

© WARNING

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians.
Any attempt to service or repair the product or products dealt with in this service information by anyone else could result in serious injury or death.

TABLE OF CONTENTS

PageINTRODUCTION
SAFETY PRECAUTIONS5
INSULATION RESISTANCE TEST 5
FOR SERVICE TECHNICIANS 5
BATTERY CAUTION 6
AC CAUTION 6
STANDARD BATTERY LIFE 7
PERSONAL SAFETY PRECAUTIONS 7
SPECIFICATIONS 8
OPTIONAL ACCESSORIES 8
LOCATION OF CONTROLS 9
FEATURES 10
CONNECTION 11
INSTALLATION 12, 13
COMPONENT LOCATIONS 14
MAINTENANCE ITEM 14, 15
CLEANING THE UNIT 16
TROUBLESHOOTING GUIDE
TROUBLESHOOTING SUMMARY 18
USER RECEIVERABLE ERRORS 19
DETAIL OF TROUBLESHOOTING 20~91
PROGRAMMING AND LISTS 92~97
TEST FUNCTIONS 97, 98
ADJUSTMENT
TABLE OF TEST EQUIPMENTS AND TOOL 100
ADJUSTING THE FEEDER PRESURE 101
CONFIRMATION OF SEPARATION SPRING 101
CCD ADJUSTMENTS 102~104
DOCUMENT READ START POSITION ADJUSTMENT 104, 105
CORDLESS ADJUSTMENT 107~113
DISASSEMBLY INSTRUCTIONS
DISASSEMBLY INSTRUCTIONS 115~125
HOW TO REPLACE FLAT PACKAGE IC 126
CIRCUII OPERATIONS
CONNECTION DIAGRAM 128
GENERAL BLOCK DIAGRAM 129, 130
CONTROL SECTION 131~136
FACSIMILE SECTION 137~145
MODEM SECTION 146~152
EXPLANATION OF ANALOG SECTION BLOCK DIAGRAM 153, 154
NCU SECTION 155, 156
ITS AND MONITOR SECTION 157, 158
TAM INTERFACE SECTION 159~161
OPERATION PANEL 162
LCD COG TYPE 163
SWITCHING POWER SUPPLY SECTION 164~166
CORDLESS SECTION 167~183
PRINTED CIRCUIT BOARD (DIGITAL BOARD) 185, 186
SCHEMATIC DIAGRAM (DIGITAL CIRCUIT) 187
SCHEMATIC DIAGRAM (ANALOG CIRCUIT) 188
PRINTED CIRCUIT BOARD (ANALOG BOARD) 189, 190
SCHEMATIC DIAGRAM AND PRINTED CIRCUIT BOARD (CCD) 191
PRINTED CIRCUIT BOARD (SWITCHING POWER SUPPLY) 192
SCHEMATIC DIAGRAM (SWITCHING POWER SUPPLY CIRCUIT) 193
PRINTED CIRCUIT BOARD (OPERATION PANEL) 194
SCHEMATIC DIAGRAM (OPERATION PANEL CIRCUIT) 195
PRINTED CIRCUIT BOARD (CORDLESS BASE UNIT) 196
SCHEMATIC DIAGRAM (CORDLESS BASE UNIT) 197
PRINTED CIRCUIT BOARD (RF UNIT) 198
SCHEMATIC DIAGRAM (RF UNIT) 199
PRINTED CIRCUIT BOARD (PORTABLE HANDSET) 200
SCHEMATIC DIAGRAM (PORTABLE HANDSET) 201
SCHEMATIC DIAGRAM AND PRINTED CIRCUIT BOARD (CHARGE) 202
TERMINAL GUIDE OF IC'S, TRANSISTORS AND DIODES 203, 204
TOOLS 205
CABINET, MECHANICAL AND ELECTRICAL PARTS LOCATION 206~211
ACCESSORIES AND PACKING MATERIALS 212
REPLACEMENT PARTS LIST 213~230

INTRODUCTION

Paye
Safety Precautions 5
Insulation Resistance Test 5
For Service Technicians 5
Battery Caution 6
AC Caution 6
Standard Battery Life 7
Personal Safety Precautions 7
Specifications 8
Optional Accessories 8
Location of Controls 9
Features 10
Connection 11
Installation 12, 13
Component Locations 14
Maintenance Item 14, 15
Cleaning the Unit 16

SAFETY PRECAUTIONS

1. Before servicing, unplug the power cord to prevent an electric shock.
2. When replacing parts, use only the manufacturer's recommended components.
3. Check the condition of the power cord. Replace if wear or damage is evident.
4. After servicing, be sure to restore the lead dress, insulation barriers, insulation papeıs, shields, etc.
5. Before returning the serviced equipment to the customer, be sure to perform the following insulation resistance test to prevent the customer from being exposed to shock hazards.

INSULATION RESISTANCE TEST

1. Unplug the power cord and short the two prongs of the plug with a jumper wire.
2. Turn on the power switch.
3. Measure the resistance value with an ohmmeter between the jumpered $A C$ plug and each exposed metal cabinet part (screwheads, control shafts, handle brackets, etc.).
"Note: Some exposed parts may be isolated from the chassis by design. These will read infinity.
4. If the measurement is outside the specified limits, there is a possibility of a shock hazard.

The equipment should be repaired and rechecked before it is returned to the customer.

Resistance $=$ more than $1 \mathrm{M} \Omega$
(at DC 500 V)

FOR SERVICE TECHNICIANS

ICs and LSIs are vulnerable to static electricity.
When repairing, the following precautions will help prevent recurring malfunctions.

1) Cover the plastic parts boxes with aluminum foil.
2) Ground the soldering irons.
3) Use a conductive mat on the worktable.
4) Do not touch IC or LSI pins with bare fingers.

BATTERY CAUTION

CAUTION

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacture. Discard used batteries according to following caution:

Disposal of lithium batteries should be performed by permitted, professional disposal firms knowledgeable in state government federal and local hazardous materials and hazardous waste transportation and disposal requirements.
Battery continues to have no transportation limitations as long as they are separated to prevent short circuits and packed in strong packaging.
Commercial firms that dispose of any quantity of lithium cells should have a mechanism in place to account for their ultimate disposition. This is a good practice for all types of commercial or industrial waste.
$\begin{aligned} \text { Recommend Type Number: CR2032 (BATT) } & \begin{array}{l}\text { Manufactured by MATSUSHITA } \\ \text { CR2032 (BATT) }\end{array} \quad \text { Manufactured by SONY }\end{aligned}$

AC CAUTION

For safety, before closing the lower cabinet, please make sure of the following precautions.
(1) The earth lead is fixed by the screw.
(2) The AC connector is connected properly.
(3) Wrap the AC lead around the core 3 times.

(BOTTOM VIEW)

sTANDARD BATTERY LIFE

If your Panasonic battery is fully charged;

While in use (TALK)	Up to about 4.5 hours
While not in use (Stand-By)	Up to about 14 days

- Battery life may vary depending on usage conditions and ambient temperature.
- Clean the handset and the main unit charge contacts with a dry soft cloth once a month, or the battery may not charge properly.
- Once the battery is fully charged, you do not have to place the handset on the main unit until the TALKIBATT LOW indicator flashes slowly.
- The battery cannot be overcharged.

PERSONAL SAFETY PRECAUTIONS

Be careful not to let your hair, clothes fingers, accessories, etc., become caught in any moving sections of the unit. These are driven by the carriage monitor, and the slow down gear, the paper feed roller, the pressure roller, the eject roller, the spur, the pick-up roller, etc., which are driven by the paper feed motor. These separation roller and document feed roller which are rotated by the document feed motor and a gear which makes the two rollers rotate. Also, the spurs are metal and sharply pointed. Be careful not to touch them accidentally by hand.

SPECIFICATIONS

Main unit

1. Applicable Lines:
2. Document Size:
3. Effective Scanning Width:
4. Printing Paper Size:
5. Effective Printing Width:
6. Transmission Time*:
7. Scanning Density:

Public Switched Telephone Network
Max. $216 \mathrm{~mm}\left(8^{1 / 2^{\prime}}\right)$ in width
Max. $600 \mathrm{~mm}\left(235 / 8^{\circ}\right)$ in length
$208 \mathrm{~mm}\left(8^{3 / 16^{\prime}}\right)$
$216 \mathrm{~mm} \times \max .50 \mathrm{~m}\left(81 / 2^{\prime} \times 164^{\prime}\right)$ roll
$216 \mathrm{~mm}\left(8^{1 / 2^{\prime}}\right)$
Approx. $15 \mathrm{sec} /$ page (Original mode)
Approx. $30 \mathrm{sec} /$ page (G3 Normal mode)
Horizontal : 8 pels/mm (203 pels/inch)
Vertical : $\quad 3.85$ lines/mm (98 lines/inch) -Standard mode
7.7 lines $/ \mathrm{mm}$ (196 lines/inch) -Fine/Halftone mode
15.4 lines/mm (392 lines/inch) -Superfine mode

64-level
CCD image sensor
Thermal printing
Modified Huffman (MH), Modified READ (MR)
9600/7200/4800/2400 bps; Automatic Fallback
$5-35^{\circ} \mathrm{C}\left(41-95^{\circ} \mathrm{F}\right), 45-80 \%$ RH (Relative Humidity)
Approx. $118 \times 366 \times 265 \mathrm{~mm}\left(4^{21 / 32^{\prime}} \times 13^{3 / 8^{\prime}} \times 10^{7 / 16^{\prime}}\right)$
Approx. 3.4 kg (7.5 lb .)
Standby: Approx. 5W / Transmission: Approx. 15W
Reception: Approx.35W / Copy: Approx.40W
Maximum: Approx. 100W
120 V AC, 60 Hz (This unit will not function at 50 Hz .)

Handset

1. Operating Environment:
2. Dimensions ($\mathbf{H} \times \mathbf{W} \times \mathrm{D}$):
3. Weight:
4. Power Supply:
5. Frequency:
6. Security Codes:
$5-35^{\circ} \mathrm{C}\left(41-95^{\circ} \mathrm{F}\right), 45-80 \%$ RH (Relative Humidity)
Approx. $39 \times 55 \times 271 \mathrm{~mm}\left(1^{17 / 32^{\prime}} \times 2^{3 / 32^{\prime}} \times 10^{11 / 16^{\prime}}\right)$
Approx. 200 g (0.4 lb .)
Ni-Cd battery ($3.6 \mathrm{~V}, 600 \mathrm{mAh}$)
902-904 MHz, 926-928 MHz (30 channels)
1,000,000
*Transmission speed depends upon the contents of the pages, resolution, telephone line conditions and capability of receiving unit. 15 second speed based upon CCITT No. 1 Test Chart.
-Design and specifications are subject to change without notice.

OPTIONAL ACCESSORIES

Parts No.	Description	Comment
KX-A106	Standard Thermal Recording Paper	$216 \mathrm{~mm} \times 30 \mathrm{~m}\left(8^{1 / 2^{\circ}} \times 98^{\prime}\right)$ roll, with 25 mm (1") core
KX-A116	Standard Thermal Recording Paper	$\begin{aligned} & 216 \mathrm{~mm} \times 50 \mathrm{~m}\left(8^{1} 1^{\prime} \times 164^{\prime}\right) \text { roll, } \\ & \text { with } 25 \mathrm{~mm}\left(1^{\prime \prime}\right) \text { core } \end{aligned}$
KX-A125	Super Thermal recording Paper (Like plain paper)	$216 \mathrm{~mm} \times 30 \mathrm{~m}\left(8^{1 / 2^{\circ}} \times 98^{\prime}\right)$ roll, with 25 mm (1") core

LOCATION OF CONTROLS

Front View

Control panel

Handset

FEATURES

General

- Automatic paper cutter
- Answering machine interface
- 64-Level halftones resolution
- Large 165 ft. paper roll
- Help printout

900MHz Cordless

- Fax activation from handset
- Intercom with 2-way paging
- Lighted keypad
- 14-day battery life
- Sound Charger ${ }^{T M}$ technology
- 10-station speed dial
- Spare battery charger

Facsimile

- Easy-to view LCD (16-character)
- Automatic document feeder (up to 15 sheets)
- Paper curl reduction technology
- Resolution: Standard/Fine/Super Fine/Half Tone
- Distinctive ring detection

Integrated Telephone System

- Speakerphone
- Telephone directory with alpha-search
- Super thermal paper
- Correct order reception printout
- One touch dialer (10 phone-number)
- 50-station speed dialer

CONNECIION

Note:

- For additional equipment protection, we recommend the use of a surge protector. The following types are available; TELESPIKE BLOK MODEL TSB (TRIPPE MFG. CO.), SPIKE BLOK MODEL SK6-0 (TRIPPE MFG. CO.), SUPER MAX (PANAMAX) or MP1 (ITW LINX).
- You can connect an extension phone or a telephone answering machine to the unit after removing the stopper on the external telephone jack (EXT).
- When you operate this product, the power outlet should be near the product and easily accessible.

Helpful hint:

If assistance is needed, press HELP. The unit will print a quick reference.

INSTALLATION

1. Installing the recording paper

1
(A) Open the back lid by lifting up the tabs located on the both sides.
(B) Install a recording paper roll in the main unit. - Make sure that the shiny side of the paper is facing down and there is no stack, tape, or glue residue on the paper roll.

correct

incorrect

0 Insert the leading edge of the recording paper 2 between the recording paper roller and the silver plate.

3 Close the back lid by gently pressing down on both ends.

Note:

- Only use the included roll of paper or specified recording paper, or else the print quality may be affected and/or excessive thermal head wear may occur.
- The beginning of some recording paper rolls are secured with glue or tape.

Cut approximately 150 mm (6 inches) from the new roll of paper prior to installation.

2. Installing the paper stacker

```
Install the paper stacker.
```


3. Installing the spare battery cover on the main unit

Close the spare battery cover.

4. Installing the battery in the handset

Install the battery as shown observing the
proper polarity.

2 Install the battery cover.

COMPONENT LOCATIONS

MAINTENANCE ITEM

1. OUTLINE

MAINTENANCE AND REPAIRS ARE PERFORMED USING THE FOLLOWING STEPS.

1) Periodic maintenance

Inspect the equipment periodically and if necessary, clean any contaminated parts.

2) Check for breakdowns

Look for signs of trouble and consider how the problems arose.
If the equipment can still be used, perform copying, self-testing or communications testing.
3) Check equipment

Perform copying, self testing and communications testing to determine if the problem originates from the transmitter, receiver or the telephone line.

4) Determine causes

Determine the causes of the equipment trouble by troubleshooting.
5) Equipment repairs

Repair or replace the defective parts and take appropriate measures at this stage to ensure that the problem does not recur.
6) Confirm normal operation of the equipment

After completing the repairs, conduct copying, self testing and communications testing to confirm that the equipment operates normally.

7) Record keeping

Make a record of the measures taken to rectify the problem for future reference.

2-1. MAINTENANCE LIST

NO.	OPERATION	CHECK ITEM	REMARKS
1	Document Path	Remove any foreign matter such as scrap of paper.	-
2	Rollers	If a roller is dirty, clean it with a damp cloth, then let dry thoroughly.	See page 16.
3	Recording Paper Roller	If the platen is dirty, clean it with a damp cloth, then let dry thoroughly. Remove the paper before cleaning.	See page 121.
4	Thermal Head	If the thermal head is dirty, clean the printing surface with a cloth moistened with denatured alcohol (alcohol without water), then let dry thoroughly.	See page 123.
5	LED Array	If the LED array is dirty, clean the glass with a dry soft cloth.	See page 16.
6	Sensors	Confirm the operation of the following sensors: recording paper sensor (SW273), Document sensor (PI302), Read position sensor (PI301), Cover open sensor (SW271), and JAM sensor (SW272).	See pages 77, 78.
7	Mirrors and Lens	If the mirror and lens are dirty, clean them with a dry soft cloth.	-
8	Abnormal, wear and tear or loose parts	Replace the part. Be sure that all part's screws are tight.	

2-2. MAINTENANCE CYCLE

No.	Items	Cleaning		Replacement		Remarks
		Cycle	Procedure	Cycle	Procedure	
1	Separation Roller (Ref. No. 58)	3 months	See P. 16.	7 years (63,000 documents)	See page 120.	
2	Separation Rubber (Ref. No. 23)	3 months	----	7 years (63,000 documents)	----	
3	Feed Roller (Ref. No. 49, 53)	3 months	See P. 16.	7 years (63,000 documents)	See page 120.	
4	Target Glass (Ref. No. 171)	3 months	See P. 16.	7 years (63,000 documents)	----	
5	Thermal Head (Ref. No. 59)	3 months	See P. 123.	7 years (63,000 documents)	See page 123.	
6	Recording Paper Roller (Ref. No. 112)	3 months	See P. 121.	7 years (63,000 documents)	See page 121.	

These values are only standard ones and may vary depending on usage conditions.

CLEANING THE UNIT

Cleaning the inside of the unit

If misfeeding occurs frequently, or dirty patterns or black bands appear on a copied or transmitted document, clean the document feeder rollers, sub roller, rubber flap, white plate and glass.

1
Disconnect the power cord and the telephone line cord.

9 Open the front lid by pressing the front lid open button.

3 Clean the document feeder rollers and roller with a cloth moistened with isopropyl rubbing alcohol, and let dry thoroughly.
4
Clean the rubber flap with a cotton swab moistened with isopropyl rubbing alcohol, and let dry thoroughly.

5 Clean the white plate and glass with a soft dry cloth.

6 Clean the front lid by gently pressing down on both ends.

Connect the power cord and the telephone line
cord.

Front lid open button

Caution:

- Do not use paper products (such as paper towels or tissues) to clean the inside of the unit.

Cleaning the charge contacts

Clean the main unit and the handset charge contacts with a dry soft cloth once a month, or the battery may not charge properly.

TROUBLESHOOTING GUIDE

Page

1. Troubleshooting Summary 18
1-1. Troubleshooting 18
1-2. Precautions 18
2. User Recoverable Errors 19
3. Detail of Troubleshooting 20~91
$3-1$. Outline 20
3-2. Starting up troubleshooting 20
3-3. Table of troubleshooting items 21
3-4. Easy-check-list 22
3-5. ADF section 23~32
3-6. Communication section 33~53
3-7. Digital board section 54~67
3-8. Analog board section 68~71
$3-9$. Power supply section 72~75
3 -10. Operation board section 76
3-11.Sensor section 77, 78
3-12. Read section 79~83
3 -13. Thermal head section 84
3-14. Cordless section 85~91
4. Programming and Lists 92~97
5. Test Functions 97, 98

1. TROUBLESHOOTING SUMMARY

1-1. TROUBLESHOOTING

After having confirmed the abnormal condition by asking the user, troubleshoot according to the msulucluiv in Observe the following precautions when troubleshooting.

1-2. PRECAUTIONS

1) If there is trouble with the print quality or the paper feed, first check that the installation space and the print paper meets the specifications, that the paper selection lever/paper thickness lever is set correctly, and that the paper is set correctly without any looseness.
2) Before troubleshooting, first check that the connectors and cables are connected correctly without any looseness. Especially, if the abnormality occurs randomly, check very carefully.
3) When connecting the $A C$ power cord with the unit case and checking the operation, exercise utmost care in handling the electric parts in order to avoid electric shock and short-circuits.
4) After troubleshooting, double check that you have not forgotten any connectors, left any loose screws, etc.
5) And always test to verify that the unit is working normally.

2. USER RECOVERABLE ERRORS

If the unit detects a problem, the following messages will appear in the display.

DISPLAY MESSAGE	CAUSE AND REMEDY
CALL SERVICE	- There is something wrong with the unit.
CHECK COVER	- The back lid is open. Close it.
CHECK DOCUMENT	- The document is not fed into the unit properly. Reinsert the document. If the misfeeding occurs frequently, clean the document feeder rollers inside the unit. If the problem remains, adjust the feeder pressure.
CHECK MEMORY	- Memory (phone numbers, parameters, etc.) has been erased. Re-program.
NO RESPONSE	- The receiving unit is busy or ran out of recording paper. Try again.
OUT OF PAPER	- The unit ran out of recording paper. Install a new recording paper.
PAPER JAMMED	- A recording paper jam occurred. Clean the jammed paper.
POLLING ERROR	- The other fax machine does not provide the polling function. Check with the other party.
REDIAL TIME OUT	- The receiving unit is busy or ran out of recording paper. Try again.
REMOVE DOCUMENT	- The document is jammed. Remove the jammed document. - Attempted to transmit a document longer than $600 \mathrm{~mm}\left(23 / \mathrm{s}^{\prime \prime}\right)$. Press the STOP button and remove the document. Divide the document into two or more sheets and try again.
TRANSMIT ERROR	- A transmission error occurred. Try again.
UNIT OVERHEATED	- The unit is too hot. Let the unit cool down.

3. DETAIL OF TROUBLESHOOTING

3-1.OUTLINE

Troubleshooting is to make quality and reliability recover by finding out the broken component and exchange or adjustment or cleaning. We have to find out symptoms and then arrange troubleshooting method.
If it's tough to finding out just a broken component, we should so arrange that block or section are specified, for example "digital board" or image sensor".
A claim tag from customer or dealer gives us many kinds of expression for same trouble. Because they are not technician or engineer. But we should carefully read it on our supposition comes from experience, and sufficiently test the function related to that tag. Returns from customer or dealers often have to claim tag. In this case we need to find out the symptoms. Therefore please test the unit following simple-check-list. A problem difficult to find out may lurk, so we need to test repeatedly, for example make copy 10 pages or receiving 10 pages,

3-2. STARTING UP TROUBLESHOOTING

- Find out the symptom and troubleshooting method

3-3. TABLE OF TROUBLESHOOTING ITEMS

FUNCTION	SYMPTOM	SEE THIS PAGE
Unit doesn't work at all	No character or faint response in the LCD	
	Skewed sending image Expanded print Image is distored Black or White lateral line on printing	Page 30 Pring
	Page 30	
ADF	No feed Paper jam Multiple feed Skew	Page 28

3-4. EASY-CHECK-LIST

FUNCTION		JUDGEMENT	REFERENCE
FAX operation	transmission	OK / NG	
	receiving	OK / NG	
Copy operation	FINE mode	OK / NG	
	HALF TONE mode	OK / NG	
Telephone operation	Monitor sound	OK / NG	
	Ringer sound	OK / NG	
	Dial operation	OK / NG	
	Volume operation	OK / NG	
	VOX detection	OK / NG	SERVICE CODE 815
Operation panel	Key check	OK / NG	SERVICE CODE 561
	LED check	OK / NG	SERVICE CODE 557
	LCD check	OK / NG	SERVICE CODE 558
Sensor	Sensor check	OK / NG	SERVICE CODE 815
Clock		OK / NG	
External TAM	Handset Transceiver/receiver	OK / NG	gain correctly? compare to your watch.
	Remote control	OK / NG	
Cordless operation	Portable handset transmission/receiver	OK / NG	Change to FAX receiving by dialing ** (Refer to user mode \#41 on page 52.)
	Link	OK / NG	
	Battery charge	OK / NG	

3-5. ADF (Auto document feed) SECTION

(1) No document feed

(2) Paper JAM

Fig. A
(3) Multiple feed

(3) Multiple feed

(4) Skew

(6) Black or white vertical lines appear.

(7) Can not cut the recording paper.

(8) Skewed sending image

(9) Expanded print

(10) When copying or prinung air abiuminal sound is heard trom the unit.

KX-F900

(A)

3-6. COMMUNICATION SECTION

Communication connection (modem)
(Print defect in FAX communication)

| Symptom | General Classification | Hint |
| :---: | :--- | :--- | :--- |
| Referring to the printer | Print a communication | TEST : If only the print communication is NG and other
 printing is OK, there is a high possibility that
 there is a problem in the digital board's modem
 and analog board buss. |
| (1) Paper is not output | | The transmitted sending side's signal was not received.
 If the DTMF tone is not heard, change the IC11
 modem.
 If the DTMF tone is heard, there is a problem in the
 signal pass route. |
| Confirm the repair method in the DEFECTIVE FACSIMILE | | |
| SECTION. (Refer to page 34) | | |

Confirm the repair method in the DEFECTIVE FACSIMILE SECTION. (Refer to page 34)

Communication error causes:

1. User (unit)
2. Circuit condition
3. Other party (unit)

It is possible that there are other causes than the user.
Try communication in redial a few times.
Also, try communication speed in 4800 bps or lower.

(1) Defective facsimile section

(1) Transmit problem

Receive problem

Confirm below before starting troubleshooting.

- Recording paper is installed properly?

Confirm below before starting troubleshooting.

CHECK THERMAL PAPER
CHECK COVER
OVERHEATED (doesn't return automatically, COVER OPEN, etc., it is necessary to reset) PAPER JAM

Please refer to "2. User Recoverable Errors" (Refer to page 19) for the above items. Also, when it actually becomes a hardware deformity, please check each sensor.

(3) Unit can copy, but can not transmit/receive

(4) Unit can copy, but can not transmit/receive long distance or international communication

The following 2 causes can be considered for this.

Cause 1:

The other party is executing automatic calling, the call has been received by this unit, and this time until response with a CED or DIS signal has been too long. (In almost case, this unit detects CNG signal and can respond to CED or DIS.) (According to the ITU-T standard, the communication procedure is stopped when there is no response from the other party within 35 sec , so that the other party releases the line.)
(Time until Response)

Other party FAX
machine dials

(Cause and Countermeasure)

As shown in the above chart, the total handshaking time must be reduced, but because of the long distance connection and linking of several stations, the line connection time can not be reduced. Accordingly, the following countermeasures should be tried.
(A) The TEL/FAX DELAYED RING count should be 1. (user parameter: code No. 06)
(B) As the count of 35 sec is started directly after dialing or directly after the START button has been pressed for models with a START button, the other party should be called manually, if possible.
Another possibility is entry of two pauses at the end of the auto dial number of the transmission side, In this way, the start time for the count can be delayed by 2 pauses (about 10 sec).

Cause 2:

Erroneous detection because of echo or erroneous detection because of an echo canceler.

The sea bottom cable or satellite communication path. (4 Line Type)

(Echo/Echo Canceler)

The signal from FAX1 reaches FAX2 via the stations 1 and 2, but the reflection signal at station 2 also returns via station 1 (echo). As the distance between station 1 and station 2 is long, the echo returns to FAX 1 max. 600 msec after transmission, so than there is the possibility that this signal is detected erroneously as the signal from FAX2 and that trouble is caused. In the case of a normal call, there is also the possibility that the echo of the own voice will make the call difficult to understand. For this reason, each station (station 1, station 2) attaches echo cancelers (S1, S2) in case of international lines or long distance lines. For the echo canceler, the level of the transmission signal from FAX 1 is compared with the level of the reception signal from the FAX2, and when transmission signal is larger, S1 is closed, while S2 is opened when it is smaller. In other words, with transmission from FAX1, S1 is closed and S2 is open, so that the echo does not return to FAX1.

(Cause and Countermeasure)

(Cause A)

When the training signal is transmitted from FAX1 during the communication procedure at the time of transmission from FAX1 to FAX2, there is a delay until the echo canceler operates and S1 is closed, so that a part of the head of the training signal may drop out, normal reception by FAX2 may not be possible, and transmission may not be started.

(Countermeasure A)

When the international line mode becomes ON service mode (code No. 521), a dummy signal is attached to the head of the training signal to prevent this problem. As this normally is ON, it is necessary to reconfirm that this has not becomes OFF. When the international mode is switched OFF, the transmission side will try the training signal three times at each speed ($9600 \mathrm{BPS}, 4800 \mathrm{BPS}$ and 2400 BPS), and in case of NG, it will drop the speed by one rank (fall-back). When the international mode is switched ON, each speed will be tried only twice. In other words, the slower speed with fewer errors are reached more easily. This is done as the line conditions may deteriorate and the picture may be disturbed more easily during communication in case of international lines or long distance communication, even when the training has been OK. The default value is ON as preference is given to clearer pictures rather than speed.

(Cause B)

The echo canceler operation is stopped with a signal of 2100 Hz (i.e. S 1 and S 2 become ON).
Accordingly, when FAX1 has executed automatic reception, a CED signal is output, and if this signal should be 2100 Hz , S 1 and S 2 will become ON. Then the echo of the DIS signal output afterwards may be received and FAX1 may execute erroneous operation, preventing start of communication.

(Countermeasure B)

In service mode, the CED signal frequency is set to 1100 Hz (code No.520) or the time setting between the CED signal and the DIS signal is set from 75 msec to 500 msec in service mode (code No.593). This is done because the echo canceler operation stop mode is cancelled with an interval of 250 msec or more.

(Cause C)

KX-F900 shall be assumed for FAX1 and a set of a different company shall be assumed for FAX2.
In case of transmission from the KX-F900 to FAX2, FAX2 executes automatic reception and transmits a CED signal (2100 $\mathrm{Hz})$, followed by a DIS signal. As here the echo cancelers stops as described in cause B, the echo of the DIS signal returns to FAX2. On the other hand, the KX-F900 detects the DIS signal and transmits a DCS signal. In other words, it is possible that the echo of the DIS signal and the DCS signal transmitted from the KX-F900 reach FAX2 one after the other, FAX2 executes erroneous detection, and communication are not started.

(Countermeasure C)

When international DIS detection setting is made effective in service mode (code No.594), the KX-F900 does not respond to the first DIS signal and returns a DCS signal only for the second DIS signal.
In other words, there is an interval of 250 msec between transmission of the first and the second DIS signal, so that the echo cancelers operation recovers and no echo is generated for the second DIS signal.
Note:
When the other FAX does not respond with a DCS signal after DIS signal transmission, the DIS signal is transmitted three times for trial.

KX-F900

Summary:
Long distance and international communication operation

SYMPTOM	COUNTERMEASURE
Does not receive in automatic mode.	1. The TEL/FAX DELAYED RING count should be 1. (user parameter: code No. 06) 2. If possible, manual transmission should be made from the transmission side. 3. If possible, two pauses should be inserted at the end of the auto dial number of the transmission side. 4. If possible, the Function Selector Switch should be switched to FAX.
Does not transmit.	1. Confirm the international line mode ON. (service mode: code No. 521) 2. International DIS detection setting is made effective. (service mode: code No. 594)
Does not receive.	1. The time setting between the CED signal and the DIS signal is set to 500msec. (service mode: code No. 593)
2. The CED frequency is set to 1100Hz.	
(service mode: code No. 520)	

(5) Unit can copy, but the transmission and reception image is incorrect
 (Long distance or international communication operation)

This depends widely on the transmission and reception capability of the other FAX set and the line conditions.
The countermeasures for this set are shown below.

Transmission Operation:

The transmitting speed is set to 4800BPS (service mode: code No. 717) or select overseas mode. (Individual correspondence according to the other set is desirable.)

Reception Operation:

If 80% or more of the reception should be incorrect, set the receiving speed to 4800BPS. (service mode: code No. 718)
(2) Communication error functions
(1) Operation:

1. Press the MENU button 3 times.
2. Press the START/SET button and $\boldsymbol{\nabla}$ button 4 times.
3. Press the START/SET button.
4. Print out.
(2) Error code table:

CODE	RESULT	MODE	SYMPTOM	Countermeasure
	PRESSED THE STOP KEY	TX \& RX	Communication was interrupted with the STOP button	
	DOCUMENT JAMMED	TX	Document paper is jammed	
	NO DOCUMENT	TX	No document paper	
	PRINTER OVERHEATED	RX	Thermal head is overheated	
	PAPER OUT	RX	Out of thermal paper	
	THE COVER WAS OPENED	TX \& RX	Cover is open	
	PAPER JAMMED	$R X$	Recording paper is jammed	
	NO RESPONSE	TX	Transmission is finished when T1 TIMER is expired	1
41	COMMUNICATION ERROR	TX	DCN is received after DCS transmission	2
42	COMMUNICATION ERROR	TX	FTT is received after transmission of 2400BSP training signal	3
43	COMMUNICATION ERROR	TX	No response after post message is transmitted three times	4
44	COMMUNICATION ERROR	TX	RTN and PIN are received	5
46	COMMUNICATION ERROR	RX	No response after FTT is transmitted	6
48	COMMUNICATION ERROR	RX	No post message	7
49	COMMUNICATION ERROR	RX	RTN is transmitted	8
50	COMMUNICATION ERROR	RX	PIN is transmitted (to PRI-Q)	8
51	COMMUNICATION ERROR	RX	PIN is transmitted	8
	NO RESPONSE	RX	Reception is finished when T1 TIME is expired	9
53	COMMUNICATION ERROR	TX	DCN is received after transmission of NSC and DTC	10
54	COMMUNICATION ERROR	RX	DCN is received after DIS transmission	11
57	COMMUNICATION ERROR	TX	300BPS error	12
58	COMMUNICATION ERROR	RX	DCN is received after FTT transmission	13
59	COMMUNICATION ERROR	TX	DCN responds to post message	14
64	COMMUNICATION ERROR	TX	Polling is not possible	15
68	COMMUNICATION ERROR	RX	No response at the other party after MCF or CFR is transmitted	13
70	COMMUNICATION ERROR	RX	DCN is received after CFR transmission	13
72	COMMUNICATION ERROR	RX	Carrier is cut when image signal is received	16
FF	COMMUNICATION ERROR	TX \& RX	Modem error	12

TX=TRANSMISSION RX=RECEPTION

KX-F900

(3) Countermeasure

machine was set to receivable
6.1 mode.

KX-F900

(3) Remote programming

While a user is talking on the phone, a technician can set the function parameters of customer's unit from service center.

1. A call comes in service center.
2. A technician gets a claim from a customer.
3. He says to the customer "Please change to the speaker phone if talking with the portable handset. And then please press MEMU button and wait for a moment".
4. The technician dial ' $9,0,0,0, *$ ' from his telephone. The customer's unit is set REMOTE PROGRAMMING MODE and generates remote beep sound. He hears "Piiii' (one long beep).
5. He presses 3 digits code of service function written in service manual by dial keypad. (See page 52)

And presses * (set).
The customer's unit receives the service code.
He hears "Piiii" (one long beep).
6. He presses $1 \sim 3$ digits value of function written in service manual by dial keypad.

And presses * (set).
The customer's unit receives the service value.
He hears "Pii Pii" (double short beeps).
7. Then he can repeat from step 5.
8. When a technician wishes to end the REMOTE PROGRAMMING MODE, he says to the customer, "Please press the STOP button to exit the REMOTE PROGRAMMING MODE. And then press the SP-Phone button".

Note:

1) To enter the REMOTE PROGRAMMING MODE is necessary in Step 3. Because the unit can not easily enter the REMOTE PROGRAMMING by DTMF signal from the other party.
2) If he presses wrong buttons when his operation is in step 5 or 6 . he hears "Pii Pii Pii" (triple short beeps). Then he can repeat from the same step.
3) When customer's unit finishes transmitting a list (No. 991,992, 994,999), he can have a voice conversation. And he can continue the REMOTE PROGRAMMING MODE.
4) When customer's unit start transmitting a list (No. $991,992,994,999$), he does not hear "Pii Pii" (double short beeps). The unit generate CNG sound.
(1) Summary of remote programming mode

Code	Function	Set Value	Default	Remote setting
001	Set date and time	$\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$ hh:mm	---	NG
002	Your logo	-----	---	NG
003	Your telephone number	-----	-----	NG
004	Print transmission report	1:ERROR/2:ON/3:OFF	ERROR	OK
005	Auto receive mode	1:FAX 2:EXT TAM	FAX	OK
007	FAX ring count	1 to 4 rings	1 ring	OK
008	Manual receive mode	1:TEL, 2:TELFAX	TEL	OK
009	TEL/FAX delayed ring	1 to 4 rings	1 ring	OK
012	Remote TAM activation	1:ON/2:OFF	OFF/ID $=11$	NG
021	Logo position	1:OUT/2:IN	OUT	OK
022	Journal auto print	1:ON/2:OFF	ON	OK
023	Overseas mode	1:ON/2:OFF	OFF	OK
024	Junk mail prohibitor	ON/OFF	OFF/ID=22	NG
025	Delayed transmission	ON/OFF	OFF	NG
030	Silent FAX recognition ring	3 to 6 rings	3 rings	OK
031	Ring detection	0:OFF/1:A/2:B/3:C/4:D	OFF	OK
039	LCD contrast	NORMAL/DARKER	NORMAL	NG
040	Silent Detection	1:ON/2:OFF	ON	OK
041	Remote FAX activation code	ON/OFF	ON/ID $=* *$	NG
046	Friendly reception	1:ON/2:OFF	ON	OK
070	FAX pager	ON/OFF	OFF	NG
080	Set default	YES/NO	NO	NG
501	Pause time set	001~600 $\times 100 \mathrm{msec}$	050	OK
502	Flash time set	01~99×10msec	70	OK
503	Dial speed set	1:10/2:20pps	10	OK
520	CED frequency select	1:2100/2:1100Hz	2100	OK
521	International mode select	1:ON/2:OFF	ON	OK
522	Auto standby select	1:ON/2:OFF	ON	OK
523	Receive equalizer select	1:ON/2:OFF	OFF	OK
544	Document feed position adjustment value set	01~99 step	----	OK
550	Memory clear	"START" push	-----	NG
551	ROM check	"START" push	-----	NG
553	Monitor on FAX communication select	1:OFF/2:P-B/3:ALL	OFF	OK
554	Modem test	"START" push	--	NG
555	Scanner test	"START" push	--	NG
556	Motor test	"START" push	-----	NG
557	LED test	"START" push	-----	NG
558	LCD test	"START" push	-----	NG
559	Paper jam detection select	1:ON/2:OFF	ON	OK
560	Cutter select	1:ON/2:OFF	ON	OK
561	Key test	Press any key	-----	NG
562	Cutter test	"START" push	--	NG
563	CCD position adjustment value set	$00 \sim 30 \mathrm{~mm}$	-----	OK
570	Break \% select	1:61/2:67\%	61\%	OK
571	ITS auto redial time set	00~99	014	OK
572	ITS auto redial line disconnection time set	001~999	030	OK
573	TEL ring count	01~99	15	OK

Code	Function	Set Value	Default	Remote setting
590	FAX auto redial time set	00~99	05	OK
591	FAX auto redial line disconnection time set	001~999	045	OK
592	CNG transmit select	1:OFF/2:ALL/3:AUTO	All	OK
593	Time between CED and 300 bps	1:75/2:500/3:1s	75 ms	OK
594	Overseas DIS detection select	1:1st/2:2nd	1st	OK
595	Receive error limit value set	001~999	100	OK
596	Transmit level set	-15~00dBm	-10	OK
700	Ext. TAM OGM time	01~99 sec.	10	OK
701	Silent detect time	01~99 $\times 100 \mathrm{msec}$	50	OK
702	Ext. TAM ring count	0~9	5	OK
717	Transmit speed select	1:9600/2:7200/3:4800/4:2400bps	9600bps	OK
718	Receive speed select	1:9600/2:7200/3:4800/4:2400bps	9600 bps	OK
719	Ringer off in TEL/FAX mode	1:ON/2:OFF	ON	OK
721	Pause tone detect	1:ON/2:OFF	ON	OK
722	Redial tone detect	1:ON/2:OFF	ON	OK
732	Auto disconnect cancel time	1:350msec/2:1800msec/3:OFF	350msec	OK
763	Friendly reception CNG detection select	1:10S/2:20S/3:30S	20 S	OK
771	T1 timer	1:35sec/2:60sec	35 sec	OK
815	Sensor check	"START" push	---	NG
844	Original setting	1:NORMAL/2:LIGHT/3:DARKER	NORMAL	OK
909	Handset remote FAX ACT	0~9, * 2~4 digits	* *	NG
991	Transmit basic list	1:START	-----	OK
992	Transmit advanced list	1:START	-----	OK
994	Transmit journal report	1:START	-----	OK
999	Transmit service list	1:START	-----	OK

OK: Can set the valve by remote programming featureor print list
NG: Can not set the valve.

3-7. DIGITAL BOARD SECTION

- How to fix the digital board that don't start up the unit.

(1) OVER VIEW

If you see a human being down on the street, what will you do?
You may talk to him. But if he doesn't answer, you check his breath or pulse, don't you.
Why do we check them? Breath or pulse, we needs must do it to live. We start to check from most basic things to live.
Checking (or repair) the Board doesn't work is similar to it.
We should start to check from most basic things to work.
What is most basic to work?

1. POWER SUPPLY (+5V, +24V)
2. SOLDERING of ICs
3. OSCILLATOR (CLK) (SYSTEM CLK: 24 MHz, MODEM CLK: 24 MHz)
4. RESET
5. SIGNALS

- ADDRESS BUS (A0~A15)

DATA BUS (DO~D7)
-READ, WRITE (RD, WR)
CS (Chip select) (ROMCS, MDMCS)
"Board doesn't work" means that board has any problems in these most basic things.
This document is going to explaining the order of repair with flow chart at first and then explaining individual point of those items in detail.

```
-- MEMO --
    MDM: modem (modulator/demodulator)
    CLK: clock
    ROM: read only memory
    RAM: random access memory (SRAM: static RAM. DRAM: dynamic RAM)
    RTC: real time clock
    adr: address
    RD: read
    WR: write
```


(2) CHECK LCD ON THE MACHINE

If the digital board had broken, machine does not react at all and black square will be on the LCD.
There are 5 processes to display some letters (12:00 AM) on LCD.

If processes were not complete, black square will be on the LCD.

KX-F900

(3) PROCEDURE FROM OUR EXPERIENCE TO FIX

Pleas check the status (voltage) of pin 56, pin 58 and pin 60 of IC 1.
These status may tell you defective point. (Please use the ROM for IC status checked) [Ref No. EC22]

| This could be
 defective point | status (voltage) of check points | | (ASIC) Please check here! |
| :---: | :---: | :---: | :---: | :---: | :---: |

Please check soldering and conduction of these components. If it is no problem, replace ICs.

If you still have problem, please go to "3-1 check detail" (page 58).
(1) CHECKING DETAIL

(2) POWER SUPPLY (5V, 24V)

(1) With AC power off

Please check Short Circuit of power line.

1. 5 V line at CN1 between pin 6 and 4 pin, is it short?
2. 24 V line at CN 1 between pin 2 and 3 pin, is it short?

(2) With $A C$ power on

Please check voltage of power line.

1. 5 V line at CN 1 between pin 6 and 4 pin is 5 V ?
2. 24 V line at CN 1 between pin 2 and 3 pin is 24 V ?
(3) OSCILLATOR (CLK)

SYSTEM CLK: $24 \mathrm{MHz} \quad$ MODEM CLK: 24 MHz

24 MHz MODEM CLK (pin 70 of MODEM:IC11)

- This point is $1 / 2$ the MHz of the MODEM CLK 12 MHz .

(4) RESET
$\overline{\text { RESET }}$ signal makes system initial state just after power on.
If RESET signal is defect, please check IC11 and components that is connected to these ICs.

Check reset voltage 5 v ?

(5) CHECK WAVE FORM

This check needs 4 channels digital storage oscilloscope higher than 400 MHz .

Let's observe the wave form to fix the defective IC.
Please observe AO, DO, ROMCE, RD by using digital oscilloscope. Below graph show you the wave form that is observed when unit (board) is working correctly. Both graph are good wave. Wave form is rapidly changing by one (like below graph). Because many kind of data or program are rapidly executed, so you can see some kind of wave forms that is seem to below graph.

name	location
A0	pin 132 of ASIC (IC1)
D0	pin 131 of ASIC (IC1)
ROMCE	pin 22 of ROM (IC2)
RD	: pin 24 of ROM (IC2)
SRAMCS:	: pin 20 of SRAM(IC3)
MDMCS	: pin 54 of MODEM(IC11)

The graphs below show you the wave form that is observed when unit (board) doesn't work. (A3 is intentionally opened at pin 135 of ASIC in this board.)
Please check that active (low level) term of ROMCE is longer than good wave form, **ROMCE is active (low level) excepting RESET is active.** and RESET is frequently coming on every 4 msec .
In the case of this wave form ASIC (IC1), ROM (IC2) or on the way of bus line route is possibly defect. If soldering, conductance is no problem, we need to replace these ICs.

Please observe AO, DO, ROMCE, MDMCS.
Below graph show you the wave form that is observed when unit (board) is working cullectly. both yraph are good wave.

The graphs below show you the wave form that is observed when MODEM doesn't work. (Oscillation is not intentionally supplied to MDM.)
Please compare OK form to NG form.
MDMCS (pin 54 of IC11) signal is coming many times more than good wave form.
In the case of this wave form MODEM doesn't work. If soldering, conductance is no problem, we need to replace MODEM (IC11).

Below graph show you the wave form that is observed when SRAM doesn't work. (BUS line at SRAM is intentionally opened.) Please compare OK (under) to NG (upper). SRAMCS (pin 20 of IC3) signal is coming like clock. In the case of this wave form SRAM access doesn't work. If soldering, conductance is no problem, we need to replace SRAM (IC3).

KX-F900

(6) CHECK SOLDERING

We should check soldering at first.
Because many problem are caused by a defective soldering.

How to Visual-Check the soldering
Defective soldering (shorted, un-welded, oxidized...) doesn't have a good looking outward.
in order words outward (gloss, brightness, form) is important for soldering. So we should do visual inspection.

A basis of soldering is skirt!

Smooth skirt is shaped by surface tension as melting cream solder in reflow machine or lifting P.C. Board from DIP.

Section of Soldering Skirt

SMT (QFP. SOP) parts : ASIC, MDM, SRAM

Leaded parts

SMT (PLCC) parts : CODEC

Chip parts Resistor array

COLD (nu-welded) SOLDERING

SHORTED SOLDERING

KX-F900

3-8. ANALOG BOARD SECTION

For example Returns from the customer has 2 of the defects.

How can you repair this unit?
We usually check the signal flow with the circuit schematic. (If defect is only one item, we check only one of the signal routes. Maybe something is defective on that route.)

If there is more than one defect, you need to check some of the routes. At first, you should check the area where there are common components on these signal routes.

Please see the check sheet (next page).

(1) Defective ITS (Integrated telephone system) section

(1) No speakerphone transmission/reception

Following the ITS section or NCU section, search for the route between the microphone and the telephone line (sending) or between the telephone line and the speaker (receiving) where the signal disappears. Check the components at that point.

(2) No pulse dialing

(3) No ring tone

(4) No tone dialing

Following the NCU section and ITS section and search for the point on the route between 44 pins of IC11 and the telephone jack. Where the signal disappears.
Check the components at that point.
(2) Defective TAM interface section
(1) Not arriving in TAM, FAX turn on.

(2) A FAX is coming but won't switch from TAM to FAX

(3) A voice is coming in but switches to FAX

Check the VOX circuit and refer to the TAM INTERFACE SECTION.

See the CHECK SHEET and SCHEMATIC.
Hint: You can monitor the VOX signal on service mode 815.
When a VOX (sound) is detected, "Vx" will be shown on the LCD.

3-9. POWER SUPPLY SECTION

(1) Key components for troubleshooting

The following components have been known to break frequently :
F101, D101, Q101, IC101, D201, D202
This comes from our experience of experimental test. For example : power supply,
lighting surge voltage test, withstanding voltage test, intentional short circuit test.....etc.

Caution:

If you find a melted fuse in the unit, don't turn the power on without repairing the unit first. (Except the fuse.) If you do the fuse will melt again. It has not been repaired. The cause exists same where else.

Because of circuit compostion:
If 24 V is not output, don't output.

In most cases (our experience) the symptom is that nothing is output.
There is a high possibility in the primary side more than the secondary side.

(2) Troubleshooting flow chart

Our recommendation for troubleshooting is as follows.
This procedure comes from our experience of troubleshooting in our lab. ※ Before turning on the power supply, you should check F101.

(3) The broken parts repairing details
(D101)
Check short-circuit of terminal 4. If D101 is short-circuited, F101 will be melted (open). So in this case, replace the 60th parts (D101, F101).
(Q101)
The worst case of Q101 is a short-circuit between the Drain and Gate because damage expands to IC101.
This is due to of very high voltage through the Gate circuit which is composed of D104, R107, R114 and R121. Then you should change all of the parts listed as follows:

F101, Q101, D104, R107, R114, R121, IC101.
(IC101)
Occasionally, it exists as the sole case of a broken IC101. You should exchange.
(D201)
If D201 is broken, the oscillation circuit of the power supply cannot operate. Check it with an electric tester.
(D202)
Occasionally, this part short-circuits. In this case, you can listen to the click sound of intermittent oscillation*. Check the resistance between 24 V and GND.
*Intermittent Oscillation:
This happens when the power supply balance is broken and loads as a perfect open or short-circuit of output. The graph of Intermittent Oscillation is shown as follow.

3-10. OPERATION BOARD SECTION
(1) No key operation

(2) No LCD indication

3-11. SENSOR SECTION

(1) Check the read position sensor(PI301)

(2) Check the document sensor (P1302)

(3) Check the cover open sensor(SW271)

(4) Check the recording paper sensor (SW273)

(5) Check the jam sensor (SW272)

3-12. READ SECTION

KX-F900

waveform of read section

Oscilloscope setting

V: $\mathrm{CH} 1 \quad 0.5 \mathrm{~V} / \mathrm{div}$
$\mathrm{CH} 25 \mathrm{~V} / \mathrm{div}$
DC couple, CHOP mode
H: $1 \mathrm{msec} /$ div
Trigger: CH2 SLOPE (+)
Probe point: GND Test point "AG"
CH 1 Test point "VID"
CH2 Test point "FTG"
Waveform: (1) CH1: CCD signal
(2) CH2 FTG: GATE signal (trigger)

Note: This waveform will be shown when the CCD reads the white plate of document cover.

No. $\quad \mathrm{CH} 1$ probe point
(3)-1 IC801 pin 1 (CCD Board)
(3)-2 CN801 pin 7 (CCD Board)
(4) $1 C 1$ pin 39 (AMON) (Digital board)

3-13. THERMAL HEAD SECTION

3-14. CORDLESS SECTION

(1) Battery won't charge (Cordless Base unit)

(2) Battery won't charge (Portable handset)

(3) No voice reception

(4) No voice transmission

(5) No link
(1) How to check whether the portable handset or the cordless base unit

1. Transmitting power OK? (Cordless base unit: $-9.0 \pm 4 \mathrm{dBm}$; portable handset: $-7.5 \mathrm{dBm} \pm 4 \mathrm{~dB}$)
2. Transmitting frequency OK? (CH 1 cordless base unit: $902.1 \mathrm{MHz} \pm 4 \mathrm{kHz}$; portable handset: $926.1 \mathrm{MHz} \pm 4 \mathrm{kHz}$)
3. Reception OK? (CH1 cordless base unit: 926.1 MHz ; portable handset: $902.1 \mathrm{MHz}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{MOD}=5 \mathrm{kHz} \mathrm{DEV}$)
4. SQL (20 dB detection) signal OK? (When SG is ON: "high"; when SG is OFF: "Low")
5. Transmittion link data OK? (cordless base unit: 744 Hz and 425 Hz frequencies mixed; portable handset: 372 Hz and 270 Hz frequencies mixed)
6. Reception link data OK? (portable handset: 744 Hz and 425 Hz frequencies mixed; cordless base unit: 372 Hz and 270 Hz frequencies mixed)

Analysis of defect locations

High level
Base Unit: Approx 5 V
Handset: Approx 4V

High level
Base Unit: Approx 5V
Handset: Approx 4 V

(E)

Check microcomputer data sending line.

(4) (No link (Portable handset TX)

(5) No link (Portable handset RX)

(6) No link (Base unit RX)

(7) No link (Base unit TX)

4. PROGRAMMING AND LISTS

The programming functions are used to program the various features and functions of the machine, and to test the machine. Programming can be done in both the on-hook and off-hook conditions. This facilitates communication between the user and the service while programming the machine.

4-1. OPERATION

There are 2 basic categories of programming functions, the User Mode and the Service Mode. The Service Mode is further broken down into the normal and the special programs. The normal programs are those listed in the Operating instructions and available to the user. The special programs are those listed only here and not displayed to the user. In both User and Service Mode, there are Set Functions and Test Functions. The Set Functions are used to program various features and functions, and the Test Functions are used to test various functions. The Set Functions are accessed by entering their code, changing the appropriate value, then pressing the SET key. The test Functions are accessed by entering their code and pressing the key listed on the menu. While programming, to cancel any entry, press the STOP key.

4-2. OPERATION FLOW

Operating Procedure

4-3. USER MODE (The list below is an example of the SYSTEM SETUP LIST the unit prints out.)

BASIC FEATURE LIST

[^0]Note:
The above values are default

4-4. SERVICE FUNCTION TABLE

Code	Function	Set Value	Effective Range	Default	Remarks
501	Setting of pause time	$001 \sim 600 \times 100 \mathrm{msec}$	001~600	05000 msec	Selects the pause time in 100 msec step.
502	Setting of flash time	01~99×10msec	01~99	700 msec	Selects the line break time during flashing in 10 msec step.
503	Setting of pulse dial speed	1: 10 pps $2: 20 \mathrm{pps}$	1,2	10 pps	Sets the pulse dial speed.
520	Setting of CED frequency	$\begin{aligned} & 1: 2100 \mathrm{~Hz} \\ & 2: 1100 \mathrm{~Hz} \end{aligned}$	1,2	2100 Hz	When international communications cannot be performed smoothly, select 1100 Hz .
521	Setting of international line mode	$\begin{aligned} & 1: \text { ON } \\ & 2: \text { OFF } \end{aligned}$	1,2	ON	Selects the international line mode during of FAX communication.
522	Setting of return to default mode	$\begin{aligned} & 1: O N \\ & 2: O F F \end{aligned}$	1,2	ON	Sets the resolution and contrast conditions of FAX or copy returning to the default.
523	Setting of reception equalizer	$\begin{aligned} & 1: O N \\ & 2: O F F \end{aligned}$	1,2	OFF	When a station is quite a distance from the unit or reception cannot be performed correctly, set to "ON".
544	Selection of document feed position	01~99 step	01~99	---	When ADF function is improper, adjust feed position. (8 step $=1 \mathrm{~mm}$)
550	Memory clear				Press "START/COPY/SET".
551	ROM version and sum check				Press "START/COPY/SET".
553	Setting of FAX monitor function	1 : OFF 2: PHASE B 3: ALL	1,2,3	OFF	To monitor the line signal with the unit's speaker during FAX communication or not.
554	Modem test				"START" press.
555	Scanner test				"START" press.
556	Motor test				"START" press.
557	LED test				"START" press.
558	LCD test				"START" press.
559	Setting of document jam detection	$\begin{aligned} & 1: \text { ON } \\ & 2: \text { OFF } \end{aligned}$	1,2	ON	Selects the jam detection of document during FAX transmission/copying.
560	Cutter select	$\begin{aligned} & 1: O N \\ & 2: O F F \end{aligned}$	1,2	ON	-
561	KEY test				Press any key.
562	Cutter test				"START" press.
563	CCD position adjustment value set	$00 \sim 30 \times 1 \mathrm{~mm}$	00~30	-	Lets you select the correction value for main scanning direction of the dislocated scanner.
570	Setting of the \% break	$\begin{aligned} & 1: 61 \% \\ & 2: 67 \% \end{aligned}$	1,2	61\%	Sets the \% break of the pulse dial.

Code	Function	Set Value	Effective Range	Default	Remarks
571	Setting of number of times that ITS is redialed	00~99	00~99	14 times	Selects the number of times that ITS is redialed (not including the first dialing).
572	Setting of ITS redial interval	001~999 sec	001~999	030 sec	Sets the interval of ITS redial.
573	TEL ring count	01~99	01~99	15 times	Sets the number of rings that unit starts to receive a document in TEL mode.
590	Setting of number of times of FAX redial	0~99	00~99	5 times	Selects the number of times of redial during FAX communication (not including the first dialing).
591	Setting of FAX redial interval	001~999 sec	001~999	045 sec	Sets the interval of FAX redial during FAX communication.
592	Designation of CNG sending	$\begin{aligned} & 1: \text { OFF } \\ & 2: \text { ALL } \\ & 3: \text { AUTO } \end{aligned}$	1,2,3	ALL	Lets you select the CNG output during FAX transmission. ALL: $C N G$ is output at phase A. AUTO: CNG is output only when the automatic dialing is performed. OFF: CNG is not output at phase A.
593	Setting of interval between CED and 300 bps signal.	$\begin{aligned} & 1: 75 \mathrm{msec} \\ & 2: 500 \mathrm{msec} \\ & 3: 1000 \mathrm{msec} \end{aligned}$	1,2,3	75 msec	Sets the interval between the CED signal and subsequent 300 bps signal.
594	Setting of overseas DIS detection	1 : Detects at the 1st time 2 : Detects at the 2nd time	1,2	Detects at the 1st time	Sets the recognizing format of DIS signal. 1: Detects the first DIS signal sent from the receiver during FAX transmission. 2: Ignores the first DIS signal sent from the receiver during FAX transmission.
595	Setting of the acceptable value of reception error	001~999Xnumber of times	001~999	100	Sets the number of error acceptable lines when the FAX reconstructs the received data.
596	Setting of transmit level	-15~00	$-15 \sim 00$	$-10 \mathrm{dBm}$	Selects the FAX transmission level. (Increase the level when the telephone line condition is poor.)
700	EXT TAM OGM time	\times second	01~99	10 sec	Sets the start time of silence detect.
701	Silence detect time	$\times 100 \mathrm{~ms}$	01~99	50 ms	Sets the silence of call confirmation times.
702	EXT TAM ring count	\times number of rings	0~9	5 times	Sets the number of rings that unit start to receive a document in EXT-TAM mode.
717	Transmit speed select	$\begin{aligned} & 1: 9600 \mathrm{BPS} \\ & 2: 7200 \mathrm{BPS} \\ & 3: 4800 \mathrm{BPS} \\ & 4: 2400 \mathrm{BPS} \end{aligned}$	1~4	9600 BPS	Adjusts the speed to start training during FAX transmission.
718	Receive speed select	$1: 9600 \mathrm{BPS}$ $2: 7200 \mathrm{BPS}$ $3: 4800 \mathrm{BPS}$ $4: 2400 \mathrm{BPS}$	1~4	9600 BPS	Adjusts the speed to start training during FAX reception.

Code	Function	Set Value	Effective Range	Default	Remarks
719	Ringer off in TEL/FAX mode	$\begin{aligned} & 1: O N \\ & 2: O F F \end{aligned}$	1,2	ON	Selects ringer off switch when a call is received in the TEL/ FAX mode.
721	Pause tone detect	$\begin{aligned} & 1: \text { ON } \\ & 2: O F F \end{aligned}$	1,2	ON	Selects the tone detection in the pauses of the dialing.
722	Redial tone detect	$\begin{aligned} & 1: O N \\ & 2: O F F \end{aligned}$	1,2	ON	Selects the tone detection mode after redialing.
732	AUTO disconnect	$\begin{aligned} & 1: 350 \mathrm{~ms} \\ & 2: 1.8 \mathrm{sec} \\ & 3: \text { OFF } \end{aligned}$	1,2,3	350 ms	Selects the start time of detection of auto disconnect.
763	CNG detect time	$\begin{aligned} & 1: 10 \mathrm{sec} \\ & 2: 20 \mathrm{sec} \\ & 3: 30 \mathrm{sec} \end{aligned}$	1,2,3	20 sec	Selects the CNG detect time of friendly reception.
771	T1 timer	$\begin{aligned} & 1: 35 \mathrm{sec} \\ & 2: 60 \mathrm{sec} \end{aligned}$	1,2	35 sec	Set to the higher value when the response from the other party needs much time during FAX transmission.
815	Sensor check				"START" press.
844	Original setting	1 : NORMAL 2 : LIGHT 3 : DARKER	1,2,3	NORMAL	Use this feature when you need to transmit and copy a document with very faint writing on very dark writing.
909	Handset Remote FAX Actication	0~9, *	2~4 digits	* *	You can change the remote FAX activation code using the portable handset.

4-5. SERVICE MODE SETTING VALUES (Example of a printed out list)

SERVICE DATA LIST

[001...600]*100ms
[01...99]*10ms
[1=10 $\quad 2=20]$ pFs
$[1=2100 \quad 2=1100] H z$
[1=0N 2=0FF]
[1=0N $\quad 2=0 \mathrm{NF}]$
$[1=0 \mathrm{~N} \quad 2=0 \mathrm{FF}]$
$[1=0 \mathrm{~N} \quad 2=0 \mathrm{FF}]$
[01... 99]sec
[01...99]*100msec
[0. . . 9]

SPECIAL SERVICE SETTING

Note:

The above values are delault

5. TEST FUNCTIONS

Test mode	Type of Mode	- Code $\square \square$	Function
		- Operation after code input.	
PRINT TEST	User mode	8] 5	Print a test pattern and check the thermal head for abnormalities (missing dots, etc.), and also check the operation of the reception motor.
		START	
MOTOR TEST	Service Mode	$5 \sqrt{5}$	Rotate the transmission and reception motors to check the operation of the motors.
		START	
MODEM TEST	Service Mode	$55 \sqrt{5}$	Send four kinds of FAX signals to check the sending function of the modem. 1) 1100 Hz : Consecutive signal of EOM for tonal. 2) 2100 Hz : G2 carrier signal Consecutive of CED signal 3) G3, V29 training signal [modulation wave of carrier signal $(1700 \mathrm{~Hz})]$
		START	
ROM CHECK	Service Mode	$5 \sqrt{5} 1$	Indicate the version and check sum of the ROM.
		START	
SCAN CHECK	Service Mode	5 5 5	Turn on the LEDs of the image sensor and operate the read system.
		START	
LCD CHECK	Service Mode	$5]$	Check the LCD indication. Illuminate all dots to check if they are normal.
		START	

DTMF SINGLE TEST	Service Mode	$5 \sqrt{2}$	Output the DTMF by single tone.
		$\begin{aligned} & \text { 1..On } \\ & \text { 2..Off } \end{aligned}$	
LED TEST	Service Mode	5 517	All LEDs flashes on and off, or is illuminated.
		START	
KEY CHECK	Service Mode	5661	Check the operation button. Indicate the button code at LCD while the button is pressed.
		$\left\{\begin{array}{l}\text { any } \\ \text { key }\end{array}\right\}$	
FACTORYSET	Service Mode	5 50	Clear the memory in which the user can store data.
		START	
CUTTER TEST	Service Mode	562	Check the cutter operation.
		START	
SENSOR CHECK	Service Mode		 CHECK SENSOR OPERATION Do Sn COJa Pa V $\times \mathrm{Cu}$ $:$ LCD DISPLAY Do $:$ Document Sensor $:$ Paper inserted Sn $:$ Read Position Sensor : the read Position $\mathrm{Co}:$ Cover Open Sensor $:$ Cover open Ja $:$ Jam Sensor $:$ Jam Pa $:$ Recording Paper Sensor $:$ Set Recording Paper Vx $:$ Vox Sensor :Vox detected Cu $:$ Cutter Position SW $:$ Home Position
		START	

5-1. BUTTON CODE TABLE

Code	Button Name						
02	RESOLUTION	$0 D$	^ VOLUME	35	5	$3 E$	FLASH
03	AUTO RECEIVE	$0 E$	V VOLUME	36	6	87	STATION
04	START/COPY/SET	16	ERASE	37	7	88	STATION
05	18	NEW MSGS. PLAY BACK	38	8	89	STATION	$3 / 8$
05	MENU	19	MAIL BOX	39	9	$8 A$	STATION
07	HELP	31	1	$3 A$	0	$8 B$	STATION
08	SP-PHONE	32	2	$3 B$	$*$	09	LOCATOR/
OA	MUTE	33	3	$3 C$	$\#$		INTERCOM
OB	LOWER	34	4	$3 D$	REDIAL/PAUSE		
OC	DIRECTORY						

ADJUSTMENT

Page

1. Table of Test Equipments and Tool 100
2. Adjusting the Feeder Pressure 101
3. Confirmation of Separation Spring 101
4. CCD Adjustments 102~104
5. Document Read Start Position Adjustment 104, 105
6. Codless Adjustment 107~113

1. TABLE OF TEST EQUIPMENIS AND TOOL

Main Unit (FAX)

No.	Test Equipment and Jig Name	Jig No.
1	Oscilloscope	
2	CCD Tool	PFZZ1F780M
3	Extension Cord	PQZZ2K12Z, PQZZ8K18Z
4	Spring Height Tool	PFZZ2F780M

Portable Handset (Cordless)

No.	Equipment
1.	Radio Tester: Marconi Model 2295A or later.
2.	4.5 digit Digital Multimeter : B\&K Model 2833 or compatible.
3.	Oscilloscope, single or dual channel : Panasonic VP-5512P100 or compatible.
4.	Telephone Analyzer : B\&K Model 1050 or compatible.
5.	DC Power Supply, capable of supply 3.9 V DC at ${ }^{\circ} 100 \mathrm{~mA}$ NOTE : only needed if Telephone Analyzer does not have DC VOLTS output available.
6.	High Frequency Attenuator, 10 dB or greater.
7.	Corded Telephone.
8.	High Frequency Cable: BNC end to open end.
9.	Audio Cable : BNC end to alligator clip end.
10.	High Frequency Adjustment Tool:
11.	Isolation Capacitors, quantity of $2,10 \mu \mathrm{~F}$ maximum, 50 V DC or greater.
12.	Soldering Iron, solder, and various tools.

2. ADJUSTING THE FEEDER PRESSURE

If misfeeding of document, such a multiple feeding or no feeding, occurs frequently, try to adjust the feeder pressure by following steps below.

(1) Open the front lid by pressing the front lid open.
(2) Shift the position of the lever by using an instrument with a pointed end, like a clip or ball-point pen.
Position A: Select this when documents do not feed.
Position B: Standard position (pre-selected)
Position C: Select this when documents multiplefeed.
(3) Close the front lid by gently pressing down on both ends.

3. CONFIRMATION OF SEPARATION SPRING

1. Open the operation grille.
2. Check the highest level of the separation spring with the spring height tool (PFZZ2F780M). Please make sure that the separation spring does not touch the tool during this operation. (Both right and left) (See Fig. 1).
3. Check the lowest level of the separation spring with the opposite side of the spring height tool. Please make sure that the separation spring touches the tool during this operation. (Both right and left) (See Fig. 2).

Fig. 2

Fig. 1

4. CCD ADJUSTMENTS

Perform the following adjustment after replacing lens and CCD board.

PREPARATION:

1) Remove the CCD unit from set. (Refer to page 120.)
2) Make oscilloscope connections as shown in next page.
3) Attach the CCD TOOL on the CCD unit.
4) Connect between CCD unit and digital board with extension cord (Part No. PQZZ8K18Z). (Refer to next page).
5) Connect between LED array and digital board with extension cord (Part No. PQZZ2K12Z). (Refer to next page).
6) Connect AC cord.
7) Press the MENU button.
8) Press the \#, $9,0,0,0$, and $*$ buttons.
9) Press the 5,5 and 5 buttons.

Notes:

1) Install the lens so that the marking (RED) on it is upper side.
2) Do not touch the glass face of the lens with the bare hands.
3) If you have no instrument to repair, trim off the chart on page 97, then attach on the target glass (This is a temporary treatment. You should use an instrument for this adjustmen purpose, if you require an accurate repairment.)

Cleaning:

If the lens is dirty, clean it with a dry soft cloth.

Note:
Please adjust with covering topside of the lens by hands in order not to let in outdoor daylight.

ADJUSTMENT:

LENS AND CCD READ POSITION ADJUSTMENT

1) Loosen the lens fixing screw and CCD board fixing screw.
2) Adjust the position of the lens and CCD board so that the waveform appears as shown in the figure below.
3) Fix the lens fixing screw and CCD board fixing screw.

WAVEFORM

WHITE LEVEL ADJUSTMENT

1) Remove the CCD TOOL from CCD unit.
2) Attach the white paper on the CCD unit.
3) Attach the CCD TOOL on the CCD unit.
4) Adjust VR801 on the CCD board so that the waveform becomes $1.0 \pm 0.2 \mathrm{~V}$.

Notes:1. After the adjustment is finished, assemble the unit by reversing above procedure.
2. Please adjust with covering topside of the lens by hands in order not to let in outdoor daylight.
3. If you have no instrument to repair, trim off the chart on next page, then attach on the target glass. (This is a temporary treatment. You should use an instrument for this adjustment purpose, if you require an accurate repairment.)

5. DOCUMENT READ START POSITION ADJUSTMENT

1) Connect $A C$ cord.
2) Copy the document, and confirm the read start position of the document.
3) If get out of position, adjust the read position.
4) Press the MENU button.
5) Press the \#, 9, 0, 0, 0, * and 5, 6, 3 buttons.
6) Press the
 , SET and MENU buttons.
. To move the image to the right direction

$15-$ Standard (Default)
14

To move the image to the left direction
00
The starting position of reading shifts 1 mm as number of changes.

6. CORDLESS ADJUSTMENT

6-1. OBJECTIVE

This procedure will enable the technician to make adjustments to the KX-F900 PORTABLE HANDSET and CORDLESS BASE UNIT.

6-2. GENERAL INFORMATION

This procedure has 2 sections. The first section instructs the technician on how to align the PORTABLE HANDSET. We recommend aligning the PORTABLE HANDSET first, since you will need the PORTABLE HANDSET to align the CORDLESS BASE UNIT. The second section aligns the CORDLESS BASE UNIT. You can use either section separately, or together to align the entire cordless phone unit.

At the beginning of each section, you will find a preparation procedure instructing you on how to prepare the unit to the point of placing the unit in TEST mode. Please follow this procedure to insure proper alignment.

Each section's procedure consists of Adjustment Items adjusting one specific variable hardware component.
Each Item lists the equipment needed, how to connect and setup the equipment, how to make the adjustment, and how to verify the adjustment if necessary.

Before the actual procedure, you will find a procedure detailing how to place that part in TEST mode. You will have to perform this procedure before each individual Adjustment Item.

Once aligned, please remove all equipment connections and solder points, and reassemble the unit. As a final check, power up the phone and check for PORTABLE HANDSET linking with the CORDLESS BASE UNIT.

PORTABLE HANDSET

(1)PREPARATION

Please perform the following steps to prepare the PORTABLE HANDSET for alignment. Please refer to the HANDSET REFERENCE DRAWING for connection and test point locations.

1. Remove battery cover and battery.
2. Remove both screws at the case bottom.
3. Grabbing hold of the back near the bottom, gently pry off the back of the case.
4. Remove the antenna mounting screw.

While heating the antenna solder connection, pull out the antenna. (Refer to page 125)
5. Remove the top P.C.Board mounting screw.
6. Unsolder both speaker connections on P.C.Board.
7. Remove the PORTABLE HANDSET P.C.Board.
8. Remove the keypad membrane.
9. Solder High Frequency Cable open end to ANT and RF GND points.
10. Using the Digital Multimeter, measure DC VOLTS output on the Telephone Analyzer.

Adjust the output voltage to 3.9 V DC.
11. Solder battery connection wires at the points shown in the PORTABLE HANDSET REFERENCE DRAWING. Solder the positive lead to IC204, towards the bottom of the P.C.Board. Solder the negative lead to the MIC minus lead, closest to IC204. DO NOT APPLY POWER TO THE PORTABLE HANDSET AT THIS TIME!!!!!!
12. Solder a small, insulated piece of wire to GND as well.
13. Solder 1 isolation capacitor's positive lead to SP+ test point (TP4). When soldering, keep the lead close to the P.C.Board as possible since you will lay the keypad membrane over part of this lead.
14. Solder a small, short, insulated wire to MIC test point (TP8).
15. Lay the keypad membrane over the keypad switch contacts.

(2) SYMPTOM/REMEDY TABLE

If you have one of the listed symptoms, please refer to this table and make the appropriate adjustments.

SYMPTOM	REMEDY
Does not link with CORDLESSBASE UNIT	Check Items (A) and (B). If both items are OK, adjust Items (D) and (E).
Speaker level is unstable	Check Items (A) and (B). If both items are OK, adjust Items (C).
Tx sound is unstable	Check Items (A) and (B). If both items are OK, adjust Items (F).

(3) ADJUSTMENT PREPARATION

Please perform the following procedure before starting the Adjustment Procedure. You only have to perform this procedure only once to complete all Items, but you will have to perform this procedure to make an individual Adjustment Item.

1. You will need all equipment listed in the Item's EQUIPMENT section.
2. Setup all equipment as specified in the Item's PROCEDURE section SETUP portion.
3. On the PORTABLE HANDSET under test, press and hold down the 1,9 , and $*$ keys.
4. Apply power to the PORTABLE HANDSET.
5. Release the 3 keys. You should hear the PORTABLE HANDSET beep. If you do not hear a beep, remove the power from the PORTABLE HANDSET and repeat the last 2 steps.
6. Press the INTERCOM key, then press the TALK key. PORTABLE HANDSET should now be in TEST MODE (CH 1 TALK). The IN USE/BATT LOW LED should be on. If the PORTABLE HANDSET is not in TEST MODE, remove the power and repeat the last 3 steps.
7. Remove the keypad membrane and lay it a side.

(4) ADJUSTMENT PROCEDURE

ADJUSTMENT ITEM DESCRIPTION	EQUIPMENT	PROCEDURE
(A) Rx VCO Voltage Confirmation only	Digital Multimeter SETUP to measure DC Voltage, 20 V range	Connect negative lead to RF module metal cover and positive lead to TP5. Measure voltage and confirm that this voltage is between 0.8 V DC and 1.8 V DC. DO NOT PROCEED IF NOT IN RANGE!!
(B) Tx VCO Voltage Confirmation only	Digital Multimeter SETUP to measure DC Voltage, 20V range	Connect negative lead to RF module metal cover and positive lead to TP6. Measure voltage and confirm that this voltage is between 0.8 V DC and 1.8V DC. DO NOT PROCEED IF NOT IN RANGE!!
(C) SP Output	Marconi SETUP Put in Receiver Test Mode. RF GEN FREQ 902.1000 MHz LEVEL $60 \mathrm{~dB} \mu \mathrm{~V}$ SET MOD FREQ 1.000 kHz LEVEL 5.000 kHz High Frequency Cable to left RF Connector. Audio Cable positive lead to isolation capacitor, negative lead to GND, BNC end to AF INPUT connector.	Adjust VR202 until AF VOLTS equals -33dBV +/-1dBV Note This voltage reading is with no speaker or load attached to the PORTABLE HANDSET P.C.Board.

ADJUSTMENT ITEM DESCRIPTION	EQUIPMENT	PROCEDURE
(D) 20dB Electric Detection	Marconi SETUP Put in Receiver Test Mode. RF GEN FREQ 902.1000 MHz LEVEL 60dB μ V SET MOD FREQ 1.000 kHz LEVEL 5.000 kHz One end of BNC cable to left RF connector, other end to Attenuator Input. Audio Cable positive lead to isolation capacitor, negative lead to GND, BNC end to AF INPUT connector. Oscilloscope SETUP X1 probe connected to INPUT 1. Probe ground connected to GND. TIME/DIV 1 ms VOLT/DIV IV Auto trigger Attenuator SETUP High Frequency Cable to Attenuator Output.	On Marconi, press SINAD until the display shows the SINAD value and press dB. Then press RF GEN and LEVEL. Attach the oscilloscope probe to 20 dB test point (TP7). Using the VARIABLE knob on the Marconi, decrease RF GEN LEVEL until SINAD v alue is between 7 dB and 9 dB . NOTE: this value will not be stable. Adjust VR401until oscilloscope voltage toggles. This is the 20dB SET POINT. NOTE: toggling may not occur at regular intervals. Decrease RF GEN LEVEL until the SINAD value decreases by at least 3dB. Check that oscilloscope voltage is high. Now increase REF GEN LEVEL until SINAD value is at least 3 dB above the 20 dB SET POINT. Check that oscilloscope voltage is low.
(E) MIC Input	Marconi SETUP Put in Transmitter Test mode. AF GEN FREQ 1.000 KHZ LEVEL 41 mV [23mV] Connect High Frequency Cable to right RF connector. Connect Audio Cable positive lead to MIC, negative lead to GND, BNC end to AF GEN OUTPUT.	Adjust VR201 until Marconi MOD LEVEL equals $\mathbf{5 k H z}+/-\mathbf{0 . 5 k H z}$ Note The 41 mV value is for units of suffix A and the 23 mV value is for units of suffix $B \sim$.
(F) Standard Frequency	Marconi SETUP Put in Transmitter Test mode. AF GEN FREQ 1.000 kHz LEVEL 21 mV Connect High Frequency Cable to right RF connector. Connect Audio Cable positive lead to MIC, negative lead to GND, BNC end to AF GEN OUTPUT	Adjust VC401 until Marconi TX FREQ equals $926.100 \mathrm{MHz}+/-0.0005 \mathrm{MHz}$ Note This Item's setup is exactly the same as Item (E). If you have done Item (E), simply look at TX FREQ and make the adjustment.

Once aligned, please perform the following procedure.

1. Disconnect all equipment and solder connections. Use solder wick to clean up any solder you added.
2. Install the keypad membrane on top of the PORTABLE HANDSET keys.
3. Install the PORTABLE HANDSET P.C.Board.
4. Solder speaker wires back onto the P.C.Board observing correct polarity.
5. If you will align Item (E) RX Input in CORDLESS BASE UNIT, then solder a short wire across the MIC leads. Remember to unsolder this wire after you completed the CORDLESS BASE UNIT alignment.
6. Insert antenna into the case.
7. Install antenna and top P.C.Board mounting screws and solder antenna connection.
8. Install case back and bottom mounting screws.
9. DO NOT INSTALL THE BATTERY AT THIS TIME!!!!!!

PORTABLE HANDSET REFERENCE DRAWING

(1) PREPARATION

Please prepare the BASE UNIT before pertorming any adjustment procedures. Refer to the CORDLESS BASE UNIT REFERENCE DRAWING for connection and test point locations.

1. Remove the 3 screws on the bottom cabinet of the handset cradle.
2. Remove the bottom cabinet of the handset cradle.
3. Remove the soldering on the antenna wires of the RF module.
4. Remove the base unit anchoring screw.
5. Use the telephone cord to connect the fax machine line and PHONE TEST \#1 on the telephone analyzer.
6. Use the telephone cord to connect the corded telephone and PHONE TEST \#2 on the telephone analyzer.
7. Solder the plus and minus sides of the RF coaxial cable to ANT and RF GND, as shown on the page 113.
8. Connect the BNC connector on the RF coaxial cable to ANT on the Marconi.

(2) SYMPTOM/REMEDY TABLE

If you have one of the listed symptoms, please refer to this table and make the appropriate adjustments.

SYMPTOM	REMEDY
Does not link with PORTABLE HANDSET	Check Items (A) and (B). If both are OK, adjust Items (E) and (F).
Transmission sound to PORTABLE HANDSET receiver is unstable	Check Items (A) and (B). If both are OK, adjust Items (C) and (D).

(3) ADJUSTMENT PREPARATION

Please perform the following steps to prepare the CORDLESS BASE UNIT for the Adjustment procedure.

1. While pressing the $\mathbf{1}$ and START/COPY/SET KEYS, turn on the power to the fax machine.
[Cordless Test] appears on the machine's LCD display.
2. Press the MUTE KEY four times.
[4. Talk Mode] now appears on the machine's LCD display.
3. Press the START/COPY/SET KEY.
[Channel=01] now appears on the machine's LCD display.

* Any channel can now be keyed in using the 10 numeric keys on the machine.

4. Press the START/COPY/SET KEY twice.

The talk mode is now established for the channel displayed in step 3.

5. Establish the standard settings of the Marconi.
-First, set the RX test items.
GEN FREQ: 926.1 MHz
LEVEL: $60 \mathrm{~dB} \mu \mathrm{~V}$
MOD1 FREQ: 1 kHz off
LEVEL: 5 kHz
MOD2 off

- Next, set the TX test items.

RF GEN ON
AF1 FREQ: 1 kHz off
LEVEL: -27 dBm
AF2 off
TX FREQ: 902.1 MHz

(4) ADJUSTMENT PROCEDURE

ADJUSTMENT ITEM DESCRIPTION	EQUIPMENT	PROCEDURE
(A) Rx VCO Voltage Confirmation only	Digital multimeter Set to the DC voltage measurement in the 20 V range.	Connect the minus wire to the metal cover of the module and the plus wire to TP5, measure the voltage, and check that it comes within the 0.7 to 1.8 Vdc range. Proceed no further if the voltage is outside the designated range.
(B) Tx VCO Voltage Confirmation only	Digital multimeter Set to the DC voltage measurement in the 20 V range.	Connect the minus wire to the metal cover of the module and the plus wire to TP6, measure the voltage, and check that it comes within the 0.8 to 1.8 Vdc range. Proceed no further if the voltage is outside the designated range.
(C) Standard Frequency	Marconi Press the TX test key. Telephone Analyzer Take the corded phone off the hook.	Adjust VC301 is such a way that the TX FREQ offset value comes within the $\pm 500 \mathrm{~Hz}$ range.
(D) TX Output	Marconi Press the RX test key. Set MOD1 to ON. Connect LINE SCOPE on the telephone analyzer and AF INPUT on the Marconi. Telephone Analyzer Take the corded phone off the hook.	Adjust VR501 is such a way that the audio level is set to - $19 \pm 1 \mathrm{dBm}$.
(E) Standard Modulation	Marconi Press the RX test key. Set MOD1 to OFF. Press the TX test key. Set AF1 to ON. Connect LINE SCOPE on the telephone analyzer and AFGEN OUT on the Marconi. Press the * key. Telephone Analyzer Place the corded phone on the hook.	Adjust VR502 is such a way that the FM level is set to $6.4 \pm \mathbf{0 . 5} \mathbf{~ k H z}$.
(F) 20 dB Electric Detection	Marconi Press the TX test key. Set AF1 to OFF. Press the $*$ key. Press the RX test key. Set MOD1 to ON. Connect LINE SCOPE on the telephone analyzer and AF INPUT on the Marconi. Telephone Analyzer Take the corded phone off the hook.	Adjust GEN LEVEL on the Marconi in such a way that the SIAND is set to $\mathbf{2 0} \pm \mathbf{1 d B}$. Adjust VR301 in such a way that the letter "C" flashes on the machine's LCD display. Flashes

Once aligned, please reassemble the base unit. Also take off the back of the PORTABLE HANDSET and unsolder the MIC lead short wire if you previously installed it.
-CONNECTION

-CORDLESS BASE UNIT P.C.BOARD
(Component View)

DISASSEMBLY INSTRUCTIONS

Page

1. How to Remove the Handset Cradle Cab,
Cordless Base Unit Board and RF Unit 115
2. How to Remove the Operation Block 116
3. How to Remove the Operation Board and LCD 117
4. How to Remove the Bottom Frame 118
5. How to Remove the Analog, Digital Boards, Speaker and Mic 118
6. How to Remove the Power Supply Board and AC Inlet 119
7. How to Remove the Motor Block 119
8. How to Remove the CCD Unit 120
9. How to Remove the Rollers 120
10. How to Remove the Cutter Block 121
11. How to Remove the Recording Paper Cover 122
12. How to Remove the Thermal Head Roller 123
13. How to Remove the Document Tray 124
14. How to Remove the Bottom Cabinet of Portable Handset 125
15. How to Remove the Antenna and Portable Handset Board 125
16. How to Replace Flat Package IC 126

Ref. No. 1	HOW TO REMOVE THE OPERATION BLOCK
Procedure 2	
	1) Push the front lid open button in the direction of the arrow to open the operation block. 2) Pull both sides of the arms. (See Fig. A) 3) Pull up the operation block.

- HOW TO ATTACH THE OPERATION BLOCK:

1) Set the both arms on the boss as showing in following Fig. B.
2) Push the operation block down.

Fig. B

| Ref. No. 8 | |
| :--- | :--- | HOW TO REMOVE THE CCD UNIT

1) Push the front lid open button in the direction of the arrow to open the operation block.
2) Remove the upper guide.
3) Remove the 2 screws (A).
4) Remove the shaft with minus screwdriver (small size) as showning in following Fig. A.
5) Remove the paper cutter block.
6) Remove the cutter guide.
7) Replace the paper cutter.
8) Remove the stopper with minus screwdriver (small size) as showing in following Fig. B.
9) Remove the recording paper roller.

DISASSEMBLED INSTRUCTIONS

HOW TO CLEAN:
Clean the roller with cloth soaked in alcohol.

FRONT LID
OPEN BUTTON

Ref. No. 11	HOW TO REMOVE THE RECODING PAPER COVER
Procedure $10 \rightarrow 11$ 1) Pull out the both arms as showing in following Fig. A. 2) Remove the recoding paper cover.	

Fig. A

Clean the printing surface of thermal head with cloth soaked in alcohol.

Ref. No. 13	HOW TO REMOVE THE DOCUMENT TRAY
Procedure 13	1) Push the installing section in the direction of the arrow to remove the document tray.

HOW TO REPLACE FLAT PACKAGE IC

- PREPARATION

- PROCEDURE

1. Temporarily fix FLAT PACKAGE IC by soldering on two marked pins.

- - Temporary soldering point.
*Check accurate setting of IC to the corresponding soldering foil.

2. Apply flux for all pins of FLAT PACKAGE IC.

3. Solder using specified solder, in direction of arrow, by sliding the soldering iron.

- MODIFICATION PROCEDURE OF BRIDGE

1. Re-solder slightly on bridged portion.
2. Remove remaining solder along pins using soldering iron as shown in below figure.

CIRCUIT OPERATIONS

Page

1. Connection Diagram 128
2. General Block Diagram 129~130
3. Control Section 131~136
3-1. Block Diagram 132
3-2. Reset Circuit 133
3-3. SRAM and RTC Back up Circuit 134
3-4. Supervision circuit for Thermal Head Temperature 135
3-5. LED Array 136
4. Facsimile Section 137~145
4-1. Image Data Flow during Facsimile Operation 137, 138
4-2. Thermal Head 139, 140
4-3. Read Section 141
4-4. Stepping Motor Drive Section 142
4-5. Sensor and Switches 143~145
5. MODEM Section 146~152
$5-1$. Function 146~151
5-2. MODEM Circuit Operation 152
6. Explanation of Analog Section Block Diagram 153, 154
7. NCU Section 155, 156
8. ITS and Monitor Section 157, 158
9. TAM Interface Section 159~161
10. Operation Panel 162
11. LCD COG Type 163
12. Switching Power Supply Section 164~166
13. Cordless Section 167~183
13-1. Explanation of Data Communication 167~170
13-2. Frequency Table 170
13-3. Block diagram of Cordless Base Unit 171,172
13-4. Circuit Operation of Cordless Base Unit 173, 174
13-5. Circuit Operation of RF Unit 175~177
13-6. Block diagram of Portable Handset 178, 179
13-7. Circuit Operation of Portable Handset 180~183

1. CONNECTION DIAGRAM

2. GENERAL BLOCK DIAGRAM

The control section will be explained as shown in the block diagram.
(1) ASIC (IC1)Composed mainly address decoder, modem control section, CPU and RTC.
Control the general FAX operation.
Control the operation panel IIF.
Control the thermal head I/F and CCD I/F.
Executing image processing.

3. CONTROL SECTION

(1) ASIC (IC1)

This custom IC is used for general $\vdash A X$ operation
(1) CPU:
(2) RTC:
(3) DECODER:
(4) ROM/RAM I/F:
(5) CCD I/F:
(6) IMAGE DATA RAM:
(7) THERMAL HEAD I/F:
(8) TX MOTOR I/F:
(9) RX MOTOR I/F:
(10) OPERATION PANEL I/F:
(11) I/O PORT:

The KX-F900 uses a $\angle 80$ equivaient CHU operating at 12 MHz .
Many of the peripheral functions are handled by custom designed LSI.
As a result, the CPU only needs to process the result.
Real time clock.
Decodes the address.
Controls the SELECT signal of ROM or RAM and bank switching.
Controls document reading.
Inside ASIC and 8KB which is used by image processing.
Transmits the recorded data to the thermal head.
Controls the transmission motor which feeds the document.
Controls the receiving motor which feeds the reading document.
Serial interface with Operation Panel.
I/O Port Interface (Exa. Sensor etc.)
(2) ROM (IC2)

This 128 KB ROM (EPROM or MASKROM) has 32 KB of common area and bank area (BK4~BK15).
The capacity of each bank is 8 KB .
The addresses of the common area are from 0000 H to 7 FFFH , and addressed from 8000 H to 9 FFFH are for the bank area.
(3) RAM (IC3)

This 32 KB RAM has 8 KB of common area and bank area (BKO, BK1).
The capacity of each bank is 12 KB .
The addresses of the common area are from D000H to EFFFH, and the addresses from A000H to CFFFH are for the bank area.

THPON -
TONE 1
T2/BELL
RESET \longrightarrow
\square TO OPE PANEL
 TXM

RMO-3,RXE

$$
\begin{gathered}
\text { CCLK } \longleftarrow \\
\text { CSI } \longrightarrow \\
\text { CSO } \longrightarrow \\
\text { CBUSY1 } \longrightarrow \\
\text { CBUSY2 } \longrightarrow
\end{gathered}
$$

3-2. RESET CIRCUIT

The output from pin 3 of the Reset IC (IC9) resets the gate array (IC1), the modem (IC11), the gate array on the operating board (IC301), the Port IC (IC151) on the anaiog board through the IC1.
(1) During to momentary power interruption, a positive reset pulse of 175 msec or more is generated and the system is reset completely.
This is done to prevent partial resetting and system runaway during power fluctuation.

(2) When pin 3 of the IC9 becomes low level, it will prohibit the RAM (IC3) from changing data.

The RAM (IC3) go into the backup mode, when it is backed up by the lithium battery.

Circuit Diagram

(3) The watch dog timer, built-in the gate array (IC1), is initialized about every 1.5 ms .

When the watch dog error occurs, pin 104 of the gate array (IC1) becomes low level.
The terminal of $\overline{\text { WDERR }}$ signal is connected to the reset line so, $\overline{\text { WDERR }}$ signal works as the reset signal.

3-3. SRAM and RTC BACK UP CIRCUIT

(1)Function

This unit has a lithium battery (BATT), which works for the RAM (IC3) and Real Time Clock IC (RTC,Integrated into ASIC:IC1). The user parameter of autodial numbers, the transmission ID, the system setup date and so on are stored in the RAM (IC3).
The RTC continues functioning, even when the power switch is OFF, back up by the lithium battery.

(2)Circuit Operation

When the power switch is turned ON, thus supplying the power through the IC9 to the RAM (IC3) and RTC. At this time, the voltage at pin 28 of the RAM and pin 43 of the RTC are +5 V . When the power switch is turned OFF, the BATT supplies the power to the RAM and RTC through the $\mathrm{J} 1, \mathrm{R} 76$ and IC9. At the time, the voltage at pin 28 of the RAM and pin 43 of the RTC are about +2.5 V . When the power switch is OFF and the voltage of +5 V goes down, the Reset IC. (IC9) outputs the reset signals. Pin 28 of the RAM (IC3) and pin 43 of the RTC become low level, then the RAM and RTC go into the back up mode, when the power consumption is less.

Circuit Diagram

3-4. SUPERVISION CIRCUIT FOR THERMAL HEAD TEMPERATURE

(1) Function

Thermal head temperature is disposed to convert voltage to digital data by using A/D converter of IC1. The CPU decides the strobe width of the thermal head according to this value. Therefore, this circuit can keep the thermal head at an even temperature in order to stabilize the printing density and prevent the head from being overheated.

Circuit Diagram

Timing Chart
(A) 5 V OV $\quad \square$
(B)

IC1 internal bias CLAMP

3-5. LED ARRAY

The LED ARRAY will light during transmission and copying as a light source to recognize document characters, patterns, or graphics on a document.
It is also possible to light the LED ARRAY in the test mode.

Circuit Diagram

4. FACSIMILE SECTION

4-1. IMAGE DATA FLOW DURING FACSIMILE OPERATION

COPY (Fine, Super-Fine, Half Tone)

(1) Line information is read by CCD, by way of route (1), it is inputted to IC1.
(2) In IC1, data is adjusted to suitable level for A/D conversion at Analog Signal Processing Section, and by way of route (2) it is inputted to A/D conversion (8 bit). After finishing A/D conversion, data is inputted to Image Processing Section by way of route (3), and by way of routes (4) and (5), it is stored in RAM as shading data.
(3) Draft's information that is read by CCD is inputted to IC1 by way of route (1), and after adjusting to suitable level for A/D conversion by way of route (2) , draft's information is converted to A/D (8 bit), and it is inputted to Image Processing Section. The other side, the shading data which flows from RAM by way of routes (6) and (7), it is inputted to Image Processing Section, and after finishing of draft's information's image processing, white is regarded as " 0 " and black is regarded as " 1 ", and by way of routes (4) and (5), they are stored in RAM.
(4) White/Black data stored as above description 3), by way of routes (6) and (8), it is inputted to P/S converter. White/ Black data converted to serial data in P/S converter is inputted to Thermal Head by way of route (9) and it is printed out on recording paper.
$\begin{array}{ll}\text { Note: } & \text { Standard; } \\ \text { Fine; } & \text { Read } 3.85 \text { times } / \mathrm{mm} \\ \text { Super-Fine; } & \text { Read } 7.7 \text { times } / \mathrm{mm} \\ & \text { Rea.4 times } / \mathrm{mm}\end{array}$

Transmission

(1) Same processing of COPY items 1) - 3).
(2) Data stored in RAM of IC1 is outputted from IC1 by way of routes (6) and (10), and it is stored in system bus, and by way of route (11) , it is stored in communication buffer inside RAM (IC3).
(3) While fetching data stored in communication buffer synchronous with modem, CPU inputs data to modem along route (12), where it is converted to serial analog data and forwarded over telephone lines via NCU Section.
Reception
(1) Serial analog image data is received over telephone lines and input to the modem via NCU section, where it is demodulated to parallel digital data. Then the CPU stores the data in the communication buffer of RAM (IC3) along route 12.
(2) Data stored in RAM (IC3) is decoded by CPU by way of way of route (12), and it is stored in RAM by routes (13) and (5).
(3) Same processing of COPY item 4).

4-2. THERMAL HEAD

(1) Function

This unit utilizes state of the art thermal printer technology.
The recording paper (roll paper) is chemically processed. When the thermal head contacts this paper it emits heat momen tarily, black dots (appearing almost as a point) are printed on the paper. If this point is continued, litters and/or diagrams appear, and the original document is reproduced.

COMPOSITION OF THE RECEIVE RECORD SECTION (THERMAL RECORDING FORMAT)

(2)Circuit Operation

There are 18 driver ICs aligned horizontally on the thermal head and each one of these ICs can drive 96 heat emitting registers. This means that one line is at a density of $96 \times 18=1728$ dots $=(8$ dots $/ \mathrm{mm})$.
White/Black (white=0, black=1) data in one line increments is synchronized at IC1 pin 24 (THCLK) and sent from IC1 pin 22 (THDAT) to the shift register of the ICs. The shift registers of the 18 ICs are connected in series, and upon shift of 1728 dot increment, all the shift register become filled with data, and a latch pulse is emitted to each IC from IC1 pin 23 (THLAT).

With this latch pulse, all the contents of shift registers are latched to the latch registers. Thereafter, through the addition of strobe from the IC1 pins $(25,26,27,28)$ only dot of location of black $(=1)$ among latched data activates driver, and current passes to heat emitting body to cause heat emission.
Here the strobe of four lines STB1 to STB4 impresses at intervals of 9.216 msec , as required for one-line printout, for each $1 / 4$ th of 18 IC unit (4 unit or 5 unit) upon each time interval divided into four equal increments.
The sequence is as shown below. [Moreover, in the case of strobe width, the resistance value of the thermistor inside the thermal head is constantly detected by IC1 pin 38, and vales from the ROM (IC2) table corresponding to temperatures eliminate temperature changes of density through setting by CPU.]
When the thermal head is not used, the IC1 (119, TH-POWER) becomes low level, IC7 becomes OFF, RL201 breaks, and the +24 V power supply for the thermal head driver is not impressed to protect the IC.

Circuit Diagram

Timing Chart

4-3. READ SECTION

(1) Function

- A document is illuminated by the LED array, and the reflections pass through the reduction-projection lens and are imaged on the CCD image sensor.
- The document image is photoelectrically transferred by the CCD image sensor, and an analog image signal corresponding to one line of the document is continuously output.
- The analog image signal enters the image signal processing circuit in ASIC (IC1) and then is coverted into a digital data.

(2) Circult Operation

[Start]
When the START/COPY/SET button is pressed, IC1 pin 62 goes to a high level and IC7 is turned ON, which makes CN7 pin 2 go to a low level and the voltage applied to the LED array to turn on the LED.
F1, F2, FR and FTG signals are output to the CCD board to drive the CCD image sensor. Therefore, when the LED is turned ON, the VIDEO (analog image signal) is output from the CCD board to CN5 pin 7.

CCD Scanner Timing Chart (1 Dot Cycle)

Block Diagram

4-4. STEPPING MOTOR DRIVE CIRCUIT

(1) Function

Two individual stepping motors are used for transmission and reception. They feed document or recording paper synchronized for reading or printing.
(2) Circuit Operation

During motor drive, gate array IC1 pin 77/pin 71 becomes high level, Q2/Q4 are turned ON, and Q1/Q3 go ON as a result, +24 V is supplied to the motor coil.
Stepping pulses are output form gate array IC1, causing driver IC7/IC8 to go ON. The motor coil is energized sequentially in 2 phase increments, which causes a 1 -step rotation. Rotation of 1 -step 0.13 mm of recording paper or document paper. Timing chart is below.

Timing Chart								
TM0 (RM0)								
TM1 (RM1)								
TM2 (RM2)								
TM3 (RM3)								

When the motor is OFF, gate array IC1 pin 77/pin 71 becomes low level and Q2/Q4 are turn OFF. This causes Q1/Q3 to also go OFF and inserted of $+24 \mathrm{~V},+5 \mathrm{~V}$ is supplied through D1/D2 so that the motor is held in place.

4-5. SENSORS AND SWITCHES

[Recording Paper Sensor (SW273)]

When recording paper is present, the plate push the switch lever, the input signal of IC151-6 pin (ANALOG) becomes low level. When the set runs out of recording paper, the plate leaves the switch lever, the input signal of IC151-6 pin (ANALOG) becomes high level.

Analog Board

	Signal (IC151-6 Pin)
Set Recording Paper	Low level
No recording Paper	High level

[JAM Sensor (SW272)]
When recording paper is jammed, the plate push the switch lever, the input signal of IC151-7 pin (ANALOG) becomes low level. Usually, the plate leaves the switch lever the input signal of IC151-7 pin (ANALOG) becomes high level.

Analog Board

	Signal (IC151-7 Pin)
JAM	Low level
NO JAM	High level

[Cover Open Sensor (SW271)]

When the upper cabinet is closed, the plate push the switch lever, the input signal of IC151-33pin (ANALOG) becomes low level. When there is opened, the plate leaves the switch lever, the input signal of IC151-33pin (ANALOG) becomes high level.

Analog Board

	Signal (IC151-33 Pin)
Close	Low level
Open	High level

[Read Position Sensor (Pi301)]

When an document is brought to read position, the shelter plate pass the sensor light, the phototransistor becomes ON, and the input signal of IC301-15pin (Operation) becomes low level. When there is no document at the read position, the shelter plate shuts the sensor light, the phototransistor becomes OFF, and the input signal of IC301-15pin (Operation) becomes high level. (When checking this sensor condition, IC301-16 pin becomes low level).

Operation Board

	Phototransistor	Signal (IC301-15 Pin)
Out of the Read Position	OFF	High level
At the Read Position	ON	Low level

[Document Sensor (PI302)]

When a document is set, the shelter plate shuts the sensor ligh, the phototransist or becomes OFF, and the input signal of IC301-15 pin (Operation) becomes high level. When there is no document, the shelter plate passes the sensor light, the phototransistor becomes ON, and the input signal of IC301-15 pin (Operation) becomes low level.
(When checking this sensor condition, IC301-9 pin becomes low level.)

Analog, Digital and Operation Board

	Phototransistor	Signal (IC301-15 Pin)
No document	ON	Low level
Set document	OFF	High level

5. MODEM SECTION

5-1. FUNCTION

The unit uses a 1 chip modem (IC11), enabling it to act as an interface between the control section for FAX sending and receiving, and the telephone line. During a sending operation, the digital image signals are modulated and sent to the telephone line, while during a receiving operation, the analog image signals which are received via the telephone line are demodulated and converted into digital image signals. The communication format and procedures for FAX communication are standardized by ITU-T. This 1 chip modem (IC11) has hardware which sends and detects all of the necessary signals for FAX communication and DTMF.
It can be controlled by writing commands from the ASIC (IC1) to the register in the modem (IC11).
This modem (IC11) also sends DTMF signals, generates a call tone (from the speaker), and detects a busy tone and dial tones and DTMF.

Overview of Facsimile Communication Procedures (ITU-T Recommendation):

(1) ON ITU-T (International Telecommunications' Union.)

The No. XIV Group of ITU-T, one of the four permanent organizations of the International Telecommunications Union (ITU), investigates and make recommendations on international standards for facsimile.
(2) Definition of Each Group

- Group I (G1)

A-4 size documents official without using formats which reduce the band width of signal sent over telephone lines. Determined in 1968.
Transmission for about 6 minutes at scanning line density of 3.85 lines $/ \mathrm{mm}$.

- Group II (G2)

Using reduction technology in the modulation/demodulation format, A-4 size document is sent at an official scanning line density of 3.85 lines $/ \mathrm{mm}$ for about 3 minutes.
Methods to suppress redundancy are not used.
Determined in 1976.

- Group III (G3)

Method of suppressing redundancy in the image signal prior to modulation is used. A-4 size document is sent within about one minute.
Determined in 1980.

- Group IV (G4)

Transmission is via data network. Method is provided for suppressing redundancy in signals prior to transmission, and error-free reception of transmission is possible.
The scope of these facsimile applications is not limited simply to transmission of written statements. Through symbiotic linkages with other communications methods, it can be expected to expand to include integrated services.

(3) Facsimile Call Time Series

As shown in the following diagram, the facsimile call time series is divided into five phases.

Phase A: Call setting
Call setting can be manual/automatic.
Phase B: Pre-message procedure
Phase B is a pre-processing procedure and a sequence for confirming status of terminal, transmission route, etc. and for ter-minal control. It implements terminal preparation status, determines and displays terminal constants, confirms synchronization status, etc. and prepares for transmission of facsimile messages.
Phase C: Message transmission
Phase C is the procedure for transmission of facsimile messages.
Phase D: Post message procedure
Phase D is the procedure for confirming that the message is completed and received. In the case of continuous transmission, return is made repeatedly to phase B or phase C for transmission.
Phase E: Call retrieval
Phase E is the procedure for call retrieval, that is, for circuit disconnection.
（4）Concerning Transmission of Time

Transmission Time $=$ Control Time + Image Transmission Time
Transmission time consists of the following．
Control time ：
This is time at the start of transmission when functions at the sending and receiving sides are
confirmed，transmission mode is established，and transmission and reception are
synchronized．

| Image transmission time： |
| :--- | :--- |
| This is the time required for transmission of document contents（image data）．In general，this |
| time is recorded in the catalog，etc． |

This is the time required after the document contents have been sent to confirm that the
locument was in fact sent，and to check for telephone reservations and／or the existence of
continuous transmission．

（5）Facsimile Standard

Item	Telephone Network Facimile
	G3 Machine
Connection Control Mode	Telephone Network Signal Mode
Terminal Control Mode	T．30 Binary
Facsimile Signal Format	Digital
Modulation Mode	PSK（V．27 ter）or QAM（V．29）
Transmission Speed	300 bps（control Signal） $2400,4800,7200,9600$ bps（FAX Signal）
Redundancy Compression Process （Coding Mode）	1 dimension ：MH Mode 2 dimension ：MR Mode（K＝2．4）
Resolution	Main Scan ：8 pel／mm Sub Scan ：3．85，7．7l／mm
Line Synchronization Signal	EOL Signal Line Transmission Time ［ms／line］ Depends on degree of data reduction． Minimum Value ：10，20 Can be recognized in 40ms．

(6) Explanation of Technology

(1) G3 Communication Signals (T. 30 Binary Process)

In G3 Facsimile communication, this is the procedure for exchange of control signals between the sending and receiving machines both before and after transception of image signals.
Control signals at 300 bps FSK are: $1850 \mathrm{~Hz} . .0,1650 \mathrm{~Hz} . . .1$.
An example of binary process in G3 communication is shown below.
Transmitter Side Receiver Side

Phase A	Document set Dial		Bell Detection
	FAX SW	$\frac{\text { CED }}{\text { DIS }}$	Notifies of capacity of receiving unit (e.g. , recording paper width, transmission speed).
Phase B	Checks the performance of the sending machine (document width, transmission speed, etc.), and sets the communication mode.	\qquad	Check the receive preparation and line condition.
		CFR	Receive preparation OK
	Transmission Start	Training 2	Record Start
Phase C		Image Information RTC	Record Stop
Phase D	Transmission End	$\frac{\text { EOP }}{\text { MCF }}$	Reception OK
Phase E	Information of Disconnect Disconnect		Disconnect

Explanation of Signals
Control signals are comprised mainly of 8 -bit identification signals and the data signals added to them. Data signals are added to DIS and DCS signals.

Signal.....DIS (Digital Identification Signal)
Identification Signal Format..... 00000001

Function:
Notifies of capacity of receiving unit
The added data signals are as follows.
(Example)

Bit No.	DIS/DTC	DCS
1	Transmitter - T. 2 operation	
2	Receiver - T. 2 operation	Receiver - T. 2 operation
3	T.2 IOC $=176$	T. 2 IOC $=176$
4	Transmitter - T. 3 operation	
5	Receiver - T. 3 operation	Receiver - T. 3 operation
6	Reserved for future T. 3 operation features	

Bit No.	DIS/DTC	DCS
7	Reserved for future T. 3 operation features	
8	Reserved for future T. 3 operation features	
9	Transmitter - T. 4 operation	
10	Receiver - T. 4 operation	Receiver - T. 4 operation
$\begin{aligned} & \hline 11,12 \\ & (0,0) \\ & (0,1) \\ & (1,0) \\ & (1,1) \end{aligned}$	Data signalling rate V. 27 ter fallback mode V. 27 ter V. 29 V. 27 ter and V. 29	Data signalling rate 2400 bit/s V. 27 ter 4800 bit/s V. 27 ter 9600 bit/s V. 29 7200 bit/s V. 29
13	Reserved for new modulation system	
14	Reserved for new modulation system	
15	Vertical resolution $=7.7$ line $/ \mathrm{mm}$	Vertical resolution $=7.7$ line $/ \mathrm{mm}$
16	Two-dimensional coding capability	Two-dimensional coding
17, 18 (0, 0) $(0,1)$ (1, 0) $(1,1)$	Recording width capabilities 1728 picture elements along scan line length of $215 \mathrm{~mm} \pm 1 \%$ 1728 picture elements along scan line length of $215 \mathrm{~mm} \pm 1 \%$ and 2048 picture elements along scan line length of $255 \mathrm{~mm} \pm 1 \%$ and 2432 picture elements along scan line length of $303 \mathrm{~mm} \pm 1 \%$ 1728 picture elements along scan line length of $215 \mathrm{~mm} \pm 1 \%$ and 2048 picture elements along scan line length of $255 \mathrm{~mm} \pm 1 \%$ Invalid (see Note 7)	Recording width 1728 picture elements along scan line length of $215 \mathrm{~mm} \pm 1 \%$ 2432 picture elements along scan line length of $303 \mathrm{~mm} \pm 1 \%$ and 2048 picture elements along scan line length of $255 \mathrm{~mm} \pm 1 \%$ and Invalid
$\begin{aligned} & 19,20 \\ & (0,0) \\ & (0,1) \\ & (1,0) \\ & (1,1) \end{aligned}$	Maximum recording length capability A4 (297 mm) Unlimited A4 (297 mm) and B4 (364 mm) Invalid	Maximum recording length A4 (297 mm) Unlimited B4 (364 mm) Invalid

Signal.....DCS (Digital Command Signal)

Identification Signal Format.....X1000001
(Example)

Function:
Notifies of capacity of receiving machine obtained at DIS and announces the transmission mode of the sender. The added data signals are as follows.

Bit No.	DIS/DTC	Standard setting	DCS
$21,22,23$	Minimum scan line time capability at the receiver		Minimum scan line time
$(0,0,0)$	20 ms at $3.851 / \mathrm{mm}: \mathrm{T7.7}=\mathrm{T} 3.85$	20 ms	
$(0,0,1)$	40 ms at $3.851 / \mathrm{mm}: \mathrm{T} 7.7=\mathrm{T} 3.85$	40 ms	
$(0,1,0)$	10 ms at $3.851 / \mathrm{mm}: \mathrm{T} 7.7=\mathrm{T} 3.85$	10 ms	
$(1,0,0)$	5 ms at $3.851 / \mathrm{mm}: \mathrm{T} 7.7=\mathrm{T} 3.85$		5 ms
$(0,1,1)$	10 ms at $3.851 / \mathrm{mm}: \mathrm{T} 7.7=1 / 2 \mathrm{~T} 3.85$		
$(1,1,0)$	20 ms at $3.851 / \mathrm{mm}: \mathrm{T} 7.7=1 / 2 \mathrm{~T} 3.85$		
$(1,0,1)$	40 ms at $3.851 / \mathrm{mm}: \mathrm{T} 7.7=1 / 2 \mathrm{~T} 3.85$		0 ms
$(1,1,1)$	0 ms at $3.851 / \mathrm{mm}: \mathrm{T} 7.7=\mathrm{T} 3.85$		

Bit No.	DIS/DTC	Standard setting	DCS
24	Extend field	1	Extend field
25	2400 bit/s handshaking	0	$2400 \mathrm{bit} / \mathrm{s}$ handshaking
26	Uncompressed mode	0	Uncompressed mode
27	Error correction mode	0	Error correction mode
28	Set to "0"	0	$\begin{aligned} \hline \text { Frame size } 0 & =256 \text { octets } \\ 1 & =64 \text { octets } \end{aligned}$
29	Error limiting mode	0	Error limiting mode
30	Reserved for G4 capability on PSTN	0	Reserved for G4 capability on PSTN
31	Unassigned	0	
32	Extend field	1	Extend field
33 (0) (1)	Validity of bits 17,18 Bits 17,18 are valid Bits 17,18 are invalid	0	Recording width Recording width indicated by bits 17,18 Recording width indicated by this field bit information
34	Recording width capability 1216 picture elements along scan line length of $151 \mathrm{~mm} \pm 1 \%$	0	Middle 1216 elements of 1728 picture elements
35	Recording width capability 864 picture elements along scan line length of $107 \mathrm{~mm} \pm 1 \%$	0	Middle 864 elements of 1728 picture elements
36	Recording width capability 1728 picture elements along scan line length of $151 \mathrm{~mm} \pm 1 \%$	0	Invalid
37	Recording width capability 1728 picture elements along scan line length of $107 \mathrm{~mm} \pm 1 \%$	0	Invalid
38	Reserved for future recording width capability	0	
39	Reserved for future recording width capability	0	
40	Extend field	1	Extend field
41	Semi super time / mm	1	
42	Semi super time / inch	0	
43	Super time	0	
44	inch	0	
45	mm	1	
46	MSC/SF	0	
47	Select polling	0	
48	EXT	0	

Note 1 - Standard facsimile units conforming to T. 2 must have the following capability: Index of cooperation (IOC)=264. Note 2 - Standard facsimile units conforming to T. 3 must have the following capability: Index of cooperation (IOC)=264.
Note 1 - Standard facsimile units conforming to T. 4 must have the following capability: Paper length=297 mm .

Signal	Identification Signal Format	Function
Training 1		Fixed pattern is transmitted to receiving side at speed $(2400$ to 9600 bps) designated by DCS, and the receiving side optimizes the automatic equalizer, etc., according to this signal.
TCF (Training Check)		Sends 0 continuously for 1.5 seconds at the same speed as the training signal.
CFR (Confirmation to Receive)	X0100001	Notifies sending side that TCF has been properly received. If TCF is not properly received, FTT (Failure To Train) X0100010 is relayed to sender. Sender then reduces transmission speed by one stage and initiates training once again.
Training 2		Used for reconfirmation of receiving side the same as training 1.

Signal	Identification Signal Format	
	Refer to next page.	
RTC (Return to Control)		Fends 12 bit ($0 . . .01 \times 6$ times to receiver at same speed as image signal and notifies of completion of transmission of first sheet.
EOP (End of Procedure)	X1110100	End of one communication
MCF (Message Confirmation)	$X 0110001$	End of 1 page reception
DCN (Disconnect)	$X 1011111$	Completion of transmission of 1 page. If there are still more documents to be sent, they are output instead of EOP. After MCF reception, sender transmits image signal of second sheet.
MPS (Multi-Page Signal)	X1111100	If there is an operator call from the sender, it is output after RTC.
PRI-EOP (Procedural Interrupt-EOP)	X0110101	Output in the case of operator call from receiver.
PIP (Procedural Interrupt Positive)		

(2) Redundancy Compression Process Coding Mode This set uses one-dimensional MH format.
(a) Document
(b) Part of document
(c) Run length and image signals equivalent to (b)
$\begin{array}{cllllllc}\text { (d) Codification of } & 00110111101010 & 011 & 110101 & 11 & 001000 & 011 & 101010 \\ \text { (c) according to } & \text { (White 400) } & \text { (Black 4) } & \text { (White 15) } & \text { (Black 2) } & \text { (White 12) } & \text { (Black 4) } & \text { (White 16) }\end{array}$ MH formula

$1100100111000101 \quad 000011 \quad 10$
(Black 2) (White 18) (Black 8) (White 13) (Black 3)
(c) Total bit number before MH codification (497 bit)
(d) Total bit number after MH codification (63 bit)

5-2.MODEM CIRCUIT OPERATION

The modem (IC11) has all the hardware satistying the ITU-T standards mentioned previously.
When the gate array IC1 (116) is brought to low level, the modem (IC11) is chip-selected and resistors inside IC are selected by select signals from ASIC (IC1) AO-A4, commands are written through data bus, and all processing is controlled at the ASIC (IC1) according to ITU-T procedures. Here the signal INT dispatched from IRQ (pin 52 of IC11) to the ASIC (IC1) when preparation for acceptance of transmission data is OK and when demodulation of reception data is complete, the ASIC (IC1) implements post processing. This modem (IC11) has an automatic application equalizer. With training signal 1 or 2 at time of G3 reception, it can automatically establish the optimum equalizer. Also, the modem (IC11) generates an internal clock of 24.00014 MHz by means of an external crystal oscillator (X1).

(1) Facsimile Transmission/DTMF Line Send

The digital image data on the data bus is modulated in the modem (IC11), and sent from pin 44 via amplifier IC10 ($6 \rightarrow 7$), the NCU section to the telephone line.

$$
\begin{aligned}
& \mathrm{IC} 11(44) \xrightarrow{\square} \mathrm{C} 73 \rightarrow \mathrm{R} 90 \rightarrow \mathrm{IC} 10(6-7) \rightarrow \mathrm{CN} 1(10) \rightarrow \mathrm{CN} 271(10) \rightarrow \mathrm{C} 184 \rightarrow \mathrm{R} 182 \rightarrow \mathrm{IC} 151(73-63) \rightarrow \\
& {[\mathrm{C} 203 \rightarrow \mathrm{R} 210 \rightarrow \mathrm{IC} 201(2-1) \rightarrow \mathrm{C} 202 \rightarrow \mathrm{R} 201 \rightarrow \mathrm{~T} 101] \rightarrow \text { TEL LINE. }}
\end{aligned}
$$

(2) Facsimile Reception

The analog image deta Which is received from the telephone line passes through the NCU section and enters pin 45 of the modem (IC11). The signals that enter pin 45 of the modem (IC11) are demodulated in the board to digital image signals, then placed on the data bus.
In this case, the image signals from the telephone line are transmitted serially, Hence they are placed on the bus in 8 bit units. Here, internal the equalizer circuit reduces the image signals to the long-distance receiving level.
It is designed to correct the characteristics of the frequency band centered about 3 kHz and maintain a constant receiving sensitivity. It can be set in the service mode.

$$
\begin{aligned}
& \text { TEL.Line } \rightarrow \mathrm{T} 101 \rightarrow \mathrm{R} 202 \rightarrow \mathrm{C} 205 \rightarrow \mathrm{IC} 201(6-7) \rightarrow \mathrm{C} 210 \rightarrow \mathrm{C} 212 \rightarrow \mathrm{R} 215 \rightarrow \mathrm{C} 213 \rightarrow \mathrm{IC} 202(1-2) \rightarrow \mathrm{C} 217 \\
& \rightarrow \mathrm{CN} 271(9) \rightarrow \mathrm{R} 11 \rightarrow \mathrm{IC} 10(2-1) \rightarrow \mathrm{C} 19 \rightarrow \mathrm{R} 13 \rightarrow \mathrm{IC} 11(45)
\end{aligned}
$$

(3) DTMF Transmission (Monitor tone)

The DTMF signal generated in the modem (IC11) is output from pin 44, then passes through the analog G/A IC151, and the NCU section to the telephone line as same as facsimile transmission signals.

(DTMF Monitor Tone)

$\mathrm{IC} 11(44) \underset{\longrightarrow}{\longrightarrow} \mathrm{C} 74 \mathrm{C}]^{\mathrm{R} 90} \rightarrow \mathrm{IC} 10(6-7) \rightarrow \mathrm{CN} 1(10) \rightarrow \mathrm{CN} 271(10) \rightarrow \mathrm{C} 184 \rightarrow \mathrm{R} 184 \rightarrow \mathrm{IC} 151(76-41) \rightarrow \mathrm{C} 158 \rightarrow \mathrm{R} 161 \rightarrow$ $\mathrm{IC} 151(40-38) \rightarrow \mathrm{R} 245 \rightarrow \mathrm{C} 245 \rightarrow \mathrm{IC} 241(4-5,8) \rightarrow$ Speaker

(4) Call Tone Transmission

The call signal which is generated in the ASIC (IC1) passes through analog G/A IC151 and IC241 $(4 \rightarrow 8,5)$ to the speaker.

$$
\begin{aligned}
& \mathrm{IC} 1(85,87) \longrightarrow \mathrm{R}) \rightarrow \mathrm{C} 56 \rightarrow \mathrm{CN} 2(1) \rightarrow \mathrm{CN} 272(1) \rightarrow \mathrm{R} 186 \rightarrow \mathrm{C} 187 \rightarrow \mathrm{IC151(78-41)} \rightarrow \mathrm{C} 158 \rightarrow \mathrm{R} 161 \rightarrow \\
& \mathrm{IC} 151(40-38) \rightarrow \mathrm{R} 245 \rightarrow \mathrm{C} 245 \rightarrow \mathrm{IC} 241(4-5,8) \rightarrow \text { Speaker }
\end{aligned}
$$

(5) Busy/Dial Tone Detection

The path is the same as for FAX receiving. When it is detected, the carrier detect bit of the resistor in the modem (IC11) becomes 1 , and this status is monitored by the ASIC (IC1).

6. EXPLANATION OF ANALOG SECTION BLOCK DIAGRAM

(1)Function

The analog section serves as interface with the telephone line. The digital board (IC11) for transmission reception of FAX signals, and the speech network IC (IC109) are connected to the NCU section. Switching between the digital board (IC11) and the other sections is executed by means of a multiplexer in the NCU section. The control signals to the individual analog sections are output mainly from the ASIC IC1, and the status information for the various sections also is held in the ASIC IC1. Simple explanations for the various sections are given below.

2) Circuit Operation

[NCU Section]

Interface with the telephone line and external telephone. This is composed of bell detection circuit, pulse dial generation circuit, EXT.TAM OFF-HOOK detect circuit, vox circuit, amplifier circuit for line transmission and reception, sidetone circuit multiplexer circuit, etc. See below for details.

[Modem (IC11)]

This is used for FAX signal tone modulation, DTMF signal transmission, ring tone generation, and line transmission beep generation. The DTMF signal and Beep are placed onto the TX system. The ring tone passes through the analog switch. Output to the speaker via the power amplifier (IC241).

[Speech Network IC (IC109)]

This is special IC combining the hands-free and handset circuits in 1 chip. The handset and microphone are connected to this circuit. At the time of hands-free operation, the SP output is outputted after passage through the power amplifier (IC241) and the DTMF monitor tone and the pulse dial monitor tone output from IC11 (Digital Board) and IC151 (Analog Board) are given as input to this IC and become the monitor tone at the time of handset dialing.

7 NCU Section

7-1. GENERAL

This section is the interface with the telephone line and external telephone. It is composed of EXT. TEL Line relay (RL101), bell detection circuit, pulse dial circuit, Auto Disconnect circuit, TAM Interface circuit, line amplifier and sidetone circuits and multiplexer.

7-2. EXT. TEL. line relay (RL101)

(1) Circuit Operation

Normally this relay switches to the external telephone side (break) and it switches to the open side (make) when the set starts facsimile communication.

IC151 (32) High Level \rightarrow Q271 ON \rightarrow RL101 (make)

7-3. BELL DETECTION CIRCUIT

(1) Circuit Operation

Signal waveform of each section are indicated below. Signal (low level section) input to pin 4 of gate array IC151 are read out at CPU and judged as bell.

Between Tip and Ring

Between PC101(1) and (2)

PC101(4)/Gate Array IC151 (4)

TEL LINE \rightarrow PC101 $(1,2-4) \rightarrow$ IC151 (4)

7-4. PULSE DIAL CIRCUIT

(1) Circuit Operation

In OFF-HOOK Condition, the photocoupler PC102 pin (2) is low level by IC151 pin (3) and PC102 pin (4) is low level so Q101 is ON. At the time of pulse dial operation, PC102 pin (2) becomes high level by IC151 pin (3), so that PC4 pin (4) becomes high level, and Q101 becomes OFF line ON/OFF by high/low control for IC151 pin (3) makes pulse dial operation possible.

IC151 (3) High Level \rightarrow PC102 (2) High level \rightarrow PC102 (4) High Level \rightarrow Q101 OFF \rightarrow Telephone Line

KX-F900

7-5. AUTO DISCONNECT CIRCUIT

(1)Function:

This circuit is used to detect the fact that another telephone connected to the same line is OFF-Hook while the unit is in the time of TEL/FAX's arrival bell ringing operation.

(2)Circuit Operation:

Tip (Ring) \rightarrow D101 \rightarrow Q101 $\rightarrow \mathrm{C} 107 \rightarrow$ D102 \rightarrow R114 \rightarrow Q102 \rightarrow PC103.
During this interval C107 charges and the base of Q102 becomes high, and PC103 pin(2) becomes low, causing PC103 to go ON. If a parallel-connected telephone or external telephone is put into an OFF-HOOK status,, charge ceases to flow C107 and the base of Q102 becomes low, causing PC103 to go OFF.
When a line is connected, Q102 and PC103 go ON, causing pin 5 of IC151 to go low. When the line is disconnected, Q102 and PC103 go off, causing pin 5 of IC151 to go high.

7-6. TAM INTERFACE CIRCUIT

This circuit is for to switch between FAX receiving and external TAM's message recording automatically.
This circuit consists of EXT. TAM OFF-HOOK detect circuit, Monitor Transformer, Multiplexer, Amplifier, VOX detect circuit. In details please refer to page 142. TAM INTERFACE SECTION.

7-7. LINE AMPLIFIER AND SIDE TONE CIRCUITS

(1)Circuit Operation

The reception signal received as output from the line transformer T101 is given as input to R202, C205 to IC201 pin (6), anc it is inputted to the reception system at an amplifier gain 10.1 dB from pin 7.
The transmission signal given as input to IC201 pin (2) via R210, C203 is amplified to about 15 dB , It is outputted form pin 1 of IC201 and it is transmittled to T101 via R201, C202,T101. Without side tone circuit, the transmission signal here would returr completely to the reception amplifier via R201, C202. Here, the signal output from IC201 pin (1) passes through C218, R203 R204, C207 and enters the amplifier IC201 pin (5), and this is used to cancel the return part of the transmission signal. This is the side tone circuit.

8. ITS (Integrated telephone System) and MONITOR SECTION

8-1. GENERAL

The general ITS operation is executed by the special IC109. This IC has a speakerphone circuit and a handset circuit in 1 chip, and control to each mode is executed from the outside (IC151). At the time of speakerphone operation the speaker output passes through the power amplifier (IC241). The DTMF signal and the bell tone are output from the modem (IC11: digital board). The alarm tone, the key tone, and the beep are outputted from the gate array IC151 (digital board). At the time of pulse dial operation, the monitor tone is outputted from the gate array IC151.

8-2. SPEAKER PHONE CIRCUIT

(1) Function

This circuit controls the automatic switching of the transmitted and received signals, to and from the telephone line, when the unit is used in the hands-free mode.

(2)Circuit Operation

The speakerphone can only provide a one-way communication path.
In other words, it can either transmit an outgoing signal or receive an incoming signal at a given time, but cannot do both simultaneously. Therefore, a switching circuit is necessary to control the flow of the outgoing and incoming signals. This switching circuit is contained in IC109 and consists of voice detector, TX attenuator, RX attenuator, compara tor and attenuator control. The circuit analyzes whether the TX (transmit) or the RX (receiver) signal is louder, and then it processes the signals such that the louder signal is given precedence. The voice detector provides a DC input to the attenuator control corresponding to the TX signal. The comparator receives a TX and RX signals and supplies a DC input to the attenuator control corresponding to the RX signal. The attenuator control provides a control signal to the TX and the RX attenuator to switch the appropriate signals ON and OFF. The attenuator control also detects the level of the volume control to automatically adjust for changing ambient conditions.

(Transmission Signal Path)

The input signal from the microphone is sent through the circuit via the following path:
$\mathrm{MIC} \rightarrow \mathrm{J} 270 \rightarrow \mathrm{C} 138 \rightarrow \mathrm{IC} 109(13-27) \rightarrow \mathrm{R} 145 \rightarrow \mathrm{IC} 151(75-63) \rightarrow \mathrm{C} 203 \rightarrow \mathrm{R} 210 \rightarrow \mathrm{IC} 201(2-1) \rightarrow \mathrm{C} 202 \rightarrow \mathrm{R} 201 \rightarrow$ T101 \rightarrow TEL LINE

(Reception Signal Path)

Signals received from the telephone line are outputted at the speaker via the following path.

```
TEL LINE \(\rightarrow\) T101 \(\rightarrow\) R202 \(\rightarrow \mathrm{C} 205 \rightarrow \mathrm{IC} 201(6-7) \rightarrow \mathrm{C} 210 \rightarrow \mathrm{C} 173 \rightarrow \mathrm{R} 172 \rightarrow \mathrm{R} 173 \rightarrow \mathrm{C} 174 \rightarrow \mathrm{IC} 151(59-71) \rightarrow \mathrm{C} 142\)
    \(\rightarrow \mathrm{R} 143 \rightarrow \mathrm{IC} 109(22-30) \rightarrow \mathrm{C} 145 \rightarrow \mathrm{IC} 109(4-7) \rightarrow \mathrm{R} 146 \rightarrow \mathrm{C} 146 \rightarrow \mathrm{IC} 151(40-38) \rightarrow \mathrm{R} 245 \rightarrow \mathrm{C} 245 \rightarrow \mathrm{IC} 241(4-5,8)\)
    \(\rightarrow\) SPEAKER
```


(Control Signal Path)

Control signals for transmission and reception are inputted to IC109 via following path.

```
(Transmission Control Signal Path)
MIC }->\mathrm{ J270 }->\mathrm{ C138 }->\mathrm{ IC109[(13) }->\mathrm{ MC AMP }->\mathrm{ SW4 }->\mathrm{ (31)] }->\mathrm{ C130 }->\mathrm{ R130 }->\mathrm{ IC109[(1) }->\mathrm{ AMP }->\mathrm{ Comparator]
(Reception Control Signal Path)
TEL LINE }->\mathrm{ NCU Section [IC201(6-7)] }->\mathrm{ C173 }->\mathrm{ R172 }->\mathrm{ R173 }->\mathrm{ C174 }->\mathrm{ IC151(59-71) }->\mathrm{ C142 }->\mathrm{ R143 }
IC109[(22) -> SW3 }->\mathrm{ RX ATT }->(30)]->\mathrm{ C145 }->\mathrm{ IC109 [(4) }->\mathrm{ SW5 }->\mathrm{ SP AMP }->\mathrm{ (7)] }->\mathrm{ C132 }->\mathrm{ R131 }->\mathrm{ IC109 [(3)
AMP }->\mathrm{ Comparator]
```


(Voice Detector)

The transmission signal given as input from the microphone to IC109 pin (1) passes through the built-in amplifier and enters the voice detection circuit for judgment of voice noise. In case of noise, the TX attenuator is made effective via the attenuator control.

(Attenuator Control)

The attenuator control detects the setting of the volume control through pin 11 of IC109 to automatically adjust for changing ambient conditions.

8-3. MONITOR CIRCUIT

(1) DTMF Monitor
(Speaker Operation)
$\mathrm{IC11}(44) \underset{\rightarrow}{\longrightarrow} \mathrm{C} 74] . \mathrm{R90} \rightarrow \mathrm{IC10}(6-7) \rightarrow \mathrm{CN1(10)} \rightarrow \mathrm{CN} 271(10) \rightarrow \mathrm{C} 184 \rightarrow \mathrm{R} 184 \rightarrow \mathrm{IC} 151(76-41) \rightarrow \mathrm{C} 158 \rightarrow \mathrm{R} 161$
\rightarrow IC151(40-38) \rightarrow R245 \rightarrow C245 \rightarrow IC241(4-5,8) \rightarrow Speaker
(Handset Operation)

\rightarrow Speaker
(2) Alarm/Beep/Key tone $\mathrm{IC} 1(86) \rightarrow \mathrm{CN} 1(11) \rightarrow \mathrm{CN} 271(11) \rightarrow \mathrm{R} 185 \rightarrow \mathrm{C} 186 \rightarrow \mathrm{IC} 151(77-41) \rightarrow \mathrm{C} 158 \rightarrow \mathrm{R} 161 \rightarrow \mathrm{IC} 151(40-38) \rightarrow \mathrm{R} 245 \rightarrow \mathrm{C} 245$ IC241 $(4-5,8) \rightarrow$ Speaker
(3) Bell Signal

$$
\begin{aligned}
& \mathrm{IC} 1(85,87) \underset{\rightarrow}{\mathrm{R} 59 \rightarrow \mathrm{C} 56} \rightarrow \mathrm{CN} 2(1) \rightarrow \mathrm{CN} 272(1) \rightarrow \mathrm{R} 186 \rightarrow \mathrm{C} 187 \rightarrow \mathrm{IC} 151(78-41) \rightarrow \mathrm{C} 158 \rightarrow \mathrm{R} 161 \rightarrow \\
& \mathrm{IC} 151(40-38) \rightarrow \mathrm{R} 245 \rightarrow \mathrm{C} 245 \rightarrow \mathrm{IC} 241(4-5,8) \rightarrow \text { Speaker }
\end{aligned}
$$

9. TAM INTERFACE SECTION

9-1. FUNCTION

In case that EXT. TAM position is selected in Receive mode, the unit receives documents tor r AX call or the external TAM records a voice message automatically.

To switch between answering machine and facsimile in EXT. TAM Mode.

OPERATION	EXPLANATION When bell signal rings as many as the numbers which installed in the connected answering machine, the answering machine seizes the line, then answering massage is out to the line.	The length of response messages should be 8~16 seconds. While response massage is being played, the unit starts to detect CNG signal. When CNG signal is received, the unit switches to FAX receiving.
10 seconds after the answering machine gets the telephone call, no-sound detection begins.	When there is approximately 5 seconds' no sound stuation for 20 seconds after being passed 10 seconds, the unit switches to FAX receiving. During this period it detects CNG signal also. When it cannot detect no-sound nor CNG, it doesn't switch to FAX receiving, the unit doesn't catch the line. (The answering system hangs up the line.)	

Attention 1: No sound detection lasts 20 seconds after the telephone call comming in to the answering machine. If there is no sound situation for more than 5 seconds ($\# 701$ in the service mode) it is switched to the facsimile.

Attention 2: When answering machine can't catch the telephone call because of the disconnection or no capacity in the tape, the unit catches the call after 5 times' bell ring ($\# 702$ in the service mode), then switches to facsimile. When you install in Service, it is possible for the unit not to catch phone calls.

9-2. CIRCUIT OPERATION

TAM INTERFACE circuit consists of EXT. TAM HOOK detection circuit, CNG signal from the party's detection circuit, VOX detection circuit (to judge sound/no-sound) and RL101 (to separate EXT. TAM).
(1) EXT. TAM HOOK detection circuit

The bell comes to EXT. TAM and EXT. TAM seizes the line, causing to make DC LOOP. PC105 detects this voltage. During detection PC105 (4) becomes low.
(DC LOOP)
Tip \rightarrow POS101 \rightarrow L105 \rightarrow RL101 $(7 \rightarrow 6) \underset{\rightarrow \text { R192 } \rightarrow \text { PC105 }}{\longrightarrow}$ VAR1 $_{\rightarrow \text { L104 } \rightarrow \text { Tip1 } \rightarrow(E X T . T A M) ~}^{\rightarrow}$ Ring $1 \rightarrow$ L103 \rightarrow R103 \rightarrow
L105 \rightarrow Ring

(2) CNG signal detection circuit

CNG signal from the party's FAX is detected in MODEM IC11 (digital board).
(Signal path)
TEL LINE $\rightarrow \mathrm{C} 104 \rightarrow \mathrm{~T} 102 \rightarrow \mathrm{C} 176 \rightarrow \mathrm{R} 176 \rightarrow \mathrm{IC} 151(61)(67) \rightarrow \mathrm{R} 217 \rightarrow \mathrm{C} 214 \rightarrow \mathrm{IC} 202(10)$ 111) $\rightarrow \mathrm{C} 217 \rightarrow \mathrm{CN} 271(9) \rightarrow$ CN1 (9) \rightarrow R97 \rightarrow IC10 (2) (1) \rightarrow C82 \rightarrow R95 \rightarrow IC11 (45)

(3) VOX

VOX circuit detects if there is a signal or voice in the line. That's why VOX circuit reacts to OGM of EXT.TAM and ICM from the party.
(Signal path)

(4) RL101

Normally this relay switches to the external telephone side (break) and it switches to the open side (make) when the set changes to facsimile communication from EXT.TAM operation.

IC151 (32) High Level \rightarrow Q271 \rightarrow ON \rightarrow RL101 (make)
IC151(32) Low Level \rightarrow Q271 \rightarrow OFF \rightarrow RL101 (break)
(5) Remote receiving

This is the DTMF signal of parallel connection TEL or EXT.TEL between T and R. When the party is FAX, this turns unit to FAX receiving.
(Signal Path)
To defect DTMF signal in MODEM.

Circuit Diagram

NOILVYヨdO IIกDษリIO

KX-F900

10. OPERATION PANEL

The unit consists of LCD (Liquid crystal display), KEYs and LEDs (light-emitting diode). They are controlled by the Gate Array (IC301) and AS IC (IC1: On the DIGITAL BOARD). (Fig.-a)

Fig-a DIAGRAM
Key Matrix

	KIN 0	KIN 1	KIN 2	KIN 3	KIN 4	KIN 5	KIN 6	KIN 7
KSL0	VOLUME (S301)	$\begin{aligned} & \hline \text { STOP } \\ & \text { (S305) } \end{aligned}$	$\begin{gathered} \text { START } \\ \text { ICOPY/SET } \\ \text { (S309) } \end{gathered}$	VOLUME (S313)	SP-PHONE (S317)	$\begin{aligned} & \text { HELP } \\ & \text { (S321) } \\ & \hline \end{aligned}$	DIRECTORY (S325)	AUTO RECEIVE (S329)
KSL1				3 (S314)	MUTE (S318)	$\begin{gathered} 6 \\ (S 322) \end{gathered}$	9 (S326)	$\#$ (S330)
KSL2	$\begin{gathered} \hline \text { ONE-TOUCH } \\ 4 \\ (\mathrm{~S} 303) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { ONE-TOUCH } \\ 5 \\ (\mathrm{~S} 307) \\ \hline \end{gathered}$	LOWER (S311)	2 (S315)	$\begin{array}{\|c\|} \hline \text { REDIAL } \\ \text { PAUSE } \\ \text { (S319) } \\ \hline \end{array}$	5 $(\mathrm{~S} 323)$	8 $(\mathrm{~S} 327)$	0 (S331)
KSL3	$\begin{array}{\|c\|} \hline \text { ONE-TOUCH } \\ 1 \\ (\mathrm{~S} 304) \\ \hline \end{array}$	$\begin{gathered} \hline \text { ONE-TOUCH } \\ 2 \\ (\mathrm{~S} 308) \\ \hline \end{gathered}$	ONE-TOUCH 3 $($ S312 $)$	1 (S316)	FLASH (S320)	4 (S324)	7 (S328)	$\begin{gathered} * \\ (S 332) \\ \hline \end{gathered}$

		LED11
XLD 13	LOCATOR INTERCOM (S335)	MEMU
(S333)		
XLD 14		RESOLUTION (S334)

11. LCD COG TYPE

The Gate Array (IC301) needs only write ASCII code from the data bus (D4~D7). V0 is power supplies for crystal drive. R320, R322 are density control resistors.
Consequently, in this set the timing (mainly positive clock) is generated by the LCD interface circuitry of the gate array (IC301).

Circuit Diagram

Timing Chart

Density	Normal	Dark
LED 7 (IC301-4 pin)	H	L

12. SWITCHING POWER SUPPLY SECTION

Block Diagram

[Input Circuit]

Input current goes into input rectifier circuit through filter circuit. Fitter circuit decreases noise terminal voltage and noise electric field strength.

[Rectifier Circuit]

Input current is rectified by D101 and charge C106 to make DC voltage, then supply power to converter circuit. Voltage is supplied to control IC's kick-on voltage through R102 and R103. Inrush current is limited by thermistor TH101.

[Converter circuit]

The converter circuit of this power supply circuit is called fly back converter.
We explain the operation of this circuit with the simple circuit.

P...PRIMARY WINDING
S...SECONDARY WINDING
B...CONTROL WINDING

The circuit in the previous page, when the transistor Q101 is ON, secondary rectifier diode D201 is OFF and the energy is charged in the transformer T101. Q101 continues being ON while the voltage is generated by control winding (B). Q101 is tuned OFF by control circuit, then each windings of T101 changes the polarity and rectifier diode D201 truns ON.
The charged energy of T101 supplies power through D201 to output load. And the voltage of control winding is decreased and Q101contines being OFF state. When all energy is discharged through D201, Q101 is turned ON again and it makes the polarity of each windings of T101 in reverse and goes to self oscillation. When input voltage Ei is high, the ON period of Q101 becomes shorter, and when load current is high, the ON period of Q101 becomes longer.
The value of output voltage is

Ton: ON TIME OF Q101
T_{s} : PERIOD OF OSCILLATION

In the equivalent circuit:
When SW is ON, current flows
$\mathrm{SW} \rightarrow \mathrm{L}$
When SW is OFF, Current flows
$L \rightarrow D \rightarrow R L$

The value of inductance rectifiers increasing current during ON period.
$\mathrm{IL}=\mathrm{Ei} / \mathrm{L}^{*} \mathrm{~d}^{*} \mathrm{Ts}$
The value of inductance rectifiers decreasing current during OFF period.
$\mathrm{IL}=\mathrm{Eo} / \mathrm{L}(1-\mathrm{d})$ * Ts_{s}
From equations (1) and (2), $E O=d /(I-d) * E i$

In the actual circuit, the fixed output voltage can be obtained by changing the winding ration of transformer T101. In this converter circuit, the duty ratio of ON period and OFF period of the transistor produces output. In this power supply, the bias winding is also built-in in the transformer and the output value is one. 24 V output voltage is stabilized and changes the duty ratio.

[Control Circuit And Error Detecting Circuit]

The control circuit amplifies the output with increased voltage detected in the error detecting circuit, then drives the main transistor. In this power supply the duty ratio is defined by changing the ON period of main transistor.
This is shown as follows.
When the output voltage of 24 V circuit becomes higher, the current of photo coupler PC101 increases, the pulse width of output control IC becomes narrow and the ON period of Q101 becomes shorter.

[Over Current Limiter (O.C.L.)]

IC101 rectifiers the highest voltage with resistors R105 and R106 detecting the current in the primary side. When the current is supplied higher than the highest voltage, it switches to ratch mode which stops oscillating.

Dummy load method (for the quick check of power supply output)

13. CORDLESS SECTION

13-1. EXPLANATION OF CPU DATA COMMUNICATION

(1) Calling

Portable		Base
Handset	(STANDBY MODE)	Unit

(2) To terminate

Communication

(3) Ringing

After detecting the Ring signal from circuit, Base Unit sends a ring signal DATA (Ring), then the Portable Handset starts ringing.
(4) Ports for transmitting and receiving of data
Portable Handset: transmitting ... 54 Pin receiving ... 50 Pin
Base Unit : transmitting ... 48 Pin receiving ... 58 Pin

(5) Waveform of DATA used for cordless transmission and reception

The DATA which is transmitted from the Portable Handset to the Base Unit is combination of DATA 0, DATA 1, DATA Delimt, Pre data and End data.

The DATA which is transmitted from the Base Unit to the Portable Handset is combination of DATA 0, DATA 1, DATA Delimt, Pre data and End data.

PORTABLE HANDSET

Transmitting DATA Format

DATA 0

DATA1

DATA Delimt

Pre data

29.568 ms

END data

BASE UNIT

Transmitting DATA Format

DATA Delimt

Pre data

18.48 ms

END data

5.712 ms

(6) When linking

When LINKing from the Portable Handset (when becoming STBY to TALK), DATA is transmitted in above format. The combined portion of DATA 0 and DATA 1 is transmitted in LINK requesting DATA (35bit) format first. Then, when LINK OK (ACK-OK) DATA (19bit) is returned from the Base Unit, it is sent as LINK from DATA after changing the combination of DATA 0 and DATA 1. And the DATA Delimt is between each Frame as a stop.
The contents of LINK requesting DATA and LINK form DATA are different depending on each operation.

(7) Pulse Dial

When executing Pulse Dial,the Pulse Dial DATA is transmitted from the Portable Handset to the Base Unit in above format. The combination of DATA 0 and DATA 1 are changed by each Dial No. And the DATA Delimt is between each Frame as a stop. The number of Frame is 2 .
(8) Tone Dial

When executing Tone Diai, Tone Dial DATA is transmitted from the Portable Handset to the Base Unit in above format. The DATA is changed by Dial No. as same as Pulse Dial. When Tone Dialing, DATA (Continue DATA) that the key is pressed continuously is sent to the Base Unit during the key is pressed. When depressing the key, the TONE Dial exterminating DATA (Tone end DATA) is send, and the END data is sent finally.

NOTE

$1,000,000$ kinds of the security code are available for the model KX-F900. Each time the portable handset is set on the cradle of the base unit (for charging), the CPU automatically change the security code.

13-2. FREQUENCY TABLE (MHz)

CH	Base Unit TX Portable Handset RX	Base Unit RX Portable Handset TX	CH	Base Unit TX Portable Handset RX	Base Unit RX Portable Handset TX
1	902.100 MHz	926.100 MHz	16	902.850 MHz	926.850 MHz
2	902.150 MHz	926.150 MHz	17	902.900 MHz	926.900 MHz
3	902.200 MHz	926.200 MHz	18	902.950 MHz	926.950 MHz
4	902.250 MHz	926.250 MHz	19	903.000 MHz	927.000 MHz
5	902.300 MHz	926.300 MHz	20	903.050 MHz	927.050 MHz
6	902.350 MHz	926.350 MHz	21	903.100 MHz	927.100 MHz
7	902.400 MHz	926.400 MHz	22	903.150 MHz	927.150 MHz
8	902.450 MHz	926.450 MHz	23	903.200 MHz	927.200 MHz
9	902.500 MHz	926.500 MHz	24	903.250 MHz	927.250 MHz
10	902.550 MHz	926.550 MHz	25	903.300 MHz	927.300 MHz
11	902.600 MHz	926.600 MHz	26	903.350 MHz	927.350 MHz
12	902.650 MHz	926.650 MHz	27	903.400 MHz	927.400 MHz
13	902.700 MHz	926.700 MHz	28	903.450 MHz	927.450 MHz
14	902.750 MHz	926.750 MHz	29	903.500 MHz	927.500 MHz
15	902.800 MHz	926.800 MHz	30	903.550 MHz	927.550 MHz

13-4. CIRCUIT OPERATION OF CORDLESS BASE UNIT

(1) Power Circuit (charging circuit power supply)

Pins 1 and 8 are switched in the clock period which is determined by capacitor C559 connected to pin 3 of the switching regulator IC (IC504). The switching output turns Q509 ON or OFF and reduces the 24 V voltage to 12 V . Pin 5 of IC504 is the feedback input pin whose input signal is used to stabilize the output voltage.

Circuit Diagram

(2) Charge Circuit

When the portable handset is places on the charging stand, Q505 is turned ON, and the charging information is supplied to MPU pin 37 as a logical high signal. When the charging information is supplied to the MPU, the MPU sends the ID signal from pin 44. This ID signal switches Q506, and it is supplied to the portable handset via the charging pin of Q506. In the same way, when the spare battery is inserted into the charging stand, Q508, is turned ON, and the charging information is supplied to MPU pin 36. When both the portable handset and spare battery are to be charged, the MPU outputs a logical low signal from pin 27 which turns Q507 OFF and also turns Q510 OFF, thereby limiting the charging current to the spare battery. When only the spare battery is to be charged, the MPU outputs a logical high signal from pin 27 which turns Q507 and Q510 ON so that the charging current is increased.

Circuit Diagram

(3) Line Receiving Signal

The signal supplied from the line is input from pin 6 of CN501 through the analog board, and ti is output from pin 10 of the RF unit via IC502 pins $21,20,19,17,16,13,11$ and 10 in this order.

Circuit Diagram

(4) RX Data Circuit/Hard Mute Circuit

The AF signal output from the RF unit is filtered and amplified by a filter amplifier with a 500 Hz cutoff connected to pins 1 through 4 of IC503. The resulting demodulated data waveform is then input to RX DATA pin 6 of the MPU.
If there is data from the portable handset during talk operation, the portable handset data is as shown below to prevent the data from leaking onto the line. Hardware muting is applied as the leading edge of the data as soon as the data arrives. After this, muting is applied by the MPU.

Circuit Diagram

(5) ID Code Setting

When the portable handset is placed on the cordless base unit, the charge detector operates and ID data is output from pin 44 of the MPU. After passing through data amplifier Q506 and the charge terminal, the data is sent to the portable handset.

13-5. CIRCUIT OPERATION OF RF UNIT

(1) PLL Circuit

The PLL IC comprises two PLL blocks, one for transmission and one for reception, a transmission multiplier circuit, and a reception first mixer circuit.
The 900 MHz band frequency from the RX VCO, the 450 MHz band frequency from the TX VCO, and the 10.25 MHz reference oscillator frequency are frequency divided by a frequency divider controlled by the CPU to create the 12.5 kHz comparison frequency. The phase comparator determines the phase difference between the TX and RX frequencies and the reference frequency, and supplies a control voltage via pin 7 or pin 18 to the appropriate VCOs so that the desired TX and RX frequencies are maintained.
The output from the TX VCO is multiplied by 2 internally by the IC, resulting in a 900 MHz band signal that is then output to pin 2. Also, the RX VCO signal is supplied to the first mixer built into the IC.

Circuit Diagram

(2) TX VCO, RX VCO

TX VCO and RX VCO are module as shown below table.

		VCo	RX VCO
Pin Layout			Shield Case side View
Oscillator Frequency	Portable Handset Base Unit	$\begin{aligned} & \text { 463.05~463.775MHZ } \\ & 451.05 \sim 451.775 \mathrm{MHZ} \end{aligned}$	Portable Handset $891.4 \sim 892.85 \mathrm{MHZ}$ Base Unit $936.8 \sim 938.25 \mathrm{MHZ}$
Output Level	$-6 \mathrm{~dB} \pm 2 \mathrm{~dB}$		
Control Voltage	0.5~2.5VDC		

(3) Receiver RF Circuit (): Portable Handset

The electric wave received from the antenna ia attenuated by the SAW filter F302 (F402) except the received frequency band Then it is amplifier Q304 (Q404) and Q303 (Q403), and supplied to the IC301 (IC401) pin 23 (MIXER input).

Circuit Diagram

(4) MIXER IF Circuit (): Portable Handset

The reception frequency band signal supplied to the pin 23 MIXER input of IC301 (IC401) is converted into a 10.7 MHz first IF signal by the mixer circuit, using the reception local signal. The result is then output to pin 13 MIXO. The resonator circuit consisting of L304, C336 (L404, C436) resonates at 10.7 MHz . The 10.7 MHz IF signal is filtered by ceramic filter F303 (F403) and then supplied to IF amplifier Q305 (Q405).

Circuit Diagram

(5) TX Power Circuit (): Portable Handset

After being multiplied by 2 inside IC301 (IC401) to make it a 900 MHz band frequency, the transmission signal is amplified by Q301 and Q302 (Q401 and Q402) and frequency elements outside of the transmission frequency are attenuated by dielectric filter F301 (F401). The signal then passes through a transmission-reception matching circuit and supplied to the antenna terminal.

Circuit Diagram

(6) Second Mixer, Detector, Carrier Sense Circuit (): Portable Handset

The 10.7 MHz IF signal from Q305 (Q405) passes through pin 16 of IC302 (IC402) and is input to the second mixer built into the IC. The reference oscillator frequency from IC301 (IC401) is used as the second local signal. After being converted into a 450 kHz second IF by the second mixer, the signal is wave detected and output to pin 9 as a low-frequency signal. This signal is output as the AF output signal and, at the same time, used for electric field determination. The FM noise is filtered by a 10 kHz BPF comprising pins 10 and 11 and then amplified. Then it is rectified by D301 (D401) and D302 (D402), and input to the switching block consisting of pins 12 through 14.

Circuit Diagram

KX-F900

13-7. CIRCUIT OPERATION OF PORTABLE HANDSET

(1) Power Supply Ciurcuit

As indicated in Fig.40, voltage is supplied separately to each block. In order to ensure that the RF block in particular has a stable fixed-voltage power supply, the RF block is equipped with a dedicated stabilized power supply. In the standby mode, pin 58 drops at set intervals from high to low level, resulting in an intermittent reception signal. In the talk mode, pins 59 and 58 are low level and power is supplied to all the circuitry.

Circuit Diagram

(59) CPU TX POWER

(2) Data Reception Circuit

The wave detection signal from the RF block has high frequency elements eliminated by a CR filter consisting of R258 and C244. Then it is amplified by Q215 and, once again, high frequency elements are eliminated by R255 and C243. After this, the signal is amplified by Q214 and input to pin 50 of the CPU. (The cutoff frequency is 500 Hz .) The data output waveform is a block pulse. To inhibit block pulse noise, the gain of the amplifier is limited and modulation is clipped at 3 kHz .

Circuit Diagram

（3）Ringer Circuit

If the ringer volume is set to low and the key is entered occurs，an alarm tone is output from pin 45 of the CPU and input to Q212．This causes Q213 to turn off and results in a softer beep tone． If the ringer volume is set to high，Q213 turns on and results in a louder beep tone．

Circuit Diagram

（4）Reception Signal Circuit

The receiver circuit comprises expander IC202，side tone control IC IC208，and a speaker amplifier． After being adjusted to the appropriate level by VR202，the signal passes through a 3 kHz LPF and an ex－ pander built into IC202．It is then input to side tone IC IC208．The side tone IC is connected to the microphone amplifier．If a large input is input to the microphone，the gain control built into IC208 lowers the gain to reduce the output of the speaker amplifier．If there is no large input being input to the microphone，the amplifier in IC208 is set to standard gain．Consequently，the sound of the received audio signal becomes fainter when the user is talking in a loud voice and the side tone level is lowered．When the user talks more softly，the received audio signal is audible at the standard level．
Also，in addition to the input from the microphone，the ACG signal from the RF block is input to the side tone IC． When the base unit and portable handset are separated from each other，causing the signal to become weaker， the DC voltage rises and this voltage is input to pin 5 of IC208．When the DC voltage input to pin 5 rises，the gain control built into IC208 lowers the gain．Consequently，the reception level is lowered when the reception signal is weak and there is more noise．This prevents the noise from becoming too noticeable． The reception signal passes through receiver volume selector switch Q217，and then drives the receiver speaker．

$$
\begin{array}{llll}
\text { RX VOL } & H: & \text { LOW LEVEL } \\
& \mathrm{L}: & \text { HIGH LEVEL }
\end{array}
$$

SPK MUTE H ：SPEAKER ON
L ：SPEAKER OFF

Circuit Diagram

(5) Sending Signal

The audio signal from the microphone is amplified by Q208 and then passes through a limiter, mute circuit, compander, and 3 kHz LPF built into IC202. It is then mixed with the TX DATA signal from the CPU, the maximum modulation is adjusted by VR201, and input to the modulator in the RF block.

Circuit Diagram

(6) Reset/Power Dowi/battery LowilD

When the battery is installed in the portable handset, the reset circuit consisting of R289, C255, and Q204 functions, inputting a reset signal to the CPU. This ensures that the unit will operate normally without the user's needing to switch the power off and on. When the voltage from the batteries drops to $3.5 \mathrm{~V}, 3.5 \mathrm{~V}$ voltage detector IC204 operates and inputs a battery low signal to the CPU. This causes the battery low LED to flash on and off. If voltage continues to drop and reaches $3.2 \mathrm{~V}, 3.2 \mathrm{~V}$ voltage detector 1 C 206 operates and outputs a power down signal to the CPU. This causes power to be cut off automatically and prevents the battery from over discharging. Q201 is a charge detector that informs the CPU whether or not the portable handset is currently being charged. During charging, ID data is sent from the base unit. Q202 receives this ID data and sends it to the CPU.

Circuit Diagram

- FOR SCHEMATIC DIAGRAM

1. DC voltage measurements are taken with oscillosiuple or tester from ground.
2. The schematic diagram and circuit board may be modified at any time with the development of new technology.

hrupuriant sately notice
The shaded area on this schematic diagram incorporates special features important for protection from fire and electrical shock hazards. When servicing, It is essential that only manufacturer's specilied parts can be used for the critical components in the shaded areas of the schematic.

3. This circuit shown in L on the conductor indicates primied circuit on the back side of the printed circuit board.

Note:

1. This circuit shown in $L \ldots$ on the conductor indicates printed circuit on the front side of the printed circuit board.
 circuit on the back side of the printed circuit board.

Note:
This circuit shown in L^{-}Jon the conductor indicates printed circuit on the front side of the printed circuit boarc.

CCD BOARD
(Component View)

(Bottom View)

CCD CIRCUIT

(Bottom View)

Component View)

(Bottom View)

Note: circuit on the back side of the printed circuit board.

Note:
This circuit shown in $[\cdots$ on the conductor indicates printed circuit on the front side of the printed circuit boarcl

PRINTED CIRCUIT BOARD (RF UNIT)

(Component View)

PRINTED CIRCUIT BOARD (PORTABIEE HANDSET)

(Component View)

TERMINAL GUIDE OF IC'S, TRANSISTORS AND DIODES

PQVICX58257C	PQVIBA12003	PFWIF900M	PQVITC4066BF
AN1431T	MN53007QAF PQVI0008GE12	PFVIFA5317P	PFVINJ2360D
PQVIMM1245B PQVIMC34119M PQVINJM4558M	AN6183SE1 PQVINJM2113V PQVINJM2903M	AN6116FAQ	PFVIR96DFXL
PFVIT7D56	PQVIS79164FU	AN6165SB PQVIM64084AF	PQVITC4069UBF
PQVIDBL5018	MN151233KZAB	 PQVIXCC3501P PQVIXC3002PR PQVIXCC3202P	$\begin{array}{ll} \text { 2SD1858R } & \\ \text { 2SD1921Q } & \text { 2SB1322 } \end{array}$
	 PQVTFS10KM10	PQVTDTC114EU PQVTDTA143EU PQVTD123T146 2SD1819A 2SD60 2SC4226R24 2SC	TDTC144E PQVTDTC143E TD123J106 PQVTDTB123E DTC144TU 2SB970A 2SC4571R77 R34 2SC4116

TOOLS

CABINET , MECHANICAL AND ELECTRICAL PARTS LOCATION

1. Operation Panel Section

2.Upper Section

3.Lower Section

5. PORTABLE HANDSET

6. ACTUAL SIZE OF SCREWS AND WASHER

	Part No.	Figure
(A)	XTW3+S10P	CfIniol
(B)	XTW3+W6P	frimu
(${ }^{\text {c }}$	PJHE5065Z	f 71711
(D)	XSN3+W6FZ	\%
(E)	XYC3+CF6	[1]
(F)	XSB4+6	[
(G)	XYN2+C8	C]pmman
(H)	XWC4B	EN_{2}^{2}
(1)	XYN3+F10	TH)
(1)	XTB3+12G	(7111710
(1)	XTW3+CS12P	(110\%
(L)	XTB26+8J	0 mmim
(10)	XTW26+12F	()11117
(N)	XTB3+10G	(11110

ACCESSORIES AND PACKING MATERIALS

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ref. No. \& Part No. \& Part Name \& Description \& Pcs \& Ref. No. \& Part No. \& Value \& Pgs \\
\hline \multirow{8}{*}{BAT10} \& \multirow{7}{*}{PQPCR2032H09} \& (BATTERY) \& \multirow{7}{*}{1} \& \multirow{7}{*}{\[
\begin{array}{ll}
R \& 3 \\
R \& 4 \\
R \& 5 \\
R \& 6 \\
R \& 7
\end{array}
\]} \& \multirow{7}{*}{\begin{tabular}{l}
ERJ3GEYJ473 \\
ERJ3GEYJ473 \\
ERJ3GEYJ473 \\
ERJ3GEYJ101 \\
ERJ3GEYJ101
\end{tabular}} \& (RESISTORS) \& \\
\hline \& \& \multirow[t]{7}{*}{PRIMARY BATTERY S

(CONNECTORS)} \& \& \& \& 47K \& 1

\hline \& \& \& \& \& \& 47K \& 1

\hline \& \& \& \& \& \& 47K \& 1

\hline \& \& \& \& \& \& 100 \& 1

\hline \& \& \& \& \& \& 100 \& 1

\hline \& \& \& \& \& \& \&

\hline \& \& \& \multirow[b]{2}{*}{1} \& R11 \& PQ4R10XJ101 \& 100 \& 1

\hline \multirow[t]{2}{*}{$$
\left\lvert\, \begin{aligned}
& \mathrm{CN} 1 \\
& \mathrm{CN} \\
& \hline
\end{aligned}\right.
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { PQJP11A19Z } \\
& \text { PQJP11A19Z }
\end{aligned}
$$
\]} \& CONNECTOR, 11 PIN \& \& R12 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& CONNECTOR, 11 PIN \& 1 \& R13 \& PQ4R10XJ101 \& 100 \& 1

\hline CN3 \& PQJP07A19Z \& CONNECTOR, 7 PIN \& 1 \& R14 \& PQ4R10XJ101 \& 100 \& 1

\hline CN 5 \& PQJP10G30Y \& CONNECTOR, 10 PIN \& \multirow[t]{2}{*}{1} \& R15 \& PQ4R10XJ101 \& 100 \& 1

\hline CN 6 \& \multirow[t]{2}{*}{PQJP8G30Y PQJP02G100Z} \& CONNECTOR, 8 PIN \& \& R16 \& PQ4R10XJ101 \& 100 \& 1

\hline CN 7 \& \& CONNECTOR, 2 PIN \& 1 \& R17 \& PQ4R10XJ101 \& 100 \& 1

\hline CN 8 \& $$
\begin{aligned}
& \text { PQJP02G100Z } \\
& \text { PQJP2G302 }
\end{aligned}
$$ \& CONNECTOR, 2 PIN \& 1 \& R18 \& PQ4R10XJ101 \& 100 \& 1

\hline CN 9 \& | PQJP2G30Z |
| :--- |
| PQJP5G30Y | \& \multirow[t]{3}{*}{CONNECTOR, 5 PIN CONNECTOR, 5 PIN CONNECTOR, 9 PIN} \& \multirow[t]{3}{*}{1

1
1} \& R19 \& PQ4R10XJ 101 \& 100 \& 1

\hline CN10 \& \multirow[t]{2}{*}{PQJP5G30Y PQJP05G100Z PQJP09G100Z} \& \& \& \& \& \&

\hline \multirow[t]{9}{*}{CN11} \& \& \& \& R22 \& ERJ3GEYJ101 \& 100 \& 1

\hline \& \multirow{8}{*}{PQJP09G100Z} \& \multirow[t]{8}{*}{| CONNECTOR, 9 PIN |
| :--- |
| (COILS) |} \& \multirow{8}{*}{1} \& R28 \& PQ4R10XJ472 \& 4.7K \& 1

\hline \& \& \& \& R29 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& \& \& R30 \& PQ4R10XJ472 \& 4.7 K \& 1

\hline \& \& \& \& R31 \& PQ4R10XJ224 \& 220K \& 1

\hline \& \& \& \& R32 \& PQ4R10XJ102 \& 1 K \& 1

\hline \& \& \& \& R33 \& PQ4R10XJ102 \& 1 K \& 1

\hline \& \& \& \& R34 \& PQ4R10XJ102 \& 1K \& 1

\hline \& \& \& \& R35 \& PQ4R10XJ103 \& 10K \& 1

\hline L4 \& \multirow[t]{3}{*}{PQLQR1ET
PQLQR1ET} \& \& 1 \& R36 \& PQ4R10XJ472 \& 4.7K \& 1

\hline \multirow[t]{2}{*}{L6} \& \& \multirow[t]{2}{*}{$$
\mathrm{COIL}
$$} \& \multirow[t]{2}{*}{1} \& R37 \& PQ4R10XJ151 \& 150 \& 1

\hline \& \& \& \& R38 \& PQ4R10XJ000 \& JUMPER, 0Ω \& 1

\hline R79 \& PQLQR2BT \& COIL S \& 1 \& \& \& \&

\hline R80 \& PQLQR2BT \& COIL S \& 1 \& R40 \& PQ4R10XJ393 \& 39K \& 1

\hline R81 \& PQLQR2BT \& COIL \& 1 \& R41 \& PQ4R10XJ563 \& 56K \& 1

\hline R82 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$$
\left|\begin{array}{ll}
\text { COIL } & s \\
\text { COIL } & \mathrm{s}
\end{array}\right|
$$} \& 1 \& R42 \& PQ4R10XJ562 \& 5.6 K \& 1

\hline R83 \& \& \& \multirow[t]{2}{*}{1} \& R43 \& PQ4R10XJ821 \& 820 \& 1

\hline \multirow[t]{8}{*}{R84} \& $$
\begin{aligned}
& \text { PQLQR2BT } \\
& \text { PQLQR2BT }
\end{aligned}
$$ \& \multirow[t]{6}{*}{\[

\left|$$
\begin{array}{ll}
\mathrm{COIL} & \mathrm{~S} \\
\mathrm{COIL} & \mathrm{~S}
\end{array}
$$\right|
\]} \& \& R44 \& ERD25TJ222 \& 2.2K \& 1

\hline \& \multirow{7}{*}{PQLQR2BT} \& \& \& R45 \& PQ4R10XJ821 \& 820 \& 1

\hline \& \& \& \& R46 \& ERD25TJ222 \& 2.2K \& 1

\hline \& \& \& \& R47 \& PQ4R10XJ223 \& 22K \& 1

\hline \& \& \& \& R48 \& PQ4R10XJ563 \& 56K \& 1

\hline \& \& \& \& R49 \& PQ4R10XJ473 \& 47K \& 1

\hline \& \& (CRYSTAL OSCILLATIONS) \& \& \& \& \&

\hline \& \& \& \& R50 \& PQ4R10XJ101 \& 100 \& 1

\hline X 1 \& PQVCJ2400N5Z \& CRYSTAL OSCILLATOR \& 1 \& R51 \& PQ4R10XJ101 \& 100 \& 1

\hline X 2 \& PQVCL3276N6Z \& CRYSTAL OSCILLATOR \& 1 \& R52 \& PQ4R10XJ101 \& 100 \& 1

\hline \multirow[t]{6}{*}{X3} \& \multirow[t]{6}{*}{PQVCJ2400N5Z} \& \multirow[t]{6}{*}{CRYSTAL OSCILLATOR} \& \multirow[t]{6}{*}{1} \& R53 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& \& \& R54 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& \& \& R55 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& \& \& R56 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& \& \& R57 \& PQ4R10XJ270 \& 27 \& 1

\hline \& \& \& \& R58 \& PQ4R10XJ105 \& 1M \& 1

\hline RA1 \& \multirow[t]{4}{*}{| EXRV8V101JV |
| :--- |
| EXRV8V101JV |
| EXRV8V101JV |
| EXRV8V101JV |} \& \multirow[t]{4}{*}{COMPONENTS COMBINATION COMPONENTS COMBINATION COMPONENTS COMBINATION COMPONENTS COMBINATION} \& 1 \& R59 \& PQ4R10XJ103 \& 10K \& 1

\hline RA2 \& \& \& 1 \& \& \& \&

\hline RA3 \& \& \& 1 \& R60 \& PQ4R10XJ103 \& 10K \& 1

\hline \multirow[t]{6}{*}{RA4} \& \& \& 1 \& R61 \& PQ4R10XJ103 \& 10K \& 1

\hline \& \multirow{5}{*}{EXRV8V101JV} \& \& \& R62 \& PQ4R10XJ000 \& JUMPER, 0Ω \& 1

\hline \& \& \& \& R63 \& ERD25TJ220 \& \& 1

\hline \& \& \& \& R65 \& PQ4R10XJ000 \& JUMPER, OS \& 1

\hline \& \& \& \& R66 \& PQ4R10XJ000 \& JUMPER, OS \& 1

\hline \& \& (CERAMIC FILTER) \& \& R67 \& PQ4R10×J000 \& JUMPER, OS \& 1

\hline \multirow[t]{9}{*}{LC1} \& \multirow[t]{9}{*}{EXCEMT222D} \& \multirow[t]{9}{*}{CERAMIC FILTER} \& \multirow[t]{9}{*}{1} \& R70 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& \& \& R71 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& \& \& R72 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& \& \& R73 \& PQ4R10XJ101 \& 100 \& 1

\hline \& \& \& \& R74 \& PQ4R10XJ000 \& JUMPER, 0Ω \& 1

\hline \& \& \& \& R75 \& PQ4R10XJ000 \& JUMPER, 0Ω \& 1

\hline \& \& \& \& R76 \& PQ4R10XJ222 \& 2.2 K \& 1

\hline \& \& \& \& R77 \& PQ4R10XJ105 \& $$
1 \mathrm{M}
$$ \& 1

\hline \& \& \& \& R78 \& PQ4R10XJ000 \& JUMPER, 0Ω \& 1

\hline
\end{tabular}

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

Ref. No.	Part No.	Value	Pcs	Ref. No.	Part No.	Value	Pcs
R160	ERJ3GEY0R00	JUMMPER, OS2	1	R275	PQ4R10XJ102	1K	1
R161	ERJ3GEYJ103	10K	1	R276	ERJ3GEYJ101	100	1
R162	ERJ3GEYJ103	10K	1	R277	PQ4R10XJ472	4.7K	1
R164	ERJ3GEYJ104	100K	1	R278	PQ4R10XJ 101	100	1
R165	ERJ3GEYJ103	10K	1	R279	ERJ3GEYJ101	100	1
R166	ERJ3GEYJ683	68K	1				
R169	ERJ3GEYJ103	10K	1	R280	ERJ3GEYJ333	33K	1
				R281	ERJ3GEYJ182	1.8K	1
R170	ERJ3GEYJ683	68 K	1	R282	ERJ3GEYJ473	47K	1
R171	ERJ3GEYJ104	100K	1	R284	ERJ3GEYJ473	47K	1
R172	ERJ3GEYJ123	12K	1				
R173	ERJ3GEYOR00	JUMPER, 0Ω	1	R290	PQ4R10XJ000	JUMPER, 0Ω	1
R175	ERJ3GEYJ334	330 K	1	R291	ERJ3GEYJ473	47K	1
R176	ERJ3GEYJ223	22K	1	R292	ERJ3GEYJ563	56K	1
R177	ERJ3GEYJ103	10K	1	R293	ERJ3GEYJ152	1.5K	1
R178	ERJ3GEYJ274	270K	1	R294	ERJ3GEYJ473	47K	1
R179	ERJ3GEYJ682	6.8K	1	R295	ERJ3GEYJ104	100K	1
				R296	ERJ3GEYJ102	1 K	1
R180	ERJ3GEYJ433	43K	1	R297	ERJ3GEYJ103	10K	1
R181	ERJ3GEYJ153	15K	1				
R182	ERJ3GEYJ473	47K	1	J108	ERDS2TJ681	680	1
R184	ERJ3GEYJ183	18K	1				
R185	ERJ3GEYJ184	180K	1				
R186	ERJ3GEYJ103	10K	1	J104	ERJ3GEYORO0	JUMPER, 0Ω	1
R187	ERJ3GEYJ124	120K	1	J105	ERJ3GEYOROO	JUMPER, 0Ω	1
R188	ERJ3GEYJ223	22K	1				
R189	ERJ3GEYJ155	1.5M	1	J250	PQ4R10XJ000	JUMPER, 0Ω	1
R189	ERJ3GEYJ16S			J252	PQ4R10XJ000	JUMPER, 0Ω	1
R190	PQ4R10XJ105		1				
R191	ERDS2TJ102	1K	1	J270	ERJ3GEYORO0	JUMPER, 0Ω	1
R192	PQ4R18XJ101	100	1	J271	ERJ3GEYORO0	JUMPER, 0Ω	
				J272	ERJ3GEYOR00	JUMPER, 0Ω	
R201	ERJ3GEYJ102	1 K	1	J273	ERJ3GEYOR00	JUMPER, 0Ω	1
R202	ERJ3GEYJ563	56K	1	J274	ERJ3GEYOR00	JUMPER, 0Ω	
R203	ERJ3GEYJ223	22 K	1	J275	ERJ3GEYOR00	JUMPER, OR	1
R204	ERJ3GEYJ563	56K	1	J276	ERJ3GEYOROO	JUMPER, OR	1
R205	ERJ3GEYJ822	8.2 K	1				
R206	ERJ3GEYJ184	180K	1	C193	ERJ3GEYOR00	JUMPER, 0Ω	1
R207	ERJ3GEYJ682	6.8 K	1				
R208	PQ4R10XJ184	180 K	1				
R209	ERJ3GEYJ224	220K	1				
R210	ERJ3GEYJ393	39 K	1				
R211	ERJ3GEYJ224	220K	1				
R212	PQ4R10×J104	100K	1				
R213	PQ4R10XJ104	100K	1				
R214	PQ4R10XJ224	220 K	1				
R215	ERJ3GEYJ222	2.2K	1				
R216	ERJ3GEYJ332	$3.3 \mathrm{~K}$	1				
R217	ERJ3GEYOR00	JUMPER, OS	1			(CAPACITORS)	
R220	PQ4R10XJ104		1				
R221	ERJ3GEYJ682	6.8 K	1	C101	ECKD2H681KB	680 P	S 1
R222	ERJ3GEYJ472	4.7 K	1	C102	ECKD2H681KB	680P	51
				C103	ECQE2E224JZ	0.22	S 1
R241	PQ4R10XJ4R7	4.7	1	C104	ECEA1HN3R3S	3.3	1
R242	ERJ3GEYJ103	10K	1	C105	ECQE2E104KZ	0.1	1
$R 243$	ERJ3GEYJ102	1K	1	C106	PQCUVIH103KB	0.01	S 1
R244	ERJ3GEYJ153	15K	1	C107	ECEA1CKS221	220	S 1
R245	ERJ3GEYJ123	12 K	1	C108	ECEATCKS 100 ECEA1HKS4R7	$1 \begin{aligned} & 10 \\ & 4.7 \end{aligned}$	S 1 S 1
				C109	ECEA1HKS4R7	4.7	S 1
R251	PQ4R10XJ221 FRDS1TJ122	220 1.2 K	1		ECEA1CKS100	10	S 1
R252	ERDS1TJ122	1.2 K 10 K	1	C111	PQCUV1E333MD	0.033	1
R254	PQ4R10XJ103	10 K	1	C1 12	PQCUV1H105JC	1	S 1
R255	PQ4R10XJ563	12K	1				
R256	PQ4R10XJ123	12 K 2.2 K	1	C130	ECUVIC683KBV	0.068	1
R257	PQ4R10XJ222	2.2 K	1	C131	ECEA1HKS010	1	S 1
	ERJ3GEYJ102	1 K	1	C132	PQCUV1C224ZF	0.22	S 1
R272	ERJ3GEYJ101	100	1	C133	ECUV1H561JCV	560 P	S 1 S 1
R273	ERJ3GEYJ102	1 K	1	C134	ECEA1CKS470 ECEA1HKS4R7	47 4.7	S
R274	PQ4R10X 101			C135	ECEATHKS4R7		

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

Ref. No.	Part No.		Value	Pcs	Ref. No.	Part No.	Value		Pcs
C136	ECEA0JK221	220	S	1	C257	ECEA1HU330	33		1
C137	ECEA1HKS4R7	4.7	S	1					
C138	ECUV1C473K8V	0.047		1	C265	ECUV1H104ZFV	0.1		1
C139	ECUV1H223KBV	0.022	S	1					
					C271	ECUV1H103KBV	0.01		1
C140	ECEAOJSJ331	330	S	1	C272	PQCUV1H103KB	0.01	S	1
C141	PQCUV1H222KB	0.0022	S	1	C273	PQCUV1H103KB	0.01	S	1
C142	PQCUV1C224ZF	0.22		1	C274	PQCUV1H103KB	0.01	S	1
C143	ECUV1C473KBV	0.047		1	C276	ECUV1H103KBV	0.01		1
C144	ECEA 1 HKS 010	1	S	1	C277	ECUV1H104ZFV	0.1		1
C145	ECEA1HKS2R2	2.2	S	1	C278	PQCUV1C334ZF	0.33		1
C146	PQCUV1H333JC	0.033	S	1	C279	ECUV1H330JCV	33 P		1
C155	ECUV1H221JCV	220P		1	C290	ECUV1C104KBV	0.1		1
C156	ECEAOJKS 101	100		1	C291	ECUV1H103KBV	0.01		1
C157	ECUV1H332KBV	0.0033		1					
C158	ECUV1C683KBV	0.068		1					
C159	ECUV1C104KBV	0.1							
C161	PQCUV1H105JC	1	S	1					
C162	PQCUV1H105JC	1	S	1					
C166	PQCUV1H105JC	1	S	1					
C171	PQCUV1H105JJ	1	S	1					
C172	ECEAOJKS101	100		1					
C173	ECUVIC104KBV	0.1		1					
C174	ERJ3GEYOROO	JUMPER, 0Ω		1					
C176	ECUV1C473KBV	0.047		1					
C177	ECUV1H101JCV	100P		1					
C178	ECEAOJKS101	100		1					
C179	ECUV1C104KBV	0.1		1					
C180	ECUV1H331JCV	330P	S	1					
C181	PQCUV1E104MD	0.1		1					
C182	ECUV1H221JCV	220P		1					
C183	ECUV1H682KBV	0.0068		1					
C184	ECUV1C104KBV	0.1		1					
C186	ECUV1H332KBV	0.0033		1					
C187	ECUV1C104KBV	0.1		1					
C188	ECUV1H332KBV	0.0033		1					
C189	ECUV1H332KBV	0.0033		1					
C201	PQCUV1H102J	0.001	S	1					
C202	ECEA1HKS4R7	4.7		1					
C203	PQCUVIE104MD	0.1		1					
C204	ECUV1H680JCV	68P		1					
C205	PQCUV1E104MD	0.1		1					
C206	PQCCUVIE104MD	100P		1					
C208	ECUV1H101JCV	100P		1					
C209	ECUV1H103KBV	0.01		1					
C210	ECEA1HKS 100	10		1					
C211	ECEA1CKS 100	10	S	1					
C212	ECEA1HKS 100	10		1					
C213	ECUV1C104KBV	0.1		1					
C214	ECUV1C104KBV	0.1		1					
C217	ECUV1C104KBV PQCUV1C224ZF	0.1 0.22		1					
C218	PQCUV1C224ZF	0.22		1					
C241	ECEAOJKS 101	100		1					
C242	ECUV1H102KBV	0.001		1					
C243	PQCUV1H105JC	1	S	1					
\|C244	PQCUV1H105JC	$\left\lvert\, \begin{aligned} & 1 \\ & 0.027 \end{aligned}\right.$	S	1					
C245	PQCUV1E273MD	0.027		1					
C251	PQCUV1H104ZF	0.1		1					
C252	ECEA1HU330	\|33		1					
C253	ECEA1HU330	33		1					
C254	PQCUV1E104MD			1					
C255 C256	ECEA1EU101 PQCUV1H104ZF	100		1					

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

Ref. No.	Part No.	Part Name \& Description \& Value	Pcs	Ret. No.	Part No.	Part Name \& Description \& Value	Pcs
		(COMPONENTS COMBINATIONS)				(CAPACITORS)	
L103	EXCELDR35	COMPONENTS COMBINATION	1	C101	ECQU2A104MV		1
L203	EXCELDR35	COMPONENTS COMBINATION S	1	C102	ECQU2A104MV	0.1 -	1
				C103	ECKDRS 102 MB	0.001 㐫	1
				C104	ECKDRS 102 MB	$0.001 \sim \Delta$	1
				C105	ECKDKC472KB	0.0047 而	1
				C106	EETLD2D151	150	1
		(PHOTO COUPLERS)		C107	ECKD3A221KBP	220P	1
				C108	ECKD3A102KBP	0.001	1
PC101	ON3131S	PHOTO ELECTRIC TRANSDUCER \triangle	1	C109	ECA1VHG330	33	1
PC102	ON31315	PHOTO ELECTRIC TRANSDUCER \triangle	1				1
				C121	ECUV1H221KBM	220 P 0.22	1
				C123	ECUV1H561KBM	560P	1
				C124	ECUV1H473KBW	0.047	1
		(OTHERS)					
				C201	EEUFA1V103	0.001	1
F101	PQBA1C50NBKL	FUSE Δ	1	C202	ECKD3A102KBP	0.001	1
T101	PFLTR297101	TRANSFORMER	1	C204	PQCEA10B1000	1000	1
TH101	PFRTM8R207C	THERMISTOR S	1	C221	ECUV1H104KBW	0.1	1
VR201	EVNDJAA03B53	VARIABLE RESISTOR S	1	C223	ECUV1H271KBM	270P	1
RL201	PQSLG5P1	RELAY S	1				
		(RESISTORS)					
R101	ERDS1FJ105	1 M	1				
R102	ERDS2TJ393	39K	1				
R103	ERDS2TJ393	39 K	1			RDLESS BASE BOARD PARTS	
R104	ERG1SJU100	10	1	PCB6	PFLP1056M	CORDLESS BASE P.C.BOARD	1
R105	ERX2SJR22	0.22	1	РCB6	PFLP1056M	ASS'Y (RTL)	
R106	ERDS2TJ010	12	1				
R107	ERDS2TJ220	22	1				
R108	ERDS2FJ150	15	1				
R109	ERDS2TJ273	27K	1				
R110	ERG1SJ104	100K	1			(ICS)	
R111	ERDS2TJ273	27K	1				
R112	ERDS2TJ273	27K	1	IC501	PFVI0008GE12	IC	1
R113	ERDS2TJ273	27K	1	IC502	AN6165SB	IC	
R114	ERDS2TJ220	22	1	IC503	PQVITC4069UBF PQVINJ2360D		1
R121	PQ4R10XJ103	10 K	1				
R122	PQ4R10XJ471	470	1				
R124	PQ4R10XJ181	180	1				
R125	PQ4R10XJ101	100 5.6 K	1				
R126	PQ4R10XJ562	5.6 K 2.2 K	1				
R127	PQ4R10XJ222	2.2 K	1				
R201	ERG1SJR33	0.33	1			(TRANSISTORS)	
R202	ERDS2TJ121	120	1				
R204	ERDS2TJ563	56K	1	Q502	2SD601R	TRANSISTOR(SI)	1
R205	ERDS2TJ103	10K	1	Q503	2SD601R	TRANSISTOR(SI)	1
			1	Q504 Q505	2SB670A	TRANSISTOR(SI)	1
$\begin{aligned} & \text { R221 } \\ & \text { R222 } \end{aligned}$	PQ4R10XJ222 PQ4R10XJ222	2.2 K 2.2 K	1	Q506	PQVTDTC144E	TRANSISTOR(SI)	1
R2223	PQ4R10XJ101	100	1	Q507	PQVTDTC144E	TRANSISTOR(SI)	1
R223	PQ4R10XJJ273	27 K	1	Q508	2SB970A	TRANSISTOR(SI)	1
R224	PQ4R10XJJ33	3.3 K	1	Q509	2SB1416	TRANSISTOR(SI)	1
R225	PQ4R10XJ392	$3.9 \mathrm{~K}$	1	Q510	2SB1322	TRANSISTOR(SI)	1
R227	PQ4R10XJ122	1.2 K		Q511	2SK543 PQVTDTC144E	TRANSISTOR(SI)	1
$\begin{aligned} & \mathrm{J} 12 \\ & \mathrm{~J} 13 \end{aligned}$	PQ4R18XJ000 PQ4R10XJ000	JUMPER, 0Ω JUMPER, 0Ω	1				

This replacement parts list is for U.S.A. version only.

Ref. No.	Part No.	Part Name \& Description \& Value	Pcs	Ret. No.	Part No.	Value	Pcs
D501	PQVDSE703Q 1SS131	(DIODES)		R519	PQ4R10XJ000	JUMPER, 0 ®	1
		DIODE(SI)	1	R520	PQ4R10XJ000	JUMPER, 0Ω	1
D503		DIODE(SI)	1	R521	PQ4R10XJ000	JUMPER, 0Ω	1
D504	MA110	DIODE(SI)	1	R522	PQ4R10XJ224	220K	1
D505	1SS131	DIODE(SI)	1	R523	PQ4R10XJ224	220K	1
D506	MA110	DIODE(SI)	1	R524	PQ4R10XJ000	JUMPER, 0Ω	1
D507	MA110	DIODE(SI)	1	R525	PQ4R10XJ000	JUMPER, 0Ω	1
D508	MA110	DIODE(SI)	1	R526	PQ4R10XJ000	JUMPER, OS	1
D509	PQVDS5688G	DIODE(SI)	1				
D510	PQVDAK04A	DIODE(SI)	1	R530	PQ4R10XJ000	JUMPER, 08	1
D511	MA4075	DIODE(SI)	1	R534	ERDS $1 T J 560$	56	1
D513	PQVDDSS301L	VARISTOR	1	$\begin{aligned} & \text { R535 } \\ & \text { R539 } \end{aligned}$	ERDS1TJ470 PQ4R10XJ104	47 100 K	1
				R540	PQ4R18×J332	3.3 K	1
				R541	PQ4R10XJ562	5.6K	1
				R542	PQ4R10XJ103	10K	1
		(CONNECTORS)		R543	ERDS2TJ221	220	1
				R544	ERDS2TJ221	220	1
CN501	PFJP18A02Z	CONNECTOR, 18 PIN	1	R545	ERDS1TJ101	100	1
CN502	PQJP12B44Z	CONNECTOR, 12 PIN	1	R546	ERDS1TJ560	56	1
CN503	PQJP8G30Y	CONNECTOR, 8 PIN	1	R548	PQ4R10XJ104	100K	1
AG	PQJP182	CONNECTOR LEAD	1	R549	PQ4R10XJ103	10 K	1
DG	PQJP182	CONNECTOR LEAD	1				
				R550	PQ4R10XJ103	10 K	1
				R553	PQ4R10XJ562	5.6K	1
				R554	PQ4R10XJ103	10K	1
				R557	PQ4R10XJ000	JUMPER, 0Ω	1
				R558	PQ4R10XJ000	JUMPER, 0Ω	1
L501	PQLQR1KTPQLQR1KT	COIL	1	R561	PQ4R10XJ000	JUMPER, 0Ω	1
L502		COIL	1	R562	PQ4R10XJ000	JUMPER, 0Ω	1
				R563	PQ4R10XJ154	150K	1
L506	PQLQRIKT	COIL	1	R564	PQ4R10XJ105	1 M	1
L507	PQLQRIKT	COIL	1	R565	PQ4R10XJ154	150K	1
L508	PQLQR1KT	COIL	1	R567	PQ4R10×J333	33K	1
L517	PQLQZM2R2K	COIL	1	R568	PQ4R10XJ563	56K	1
L519	PQLQXH152J	COIL	1	R569	PQ4R10XJ123	12 K	1
L520	PQLQR1KT	COIL	1				
				R570	PQ4R10XJ123	12 K	1
				R571	PQ4R10XJ223	JUMPER, OR	1
				R573	PQ4R10XJ333	33 K	1
				R574	PQ4R10XJ333	33 K	1
				R575	PQ4R10XJ000	JUMPER, 0Ω	1
				R576	PQ4R10XJ822	$8.2 \mathrm{~K}$	1
PCB6-1	PQLP10179M	RF UNIT P.C.BOARD	1	R577	PQ4R10XJ153	15K	1
E601	PQHR10484Z	HOLDER for RF UNIT	1	R578	PQ4R10XJ153	15K	1
				R579	PQ4R10XJ123	12K	1
VR501	EVNDXAA03B24	VARIABLE RESISTOR					
VR502	EVNDXAA03B54	VARIABLE RESISTOR	1	R580	PQ4R10XJ563		1
$\times 501$	PQVBT3.99G1	CERAMIC FILTER	1	R581	PQ4R10XJ472	4.7K	1
				R582	PQ4R10XJ682	6.8 K	1
				R583	PQ4R10XJ102	1K	1
				R584	PQ4R10XJ102	1K	1
				R585	PQ4R10XJ154	150K	1
				R587	ERX2SJR82	0.82	1
				R588	ERDS2TJ101	100	1
				R589	ERDS1TJ102	1K	1
	PQ4R10XJ102		1	R590	EROS2TKF8661	8.66K	1
R502	\|PQ4R10XJ102	1 K	1	R591	EROS2TKF1001	1 K	1
R503	PQ4R10XJ000	JUMPER, O®	1	R592	PQ4R10XJ223	22K	1
R504	PQ4R10XJ102	1K	1	R593	PQ4R10XJ103	10K	1
R505	PQ4R10XJ102	1K	1	R594	PQ4R10XJ332	3.3K	1
R506	PQ4R10XJ102	1 K	1	R595	PQ4R10XJ823	82 K	1
				R596	PQ4R10XJ471	470	1
R510 R511 R512 R518	PQ4R10×J104	100K	1	R598	PQ4R10XJ123	12 K 5.6 K	1
	PQ4R10XJ 105	$1 \mathrm{M}$	1	R599	PQ4R10XJ562	5.6 K	1
	PQ4R10XJ104	$100 \mathrm{~K}$	1				
	PQ4R10XJ000	JUMPER, 0Ω					

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

Ref. No.	Part No.	Part Name \& Description	Pcs	Ref. No.	Part No.	Value	Pcs
		(DIODES)				(RESISTORS)	
D301	PQVDRB751H4	DIODE(SI)	1	R301	ERJ3GEYJ333	33 K	1
D302	PQVDRB751H4	DIODE(SI)	1	R302	ERJ3GEYJ470	47	1
D303	MA110	DIODE(SI)	1	R303	ERJ3GEYJ101	100	1
D304	MA110	DIODE(SI)	1	R304	ERJ3GEYJ333	33 K	1
D305	MA2S111	DIODE(SI)	1	R305	ERJ3GEYJ821	820	1
D306	MA110	DIODE(SI)	1	R306	ERJ3GEYJ681	680	1
D310	MA8047	DIODE(SI)	1	R307	ERJ3GEYJ223	22K	1
				R308	ERJ3GEYJ153	15K	1
C391	MA110	DIODE(SI)	1	R309	ERJ3GEYJ153	15 K	1
CN301	PQJS12A992		1	R310	ERJ3GEYJ222	2.2 K	1
				R311	ERJ3GEYJ223	22K	1
		(CONNECTOR)		R312	ERJ3GEYJ223	22K	1
				R313	ERJ3GEYJ470	47	1
				R314	ERJ3GEYJ470	47	1
		CONNECTOR, 12 PIN		R315	ERJ3GEYJ681	680	1
				R316	ERJ3GEYJ153	15 K	1
				R317	ERJ3GEYJ153	15K	1
				R318	ERJ3GEYJ223	22K	1
				R319	ERJ3GEYJ474	470K	1
		(CERAMIC FILTERS)		R320	ERJ3GEYJ470	47	1
				R321	ERJ3GEYJ391	390	1
FL301	PQVSM903C10L	CERAMIC FILTER	1	R323	ERJ3GEYJ474	470K	1
FL302	PQVS705CE927	CERAMIC FILTER	1	R324	ERJ3GEYJ102	1 K	1
FL303	PQVFSFE107MJ	CERAMIC FILTER	1	R325	ERJ3GEYJ104	100K	1
FL304	PQVFCFH450B1	CERAMIC FILTER	1	R327	ERJ3GEYJ824	820 K	1
				R328	ERJ3GEYJ472	4.7 K	1
				R329	ERJ3GEYJ334	330 K	1
				R330	ERJ3GEYJ154	150K	1
				R331	ERJ3GEYJ821	820	1
		(COILS)		R332	ERJ3GEYJ102	1 K	1
				R334	ERJ3GEYJ222	2.2K	1
L301	PQLQR1RM601	COH	1	R335	ERJ3GEYJ222	2.2K	1
L302	PQLQR1RM601	COIL	1	R336	ERJ3GEYJ103	10K	1
L303	MQLRE10NJF	COIL	1	R337	ERJ3GEYJ220	22	1
L304	PQLQR2N3R3KT	COIL	1	R338	ERJ3GEYJ222	2.2K	1
L322	PQLQR1RM601	COIL	1	R339	ERJ3GEYJ222	2.2K	1
R389	PQLQR1RM601	COIL	1	R340	ERJ3GEYJ222	2.2 K	1
				R342	ERJ3GEYJ101	100	1
				R350	ERJ3GEYJ821	820	1
				R353	ERJ3GEYJ222	2.2 K	1
				R356	ERJ3GEYJ000	JUMPER, 0Ω	1
				R357	ERJ3GEYJ392	3.9 K	1
				R358	ERJ3GEYJ222	2.2 K	1
				R359	ERJ3GEYJ680	68	1
RX VCO TX VCO	$\begin{aligned} & \text { PQV030Z } \\ & \text { PQV031Z } \end{aligned}$	$\begin{aligned} & \text { CRYSTAL OSCILLATOR } \\ & \text { CRYSTAL OSCILLATOR } \end{aligned}$					
			1	R360	ECUV1H040CCV ERJ3GEYJ000	4P JUMPER, 0Ω	1 1
				R362	ERJ3GEYJ680	68	1
				L306	ERJ3GEYJ000	JUMPER, 0Ω	1
				L317	ERJ3GEYJ120	12	1
		(OTHERS)		L318	ERJ3GEYJ220	22	1
				$\begin{aligned} & \text { C630 } \\ & \text { C632 } \end{aligned}$	ERJ3GEYJ470 ERJ3GEY 1000		1
E651	PQMC10215Z PQLI2B201	MAGNETIC SHIELD COVER IF TRANSFORMER	1	C632	ERJ3GEYJ000	JUMPER, 0Ω	1
\|vc301	ECRLA010A53R	TRIMMER CAPACITOR	1	C312	ERJ3GEYJ470	47 MMPER 08	1
\|VR301	EVN5ESX50B54	VARIABLE RESISTOR	1	C394	ERJ3GEYJ000	JUMPER, OR	1
$\begin{aligned} & \text { VR301 } \\ & \times 301 \end{aligned}$	PQVGJ1025NOZ	VARIABLE CAPACITOR	1				

KX-F900

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

Ref. No.	Part No.	Value		Pcs	Ret. No.	Part No.	Part Name \& Description \& Value	Pcs
		(CAPACITORS)			C603	ECUV1H101JCV	100 P 100 P	1
C302	ECUV1H0R5CCV	0.5		1	C605	ECUV1H101JCV	100P	1
C303	ECUV1H050CCV	5P		1	C606	ECUV1H101JCV	100P	1
C304	ECUV1H102KBV	0.001		1	C607	ECUV1H101JCV	100P	1
C305	ECUV1H020CCV	2P		1	C608	ECUV1H101JCV	100P	1
C306	ECUV1H102KBV	0.001		1				
C308	ECUV1H030CCV	3 P		1	C610	ECUV1H101JCV	100P	1
C309	ECUV1H030CCV	3 P		1	C611	ECUV1H101JCV	100P	1
					C612	ECUV1H101JCV	100P	1
C310	ECEA1CKS470	47	S	1	C613	ECUV1H101JCV	100P	1
C311	ECUV1H102KBV	0.001		1	C615	ECUV1H101JCV	100P	1
C313	PQCUV1C224ZF	0.22		1	C616	ECUV1H101JCV	100P	1
C314	ECUV1H682KBV	0.0068		1	C617	ECUV1H101JCV	100P	1
C315	ECUV1H332KBV	0.0033		1	C618	ECUV1H101JCV	100P	1
C317	ECUV1H820JCV	82P		1				
C318	ECUV1H430JCV	43P		1	C620	ECUV1H101JCV	100P	1
C319	ECUV1H080DCV	8P		1	C621	ECUV1H101JCV	100P	1
					C622	ECUV1H101JCV	100P	1
C320	ECUV1H103KBV	0.01		1	C623	ECUV1H101JCV	100P	1
C321	ECUV1H020CCV	2 P		1	C624	ECUV1H101JCV	100P	1
C322	ECUV1H030CCV	3 P		1	C625	ECUV1H101JCV	100P	1
C323	ECUV1H102KBV	0.001		1				
C324	ECUV1H102KBV	0.001		1				
C325	ECUV1H102KBV	0.001		1				
C327	ECUV1H102KBV	0.001		1				
C328	ECUV1H060DCV	6 P		1				
C329	ECUV1H040CCV	4P		1				
C330	ECUV1H103KBV	0.01		1	PORTABLE HANDSET BOARD PARTS			
C331	ECEA1CKS470	47	S	1	PCB7	POWP1TC910BR		
C333	ECUV1H223KBV	0.022		1			PORTABLE HANDSET P.C.BOARLASS'Y (RTL)	1
C334	PQCUV1C224ZF	0.22		1				
C336	ECUV1H680JCV	68P		1				
C337	ECUV1H103KBV	0.01		1			(ICS)	
C338	ECUV1H220JCV	22P		1				
C339	PQCUV1C224ZF	0.22	S	1	$\begin{array}{\|l} \text { IC201 } \\ \text { IC202 } \end{array}$	MN151233KZAB AN6165SB	IC	1
C340	ECUV1H101JCV	100P		1	IC203	AN6183SE1	IC	1
C341	ECUV1H333KDV	0.033	S	1	IC204	PQVIXCC3501P	IC	1
C342	ECUV1H102KBV	0.001		1	1C205	PQVIXC3002PR	IC	1
C343	ECUV1H102KBV	0.001		1	IC206	PQVIXCC3202P	IC	1
C345	ECUV1H472KBV	0.0047		1	1 C 207	PQVIXC3002PR	IC	1
C346	ECUV1H020CCV	2 P		1	1 C 208	PQVINJM2113V	IC	1
C348	ECUV1H103KBV	0.01		1				
C349	ECUV1H103KBV	0.01		1	$\begin{array}{\|l} \text { IC401 } \\ \text { IC402 } \end{array}$	PQVIM64084AG PQVIDBL5018V	IC	1
C350	ECUV1H103KBV	0.01		,				
C351	PQCUV1H105JC	1	S	1				
C352	ECUV1H103KBV	0.01		1				
C354	ECUV1H060DCV	6P		1			(TRANSISTORS)	
C376	ECUV1H102KBV	0.001		1				
					Q201	2SD1819A	TRANSISTOR(SI)	1
C380	ECSTOJX336	330		1	Q202	2SD1819A	TRANSISTOR(SI)	1
C381	ECUV1H1R5CCV	1.5		1	Q203	PQVTDTB123E	TRANSISTOR(SI)	1
C385	ECUV1H101JCV	100P		,	Q204	2SD1819A	TRANSISTOR(SI)	1
C386	ECUV1H102KBV	0.001		1	Q205	PQVTDTA143EU	TRANSISTOR(SI)	1
C387	ECUV1H102KBV	0.001		1	Q206	PQVTDTB123E	TRANSISTOR(SI)	1
C388	ECUV1H101JCV	100P		1	Q208	2SD1819A	TRANSISTOR(SI)	1
C389	ECUV1H020CCV	2P		1	Q209	PQVTDTC143E	TRANSISTOR(SI)	1
					Q212	PQVTD123T146	TRANSISTOR(SI)	1
C390	ECUV1H020CCV	2 P		1	Q213	PQVTD123J106	TRANSISTOR(SI)	1
C392	ECUV1H102KBV	0.001		1	Q214	2SD1819A	TRANSISTOR(SI)	1
C393	ECUV1H103KBV	0.01		1	Q215	2SD1819A	TRANSISTOR(SI)	1
C395	ECEA1CKS100	10	S	1	Q217	PQVTDTC144TU	TRANSISTOR(SI)	1
C398	ECUV1H101JCV	100P		1		2SC4571R77	TRANSISTOR(SI) S	1
C399	ECUV1A105ZFV	1		1	Q401 Q402	2SC4571R77	TRANSISTOR(SI) S	1
	ECUV1H101JCV	100 P		1	Q403	2SC4226R24	TRANSISTOR(SI)	1
C600	ECUV1H101JCV	100P		1	Q404	2SC4227R34	TRANSISTOR(SI)	1
C602	ECUV1H101JCV	100P			Q405	2SC4116	TRANSISTOR(S)	

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

Ref. No.	Part No.	Part Name \& Description	Pcs	Ret. No.	Part No.	Part Name \& Description \& Value	Pcs
		(DIODES)				(CRYSTALS)	
				RXVCO	PQV0322	CRYSTAL OSCILLATOR	1
D201	MA110	DIODE(SI)	1	TXVCO	PQV033Z	CRYSTAL OSCILLATOR	1
D202	PQVDRB751H4	DIODE(SI)	1				
D206	PQVDPY1112H	DIODE(SI)	1	X201	PQVBTCC3.99M	CRYSTAL OSCILLATOR	1
D207	PQVDPY1112H	DIODE(SI)	1	$\times 202$	PQVCE3276N9Z	CRYSTAL OSCILLATOR	1
D208	PQVDPY1112H	DIODE(SI)	1				
D209	PQVDPY1112H	DIODE(SI)	1				
D210	PQVDPY1112H	DIODE(SI)	1				
D212	PQVDBR1112H	DIODE(SI)	1				
D213	MA110	DIODE(SI)	1				
D214	MA3062	DIODE(SI)	1			(OTHERS)	
D215	MA110	DIODE(SI)	1				
D217	MA110	DIODE(SI)	1	E901	PQMC102172	MAGNETIC SHIELD COVER	1
D401	PQVDRB751H4	DIODE(SI)	1	E902	PQMC102182	MAGNETIC SHIELD COVER	1
D402	PQVDRB751H4	DIODE(SI)	1	E903	PQEFBDB111GP	BUZZER	1
D403	MA110	DIODE(SI)	1	E904	PQJM122Z	MICROPHONE	1
DA	MA110	DIODE(SI)	1				
DF	MA110	DIODE(SI)	1	L405	PQLI2B201	I.F. TRANSFORMER	1
				VC401	ECRLA010A53R	TRIMMER CAPACITOR	1
				$\times 401$	PQVCJ1025NOZ	VARIABLE CAPACITOR	1
		(COILS)					
L201	PQLQR3ER10K	COIL	1				
L202	PQLQR3ER10K	COIL	1				
L203	PQLQR3ER10K	COIL	1			(RESISTORS)	
L400	PQLQR1RM601	COIL	1	R201	ERJ3GEYJ103	10K	1
L401	PQLQR1RM601	COIL	1	R202	ERJ3GEYJ332	3.3K	1
L402	PQLQR1RM601	COIL	1	R203	ERJ3GEYJ473	47K	1
L404	PQLQR2N3R3KT	COIL	1	R205	ERJ3GEYJ473	47K	1
L406	MQLRE2N7DF	COIL	1	R206	ERJ3GEYJ473	47K	1
				R207	ERJ3GEYJ473	47K	1
L413	PQLQR1RM601	COIL	1	R208	ERJ3GEYJ224	220K	1
L414	PQLQR1RM601	COIL	1	R209	ERJ3GEYJ473	47K	1
L415	PQLQR1RM601	COIL	1				
L416	PQLQR1RM601	COIL	1	R210	ERJ3GEYJ681	680	1
L417	PQLQR1RM601	COIL	1	R211	ERJ3GEYJ222	2.2 K	1
L418	PQLQR1RM601	COIL	1	R212	ERJ3GEYJ103	10K	1
L419	MQLRE6N8.JF	COIL	1	R213	ERJ3GEYJ103	10 K	1
				R214	ERJ3GEYJ222	2.2K	1
L420	MQLRE10NJF	COIL	1	R215	ERJ3GEYJ274	270K	1
L421	MQLRE15NJF	COIL	1	R216	ERJ3GEYJ472	4.7K	1
L422	MQLRE6N8JF	COIL	1	R218	ERJ3GEYOR00	JUMPER, OS	1
J206				R219	ERJ3GEYJ124	120K	1
	PQLQR2TR10K	COIL ${ }^{\text {(CERAMIC FILTERS) }}$	1				
				R220	ERJ3GEYJ104	100K	1
				R221	ERJ3GEYJ683	68K	1
				R222	ERJ3GEYJ104	100K	1
				R223	ERJ3GEYJ153	15K	1
				R224	ERJ3GEYJ153	15K	1
				R225	ERJ3GEYJ683	68K	1
FL401	PQVSM927C11L	CERAMIC FILTER	1	R226	ERJ3GEYJ104	100K	1
FL402	PQVS705CF903	CERAMIC FILTER	1	R227	ERJ3GEYJ273	27K	1
FL403	PQVFSFE107MJ	CERAMIC FILTER	1	R228	ERJ3GEYJ273	27K	1
FL404	PQVFCFH450B1	CERAMIC FILTER	1	R229	ERJ3GEYJ473	47K	1
				R230	ERJ3GEY0R00	JUMPER, 0Ω	1
				R231	ERJ3GEYJ123	12 K	1
				R232	ERJ3GEYJ472	4.7K	1
				R233	ERJ3GEYJ823	82K	1
	EVN5ESX50B15	VARIABLE RESISTOR	1	R234	ERJ3GEYJ563	56 K	1
VR202	EVN5ESX50B54	VARIABLE RESISTOR	1	R235	ERJ3GEYJ823	82K	1
VR203	EVM1YSX50B52	VARIABLE RESISTOR	1	R236	ERJ3GEYOR00	JUMPER, 0Ω	1
VR401	EVN5ESX50854	VARIABLE RESISTOR	1	R237	ERJ3GEYJ101	100	1
				R239	ERJ3GEYJ823	82 K	1
				R240	ERJ3GEYJ393	39 K	1
				R241	ERJ3GEYJ105	1M	1
				R243	ERJ3GEYJ333	33 K	1
				R245	ERJ3GEYJ100	10	1

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

This replacement parts list is for U.S.A. version only. Refer to the simplified manual (cover) for other areas.

Ref. No.	Pant No.	Part Name \& Description \& Value	Pcs
		(CONNECTORS)	
CN651	PFJS08R26Z	CONNECTOR	1
	PQJT10119Z PQJT10119Z PQJT10119Z	BATTERY TERMINAL	1
		BATTERY TERMINAL	1
		BATTERY TERMINAL	1
		(COILS)	
$\begin{aligned} & \text { L651 } \\ & \text { L652 } \\ & \text { L653 } \\ & \text { L654 } \\ & \text { L655 } \end{aligned}$	PQLQZK330K PQLQZK330K PQLQZK330K PQLQZK330K PQLQZK330K	COIL	1
		COIL	1
$\begin{array}{\|l} \text { R651 } \\ \text { R652 } \end{array}$	$\begin{aligned} & \text { ERDS2TJ271 } \\ & \text { ERDS2TJ271 } \end{aligned}$	(RESISOTRS)	
		270	1
		FIXTURES AND TOOLS	
EC 1EC 2EC 3EC 4EC 5EC 6EC 7EC 8EC 9	$\begin{aligned} & \text { PQZZ2K12Z } \\ & \text { PQ772K6Z } \end{aligned}$	EXTENTION CORD, 2 PIN	1
		EXTENTION CORD, 2 PIN	1
	$\left\lvert\, \begin{aligned} & \text { PQZZ2K6Z } \\ & \text { PFZZ8K23Z } \end{aligned}\right.$	EXTENTION CORD, 8 PIN	1
	PQZZ6K14Z	EXTENTION CORD, 6 PIN	1
	PQZZ2K132	EXTENTION CORD, 2 PIN	1
	PQZZ9K7Z	EXTENTION CORD, 9 PIN	1
	PQZZZ11K8ZPQZZ5K6Z	EXTENTION CORD, 11 PIN	2
		EXTENTION CORD, 5 PIN	1
	$\text { \|PFZZ5K } 13 Z$	EXTENTION CORD, 5 PIN	1
$\begin{aligned} & E C 10 \\ & E C 11 \end{aligned}$	PQZZ2K62PQZZ10K4Z	EXTENTION CORD, 2 PIN	1
		EXTENTION CORD, 10 PIN	1
EC12	PQZZ8K182	EXTENTION CORD, 8 PIN	1
EC13	PQZZ2K12Z	EXTENTION CORD, 2 PIN	1
	PFZZ7K15Z	EXTENTION CORD, 7 PIN	1
EC15		EXTENTION CORD, 18 PIN	1
	PFZZ 18K4Z	EXTENTION CORD, 8 PIN	1
EC17	PQZZ10K112	EXTENTION CORD, 10 PIN	1
$\text { EC20 } \begin{aligned} & \mathrm{EC} 21 \\ & \mathrm{EC} 22 \end{aligned}$	$\begin{aligned} & \text { PFZZ } 1 \text { F780M } \\ & \text { PFZZ2F780M } \\ & \text { PFZZ3F900M } \end{aligned}$	CCD ADJUSTMENT TOOL	111
		SPRING HEIGHT TOOL IC TOOI (for STATUS CHECKING)	
		[Refer to pa	
Notes: 1. Tools (EC20~EC22) and Extension Cords (Ref. No. EC12, EC13) are necessities for servicing.			
2. Extension Cords (Ref. No. EC1~EC17, EC14~EC17) are useful for servicing. (They make servicing easy.)			

[^0]: Set Value

