AN11211

Quick Start Up Guide RC663 Blueboard Rev. 2.6 — 5 January 2017

Application note COMPANY PUBLIC

Document information

Info	Content
Keywords	CLRC663, Blueboard, LPCXpresso, MCU, Code Red, eclipse, LPC1769, NFC Reader Library, CLEV663B
Abstract	This application note is related to the installation procedures of the CLEV6630B Blueboard. It describes the actions to be done to become acquainted with the demo reader.

Blueboard Quick Startup Guide

Revision history

Rev	Date	Description
2.6	20170105	Updated Blueboard CLEV6630B and example descriptions
2.5	20161123	Updated examples descriptions
2.4	20160901	Added LPCXpresso version 8.1.4 requirement Changed note about RTOS option
2.3	20160323	Added description about Ex10 – MIFARE DESFire
2.2	20160125	Added description about LPC11U68 support.
2.1	20151111	Updated all relevant parts in respect to the NFC Reader Library update Removed LPC1227 support
2.0	20150707	Changed chapter 2 based the Blueboard version 3.0. (version 2.1 removed) Changed chapter 4 installation LPCXpresso IDE Added chapter 5.4 ICODE Demo Project Added chapter 7.2 ICODE Software Architecture Chapter 8 – added new links related with ICODE
1.9	20141201	Added a note about RAM limitation of LPC1227
1.8	20140721	Updates in the description regarding the TUSA board.
1.7	20140519	Removed the note about the version of the LPCXpresso IDE. Some small corrections. Changed the description and pictures of the projects Polling and, Classic Changed the description of the P2P description due to a software update. Removed the description about the projects Ultralight and DESFire. All projects are now based on the NFC Reader Library version 3.010. Therefore all projects have been refactored. Added support for the development board LPCXpresso LPC1769 which is based on an ARM Cortex M3 microcontroller. The NXP Reader Library is now called NFC Reader Library
1.6	20131110	Added a note about the LPCXpresso IDE version in chapter 0
1.5	20130613	Added description about the P2P Snep Client Added description of the P2P project. Added description of the I ² C configuration for the Blueboard version 3.0 and above. Added information about the use of the projects in conjunction with the LPC1227 MCU. Added information about the documentation of the NFC Reader Library. Added information about the exemplary project of code size optimization of the NFC Reader Library.
1.3	20120913	Small corrections of the TUSA description
1.2	20120822	Insertion of the description for the 3rd party "Tusa" Board
1.1	20120704	Small text corrections
1.0	20120604	First release

Contact information

For more information, please visit: http://www.nxp.com

Blueboard Quick Startup Guide

1. Introduction

This application note gives a detailed overview of the hardware for working with the RC663 contactless reader – Blueboard CLEV6630B (Chapter 2) – the installation procedures of the Development Environment (Chapter 3.2) and the handling of the reader projects using the NFC Reader Library (Chapter 3.4).

The projects used and explained in this documentation are:

Table 1. Example projects

Example projects delivered with the NFC Reader Library

Example	Description
NfcrdlilbEx1_BasicDiscovery Loop	Explains how to poll for different technologies (Tag, P2P, HCE), detect and report them. Default configuration parameters are used.
NfcrdlilbEx2_AdvancedDiscovery Loop	Explains how to poll for different technologies (Tag, P2P, HCE), detect and report them. All configuration parameters are used and explained.
NfcrdlilbEx4_MIFARE Classic	Explains the usage of standard MIFARE commands.
NfcrdlilbEx5_ISO15693	Explains the usage of this technology and provides an overview about the most common commands.
NfcrdlilbEx7_EMVCo_Polling	Explains polling for EMVCo payment cards.
NfcrdlilbEx9_NTagl2C	Explains NTAG-I2C specific commands.
NfcrdlilbEx10_MIFAREDESFire	Explains the usage of MIFARE DESFire cards. (This example is delivered with NXP Reader Library version available via NXP DocStore)
NfcrdlibEx11_ISO10373_PCD	Example is used to perform ISO 10373-6 PCD compliance validation.
Nfcrdlib_SimplifiedAPI _EMVCo	EMVCo loopback application with simplified API, which can be used for EMVCo level 1 digital certification
Nfcrdlib_SimplifiedAPI _ISO	Explains how to use simplified API with different types of cards.
ICODE ILT/SLI	Extensively explains the communication with ICODE ILT and ICODE SLI tags. This example is provided in a separate package.

Blueboard Quick Startup Guide

2. Hardware overview of the Demo Board

Customer Evaluation Board CLEV6630B demo board is the primary platform for the RC663 reader chip and the current version is Blueboard v2.0. (see Fig 1).

2.1 CLEV6630B demo board (Blueboard)

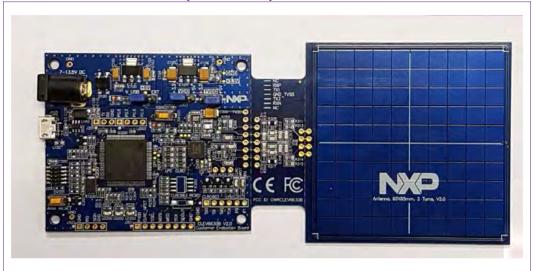


Fig 1. Picture of RC663 demo board

The CLRC663B V2.0 demo board embeds the contactless communication transceiver IC CLRC66303 with all its elements needed for transmission: EMC filter, matching network and the antenna and LPC1769 MCU with SWD/JTAG interface. The RC66303 supports different kind of contactless communication methods and protocols at 13.56 MHz:

- Reader/Writer mode supporting ISO/IEC14443A/MIFARE,
- Reader/Writer mode supporting ISO/IEC14443B,
- Reader/Writer mode supporting FeliCa scheme,
- · Passive initiator mode according to NFCIP-1
- Reader/writer supporting ISO/IEC 15693,
- Reader/writer supporting ISO/IEC 18000-3 Mode 3,
- Refer to the data sheet of this IC [2] for more details

Blueboard Quick Startup Guide

The voltage of the power supply VDD, the pad supply PDD and the transmitter supply can also be configured independently to 3.3 V or 5 V using the jumpers.

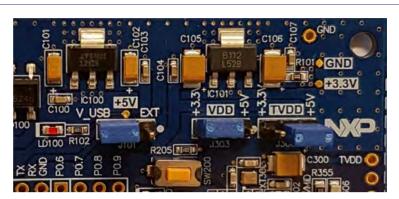


Fig 2. Picture of jumper settings

2.2 CE certification of the Blueboard

The current version of the Blueboard (CLEV6630B V2.0) is CE (European Conformity) compliant.

Blueboard Quick Startup Guide

3. Managing the Demo Reader project with LPCXpresso IDE

The example reader projects are delivered in a zip package. It can be extracted, edited, compiled and linked with LPCXpresso IDE.

LPCXpresso is a new, low-cost development platform available from NXP. It supports NXP's ARM-based LPC microcontrollers. The platform is comprised of a simplified Eclipse-based IDE and low-cost target boards which include an attached JTAG debugger.

This tool can freely be downloaded from the LPCXpresso website [1].

3.1 Development environment

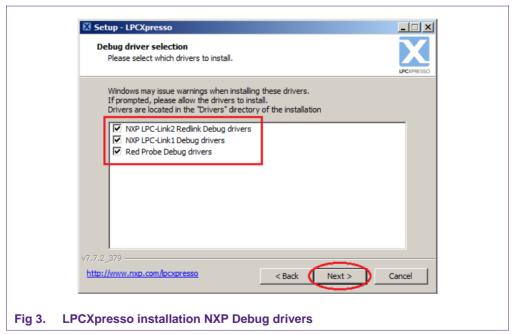
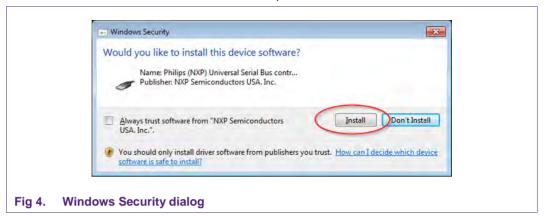
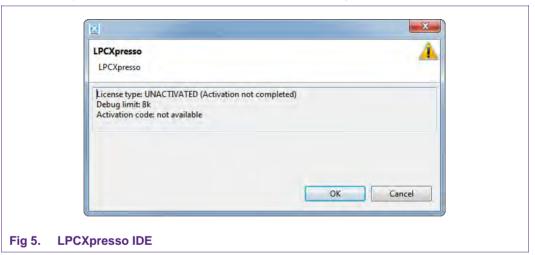

To use CLEV6630B prepared software package all components listed in the Table 2 are required.

Table 2. Development Environment

Item	Version	Description
CLEV663B	2.0	Customer Evaluation board (hardware)
LPC-Link 2	1.0	Standalone debug adaptor (hardware)
LPCXpresso IDE	8.1.4 or higher	Development IDE (PC software)

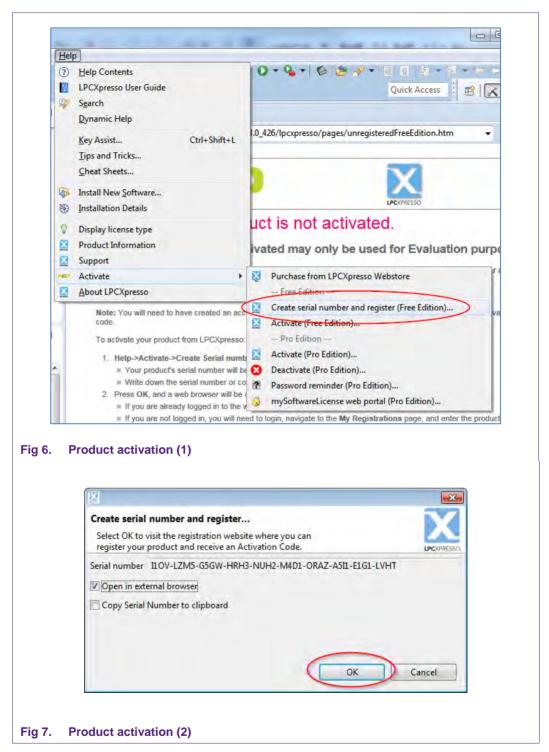
3.2 Installation of LPCXpresso IDE


The IDE is installed into a single directory of one's choice. Multiple versions can be installed simultaneously without side effects. Be sure to download LPCXpresso IDE version 8.1.4 or higher. The installation starts after double-clicking the installer file.

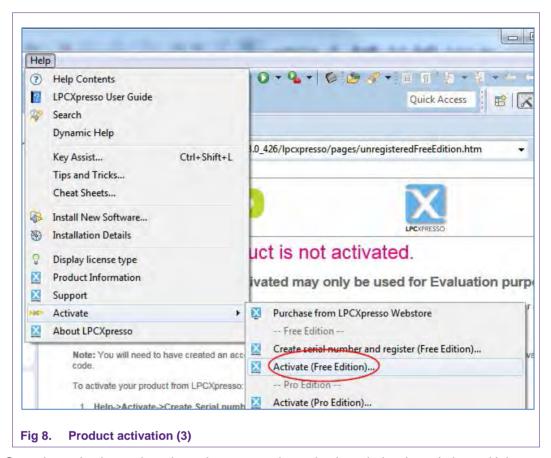

Make sure, the checkboxes for installing the NXP Debug drivers are activated.

Blueboard Quick Startup Guide

During the installation, the user will be asked if he wants to install some required drivers. The installation of these drivers should be accepted.



After the setup wizard has finished one can launch the newly installed IDE.


Directly after the first start of the Eclipse IDE one will see an info dialogue that this is only an unregistered copy of LPCXpresso IDE. Just confirm the dialog and follow the instructions on the Welcome Screen to get a registered version without the debug limit of 8k. The registration is free and can be done at the LPCware website. The Link is shown in the menu, Help → Activate → Create Serial number and register...

Blueboard Quick Startup Guide

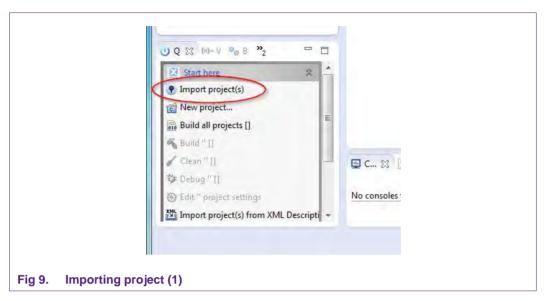
If one doesn't already have an account at LPCware, please sign up to get an activation code. The code will be sent to the provided e-mail address.

Blueboard Quick Startup Guide

Once the activation code arrives please open the activation window by pointing to Help \rightarrow Activate \rightarrow Activate (Free Edition), and enter the code. The success of the product activation will be confirmed by an info dialogue.

3.3 Extraction of the demo reader project

All demo reader projects are divided into several sub projects.

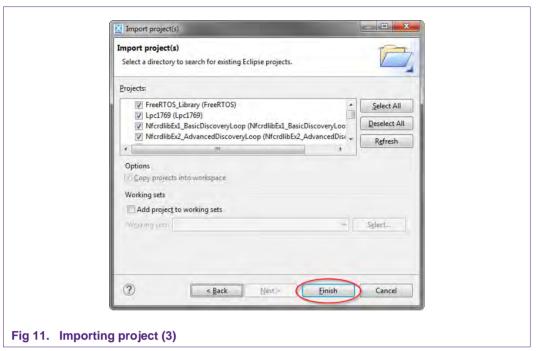

One project that contains the NFC Reader Library, one project that contains the FreeRTOS operating system, two projects that contains all hardware dependent parts and example application projects.

All projects are distributed in one zip package that can be imported into the LPCXpresso IDE in one single action. The following example is based on this package.

The sequence of installing the reference reader projects is indicated:

- Start the LPCXpresso IDE.
- Select the option "Import project(s)" (see picture below).
- · Browse the zip archive.
- LPCXpresso IDE unzips the software package.
- The software package is ready for use.

Blueboard Quick Startup Guide


In the Quick Panel on the left hand side, choose "Import projects(s)".

Browse the desired package and click "Next".

10 of 39

Blueboard Quick Startup Guide

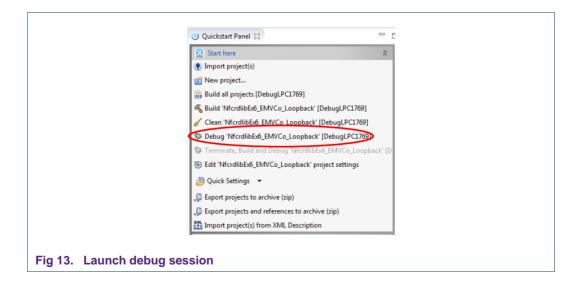
For a working single example project you need to import at least five sub projects. One example project, the NFC Reader Library, FreeRTOS and MCU projects.

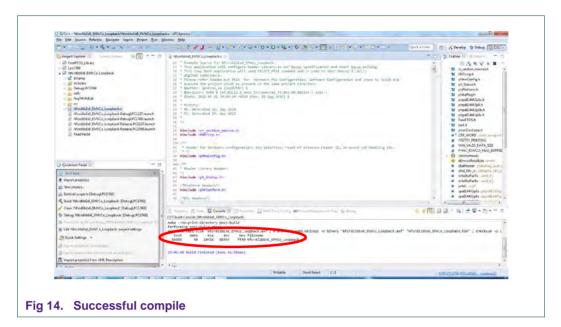
When the import process has finished one can start browsing the code.

3.4 Running and debugging a project

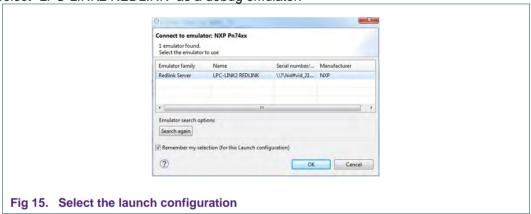
This description shows how to run the "NfcrdlibEx1_BasicDiscoveryLoop" example application for the CLEV6630B evaluation development board. The same basic principles will apply for all other examples. In cases where example will need additional configuration this will be detailed described in the example description.

First of all you need to ensure that your evaluation board is connected to the computer via LPC-LINK2, as shown in Fig 12.

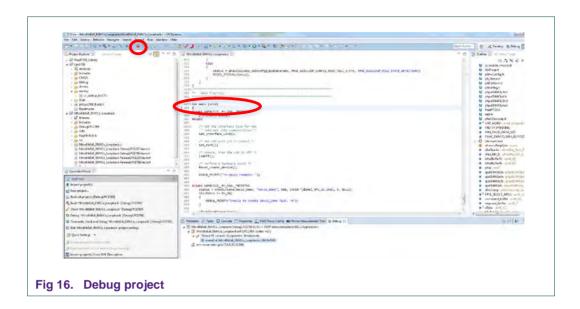

Blueboard Quick Startup Guide


When debug is started, the program is automatically downloaded to the target and it's programmed to the LPC1769 flash memory; a default breakpoint is set on the first instruction in main (), the application is started (by simulating a processor reset), and code is executed until the default breakpoint is hit.

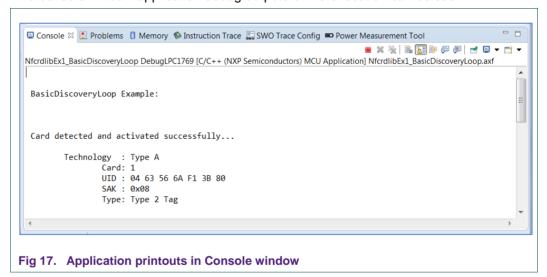
To start debugging your application, simply highlight the project in the Project Explorer and then in the Quick start Panel click Debug, as shown in Fig 13. The LPCXpresso IDE will first build application, flash application binary and then will start with debugging.


Before running the project, please ensure that the correct microcontroller and the correct build configurations are chosen. Information about how to do this can be found in chapter 6.4.

Blueboard Quick Startup Guide

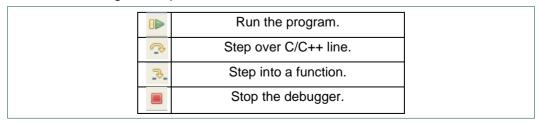


Select "LPC-LINK2 REDLINK" as a debug emulator.



After successful software upload, the execution of the project starts immediately, but might halt at the initial breakpoint. To resume execution, please click the resume button.

Blueboard Quick Startup Guide



In the console window application debug outputs of the execution can be seen.

After the execution has reached the end of the main function please click the Terminate button to stop the execution. Otherwise rerun of the project will be possible.

Buttons in the debug toolbar provide next functionalities:

Blueboard Quick Startup Guide

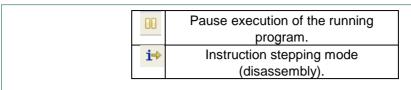


Fig 18. Debug Buttons

In the console window at the bottom one will see the debug output of the execution.

After the execution has reached the end of the main function click the Terminate button to stop the execution. Otherwise one won't be able to rerun the project.

One can now do the following with the buttons near the top of the "Debug" view:

□ ▶	Run the program.
ॐ	Step over C/C++ line.
3	Step into a function.
	Stop the debugger.
00	Pause execution of the running
	program.
i ⇒	Instruction stepping mode
	(disassembly).

Fig 19. Debug Buttons

4. Managing the CL663 SW projects with Linux and KDS IDE

Detailed description and guideline, how to import and manage NFC NXP Reader Library projects in Linux and Kinetis Design Studio (KDS) environment, check:

- AN11802 NFC Reader Library for Linux Installation Guidelines
- AN11908 NFC Reader Library for KDS Installation Guidelines

5. Associated Projects

All example projects are available for download at the product page [3] in the documents section and are being distributed in one single file.

All projects are packaged into a single installer file. After downloading the zip file extract it and run the installer. The installer make a copy of all documents and SW on the hard disk.

Blueboard Quick Startup Guide

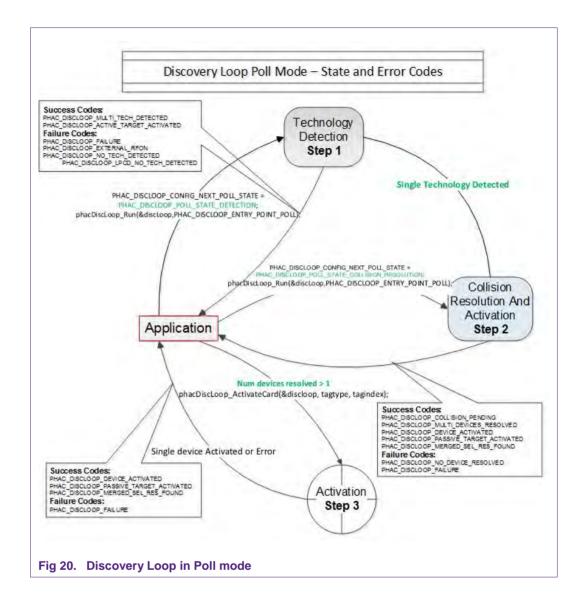
Running the projects with, or without FreeRTOS

All projects described in the following sub chapters can be configured to run with or without FreeRTOS operating system. To enable/disable FreeRTOS support, define settings in the file "../intfs/ph_NxpBuild_App.h" needs to be configured properly.

E.g. enable FreeRTOS

//#define NXPBUILD__PH_OSAL_NULLOS
#define NXPBUILD__PH_OSAL_FREERTOS

5.1 Example 1 – Basic Discovery Loop


The Discovery Loop can be seen as the entry point when starting to communicate with an NFC tag or device. It scans the close environment for tags and devices of different technologies.

Example is implemented to work in POLL and LISTEN mode of the discovery loop. Information (like UID, SAK, and Product Type for MIFARE Cards) of the detected tags are printed out and it also prints information when it gets activated as a target by an external initiator/reader. Whenever multiple technologies are detected, example select first detected technology and resolve it.

In passive poll mode, Low Power Card Detection (LPCD) is enabled.

16 of 39

Blueboard Quick Startup Guide

The core function of this example is "BasicDiscoveryLoop_Demo()", where initialization of the NFC Reader library and polling for NFC technologies is implemented. After each polling loop, application is checking polling result and printout information about the detected tags or devices.

This example is using default DiscoveryLoop configuration, which enables all supported technologies and it is limited to one device for each technology.

Table 3. Supported technologies

ISO14443P3A	ISO15693- SLI	FeliCa	TYPEF_TARGET_PASSIVE		
ISO14443P4A	ISO18000P3M3	TYPEA_TARGET_PASSIVE	TYPEF_TARGET_ACTIVE		
ISO18092MPI	ISO14443P3B	TYPEA_TARGET_ACTIVE			

Blueboard Quick Startup Guide

5.2 Example 2 – Advanced Discovery Loop

Additionally to Example 1 the Advanced Discovery Loop example explains the different configuration options of the Discovery Loop and configure DiscoveryLoop with default values based on the interested profile, NFC or EMVCo.

The configuration of the "DiscoveryLoop" is implemented in "LoadProfile()" function.

5.3 Example 4 - MIFARE Classic

This example demonstrate how to configure "DiscoveryLoop" to poll for only one technology and how to resolve detected card, in this example MIFARE Classic is used.

Once MIFARE Classic card is activated, application printout information like UID, ATQA and SAK and perform the authentication with MIFARE default key. After successful authentication basic read/write operations are implemented.

This example is good start in case of working with only one card or to see how to manage MIFARE Classic cards.

5.4 Example 5 - ISO15693

Similar to the previous example, this one is also using only one technology, in that case ISO15693. "DiscoveryLoop" is configured to resolve only one device and in the example it is shown how to change Tx Guard Time for T5T cards, this is implemented in "phApp_Init()" function.

Once ICODE SLI is resolved and activated, application printout card information like type of the card and UID, and it will read and write from/to the memory block.

This example is good start in case of working with only one card or to see how to manage ISO15693 type of the cards.

5.5 Example 7 – EMVCo Polling

The EMVCo Polling example it is demonstrated how to configure NFC Reader Library as specified by EMVCo specifications and starts polling for EMVCo cards.

Once an EMVCo compatible card is resolved and activated, it demonstrates the exchange of APDU commands. This example shall help the developers getting started more quickly when working with EMVCo cards.

5.6 Example 9 – NTAG I2C

The NTAG I2C example demonstrates the use of special features which are supported by NTAG I2C. By using POLL mode of the discovery loop, example detect the NTAG I2C cards and displays detected tag information like UID, ATQA, SAK, Version info and perform "Page Read" and "PageWrite" commands.

For more details about the NTAG-I2C and its functionalities please consult the product page of the same [13].

Blueboard Quick Startup Guide

5.7 Example 10 – MIFARE DESFire

The MIFARE DESFire example demonstrates how to use MIFARE DESFire EV1 cards.

Once MIFARE DESFire card is resolved and activated, it displays MIFARE DESFire applications created by this example previously and it displays 32bit signed integer which is incremented after each successful detection of tag.

In case no application is present on the tag, new application will be created with two new files to hold NXPNFCRDLIB version used to create this application and another file to hold 32bit signed integer.

Note: This example including the required modules of the NFC Reader Library is only available via NXP Docstore.

5.8 Example 11 - ISO10373 PCD

This example is used to perform ISO 10373-6 PCD compliance validation. This example has to be executed in the DUT which has an ISO 14443 based PCD implementation. The ISO 10373-6 test methods verifies the compliance to the ISO 14443 protocols. An external tool like Micropross MP300 implements the test methods for the ISO 10373-6 and is used as the counterpart for this testing.

5.9 SimplifiedAPI EMVCo

This example is similar to the "EMVCo Loopback" example, as it can be used to perform EMVCo 2.5 level 1 digital compliance validation.

The different between both examples is in NFCReaderLibrary initialization, where this example is using simplified reader library initialization process. Simplified approach, after library initialization, is using only three commands:

- phNfcLib_Activate()
- phNfcLib Transmit()
- phNfcLib Receive()

5.10 SimplifiedAPI ISO

This example is a reference application to demonstrate the usage of Simplified API with ISO profile. Application contains example of Type A Layer 4, Type B Layer 4, MIFARE DESFire, MIFARE Ultralight, MIFARE Classic, ISO5693 and ISO18000p3m3.

Example demonstrates how to use simplified API, which require, after successful library initialization, only three commands:

- phNfcLib_Activate()
- phNfcLib_Transmit()
- phNfcLib_Receive()

Blueboard Quick Startup Guide

5.11 ICODE Demo Project

The ICODE Demo package is a simple embedded software that shows how to perform basic operations with ICODE ILT, ICODE SLI, SLIX and SLIX2 tags. The application interacts with a user through user interface (UI) hosted in the console window of the LPCXpresso IDE. It is designed to get prompts from the user, giving him a possibility to customize the order of execution of commands. It can be downloaded from the documents section of the RC663 demo board page [12].

The package further includes:

- Special version of the NFC Reader Library with content reduced to those modules which are necessary for support of ILT and SLI tags and library dependencies necessary for LPC1769-RC663 platform. The reduced version of the NFC Reader Library is closer described in the chapter 6.2.
- LPC1769 with necessary sources for support of LPC1769 MCU. The LPC1769
 MCU has sufficient amount of RAM (64kB) to host the ICODE Demo Project.

The ICODE Demo Project is distributed in a standalone zip file. After downloading and installing, it needs to be imported as a new project into a separate workspace than the previous software packages (MIFARE, P2P) because it is not possible to have two different projects with the same name (NFC Reader Library) inside one workspace.

To make the ICODE Demo Project package running follow these steps:

- 1. Create a new workspace
- 2. Import the project package zip file into the new created workspace. To do this, follow the instructions from the chapter 3.3

Running the project

Launch Debug configuration of the software (see section 3.4), then it by pressing the resume button. Click with mouse pointer anywhere inside the console window and follow the instructions.

How to control menu

To choose a menu item, press the corresponding key on the keyboard and confirm with ENTER key.

How to customize the build configuration of the project

In the configuration file <code>icode_common.h</code> are three configuration options providing the possibility to build the ICODE Demo project in different configurations to only handle certain type of tags – ILT, SLI without SLIX2, SLI and SLIX2.

Build configuration defines:

NXPBUILD_SLI_TAG enable SLI tag handling

NXPBUILD_SLIX_2_TAG enable SLIX2 tag handling

NXPBUILD ILT TAG enable ILT tag handling

Note: SLI is necessary prerequisite for SLIX2 – project cannot be configured only for SLIX2.

Blueboard Quick Startup Guide

To apply a particular build configuration, comment unwanted build configurations, compile and run the project.

5.11.1 ICODE ILT Demo Handling

To work with ICODE ILT tags, choose the option "1" in the main menu of the running ICODE Demo Project (Fig 21).

```
□ Console 🎇
                                                                                      NfcrdlibEx00_icode DebugLPC1769 [C/C++ (NXP Semiconductors) MCU Application] NfcrdlibEx00_icode.axf
                                                                                                                                             .
        Initialization complete
        Main MENU
        1 - ILT tags handling
        2 - SLI tags handling
        ILT - COMMANDS -
                               (read 12 Bytes of user memory at address: 0x00)
(write 12 bytes to user memory at address: 0x00)
d (set/read access password to the tag)
        1 - Read
        2 - Write
                                     (set user password to software memory for accessing password protected tag) (lock the user memory on tag for write)
        3 - Access Password
        4 - set Access Password
        5 - Lock
        i - Inventory (detection of all tags:
n - Number of Tags (inventory of all tags:
s - Single Tag Detection (single tag operations)
                                          (detection of all tags in the RF field)
                                           (inventory of all tags in the RF field - endless loop without printouts)
        c - Configuration Setting (detection parameters settings)
r - RETURN
Fig 21. ILT menu
```

The ILT menu is divided to 2 sections. The upper section is focused on the ILT commands. These commands are <u>possible to execute after</u> performing one of the 2 <u>inventory methods</u> (Inventory and Single Tag Detection). The lower section is focused on inventory method and setting parameters.

Read

Application performs the Read command (0xC2). There are read 12 bytes of the user memory (BANK 11) from address 0x00 by default. The content of these bytes can be changed by the Write command.

Note: It is necessary to perform inventory before calling the Read command.

Write

Application performs the Write command (0xC3). There are written 12 bytes to the user memory (BANK 11) from address 0x00 by default. It is possible to choose the content from two hardcoded possibilities.

Note: It is necessary to perform inventory before calling the Write command.

Access Password

Application stores the access password into the according memory section of the tag. The password is used for the transition into the "secured state" of the tag.

Set Access Password

Application stores the user access password to the application internal data structure. This password is used during the Access command (0xC6) execution. This helps to demonstrate the use-case when the user password doesn't fit the

Blueboard Quick Startup Guide

access password stored in the tag and the secure operations on the tag are not allowed.

Lock

Application locks and unlocks the user memory (BANK 11) for writing. Write is possible only if the locked tag is in "secured state". Transition of the tag from "open state" to "secured state" need to be accomplished by using the Access command.

Note 1: All commands of the tag (read, write, lock ... etc.) are performed like commands sequence to transition the tag's state from Ready, Arbitrate or Reply state to Open or Secured state (see the specification [8]). Within this sequence it is conditional calling the Access command. The condition if command is called or not is possible to set via the Access Password menu or via the Configuration setting.

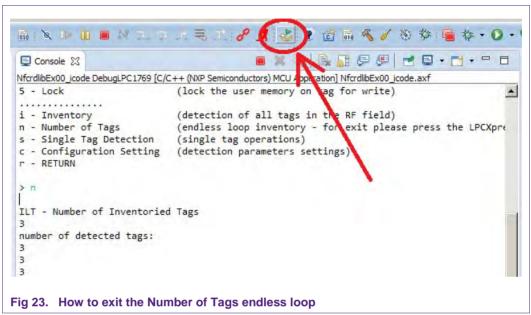
Note 2: In case verification of memory lock is needed, you can perform the following command sequence: "set Access Password" - 0x12345678, "Set Password" - 0x12345678, "Set Password" - set the usage the an access password to ON state, "Lock" - lock the user memory for writing, "Write" – something from menu - writing is possible, "Lock" - un-lock the user memory for writing, "Write" – something from menu -> write is not possible, because memory is locked without access.

Note 3: Parameter of Access command calling is set by default to state OFF.

Inventory

Application performs the inventory of all ILT tags which are placed in the RF field. After the inventory process the list of all found tags is printed out in the console window in the LPCXpresso IDE. The listed table consists of the stored CRC and whole PC/XC data packet. The PC/XC consists the UII (Fig 22) The maximum number of detected tags is limited by the power of the RF field of the RC663 Blueboard.

Part of the inventory functionality is choosing a certain tag for further operations.


Note: Choosing the tag feature: - The user is asked to choose the tag he wants to choose for further operations by typing the number which is written next to the tags UII in the listing after inventory. Entering '0' means no tag chosen and the program goes back to the menu. Any non-number character is interpreted as zero. Only first 3 characters are taken as input. If just one tag is detected by Inventory, the tag is automatically chosen by the software. In case no tag is detected it is necessary to repeat the inventory. All later operations are performed with the chosen tag in masked mode. The whole UII is taken for mask usage.

```
□ Console 🏻
        NfcrdlibEx00_icode DebugLPC1769 [C/C++ (NXP Semiconductors) MCU Application] NfcrdlibEx00_icode.axf
        ILT - Inventory
         number of detected tags: 6
         |No.| CRC | PC/XC | UII length
                choose a Tag from range (1 - 6) decimal 0 - return > 2
         choice > 2
        UII: 00 00 00 00 00 00 00 00 65 EF 00 00
        ILT - COMMANDS -
                                                 (read 12 Bytes of user memory at address: 0x00)
(write 12 bytes to user memory at address: 0x00)
(set/read access password to the tag)
(set user password to software memory for accessing password protected tag)
(lock the user memory on tag for write)
           - Read
- Write
- Access Password
- set Access Password
- Lock
            - Inventory
- Number of Tags
- Single Tag Detection
- Configuration Setting
- RETURN
                                                  (detection of all tags in the RF field)
(endless loop inventory - for exit please press the LPCXpresso Restart button)
(single tag operations)
(detection parameters settings)
        4
Fig 22. ILT Inventory
```

Blueboard Quick Startup Guide

Number of Tags

Application performs inventory like the Inventory function from menu but in this case the inventory process runs in an endless loop and only the number of detected/inventoried tags is displayed. For ending the endless loop, it is necessary to press the LPCXpresso IDE restart button from the tool icon bar (see Fig 23)

Single Tag Detection

Application performs one tag inventory. This function is designed to work only with one tag. In case more tags are in the field the "Multiple tags detected" message is displayed in the console. The purpose of this method is to significantly speed up working with a single tag. Other operations (read, write, lock, access) can be performed without any limitation.

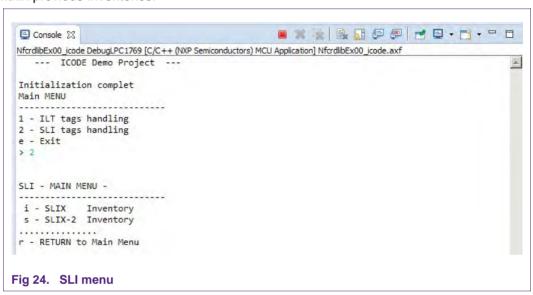
Note: All operations are performed with the chosen tag in non-masked mode. Ull is not stored for executing further commands. In case no tag or more than one tag are detected, it is necessary repeat the inventory.

Configuration Setting

Application allows setting and changing parameters that affect detection of tags (inventory method) and accessing the tag. All parameters for the detection and accessing are handled as variables in the code. These variables are set to the default values during the software initialization or via this function by setting <code>Default_SetConfig_18000p3m3</code>.

5.11.2 ICODE SLIX Demo Handling

To get to the SLI section of the ICODE Demo Project, the user needs to choose option '2' in the main menu and then choosing between SLIX and SLIX2 – each representing a standalone submenu - group of SLIX and SLIX2 commands (Fig 24).


Submenus in SLI menu:

SLIX menu provides operations supported by SLIX tags.

Blueboard Quick Startup Guide

SLIX2 menu provides all the commands of the SLIX menu and is extended
with some operations supported by SLIX2. It is also possible handle SLIX tags
using operations from the SLIX2 menu (supported by SLIX) and vice versa - to
handle SLIX2 tags by using operations from the SLIX menu.

Regardless of the choice, the software immediately runs the Inventory. With each entry to a particular submenu of ILT/SLIX/SLIX2, the software forgets (clears) all data gathered within previous Inventories.

Inventory

The method performs the Inventory command in order to find as much ICODE SLI(X)(2) tags as possible.

Note 1: Internally the function operates recursively – when a collision occurs, the same method is called with the collided UID Mask Value and Mask bit length increased by 4. Inventory runs in 16 number slot mode.

As a result it lists detected tags in the following pattern: Number | type | UID

- Number the number of the detected tag sorted by UID. From 1 to N, where N is number of successfully detected tags.
- Type type of the detected tag. Type can be one of following: SLI, SLIX, SLIX2, RFU. It is identified based on the 36th and 37th bit of the UID
- UID 64 bit unique identifier of the tag, gained from the response during the Inventory request from each individual tag.

Note 3: Choosing the tag feature – The user is asked to type the number of the desired tag. Entering '0' means no tag chosen and the program returns to the command menu. Any non-number character is interpreted as zero. Only first 3 characters are taken as input. If just one single tag is detected by the Inventory method, the tag is automatically chosen by software.

All later operations are performed with the chosen tag, unless Non-addressed mode is selected for particular operation or until new Inventory command.

If there is no specific tag chosen all later "addressed operations" fail. In such case it is recommended to re-Inventory or perform Non-addressed operation (Reset To Ready (one-shot), Reset To Ready Loop, Write Single Block).

Read Single Block

Application performs the Read Single Block command (0x20). By default it reads

Blueboard Quick Startup Guide

4 bytes from block 0. To read another block it's necessary to modify the value of the BLOCK_NUM_READ_SINGLE_BLOCK macro. The ICODE Demo Project provides this command only in Non-addressed mode.

• Write Single Block

Application performs the Write Single Block command (0x21). By default it writes 4 bytes to block 0. To write another block it is necessary to modify the value of the BLOCK_NUM_WRITE_SINGLE_BLOCK macro. User can choose whether to write "NXP_" or clear the block (write four zeros). This command is provided by the ICODE Demo Project in Addressed mode and Non-addressed mode as well.

Note: Non-addressed mode (write to all tags) is provided even if there has been just one tag detected in previous Inventory.

Read multiple blocks

Application performs The Read Multiple Blocks command (0x23). By default it reads blocks 0 and 1 (resulting in reading 8 bytes). To start reading form another block it is necessary to modify the value of the

FIRST_BLOCK_NUM_READ_MULTIPLE_BLOCKS macro. Reading different length of tag memory is possible via changing the

NUM_OF_BLOCKS_READ_MULTIPLE_BLOCKS macro. This command is provided by the ICODE Demo Project only in Non-addressed mode.

Note: This command is not supported by SLI-L and SLI-S tags. When attempting to perform this command with those tag types, only a vague error message "ERROR – Read Multiple Blocks" is printed.

Stay Quiet

Application performs Stay Quiet command (0x02) over the previously chosen tag. The tag in Quiet state cannot be detected by Inventory. The tag stays in Quiet state until power off (removed from RF field) or Reset To Ready or Broadcast Reset Loop is applied.

Note: It is not possible to recognize whether requested tag has been really turned to the Quiet state or the command has not been caught by the tag (tag out of range of RF field) because the tag gives no response (and operation returns with success) in both of the situations.

Reset tag(s) to ready

Application performs Reset To Ready command (0x26) once. This operation is provided by ICODE Demo Project in both, the Addressed and Non-addressed mode. All tags in Quiet (or Persistent Quiet SLIX-2) state requested by this command are transferred to Ready state and can be detected by Inventory again.

Broadcast reset loop

Application performs Reset To Ready command (0x26) in loop for given amount of time (from 1 to 9 seconds). During that time nothing but transmission of Reset To Ready in Non-Addressed mode is executed – the operation is a blocker. The operation does not provide Addressed mode – the Reset to Ready commands are always transmitted to all the tags in the field.

Note: During execution the application claims one OSAL timer. The timer is released as soon as the loop ends.

5.11.3 ICODE SLIX-2 Demo Handling

Read Single Block

See Read Single Block in section 5.11.2.

Write Single Block

See Write Single Block in section 5.11.2.

Blueboard Quick Startup Guide

Read Multiple Block

See Read Multiple Blocks in section 5.11.2.

Get NXP System Information

Application performs Get NXP System Information command (0xAB) on a previously chosen tag. The output provides information about the memory structure and protection status of particular L and H pages.

Set Password

Application performs Get Random Number command (0xB2) and Set Password command (0xB3) on a previously chosen tag. The software provides "log in" only with *read* or *write* password. This operation needs to be executed prior to Write Password, Lock Password or Protect Page command. If Protect Page is intended to be called, the Set Password function must be called twice prior to Protect Page, once for writing and once for reading. If a page is read or (and) write protected, this operation must be called prior to Read Single Block (Read Multiple Blocks) or (and) Write Single Block operation.

Note: Console error message "ERROR - Set Password command is not supported by chosen tag" is printed either when the requested tag is not capable to perform the operation (for example an SLI tag is requested) or also in case the password is incorrect.

Precondition: Prior to this operation, Set Password needs to be run.

Write Password

Application performs Write Password command (0xB4) on previously chosen tag. Application supports just changing of write and read password. Password identifier (read/write) has to be chosen

Note: Choosing the Password identifier (read/write) is provided only by the Set Password command. The software uses for the Write Password command the same password identifier.

Lock Password

Application performs Lock Password Setting a new Password and placing a subsequently Lock, can be done in the following steps:

- 1) Set Password
 - 2) Write Password with new password
 - 3) Set Password with the new password
 - 4) Lock Password with new password

Precondition: Prior to this operation Set Password need to be run.

Note: Choosing the Password identifier is only provided with Set Password. The software uses for Lock Password the same password identifier.

Protect Page

Application performs Lock Password command (0xB6) while dividing tag memory into L and H page on address 0x0A. The operation provides possibility to protect L page for reading, H page for reading, L page for writing, H page for writing and clearing all protection flags at once.

Preconditions: Prior to Protect Page the Set Password must be called twice – for both reading and writing.

Note 1: Setting of more protection flags can be done only one by one, without necessity to call Set Password between particular page protection settings.

Note 2: To prevent unintended transfer of page protection configuration from one tag to another, the user needs to be aware that the last page protection configuration stays stored in the software. Clear protect page clears the last setting stored in the software but, it also clears current page protection configuration on currently chosen tag (meaning, it is not possible to clear page protection configuration in the software without applying it to the chosen tag).

Blueboard Quick Startup Guide

Stay Quiet

See Stay Quiet in section 5.11.2.

Stay Quiet Persistent

Application performs Stay Quiet Persistent command (0xBC) on previously chosen tag. Tags in Stay Quiet Persistent state cannot be detected by Inventory. The tag stays in Persistent Quiet state until it is powered off (removed from RF field), persistent time is exceeded (tens of seconds depending on temperature) or Reset To Ready or Broadcast Reset Loop is applied.

Note: It is not possible to recognize whether requested tag has been really turned to the Persistent Quiet state or the command has not been caught by the tag (tag out of range of RF field) because the tag gives no response in both situations.

Reset tag(s) to ready

See Reset tag(s) to ready in section 5.11.2.

Broadcast reset loop

See Broadcast reset loop in section 5.11.2.

5.11.4 ICODE SLI/SLIX-2 software and configurations

There are a few #define values, that influence the behavior of the ICODE SLIX Demo software.

- Macro input parameters for commands.
 In the icode_sli_ui.c there are defined macros, which are used as input values for some commands.
 - #define BLOCK_NUM_READ_SINGLE_BLOCK 0
 Number of blocks from which the Read Single Block command reads 4 bytes.
 - #define BLOCK_NUM_WRITE_SINGLE_BLOCK 0
 Number of blocks to which the Write Single Block command writes 4 bytes.
 - #define FIRST_BLOCK_NUM_READ_MULTIPLE_BLOCKS 0
 Number of the first block from which the Read Multiple Blocks command starts reading.
 - #define NUM_OF_BLOCKS_READ_MULTIPLE_BLOCKS 2
 Number of the block at which the Read Multiple Blocks command stops reading.

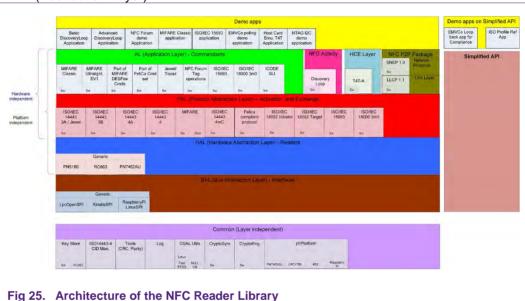
These macros can be customized with respect to the memory boundaries of the tags to be handled.

- MAX_NUM_DETECTED_SLI_TAGS defines how many SLI tags the application
 can store. Although it is possible to detect more tags during inventory, this value
 limits the number of tags stored by the application.
- SPRINTF_BUFFER_SIZE defines the number of bytes that are pre-buffered and
 printed in one frame during listing of the detected tags. If listing the inventoried
 tags causes a stack overflow, it is recommended to set the value of this macro to
 a lower value.

AN11211 **NXP Semiconductors**

Blueboard Quick Startup Guide

Supplementary Notes


Fore detailed API description of the NFC Reader Library please refer to the chm help file located at

NFC Reader Library\docs\14 user doc\NXP NFC Reader Library.chm.

General Software Architecture

The software of the reference reader is based on the NFC Reader Library [4]. It intends to be simple, modular, easily readable and quickly portable by all the customers. This philosophy is reflected in its architecture which is divided into 4 layers:

- BAL (Bus Abstraction Laver).
- HAL (Hardware Abstraction Layer)
- PAL (Protocol Abstraction Layer)
- AL (Abstraction Layer)

For a detailed description of the NFC Reader Library please refer to the user manual UM10721 - NXP NFC Reader Library User Manual.

Documentation of the API can be found in the document UM10802 - NXP NFC Reader Library API. Both can be downloaded at the web site of the CLEV663B demo board [3].

6.1.1 Bus abstraction layer

This layer offers functions to abstract the hardware parts of the microcontroller.

These functions connect to the specific peripheral drivers of the microcontroller. Based on these stacks, the communication routines for the relevant physical media I2C/SPI can be easily designed. These drivers used in this examples are specific for the LPC1XXX family and therefore cannot be ported to other microcontrollers. If one want's to change the microcontroller, he would have to adapt this layer.

Blueboard Quick Startup Guide

6.1.2 Hardware abstraction layer

This layer offers functions to abstract the hardware parts of the supported transceivers.

6.1.3 Protocol abstraction layer

Every PAL function is a low level function realizing a single functionality. It is encapsulated in a module which is independent from the others. The user can easily design his application by doing a drag-and-drop of the relevant module.

The following PAL modules are available in this software package:

- ISO/IEC 14443-3A.
- ISO/IEC 14443-3B.
- ISO/IEC 14443-4,
- MIFARE,
- ISO/IEC 14443-4mC
- · FeliCa,
- NFC Initiator
- NFC Target
- ISO/IEC 15693
- ISO/IEC 18000-3 Mode 3

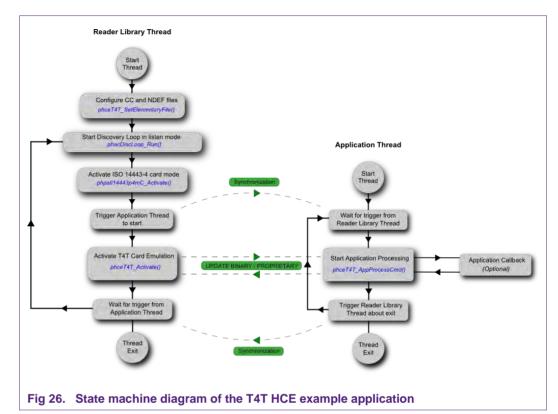
6.1.4 Application layer

Lying on the previous software layers, the application layer is on top of the reader software package. It combines elements of the previous three parts into high level functionalities.

6.1.5 NFC Activity

This component provides the Discovery Loop component. It implements poll mode based on NFC Activity Specification 1.1 (backward compatibility with version 1.0) and EMVCo Specification 2.3.1a. Listen mode is implemented based on NFC Activity Specification 1.1. Support for Type V (ISO 15693) polling is included based on NFC Forum draft specification. ISO 18000-3 Mode 3 (EPC Gen2) is supported as a proprietary technology in poll mode.

6.1.6 HCE Layer


This component implements the card emulation of NFC Forum Type 4A Tag.

The implementation is based on NFC Forum Type 4 Tag Operation Specification version 2.0. SELECT, READ BINARY and UPDATE BINARY commands are supported as per NFC Forum Type 4 Tag Operation Specification.

This layer follows a multi-threaded RTOS based design using one reader library thread and one application thread. Application thread along with application callback can be used for handling of UPDATE BINARY and proprietary commands.

A pictorial representation of reader library thread and application thread used for card emulation is shown below. Refer function documentation for more information.

Blueboard Quick Startup Guide

As UPDATE BINARY and proprietary commands are handled by the phceT4T_AppProcessCmd in application thread, application shall use some

synchronization mechanism (like mutex or semaphore) as shown in the diagram to synchronize entry to and exit from phceT4T_Activate and phceT4T_AppProcessCmd. Waiting Time eXtension (WTX) is handled internally by phceT4T_Activate in reader

Waiting Time eXtension (WTX) is handled internally by phceT4T_Activate in reader library thread. The reader library thread should be of high priority than the application thread for proper handling of WTX. In non RTOS single threaded environment this layer can be used with limited features, i.e. with no support for WTX.

6.1.7 NFC Apps

The example applications make use of the underlying functions. They provide entry points for the developers to get started with the NFC Reader Library more quickly.

6.2 ICODE Software Architecture

The ICODE Demo software uses a limited version of the NFC Reader Library. The main difference is in the used components. The whole NFC Reader Library is reduced to the necessary modules in order to work with tags according to the standards ISO15693 and ISO 18000p3m3. Also the HAL layer is limited to only support the RC663 reader IC. All NFC Reader Library modules used in the ICODE Demo project are shown in Fig 27.

Note: OSAL module is used due to timer usage in SLI handling feature.

Blueboard Quick Startup Guide

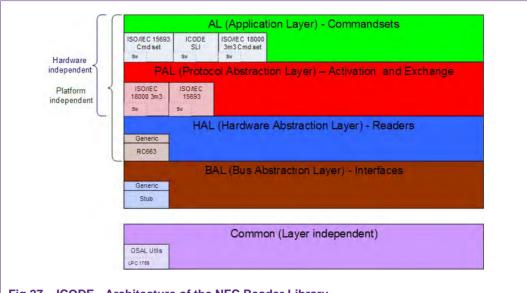


Fig 27. ICODE - Architecture of the NFC Reader Library

6.2.1 Bus abstraction layer

BAL is the bottommost layer of the NFC Reader Library. It provides communication with connected RC663 reader. The Stub module defines the interface while executive code of the Stub is placed in the MCU LPC1769 project. This second part implements dedicated LPC1769 drivers to handle the SPI and I2C peripherals of the microcontroller.

Software runs reliably with SPI bitrate set to 5MHz.

Testing has shown, I2C is too slow for reliable functionality of ILT part of the ICODE Demo project.

6.2.2 Hardware abstraction layer

See 6.1.2.

6.2.3 Protocol abstraction layer

The PAL layer of the ICODE Demo Project is the logical layer which represents rules specified by ISO15693. It contains only two modules from the original NFC Reader Library:

- ISO/IEC 15693
- ISO/IEC 18000 3m3

6.2.4 Application layer

The AL lies on top of the PAL and is on top of the NFC Reader Library. It combines elements of the previous three parts into high level functionalities. In the modules of this layer the particular ILT/SLI(X)/SLIX2 commands are provided in a very close way as defined in specifications [8] [9] [10].

- SLI SLIX 2 commands
- 15693 SLI and extended commands

Blueboard Quick Startup Guide

ILT – ILT Access commands

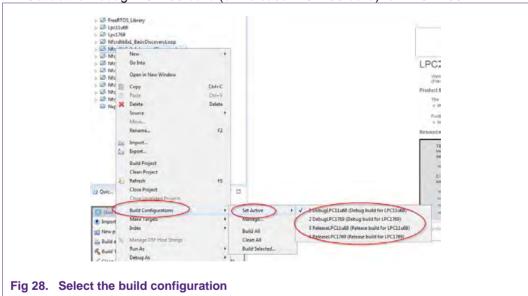
6.3 Build configuration

All the projects mentioned in Chapter_5 are available in debug and release configuration.

· Debug configuration

This configuration is mainly used when the target board is attached to the PC with the JTAG debugger. It allows the display of debug messages in the console window, which is useful in the early stage of the project.

· Release configuration


Once the project is debugged and mature, it might be interesting to use the release configuration, to use the hardware stand alone. No debug messages are displayed in the console window.

Note, that only in Release Configuration one can flash the software onto the Blueboard and start it automatically, once power has been attached to the board.

The build configuration can be selected as follows:

- Click on the project in the project window of the LPCXpresso IDE,
- Right click of the mouse → Select Build Configuration,

Set active DebugLPC1769 build (or ReleaseLPC1769 build) for LPC 1769.

Note: When switching from one MCU to another, please take care to also switch to the correct MCU setting within the LPCXpresso IDE. See section <u>6.4</u>.

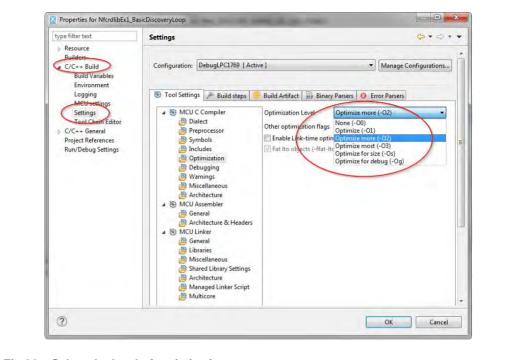
6.4 Setting the MCU

There are many LPC microcontrollers supported by the LPCXpresso IDE build in compiler. Before compiling a project, the correct MCU need to be set.

Right click the project → choose properties (at the bottom)

Blueboard Quick Startup Guide

 C/C++ build → MCU settings → expand desired LPC1xxx MCU group → choose the correct microcontroller → click OK


6.5 Level of compiler optimization

When the code size at the current compiler level overloads the FLASH size of the target board, a higher compiler optimization level can be selected to reduce the code size of the project.

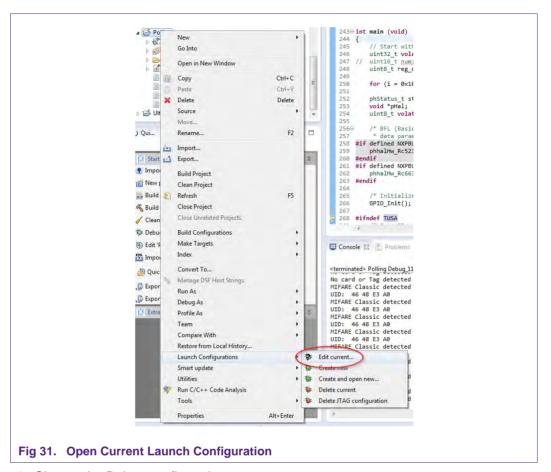
The following steps can be followed to select a level of compiler optimization:

- Click on the application project in the project window of the LPCXpresso IDE,
- Right click of the mouse → Select properties → Select C/C++ build,
- Select Settings → Optimization,
- Choose the desired level in the combo box.

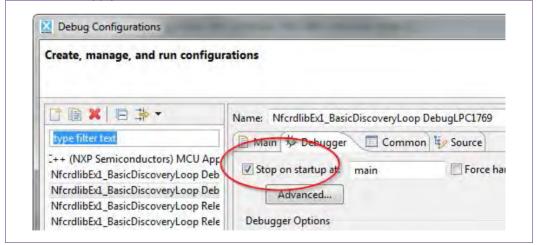
Blueboard Quick Startup Guide

Fig 30. Select the level of optimization

6.5.1 Optimization issues


When optimization is enabled, it will reorder code. What this means is that the code from multiple C lines will be intermingled. In addition, assignments and initializations might be pulled out of loops so they are only executed once. Changes like these will make the code confusing to debug. Some symptoms one might see are breakpoints that only work the first time through, or seeing the debugger's current line indicator fail to advance or even move backwards when clicking step. It is best to always use -00 for debugging.

6.6 Removing the initial breakpoint on debug startup


When the debugger starts, it automatically sets a breakpoint at the first statement in the main() function. One can remove this breakpoint as follows:

1. Right click on the project and choose Launch Configurations → Edit current...

Blueboard Quick Startup Guide

- 1. Choose the Debug configuration
- 2. Choose the tab Debugger
- 3. Uncheck the box near "Stop on startup at:"
- 4. Click onto Apply and then Close.

Blueboard Quick Startup Guide

7. References

[1] LPCXpresso website

http://www.lpcware.com/lpcxpresso/download

[2] RC663 data sheet

http://www.nxp.com/documents/data_sheet/CLRC663.pdf

[3] CLEV6630B demo board site

http://www.nxp.com/demoboard/CLEV663B.html

[4] NXP NFC Reader Library User Manual

http://www.nxp.com/documents/user manual/UM10721.pdf

[5] **Technical Specification** – Simple NDEF Exchange Protocol, NFCForum-TS-SNEP_1.0

http://www.nfc-forum.org/specs/spec license

- [6] EMV The table of card types and their matching AIDs are available on http://www.en.wikipedia.org/wiki/EMV
- [7] **EXPLORE-NFC product page** http://www.nxp.com/demoboard/PNEV512R.html#documentation
- [8] ISO/IEC 18000-3:2010(E)

Information technology — Radio frequency identification for item management Part 3: Parameters for air interface communications at 13,56 MHz Third Edition 2010-11-15

[9] ISO/IEC 15693-3

Identification cards — Contactless integrated circuit cards — Vicinity cards Part 3: Anticollision and transmission protocol Second Edition 2009-04-15

- [10] SLIX2 datasheet with custom commands specification http://www.nxp.com/documents/data_sheet/SL2S2602.pdf
- [11] CLRC663 Antenna Design Guide http://www.nxp.com/documents/application_note/AN11019.pdf
- [12] CLEV663B software and documents download http://www.nxp.com/board/CLEV663B.html#documentation
- [13] **NTAG-I2C**

http://www.nxp.com/products/identification_and_security/nfc_and_reader_ics/connected_tag_solutions/series/NT3H1101_NT3H1201.html

Blueboard Quick Startup Guide

8. Legal information

8.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

8.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP

Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

8.3 Licenses

Purchase of NXP ICs with ISO/IEC 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type B software enabled and is licensed under Innovatron's Contactless Card patents license for ISO/IEC 14443 B.

The license includes the right to use the IC in systems and/or end-user equipment.

RATP/Innovatron

8.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

MIFARE — is a trademark of NXP B.V.

DESFire — is a trademark of NXP B.V.

MIFARE Ultralight — is a trademark of NXP B.V.

MIFARE Plus — is a trademark of NXP B.V.

ICODE — is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

NXP Semiconductors

AN11211

Blueboard Quick Startup Guide

9. List of figures

Fig 1.	Picture of RC663 demo board4	Fig 18.	Debug Buttons	15
Fig 2.	Picture of jumper settings5	Fig 19.	Debug Buttons	15
Fig 3.	LPCXpresso installation NXP Debug drivers6	Fig 20.	Discovery Loop in Poll mode	17
Fig 4.	Windows Security dialog7	Fig 21.	ILT menu	21
Fig 5.	LPCXpresso IDE7	Fig 22.	ILT Inventory	22
Fig 6.	Product activation (1)8	Fig 23.	How to exit the Number of Tags endless loop	.23
Fig 7.	Product activation (2)8	Fig 24.	SLI menu	24
Fig 8.	Product activation (3)9	Fig 25.	Architecture of the NFC Reader Library	28
Fig 9.	Importing project (1)10	Fig 26.	State machine diagram of the T4T HCE	
Fig 10.	Importing project (2)10		example application	30
Fig 11.	Importing project (3)11	Fig 27.	ICODE - Architecture of the NFC Reader Lib	rary
Fig 12.	CLEV6630B with LPC-Link212			31
Fig 13.	Launch debug session12	Fig 28.	Select the build configuration	32
Fig 14.	Successful compile13	Fig 29.	Selection of the LPC1769 MCU	33
Fig 15.	Select the launch configuration13	Fig 30.	Select the level of optimization	34
Fig 16.	Debug project14	Fig 31.	Open Current Launch Configuration	35
Fig 17	Application printouts in Console window 14			

Blueboard Quick Startup Guide

10. Contents

1.	Introduction3
2.	Hardware overview of the Demo Board4
2.1	CLEV6630B demo board (Blueboard)4
2.2	CE certification of the Blueboard5
3.	Managing the Demo Reader project with
	LPCXpresso IDE6
3.1	Development environment6
3.2	Installation of LPCXpresso IDE6
3.3	Extraction of the demo reader project9
3.4	Running and debugging a project11
4.	Managing the CL663 SW projects with Linux
	and KDS IDE15
5.	Associated Projects15
5.1	Example 1 – Basic Discovery Loop16
5.2	Example 2 – Advanced Discovery Loop18
5.3	Example 4 – MIFARE Classic18
5.4	Example 5 - ISO1569318
5.5	Example 7 – EMVCo Polling
5.6	Example 9 – NTAG I2C
5.7	Example 10 – MIFARE DESFire
5.8 5.9	Example 11 – ISO10373 PCD
5.10	SimplifiedAPI EMVCo
5.10	ICODE Demo Project
5.11.1	ICODE ILT Demo Handling21
5.11.2	ICODE SLIX Demo Handling23
5.11.3	ICODE SLIX-2 Demo Handling25
5.11.4	ICODE SLI/SLIX-2 software and configurations
	27
6.	Supplementary Notes28
6.1	General Software Architecture28
6.1.1	Bus abstraction layer28
6.1.2	Hardware abstraction layer29
6.1.3	Protocol abstraction layer29
6.1.4	Application layer29
6.1.5	NFC Activity29

6.1.6	HCE Layer	29
6.1.7	NFC Apps	
6.2	ICODE Software Architecture	30
6.2.1	Bus abstraction layer	31
6.2.2	Hardware abstraction layer	31
6.2.3	Protocol abstraction layer	31
6.2.4	Application layer	31
6.3	Build configuration	32
6.4	Setting the MCU	32
6.5	Level of compiler optimization	33
6.5.1	Optimization issues	34
6.6	Removing the initial breakpoint on debug	startup
		34
7.	References	36
8.	Legal information	37
8.1	Definitions	
8.2	Disclaimers	37
8.3	Licenses	37
8.4	Trademarks	37
9.	List of figures	38
10.	Contents	39
-		

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.