet 113
Display and keypad 113
Connections in the base of instrument 113
Battery pack 113
Environmental performance. 114
Dimensions 114
Weight. 114
Environmental protection 114
Standard components 114
External device connector 115
B Transferring Coordinate Data 117
Transferring coordinate data to the total station 118
Settings 118
Record format 118
Data example 119
Transferring coordinate data from the total station 119
Settings 119
Data examples. 119
C Error Messages 121
Cogo 122
Communications 122
Data 123
Job manager 123
Layout 124
Programs 124
Recording data. 125
Searching 126
Settings 126
Station setup 127
System error 127

CHAPTER

4

Applications

In this chapter:

- HA reset and angle operations
- Station setup
- Layout menu

This chapter describes the menu and display screens, and TS635 Construction Total Station applications.

Use the following keystrokes when working in the display screens and when you use the applications:

- Programs menu
- Recording measurement data

■ Switching between display screens

To switch between display screens	Press ©SP. See also page 83.
To change HT	Press HOT
To record points	Press ENT

HA reset and angle operations

To access the Angle menu, press ANG in the Basic Measurement Screen (BMS). To select a command from the Angle menu, press the corresponding number key. Alternatively, press \triangle or $⿴ 囗$ to highlight the command and then press ENT.

Setting the horizontal angle to 0

Press 1 or select E -Set in the Angle menu. The display returns to the BMS.

Entering the horizontal angle

1. Press (2) or select Infut in the Angle menu. The HA Input screen appears.
2. Use the numeric keys to enter the horizontal angle.

3. Press ENT.

To enter $123^{\circ} 45^{\prime} 50^{\prime \prime}$, key in (12)(3)(4)550.
The displayed value is rounded to the minimum angle increment.

Station setup

To access the Stn Setup menu, press STN in the BMS.
To select a command from the Stn Setup menu, press the corresponding number key. Alternatively, press ^ or v to highlight the command and then press ENT.

The last function used is highlighted.

The station setup options are:

- Baseline, page 57
- Known, page 58
- Base XYZ, page 60
- Remote BM, page 60
- BS Check, page 61

Baseline

Select this option for a two-point resection along a known line.

1. Press (1) or select BaseLine from the Stn Setup menu.
2. Enter a known point as P1.

If you enter a new point name, a coordinate input screen appears.
Sight P1 and press MSR1 or MSR2 to take a measurement. Press ENT.
3. Choose how you want to define a known line:

- To define the line by entering P2 coordinates, press 1 or select $\mathrm{B}=$ Goord.
- To define the line by entering the azimuth, press (2) or select Es Mnele.
a. If you selectEy Anele, the azimuth input screen appears: Enter the angle value and press ENT.

A measurement screen appears.
b. Sight P2 and press MSR1 or MSR2 to take a measurement. Press ENT.

After the measurement to P2 is completed, press ENT. The coordinates of the station are calculated.
4. To record the station, press ENT or the REC softkey.
5. To check the measurement, press the DSP softkey. If you defined the line by entering its azimuth, the HD and VD between P1 and P2 are displayed.

If you defined the line by entering the P2

coordinates, the difference of $\mathrm{HD}(\mathrm{dHD})$ and VD
(dZ) between your measurement data and input coordinate data are displayed.
6. Enter the station name, the height of instrument (HI), and a feature code (CD) if required. The station name defaults to the last recorded $\mathrm{PT}+1$.
7. Backsight (BS) defaults to the first point (P1). To change the selected point, highlight the BS field
 and then select the Chenee softkey.
8. To finish the setup and record the station, press ENT in the BS field.

Known

Select this option to set up a station with known coordinates or azimuth.

1. Press (2) or selectKnown in the Stn Setup menu.
2. Enter a point name or number in the ST field.

- If the input point number or name is an existing point, its coordinates are displayed and the cursor moves to the HI (Height of
 instrument) field.
- If the point is new, a coordinate input screen appears. Enter the coordinates for the point. Press ENT after each field. When you press ENT in the CD field, the new point is stored.
- If the specified point has a code, the code appears in the CD field.

3. Enter the instrument height in the HI field and then press ENT.
4. In the Backsight screen that appears, select an input method for defining the backsight point:

- To sight the backsight by entering coordinates, see the following section.
- To sight the backsight by entering the azimuth and angle, see page 59.

Sighting the backsight by entering coordinates

1. To enter coordinates for the backsight point (BS), press 1 or select Coord from the Backsight screen.
2. Enter the point name. If the point exists in the job, its coordinates are shown.

3. If you intend to take a distance measurement to the BS, enter the height of target in the HT field.
4. Sight the BS, and then press ENT to complete the setup.

$$
\text { HA } \begin{aligned}
& \text { Azimuth calculated by } \\
& \text { coordinates }
\end{aligned}
$$

If measuring to a known coordinate BS, press DSP to display a QA screen. The QA screen shows the dHD and dVD values, which indicate the difference between the measured distance and the distance calculated from the known
 coordinates.
5. To record the station, press ENT.
6. To finish the station setup after taking a distance measurement, press ENT.

Sighting the backsight by entering the azimuth angle

1. To enter the azimuth angle to the backsight point, press (2) or select Ans le from the Backsight screen.
2. If there is no point name for the BS, press ENT on the BS field.

3. In the HA field, enter the azimuth angle to the BS point.

If you press ENT without entering a value in the HA field, the azimuth is automatically set to $0^{\circ} 00^{\prime} 00^{\prime \prime}$.
4. Sight the BS point and press ENT.

Base XYZ

Select this option to change the instrument XYZ values.
Base XYZ does not store an ST record in the job, so the BS Check cannot check the backsight if you enter a station using the Base XYZ option.

You can use this function without an open job.

1. Press (3) or selectBese xyz from the Stn Setup menu.
The current instrument XYZ values are shown as the default.
2. Enter the new instrument XYZ values and then
 press ENT.
3. Do one of the following:

- To reset the horizontal angle, enter a value in the HA field and then press ENT.
- If you do not need to reset the horizontal angle, leave the HA field blank and then press ENT.

The Stn Setup menu appears.

Remote BM

Select this option to determine the station elevation.

1. Press (4) or select Remote En from the Stn Setup menu.
2. Enter the BM point and press ENT. The point appears briefly. The cursor then moves to the HT field.

3. Enter the HT and then press ENT.
4. Sight the Bench Mark point and then press MSR1

The updated station coordinates are displayed. You can change the HI in this screen.
5. To record the updated STN, press ENT.

When the HI setting is changed, the Z coordinate is
 updated before the station is recorded.

You must complete a station setup before you use the Remote Benchmark function.

BS Check

Select these options to check and reset the backsight direction.
Note - Complete a station setup before using the BS check function.
This function always refers to the backsight point from the last station (ST) record stored in the current open job.

1. Press 5 or select ES Check in the Stn Setup menu.

2. Do one of the following:

- To reset the horizontal angle to the HA set in the last station setup, sight the BS and then select the Reset softkey or press ENT.
- To cancel the process and return to the BMS, select the Abr t softkey or press ESC.

Layout menu

To access the Layout menu, press L-0 in the BMS.
To select a command from the Layout menu, press the corresponding number key. Alternatively, press \star or \vee to highlight the command and then press ENT.

The last function used is highlighted.

There are four layout options:

- L-O to Point, page 62
- L-O from Line, page 63
- L-O from Arc, page 64
- XYZ, page 65

L-0 to Point

Use this method to lay out a point based on the down, out, and dZ location to a specified line.

1. Press 1 or select $L-0$ to Point from the Layout menu.
2. Enter the first point (P 1) along the line.

Alternatively, select the MER softkey to measure a point.

If you press ENT without entering a PT name, you can enter temporary coordinates. Temporary coordinates are not recorded in the job.
3. Enter the second point (P2) along the line.

4. Enter offsets to the line.

To enter the value 0.0000 , press ENT in a blank field.

Sta	Distance from P1 along the line	Input offsets	
O/S	Distance perpendicular to the line	Dwn: 40.350 m	1
(+)	Right side of the P1-P2 line		
(-)	Left side of the P1-P2 line	dZ: ${ }_{\text {m }}^{\text {man..................m }}$	-
dz	Difference in height from the line		

5. Rotate the instrument until the dHA is close to $0^{\circ} 00^{\prime} 00^{\prime \prime}$.
6. Sight the target, and then press MSR1 or MSR2.

When a distance measurement is taken, the difference between the measured point and the design point appears.
7. To record the point as an SO record, press ENT.

Note - Press DSP to switch between display screens. See also page 83.
The following figure shows the terminology used to guide you to the required point.

L-0 from Line

Select this option to measure distance and offset values along a specified line.

1. Press (2) or select L-D from Line from the Layout menu.
2. Enter the first point for the reference line.

Alternatively, select themse softkey to measure a point.

If you press ESC in the Record PT screen, the measured point is used but not recorded in the job.
3. Enter the second point for the reference line.
4. Enter an asterisk (for example, A*) in the PT field to perform a wildcard search. A list of matching points appears. Highlight a point in the list and then press ENT.

The following figure shows how to determine or input a location relative to a line used for Layout.

5. Sight the prism or reflective sheet and press MSR1 or MSR2.

Dwn Horizontal distance from P1 to the measured point along the P1-P2 line
Out Horizontal offset from the P1-P2 line to the measured point
dZ Vertical offset from the P1-P2 line to the measured point

Note - Press DSP to switch between display screens. See also page 83.

L-O from Arc

Select this option to measure distance and offset values on the arc-curve.

1. Press (3) or select $L-0$ from $\mathrm{Hr}=$ from the Layout menu.
2. Enter the start of the curve point (P1) and the azimuth of its tangent line (HA1).
Alternatively, to enter P1 by direct measurement,
 select the MER softkey.
3. Choose a method to define the curve.

P2 can be any point on the tangent line that is to exit the curve.
4. In the radius (Rad) field, enter a positive value for a clockwise curve. Enter a negative value for a counter-clockwise curve.

Once you entered all factors, the TS635 Construction Total Station calculates the curve. If the curve length (Len) is too large for a circle of the given radius, the curve is shortened.
Note - Press DSP to switch between display screens. See also page 83.

XYZ

Select this option to specify the layout point by coordinates.

1. Press (4) or select YyZ in the Layout menu.
2. Do one of the following:

- Enter the point name that you want to establish and then press ENT.
- Specify the point by code or radius from the TS635 Construction Total Station. If several points are found, they are displayed in a list. Press \triangle or \vee to move up and down the list. Use $_$to move up one page, or \triangle to move down one page.

3. Highlight a point in the list and then press ENT.

The delta angle and the distance to the target are shown.
4. Rotate the instrument until the dHA is close to $0^{\circ} 00^{\prime} 00^{\prime \prime}$. Press MSR1 or MSR2.

3.

dHA	Difference in horizontal angle to the target point
HD	Distance to the target point

5. Ask the rod person to adjust the target position. When the target is on the intended position, the displayed errors become $0.000 \mathrm{~m}(0.000 \mathrm{ft})$.

dHA	Difference in horizontal angle to the target point	$\begin{aligned} & \text { PT: AIBE- } \\ & \mathrm{dHA}^{+} \quad 0^{\circ} 00^{2} 26^{3} \end{aligned}$
R/L	Right/Left (Lateral error)	$\mathrm{R}+\quad 0.055 \mathrm{~m}$
IN/OUT	Rightleft (Lateral error)	IN $+\quad 8.928 \mathrm{~m}$
IN/OUT	In/Out (L	FILt 0.036 mb
CUT/FIL	Cut/Fill	* Press [ENT] to record

Once a measurement is taken, the Cut/Fill value and Z coordinate are updated as the VA is changed.
6. To record the point, press ENT. The PT field defaults to the specified PT +1000 .

Press MENU and then selectSettines Rec.
Use the Add Constant field to specify an integer. The integer is added to the point number that is being laid out to generate a new number for recording the layout point. The default value is 1000. For example, when you stake out PT3 with an Add Constant of 1000, the default value in the SO field (layout record) is 1003.

The display then returns to the observation screen. Press ESC. The display returns to the PT/CD/R input screen. If you entered the stakeout point using a single point name, the PT defaults to the last PT +1 .
7. If you selected a point from the list, the display returns to the list, unless all points have been selected. Press ESC to return to the point input screen.

Advanced feature: Specifying a layout list by inputting points by range

1. Select the Fr, To softkey when the PT field is selected.

2. Enter the start point (Fr) and the end point (To). The range between Fr and To must be less than 1001 points.

- If existing points are found between Fr and To, a point list appears.

To highlight a point in the list, press \star or \mathbb{v}. To go to the layout observation screen, press ENT.

- If you have assigned a control job, and additional points are found in the control job, the Ctr 1 softkey appears under the list.

Programs menu

To access the Programs menu, press \triangle ing the BMS.
To select a command from the Programs menu, press the corresponding number key. Alternatively, press \triangle or v to highlight the command and then press ENT.
The last function used is highlighted.

The Programs menu has the following options:

- RDM (Radial), page 69
- \quad RDM (Cont), page 69
- REM, page 70
- V-Plane, page 70
- Cogo, page 71

Remote distance measurement (RDM) - overview

RDM or "Remote distance measurement" measures the horizontal distance, vertical distance, and slope distance between two points.

Difference between RDM (Radial) and RDM (Cont) measurement methods

RDM (Radial) calculations are made with reference to the first point. RDM (Cont) calculations are made with reference to the two preceding points.

RDM (Radial)

Choose this option to measure between the current point and the first point measured.

1. Press 1 or selectRDHCEedial) in the Programs menu.
2. Sight the first point and press MSR1 or MSR2. The distance from the station point to the first point appears.

3. Sight the second point and press MSR1 or MSR2. The distances between the first and second point are displayed.

rSD	Slope distance between two points			$1 / 2$
rVD	Vertical distance between two points		$\begin{gathered} 31.99 \\ 0.40 \end{gathered}$	$\begin{aligned} & \text { min } \\ & \text { min } \\ & \text { min } \end{aligned}$
rHD	Horizontal distance between two points	$\begin{array}{r}\text { rHD: } \\ \substack{* S i g h \\ \text { Pres }} \\ \hline\end{array}$	$\begin{aligned} & 31.99 \\ & 8 \text { Press }[7 \\ & 0 \end{aligned}$	mid

4. To change display screens, press DSP.

rHA	Azimuth from first point to second point	
rV\%	Percentage of grade (rVD/rHD) \times 100\%	
rGD	Vertical grade (rHD/rVD): 1	* Sight PT \& Pross [MSR] Press [ESC] to return

5. Press ESC to exit.

RDM (Cont)

Choose this option to measure between the current point and the immediately preceding point.

1. Press (2) or selectRDICDont. : from the Programs menu.
2. Follow the procedure as for a radial RDM measurement. See also RDM (Radial), page 69.

REM

Choose this option to measure a remote elevation.
Note - A prism is required only at the sighting (target) point.

1. Press (3) or select REM in the Programs menu.
2. Enter the height of the target.
3. Sight the target point and press MSR1 or MSR2.
4. Loosen the vertical clamp and then turn the
 telescope to aim at an arbitrary point.
The difference in elevation (Vh) appears.
5. Press ESC to exit.

V-Plane

Choose this option to measure distance and offset values in the vertical plane, using the 2-Pt Reference Plane function.

a. To enter the first point by direct measurement, select the MSR softkey. A temporary observation screen appears.
b. Press MSR1 or MSR2. The Record PT screen appears.

c. Enter a value in the PT and CD fields, and then press ENT.
3. Enter the second point in the vertical plane. To do this, repeat Step 2.

Once the plane is defined, the calculated Dwn and dZ values are updated as you move the telescope. No distance measurement is required.

Dwn	Horizontal distance from P1 to the target point along the baseline	$\frac{\text { W-PLI }}{\text { HA: }} 67^{\circ} 94^{\prime} 966^{3 / 3}$
dZ	Vertical distance from P1 to the target point	HA: $67^{\circ} 24^{\prime} 96^{\prime \prime}$ VA: $87^{\circ} 52^{\prime \prime} 14^{\prime \prime}$
		* Press [ESC] to return

Note - Press DSP to switch between display screens. See also page 83.
4. Press ESC to exit this function.

Cogo

Choose the Cogo option to perform coordinate geometry (Cogo) calculations.
To open the Cogo menu, press 5 on the Programs menu.

There are five items in the Cogo menu:

- Inverse, page 72
- Input, page 74
- Area \& Perm, page 76
- Down+Out, page 77
- Intersection, page 78

Inverse

Choose this option from the Cogo menu to calculate angle and distance between two coordinates.

Press 1 or select Inverse in the Cogo menu. The Inverse menu appears.

PT-PT inverse

PT-PT calculates the distance and the angle between
 two input points.

To calculate a PT-PT inverse:

1. Press 1 or select $\mathrm{FT}-\mathrm{FT}$ in the Inverse menu.
2. Enter the first point number or name, and then press ENT.

If you press ENT without entering a point name, a coordinate input screen appears, and you can enter coordinates. These coordinates are not stored to the database. If you want to store the point, specify a new point name.
3. Type the second point number/name, and then press ENT. If necessary select the MSE softkey to shoot the point on the spot so that you can use it in the calculation.

The azimuth, horizontal distance, and vertical distance from the first point to the second point are displayed.
4. Do one of the following:

- To return to the PT input screen, press ESC.
- To return to the Cogo menu, press ENT.
- To change the contents of the result screen, press DSP.

Gd	Grade (HD/VD)
V\%	$100 / G d$
rSD	Slope distance PT1 to PT2

72 Trimble TS635 Construction Total Station User Guide

3Pt Angle

If you choose 3Pt Angle, the TS635 Construction Total Station calculates the angle between two lines defined by three points.
To calculate a 3 Pt angle:

1. Press (2) or select SPt Ansle from the Inverse menu.

P1 is the base point. Two lines are to be defined by P2 and P3, both from P1.
2. Enter the P1 point name. Alternatively, use the MEE softkey to take a measurement to the point.

3. Enter the second point (P2) to define the baseline, P1-P2. The angle (dHA) is measured from the baseline.

4. Enter the third point (P3) to define the second line, P1-P3.

When you press the MSR softkey, a temporary measuring screen appears. Sight the target and press MSR1 or MSR2 to take a measurement.
After the measurement, a recording point screen appears. To store the measured point, enter the PT, HT, and CD values and press ENT. To use the point without recording it, press ESC.

When you have entered three points, the instrument calculates the angle and distances.
5. Do one of the following:

- To return to the Inverse menu, press ENT.

- To return to the Input BasePt screen, press ESC.

Input

Choose this option from the Cogo menu to calculate and manually input coordinates.
To enter the Input menu, press [2 or select Infut from the Cogo menu. There are three functions in this menu for recording new coordinate points.

Azimuth+HD input

To calculate a coordinate by an angle and distance input from the base point (P1), press 11 or select $\mathrm{HH}+\mathrm{HD}$ from the Input menu.

Enter the base point, P1. Type the point name and press ENT.

Enter the azimuth, horizontal distance, and vertical distance. Then press ENT.

For example, to enter $123^{\circ} 45^{\prime} 45^{\prime \prime}$, type 123.4545 and then press ENT.

If you do not enter a value in the dVD field, the value 0.0000 is used.

A recording point screen with the calculated coordinates appears. The PT field defaults to the last recorded point +1 .

Press ENT to store the point.

Press 2 or select Traverse in the Input menu.

To enter P1 and P2, enter point names or take measurements to targets.

P1 (the base point) defaults to the previously recorded point value. P2 defaults to the previous P1 value.

Tip - To continuously calculate a new point, enter +Ang, HD, and dVD from the previous bearing line. This is a convenient way to enter Traverse points.

Entering coordinates

To manually enter the XYZ coordinates, press 3 or select Infut XYZ from the Input menu.
The PT name defaults to the last recorded PT +1 .

Enter the coordinates using the numeric keys. To move to the next field, press ENT or $⿴ 囗$ in a field.

To store the point as an MP record and return to the point input screen, press ENT in the Z field. The default PT is incremented to the next value.

You can record NE, NEZ, or Z-only data.

Area \& Perm

Choose this option from the Cogo menu to calculate area and perimeter.
Press 3 or select Area k Ferim in the Cogo menu.
To take a measurement, enter the first point and press ENT, or select the MSR softkey.

In the upper right corner of the screen, a counter indicates how many points you have entered.

To input point numbers consecutively, use the $\mathrm{Fr} / \mathrm{To}$ softkey. See also Advanced feature: Entering a range of points, page 76.

If you enter a new point name, you can enter new coordinates and record the point. If you do not want to record the point, press ENT without entering a value in the PT field. An XY coordinate input screen appears.

Continue to enter points until you have defined all the points in the lot. Then, press \vee to calculate the area and perimeter.

The first and last points that you enter are joined to close the area. You must enter the points in the order in which they define the lot. You can enter up to 99 points.

Press ENT to exit from the function, or press ESC to return to the previous screens one by one.

To start searching for matching points, press ENT in the To field. The counter shows the number of matching points found.

When the search is complete, you are returned to the Input PT screen.
Select the Cl le softkey to calculate the area and perimeter, or enter point names in the PT field.
Press ESC to return to the Input PT screen where the
 preceding point name appears.

Note - If you search for a point when a control job is specified, and the system cannot find the point in the current job, the control job is also searched. If the point is found in the control job, it is copied to the current job as a UP record. See also Setting the control job, page 89.

Down+Out

Choose this option from the Cogo menu to calculate coordinates from Down and Out.
Press (4) or selectDown \& Dut in the Cogo menu.

Enter the base point (P1).

Enter the horizontal distance along the baseline (Dwn), the horizontal distance perpendicular to the line (Out), and the vertical distance (dVD).

A negative value in the Dwn field means the opposite direction along the defined bearing line.

A negative value in the Out field is for the left-hand side of the bearing line.
To calculate the coordinates of the point (PM), press ENT in the dVD field. You can change the Z coordinate here.

To record the point, press ENT in the CD field.

The coordinates are stored as a CC record.

Intersection

Choose this option from the Cogo menu to calculate coordinates using intersection functions.

Press 5 or select Intersection in the Cogo menu. The Intersection menu appears. It has four functions for calculating coordinates.

Calculating a bearing-bearing intersection

A bearing-bearing intersection is the intersection point of two lines. To calculate a bearing-bearing intersection:

1. Press (1) or select Erne-Erne in the Intersection menu.
2. Enter the first point name and press ENT. Alternatively, to measure directly to the point, select the MSR softkey.
3. Define the first line by azimuth.
4. To define the line by two points, select the $\mathrm{Ft}=$ softkey. The Fr field defaults to the P1 point, but you can change the selected point. In the To field, enter or measure to the second point.
See also Advanced feature: Entering angle and
 distance offsets, page 82.
5. Do one of the following:

- To return to the previous screen, press ENT. The calculated value appears in the HA field.
- To go to the next screen, press ENT.

6. Define the second line by two points or by P2 and HA.
7. To calculate the coordinates of the intersection point, press ENT in the HA field.

The calculated coordinates are displayed. You can input a Z coordinate if necessary.

8. Enter a value in the PT field and in the CD field.
9. To record the point, press ENT.

Calculating a bearing-distance intersection

1. Press (2) or selectErne-Dist in the Intersection menu.

Brng-Dist calculates the intersection point formed by one line and one distance (radius).
2. Enter a point on the line.

The line can be defined by two points or by a point and an azimuth.

3. Enter the second point (P2) as the center of the circle.

4. Enter the distance from P2:

- To define the distance (HD) by two points, select the Pt : softkey.

- To calculate the coordinates of the intersection point, press ENT in the HD field.

ERNIG-DIST

5. If there are two results, the first solution appears graphically relative to the P1-P2 line. To display the second solution, press $<$ or \square.
6. To record the point, press ENT when the required solution appears.

7. Enter a Z coordinate if necessary.
8. To move to the PT and CD fields, press ENT.

Calculating a distance-distance intersection

1. Press 3 or select Dist-Dist in the Intersection menu.
2. Enter the first point name and press ENT, or select the MSE softkey to measure directly to the point.
3. Enter the distance from P1 and press ENT.
4. To define the distance (HD) by two points, select the Ft : softkey.

5. Enter P2 and the distance from P2 (HD).
6. To calculate the coordinates of the intersection point, press ENT in the HD field.
7. Press © or \triangle to display the second solution.
8. To record the point, press ENT when the required solution appears.

Calculating a point-line intersection

1. Press (4) or select Pt - Line in the Intersection menu.
2. Enter the first point name and press ENT, or select the MSE softkey to measure directly to the point.

3. Enter the azimuth, or select the $\mathrm{Pt} \leq$ softkey to enter another point name on the line.

4. Enter the perpendicular point to the line, or select the MSE softkey to take a measurement to

If P 1 and P 2 are 3 D points, the Z coordinate of the perpendicular point is calculated relative to the P1-P2 slope.
6. Enter PT and CD then press ENT to record the point.

Advanced feature: Entering angle and distance offsets

To display the offset input screen, select the 0 . 5 softkey.

In the Ang field, enter a positive value to rotate the line clockwise. Enter a negative value to rotate the line counter clockwise.

In the O / S field, enter a positive value to specify an offset to the right. Enter a negative value to specify an offset to the left.

Recording measurement data

To record points from any observation screen，press ENT．

PT defaults to the last recorded PT，+1 ．
You can enter the PT name from the point list or the point stack．See Entering a point from the point list， page 49，and Entering a point from the point stack， page 49.
To record the point，press ENT on the last field．

Record PT
na．ana

$$
- \text { REC } X Y Z-
$$

If HA or VA is moved after you take a measurement，but before you press ©NTT，the recalculated coordinates will be stored．

If the point name that you want to record already exists in the job，an error message appears．Depending on the type of existing record，you can overwrite the old record with the new data．See Recording data，page 125.

If you do not need to record data，press MENU and set Settines rec to OFF．

The default setting is OFF．

〈Rec〉
Rec Data：DFF CD field：OFF Add const：1．8日B

Switching between display screens

Press DSP to switch between display screens．See the DSP button，page 40．Each time you press DSP，the next screen appears．When you press DSP in the final screen，the first screen appears．

The following line display screens are available．

LINE1	LINE2	LINE3	LINE4
down	\％	HA	HF
OUT	Y	UA	U0
dz	2	sD	HD

LINE5

HD
UD
SD

The LINE5 screen is available only if the secondary distance unit is set. See also Other settings, page 94.

The following arc display screens are available.

The ARC5 screen is available only if the secondary distance unit is set. See also Other settings, page 94.

The following plane display screens are available.

Menu Screen

In this chapter:

- Job

■ Settings (basic job settings)

- Data
- Communication
- 1sec-Key

■ Calibration
■ Time

Job

Use the Job option to open, create, delete, and manage jobs.

To open the Job Manager, press 1 or select Tob from the MENU screen.

If jobs are stored on the TS635 construction total
 station, the job list appears. It shows all the stored jobs with the newest job at the top of the list. See Opening an existing job, page 86 .

If no jobs are stored, the Create Job screen appears. See Creating a new job, page 86.

Opening an existing job

The job list shows all the jobs stored on the instrument, in descending date order.

The following symbols provide extra information about jobs:

Symbol	Meaning
\star	Current job
$@$	Control job
$!$	Some of the job settings are different from the current job

Press \wedge to move up or v to move down the job list. Press ENT to open the highlighted job.

When you open a job, all job settings are automatically changed to match those used in the open job.

Creating a new job

1. Select the $\mathrm{Cr} e \mathrm{et}$ softkey in the job list.

2. Enter a job name of up to eight characters. Select ENT.
3. Do one of the following:

* MAXX 8 characters
- To check the job settings, select the Sett softkey.
- To create a new job using the current job settings, press ENT or select the OK softkey.

Job settings

Job settings are separate from other temporary settings.
Job settings are established when a job is created, and cannot be changed. This ensures that the data in a job is correctly stored in the database, and that all necessary corrections are applied when you store each record.

To move between fields, press $\begin{array}{r}\text { or } \\ \text { v. }\end{array}$. Alternatively, to move to the next field, press ENT).
To change the setting in the selected field, press $\boxed{\square}$ or \triangle.
To confirm the job settings and create the job, press ENT in the last field.

Screen 1

Scale Factor	0.999600 to 1.000400
T-P correction	ON / OFF
Sea Level	ON / OFF
C\&R correction	OFF / 0.132 / 0.200

Screen 2

Angle unit	DEG / GON /MIL
Distance unit	Metre / US-Ft / /-Ft
Temp unit	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
Press unit	$\mathrm{hPa} / \mathrm{mmHg} / \mathrm{inHg}$

Screen 3

If you select US-Ft or I-Ft, an additional settings screen appears. Use this screen to specify whether to display values in Decimal-Ft or Ft -Inch.

VA zero	Zenith / Horizon
Order	NEZ / ENZ

Deleting a job

Note - There is no undelete function in Job Manager. Before you press ENT or select DEL, make sure that the selected job is the one that you want to delete.

1. In the job list, highlight the job to delete.

Creat DEL	Ctr ${ }^{-1}$	

2. Select the DEL softkey. A confirmation screen appears.
3. Do one of the following:

- To delete the selected job, press ENT or select the DEL. softkey.

Delete JOB
Job name: YOKOHAMA

* Aree you sure?
- To cancel the deletion and return to the previous screen, press ESC or select the Gbrt softkey.

After you delete a job, the job list appears.

Delote JOB

Setting the control job

A control job has the same format as a standard job. You can open and modify it like any other job, and you can use it to record any measured data.

To set the control job:

1. Highlight the job that you want to use as the control job.
2. Select the Ctrl 1 softkey.

A confirmation screen appears.
3. Do one of the following:

- To set the selected job as the control job, press ENT or select the Yes softkey.

Control Job < O \mid 》

- To cancel the process, press ESC or select the No softkey.

If a control job is already assigned, the newly assigned control job replaces it as the control job.
To clear the selected control job, highlight the current control job in the job list and select the Ctrl softkey. Then press ENT or select the Yes

Control Job <OFF>
Job name: CONTROLS
* Stop using this Jot
as the Control Job?
Mo Yes

Displaying job information

To display job information, highlight the job name and then select the Info softkey.

The Information screen shows the number of records in the job, the free space, and the date when the job was created. Free space indicates how many points can be stored in the job.

To return to the job list, press any button.

Information
JOB name: NIKON 123
Records: 584
Free space: 11207
Created : 2802-66-21

Settings (basic job settings)

Use the Settings menu to configure the basic job settings.

Press 2 or selectSettines on the MENU screen.

Some job settings, as identified in the following sections, cannot be changed once a job is created. If you attempt to change any of these settings while a job is open, a confirmation screen appears, asking you to create a new job with the new settings, or to work with

1. Sob	E. Calibrate
a. Settings	r. Time
a. Data	
4. Comm.	
5. 1 Sec-Keys	

s. Be --Keys

Job Settings till be changed

* Close the current Jot? a
[Abrt.].............................[OK] the new settings without recording any data. See
Settings, page 126.

Angle

To change the angles, press (1) or select Anele in the Settings menu.

et	ting
Ancle	b. PwrSave
2. Distance	${ }^{7}$. Rec
3. Coord.	8. Others
4. Comm.	
5. Unit	

VA zero	Zenith $/$ Horizon
Resolution	$1 " / 5 " / 10 "$
	$0.2 / 1 / 2 \mathrm{mgon}$
	$0.005 / 0.02 / 0.05 \mathrm{mil}$

The VA zero job setting cannot be changed once a job is created.

Distance

These settings cannot be changed once a job is created.
To change the distance, press 2 or selectDistance in the Settings menu.

Scale	Numeric value between 0.999600 and 1.000400
T-P corr	ON / OFF
Sea Level	ON / OFF
C\&R corr	OFF / 0.132 / 0.200

Temperature and pressure corrections

$$
\mathrm{K}=275-\frac{106 \times \mathrm{P} \times\left(\frac{10000.0}{13.5951 \times 980.665}\right)}{273+\mathrm{T}}
$$

$$
\mathrm{SD}^{\prime}=\left(1+\frac{\mathrm{K}}{1000000}\right) \times \mathrm{SD}
$$

SD	Slope dist. (before adj.)
SD'	Slope dist. (after adj.)
K	Compensation coefficient
P	Pressure (hPa)
T	Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Sea-level corrections

$$
\mathrm{HD}^{\prime}=\frac{\mathrm{HD} \times \mathrm{R}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}+\mathrm{Z}_{\mathrm{STN}}}
$$

HD	Horizontal dist. (before adj.)
HD	Horizontal dist. (after adj.)
$Z_{\text {STN }}$	Instrument-Z
R_{e}	6370 km

Curvature and refraction corrections

Because the surface of the earth is curved, the vertical difference (VD and Z) at the measurement point, as referenced to the horizontal plane, inevitably includes some error. This error is called curvature error. Also, because the density of the air surrounding the earth decreases with altitude, light is refracted at different rates at different altitudes. The error caused by this change in refraction is called refraction error.

$$
\mathrm{HD}^{\prime}=\mathrm{HD}-\frac{\mathrm{SD}^{2} \sin (2 \mathrm{VA})}{2 \mathrm{R}_{\mathrm{e}}}\left(1-\frac{\mathrm{k}}{2}\right)
$$

$$
\mathrm{VD}^{\prime}=\mathrm{VD}+\frac{\mathrm{HD}^{2}}{2 \mathrm{R}_{\mathrm{e}}}(1-\mathrm{k})
$$

HD	Horizontal dist. (before adj.)
HD'	Horizontal dist. (after adj.)
VD	Vertical dist. (before adj.)
VD' $^{\prime}$	Vertical dist. (after adj.)
SD	Slope dist
VA	Vertical angle
R_{e}	6370 km
k	C\&R constant (0.132 or 0.200$)$

Coordinate

Press (3) or select Coord. in the Settings menu. The Coordinate menu appears.

Order	NEZ / ENZ
Label	$X Y Z / Y X Z / N E Z(E N Z)$

The Order and AZ job settings cannot be changed once a job is created.

Communications

Press (4) or select Comm: in the Settings menu. The Communication menu appears.

Ext.Comm	NIKON / SET
Port	Serial/Bluetooth
Baud (bps)	$1200 / 2400 / 4800 / 9600 / 19200 /$
	38400
Length	$7 / 8$
Parity	EVEN / ODD / NONE
Stop bit	$1 / 2$

Parity EVEN / ODD / NONE
Stop bit $1 / 2$

See also Appendix B, Transferring Coordinate Data.

Unit

Note - The Angle, Distance, Temp, and Press job settings cannot be changed once a job is created.

Press (5) or select Unit in the Settings menu. The Unit menu appears.

Angle	DEG (Degree)
	GON (GON)
	MIL (Mil6400)
Distance	Meter
	US-Ft
	I-F
Temp	${ }^{\circ} \mathrm{C}$ (Celsius)
	${ }^{\circ} \mathrm{F}$ (Fahrenheit)
Pressure	hPa
	mmHg
	inHg

If you select US-Ft or I-Ft, an additional settings screen appears. Use this screen to specify whether to display values in Decimal-Ft or Ft-Inch.

Power saving

To open the Power Save menu, press 4 or select Pur Seve in the Settings menu.

Main unit	OFF / $5 \mathrm{~min} / 10 \mathrm{~min} / 30 \mathrm{~min}$
Sleep	OFF / $1 \mathrm{~min} / 3 \mathrm{~min} / 5 \mathrm{~min}$

PRower Savo> \qquad Main Unit: 5 mirir Sloep: 1 min

Recording

Press 7 or selectRex in the Settings menu. The Rec Menu appears.

Rec Data	ON / OFF
CD field	ON / OFF
Add const	Integer between 1 and 999,999

- If you need to record coordinate data from your observations, set the Rec Data field to ON.
- If you would like to record a feature code when you record coordinate data, set the CD field to ON. The CD field appears in the Recording PT screen.
- This field sets the default point number for the observed coordinate data when you select Layout / XYZ.

Other settings

Press 8 or select Dther in the Settings menu. The Others menu appears.

XYZ disp	Fast / Normal / Slow / +ENT
2nd Unit	None / Meter / US-Ft / I-Ft
CD Input	$123 /$ ABC
Language	English / French / German / Italian / Dutch
Owner's Detail	Up to 20 characters

XYZ disp defines the speed to move to the next screen after showing XYZ of the input point．

When the secondary unit is set to a unit，an extra display screen is available in the BMS，layout observation screens，and $\mathrm{L}-\mathrm{O}$ from line screens．The extra screen shows the HD，VD，and SD in the secondary unit．

If you select US－Ft or I－Ft，an additional settings screen appears．Use this screen to specify whether to display values in Decimal－Ft or Ft－Inch．

The CD Input field sets the default input mode when a CD field appears．

In the Language field，use \square / \rightarrow to open the language screen and $⿴ 囗 十 \Delta$ to select the required language．Press EENT to confirm．In the Reboot confirmation screen， press ENT to restart the instrument．The instrument reboots and shows the start－up screen in the selected
 language．Then a regional setting screen appears，in which you can quickly configure the instrument to a pre－set combination of the default regional settings．See Regional configuration，page 45.

The Owner＇s Detail field allows you to enter your name or the name of your company．If you enter a value in this field，it appears when you start the TS635 construction total station．

Data

Use the Data menu to view or edit records．To access it， press 3 on the MENU screen．

Viewing coordinate data

Coordinate data appears in a list，with the newest record at the bottom of the screen．Use \triangle or $⿴ 囗 十$ to scroll through the records．Use \measuredangle or \triangle to move up or down one page．

Press ENT to see more detailed information about the selected record．

The header (XYZ, YXZ, NEZ, or ENZ) depends on the Coord. Label setting, which is accessed by pressing MENU and then selecting Settines $/$ Coord. See also Coordinate, page 93.

UP, MP, CC, SS, and SO records

All coordinate records contain PT, CD, X, Y, and Z fields.

- UP records are uploaded point coordinates.
- MP records are manually input point coordinates.
- $\quad \mathrm{CC}$ records are points calculated in Cogo.
- SS records are sideshot records stored in the BMS.
- SO records are stored in layout functions.

Deleting coordinate records

1. In the XYZ screen, use \uparrow or \vee to highlight the record that you want to delete. Then select the DEL softkey.
2. A confirmation screen appears.

a. To delete the selected record, press ENT or select the Yes softkey.
b. To cancel the deletion of data, press ESC or select the Ho softkey.

Alternatively, delete coordinate data by selecting the DEL softkey in the detailed display screen for the record.

Editing coordinate records

You can edit point, CD, and coordinate values in coordinate records. However, you cannot edit the coordinate record for the current station.

1. Do one of the following:

- In the XYZ screen, use \triangle or \vee to highlight the record to edit. Then select the Edit softkey.
- In the detailed data screen, select the Edit softkey.

2. Use \triangle or \boxtimes to highlight a field. Then modify the value in the selected field.
3. When you have finished editing, press ENT in the CD field.

A confirmation screen appears.
4. Do one of the following:

- To accept the changes and return to the data view screen, press ENT or select the Yes softkey.
- To go back to the edit screen, press ESC or select the No softkey.

Searching coordinate records

You can search for records by their type, point name, code, or by any combination of these values.

In the XYZ screen, select the Sr ©h softkey to access the XYZ data search function.

To search for a record by point name, enter the point name in the PT field and press ENT twice.

You can use the asterisk (*) as a wildcard. For example, when you enter 500* in the PT field, the search matches the points named 500, 500-1, $500-\mathrm{A}$, and 5000.

To search for a record by point type, move to the Type field and use \leqslant or \rightarrow to change the selected point type. The options are ALL, MP, UP, CC, and RE.

- If more than one point matches the search criteria, the matching points are displayed in a

Search XY 7
Type: Wip
PT:
CD: list.

Use ® or v to highlight the required point. Press ENT to select it.
Detailed data for the selected record appears. Select the DSF softkey to change the fields shown.

Press ESC to return to the list.

- If no point matches the specified criteria, an error screen appears. Press any button to return to the data screen.

Search XYZ

Entering coordinates

In the XYZ screen, select the Infut softkey. A new input point screen appears.

The PT field defaults to the last recorded PT + 1, but you can change the value shown.

Enter the PT and CD and then press ENT to enter coordinates.

Use the numeric keys to enter the coordinates. Press ENT or (v) in each field to move to the next field.

When you press [ENT in the CD field, the point is stored as an MP record.
After you have recording a point, the next point input screen is shown with the updated default PT.

You can record NE, NEZ, or Z-only data.

Communication

Use the Communication menu to download or upload data. To access it, press (4) or select Comm. on the MENU screen.

Downloading coordinate data

To change the download settings, press or select Down loed in the Communication menu.

To display the total number of records that will be downloaded, press ENT in the Data field.

As each record in the current job is output from the TS635 construction total station, the current line number is updated.
Once transferring is completed, you can choose whether to delete the current job:

- To delete the current job, press (4).
- To return to the Basic Measurement Screen (BMS) without deleting the current job, press ESC or select the Abr t softkey.

Uploading coordinate data

To upload coordinate data from a computer, press 20 or select UFload KYZ in the Communication menu.
The default data format appears.
To change the order of data fields, select the Edit
 softkey. See also Advanced feature: Editing the data order for upload, page 100.
Otherwise, press ENT.
Select the Job softkey to go to the Job Manager screen. See also Job, page 86.

To change the communication settings, select the Comm softkey. The serial port settings must match the settings used by the terminal software on the computer.

Use an RS-232C cable to connect the TS635 construction total station to the computer. In the terminal program, set flow control to Xon/Xoff.

The Free space field shows the number of points that can still be stored on the TS635 construction total

Connect Cable	
Job name: $\mathrm{NIK0N50}$	
Records:	532
Free space:	4689
Abrt.	Go

Press ENT to put the TS635 construction total station in receive mode. On the computer, choose the Send Text File command in the terminal program to start sending data.

As each point is received by the instrument, the value in the Records field is incremented.

If you press ESC during data upload, the upload is canceled and the display returns to the Communication menu. Records that were received before you pressed ESC are stored in the job.

During upload, the system will truncate any code that is longer than 16 characters.
If the existing point is a UP, CC, or MP record, and it is not referred to by any station or backsight, it is automatically overwritten by the uploaded point. No error message appears.

Advanced feature: Editing the data order for upload

1. Select the Edit softkey. The Data Fields screen appears.
2. To move between the fields, press \triangle or \triangle.

Data Fields						
PT W	E	7	CD			
* $[+] /[\rightarrow]$ to move cursor [值 $] /[$ [-1] to change items						
	${ }_{4}$		4			

3. To change the selected item in a field, use the $\mathbb{+}$ and softkeys. The options are PT, N, E, Z, CD, or blank.
4. To save your changes and return to the previous screen, select the Save softkey.

For example, if your original data is as follows:
1, 30.000, 20.000, L1
and you set the data fields to PT N E CD, then the uploaded data is:
PT=1, N=30.000, $\mathrm{E}=20.000, \mathrm{CD}=\mathrm{L} 1$
For more information about coordinate data, see Transferring coordinate data to the total station, page 118.

Uploading coordinates without points

You can upload data without points. If you do not include a point in the format definition, each line of data is automatically assigned the next available point number. To help you to select points in the field, make sure that you store an identifier in the CD field.

The data format cannot include duplicate items. Use PT, N, E, Z, and CD once each in the data format.

To skip an item in your original file, set the corresponding field to blank.

1sec-Key

Use the 1sec-Key menu to configure the settings for the one-second buttons, MSR1, MSR2, and DSP.

To access it, press 5 or select $1=\mathrm{ec}-\mathrm{Ke} \pm 5$ in the MENU screen.

button settings

There are two MSR buttons:

- To change the settings for the MSR1 button, press 1 or select MER1.
- To change the settings for the MSR2 button, press 2 or selectMSR2.

Each MSR button has four settings.
In the Const and Track field, use the numeric keys to enter values. In the other fields, use \triangle or \triangle to change the settings.

Tip - To quickly access the settings screen, hold down MSR1 or MSR2 for one second.

button settings

To change the display items in the BMS and in Layout observation screens, press 20 or select [DSP] in the 1 sec-Keys menu.

To move the cursor, use © , ®, ® or v. To change the display item, press either the softkey or the softkey. To save the changes, press ENT from the last line of <DSP3> or select the seve softkey.

HA	HA				
UA	VD				
SD	HD				
* Change itemb by					
[7 - $]$ Save					

Tip - To quickly access the DSP settings screen, hold down DSP for one second.

Calibration

Use the Calibration screen to calibrate the instrument if required. To access the Calibration screen, press 6 or select Cel ibret from the MENU screen.
See also Adjusting the calibration, page 106.

Time

Use the Date \& Time screen to set the current date and time.

1. Press 7 or select Time on the MENU screen. The Date \& Time screen appears.

The current date and time settings are displayed.

2. Enter the date in Year-Month-Day format. For example, to change the date to August 15, 2006 press 200 (6) ENT 8 ENT (1) 5 ENT).

If the highlighted part of the field (for example, the year) is already correct, press ENT to use the current value. For example, if the date is already set to August 20, 2006, and you want to change the date to August 25, 2006, press ENT ENT 25 ENT.
3. To move to the Time field, press ENT from the Date field:
4. Enter the time in 24 -hour format. For example, to set the time to 4:35 PM, press 1 (6) ENT (3) 5 ENT.

5. Do one of the following:

- To finish setting the date and time, press ENT in the Minutes field.
- To cancel the changes, press ESC.

CHAPTER

Checking and Adjusting

In this chapter:

- Adjusting the electronic level

■ Checking and adjusting the circular level

- Zero point errors of vertical scale and horizontal angle corrections
- The instrument constant
- Checking and adjusting the laser pointer

This chapter describes how to check the accuracy of the TS635 construction total station, and if necessary, adjust the required settings.

Adjusting the electronic level

To adjust the electronic level, Zero point errors of vertical scale and horizontal angle corrections are used. See page 105.

Checking and adjusting the circular level

Once you have checked and adjusted the electronic level, check the circular level.

If the bubble is not in the center of the level, use the adjusting pin to rotate the three adjustment screws of either circular level on the instrument main body or tribrach until the bubble is centered.

Checking and adjusting the optical/laser plummet

The optical axis of the plummet must be aligned with the vertical axis of the instrument.

To check and adjust the optical/laser plummet:

1. Place the instrument on the tripod. You do not have to level the instrument.
2. Place a thick sheet of paper marked with an X on the ground below the instrument.
3. Do the following:

- Look through the optical plummet and then adjust the leveling screws until the image of the X is in the center of the reticle mark.
- For the laser plummet, adjust the laser
 pointer to the X .

4. Rotate the alidade by 180°.

- If the marked image is in the same position in the center of the reticle mark, no adjustment is required.

For the laser plummet, if the laser pointer is on the X , no adjustment is required.

5. If the image or laser pointer is not in the same position, adjust the optical or laser plummet:
a. Use the supplied hexagonal wrench to turn the adjustment screws until the image of the X is in Position P. Position P is the center point of the line connecting the X and the center of the reticle mark.
b. Repeat from Step 2. For laser plummet
 adjustment, you must remove a cap.

Zero point errors of vertical scale and horizontal angle corrections

Checking the calibration

1. Set up the instrument on the tripod.
2. Follow the leveling procedures described in Leveling the instrument, page 28.
3. Flip the telescope to the Face-1 position. The display and tangent screws are facing towards you.
4. Sight a target that is within 45° of the horizontal plane.
5. Read the vertical angle from the VA1 field in the Basic Measurement Screen (BMS).
6. Rotate the instrument 180° and flip the telescope to the Face- 2 position. The display and tangent screws are turned away from you.
7. Read the vertical angle from the VA2 field.
8. Add the two vertical angles together, VA1 + VA2.

- No adjustment is required if the zero reference for vertical angles (VA zero setting) is set to Zenith, and VA1 + VA2 equals 360°.
- No adjustment is required if the zero reference for vertical angles (VA zero setting) is set to Horizon, and VA1 + VA2 is either 180° or 540°.
- An adjustment is required if VA1 + VA2 is not one of the values listed above.

Note - The difference between the vertical angle reading the relevant angle (either 360° for Zenith, or 180° or 540° for Horizon) is called the altitude constant.

Adjusting the calibration

1. Press MENU and 6. The calibration screen appears.
2. Take an F1 measurement to a target on the horizon. Press ENT.
The calibration fields for F1 are:

X1	Face-1 X-axis tilt value
Y1	Face-1 Y-axis tilt value
VA1	Face-1 vertical angle (tilt-off value)
HA1	Face-1 horizontal angle (tilt-off value)

The vertical angle is shown in the V0 dir= Horiz setting.
When you have taken the measurement, the message on the bottom line changes from DO NOT TOUCH! to Turn to F2.
3. Take an F2 measurement to the same target. Press ENT.

The TS635 construction total station has horizontal and vertical axis adjustment:

X2	Face-2 X-axis tilt value
Y2	Face-2 Y-axis tilt value
VA2	Face-2 vertical angle (tilt-off value)
HA2	Face-2 horizontal angle (tilt-off value)

When the observation on F2 is completed, four parameters are displayed.
4. Do one of the following:

- To return to the first observation screen,
 press ESC or select the Redo softkey.
- To set parameters on the instrument, press ENT or select the OK softkey.

5. If ACV, ACH, or Tilt is out of range, OVER appears. Press any key to return to the first observation screen.

The instrument constant

The instrument constant is a numerical value used to automatically correct for the displacement between the mechanical and electrical centers when measuring distances. The instrument constant is set at the factory. However, to ensure the highest operational accuracy, we recommend that you check the instrument constant several times a year.

The following figure shows the setup to check the instrument constant.

To check the instrument constant, either compare a correctly measured base line with the distance measured by the EDM, or carry out the following procedure.

1. Set up the instrument at Point P , in as flat an area as possible.
2. Set up a reflector prism at Point $\mathrm{Q}, 100 \mathrm{~m}$ away from Point P. Make sure that you take the prism constant into account.
3. Measure the distance between Point P and Point $Q(P Q)$.
4. Install a reflector prism on the tripod at Point P.
5. Set up another tripod at Point R , on the line between Point P and Point Q .
6. Transfer the TS635 construction total station to the tripod at Point R.
7. Measure the distance from Point R to Point $P(R P)$, and the distance from Point R to Point $Q(R Q)$.
8. Calculate the difference between the value of $P Q$ and the value of $R P+R Q$.
9. Move the TS635 construction total station to other points on the line between Point P and Point Q.
10. Repeat Step 5 through Step 9 several times.
11. Calculate the average of all the differences. The error range is within 3 mm . If the error is out of range, contact your dealer.

Checking and adjusting the laser pointer

The TS635 construction total station uses a red laser beam to measure and as a laser pointer. The laser pointer is coaxial with the line of sight of the telescope. If the instrument is well adjusted, the red laser pointer coincides with the line of sight. External influences such as shock or large temperature fluctuations can displace the red laser pointer relative to the line of sight.

Specifications

In this chapter:

- Measurement range
- Distance precision

■ Measurement intervals
This appendix details the specifications and standard components of the TS635 construction total station. It also describes the connector that is used to connect the instrument to an external power source or to communicate with an external device.

- Angle measurement
- Tilt sensor
- Tangent screws

■ Tribrach

- Level
- Display and keypad
- Connections in the base of instrument
- Battery pack

■ Environmental performance

- Dimensions
- Weight
- Standard components
- External device connector

Main body

Telescope

Tube length	$125 \mathrm{~mm}(4.91 \mathrm{inch})$
Magnification	$30 \times$
Effective diameter of objective	$45 \mathrm{~mm}(1.77 \mathrm{inch})$
	EDM $50 \mathrm{~mm}(1.97 \mathrm{inch})$
Image	Erect
Field of view	$1^{\circ} 20^{\prime}$
	2.3 m at $100 \mathrm{~m}(2.3 \mathrm{ft}$ at 100 ft$)$
Resolving power	$3.0^{\prime \prime}$
Focussing distance	1.5 m to infinity (59 inch to infinity)

Measurement range

Distances shorter than $1.5 \mathrm{~m}(4.92 \mathrm{ft})$ cannot be measured with this EDM.
Measurement range with no haze, visibility over 40 km (25 miles)
Prism mode

Reflector sheet (5 cm $\times 5 \mathrm{~cm})$				$300 \mathrm{~m}(984 \mathrm{ft})$
\quad Standard prism (1P)	$5,000 \mathrm{~m}(16,400 \mathrm{ft})$			
Reflectorless mode				
Reference target	$300 \mathrm{~m}(984 \mathrm{ft})$			

Notes -
The target should not receive direct sunlight.
"Reference target" refers to a white, highly reflective material (KGC 90\%). In reflectorless mode, the maximum measurement range is 500 m (1,640 feet).

Distance precision

Precise mode	
Prism mode	$\pm(3+2 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}$
	$-10^{\circ} \mathrm{C}$ through $+40^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ through $\left.+104{ }^{\circ} \mathrm{F}\right)$
	$\pm(3+3 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}$
	$\left(-20^{\circ} \mathrm{C}\right.$ through $\left.-10^{\circ} \mathrm{C}\right),\left(+40^{\circ} \mathrm{C}\right.$ through $\left.+50^{\circ} \mathrm{C}\right)$
	$\left(-4^{\circ} \mathrm{F}\right.$ through $\left.+14^{\circ} \mathrm{F}\right),\left(+104^{\circ} \mathrm{F}\right.$ through $\left.+122^{\circ} \mathrm{F}\right)$
	$\pm(3+2 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}$
Reflectorless mode	$-10^{\circ} \mathrm{C}$ through $+40^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ through $\left.+104^{\circ} \mathrm{F}\right)$
	$\pm(3+3 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}$
	$\left(-20^{\circ} \mathrm{C}\right.$ to $\left.-10^{\circ} \mathrm{C}\right),\left(+40^{\circ} \mathrm{C}\right.$ through $\left.+50^{\circ} \mathrm{C}\right)$
	$\left(-4{ }^{\circ} \mathrm{F}\right.$ through $\left.+14^{\circ} \mathrm{F}\right),\left(+104^{\circ} \mathrm{F}\right.$ through $\left.+122^{\circ} \mathrm{F}\right)$
Normal mode	
Prism mode	$\pm(10+5 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}$
Reflectorless mode	$\pm(10+5 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}$

Measurement intervals

Measurement intervals may vary with the measuring distance or weather conditions; At the initial measurement, it may take longer.

Precise mode	
\quad Prism mode	1.5 sec.
\quad Reflectorless mode	1.8 sec.
Normal mode	
\quad Prism mode	0.8 sec.
Reflectorless mode	1.0 sec.
Prism offset correction	$\left.\begin{array}{l}-999 \mathrm{~mm} \text { to }+999 \mathrm{~mm} \\ \\ \end{array} 1 \mathrm{~mm} \mathrm{step}\right)$

Angle measurement

Reading system	Absolute encoder
	Diameterial reading on HA
	Single reading on VA
360°	$1 " / 5 " 10 "$
400 G	$0.2 \mathrm{mgon} / 1 \mathrm{mgon} / 2 \mathrm{mgon}$
MIL6400	$0.005 \mathrm{mil} / 0.02 \mathrm{mil} / 0.05 \mathrm{mil}$
DIN18723 accuracy	$5^{\prime \prime} / 1.5 \mathrm{mgon}$

Tilt sensor

Method	Liquid-electric detection Compensation range

Tangent screws

Type	Friction clutch endless fine motion

Tribrach

Type	Detachable

Level

| Electronic level Displayed on the LCD
 Circular level vial Sensitivity $10^{\prime} / 2 \mathrm{~mm}$ |
| :--- | :--- |

Optical plumment (Optional)

Image	Erect
Magnification	3 x
Field of view	5°
Focussing range	$0.5 \mathrm{~m}(1.6 \mathrm{ft})$ to infinity

112 Trimble TS635 Construction Total Station User Guide

Laser plummet

Wave length	635 nm
Laser class	Class 2
Focussing range	∞
Laser diameter	Approximately 2 mm

Display and keypad

Display type	Graphical LCD
Resolution	128×64
Display illumination	Backlight
Keys	25

Connections in the base of instrument

Communications	
\quad Type	RS-232C
\quad Maximum baud rate	38400 bps asynchronous
External power supply input voltage	4.5 V through 5.2 V DC

Battery pack

Output voltage Continuous operation time Continuous distance/angle measurement	3.8 V DC rechargeable
Distance/angle measurement every 30 seconds	16 hours
Continuous angle measurement	30 hours

Note - Tested at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ (normal temperature). Operation times may vary depending on the condition and deterioration of the battery.

Environmental performance

Operating temperature range	$-20^{\circ} \mathrm{C}$ through $+50^{\circ} \mathrm{C}$
	$\left(-4{ }^{\circ} \mathrm{F}\right.$ through $\left.+122^{\circ} \mathrm{F}\right)$
Storage temperature range	$-25^{\circ} \mathrm{C}$ through $+60^{\circ} \mathrm{C}$
	$\left(-13^{\circ} \mathrm{F}\right.$ through $\left.+140^{\circ} \mathrm{F}\right)$

Dimensions

Main unit	$149 \mathrm{~mm} \mathrm{~W} \times 145 \mathrm{~mm} \mathrm{D} \times 306 \mathrm{~mm} \mathrm{H}$
	$(6.6 \mathrm{inch} W \times 6.8 \mathrm{inch} D \times 13.7 \mathrm{inch} \mathrm{H})$
Carry case	$435 \mathrm{~mm} \mathrm{~W} \times 206 \mathrm{~mm} \mathrm{D} \times 297 \mathrm{~mm} \mathrm{H}$
	$(18.5$ inch $W \times 13.8$ inch $D \times 9.1$ inch H)

Weight

Main unit (without battery)	Approximately $3.5 \mathrm{~kg}(7.7 \mathrm{lbs})$
Battery	Approximately $0.1 \mathrm{~kg}(0.22 \mathrm{lbs})$
Carry case	Approximately $2.4 \mathrm{~kg}(5.29 \mathrm{lbs})$
Charger and AC adapter	Approximately $0.4 \mathrm{~kg}(0.9 \mathrm{lbs})$

Environmental protection

Watertight/dust-proof protection IP66

Standard components

- Instrument main body
- Battery pack (x 2)
- Universal charger, power cord, and adaptors
- Adjustment pin, Allen wrench
- The TS635 Construction Total Station User Guide (this document)
- Carry case

External device connector

This connector can be used to connect to an external power source or to communicate with an external device.

Before using the external device connector, make sure that the external device meets the specifications below.

Input voltage	4.5 V DC to 5.2 V DC
System	RS-232C
Signal level	$\pm 9 \mathrm{~V}$ standard
Maximum baud rate	38400 bps asynchronous
Compatible male connector	Hirose HR10A-7P-6P or HR10-7P-6P

CAUTION - Except when connected as shown in the System diagram, page 14, use of the Hirose HR10A-7P-6P or HR10-7P-6P is at your own risk.

CAUTION - Use only the male connectors specified above. Using other connectors will damage the instrument.

The external device connector is a Hirose HR 10A-7R-6S female connector. The pinouts for connecting the instrument to an external device connector are shown below:

Pin	Signal	Description
1	RxD	Receive data (Input)
2	TxD	Send data (Output)
3	NC	No connection
4	V	Power
5	GND	Ground
6	NC	No connection

CAUTION - Only use the pin connections shown above. Using other connections will damage the instrument.

CAUTION - The TS635 total station has different pin assignments from other Construction total stations.

To connect to an external power source, supply power to Pin 4 (power terminal) and Pin 5 (ground terminal) on the instrument. The instrument will use the external power source even if the internal battery packs is attached.

CAUTION - Make sure that the power supplied is within the rated input range (4.5 V to $5.2 \mathrm{~V}, 1$ A maximum). Power supplied outside this range will damage the instrument.

To communicate with an external device, connect the RS-232C signal from the external device to Pin 1 (input terminal) and to Pin 2 (output terminal) on the instrument.

Cap the data output/external power input connector securely when the instrument is not in use. The instrument is not watertight if the cap is detached or not attached securely, or when the data output/external power input connector is in use.

The instrument can be damaged by static electricity from the human body discharged through the data output/external power input connector. Before handling the instrument, touch any other conductive material once to remove static electricity.

Transferring Coordinate Data

In this chapter:

- Transferring coordinate data to the total station
- Transferring coordinate data from the total station

The TS635 construction total station uses lists of coordinate data. This chapter describes how to transfer data between the total station and the office computer.

Transferring coordinate data to the total station

Settings

To configure the transmission speed and other settings, press MENU and then selectSettines < Comm. See also Communications, page 93.

Record format

You can transfer coordinate records to the TS635 construction total station in the following formats:

PT	,	X	,	Y	,	Z	,	CD

PT	X	X		Y		Z		$C D$

PT	,	X	,	Y	,	Z

| PT | X | X | Y | | Z |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| PT | , | X | , | Y | , | CD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| PT | X | X | Y | CD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PT	,	X	,	Y	,	,

PT	,	X	,	Y	,

PT	,	,	,	Z	,	CD

PT	,	,	,	Z

The formats use the following codes:

Code	Description	Length
PT	Point number	Up to 20 digits
X	Actual X coordinate	Variable length
Y	Actual Y coordinate	Variable length
Z	Actual Z coordinate	Variable length
CD	Feature code	Up to 16 characters

Data example

20100,6606.165,1639.383,30.762,RKBSS 20104,1165611.6800,116401.4200,00032.8080 201055967.6771102 .343 34.353 MANHOLE 201064567.8892340 .665 33.444 PT1 201075967.6771102 .34334 .353 20109,4657.778,2335.667,,PT2 20111,4657.778,2335.667 201134657.7782335 .667 20115,,,34.353,MANHOLE 20117,,,33.444

Transferring coordinate data from the total station

Settings

To configure the transmission speed and other settings, press MENU and then select Settines / Comm. See also Communications, page 93.

Data examples

Nikon coordinate data format

1,100.0000,200.0000,10.0000, 2,200.0000,300.0000,20.0000, 3,116.9239,216.9140,11.8425,TRAIN PLATFORM 4,126.6967,206.2596,11.2539,RAMP 11,100.0045,199.9958,10,0000, 13,116.9203,216.9113,11.7157, 14,126.6955,206.2579,10.9908, 21,100.0103,199.9958,10.0000, 31,100.0013,200.0005,10.0000, 41,100.0224,200.0331,9.9000, 43,116.9263,216,9165,11.8016,CURB 44,126.7042,206.2871,10.8193,DITCH 45,116.9266,216.9160,11.8028, 46,126.7046,206.2845,10.8213,CP POINT

Error Messages

In this chapter:

- Cogo

The appendix describes the error messages that may appear when you use the TS635 construction total station.

Cogo

Ho Result
The system was unable to calculate an area because points were not entered in the correct order.

Press any key to return to the Cogo menu. Then enter the points in the correct order.

Same Coordinete

The point or coordinate that you entered is identical to the previous input point.
Press any key to return to the point input screen. Then use a different point.
XY- Coprdinete is required
The input point does not have $\mathrm{XY}(\mathrm{NE})$ coordinates.
Press any key to return to the point input screen. Then enter a point that has X and Y coordinates.

Communications

If an error is detected while data is being transferred to the TS635 construction total station, the total station stops the transfer and displays one of the following messages:

Cherk Dets

There are errors in the data that is being transferred to the total station, such as an alphabetic character in a coordinate field.

Press any key. Then check the specified line in the data.
DUPLTCATE PT
CAUTION - If the existing point is a UP, CC, or MP record, and the point is not referred to by ST or BS, the existing point will be overwritten by the uploaded record. No error message appears.

The uploaded data contains a duplicate PT.
Press any button. Then check the specified point in the data.
PT MHX2e Ehars
The uploaded data contains a PT with a name or number that is longer than 20 digits.
Press any button. Then check the specified line in the data.

suz DUERRAMGE

The uploaded data contains a coordinate that is longer than 13 digits.
Press any button. Then check the specified line in the data.

Data

Can ${ }^{\text {t }}$ Edit Xyz from messurement

You have tried to change the coordinates of an SO, SS, or CP record. You cannot change the coordinates of these records.

Press any button to return to the previous screen.
DELETE Stn-ryz
You have tried to delete a coordinate record that the current ST or BS refers to. You must confirm that you want to delete this record.

To...	Press...
delete $X Y Z$	the DEL softkey
return to the previous screen without deleting XYZ	ESC or the Abr t softkey

Job manager

Gennot $\mathrm{A} E \mathrm{E}$ isn
You have tried to set the current job as the control file.
Press any button to return to the previous screen. Then select a different job.
Cen " Creste
There is no space available to create a job or record a point.
Press any button to return to the Job Manager. Then select the DEL softkey to delete old jobs.

Existine Job
You have entered an existing job name for a new job.
Press any button and then change the name for the new job.
MAR 32Jobs
You are trying to create a new job when the maximum number of jobs (32) is already stored.

Press any button to return to the Job Manager. Then select the DEL softkey to delete old jobs.

Layout

Input Error

The point name style used in the Fr field is not the same as the style used in the To field. For example, the Fr field style is 1 , and the To field style is A200.

Press any button to return to the $\mathrm{Fr} / \mathrm{To}$ input screen. Then reenter the point name, using the same naming style in both fields.

NO Str Setup
You did not perform a station setup or BS check before entering the Layout function.

To...	Press...
go to the Str Setup menu	2 or selectStn Setup
return to the Basic Measurement ESD	
Screen (BMS) go to the Stakeout menu 1) or select Cont inure	

CAUTION - Selecting Cont imus does not resume the last ST record. You should only use the Cont indue option if you are sure that the previous ST coordinates and the current HA orientation are correct. Otherwise, records in the Stakeout function may not be correct.

Programs

Ho Str Setup

CAUTION - Selecting Cont inure does not resume the last ST record. You should only use the Cont indue option if you are sure that the previous ST coordinates and the current HA orientation are correct. Otherwise, records in the Programs function may not be correct.

You did not perform a station setup or BS check before entering the Programs function.

To...	Press...
go to the Str Setup menu	2 or select Str Setup
return to the BMS	ESD
go to the Programs menu	1 or select Detinue

Recording data

DATA FULL

The data storage is full.
Press any button to return to the Basic Measurement Screen (BMS). Then:

To...	Press...
delete unnecessary data	MENU and select Det.
delete jobs	MENU and select Tob

DUPLTCATE PT

The input PT you are trying to record already exists in the current job. An existing coordinate record cannot be overwritten by measured data.

Press any button to return to the point input screen. Change the setting in the PT field.
DuFlicete FT
The input PT you are trying to record already exists in the current job as an SS, SO, or CP record. An existing SS, SO, or CP record can be overwritten by measured data.

To...	Press...
return to the PT input screen	ESC or the Abt + softkey
record RAW data and update XYZ data	the XY softkey
record RAW data only	the RAb softkey

Ho Dren Job
No job is open.

To...	Press...
open the job list, if there are existing jobs	(1) or select SEMEt jot
create a new job	(2) or select Cr r ete imb
return to the previous screen	ESC

No Sth Setur
There is no station record in the current job, or a station setup or BS check has not been done since the program was rebooted.

To...	Press...
continue recording	(1) or select Cont inue. If there is already an ST record in the job, the message $\mathrm{CO}, U \leq$ current orientetion appears.
go to the Stn Setup menu	(2) or select STH Setur
return to the previous screen	ESC

DUER RAHGE

You are trying to record a coordinate with more than 13 digits.
Press any button to return to the previous screen. Then check the setting for the current ST coordinate.

Searching

PT Hot Found

There is no point that matches the criteria entered.
Press any button to return to the point input screen.
This message may appear in any function where the PT/CD is input, such as Station Setup or Stakeout.

Settings

Job settines will be Ehanged
You have changed one or more of the following job settings:

- VA zero or HA in the Angle screen (see Angle, page 90)
- Scale, T-P, Sea Lvl, or C\&R in the Distance screen (see Distance, page 90)
- Coord or Az Zero in the Coordinates screen (see Coordinate, page 93)
- Angle, Dist, Temp, or Press in the Unit screen (see Unit, page 93)

To...	Press...
discard the changes to the job settings close the current job and save the changes to the job settings	ESC or the Mbr t. softkey. The current job remains

Note - To record a point using the new settings, create a new job using the new settings.

Station setup

Smme Coordinete

The input PT or coordinate is identical to the current station in STN/2:Known, or the same coordinate or point name/number is found in Resection.

Press any button to return to the PT input screen. Then use a different PT.
SFEEE LOU
There is not enough space to record a station when you start any of the Station Setup functions.

To...	Press...
return to the BMS	press ESC or select the ALr t softkey. Select the DEL. softkey in Job Manager to delete old jobs.
continue	press ENT or select the OK softkey. You may not be able to record the whole process.

XY- oordingte is required
The input point for ST/BS does not have N/E coordinates.
Press any button to return to the PT input screen. Then use a PT that has N/E coordinates.

Z-coprdingte is reauired
The input point for Benchmark does not have a Z coordinate.
Press any button to return to the PT input screen. Then use a PT that has a Z coordinate. See page 68.

System error

=SYSTEM ERPQR $=$
The system has detected an internal error that is related to the lower-level system. Press any key to turn the instrument off. The system will reboot when this error is reported. If you still have more points to shoot in the site, turn the instrument on and repeat the open a job and station setup procedures.

Data stored before this error will be kept safely in the Job file. If the error appears frequently, please contact your dealer or Trimble Support and report the message that appears below the $=$ SYSTEM ERROR $=$ line.

