
Administrator's Guide

Release 5.0.5

Published April 2010

ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide
Release 5.0.5
Copyright © 2002-2010 ParTec Cluster Competence Center GmbH
April 2010
Printed 7 April 2010, 14:11

Reproduction in any manner whatsoever without the written permission of ParTec Cluster Competence Center GmbH is strictly
forbidden.

All rights reserved. ParTec and ParaStation are registered trademarks of ParTec Cluster Competence Center GmbH. The ParTec
logo and the ParaStation logo are trademarks of ParTec Cluster Competence Center GmbH. Linux is a registered trademark of
Linus Torvalds. All other marks and names mentioned herein may be trademarks or registered trademarks of their respective
owners.

 ParTec Cluster Competence Center GmbH
 Possartstr. 20
 D-81679 München
 Phone +49-89-99809-0
 Fax +49-89-99809-555

 http://www.par-tec.com
 <info@par-tec.com>

Please note that you will always find the most up-to-date version of this technical documentation on our
Web site at http://www.par-tec.com/support.php.

Share your knowledge with others. It's a way to achieve immortality.
—Dalai Lama

http://www.par-tec.com/support.php

ParaStation5 Administrator's Guide iii

Table of Contents
1. Introduction ... 1

1.1. What is ParaStation ... 1
1.2. The history of ParaStation .. 1
1.3. About this document .. 2

2. Technical overview ... 3
2.1. Runtime daemon .. 3
2.2. Libraries ... 3
2.3. Kernel modules .. 3
2.4. License .. 4

3. Installation .. 5
3.1. Prerequisites .. 5
3.2. Directory structure .. 6
3.3. Installation via RPM packages .. 7
3.4. Installing the documentation ... 9
3.5. Installing MPI ... 10
3.6. Further steps .. 10
3.7. Uninstalling ParaStation5 .. 11

4. Configuration .. 13
4.1. Configuration of the ParaStation system .. 13
4.2. Enable optimized network drivers .. 14
4.3. Testing the installation .. 15

5. Insight ParaStation5 .. 17
5.1. ParaStation5 pscom communication library .. 17
5.2. ParaStation5 protocol p4sock .. 17

5.2.1. Directory /proc/sys/ps4/state .. 18
5.2.2. Directory /proc/sys/ps4/ether ... 18
5.2.3. Directory /proc/sys/ps4/local ... 19
5.2.4. p4stat ... 19

5.3. Controlling process placement .. 19
5.4. Using the ParaStation5 queuing facility .. 20
5.5. Exporting environment variables for a task ... 20
5.6. Using non-ParaStation applications ... 20
5.7. ParaStation5 TCP bypass ... 21
5.8. Controlling ParaStation5 communication paths ... 21
5.9. Authentication within ParaStation5 ... 22
5.10. Homogeneous user ID space ... 23
5.11. Single system view ... 23
5.12. Parallel shell tool .. 23
5.13. Nodes and CPUs ... 23
5.14. Integration with AFS ... 24
5.15. Integrating external queuing systems ... 24

5.15.1. Integration with PBS PRO .. 25
5.15.2. Integration with OpenPBS .. 25
5.15.3. Integration with Torque .. 25
5.15.4. Integration with LSF ... 25
5.15.5. Integration with LoadLeveler ... 25

5.16. Multicasts ... 25
5.17. Copying files in parallel ... 26
5.18. Using ParaStation accounting ... 26
5.19. Using ParaStation process pinning .. 27
5.20. Using memory binding .. 27
5.21. Spawning processes belonging to all groups .. 27
5.22. Changing the default ports for psid(8) .. 27

6. Troubleshooting .. 29
6.1. Problem: psiadmin returns error .. 29

ParaStation5 Administrator's Guide

iv ParaStation5 Administrator's Guide

6.2. Problem: node shown as "down" .. 29
6.3. Problem: cannot start parallel task ... 30
6.4. Problem: bad performance .. 30
6.5. Problem: different groups of nodes are seen as up or down ... 30
6.6. Problem: cannot start process on front end ... 30
6.7. Warning issued on task startup .. 31
6.8. Problem: pssh fails .. 31
6.9. Problem: psid does not startup, reports port in use ... 31
6.10. Problem: processes cannot access files on remote nodes .. 32

I. Reference Pages ... 33
parastation.conf ... 35
psiadmin ... 47
psid .. 63
test_config .. 65
test_nodes .. 67
test_pse .. 69
p4stat ... 71
p4tcp .. 73
psaccounter .. 75
psaccview ... 77
mlisten .. 81

A. Quick Installation Guide .. 83
B. ParaStation license ... 85
C. Upgrading ParaStation4 to ParaStation5 .. 89

C.1. Building and installing ParaStation5 packages ... 89
C.2. Changes to the runtime environment .. 89

Glossary ... 91

ParaStation5 Administrator's Guide 1

Chapter 1. Introduction

1.1. What is ParaStation
ParaStation is an integrated cluster management and communication solution. It combines unique features
only found in ParaStation with common techniques, widely used in high performance computing, to deliver
an integrated, easy to use and reliable compute cluster environment.

The version 5 of ParaStation supports various communication technologies as interconnect network. It
comes with an optimized communication protocol for Ethernet that enables Gigabit Ethernet to play a new
role in the market of high throughput, low latency communication. Beside Infiniband and Myrinet, it also
supports the upcoming 10G Ethernet networks.

Like previous versions, ParaStation5 includes an integrated cluster administration and management
environment. Using communicating daemon processes on each cluster node, an effective resource
management and single point of administration is implemented. This results in a single system image view
of the cluster.

From the user's point of view this cluster management leads to an easier and more effective usage of
the cluster. Important features like load balancing, job control and input/output management, common in
classical supercomputers, but rarely found in compute clusters, are implemented by ParaStation thus being
now also available on clusters.

1.2. The history of ParaStation
The fundamentals of the ParaStation software were laid in 1995, when the ParaStation communication
hardware and software system was presented. It was developed at the chair of Professor Tichy at computer
science department of Karlsruhe University.

When in 1998 ParaStation2 was presented, it was a pure software project. The communication platform
used then was Myrinet, a Gigabit interconnect developed by Myricom. The development of ParaStation2
still took place at the University of Karlsruhe.

ParaStation became commercial in 1999 when ParTec AG was founded. This spin-off from the University
of Karlsruhe now owns all rights and patents connected with the ParaStation software. ParTec promotes
the further development and improvement of the software. This includes the support of a broader basis of
supported processor types, communication interconnect and operating systems.

Version 3 of the ParaStation software for Myrinet is a rewrite from scratch now fully in the responsibility
of ParTec. All the know-how and experiences achieved from the former versions of the software were
incorporated into this version. It was presented in 2001 and was a major breakthrough with respect to
throughput, latency and stability of the software. Nevertheless it is enhanced constantly with regard to
performance, stability and usability.

In 2002 the ParaStation FE software was presented opening the ParaStation software environment towards
Ethernet communication hardware. This first step in the direction of independence from the underlying
communication hardware brought the convenient ParaStation management facility to Beowulf clusters for
the first time. Furthermore the suboptimal communication performance for large packets gained from the
MPIch/P4 implementation of the MPI message passing interface, the de facto standard on Beowulf clusters,
was improved to the limits that may to be expected from the physical circumstances.

With ParaStation4 presented in 2003 the software became really communication platform independent.
With this version of the software even Gigabit Ethernet became a serious alternative as a cluster
interconnect due to the throughput and latency that could be achieved.

http://www.myri.com

About this document

2 ParaStation5 Administrator's Guide

In the middle of 2004, all rights on ParaStation where transferred from ParTec AG to the ParTec Cluster
Competence Center GmbH. This new company takes a much more service-oriented approach to the
customer. The main goal is to deliver integrated and complete software stacks for LINUX-based compute
clusters by selecting state-of-the-art software components and driving software development efforts in
areas where real added value can be provided. The ParTec Cluster Competence Center GmbH continues
to develop and support the ParaStation product as an important part of it's portfolio.

At the end of 2007, ParaStation5 was released supporting MPI2 and even more interconnects and
especially protocols, like DAPL. ParaStation5 is backward compatible to the previous ParaStation4 version.

1.3. About this document
This manual discusses installation, configuration and administration of ParaStation5. Furthermore, all the
system management utilities are described.

For a detailed discussion of the user utilities and the programming interfaces included in the standard
distribution take a look at the ParaStation5 User's Guide and the API reference, respectively.

This document describes version 5.0 of the ParaStation software. Previous versions of ParaStation are
no longer covered by this document. Information about these outdated versions can be found in previous
versions of this document.

../userguide/index.html
../api/index.html

ParaStation5 Administrator's Guide 3

Chapter 2. Technical overview
Within this section, a brief technical overview of ParaStation5 will be given. The various software modules
constituting ParaStation5 are explained.

2.1. Runtime daemon
In order to enable ParaStation5 on a cluster, the ParaStation daemon psid(8) has to be installed on each
cluster node. This daemon process implements various functions:

• Install and configure local communication devices and protocols, e.g. load the p4sock kernel module and
set up proper routing information, if not already done at system startup.

• Queue parallel and serial tasks until requested resources are available.

• Distribute processes onto the available cluster nodes.

• Startup and monitor processes on cluster nodes. Also terminate and cleanup processes upon request.

• Monitor availability of other cluster nodes, send “I'm alive” messages.

• Handle input/output and signal forwarding.

• Service management commands from the administration tools.

The daemon processes periodically send information containing application processes, system load and
others to all other nodes within the cluster. So each daemon is able to monitor each other node, and in case
of absent alive messages, it will initiate proper actions, e.g. terminate a parallel task or mark this node as "no
longer available". Also, if a previously unavailable node is now responding, it will be marked as "available"
and will be used for upcoming parallel task. No intervention of the system administrator is required.

2.2. Libraries
In addition, a couple of libraries providing communication and management functionality, must be installed.
All libraries are provided as static versions, which will be linked to the application at compile time, or as
shared (dynamic) versions, which are pre-linked at compile time and folded in at runtime. There is also a
set of management and test tools installed on the cluster.

ParaStation5 comes with it's own version of MPI, based on MPIch2. The MPI library provides standard
MPIch2 compatible MPI functions. For communication purposes, it supports a couple of communication
paths in parallel, e.g. local communication using Shared memory, TCP or p4sock, Ethernet using p4sock
and TCP, Infiniband using verbs, Myrinet using GM or 10G Ethernet using DAPL. Thus, ParaStation5 is
able to spawn parallel tasks across nodes connected by different communication networks. ParaStation
will also make use of redundant interconnects, if a failure is encountered during startup of a parallel task.

There are different versions of the ParaStation MPI library available, depending on the hardware
architecture and compiler in use. For IA32, versions for GNU, Intel and Portland Group compilers are
available. For x86_64, versions for the GCC, Intel, Portland Group and Pathscale EKO compiler suite are
available. The versions support all available languages and language options for the selected compiler,
e.g. Fortran, Fortran90, C or C++. The different versions of the MPI library can be installed in parallel, thus
it is possible to compile and run applications using different compilers at the same node.

2.3. Kernel modules
Beside libraries enabling efficient communication and task management, ParaStation5 also provides a set
of kernel modules:

License

4 ParaStation5 Administrator's Guide

• p4sock.o: this module implements the kernel based ParaStation5 communication protocol.

• e1000_glue.o, bcm5700_glue.o: these modules enable even more efficient communication to the
network drivers coming with ParaStation5 (see below).

• p4tcp.o: this module provides a feature called "TCP bypass". Thus, applications using standard TCP
communication channels on top of Ethernet are able to use the optimized ParaStation5 protocol and
therefore achieve improved performance.

No modifications of the application, even no relinking is necessary to use this feature. To gain best
performance, relinking with the MPI library provided by ParaStation is recommended.

To enable the maximum performance on Gigabit Ethernet, ParaStation5 comes with its own set of network
drivers. These drivers are based on standard device drivers for the corresponding NICs and especially
tuned for best performance within a cluster environment. They will also support all standard communication
and protocols. To enable best performance within an Ethernet-based cluster, these drivers should replace
their counterparts currently configured within the kernel.

ParaStation currently comes with drivers for Intel (e1000) and Broadcom (bcm5700) network interface
controllers. Dedicated helper modules (glue modules) for these drivers decrease the latency even more.

ParaStation is also able to use all standard Ethernet network drivers configured into the Linux kernel.
However, to get the best performance, the use of the provided drivers is recommended, if applicable.

2.4. License
This version of ParaStation does not require a dedicated license key to run. But usage of the software
implies the acceptance of the license!

For licensing details, refer to Appendix B, ParaStation license.

ParaStation5 Administrator's Guide 5

Chapter 3. Installation
This chapter describes the installation of ParaStation5. At first, the prerequisites to use ParaStation5 are
discussed. Next, the directory structure of all installed components is explained. Finally, the installation
using RPM packages is described in detail.

Of course, the less automated the chosen way of installation is, the more possibilities of customization
within the installation process occur. On the other hand even the most automated way of installation, the
installation via RPM, will give a suitable result in most cases.

For a quick installation guide refer to Appendix A, Quick Installation Guide.

3.1. Prerequisites

In order to prepare a bunch of nodes for the installation of the ParaStation5 communication system, a few
prerequisites have to be met.

Hardware

The cluster must have a homogeneous processor architecture, i.e. Intel IA32 and AMD IA32 can be used
together, but not Intel IA32 and IA64 1. The supported processor architectures up to now are:

• i586: Intel IA32 (including AMD Athlon)

• ia64: Intel IA64

• x86_64: Intel EM64T and AMD64

• ppc: IBM Power4 and Power5

Multi-core CPUs are supported, as well as single and multi-CPU (SMP) nodes.

Furthermore the nodes need to be interconnected. In principle, ParaStation5 uses two different kinds of
interconnects:

• At first a so called administration network which is used to handle all the administrative tasks that have
to be dealt with within a cluster. Besides commonly used services like sharing of NFS partitions or NIS
tables, on a ParaStation cluster, this also includes the inter-daemon communication used to implement
the effective cluster administration and parallel task handling mechanisms. This administration network
is usually implemented using a Fast or Gigabit Ethernet network.

• Secondly a high speed interconnect is required in order to do high bandwidth, low latency communication
within parallel applications. While historically this kind of communication is usually done using specialized
highspeed networks like Myrinet, nowadays Gigabit Ethernet is a much cheaper and only slightly
slower alternative. ParaStation5 currently supports Ethernet (Fast, Gigabit and 10G Ethernet), Myrinet,
InfiniBand, QsNetII and Shared Memory.

If IP connections over the high speed interconnect are available, it is not required to really have two distinct
networks. Instead it is possible to use one physical network for both tasks. IP connections are usually
configured by default in the case of Ethernet. For other networks, particular measures have to be taken in
order to enable IP over these interconnects.

1 It is possible to spawn a ParaStation cluster across multiple processor architectures. The daemons will communicate with each
other, but this is currently not a supported configuration. For more details, please contact <support@par-tec.com>.

Software

6 ParaStation5 Administrator's Guide

Software

ParaStation requires a RPM-based Linux installation, as the ParaStation software is based on installable
RPM packages.

All current distributions from Novell and Red Hat are supported, like

• SuSE Linux Enterprise Server (SLES) 9 and 10

• SuSE Professional 9.1, 9.2, 9.3 and 10.0, OpenSuSE 10.1, 10.2, 10.3

• Red Hat Enterprise Linux (RHEL) 3, 4 and 5

• Fedora Core, up to version 7

For other distributions and non-RPM based installations, please contact <support@par-tec.com>.

In order to use highspeed networks, additional libraries and kernel modules may be required. These
packages are typically provided by the hardware vendors.

Kernel version

Using only TCP as a high speed interconnect protocol, no dedicated kernel modules are required. This is
the ParaStation default communication path and is always enabled.

Using other interconnects and protocols, additional kernel modules are required. Especially using the
optimized ParaStation p4sock protocol, a couple of additional modules are loaded. Refer to the section
called “Installing the RPMs” for details. The ParaStation modules can be compiled for all major kernel
versions within the 2.4 and 2.6 kernel streams.

Using InfiniBand and Myrinet requires additional modules and may restrict the supported kernels.

3.2. Directory structure
The default location to install ParaStation5 is /opt/parastation. Underneath this directory, several
subdirectories are created containing the actual ParaStation5 installation:

bin
contains all executables and scripts forming the ParaStation system. This directory could be included
into the PATH environment variable for easy access to the ParaStation administration tools.

config
contains the example configuration file parastation.conf.tmpl.

Depending on the communication part of the ParaStation system installed, more scripts and
configuration files may be found within this directory.

doc
contains the ParaStation documentation after installing the corresponding RPM file. The necessary
steps are described in Section 3.4, “Installing the documentation”.

include
contains the header files needed in order to build ParaStation applications. These files are primarily
needed for building applications using the low level PSPort or PSE libraries.

These header files are not needed, if only MPI applications should be build or precompiled third party
applications are used.

lib and lib64
contains various libraries needed in order to build and/or run applications using ParaStation and the
ParaStation MPI libraries.

Installation via RPM packages

ParaStation5 Administrator's Guide 7

man
contains the manual pages describing the ParaStation daemons, utilities and configuration files after
installing the documentation package. The necessary steps are described in Section 3.4, “Installing
the documentation”.

In order to enable the users to access these pages using the man(1) command, please consult the
corresponding documentation 2.

mpi2, mpi2-intel, mpi2-pgi, mpi2-psc
contains an adapted version of MPIch2 after installing one of the various psmpi2 RPM files. The
necessary steps are described in Section 3.5, “Installing MPI”.

Especially the sub-directories mpich/bin, mpich-intel/bin, etc, contain all the commands to run
(mpirun) and compile (mpicc, mpif90, ...) parallel tasks.

All ParaStation5 specific kernel modules are located within the directory /lib/modules/
kernel release/kernel/drivers/net/ps4.

3.3. Installation via RPM packages
The recommended way to install ParaStation5 is the installation of packages using the rpm command. This
is the preferred method on all SuSE or Red Hat based systems.

Getting the ParaStation5 RPM packages

Packages containing the different parts of the ParaStation5 system can be obtained from the download
section of the ParaStation homepage.

At least two packages are needed, one containing the management part, the other one providing the
communication part of the ParaStation5 system. Beside this core system, packages supplying MPIch
for GNU, Intel, Portland Group and Pathscale compilers are available. A documentation package is also
obtainable.

The full names of the RPM files follow a simple structure:

 name-x.y.z-n.arch.rpm

where name denotes the name and thus the content of the packet, x.y.z describes the version number,
n the build number and arch is the architecture, i.e. one of i586, ia64, x86_64, ppc or noarch. The
latter is used e.g. for the documentation packet.

The package called psmgmt holds the management part of ParaStation. This package is required for any
installation of the ParaStation5 system, independent of the underlying communication platform.

The communication libraries and modules for ParaStation5 come with the pscom package. As explained,
all filenames are followed by an individual version number, the build date and the architecture.

The versions available on the ParaStation homepage at a time are tested to work properly together.
It's recommended to install always the corresponding package versions. If only a part of the installation
should be updated (i.e. only the management part while keeping the communication part untouched)
the corresponding release notes should be consulted in order to verify that the intended combination is
supported.

The release notes of the different packages will either be found within the installation directory /opt/
parastation or on the download section of the ParaStation homepage.

2 Usually this is either done by modifying the MANPATH environment variable or by editing the manpath(1) configuration file, which
is /etc/manpath.config by default.

http://www.unix.mcs.anl.gov/mpi/mpich
http://www.suse.de
http://www.redhat.com
http://www.parastation.com/download.php
http://www.parastation.com/download.php
http://www.parastation.com
http://www.parastation.com

Compiling the ParaStation5 packages from source

8 ParaStation5 Administrator's Guide

Please note that the individual version numbers of the distinct packages building the ParaStation5 system
do not necessarily have to match.

Compiling the ParaStation5 packages from source

To build proper RPM packages suitable for a particular setup, the source code for the ParaStation packages
can be downloaded from www.parastation.com/download 3 .

Typically, it is not necessary to recompile the ParaStation packages, as the provided
precompiled packages will install on all major distributions.

Only the kernel modules should be compiled to provide modules suitable for the
current Linux kernel, see below.

To build the psmgmt package, use

 # rpmbuild --rebuild psmgmt.5.0.0-0.src.rpm

After installing the psmgmt package, the pscom package can be built using

 # rpm -Uv psmgmt.5.0.0-0.i586.rpm
 # rpmbuild --rebuild pscom.5.0.0-0.src.rpm

This will build the packages pscom-5.0.0-0.i586.rpm and pscom-modules-5.0.0-0.i586.rpm.
The architecture will of course vary depending on the system the packages are built on.

While compiling the package, support for Infiniband will be included, if one of the following files where found:

File Version

/usr/mellanox/include/vapi/evapi.h Mellanox

/usr/include/infiniband/verbs.h OpenFabrics

/usr/local/ofed/include/verbs.h OpenFabrics (Voltaire)

Table 3.1. Supported Infiniband implementations

To enable Myrinet GM, the environment variable GM_HOME must be set.

To generate the pscom-modules package, holding the ParaStation5 protocol-specific kernel modules and
patched device drivers only, use the command

 # rpmbuild --rebuild --with modules pscom.5.0.0-0.src.rpm

After installing the pscom package, the MPIch2 package can be built using

 # rpm -Uv pscom.5.0.0-0.i586.rpm
 # rpmbuild --rebuild psmpi2-5.0.0.src.rpm

This will create an installable MPIch RPM package, based on gcc. Support for other compilers can be
enabled using the --with compiler options. Compiler could be intel for Intel icc, pgi for Portland
Group pgi or psc for Pathscale pathcc. The option g77_ will use gcc, rendering symbol names with a single
underscore prefixed.

Installing the RPMs

The installation on the cluster nodes has to be performed with administrator privileges. The packages are
installed using the rpm -U command:

3 Source code for the documentation is currently not available.

http://www.parastation.com/download.php

Installing the documentation

ParaStation5 Administrator's Guide 9

 # rpm -Uv psmgmt.5.0.0-0.i586.rpm pscom.5.0.0-0.i586.rpm \
 pscom-modules.5.0.0-0.i586.rpm

This will copy all the necessary files to /opt/parastation and the kernel modules to /lib/modules/
kernelversion/kernel/drivers/net/ps4.

On a frontend node or file server, the pscom-modules package is only required, if this node should run
processes of a parallel task. If the frontend or fileserver node is not configured to run compute processes of
parallel tasks, the installation of the pscom-modules package may be skipped. For details how to configure
frontend nodes, refer to Section 4.1, “Configuration of the ParaStation system”.

To enable the ParaStation version of the e1000 or bcm5700 network drivers, rename (or delete) the
original version of this driver in use which is typically located in the system directory /lib/modules/
kernelversion/kernel/kernel/drivers/net/e1000 or bcm, respectively. See modinfo e1000
for details. The module dependency database must be rebuild using the command depmod. See
Section 4.2, “Enable optimized network drivers” for details.

It is not required to use the ParaStation version of the e1000 or bcm5700 driver,
as the p4sock protocol of ParaStation is able to use every network driver within the
Linux kernel. However, to increase performance and to minimize latency, it's highly
recommended.

Using the provided drivers does not influence other network communication.

While installing the ParaStation management RPM, the file /etc/xinetd/psidstarter is installed. This
enables remote startup of ParaStation daemons using the xinetd(8).

The xinetd daemon will be triggered to read this file by executing:

 /etc/init.d/xinetd reload

Refer to Section 5.22, “Changing the default ports for psid(8)” on how to change the default network port
used by the psid(8).

In case the system still uses the older xinet(8) server to startup network services, please add the following
lines to /etc/services:

 #
 # ParaStation daemon
 #
 psid stream tcp nowait root /opt/parastation/bin/psid psid

Add the next lines to /etc/inetd.conf:

 # ParaStation entries
 psid 888/tcp # ParaStation Daemon Start Port
 # end of ParaStation entries

3.4. Installing the documentation
The ParaStation5 documentation is delivered in three formats: As PDF files, a browseable HTML
documentation and manual pages for all ParaStation5 commands and configuration files.

In order to install the documentation files an up to date version of the documentation package psdoc has to
be retrieved. It can be found in the download section of the ParaStation homepage. The package is called
psdoc and the architecture is noarch, since this part is platform independent. The name of this package
follows the conventions of all other packages building the ParaStation5 distribution.

To install the package, simply execute

http://www.parastation.com/download.php
http://www.parastation.com

Installing MPI

10 ParaStation5 Administrator's Guide

 # rpm -Uv psdoc-5.0.0-1.noarch.rpm

All the PDF and HTML files will be installed within the directory /opt/parastation/doc, the manual
pages will reside in /opt/parastation/man.

The intended starting point to browse the HTML version of the documentation is file:///opt/
parastation/doc/html/index.html.

The documentation is available in two PDF files called adminguide.pdf for the ParaStation5
Administrator's Guide and userguide.pdf for the ParaStation5 User's Guide. Both can be found in the
directory /opt/parastation/doc/pdf.

In order to enable the manual pages to the users please consult the documentation of the man(1) command
and the remark in Section 3.2, “Directory structure”, on how to do this.

3.5. Installing MPI
The standard for the implementation of parallel applications on distributed memory machines like clusters
is MPI, the Message Passing Interface. In order to enable a ParaStation5 cluster for the development and
execution of MPI programs, the installation of an adapted version of MPIch2 is necessary. A corresponding
RPM packet can be found within the download section of the ParaStation homepage.

The corresponding package psmpi2 follows the common naming conventions of all ParaStation5 packets.

Beside the plain MPI package (psmpi2), which is compiled using the GNU gcc compiler, other versions
of the MPI packet are available, which are built using different compilers like the PGI or Intel compilers on
the Intel IA32 platform, the Intel compiler on the IA64 platform and the PGI, Intel and Pathscale compiler
on X86_64 platform. These packets of course will depend on the corresponding compilers to be installed.
Keep in mind that the use of this compilers might require further licenses.

After downloading the correct MPI package make sure to be root. In order to install MPIch for ParaStation5
from the rpm file, the command

 # rpm -Uv psmpi2.5.0.0-1.i586.rpm

must be executed.

The command will extract the ParaStation5 MPI package to the directory /opt/parastation/mpi2.

In order to enable the MPI commands to the users make sure that the directory /opt/parastation/
mpi2/bin is included into the system wide PATH environment variable. Furthermore the administrator
might want to enable the MPI manual pages for all users. These pages reside in /opt/parastation/
mpi2/man. Please consult the documentation of the man(1) command and the remark in Section 3.2,
“Directory structure” on how to do this.

In general, all versions of ParaStation5 MPI supporting different compilers can be installed in parallel. The
files will be copied to the directories /opt/parastation/mpi2 (for GNU gcc), /opt/parastation/
mpi2-intel (for Intel compiler) or /opt/parastation/mpi2-pgi (for Portland Group compiler),
depending on the compiler version supported by the MPI package.

3.6. Further steps
The previous chapter described the basic installation of ParaStation5. There are still some steps to do,
especially:

• configuration of the ParaStation5 system

http://www-unix.mcs.anl.gov/mpi/mpich2/
http://www.parastation.com/download.php
http://www.parastation.com

Uninstalling ParaStation5

ParaStation5 Administrator's Guide 11

• testing

These steps will be discussed in Chapter 4, Configuration.

3.7. Uninstalling ParaStation5
After stoping the ParaStation daemons, the corresponding packets can be removed using

 # /etc/init.d/parastation stop
 # rpm -e psmgmt pscom psdoc psmpi2

on all nodes of the cluster.

12 ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide 13

Chapter 4. Configuration
After installing the ParaStation software successfully, only few modifications to the configuration file
parastation.conf(5) have to be made in order to enable ParaStation on the local cluster.

4.1. Configuration of the ParaStation system

Within this section the basic configuration procedure to enable ParaStation will be described. It covers the
configuration of ParaStation5 using TCP/IP (Ethernet) and the optimized ParaStation5 protocol p4sock.

The primarily configuration work is reduced to editing the central configuration file parastation.conf,
which is located in /etc.

A template file can be found in /opt/parastation/config/parastation.conf.tmpl. Copy this file
to /etc/parastation.conf and edit it as appropriate.

This section describes all parameters of /etc/parastation.conf necessary to customize ParaStation
for a basic cluster environment. A detailed description of all possible configuration parameters in the
configuration file can be found within the parastation.conf(5) manual page.

The following steps have to be executed on the frontend node to configure the ParaStation daemon psid(8):

1. Copy template

Copy the file /opt/parastation/config/parastation.conf.tmpl to /etc/
parastation.conf.

The template file contains all possible parameters known by the ParaStation daemon psid(8). Most
of these parameters are set to their default value within lines marked as comments. Only those that
have to be modified in order to adapt ParaStation to the local environment are enabled. Additionally all
parameters are exemplified using comments. A more detailed description of all the parameters can be
found in the parastation.conf(5) manual page.

The template file is a good starting point to create a working configuration of ParaStation for your
cluster. Beside basic information about the cluster, this template file defines all hardware components
ParaStation is able to handle. Since these definitions require a deeper knowledge of ParaStation, it is
easier to copy the template file anyway.

2. Define Number of nodes

The parameter NrOfNodes has to be set to the actual number of nodes within the cluster. Front end
nodes have to be considered as part of the cluster. E.g. if the cluster contains 8 nodes with a fast
interconnect plus a front end node then NrOfNodes has to be set to 9 in order to allow the start of parallel
tasks from this machine.

3. HWType

In order to tell ParaStation which general kind of communication hardware should be used, the HWType
parameter has to be set. This could be changed on a per node basis within the nodes section (see below).

For clusters running ParaStation5 utilizing the optimized ParaStation communication stack on Ethernet
hardware of any flavor this parameter has to be set to:

 HWType { p4sock ethernet }

This will use the optimized ParaStation protocol, if available. Otherwise, TCP/IP will be used.

Enable optimized network drivers

14 ParaStation5 Administrator's Guide

The values that might be assigned to the HWType parameter have to be defined within the
parastation.conf configuration file. Have a brief look at the various Hardware sections of this file
in order to find out which hardware types are actually defined.

Other possible types are: mvapi, openib, gm, ipath, elan, dapl.

To enable shared memory communication used within SMP nodes, no dedicated
hardware entry is required. Shared memory support is always enabled by default.
As there are no options for shared memory, no dedicated hardware section for this
kind of interconnect is provided.

4. Define Nodes

Furthermore ParaStation has to be told which nodes should be part of the cluster. The usual way of
using the Nodes parameter is the environment mode, that is already enabled in the template file.

The general syntax of the Nodes environment is one entry per line. Each entry has the form

 hostname id [HWType] [runJob] [starter] [accounter]

This will register the node hostname to the ParaStation system with the ParaStation ID id. The
ParaStation ID has to be an integer number between 0 and NrOfNodes-1.

For each cluster node defined within the Nodes environment at least the hostname of the node and
the ParaStation ID of this node have to be given. The optional parameters HWType, runJobs, starter
and accounter may be ignored for now. For a detailed description of these parameters refer to the
parastation.conf(5) manual page.

Usually the nodes will be enlisted ordered by increasing ParaStation IDs, beginning with 0 for the first
node. If a front end node exists and furthermore should be integrated into the ParaStation system, it
usually should be configured with ID 0.

Within an Ethernet cluster the mapping between hostnames and ParaStation ID is completely
unrestricted.

5. More options

More configuration options may be set as described in the configuration file parastation.conf. For
details refer to the parastation.conf(5) manual page.

If using vapi (HwType ib) or DAPL (HwType dapl) layers for communication, e.g.
for Infiniband or 10G Ethernet, the amount of lockable memory must be increased.
To do so, use the option rlimit memlock within the configuration file.

6. Copy configuration file to all other nodes

The modified configuration file must be copied to all other nodes of the cluster. E.g., use psh to do so.
Restart all ParaStation daemons.

In order to verify the configuration, the command

 # /opt/parastation/bin/test_config

could be run. This command will analyze the configuration file and report any configuration failures. After
finishing these steps, the configuration of ParaStation is done.

4.2. Enable optimized network drivers
As explained in the previous chapter, ParaStation5 comes with its own versions of adapted network drivers
for Intel (e1000) and Broadcom (bcm5700) NICs. If the optimized ParaStation protocol p4sock is used to

Testing the installation

ParaStation5 Administrator's Guide 15

transfer application data across Ethernet, this adapted drivers should be used, too. To enable these drivers,
the simplest way is to rename the original modules and recreate the module dependencies:

 # cd /lib/modules/$(uname -r)/kernel/drivers/net
 # mv e1000/e1000.o e1000/e1000-orig.o
 # mv bcm/bcm5700.o bcm/bcm5700-orig.o
 # depmod -a

If your system uses the e1000 driver, a subsequent modinfo command for kernel version 2.4 should report
that the new ParaStation version of the driver will be used:

 # modinfo e1000
 filename: /lib/modules/2.4.24/kernel/drivers/net/ps4/e1000.o
 description: "Intel(R) PRO/1000 Network Driver"
 author: "Intel Corporation, <linux.nics@intel.com>"
 ...

The "filename" entry reports that the ParaStation version of the driver will be used. The same should apply
for the bcm5700 network driver.

For kernel version 2.6, use the modprobe command:

 # modprobe -l e1000
 /lib/modules/2.6.5-7.97/kernel/drivers/net/ps4/e1000.ko

To reload the new version of the network drivers, it is necessary to reboot the system.

4.3. Testing the installation
After installing and configuring ParaStation on each node of the cluster, the ParaStation daemons can be
started up. These daemons will setup all necessary communication relations and thus will form the virtual
cluster consisting of the available nodes.

The ParaStation daemons are started using the psiadmin command. This command will establish a
connection to the local psid. If this daemon is not already up and running, the inetd will start up the daemon
automatically.

If the daemon is not configured to be automatically started by xinetd, it must be started
using /etc/init.d/parastation start.

 # /opt/parastation/bin/psiadmin

After connecting to the local psid daemon, this command will issue a prompt

 psiadmin>

To start up the ParaStation daemons on all other nodes, use the add command:

 psiadmin> add

The following status enquiry command

 psiadmin> list

should list all nodes as "up". To verify that all nodes have installed the proper kernel modules, type

 psiadmin> list hw

The command should report for all nodes all hardware types configured, e.g. p4sock, ethernet.

Testing the installation

16 ParaStation5 Administrator's Guide

Alternatively, it is possible to use the single command form of the psiadmin command:

 # /opt/parastation/bin/psiadmin -s -c "list"

The command should be repeated until all nodes are up. The ParaStation administration tool is described
in detail in the corresponding manual page psiadmin(1).

If some nodes are still marked as "down", the logfile /var/log/messages for this node should be
inspected. Entries like “psid:” at the end of the file may report problems or errors.

After bringing up all nodes, the communication can be tested using

 # /opt/parastation/bin/test_nodes -np nodes

where nodes has to be replaced by the actual number of nodes within the cluster. After a while a result like

 Master node 0
 Process 0-31 to 0-31 (node 0-31 to 0-31) OK
 All connections ok

 PSIlogger: done

should be reported. Of course the number '31' will be replaced by a the actual number of nodes given on
the command line, i.e. nodes-1.

in case of failure, test_nodes may give continuously results like

 Master node 0
 Process 0-2,4-6 to 0-7 (node 0-2,4-6 to 0-7) OK
 Process 3 to 0-6 (node 3 to 0-6) OK
 Process 7 to 0-2,4-7 (node 7 to 0-2,4-7) OK

A detailed description of test_nodes can be found within the corresponding manual page test_nodes(1).

ParaStation5 Administrator's Guide 17

Chapter 5. Insight ParaStation5
This chapter provides more technical details and background information about ParaStation5.

5.1. ParaStation5 pscom communication library
The ParaStation communication library libpscom offers secure and reliable end-to-end connectivity. It
hides the actual transport and communication characteristics from the application and higher level libraries.

The libpscom library supports a wide range of interconnects and protocols for data transfers. Using a
generic plug-in system, this library may open connections using the following networks and protocols:

• TCP: uses standard TCP/IP sockets to transfer data. This protocol may use any interconnect. Support
for this protocol is built-in to the libpscom.

• P4sock: uses an optimized network protocol for Ethernet (see Section 5.2, “ParaStation5 protocol
p4sock”, below). Support for this protocol is built-in to the libpscom.

• InfiniBand: based on a vapi kernel layer and a libvapi library, typically provided by the hardware
vendor, the libpscom may use InfiniBand to actually transfer data. The corresponding plug-in library
is called libpscom4vapi.

• Myrinet: using the GM library and kernel level module, the libpscom library is able to use Myrinet for
data transfer. The particular plug-in library is called libpscom4gm.

• Shared Memory: for communication within a SMP node, the libpscom library uses shared memory.
Support for this protocol is built-in to the libpscom.

• DAPL: The libpscom supports a DAPL transport layer. Using the libpscom4dapl plug-in, it may
transfer data across various networks like Infiniband or 10G Ethernet using a vendor-provided libdapl.

• QsNet: The libpscom supports the QsNetII transport layer. Using the libpscom4elan plug-in, it may
transfer data using the libelan.

The interconnect and protocol used between two distinct processes is chosen while opening the connection
between those processes. Depending on available hardware, configuration (see Section 4.1, “Configuration
of the ParaStation system”) and current environment variables (see Section 5.8, “Controlling ParaStation5
communication paths”), the library automatically selects the fastest available communication path.

The library routines for sending and receiving data handle arbitrary large buffers. If necessary, the buffers
will be fragmented and reassembled to meet the underlying transport requirements.

The application is dynamically linked with the libpscom.so library. At runtime, this library loads plug-
ins for various interconnects, see above. For more information on controlling ParaStation communication
pathes, refer to Section 5.8, “Controlling ParaStation5 communication paths”.

5.2. ParaStation5 protocol p4sock
ParaStation5 provides its own communication protocol for Ethernet, called p4sock. This protocol is
designed for extremely fast and reliable communication within a closed and homogeneous compute cluster
environment.

The protocol implements a reliable, connection-oriented communication layer, especially designed for very
low overhead. As a result, it delivers very low latencies.

The p4sock protocol is encapsulated within the kernel module p4sock.ko. This module is loaded on system
startup or whenever the ParaStation5 daemon psid(8) starts up and the p4sock protocol is enabled within
the configuration file parastation.conf(5).

Directory /proc/sys/ps4/state

18 ParaStation5 Administrator's Guide

The p4sock.ko module inserts a number of entries within the /proc filesystem. All ParaStation5 entries are
located within the subdirectory /proc/sys/ps4. Three different subdirectories, listed below, are available.

To read a value, e.g. just type

 # cat /proc/sys/ps4/state/connections

to get the number of currently open connections. To modify a value, for e.g. type

 # echo 10 > /proc/sys/ps4/state/ResendTimeout

to set the new value for ResendTimeout.

5.2.1. Directory /proc/sys/ps4/state

Within this state directory, various entries showing protocol counters. All these entries, except polling,
are read only!

• HZ: reads the number of timer interrupts per second for this kernel ("jiffies").

A jiffy is the base unit for system timers, used by the Linux kernel. So all timeouts
within the kernel are based on this timer resolution. On kernels with version 2.4, this
it typically 100Hz (= 10ms). But there are kernel versions available, e.g. for newer
SuSE Linux versions, which include patches to change this to a much higher value!

• connections: reads the current number of open connections.

• polling: returns the current value for the polling flag: 0 = never poll, 1 = poll if otherwise idle (number
of runable processes < number of CPUs), 2 = always poll. Writing this value will immediately change
the polling strategy.

• recv_net_ack: number of received ACKs.

• recv_net_ctrl: number of received control packets (ACK, NACK, SYN, SYNACK, ...).

• recv_net_data: number of received data packets.

• recv_net_nack: number of received NACKs.

• recv_user: number of packets delivered to application buffers.

• send_net_ack: number of sent ACKs.

• send_net_ctrl: number of sent control packets.

• send_net_data: number of sent data packets.

• send_net_nack: number of sent NACKs.

• send_user: number of packets sent by the application.

• sockets: number of open sockets connecting to the ParaStation5 protocol module.

• timer_ack: number of expired delayed ACK timers.

• timer_resend: number of expired resend timers.

5.2.2. Directory /proc/sys/ps4/ether

Within this directory, all Ethernet related parameters for the ParaStation5 p4sock protocol are grouped. All
these entries can be read and written, newly written values will be used immediately.

• AckDelay: maximum delay in "jiffies" for ACK messages. If no message is sent within this time frame,
where an ACK for already received packets can be "hooked up", a single ACK message will generated.
Must be less then ResendTimeout.

Directory /proc/sys/ps4/local

ParaStation5 Administrator's Guide 19

• MaxAcksPending: maximum number of pending ACK messages until an "urgent" ACK messages will
be sent.

• MaxDevSendQSize: maximum number of entries of the (protocol internal) send queue to the network
device.

• MaxMTU: maximum packet size used for network packets. For sending packets, the minimum of MaxMTU
and service specific MTU will be used.

• MaxRecvQSize: size of the protocol internal receive queue.

• MaxResend: Number of retries until a connection is declared as dead.

• MaxSendQSize: size of the protocol internal send queue.

• ResendTimeout: delay in "jiffies" for resending packets not acknowledged up to now. Must be greater
then AckDelay.

5.2.3. Directory /proc/sys/ps4/local

Currently, there are no entries defined for this directory.

5.2.4. p4stat

The command p4stat can be used to list open sockets and network connections of the p4sock protocol.

 $ /opt/parastation/bin/p4stat -s
 Socket #0 : Addr: <00><00><00><00><00><'........' last_idx 0 refs 2
 Socket #1 : Addr: <70><6f><72><74><33><'port384.' last_idx 0 refs 10
 Socket #2 : Addr: <70><6f><72><74><31><'port144.' last_idx 0 refs 10

 $ /opt/parastation/bin/p4stat -n
 net_idx SSeqNo SWindow RSeqNo RWindow lusridx lnetidx rnetidx snq rnq refs
 84 30107 30467 30109 30468 84 84 230 0 0 2
 85 30106 30466 30106 30465 85 85 231 0 0 2
 86 30107 30467 30109 30468 86 86 84 0 0 2
 87 30106 30466 30106 30465 87 87 85 0 0 2
 88 30107 30467 30109 30468 88 88 217 0 0 2
 89 30106 30466 30106 30465 89 89 218 0 0 2
 90 30106 30466 30106 30465 90 90 220 0 0 2
 91 30106 30466 30106 30465 91 91 221 0 0 2
 92 30001 30361 30003 30362 92 92 232 0 0 2
 93 30001 30361 30003 30362 93 93 219 0 0 2
 94 30000 30000 30001 30360 94 94 233 0 0 2
 95 30000 30000 30001 30360 95 95 222 0 0 2
 96 30000 30000 30001 30360 96 96 222 0 0 2

This command shows some protocol internal parameters, like open connections, sequence numbers,
reference counters, etc. For more information, see p4stat(8).

5.3. Controlling process placement
ParaStation includes sophisticated functions to control the process placement for newly created parallel
and serial tasks. These processes typically require a dedicated CPU (core). Upon task startup, the
environment variables PSI_NODES, PSI_HOSTS and PSI_HOSTFILE are looked up (in this order) to get

Using the ParaStation5 queuing facility

20 ParaStation5 Administrator's Guide

a predefined node list. If not defined, all currently known nodes are taken into account. Also, the variables
PSI_NODES_SORT, PSI_LOOP_NODES_FIRST, PSI_EXCLUSIVE and PSI_OVERBOOK are observed.
Based on these variables and the list of currently active processes, a sorted list of nodes is constructed,
defining the final node list for this new task.

Beside this environment variables, node reservations for users and groups are also observed. See
psiadmin(1).

In addition, only available nodes will be used to start up processes. Currently not available nodes will be
ignored.

Obeying all these restrictions, the processes constructing a parallel task will be spawned on the nodes
listed within the final node list. For SMP systems, all available CPUs (cores) on this node may be used for
consecutive ranks, depending on the environment variable PSI_LOOP_NODES_FIRST.

For administrative tasks not requiring a dedicated CPU (core), e.g. processes
spawned using pssh, other strategies take place. As this type of processes are
intended to run on dedicated nodes, predefined by the user, the described procedure
will be circumvented and the processes will be run on the user-defined nodes.

For a detailed discussion of placing processes within ParaStation5, please refer to process placement(7),
ps_environment(5), pssh(8) and mpiexec(8).

5.4. Using the ParaStation5 queuing facility
ParaStation is able to queue task start requests if required resources are currently in use. This queuing
facility is disabled by default. It can be enabled by each user independently. All requests of all users are
held within one queue and managed on a first-come-first-serve strategy.

For details, refer to ParaStation5 User's Guide.

5.5. Exporting environment variables for a task
ParaStation by default exports only a limited set of environment variables to newly spawned processes,
like HOME, USER, SHELL or TERM.

Additional variables can be exported using PSI_EXPORTS.

For a complete list of environment variables known to and exported automatically by ParaStation, refer to
ps_environment(5) .

For more details, refer to ParaStation5 User's Guide.

5.6. Using non-ParaStation applications
It is possible to run programs linked with 3rd party MPI libraries within the ParaStation environment.
Currently supported MPI1 compatible libraries are:

• MPIch using ch_p4 (mpirun_chp4)

• MPIch using GM (mpirun_chgm)

• InfiniPath (mpirun-ipath-ps)

• MVAPIch (mpirun_openib)

• QsNet MPI (mpirun_elan)

ParaStation5 TCP bypass

ParaStation5 Administrator's Guide 21

In order to run applications linked with one of those MPI libraries, ParaStation5 provides dedicated
mpirun commands. The processes for those type of parallel tasks are spawned obeying all restrictions
described in Section 5.3, “Controlling process placement”. Of course, the data transfer will be based
on the communication channels supported by the particular MPI library. For MPIch using ch_p4 (TCP),
ParaStation5 provides an alternative, see Section 5.7, “ParaStation5 TCP bypass”.

The command mpirun-ipath-ps running programs linked with InfiniPath™ MPI is
part of the psipath package. For details how to obtain this package, please contact
<support@par-tec.com>.

For more information refer to mpirun_chp4(8), mpirun_chgm(8), mpirun-ipath-ps(8), mpirun_openib(8) and
mpirun_elan(8).

Using the ParaStation5 command mpiexec, any parallel application supporting the PMI protocol, which is
part of the MPI2 standard, may be run using the ParaStation process environment. Therefore, many other
MPI2 compatible MPI libraries are now supported by ParaStation5.

It is also possible to run serial applications, thus applications not parallelized with MPI, within
ParaStation. ParaStation distinguishes between serial tasks allocating a dedicated CPU within the resource
management system and administrative tasks not allocating a CPU. To execute a serial program, run
mpiexec -n 1 To run an administrative task, use pssh or mpiexec -A -n 1.

For more details on how to start-up serial and parallel jobs refer to mpiexec(8), pssh(8) and the ParaStation5
User's Guide.

5.7. ParaStation5 TCP bypass
ParaStation5 offers a feature called "TCP bypass", enabling applications based on TCP to use the efficient
p4sock protocol. The data will be redirected within the kernel to the p4sock protocol. No modifications to
the application are necessary!

To automatically configure the TCP bypass during ParaStation startup, insert a line like

 Env PS_TCP FirstAddress-LastAddress

in the p4sock-section of the configuration file parastation.conf, were FirstAddress and
LastAddress are the first and last IP addresses for which the bypass should be configured.

To enable the bypass for a pair of processes, the library libp4tcp.so, located in the directory /opt/
parastation/lib64 must be pre-loaded by both processes using:

 export LD_PRELOAD=/opt/parastation/lib64/libp4tcp.so

For parallel and serial tasks launched by ParaStation, this environment variable is exported to all processes
by default. Please refer to ps_environment(5).

It's not recommended to insert libp4tcp.so in the global preload configuration file
/etc/ld.so.preload, as this may hang connections to daemon processes started
up before the bypass was configured.

See also p4tcp(8).

5.8. Controlling ParaStation5 communication paths
ParaStation uses different communication paths, see Section 5.1, “ParaStation5 pscom communication
library” for details. In order to restrict the paths to use, a number of environment variables are recognized
by ParaStation.

Authentication within ParaStation5

22 ParaStation5 Administrator's Guide

PSP_SHM or PSP_SHAREDMEM
Don't use shared memory for communication within the same node.

PSP_P4S or PSP_P4SOCK
Don't use ParaStation p4sock protocol for communication.

PSP_MVAPI
Don't use Mellanox InfiniBand vapi for communication.

PSP_OPENIB
Don't use OpenIB InfiniBand vapi for communication.

PSP_GM
Don't use GM (Myrinet) for communication.

PSP_DAPL
Don't use DAPL for communication.

To disable the particular transport, the corresponding variable must be set to 0, to enable a transport, the
variable must be set to 1 or the variable must not be defined.

It is not possible to dynamically disable TCP as a communication path. TCP, if configured, is always used
as a last resort for communication.

Using the environment variable PSP_LIB, it is possible to define the communication library to use,
independent of the variables mentioned above. This library must match the currently available interconnect
and protocol, otherwise an error will occur.

The library name must be specified using the full path and filename, e.g.

 export PSP_LIB=/opt/parastation/lib64/libpscomopenib.so

This variable is automatically exported to all processes started by ParaStation. Refer to Section 5.1,
“ParaStation5 pscom communication library” for a full list of available library variants.

If more than one path for a particular interconnect exist, e.g. if the nodes are connected by two Gigabit
Ethernet networks in parallel, it is desirable to pretend the interface and therefore the network to be used
for application data. To do so, the environment variable PSP_NETWORK has to be defined.

Assuming the network 192.168.1.0 is dedicated to management data and the network 192.168.2.0
is intended for application data, the following configuration within parastation.conf would re-direct the
application data to the network 192.168.2.0:

 Env PSP_NETWORK 192.168.2.0
 Nodes {
 node0 0 # 192.168.1.1
 node1 1 # 192.168.1.2
 ...
 }

Refer to ps_environment(5) for details.

5.9. Authentication within ParaStation5

Whenever a process of a parallel task is spawned within the cluster, ParaStation does not authenticate the
user. Only the user and group ID is copied to the remote node and used for starting up processes.

Thus, it is not necessary for the user to be known by the compute node, e.g. having an entry in /etc/
passwd. On the contrary, the administrator may disallow logins for users by removing the entries from /

Homogeneous user ID space

ParaStation5 Administrator's Guide 23

etc/passwd. Usage of common authentication schemes like NIS is not required and therefore limits user
management to the frontend nodes.

Authentication of users is restricted to login or frontend nodes and is outside of the scope of ParaStation.

5.10. Homogeneous user ID space
As explained in the previous section, ParaStation uses only user and group IDs for starting up remote
processes. Therefore, all processes will have identical user and group IDs on all nodes.

A homogeneous user ID space is stretched across the entire cluster.

5.11. Single system view
The ParaStation administration tool collects and displays information from all or a selected subset of nodes
in the cluster. Actions can be initiated on each node and will be automatically and transparently forwarded
to the destination node(s), if necessary. From a management perspective, all the nodes are seen as a
homogeneous system. Thus, the administrator will have a single system view of the cluster.

5.12. Parallel shell tool
ParaStation provides a parallel shell tool called psh, which allows to run commands on all or selected nodes
of the cluster in parallel. The output of the individual commands is presented in a sophisticated manner,
showing common parts and differences.

psh may also be used to copy files to all nodes of the cluster in parallel.

This command is not intended to run interactive commands in parallel, but to run a single task in parallel
on all or a bunch of nodes and prepare the output to be easily read by the user.

5.13. Nodes and CPUs
Though ParaStation by default tries to use a dedicated CPU per compute process, there is currently no
way to bind a process to a particular CPU. Therefore, there is no guarantee, that each process will use its
own CPU. But due to the nature of parallel tasks, the operating system scheduler will typically distribute
each process to its own CPU.

Care must be taken if the hardware is able to simulate virtual CPUs, e.g. Intel Xeon CPUs using
Hyperthreading. The ParaStation daemon detects virtual CPUs and uses all the virtual CPUs found for
placing processes. Detecting virtual CPUs requires that the kernel module cpuid is loaded prior to starting
the ParaStation daemon. Use

 # psiadmin -c "s hw"
 Node CPUs Available Hardware
 0 4/ 2 ethernet p4sock
 1 4/ 2 ethernet p4sock

to show the number of virtual and physical CPUs per node.

It's possible to spawn more processes than physical or virtual CPUs are available on a node ("overbooking").
See ParaStation5 User's Guide for details.

Integration with AFS

24 ParaStation5 Administrator's Guide

5.14. Integration with AFS
To run parallel tasks spawned by ParaStation on clusters using AFS, ParaStation provides the scripts
env2tok and tok2env.

On the frontend side, calling

 . tok2env

will create an environment variable AFS_TOKEN containing an encoded access token for AFS. This variable
must be added to the list of exported variables

 PSI_EXPORTS="AFS_TOKEN,$PSI_EXPORTS"

In addition, the variable

 PSI_RARG_PRE_0=/some/path/env2tok

must be set. This will call the script env2tok before running the actual program on each node. Env2tok
itself will decode the token and will setup the AFS environment.

The commands SetToken and GetToken, which are part of the AFS package, must
be available on each node. Also, the commands uuencode and uudecode must be
installed.

Script tok2env:

 #!/bin/bash
 tmp=$IFS
 IFS=" "
 export AFS_TOKEN=`GetToken | uuencode /dev/stdout`
 IFS=$tmp

Script env2tok:

 #!/bin/bash
 IFS=" "
 echo $AFS_TOKEN | uudecode | SetToken

 exec $*

5.15. Integrating external queuing systems
ParaStation can be easily integrated with batch queuing and scheduling systems. In this case, the queuing
system will decide, where (and when) to run a parallel task. ParaStation will then start, monitor and terminate
the task. In case of higher prioritized jobs, the batch system may also suspend a task using the ParaStation
signal forwarding.

Integration is done by setting up ParaStation environment variables, like PSI_HOSTFILE. ParaStation itself
need not be modified in any way. It is not necessary to use a remote shell (rsh) to start mpirun on the first
node of the selected partition. The batch system should only run the command on the same node where
the batch system is running, ParaStation will start all necessary processes on the remote nodes. For details
about spawning processes refer to ParaStation5 User's Guide.

Integration with PBS PRO

ParaStation5 Administrator's Guide 25

If an external queuing system is used, the environment variable PSI_NODES_SORT
should be set to "none", thus no sorting of any predefined node list will be done by
ParaStation.

ParaStation includes its own queuing facility. For more details, refer to Section 5.4, “Using the ParaStation5
queuing facility” and ParaStation5 User's Guide.

5.15.1. Integration with PBS PRO

Parallel jobs started by PBS PRO using the ParaStation mpirun command will be automatically recognized.
Due to the environment variable PBS_NODEFILE, defined by PBS PRO, ParaStation will automatically
setup the PSI_HOSTFILE to PBS_NODEFILE. The environment variable PSI_NODES_SORT is set to
"none", thus no sorting of the predefined node list will occur. The tasks will be spawned in the given order
on the predefined list of nodes.

Therefore, ParaStation will use the (unsorted) hostfile supplied by PBS PRO to startup the parallel task.

5.15.2. Integration with OpenPBS

Refer to previous Section 5.15.1, “Integration with PBS PRO”.

5.15.3. Integration with Torque

Refer to previous Section 5.15.1, “Integration with PBS PRO”.

5.15.4. Integration with LSF

Similar to Section 5.15.1, “Integration with PBS PRO”, ParaStation will also recognize the variable
LSB_HOSTS, provided by LSF. This variable holds a list of nodes for the parallel task. It is copied to the
ParaStation variable PSI_HOSTS, consequently it will be used for starting up the task. The environment
variable PSI_NODES_SORT is set to "none", thus no sorting of the predefined node list will occur. The tasks
will be spawned in the given order on the predefined list of nodes.

5.15.5. Integration with LoadLeveler

ParaStation recognizes the variable LOADL_PROCESSOR_LIST, provided by IBM LoadLeveler. This
variable holds a list of nodes for the parallel task. It is copied to the ParaStation variable PSI_HOSTS,
consequently it will be used for starting up the task. The environment variable PSI_NODES_SORT is set to
"none", thus no sorting of the predefined node list will occur. The tasks will be spawned in the given order
on the predefined list of nodes.

5.16. Multicasts
This version of ParaStation uses the ParaStation RDP protocol to exchange status information between the
psid(8) daemons. Therefore, multicast functionality is no longer required. It is still possible to use multicasts,
if requested.

To enable Multicast message exchange, edit parastation.conf and uncomment the

Copying files in parallel

26 ParaStation5 Administrator's Guide

 # UseMCast

statement.

If Multicast is enabled, the ParaStation daemons exchange status information using multicast messages.
Thus, a Linux kernel supporting multicast on all nodes of the cluster is required. This is usually no problem,
since all standard kernels from all common distribution are compiled with multicast support. If a customized
kernel is used, multicast support must be enabled within the kernel configuration! In order to learn more
about multicast take a look at the Multicast over TCP/IP HOWTO.

In addition, the hardware also has to support multicast packets. Since all modern Ethernet switches support
multicast and the nodes of a cluster typically live in a private subnet, this should be not a problem. If the
cluster nodes are connected by a gateway, it has to be configured appropriately to allow multicast packets
to reach all nodes of the cluster from all nodes.

Using a gateway in order to link parts of a cluster is not a recommended configuration.

On nodes with more than one Ethernet interface, typically frontend or head nodes, or systems where the
default route does not point to the private cluster subnet, a proper route for the multicast traffic must be
setup. This is done by the command

 route add -net 224.0.0.0 netmask 240.0.0.0 dev ethX

where ethX should be replaced by the actual name of the interface connecting to all other nodes. In order
to enable this route at system startup, a corresponding entry has to be added to /etc/route.conf or /
etc/sysconfig/networks/routes, depending on the type of Linux distribution in use.

5.17. Copying files in parallel
To copy large files to many or all nodes in a cluster at once, pscp is very handy. It overlaps storing data
to disk and transfering data on the network, therefore it scales very well with respect to the number of
nodes. Arbitrary size of files may be copied, even archives containing large lists of files may be created
and unpacked on-the-fly.

Pscp uses the ParaStation pscom library for data transfers, that automatically will use the most
effective communication channel available. If required, the communication layer may be controlled using
environment variables, refer to ps_environment(7) for details. The client process on each node is spawned
using the ParaStation process management.

As pscp uses administrative ParaStation tasks to spawn the client processes, the user must be a member
of the adminuser list or the user's group must be a member of the admingroup list. By default, only root
is a member of the adminuser list and therefore allowed to use pscp. Refer to ParaStation5 User's Guide
and psiadmin(8) for details.

For more details refer to ParaStation5 User's Guide and pscp(8).

5.18. Using ParaStation accounting
ParaStation may write accounting information about each finished job run on the cluster to /var/
account/yyyymmdd, where yyyymmdd denotes the current accounting file in the form year, month and
day.

To enable accouting, the special hardware accounter must be set within the ParaStation configuration
file for at least one node. On each configured node, an accounting daemon collecting all information for all
jobs within the cluster will store the job information in the accouting file.

http://www.linux.org/docs/ldp/howto/Multicast-HOWTO.html

Using ParaStation process pinning

ParaStation5 Administrator's Guide 27

To list, sort and filter all the collected information, the command psaccview is available.

See psaccounter(8) and psaccview(8) for details.

5.19. Using ParaStation process pinning
ParaStation is able to pin down compute tasks to particular cores. This will avoid 'hoping' processes
between different cores or CPUs during runtime, controlled by the OS scheduler.

While placing tasks to particular nodes, ParaStation will also decide which CPU-slot (= virtual core) on
this node will be used. The physical core assigned to this CPU-slot will be calculated using a mapping list
defined in the configuration file.

Process pinning may be enabled or disabled globally or on a per node basis. Refer to pinProcs and
CPUmap entries in parastation.conf and the set pinprocs and set cpumap directives of psiadmin
for details.

See also parastation.conf(5) and psiadmin(1) for more information.

5.20. Using memory binding
Beside pinning down compute tasks to particular cores, ParaStation is also able to use memory binding
techniques on NUMA based systems. This will give hints to the memory management subsystem of the
operating system to select 'nearest' memory, if available.

Memory binding may be enabled or disabled globally or on a per node basis. Refer to the bindMem entry
in parastation.conf and set bindmem directive of psiadmin for details.

See also parastation.conf(5) and psiadmin(1) for more information.

5.21. Spawning processes belonging to all groups
By default, newly created processes only belong to the primary group for the user ID as definined on the
spawning node. To add a process to all groups a user belongs to on the current node, enable this flag using
the supplementaryGroups directive or set the configuration flag supplGrps in parastation.conf to
true.

Enabling this behaviour may trigger extensive network traffic, depending on how
the user authentication is configured on the nodes. E.g., using LDAP will open a
connection to the LDAP server.

See also parastation.conf(5) and psiadmin(1) for more information.

5.22. Changing the default ports for psid(8)
By default, the ParaStation daemon psid(8) uses the port 888 for TCP connections. To change this port,
modify the files /etc/services and /etc/xinet.d/psidstarter.

Add the following line to /etc/services:

 psid 888/tcp # ParaStation Daemon Start Port

Changing the default ports for psid(8)

28 ParaStation5 Administrator's Guide

and change the default port number 888.

Modify the entry

 port = 888

within the file /etc/xinet.d/psidstarter to reflect the newly assigned port numbers.

In addition, the ParaStation daemon psid(8) uses the UDP port 886 for RDP connections. To change this
port, use the RDPPort directive within parastation.conf. See parastation.conf(5) for details.

The port numbers must be identical on all cluster nodes! Restart xinetd and psid on all nodes to activate
the modifications.

ParaStation5 Administrator's Guide 29

Chapter 6. Troubleshooting
This chapter provides some hints to common problems seen while installing or using ParaStation5. Of
course, more help will be provided by <support@par-tec.com>.

6.1. Problem: psiadmin returns error
When starting up the ParaStation admin command psiadmin, an error is reported:

 # psiadmin
 PSC: PSC_startDaemon: connect() fails: Connection refused

Reason: the local ParaStation daemon could not be contacted. Verify that the psid(8) daemon is up and
running. Check if the daemon is known to the xinetd:

 # netstat -ant | grep 888
 tcp 0 0 *:888 *:* LISTEN

If no "listening" socket is reported, check that the ParaStation daemon is configured within the xinet(8)
configuration. Check the file /etc/xinet.d/psidstarter.

If this is ok, reload xinetd:

 # kill -HUP pid of xinetd

If everything seems to be ok up to now, check for recent entries within the log file/var/log/
messages. Be aware, the log facility can be modified using the LogDestination within the config file
parastation.conf. Look for lines like

 Mar 24 17:19:12 pan psid[7361]: Starting ParaStation DAEMON
 Mar 24 17:19:12 pan psid[7361]: Protocol Version 329
 Mar 24 17:19:12 pan psid[7361]: (c) Cluster Competence \
 Center GmbH

These lines indicate a normal startup of the psid. Other messages may indicate problems found by the
psid, e.g. errors within the configuration file.

If the error message

 Mar 24 17:19:12 pan psid[7361]: too many nodes.

is found, verify that the number of announced nodes is equal (or greater) than the number of defined nodes.
See NrOfNodes within the config file parastation.conf.

6.2. Problem: node shown as "down"
Maybe the node is currently not available (shutdown or crashed), or the network connection to this node
is not available.

Try to ping this node. If ok, try to startup ParaStation. From an other node, "add" this node:

 psiadmin> add nodeid

Problem: cannot start parallel task

30 ParaStation5 Administrator's Guide

Or logged on to this node, run psiadmin which also starts up the ParaStation daemon psid. See
Section 6.1, “ Problem: psiadmin returns error ” for more details.

Check the logfile /var/log/messages on this node for error messages. Verify that all nodes have an
identical configuration (/etc/parastation.conf).

6.3. Problem: cannot start parallel task
Problem: a parallel task cannot be launched, an error is reported:

 PSI: PSI_createPartition: Resource temporarily unavailable

Check for available nodes and active parallel tasks. Check for user or group restrictions.

If the error

 PSI: dospawn: spawn to node 1 failed.
 PSE: Could not spawn './mpi_latency' process 1, error = Bad \
 file descriptor.

is reported, check if the current directory holding the program mpi_latency is accessible on all nodes.
Verify that the program is executable on all nodes.

6.4. Problem: bad performance
Verify that the proper interconnect and/or transport is used: check for environment variables controlling
transport (see Section 5.8, “Controlling ParaStation5 communication paths” and ps_environment(5)).

Watch protocol counters, e.g. counters indicating timeouts, retries, errors or other bad conditions. For
p4sock, check recv_net_data and recv_user. See Section 5.2, “ParaStation5 protocol p4sock”.

Look for a crystal bowl!

Or contact <support@par-tec.com>.

6.5. Problem: different groups of nodes are seen as up
or down
Problem: depending on which node the psiadmin is run, different groups of nodes are seen as "up" or
"down".

Check for identical configuration on each node, e.g. compare the configuration file /etc/
parastation.conf on each node.

6.6. Problem: cannot start process on frontend
Problem: Starting a job is canceled giving the error message

 Connecting client 139.27.166.22:44784 (rank 6) failed : Network is
 unreachable
 PSIlogger: Child with rank 12 exited with status 1.

Warning issued on task startup

ParaStation5 Administrator's Guide 31

This typically happens, if the frontend or head node is included as compute node and also acts as gateway
for the compute nodes. The "external" address of the frontend is not known to the compute nodes.

Use the PSP_NETWORK environment variable to re-direct all traffic to the cluster-internal network. See
ps_environment(5) and Section 5.8, “Controlling ParaStation5 communication paths” for details.

6.7. Warning issued on task startup
While starting up a parallel task, the message

 execClient: chdir(/usr/tmp/username/./.): No such file or \
 directory
 Will use user's home directory

is displayed.

The current directory /usr/tmp/username does not exist on one or more of the remote nodes. The user's
home directory, defined by the environment variable HOME will be used instead.

Make sure that the directory /usr/tmp/username is accessible on each node or change your current
directory to a globally accessible directory.

6.8. Problem: pssh fails
Problem: users other than root cannot run commands on remote nodes using the pssh command.

 $ pssh -n 0 date
 PSI: dospawn: spawn to node 0 failed: Permission denied

By default, only root may spawn processes which are not consuming CPUs. The command pssh uses this
way to run a process on a remote node.

To allow other users to spawn this type of processes, add the user or group to the adminuser or admingroup
list within ParaStation using the command

 psiadmin> set adminuser +username
 psiadmin> set admingroup +group

or add appropriate adminuser and/or admingroup entries to the ParaStation configuration file
parastation.conf.

6.9. Problem: psid does not startup, reports port in use
Problem: the psid terminates after startup reporting that the port 886 is in use.

By default, the psid uses the port 886 (UDP) for the RDP protocol (inter-daemon communication). If this
port is already in use, the daemon refuses to start-up and terminates immediately.

Problem: processes cannot access files on remote nodes

32 ParaStation5 Administrator's Guide

Make sure no other process uses this port. Or use the RDPPort directive within parastation.conf to
re-define this port for all daemons within the cluster.

See also parastation.conf(5).

6.10. Problem: processes cannot access files on remote
nodes
Problem: processes created by ParaStation on remote nodes are not able to access files, if this files have
enabled access only for a supplementary group the current user belongs to.

By default, only the primary group is set for newly created processes. To add all groups to a process, set the
supplGrps flag within parastation.conf or use the supplementaryGroups directive within psiadmin.

See also Section 5.21, “Spawning processes belonging to all groups”.

ParaStation5 Administrator's Guide 33

Reference Pages
This appendix lists all reference pages related to ParaStation5 administration tasks. For reference pages
describing user related commands and information, refer to the ParaStation5 User's Guide.

34 ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide 35

parastation.conf
parastation.conf — the ParaStation configuration file

Description

Upon execution, the ParaStation daemon psid(8) reads its configuration information from a configuration
file which, by default, is /etc/parastation.conf. There are various parameters that can be modified
persistently within this configuration file.

The main syntax of the configuration file is one parameter per line. Due to ease of use there are some
parameters, e.g. Nodes, that are implemented in an environment mode. This mode enables the setting of
multiple parameters by a single command. Environment mode parameters may comprise more than one
line.

Line continuation is possible. If the last character within a line before the newline character is a "\", the
newline character will be ignored and the next line is appended to the current line.

Comments are starting with a "#". All remaining characters on the line will be ignored. Keep in mind that
line continuation also works within comments, i.e. if the last character of the line is a "\", the next line will
be ignored, too.

The parser used to analyze parastation.conf is not case sensitive. This means, that all keywords
within the configuration file may be written in any combination of upper- and lowercase characters. Within
this document a mixed upper-/lowercase notation is used to provide more readable keywords. The same
notation is used in the configuration file template parastation.conf.tmpl contained in the distributed
ParaStation system. The template file can be found in /opt/parastation/config.

Parameters

The different parameters are discussed in the order they should appear within the configuration file.
Dependencies between parameters - resulting in a defined order of parameters - are marked explicitely.

Some parameters may be modified using different keywords, e.g. both InstallDir and InstallationDir modify
the directory where the ParaStation daemon psid(8) expects the ParaStation system installed. In case of
different keywords modifying the same resource, all keywords are mentioned in front of the parameter's
discussion.

Very few parameters have to be declared in any case in order to enable ParaStation to run on a cluster.
These parameters are NrOfNodes, HWType and Nodes.

If parameters are declared more than once, the latest declaration is the one to use. Do not make use of
this behavior as a feature since it may create great pitfalls.

InstallDir inst-dir , InstallationDir inst-dir

Tell the ParaStation daemon to find all the ParaStation related files in inst-dir. The default is /opt/
parastation.

Hardware name

Tell the ParaStation daemon how to handle a distinct hardware. Usually it is not necessary to edit these
entries, since the template version of the configuration file contains up to date entries of all supported
hardware types. Furthermore a deeper insight into the low-level functionality of ParaStation is needed
in order to create such an entry.

Nevertheless a brief overview on the structure of the Hardware entries is given here.

36 ParaStation5 Administrator's Guide

The following five types of parameters within the Hardware environment will get a special handling from
the ParaStation daemon psid(8). These define different script files called in order to execute various
operations towards the corresponding communication hardware.

All these entries have the form of the parameter's name followed by the corresponding value. The value
might be enclosed by single or double quotes in order to allow a space within.

The values are interpreted as absolute or relative paths. Relative paths will be looked up relative to
InstallDir. If one or more of the scripts are not defined, no corresponding action will take place
for this hardware.

startscript

Define a script called in order to startup the corresponding communication hardware. This script
will be executed when the daemon starts up or after a reset of the communication hardware.

stopscript

Define a script called in order to shutdown the corresponding communication hardware. This script
will be executed when the daemon exits or before a reset of the communication hardware.

setupscript

Define a script called in order to set special parameters on the corresponding communication
hardware.

statusscript

Define a script called in order to get a status message from the corresponding communication
hardware. This is mainly used in order to generate the lines shown be the status counter directive
of the ParaStation administration tool psiadmin(1).

headerscript

Define a script called in order to get a header line for the status message produced by the above
discussed statusscript .

All further parameters defined within a Hardware section are interpreted as environment variables
when calling the above defined scripts. Again these parameters have the form of the parameters name
- interpreted as the environments variables name - followed by the corresponding value. The values
might be single strings not containing whitespace characters or enclosed by single or double quotes,
too.

The impact of the environment variables on the scripts of course depend on the scripts itself.

Various hardware types are defined within the template configuration file coming with the ParaStation
software distribution. These hardware types, the corresponding scripts and the environment variables
the scripts understand are briefly discussed within the following lines.

Shared memory will be used as hardware type for communication within a SMP
node. As there are no options for this kind of hardware, no dedicated section is
provided.

ethernet

Use classical TCP/IP communication over Ethernet via an optimized MPI implementation.

Since TCP/IP has to be configured before ParaStation starts up, the corresponding script
ps_ethernet has almost nothing to do and hence does not understand a single environment
variable.

ParaStation5 Administrator's Guide 37

p4sock

Use optimized communication via (Gigabit) Ethernet.

The script handling this hardware type ps_p4sock is also located in the config subdirectory. It
understands the following two environment variables:

PS_TCP
If set to an address range, e.g. 192.168.10.0-192.168.10.128, the TCP bypass feature of the
p4sock protocol is enabled for the given address range.

openib

Use the OpenFabrics verbs layer for communication over InfiniBand.

No script is currently implemented for this communication protocol, therefore no environment
variables are recognized.

mvapi

Use the Mellanox verbs layer for communication over InfiniBand.

No script is currently implemented for this communication protocol, therefore no environment
variables are recognized.

gm

Use communication over GM (Myrinet).

The script ps_gm will load the Myrinet gm driver.

PS_IPENABLED
If set to 1, the IP device myri0 is enabled after loading.

elan

Use communication over QsNet (libelan).

No script is currently implemented for this communication protocol, therefore no environment
variables are recognized.

This communication layer is currently not supported by the ParaStation communication library,
therefore only programs linked with the QsNet MPI will work.

ipath

Use communication over InfiniPath.

No script is currently implemented for this communication protocol, therefore no environment
variables are recognized.

This communication layer is currently not supported by the ParaStation communication library,
therefore only programs linked with the InfiniPath MPI will work.

dapl

Use communication over a generic DAPL layer.

No script is currently implemented for this communication protocol, therefore no environment
variables are recognized.

38 ParaStation5 Administrator's Guide

accounter

This is actually a pseudo communication layer. It is only used for configuring nodes running the
ParaStation accounting daemon and should be used only in a particular Nodes entry.

NrOfNodes num

Define the number of connected nodes including the frontend node. The nodes will be numbered 0
… num-1.

There is no default value for NrOfNodes. NrOfNodes has to be declared within
the configuration file in any case.

The number of connected nodes has to be declared before any Nodes.

HWType { ethernet | p4sock | openib | mvapi | gm | elan | dapl | none }

HWType { { ethernet | p4sock | openib | mvapi | gm | elan | dapl | none }... }

Define the default communication hardware available on the nodes of the ParaStation cluster. This
may be overruled by an explicit HWType option in a Node statement.

The hardware types used within this command have to be defined in Hardware declarations before.

Further hardware declarations might be defined by the user, but this is pretty much undocumented.

It is possible to enable more than one hardware type, either as default or on a per node basis.

The default value of HWType is none.

starter { true | yes | 1 | false | no | 0 }

If the argument is one of yes, true or 1, all nodes declared within a Node statement will allow to start
parallel tasks, unless otherwise stated.

If the argument is one of no, false or 0, starting will be not allowed.

It might be useful to prohibit the startup of parallel task from the frontend machine if a batch system is
used. This will force all users to use the batch system in order to start their tasks. Otherwise it would
be possible to circumvent the batch system by starting parallel task directly from the frontend machine.

The default is to allow the starting of parallel tasks from all nodes.

runJobs { true | yes | 1 | false | no | 0 }

If the argument is one of yes, true or 1, all nodes declared within a Node statement will allow to run
processes of parallel tasks, unless otherwise stated.

If the argument is one of no, false or 0, ParaStation will not start processes on these nodes.

It might be useful to prohibit the start of processes on a frontend machine since usually this machine is
reserved for interactive work done by the users. If the execution of processes is forbidden on a distinct
node, parallel tasks might be started from this node anyhow.

The default is to allow all nodes to run processes of parallel tasks.

ParaStation5 Administrator's Guide 39

Node[s] hostname id [HWType-entry] [starter-entry] [runJobs-entry] [env name value] [env { name
value ... }]

Node[s] { {hostname id [HWType-entry] [starter-entry] [runJobs-entry] [env name value] [env { name
value ... }] }... }

Node[s] $GENERATE from-to/step nodestr idstr [HWType-entry] [starter-entry] [runJobs-entry]
[env name value] [env { name value ... }]

Define one or more nodes to be part of the ParaStation cluster.

This is the first example of a parameter that supports the environment mode. This means there are
two different notations to use this parameter. The first one may be used to define a single node, the
second one will allow to register more than one node within a single command. It is a convenient form
that prevents from typing the keyword once per entry again and again.

Each entry has to have at least two items, the hostname and the id. This will tell the ParaStation
system that the node called hostname will act as the physical node with ParaStation ID id.

hostname is either a resolvable hostname or an IP address in dot notation (e.g. 192.168.1.17). id is
an integer number in the range from 0 to NrOfNodes-1.

Further optional items as HWType-entry, starter-entry or runJobs-entry may overrule the
default values of the hardware type on the node, the ability to start parallel jobs from this node or the
possibility to run processes on this node respectively. These entries have the same syntax as the stand
alone commands to set the corresponding default value.

E.g. the line

Node node17 16 HWType { ethernet p4sock } starter yes runJobs no

will define the node node17 to have the ParaStation ID 16. Furthermore it is expected to have a
Ethernet communication using both TCP and p4sock protocols. It is allowed to start parallel tasks from
this node but the node itself will not run any process of any parallel task (except the ParaStation logger
processes of the tasks started on this node).

The option environment or env allows per node environment variables to be set. Using the first
form, the variable name is set to value. More then one name/value pair may be given. More complex
values may be given using quotation marks:

Node node17 16 environment LD_LIBRARY_PATH /mypath
Node node18 17 env { PSP_P4S "2" PSP_OPENIB "0" }

This example will define the variable LD_LIBRARY_PATH to /mypath for node node17 and the
variables PSP_P4S and PSP_OPENIB to 2 and 0 for node node18.

The $GENERATE allows to define a group of nodes at once using a simple syntax. Using the parameters
from and to, a range may be defined, incremented by step. Each entry in this range may be
referenced within the nodestr and idstr using a syntax of $[{offset[,width[,base]]}]. Eg.,
the entry

$GENERATE 1-96 node${0,2} ${0}

define the nodes node01 up to node96 using the id's 1 - 96, respectively. More node specific attributes
may be defined as described above.

LicenseServer hostname , LicServer hostname

LicenseFile lic-file , LicFile lic-file

LicenseDeadInterval num , LicDeadInterval num
These entries are silently ignored by this version of ParaStation.

40 ParaStation5 Administrator's Guide

SelectTime time

Set the timeout of the central select(2) of the ParaStation daemon psid(8) to time seconds.

The default value is 2 seconds.

This parameter can be set during runtime via the set selecttime directive
within the ParaStation administration and management tool psiadmin(1).

DeadInterval num

The ParaStation daemon psid(8) will declare other daemons as dead after num consecutively missing
multicast pings.

After declaring a node as dead, all processes residing on this node are also declared dead. This results
in sending signals to all processes on the local node that have requested to get informed about the
death of one of these processes.

The default value is 10.

For now, the multicast period is set to two seconds, i.e. every daemon sends a multicast ping every
two seconds. This results in declaring a daemon as dead after 20 seconds for the default value.

LogLevel num

Set the debugging level of the ParaStation daemon psid(8) to num.

For values of level larger than 10 the daemon logs a huge amount of message
in the logging destination, which is usually the syslog(3).

This parameter can be set during runtime via the set psiddebug directive within
the ParaStation administration and management tool psiadmin(1).

LogDest { LOG_DAEMON | LOG_KERN | LOG_LOCAL[0-7] }

LogDestination { LOG_DAEMON | LOG_KERN | LOG_LOCAL[0-7] }
Set the logging output's destination for the ParaStation daemon psid(8). Usually the daemon prints
logging output using the syslog(3) mechanism, unless an alternative logging file is requested via
psid(8)'s -l option.

In order to collect all the ParaStation specific log messages into a special file, the facility argument
of the openlog(3) function call in cooperation with a suitable setup of the syslogd(8) may be used. This
parameter will set the argument to one of the mentioned values.

The default value is LOG_DAEMON.

MCastGroup group-num

Tell psid(8) to use the multicast group group-num for multicast communication to other daemons.

The default group to use is 237

MCastPort portno

Tell psid(8) to use the UDP port portno for multicast communication to other daemons.

The default port to use is 1889

RDPPort portno

Tell psid(8) to use the UDP port portno for the RDP communication protocol to other daemons.

ParaStation5 Administrator's Guide 41

The default port to use is 886.

RLimit { Core size | CPUTime time | DataSize size | MemLock size | StackSize size | RSSize size }

RLimit { { Core size | CPUTime time | DataSize size | MemLock size | StackSize size | RSSize
size }... }

Set various resource limits to the psid(8) and thus to all processes started from it.

All limits are set using the setrlimit(2) system call. For a detailed description of the different types of
limits please refer to the corresponding manual page.

If no RLimits are set within the ParaStation configuration files, no changes are made to the systems
default value.

The following (soft) resource limits may be set:

Core size

Set the maximum size of a core-file to size kilobytes. size is an integer number, the string “infinity”
or the string “unlimited”. In the two latter cases the data size is set to RLIM_INFINITY.

Starting with version 5.0.3, this configuration will also control the writing of
core-files for the psid itself, in case a catastrophic failure occurs.

CPUTime time

Set the maximum CPU time that might be consumed by the daemon to time seconds. time has
to be an integer number, the string “infinity” or the string “unlimited”. In the two latter cases the data
size is set to RLIM_INFINITY.

DataSize size

Set the maximum data size to size kilobytes. size is an integer number, the string “infinity” or the
string “unlimited”. In the two latter cases the data size is set to RLIM_INFINITY.

MemLock size

Set the maximum amount of memory that might be locked into RAM to size kilobytes. size is
an integer number, the string “infinity” or the string “unlimited”. In the two latter cases the data size
is set to RLIM_INFINITY.

StackSize size

Set the maximum stack size to size kilobytes. size is an integer number, the string “infinity” or
the string “unlimited”. In the two latter cases the stack is set to RLIM_INFINITY.

RSSize size

Set the maximum Resident Set Size (RSS) to size pages. size is an integer number, the string
“infinity” or the string “unlimited”. In the two latter cases the RSS is set to RLIM_INFINITY.

Env[ironment] name value

Env[ironment] { {name value }... }
Set environment variables for the ParaStation daemon psid(8) and any application started via this
daemon.

This command again has two different modes. While within the first form exactly one variable is set,
within the environment form of this command as many variables as wanted may be set. The general
form of the latter case is one variable per line.

42 ParaStation5 Administrator's Guide

The value part of each line either is a single word or an expression enclosed by single or double
quotes. The expression might contain whitespace characters. If the expression is enclosed by single
quotes, it is allowed to use balanced or unbalanced double quotes within this expression and vice versa.

This command might be used for example in order to set the PSP_NETWORK environment variable
globally without the need of every user to adjust this parameter in his own environment.

freeOnSuspend { true | yes | 1 | false | no | 0 }

If the argument is one of yes, true or 1, suspending a task by sending the signal SIGTSTP to the
logger will handle all resources (CPUs) currently claimed by this task as free.

If the argument is one of no, false or 0, ParaStation will not claim resources as free after sending
SIGTSTP.

handleOldBins { true | yes | 1 | false | no | 0 }

If the argument is one of yes, true or 1, compatibility mode for applications linked with ParaStation
version 4.0 up to 4.0.6 will be enabled. Keep in mind that this behavior might collide with the
freeOnSuspend feature.

If the argument is one of no, false or 0, ParaStation will disable compatibility mode.

UseMCast { true | yes | 1 | false | no | 0 }

If the argument is one of yes, true or 1, keep alive messages from the ParaStation daemon psid(8)
are sent using Multicast messages.

If the argument is one of no, false or 0, ParaStation will use it's own RDP protocol for keep alive
messages. This is the default.

PSINodesSort { PROC | LOAD_1 | LOAD_5 | LOAD_15 | PROC+LOAD | NONE }

Define the default sorting strategy for nodes when attaching them to a partition. The different possible
values have the following meaning:

PROC

Sort by the number of processes managed by ParaStation on the corresponding nodes

LOAD_1

Sort by the load average during the last minute on the corresponding nodes

LOAD_5

Sort by the load average during the last 5 minutes on the corresponding nodes

LOAD_15

Sort by the load average during the last 15 minutes on the corresponding nodes

PROC+LOAD

Sort conforming to the sum of the processes managed by ParaStation and the load average during
the last minute on the corresponding nodes

NONE

Do not sort at all.

ParaStation5 Administrator's Guide 43

This only comes into play, if the user does not define a sorting strategy explicitely via
PSI_NODES_SORT. Be aware of the fact that using a batch-system like PBS or LSF *will* set the
strategy explicitely, namely to NONE.

overbook { true | yes | 1 | false | no | 0 }

If the argument is one of yes, true or 1, all nodes may be overbooked by the user using the
PSI_OVERBOOK environment variable.

If the argument is one of no, false or 0, ParaStation will deny overbooking of the nodes, even if
PSI_OVERBOOK is set.

It might be useful to prohibit the start of processes on a frontend machine since usually this machine
is reserved for interactive work done by the users. When the execution of processes is forbidden on a
distinct node, parallel task might be started from this node anyhow.

The default is to allow all nodes to run processes of parallel tasks.

processes maxprocs

Define the maximum number of processes per node.

This parameter can be set during runtime via the set maxproc directive within the ParaStation
administration and management tool psiadmin(1).

pinProcs { true | yes | 1 | false | no | 0 }

Enables or disables process pinning for compute tasks. If enabled, tasks will be pinned down to
particular CPU-slots. The mapping between those CPU-slots and physical CPUs and cores is made
using a mapping list. See CPUmap below.

The pinProcs parameter can be set during runtime via the set pinprocs directive within the
ParaStation administration and management tool psiadmin(1).

bindMem { true | yes | 1 | false | no | 0 }

This parameter must be set to true if nodes providing non-Uniform memory access (NUMA) should
use 'local' memory for the tasks.

This parameter can be set during runtime via the set bindmem directive within the ParaStation
administration and management tool psiadmin(1).

CPUmap { map }

Set the map used to assign CPU-slots to physical cores to map. Map is a quoted string containing a
space-separated permutation of the number 0 to Ncore-1. Here Ncore is the number of physical cores
available on this node. The number of cores within a distinct node may be determined via list hw. The
first number in map is the number of the physical core the first CPU-slot will be mapped to, and so on.

This parameter can be set during runtime via the set bindmem directive within the ParaStation
administration and management tool psiadmin(1).

supplGrps { true | yes | 1 | false | no | 0 }

This parameter must be set to true if processes spawned by ParaStation should belong to all groups
defined for this user. Otherwise, they will only belong to the primary group.

This parameter can be set during runtime via the set supplementaryGroups directive within the
ParaStation administration and management tool psiadmin(1).

44 ParaStation5 Administrator's Guide

rdpMaxRetrans number

Set the maximum number of retransmissions within the RDP facility. If more than this number of
retransmission would have been necessary to deliver the packet to the remote destination, this
connection is declared to be down.

See also psiadmin(1).

statusBroadcasts number

Set the maximum number of status broadcasts per round. This is used to limit the number of status-
broadcasts per status-iteration. Too many broadcast might lead to running out of message-buffers
within RDP on huge clusters.

If more than this number of broadcasts are triggered during one status-iteration, all future broadcasts
will be ignored. The corresponding counter is reset upon start of the next status iteration.

A value of 0 will completly suppress sending of status-broadcasts. In this case information on dead
nodes will be propagated by sending ACTIVENODES messages upon receive of too many wrong
LOAD messages, only.

Only relevant, if MCast is *not* used.

See also psiadmin(1).

rdpTimeout ms

The timeout of the actual timer registered by RDP in milli-seconds. Each time the corresponding timer is
elapsed, handleTimeoutRDP() is called handling all resend activities necessary. This parameter steers
the actual load introduced by RDP. Within the daemon, there is a lower limit for all timeout-timers of
100 msec. Thus, the minimal value here is 100, too.

deadLimit number

Dead-limit of the RDP status module. After this number of consecutively missing RDP-pings the master
declares the node to be dead.

Only relevant, if MCast is *not* used.

statusTimeout ms

Timeout of the RDP status module. After this number of milli-seconds a RDP-ping is sent to the master
daemon. Additionally, the master daemon checks for received ping-messages. Within the daemon,
there is a lower limit for all timeout-timers of 100 msec. Thus, the minimal value here is 100, too.

Only relevant, if MCast is *not* used.

rdpClosedTimeout ms

The closed timeout within the RDP facility in milli-seconds. If a RDP-connection is closed, during this
timeout all messages from the corresponding partner are ignored. Thus, reconnection is avoided during
this period. This helps handling packets still on the wire on connection close.

rdpResendTimeout ms

The resend timeout within the RDP facility in milli-seconds. If a pending message is available and not
yet acknowledged, this is the timeout after which the message is retransmitted to the remote host.

rdpMaxACKPend number

The maximum number of pending ACKs within the RDP facility. If this number of packets is received
from a remote node consecutively without any retransmission, an explicit ACK is sent. Otherwise the

ParaStation5 Administrator's Guide 45

ACK is sent piggyback within the next regular packet to this node or as soon as a retransmission
occurred.

If set to 1, each RDP packet received is acknowledged by an explicit ACK.

Errors

No known errors.

See also

psid(8), psiadmin(1)

46 ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide 47

psiadmin
psiadmin — the ParaStation administration and management tool

Synopsis

psiadmin [-denqrsv?] [-c command] [-f program-file] [--usage]

Description

The psiadmin command provides an administrator interface to the ParaStation system.

The command reads directives from standard input in interactive mode. The syntax of each directive is
checked and the appropriate request is sent to the local ParaStation daemon psid(8).

In order to send psiadmin into batch mode, either use the -c or the -f. The syntax of the directives is
exactly the same as in interactive mode for both options.

Most of the directives listed below can be executed by general users. Only modifying parameters, killing
foreign jobs and shutting down single nodes or the whole system requires root privilege.

Options

-c , --command=command
Execute the single directive command and exit.

-d
Do not automatically start up the local psid(8).

-e , --echo
Echo each executed directive to stdout.

-f , --file=program-file
Read commands from the file program-file. Exit as soon as EOF is reached.

It might be useful to enable echoing (-e) when acting on a script file.

This option silently enables the -q option suppressing the prompt.

-n , --noinit
Ignore the initialization file .psiadminrc.

-q , --quiet
Suppress printing the prompt each time waiting for a new command. This is useful in combination with
the -f option.

-s , --start-all
Try to start all daemons within the cluster. This option is equivalent to the execution of the add directive
straight after the startup of the administration tool.

-r , --reset
Do a reset of the ParaStation system on startup.

-v , --version
Output version information and exit.

-? , --help
Show a help message.

48 ParaStation5 Administrator's Guide

--usage
Display a brief usage message.

Standard Input

The psiadmin command reads standard input for directives until end of file is reached, or the exit or quit
directive is read.

Standard Output

If Standard Output is connected to a terminal, a command prompt will be written to standard output when
psiadmin is ready to read a directive.

If the -e option is specified, psiadmin will echo the directives read from standard input to standard output.

Standard Error

The psiadmin command will write a diagnostic message to standard error for each error occurred.

Extended description

If psiadmin is invoked without the -c or -f option and standard output is connected to a terminal, psiadmin
will repeatedly write a prompt to standard output and read a directive from standard input.

Directives can be abbreviated to their minimum unambiguous form. A directive is terminated by a new line
character or a semicolon. Multiple directives may be entered on a single line. A directive may extend across
lines by escaping the new line character with a back-slash "\".

Comments begin with the # character and continue to end of the line. Comments and blank lines are ignored
by psiadmin.

Upon startup psiadmin tries to find the file .psiadminrc first in the current directory and then in the user's
home directory. Only the first one found is really considered. Each directive found within this file is handled
silently before going either into interactive or batch mode (using the -f flag).

Interactive directives

Whenever the psiadmin is started into interactive mode, it will prompt for directives unless the -q flag is
used. The same directives are accepted in batch mode, too. Directives may be abbreviated as long as they
are unique. They can be expanded using the TAB-key, analogous to some shell tab expansion features.
A command history is stored in ~/.psiadm_history. See readline(3) for more information on command
expansion and command history.

Almost all directives accept an optional parameter nodes. This contains either a comma-separated list
of node ranges to act on, each of the form from[-to]. If the to part is missing, the single node from is
represented by this range. In principle nodes might contain an unlimited number of ranges.

Otherwise the value of nodes might be all. Then all nodes of the ParaStation cluster are selected within
this directive.

ParaStation5 Administrator's Guide 49

If nodes is empty, the node range preselected via the range command is used. The default preselected
node range contains all nodes of the ParaStation cluster.

The from and to parts of each range are node IDs. They might be given in decimal or hexadecimal notation
and must be in the range between 0 and NumberOfNodes-1.

As an extension nodes might also be a hostname that can be resolved into a valid ParaStation ID.

Using hostnames containing "-" might confuse this algorithm and is therefore not
recommended.

exit

Exit the interactive mode of psiadmin. Same as quit.

help [directive]

Print a help message concerning directive. If directive is missing, a general help message is
displayed.

kill [-sig] tid

Send the process with the task ID tid the signal sig.

sig has to be a positive number representing a UNIX signal. For a list of available signals please consult
the signal(7) manual page. If sig is not given, a SIGTERM signal (i.e. 15) is sent to the corresponding
process.

Processes can only be signaled by their owner or by root.

list [all | allproc [cnt count] | count [hw hw] | down | hardware | load | mcast | memory | node | proc [cnt
count] | rdp | summary [max max] | up | version] [nodes]

list jobs [state running | state pending | state suspended] slots [tid]

Report various states of the selected node(s) or job(s). Depending on the given argument, different
information can be requested from the ParaStation system. If no argument is given, the node
information is retrieved.

all

Show the information given by node, count and proc on the selected node(s).

allproc [cnt count]

Show all processes managed by the ParaStation system on the selected node(s).

All processes - including forwarder and other special processes - managed by ParaStation are
displayed. If forwarder processes should not be displayed, use the list proc directive.

Up to count processes per node are displayed. If more processes are controlled by ParaStation
on this node, a short remark will tell the number of not displayed processes. The default is to show
10 processes.

The output fields of the process list are described within the list proc directive. In addition to the
process classes described there, ParaStation Forwarder processes, i.e. processes spawned by
the ParaStation daemon psid(8) in order to control a spawned process, are marked by “(F)” after
the user ID. Further helper processes needed in order to spawn non ParaStation applications are
marked with “(S)”.

50 ParaStation5 Administrator's Guide

count [hw hw]

List the status of the communication system(s) on the selected node(s). Various counters are
displayed.

If the hw option is given, only the counters concerning the hw hardware type are displayed. The
default is to display the counters of all enabled hardware types on this node.

down

List all nodes which are marked as "DOWN".

hardware

Show the hardware setup on the selected node(s).

Besides the types of the communication hardware enabled within the ParaStation system on each
node also the number of available CPUs are displayed. The two numbers shown in this column
mark the number of virtual and physical CPUs respectively. These number might differ due to
technologies like Intel's HyperThreading or multi core CPUs.

load

Show the load and the number of processes managed by the ParaStation system on the selected
node(s).

The three load values displayed are the averages for 1, 5 and 15 minutes respectively. The
two numbers of processes are as follows: The total number of processes contains all processes
managed by the ParaStation system, including Logger, Forwarder and psiadmin(1) processes.
Furthermore of course the actual working processes started by the users are included. The latter
ones are the “normal” processes, additionally displayed in the last column of the output.

mcast

List the status of the MCast facility of the ParaStation daemon psid(8) on the selected node(s).

memory

Show the overall and available memory on the selected node(s).

node

List the status of the selected node(s). Depending on the state of the ParaStation daemons, the
node(s) are marked to be "UP" or "DOWN".

proc [cnt count]

Show the processes managed by the ParaStation system on the selected node(s).

Only user, logger and admin processes are displayed. If forwarder and other special processes
should also be displayed, use the list allproc directive.

Up to count processes per node are displayed. If more processes are controlled by ParaStation
on this node, a short remark will tell the number of not displayed processes. The default is to show
10 processes.

The listed fields have the following meaning:

Node
The ParaStation ID of the node the process is running on.

ParaStation5 Administrator's Guide 51

TaskID
The ParaStation task ID of the process, both as decimal and hexadecimal number. The task
ID of a process is unique within the cluster and is composed out of the ParaStation ID of the
node the process is running on and the local process ID of the process, i.e. the result of calling
getpid(2).

ParentTaskID
The ParaStation task ID of the parent process. The parent process is the one which has
spawned the current process. If the process was not spawned by any other controlled by
ParaStation, i.e. it is the first process started within a parallel task, the parent ParaStation task
ID is 0.

Con
Flag to mark if the process has reconnected to its local ParaStation daemon psid(8). If a 1 is
displayed, the process has connected the daemon, otherwise 0 is reported.

UserID
The user ID under which the process runs. This is usually identical to the user ID of the parent
process.

Furthermore administrative processes, i.e. psiadmin(1) processes connected to a local daemon
are marked with “(A)” after the user ID.

Logger processes, i.e. root processes of parallel tasks which converted to a ParaStation Logger
process, are tagged with “(L)” after the user ID.

System processes, which are not counted, are marked as “(*)”. Accounting processes are
indicated by “(C)”. Other helper processes are marked with “(S)”.

jobs [state running | state pending | state suspended] [slots] [tid]

Show all or selected jobs managed by the ParaStation system.

If selected, only jobs with state running, pending or suspended are shown. if slots is provided, node
and CPU count information for this job is printed, too. If tid is given, information for this particular
job is shown.

For each job, information about the RootTaskId, State (= 'R', 'P' or 'S'), Size (= number of CPUs),
UID, GID and Target Slots are printed.

rdp

List the status of the RDP protocol of the ParaStation daemon psid(8) on the selected node(s).

summary [max max]

Print a brief summary of the active and down nodes. Thus the number of up and down nodes will
be printed out in one line. If any node is down and the number of down nodes is less than 20 or
max, then the node IDs of this nodes will also printed out in a second line.

up

List all nodes which are marked as "UP".

version

List the ID, psid revision and RPM version for the selected node(s).

quit

Exit the interactive mode of psiadmin. Same as exit.

52 ParaStation5 Administrator's Guide

range {[nodes] | all }

Preselect or display the default set of nodes

If nodes or all is given, this directive modifies the default set of nodes all following directives will act
on. nodes is given in the same syntax as within any other directive, i.e. a comma separated list of node
ranges from-to, where a range might be trivial containing only the from part. In this case all further
directives are called as if the nodes part or all is appended unless a node set is given explicitely.

If neither nodes nor all is given, the current preselected node set is displayed. Be aware of the fact
that this might not be literally identical to the string given in a previous call to the range directive since
the program tries to find a string as short as possible.

show { accounters | user | group | maxproc | selecttime | psiddebug | rdpdebug | rdpretrans | mcastdebug
| master | freeOnSuspend | handleOldBins | nodesSort | starter | runjobs | overbook | rdppktloss |
rdpmaxretrans | exclusive | pinprocs | cpumap | bindmem | adminuser | admingroup | rl_addressspace
| rl_core | rl_cpu | rl_data | rl_fsize | rl_locks | rl_memlock | rl_msgqueue | rl_nofile | rl_nproc | rl_rss |
rl_sigpending | rl_stack | supplementaryGroups | statusBroadcasts | rdpTimeout | deadLimit | statusTimeout
| rdpClosedTimeout | rdpResendTimeout | rdpMaxACKPend } [nodes]

Show various parameters of the ParaStation system.

accounters [nodes]

Show information on which node(s) ParaStation accounting processes are running.

user [nodes]

Show who grants exclusive access on the selected node(s).

group [nodes]

Show which group grants exclusive access on the selected node(s).

maxproc [nodes]

Show the maximum number of ParaStation processes on the selected node(s).

selecttime [nodes]

Show the timeout of the central select(2) of the ParaStation daemon psid(8) on the selected
node(s).

psiddebug [nodes]

Show the debugging mask of the ParaStation daemon psid(8) on the selected node(s).

rdpdebug [nodes]

Show the debugging mask of the RDP protocol within the ParaStation daemon psid(8) on the
selected node(s).

rdpretrans [nodes]

Show the RDP retransmit counters off the selected node(s).

mcastdebug [nodes]

Show the debugging mask of the MCast protocol within the ParaStation daemon psid(8) on the
selected node(s).

ParaStation5 Administrator's Guide 53

master [nodes]

Show the current master on the selected node(s).

The master node's task is the management and allocation of resources within the cluster. It is
elected among the running nodes during runtime. Thus usually all nodes should give the same
answer to this question. In rare cases - usually during startup or immediately after a node failure
- the nodes might disagree on the elected master node. This command helps on identifying these
rare cases.

freeOnSuspend [nodes]

Show the freeOnSuspend flag on the selected nodes.

The freeOnSuspend flag steers the behavior of the resource management concerning suspended
jobs. Basically there are two possible approaches: Either the resources used by the suspended
job are freed for other jobs (this is done, if the flag is set to 1) or they are kept occupied in order
to preserve them exclusively for the time the job continues to run (this is the behavior as long as
the flag has the value 0).

Since the master node does all the resource management within the cluster, only the value on this
node actually steers the behavior.

handleOldBins [nodes]

Show the compatibility flag for applications linked against version 4.0.x of ParaStation on the
selected nodes.

nodesSort [nodes]

Show the default sorting strategy used when attaching nodes to partitions.

Since the master node does all the resource management within the cluster, only the value on this
node actually steers the behavior.

starter [nodes]

Show if the selected node(s) are allowed to start parallel tasks.

runjobs [nodes]

Show if the selected node(s) are allowed to run tasks.

overbook [nodes]

Show if the selected node(s) are allowed to be overbooked on user request.

rdppktloss [nodes]

Show RDP protocol's packet-loss rate.

rdpmaxretrans [nodes]

Show RDP protocol's maximum retransmission count.

exclusive [nodes]

Show flag marking if this nodes can be requested by users exclusively.

pinprocs [nodes]

Show flag marking if this nodes uses process pinning.

54 ParaStation5 Administrator's Guide

cpumap [nodes]

Show the CPU-slot to core mapping list for the selected nodes.

bindmem [nodes]

Show flag marking if this nodes uses binding as NUMA policy.

adminuser [nodes]

Show users allowed to start admin-tasks, i.e. unaccounted tasks.

admingroup [nodes]

Show groups allowed to start admin-tasks, i.e. unaccounted tasks.

rl_addressspace [nodes]

Show RLIMIT_AS on this node.

rl_core [nodes]

Show RLIMIT_CORE on this node.

rl_cpu [nodes]

Show RLIMIT_CPU on this node.

rl_data [nodes]

Show RLIMIT_DATA on this node.

rl_fsize [nodes]

Show RLIMIT_FSIZE on this node.

rl_locks [nodes]

Show RLIMIT_LOCKS on this node.

rl_memlock [nodes]

Show RLIMIT_MEMLOCK on this node.

rl_msgqueue [nodes]

Show RLIMIT_MSGQUEUE on this node.

rl_nofile [nodes]

Show RLIMIT_NOFILE on this node.

rl_nproc [nodes]

Show RLIMIT_NPROC on this node.

rl_rss [nodes]

Show RLIMIT_RSS on this node.

ParaStation5 Administrator's Guide 55

rl_sigpending [nodes]

Show RLIMIT_SIGPENDING on this node.

rl_stack [nodes]

Show RLIMIT_STACK on this node.

supplementaryGroups [nodes]

Show supplementaryGroups flag.

statusBroadcasts [nodes]

Show the maximum number of status broadcasts initiated by lost connections to other daemon.

rdpTimeout [nodes]

Show the RDP timeout configured in ms.

deadLimit [nodes]

Show the dead-limit of the RDP status module. See also parastation.conf(5).

statusTimeout [nodes]

Show the timeout of the RDP status module. See also parastation.conf(5).

rdpClosedTimeout [nodes]

Show the closed timeout within the RDP facility in milli-seconds. See also parastation.conf(5).

rdpResendTimeout [nodes]

Show the resend timeout within the RDP facility in milli-seconds. See also parastation.conf(5).

rdpMaxACKPend [nodes]

Show the maximum ACK pending counter within the RDP facility. See also parastation.conf(5).

sleep [sec]

Sleep for sec seconds before continuing to parse the input.

version

Print various version numbers.

Privileged directives

Some directives are only available for privileged users, i.e. only root can execute these directives.

add [nodes]

Start the ParaStation daemon psid(8) on the selected node(s).

add only tries to start the ParaStation daemon on the selected node(s). If it is not possible to start
the daemon, no error message occurs. The current status of the nodes can be checked using the list
directive.

56 ParaStation5 Administrator's Guide

hwstart [hw { hw | all }] [nodes]

Start the declared hardware on the selected nodes.

Starting a specific hardware will be tried on the selected nodes regardless, if this hardware is specified
for this nodes within the parastation.conf configuration file or not. On the other hand, if hw all
is specified or the hw option is missing at all, only the hardware types specified within the configuration
file are started.

Starting or stopping a specific communication hardware only concerns the ParaStation part of hardware
handling. I.e. stopping ethernet hardware should not touch the normal IP traffic running over this
specific device.

hwstop [hw { hw | all }] [nodes]

Stop the declared hardware on the selected nodes.

If hw all is specified or the hw option is missing at all, all running hardware for this node is stopped.

Starting or stopping a specific communication hardware only concerns the ParaStation part of hardware
handling. I.e. stopping ethernet hardware should not touch the normal IP traffic running over this
specific device.

resolve [nodes]

Resolves a list of IDs to node names. Nodes selects one or more ranges of nodes. Nodes is either
of the form s1[-e1]{,si[-ei]}*, where the s and e are positiv numbers representing ParaStation IDs, or
'all'. Each comma-separated part of nodes denotes a range of nodes. If a range's '-e' part is missing,
it represents a single node. In principle nodes might contain an unlimited number of ranges. If nodes
value is 'all', all nodes of the ParaStation cluster are selected. If nodes is empty, the node range
preselected via the 'range' command is used. The default preselected node range contains all nodes
of the ParaStation cluster.

As an extension nodes might also be a hostname that can be resolved into a valid ParaStation ID.

reset [hw] [nodes]

Reset the ParaStation daemon on all selected node(s). As a consequence all processes using the
selected node(s) are killed!

If the option hw is given, additionally the communication hardware is brought into a known state.
Executing reset hw is the same as using restart.

restart [nodes]

Restart the ParaStation system on all selected node(s). This includes re-initialization of the
communication hardware. On the selected node(s) the ParaStation daemon processes are forced to
reinitialize the ParaStation cluster. As a consequence all processes using the selected node(s)s are
killed!

This is the same as using reset hw.

set { adminuser [+ | -] { name | any } | admingroup [+ | -] { name | any } | user [+ | -] { name | any } | group [+
| -] { name | any } | maxproc { num | any } | selecttime time | psiddebug mask | rdpdebug mask | mcastdebug
mask | freeOnSuspend { 0 | 1 } | handleOldBins { 0 | 1 } | nodesSort { PROC | LOAD_1 | LOAD_5 | LOAD_15
| PROC+LOAD | NONE } | overbook { 0 | 1 } | starter { 0 | 1 } | runjobs { 0 | 1 } | rdpmaxretrans val | exclusive
bool | pinprocs bool | bindmem bool | cpumap map | supplementaryGroups bool | statusBroadcasts
num | rdpTimeout ms | deadLimit num | statusTimeout ms | rdpClosedTimeout ms | rdpResendTimeout ms
| rdpMaxACKPend num } [nodes]

Modify various parameters of the ParaStation system.

ParaStation5 Administrator's Guide 57

adminuser [+ | -] { name | any } [nodes]

Grant authorization to start admin-tasks, i.e. task not blocking a dedicated CPU, to a particular or
any user. Name might be a user name or a numerical UID. If name is preceeded by a '+' or '-', this
user is added to or removed from the list of adminusers respectively.

admingroup [+ | -] { name | any } [nodes]

Grant authorization to start admin-tasks, i.e. task not blocking a dedicated CPU, to a particular or
any group. Name might be a group name or a numerical GID. If name is preceeded by a '+' or '-',
this group is added to or removed from the list of admingroups respectively.

user [+ | -] { name | any } [nodes]

Grant exclusive access on the selected node(s) to the special user name or to any user. If name is
preceeded by a '+' or '-', this user is added to or removed from the list of users respectively.

group [+ | -] { name | any } [nodes]

Grant exclusive access on the selected node(s) to the special group name or to any group. If name
is preceeded by a '+' or '-', this group is added to or removed from the list of groups respectively.

maxproc { num | any } [nodes]

Limit the number of running ParaStation processes on the selected node(s) to num or remove the
limit.

selecttime time [nodes]

Set the timeout of the central select(2) of the ParaStation daemon psid(8) to time seconds on the
selected node(s).

This parameter can be set persistently via the SelectTime option within the ParaStation
configuration file parastation.conf(5).

psiddebug mask [nodes]

Set the debugging mask of the ParaStation daemon psid(8) to mask on the selected node(s).

Mask is the bit-wise disjunction of the following bit-patterns:

58 ParaStation5 Administrator's Guide

Pattern Name Description

0x0000001 PSC_LOG_PART Partitioning functions (i.e. PSpart_())

0x0000002 PSC_LOG_TASK Task structure handling (i.e. PStask_())

0x0000004 PSC_LOG_VERB Various, less interesting messages

0x0000010 PSID_LOG_SIGNAL Signal handling

0x0000020 PSID_LOG_TIMER Timer stuff

0x0000040 PSID_LOG_HW Hardware stuff

0x0000080 PSID_LOG_RESET Messages concerning (partial) resets

0x0000100 PSID_LOG_STATUS Status determination

0x0000200 PSID_LOG_CLIENT Client handling

0x0000400 PSID_LOG_SPAWN Spawning clients

0x0000800 PSID_LOG_TASK PStask_cleanup() call etc.

0x0001000 PSID_LOG_RDP RDP messages

0x0002000 PSID_LOG_MCAST Multicast messages

0x0004000 PSID_LOG_VERB Higher verbosity (function call, etc.)

0x0008000 PSID_LOG_SIGDBG More verbose signaling stuff

0x0010000 PSID_LOG_COMM General daemon communication

0x0020000 PSID_LOG_OPTION Option handling

0x0040000 PSID_LOG_INFO Handling of info request messages

0x0080000 PSID_LOG_PART Partition creation and management

0x0100000 PSID_LOG_ECHO Echo each line to parse

0x0200000 PSID_LOG_FILE Logs concerning the file to parse

0x0400000 PSID_LOG_CMNT Comment handling

0x0800000 PSID_LOG_NODE Info concerning each node

0x1000000 PSID_LOG_RES Info on various resource to define

0x2000000 PSID_LOG_VERB More verbose stuff

Table 2. psid debug flags

This parameter can be set persistently via the LogMask option within the ParaStation configuration
file parastation.conf(5).

rdpdebug mask [nodes]

Set the debugging mask of the RDP protocol within the ParaStation daemon psid(8) to mask on
the selected node(s).

Unless you want to debug the RDP protocol (i.e. the secure protocol used by
the daemons to talk to each other) this parameter is not really useful.

Mask is the bit-wise disjunction of the following bit patterns:

ParaStation5 Administrator's Guide 59

Pattern Name Description

0x0001 RDP_LOG_CONN Uncritical errors on connection loss

0x0002 RDP_LOG_INIT Info from initialization (IP, FE, NFTS etc.)

0x0004 RDP_LOG_INTR Interrupted syscalls

0x0008 RDP_LOG_DROP Message dropping and resequencing

0x0010 RDP_LOG_CNTR Control messages and state changes

0x0020 RDP_LOG_EXTD Extended reliable error messages (on linux)

0x0040 RDP_LOG_COMM Sending and receiving of data (huge! amount)

0x0080 RDP_LOG_ACKS Resending and acknowledging (huge! amount)

Table 3. RDP debug flags

mcastdebug mask [nodes]

Set the debugging mask of the MCast protocol within the ParaStation daemon psid(8) to mask on
the selected node(s).

Unless you want to debug the MCast protocol (i.e. the protocol used by the
daemons to ping alive-messages to each other) this parameter is not really
useful.

Mask is the bit-wise disjunction of the following bit patterns:

Pattern Name Description

0x0001 MCAST_LOG_INIT Info from initialization (IP etc.)

0x0002 MCAST_LOG_INTR Interrupted syscalls

0x0004 MCAST_LOG_CONN T_CLOSE and new pings

0x0008 MCAST_LOG_5MIS Every 5th missing ping

0x0010 MCAST_LOG_MSNG Every missing ping

0x0020 MCAST_LOG_MSNG Every received ping

0x0040 MCAST_LOG_SENT Every sent ping

Table 4. Multicast debug flags

freeOnSuspend [0 | 1] [nodes]

Switch the freeOnSuspend flag on or off on the selected nodes.

The freeOnSuspend flag steers the behavior of the resource management concerning suspended
jobs. Basically there are two possible approaches: Either the resources used by the suspended
job are freed for other jobs (this is done, if the flag is set to 1) or they are kept occupied in order
to preserve them exclusively for the time the job continues to run (this is the behavior as long as
the flag has the value 0).

Since the master node does all the resource management within the cluster, only the value on this
node actually steers the behavior.

This flag can be set persistently via the freeOnSuspend option within the ParaStation configuration
file parastation.conf(5).

handleOldBins [0 | 1] [nodes]

Switch the compatibility flag for applications linked against version 4.0.x of ParaStation on or off
on the selected nodes.

60 ParaStation5 Administrator's Guide

nodesSort { PROC | LOAD_1 | LOAD_5 | LOAD_15 | PROC+LOAD | NONE } [nodes]

Define the default sorting strategy for nodes when attaching them to a partition. The different
possible values have the following meaning:

PROC

Sort by the number of processes managed by ParaStation on the corresponding nodes

LOAD_1

Sort by the load average during the last minute on the corresponding nodes

LOAD_5

Sort by the load average during the last 5 minutes on the corresponding nodes

LOAD_15

Sort by the load average during the last 15 minutes on the corresponding nodes

PROC+LOAD

Sort conforming to the sum of the processes managed by ParaStation and the load average
during the last minute on the corresponding nodes

NONE

Do not sort at all.

This only comes into play, if the user does not define a sorting strategy explicitely via
PSI_NODES_SORT. Be aware of the fact that using a batch-system like PBS or LSF *will* set the
strategy explicitely, namely to NONE.

overbook [0 | 1] [nodes]

Define if this nodes shall be overbooked upon user-request (if flag is true) or if overbooking should
be denied at all (false).

starter [0 | 1] [nodes]

Define if starting jobs from this nodes should allowed (flag is true) or denied (false).

runjobs [0 | 1] [nodes]

Define if running tasks on this nodes should be allowed (flag is true) or denied (false).

rdpmaxretrans val [nodes]

Set RDP protocol's maximum retransmission count.

exclusive [0 | 1] [nodes]

Set flag marking if this nodes can be requested by users exclusively to bool. Relevant values are
'false', 'true', 'no', 'yes', 0 or different from 0.

pinprocs [0 | 1] [nodes]

Set flag marking if this nodes will use process-pinning to bind processes to cores. Relevant values
are 'false', 'true', 'no', 'yes', 0 or different from 0.

ParaStation5 Administrator's Guide 61

bindmem [0 | 1] [nodes]

Set flag marking if this nodes will use memory-binding as NUMA policy. Relevant values are 'false',
'true', 'no', 'yes', 0 or different from 0.

cpumap map [nodes]

Set the map used to assign CPU-slots to physical cores to map. Map is a quoted string containing a
space-separated permutation of the number 0 to Ncore-1. Here Ncore is the number of physical
cores available on this node. The number of cores within a distinct node may be determined via 'list
hw'. The first number in map is the number of the physical core the first CPU-slot will be mapped
to, and so on.

supplementaryGroups [0 | 1] [nodes]

The supplementaryGroups flag defines whether a process spawned should belong to all groups
(true) defined for this user or only to the primary group (false). Relevant values are 'false', 'true',
'no', 'yes', 0 or different from 0.

statusBroadcasts [num] [nodes]

Set the maximum number of status broadcasts initiated by lost connections to other daemons. See
also parastation.conf(5).

rdpTimeout [ms] [nodes]

Set the RDP timeout in ms for all selected nodes. See also parastation.conf(5).

deadLimit [num] [nodes]

Set the dead-limit of the RDP status module. After this number of consecutively missing RDP-
pings, the master declares the node to be dead. Only relevant, if MCast is *not* used. See also
parastation.conf(5).

statusTimeout [ms] [nodes]

Set the Timeout of the RDP status module. After this number of milli-seconds a RDP-ping is sent
to the master daemon. Additionally, the master daemon checks for received ping-messages. Only
relevant, if MCast is *not* used. See also parastation.conf(5).

rdpClosedTimeout [ms] [nodes]

Set the RDP closed timeout of the RDP status module. See also parastation.conf(5).

rdpResendTimeout [ms] [nodes]

Set the RDP resend timeout of the RDP status module. See also parastation.conf(5).

rdpMaxACKPend [num] [nodes]

Set the maximum number of pending ACKs within the RDP facility. See also parastation.conf(5).

shutdown [nodes]

Shutdown the ParaStation daemon on all selected node(s). As a consequence all processes using the
selected node(s) are killed!

test [quiet | normal | verbose]

All communications links in a ParaStation network are tested.

62 ParaStation5 Administrator's Guide

quiet

Quiet execution. Only a short message is printed if the test was successful.

normal

Normal execution with some messages during runtime. This is the default.

verbose

Very verbose execution with many message during runtime.

Files

Upon startup, psiadmin tries to find .psiadminrc in the current directory or in the user's home directory.
The first file found is parsed and the directives within are executed. Afterwards psiadmin goes into
interactive mode unless the -f is used.

This file might be used to set some default ranges whenever psiadmin is invoked.

The startup file is ignored if the option -c is used.

Errors

No known errors.

See also

parastation.conf(5), psid(8), mlisten(1)

ParaStation5 Administrator's Guide 63

psid
psid — the ParaStation daemon. The organizer of the ParaStation software architecture.

Synopsis

psid [-v?] [-d level] [-f configfile] [-l logfile] [--usage]

Description

The ParaStation daemon is implemented as a Unix daemon process. It supervises allocated resources,
cleans up after application shutdowns, and controls access to common resources. Thus, it takes care of
tasks which are usually managed by the operating system.

The local daemon is usually started by executing psiadmin(1). If it is not running at the time a ParaStation
process is starting, the inetd(8) or xinetd(8) daemon is starting up psid automatically. The daemon can also
be started using the command line. Parameters can be given at the command line or in the configuration file
inetd.conf(5) or xinetd.conf(5). Most of the parameters can also be given in the ParaStation configuration
file parastation.conf(5). As an alternative, the psid can be installed as a service using the start/stop script
/etc/init.d/parastation.

Nodes without a running ParaStation daemon are not visible within the cluster. Be aware of the fact that
psiadmin(1) usually only starts the local daemon. All other daemons managing the nodes configured to
belong to the cluster may be started using the add directive from within the ParaStation administration tool
psiadmin(1).

If psiadmin(1) is started with the -s option, all daemons within the cluster will be started automatically.

The ParaStation daemon must always run with root privileges.

Before a process can communicate with the ParaStation system, it has to register with the daemon. Access
may be granted or denied. The daemon can deny the access due to several reasons:

• the ParaStation system library of the process and the ParaStation daemon are incompatible.

• the daemon is in a state where it does not accept new connections.

• insufficient resources.

• the user is temporally not allowed to access ParaStation (see psiadmin(1)).

• the group is temporally not allowed to access ParaStation (see psiadmin(1)).

• the number of processes exceed the maximum set by psiadmin(1).

The ParaStation daemon can restrict the access to the communication subsystem to a specific user or
a maximum number of processes. This enables the cluster to run in an optimized way, since multiple
processes slow down application execution due to scheduling overhead. (See psiadmin(1), set user, set
group and set maxproc for this features.)

All ParaStation daemons are connected to each other. They exchange local information and transmit
demands of local processes to the psid of the destination node. With this cooperation, the ParaStation
system offers a distributed resource management.

The ParaStation daemon spawns and kills client processes on demand of a parent process. The
ParaStation system transfers remote spawning or killing requests to the daemon of the destination node.
Then operating system functionality is used to spawn and kill the processes on the local node. The spawned
process runs with same user and group id as the spawning process. The ParaStation system redirects the
output of spawned process to the terminal of the parent process.

64 ParaStation5 Administrator's Guide

Options

-d , --debug=level
Activate the debugging mode and set the debugging level to level. If debugging is enabled, i.e. if
level is larger than 0 and option -l is set to stdout, no fork(2) is made on startup, which is usually
done in order to run psid as a daemon process in background.

The debugging level of the daemon can also be modified during runtime using the set psiddebug
command of psiadmin(1).

Be aware of the fact that high values of level lead to excessively much debugging output spoiling
the syslog(3) or the logfile.

-f , --configfile=file
Choose file to be the ParaStation configuration file. The default is to use /etc/
parastation.conf.

-l , --logfile=file
Choose file to be the destination for logging output. file may be the name of an ordinary file or
stdin or stdout. The default is to use syslog(3) for any logging output.

-v , --version
Output version information and exit.

-? , --help
Show a help message.

--usage
Display a brief usage message.

See also

parastation.conf(5), psiadmin(1), mlisten(1)

ParaStation5 Administrator's Guide 65

test_config
test_config — verify the ParaStation4 configuration file.

Synopsis

test_config [-vad?] [-v] [-a] [-d] [-?] [-f filename]

Description

test_config reads and analyses the ParaStation4 configuration file. Any errors or anomalies are reported.
By default, the configuration file /etc/parastation.conf will be used.

Options

-f filename
Use configuration file filename.

-d num
Set debug level to num.

-v
Output version information and exit.

-h -? , --usage
Show a help message.

66 ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide 67

test_nodes
test_nodes — test physical connections within a cluster.

Synopsis

test_nodes [-np num] [-cnt count] [-map] [-type]

Description

Tests all or some physical (low level) connections within a cluster. Therefore the program is started on num
nodes. After all processes came up correctly, each of them starts to send test packets to every other node
of the cluster. For this purpose the PSP_IReceive(3) and PSP_ISend(3) calls of the ParaStation PSPort
library are used.

After every node has received data from any node (i.e. an all to all communication was executed), a success
message is printed and test_nodes exits. Otherwise after a certain timeout a message concerning the
current status about the tested connection is posted.

test_nodes will run as long as any connection between two tested nodes is unable to transport the test
packets.

Options

-np num
Run the testing program on num nodes.

-cnt num
Send num test packets at once instead of only one.

-map
Don't print error messages but rather print a map with all working connections marked as 1 and all
failed connections as 0.

-type
Print the type of each connection used instead of packets send/received. Implies -map.

See also

psid(8)

68 ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide 69

test_pse
test_pse — test virtual connections within a cluster.

Synopsis

test_pse [-np num]

Description

This command spawns num processes within the cluster.

It's intended to test the process spawning capabilities of ParaStation. It does not test any communication
facilities within ParaStation.

Options

-np num
Spawn num processes.

See also

psid(8)

70 ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide 71

p4stat
p4stat — display information about the p4sock protocol.

Synopsis

p4stat [-v] [-s] [-n] [-?] [--sock] [--net] [--version] [--help] [--usage]

Description

Display information for sockets and network connections using the ParaStation4 protocol p4sock.

Options

-s, --sock
Display information about open p4sock sockets.

-n, --net
Display information of network connections using p4sock.

-v, --version
Output version information and exit.

-?, --help
Show a help message.

--usage
Display a brief usage message.

See also

p4tcp(8), parastation.conf(5)

72 ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide 73

p4tcp
p4tcp — configure the ParaStation4 TCP bypass.

Synopsis

p4tcp [-v] [-a] [-d] [-?] [from [to]]

Description

p4tcp configures the ParaStation4 TCP bypass. Without an argument, the current configuration is printed.

From and to are IP addresses forming an address range for which the bypass feature should be activated.
Multiple addresses or address ranges may be configured by using multiple p4tcp commands.

To enable the bypass for a pair of processes, the library libp4tcp.so located in the
directory /opt/parastation/lib64 must be pre-loaded by both processes using:

 export LD_PRELOAD=/opt/parastation/lib64/libp4tcp.so

For parallel and serial tasks launched by ParaStation, this environment variable is
exported to all processes by default. Please refer to ps_environment(5).

Options

-a, --add
Add an address or an address range to the list of redirected addresses. New TCP connections directed
to a node within this address range may use the p4sock protocol for data transfer.

-d, --delete
Delete an address or address range from the list of redirected addresses. New TCP connections to
this address(es) will no longer use the p4sock protocol.

-v, --version
Output version information and exit.

-?, --help
Show a help message.

--usage
Display a brief usage message.

See also

p4stat(8)

74 ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide 75

psaccounter
psaccounter — Write accounting information from the ParaStation psid to the accounting files.

Synopsis

psaccounter [-e | --extend] [-d | --debug=pattern] [-F | --foreground] [-l | --logdir=dir] [-f | --
logfile=filename] [-p | --logpro] [-c | --dumpcore] [--coredir=dir] [-v | --version] [-? | --help] [--usage]

Description

The command psaccounter collects information about jobs from the ParaStation psid daemon and writes
this information to the accounting files. For each day, a particular file called yyyymmdd is created within
the accounting directory /var/account.

The psaccounter is typically started by the psid(8) using the pseudo hardware configuration accounter
entry within parastation.conf.

Options

-e, --extend
Write extended information to the accounting file. In addition to entries for job terminations, it will also
record job queue, start and delete information.

-d, --debug=flag
Print debug information. Pattern can be a combination of the following bits:

Pattern Description

0x010 More warning messages

0x020 Show process information (start, exit)

0x040 Show received messages

0x080 Very verbose output

0x100 Show node information on startup

Table 5. Psaccounter debug flags

As the accounter is typically not run directly, but started by the psid(8), the start
script /opt/parastation/config/ps_acc should be modified to enable this
debugging facilities.

-F, --foreground
Don't fork and go to background.

-l, --logdir=accountdir
Create accounting files within directory accountdir. Using -, all accounting information is written to
stdout.

-f, --logfile=filename
Write debug and error messages to filename. Using - as filename, messages are written to stdout.
By default, all debug and error messages are sent to syslog.

-p, --logpro=command
Define a post processing command for accounting files. If defined, this command is called everytime a
new accounting file is created. The filename of the current accounting file is appended to the command.

76 ParaStation5 Administrator's Guide

Calling psaccounter with -p gzip would call the command gzip yyyymmdd and therefore compress
least recently used accounting file.

-c, --dumpcore
Define that a core file should be written in case of a catastrophy. By default, the core file will be written
to /tmp.

--coredir=dir
Defines where to save core files.

-v, --version
Output version information and exit.

-?, --help
Show this help messages.

--usage
Display brief usage message.

Files

/var/account/yyyymmdd
Accounting files, one per day.

See also

psid(8), psaccview(8) and parastation.conf.

ParaStation5 Administrator's Guide 77

psaccview
psaccview — Print ParaStation accounting information.

Synopsis

psaccview [-? | --help] [-h | --human] [-nh | --noheader] [-l | --logdir=dir] [-e | --exit=exitcode] [-
q | --queue=queue] [-u | --user=user] [-g | --group=group] [-j | --jobname=jobname] [-lj | --ljobs] [-
lu | --ltotuser] [-lg | --ltotgroup] [-ls | --ltotsum] [-st | --stotopt=optstring] [-sj | --sjobopt=optstring
] [-t | --timespan=period] [-b | --begin=yyyymmdd] [-e | --end=yyyymmdd] [--jsort=criteria] [--
usort=criteria] [--gsort=criteria] [-v | --version] [--usage]

Description

Psaccview prints various accounting information from one or more accounting files written by the
ParaStation psaccounter. The data may be printed to be "human readable" or may be formated to be
easily post-processed by other tools.

Options

Output formatting output

-h, --human
Print times and timestamps in more human readable form.

-nh, --noheader
Suppress headers.

-st, --stotopt=optstring
Defines columns displayed within the user list, group list and the total summary list. Valid entries are:
user, group, walltime, qtime, mem, vmem, cputime, jobs, cpuweight, aqtime and usage.

-sj, --sjobopt=optstring
Defines columns displayed within the detailed job list. Valid entries are: user, group, jobid,
jobname, start, end, walltime, qtime, mem, vmem, cputime, cpuweight, queue, procs and
exit.

Selecting entries in the input files

-e, --exit=exitcode
Show only entries with the given exit code. You can use "false" as exit code to get all jobs where the
exit code is not equal to 0.

-q, --queue=queue
Shows only entries for the given queue.

-u, --user=user
Show only entries for the given user name.

-g, --group=group
Show only entries for the given group.

-j, --jobname=jobname
Show only entries for the given jobname.

78 ParaStation5 Administrator's Guide

Grouping jobs

-lj, --ljobs
Print detailed jobs list. Lists all jobs, one per line.

-lu, --ltotuser
Print user list. Lists job summary per user, one user per line.

-lg, --ltotgroup
Print group list. Lists job summary per group, one group per line.

-ls, --ltotsum
Print total job summary. Lists a summary of all jobs, only one line in total.

Defining time periods considered

-t, --timespan=period
Selects a period of time shown. Valid entries are today, week, month or all.

-b, --begin=yyyymmdd
Defines the first day of the period of time shown.

-e, --end=yyyymmdd
Defines the last day of the period of time shown.

Sort options

--jsort=criteria
Selects the criteria where the job list is sorted by. Valid entries are user, group, jobid, jobname,
start, end, walltime, qtime, mem, vmem, cputime, queue, procs and exit.

--usort=criteria
Selects the criteria where the user list is sorted by. Valid entries are user, jobs, walltime, qtime,
mem, vmem, cputime, procs and cpuweight.

--gsort=criteria
Selects the criteria where the group list is sorted by. Valid entries are group, jobs, walltime, qtime,
mem, vmem, cputime, procs and cpuweight.

General Options

-l, --logdir=logdir
Look for accounting files in directory logdir.

-v, --version
Output version information and exit.

-?, --help
Show this help messages.

--usage
Display brief usage message.

Extended description

The command psaccview reads entries of the type "job terminated" from the specified input files. Files
could be plain text, as written be the psaccounter, or compressed by gzip or bzip2. Refer to psaccounter(8)
for more information.

ParaStation5 Administrator's Guide 79

Upon startup psaccview tries to find the file .psaccviewrc in the user's home directory. Within this
file, pre-defined variables in the command my be re-defined. See the configuration section within the
psaccview script.

The command expects one file per day, named as yyyymmdd, where yyyy represents the year, mm the
month and dd the day for the data contained. If not otherwise specified by using options defining periods
of time to be printed, all files within the accounting directory /var/account for the last week will read.
Unavailable files will be silently ignored.

The output may be formated to print information of each particular job (job list), of a summary of all jobs per
user (user list), of a summary of all jobs per group (group list) or as a total summary of all jobs. Multiple lists
can be selected, by default all information is shown. Lists may be sorted by columns and may be filtered to
only show information about a particular user, group, queue, jobname or job exit code.

The columns to be printed may be defined using formatting options. Available column names are:

aqtime
Average queue time, only for total summary.

cputime
Total CPU time for this job.

cpuweight
Walltime * number of processes.

end
End time.

exit
Exit code of the job.

group
Group the job owner belongs to.

jobid
ParaStation internal task ID.

jobname
Job name.

jobs
Number of jobs, only for total summary.

mem
Currently not supported.

procs
Number of processes.

qtime
Queuetime, giving the delay between queuing a job and running it.

queue
Queue name.

start
Start time.

usage
Usage of a user or group of the overall walltime.

user
Job owner (user name).

vmem
Currently not supported.

walltime
Overall wall clock time for the job.

80 ParaStation5 Administrator's Guide

These column names may also be used for sorting lists, where applicable.

Files

/var/account/* , /var/account/*.gz , /var/account/*.bz2
Accounting files, one per day.

$HOME/.psaccviewrc
Initialization file.

See also

psaccounter(8).

ParaStation5 Administrator's Guide 81

mlisten
mlisten — display multicast pings from the ParaStation daemon psid(8)

Synopsis

mlisten [-dv?] [-m MCAST] [-p PORT] [-n IP] [-# NODES] [--usage]

Description

Display the multicast pings the ParaStation daemon psid(8) is emitting continuously. These pings are
displayed by spinning bars.

Each ping received from node N lets the Nth bar spin around one more step. For each node never received
a multicast ping from a '.' is displayed.

ParaStation by default no longer uses multicast messages. Thus, no multicast
messages will be ever received and displayed using the default configuration!

Options

-d , --debug
Activate the debugging mode. This will disable the spinning bars. Instead a detailed message about
each received multicast ping is displayed.

-m , --mcast=MCAST
Listen to multicast group MCAST. Set this to the value of MCastGroup in the ParaStation configuration
file parastation.conf(5). The default is 237, which is also the default within psid(8).

-p , --port=PORT
Listen to UDP port PORT. Set this to the value of MCastPort in the ParaStation configuration file
parastation.conf(5). The default is 1889, which is also the default within psid(8).

-n , --network=IP
Listen on the network interface with address IP. The default is to listen on any interface. IP is the IP
address of the network interface in dot notation.

-# , --nodes=NODES
Display information for NODES nodes. The default is 128, i.e. 128 nodes.

-v , --version
Output version information and exit.

-? , --help
Show a help message.

--usage
Display a brief usage message.

See also

psid(8), parastation.conf(5)

82 ParaStation5 Administrator's Guide

ParaStation5 Administrator's Guide 83

Appendix A. Quick Installation Guide
This appendix gives a brief overview how to install ParaStation5 on a cluster. A detailed description can be
found in Chapter 3, Installation and Chapter 4, Configuration.

1. Shutdown

If this is an update of ParaStation, first shut down the ParaStation system. In order to do this, startup
psiadmin and issue a shutdown command.

 # /opt/parastation/bin/psiadmin
 psiadmin> shutdown

This will terminate all currently running tasks controlled by ParaStation, including psiadmin.

2. Get the installation packages

Get the necessary installation packages from the download section of the ParaStation homepage
www.parastation.com. Required packages are psmgmt, pscom and psmpi2. The documentation
package psdoc is optional.

If you want to compile the packages yourself, download the source packages (*.src.rpm) and rebuild it,
using the rpmbuild command, e.g.:

 # rpmbuild --rebuild psmgmt.5.0.0-0.src.rpm
 # rpm -U psmgmt.5.0.0-0.i586.rpm
 # rpmbuild --rebuild pscom.5.0.0-0.src.rpm
 # rpm -U pscom.5.0.0-0.i586.rpm
 # rpm -U pscom-modules.5.0.0-0.i586.rpm
 # rpmbuild --rebuild psmpi2.5.0.0-1.src.rpm
 # rpm -U psmpi2.5.0.0-1.i586.rpm

The psmgmt package must be installed before the pscom package may be built, similar for pscom and
psmpi2. If you only want to rebuild the kernel modules for the p4sock protocol, use

 # rpmbuild --rebuild --with modules pscom.5.0.0-0.src.rpm

This will render a RPM package with the ParaStation kernel modules suitable for your setup.

3. Install software on the server

Install the ParaStation distribution files on the server machine, if not yet done:

 # rpm -U psmgmt.5.0.0-0.i586.rpm pscom.5.0.0-0.i586.rpm \
 pscom-modules.5.0.0-0.i586.rpm psmpi2.5.0.0-1.i586.rpm \
 psdoc.5.0.0-0.noarch.rpm

4. Install software on the compute nodes

Repeat step 3 for each node. You may omit the documentation package.

5. Configuration

Next, the configuration file parastation.conf has to be adapted to the local settings. The
template file /opt/parastation/config/parastation.conf.tmpl should be copied to /etc/
parastation.conf and adjusted to the local needs. The configuration could be verified using the
command test_config(1) located in /opt/parastation/bin.

This configuration file must be copied to all other nodes.

6. Startup ParaStation

http://www.parastation.com/download.php

84 ParaStation5 Administrator's Guide

Provided the ParaStation daemon is started by the xinetd, run the psiadmin(1) command located in /
opt/parastation/bin and execute the add command. This will bring up the ParaStation daemon
psid(8) on every node.

 # /opt/parastation/bin/psiadmin
 psiadmin> add

Alternatively you can start psiadmin(1) with the -s option.

To install the ParaStation daemon as a system service, started up at boot time, use

 # chk_config -a /etc/init.d/parastation

This step must be repeated for each node.

7. Testing

A brief test of the entire communication and management system can be accomplished by using the
test_nodes(1) command. For a detailed description please refer to Section 4.3, “Testing the installation”.

ParaStation5 Administrator's Guide 85

Appendix B. ParaStation license
The ParaStation software may be used under the following terms and conditions only.

Software and Know-how License Agreement

Version 1.0

between ParTec Cluster Competence Center GmbH

place of business: Possartstr. 20, 81679 München

represented by: Bernhard Frohwitter

- in the following referred to as ParTec -

and you

- in the following referred to as "Licensee" -

Preamble

ParTec has developed a cluster middleware software, comprising a high-performance communication layer.
ParTec decided to license a base version of such software including a significant portion of the high-
performance communication layer royalty free to educational institutions, such as universities, in order to
enable them to evaluate, study and enhance the software. It should, however, be noted that the use of the
software is solely allowed for noncommercial purposes.

If any party, such as enterprises or governmental authorities, wishes to use the software for commercial
purposes in any sense, need to contact ParTec in order to ask for a commercial license. They have,
however, the opportunity to use the software according to this license one-time for a limited period of three
(3) months.

It is acknowledged that ParTec has invested an massive amount of labour and financial means into the
development of the software. It is therefore, requested from each licensee to return the results of their
studies, amendments and enhancements free of charge to ParTec in return for the granted rights as
specified in this contract.

§ 1 Definitions

Technology
means ParTec's cluster middleware solution ParaStation Base Version.

Software
means the computer implementation of the Technology, in object code, source code or any other
machine readable form, the source code of which is available for download. means ParTec's cluster
middleware solution ParaStation Base Version.

Base Version Code
means the Software in form of source code.

Modifications
means any improvement and/or extensions by Licensee of the Base Version Code, including the
underlying concepts.

Derivative Work Code
means the Base Version Code with Modifications.

Documentation
means specifications and description of the Technology.

University Use
means evaluation, research, development and educational use within the educational institution,
excluding use for direct or indirect commercial (including strategic) gain or advantage.

86 ParaStation5 Administrator's Guide

Commercial Use
means any non-consumer use that is not covered by University Use.

Know-how
means program documents and information which relates to Software, also in machine readable form,
in particular the Base Version Code and the detailed comments on the Base Version Code, provided
together with the Base Version Code.

§ 2 Granted Rights

Subject to and conditioned upon Licensees full compliance with the terms and conditions of this license,
ParTec grants Licensee of this contract a non-exclusive, worldwide and royaltyfree license for University
Use and Commercial Use only to:

a. reproduce, prepare derivative works of, display and perform the Base Version Code, in whole or in part,
alone or as part of Derivative Work Code;

b. reproduce, prepare derivative works of and display the Documentation;

c. use the Know-how.

§ 3 Assignment and Sublicenses

Licensee does not have the right to assign the license to third parties or to grant sublicenses.

§ 4 Confidentiality

1. Licensee promises to maintain in confidence the Know-how provided to him by ParTec, in particular not
to transfer it to third parties, and to use the Know-how only in the scope of this agreement.

2. For this purpose Licensee will keep all documents and data carriers containing Knowhow of ParTec
locked up in the same way as he keeps its own secret documents, and Licensee shall require all of its
staff having access to the know-how of ParTec to sign a written confidentiality obligation, which complies
with this agreement.

3. Furthermore Licensee promises not to publish the Software as object code or as source code, nor
the corresponding comments either totally or in part on his own publications or other documentation.
Any functional description of Licensee's Modifications, in particular source code of Modifications, which
shows Know-how, such as the structure of the Software, is prohibited.

4. The above limitations do not apply to information

a. which Licensee already had in written form prior to signing this agreement,

b. which have become accessible to the public due to publication of third parties without the activity of
Licensee.

The Licensee has the burden of proof for the existence of such an exception.

5. The above obligations also remain after the termination of this agreement.

§ 5 Licensee's Duties

1. Licensee shall submit to ParTec any suggestions for improvements and further developments of the
Technology. ParTec may on its own discretion use, implement, publish, exploit, commercialize those
suggestions.

2. Licensee shall provide source code and any documentation for its Modification to ParTec as soon as
practicable, but before the publication of a functional description of Licensee's Modifications. Licensee
shall include

a. a declaration about the origin of the contributed material to the Modification, as in Attachment I,

b. a file with the source code of Licensee's Modification showing all changes and additions made,

c. proper description of its Modification in English language.

3. Licensee shall keep intact all existing copyright notices, any notices referring to particular licenses and
any warranty related statements.

ParaStation5 Administrator's Guide 87

§ 6 Grant-Back

1. Licensee grants ParTec for Modifications being severable improvements a nonexclusive, perpetual,
irrevocable, worldwide and royalty-free license, and for Modifications being non-severable improvements
an exclusive, perpetual, irrevocable, worldwide and royalty-free license to

a. use, reproduce, modify, display, prepare derivative works of and distribute its Modifications and
derivative works thereof, in whole or in part, in source code and object code form, as part of the
Software or other technologies based in whole or in part on Base Version Code or Technology;

b. use, reproduce, modify, display, prepare derivative works of and distribute Licensee's documentation
of its Modifications;

c. sublicense any of the foregoing through multiple tiers of distribution

2. As far as the license granted in section §6(1) covers Licensee's patents and patent applications, Licensee
grants ParTec a non-exclusive, perpetual, irrevocable, worldwide and royalty-free license.

§ 7 Procedure against Infringers

Licensee shall promptly inform ParTec about infringement acts related to the Software, particularly about
offers and distribution of piracy copies.

§ 8 Trademarks and Source Indication

Licensee does not have the right, except in the copyright notice, to use the company name or any trademark
of ParTec. Licensee may, however, in the usual way refer to the fact that Licensee uses ParTec's Software.

§ 9 Exclusion of Liability

1. ParTec is not liable for errors and does not guarantee the specific utility of the Technology for Licensee's
purpose. In particular, ParTec is not liable for indirect or subsequent damages due to errors of the
licensed Software.

2. ParTec is not aware of any rights of third parties which would oppose University Use or Commercial
Use. ParTec is not liable however for the licensed Software and the licensed Know-how being free of
rights of third parties.

3. If Licensee is accused by third parties of infringing intellectual property rights due to the use of the
licensed Software or the licensed Know-how, ParTec promises to provide Licensee with information and
documents in defense against such claims as far as ParTec is able to do so without breach of third party
obligations and while maintaining its own confidentiality interests. All costs involved in such activities
shall be borne by Licensee.

§ 10 Duration

1. If licensee solely makes University Use of the licensed Software and Know-how, this agreement is
entered into for a duration of 1 year. It is extended year by year unless it is terminated 6 months
beforehand by one of the parties.

2. For licensees, which make Commercial Use of the licensed Software or Know-how, this agreement
is entered into for a duration of three (3) months only. Licensee acknowledges that he may only take
advantage of this license for Commercial Use once. For any subsequent retrieval of the Software,
licensee needs to obtain a separate License from ParTec.

§ 11 Termination

1. A termination for cause is possible particularly in the case of one of the following reasons.

a. A breach by the Licensee of one of the obligations under this agreement and the fruitless expiration
of a period of 10 days after warning by ParTec.

b. Beginning of bankruptcy or receivership proceedings relating to the property of the other party.

c. An essential change in the control over the other party, in particular merger or major control by a
third company.

88 ParaStation5 Administrator's Guide

2. A breach by Licensee of any one of the obligations under sections §4, §5 and §6, will automatically
terminate Licensee's rights under this license.

§ 12 Rights after Expiration of the Agreement

1. All rights of Licensee on the use of the Base Version Code end at the expiration or termination of this
agreement.

2. Licensee promises to return to ParTec within one week after the expiration or termination of the
agreement all relevant documents relating to the Base Version Code, whether secret or not, as well as
all copies made and to delete any copies retrieved by downloading or copies thereof.

§ 13 Salvatorian clause

1. Should a provision of this agreement be invalid or become invalid or should this agreement contain an
omission, then the legal effect of the other provisions shall not thereby be affected.

2. Instead of the invalid provision a valid provision is deemed to have been agreed upon which comes
closest to what the parties intended commercially; the same applies in the case of an omission.

§ 14 Changes to this agreement

Any change of this agreement shall be made in writing, no collateral agreements to this agreement have
been made.

§ 15 Jurisdiction and Applicable Law

For all controversies out of this agreement the patent chamber of the District Court Munich I shall have
jurisdiction. The applicable law shall be that of the Federal Republic of Germany excluding United Nations
Convention on Contracts for the International Sale of Goods (CISG) and International Private Law.

Attachment I - Declaration of Origin

Material covered by this certificate (version, release, etc.):

Was any portion of the software material written by anyone other than you or your employees within the
scope of their employment? YES/NO

Was any portion of the software material (e.g., Code, associated documentation, etc.) derived from
preexisting works (either yours or a third party's), including any code from freeware, shareware, electronic
bulletin boards, or the Internet? YES/NO

Please let us know any circumstance which might affect ParTec's ability to reproduce, distribute and
market this software material, including whether your software material was prepared from any preexisting
materials which have any: (a) confidentiality or trade secret restrictions to others; (b) known or possible
royalty obligations to others; (c) used other preexisting materials developed for another party or customer
(including government) where you may not have retained full rights to such other preexisting materials.

You recognize that, for copyright registration or enforcement of legal rights relating to the furnished software
material, ParTec may need you to produce additional information related to the software material. You
hereby agree to cooperate with ParTec and provide such information to ParTec at ParTec s request. As an
authorized representative of your institution, you hereby certify the above to be true and accurate.

BY: ________________________________ (Authorized Signature)

Name: ________________________________ (Type or Print)

Title: ________________________________

ParaStation5 Administrator's Guide 89

Appendix C. Upgrading ParaStation4
to ParaStation5
This appendix explains how to upgrade an existing ParaStation4 installation to the current ParaStation5
version.

C.1. Building and installing ParaStation5 packages
Just recompile the packages:

 # rpmbuild --rebuild psmgmt.5.0.0-0.src.rpm
 # rpm -U psmgmt.5.0.0-0.i586.rpm
 # rpmbuild --rebuild pscom.5.0.0-0.src.rpm
 # rpm -U pscom.5.0.0-0.i586.rpm
 # rpm -U pscom-modules.5.0.0-0.i586.rpm
 # rpmbuild --rebuild psmpi2.5.0.0-1.src.rpm
 # rpm -U psmpi2.5.0.0-1.i586.rpm

Before installing the new packages, stop the ParaStation psid daemon on each node.
This will terminate all currently running jobs!

Install the psmgmt, pscom and psmpi2 packages on all nodes using the rpm command. Install the psdoc
package holding the documantation on the login node(s) and frontend servers.

The existing ParaStation4 configuation file /opt/parastation/config/parastation.conf is just
fine for ParaStation5. If new features like process pinning should be used, adjust the existing configuration
file. Look for pinProcs, CPUmap, bindMem, supplGrps and RLimit Core entries in the new template
file parastation.conf.tmpl, copy them to the current configuration file and adjust them to your needs.

The configuration file of ParaStation5 located in /etc is no longer a symbolic link to
/opt/parastation/config/parastation.conf, therefore we recommend to
copy this file to /etc.

Restart the ParaStation daemons:

 # psiadmin -s

This will startup the psid on all nodes of the cluster. Check with psiadmin command if all nodes and
interconnects are available.

C.2. Changes to the runtime environment
When running applications with ParaStation5, some differences to ParaStation4 must be observed.

First of all, jobs must be started using the new mpiexec command. Refer to mpiexec(8) for options and
details.

The former mpirun command is no longer supported! If it is still available, due to an ParaStation4 mpich-
ps4 package still installed, this command will not run executables compiled and linked with ParaStation5!

In addition, jobs may no longer be started by running the executable, like

 $./myprog …

Changes to the runtime environment

90 ParaStation5 Administrator's Guide

Use the mpiexec command instead!

Executables linked with ParaStation4 can be run using the new mpiexec command. In this case, the option
-b or --bnr is required.

The environment variable PSP_P4SOCK was renamed to PSP_P4S, but still recognized. Within this version
of ParaStation, both names may be used. Likewise, The environment variable PSP_SHAREDMEM was
renamed to PSP_SHM, but also still recognized.

ParaStation5 Administrator's Guide 91

Glossary
Address Resolution Protocol A sending host decides, through a protocols routing mechanism, that it

wants to transmit to a target host located some place on a connected piece
of a physical network. To actually transmit the hardware packet usually
a hardware address must be generated. In the case of Ethernet this is
48 bit Ethernet address. The addresses of hosts within a protocol are
not always compatible with the corresponding hardware address (being
different lengths or values).

The Address Resolution Protocol (ARP) is used by the sending host in
order to resolve the Ethernet address of the target host from its IP address.
It is described in the RFC 826. The ARP is part of the TCP/IP protocol
family.

Administration Network The administration network is used for exchanging (meta) data used for
administrative tasks between cluster nodes.

This network typically carries only a moderate data rate and can be entirely
separated from the data network. Almost always, Ethernet (Fast or more
and more Gigabit) is used for this purpose.

Administrative Task A single process running on one of the compute nodes within the cluster.
This process does not communicate with other processes using MPI.

This task will not be accounted within the ParaStation process
management, ie. it will not allocate a dedicated CPU. Thus, administration
tasks may be startet in addition to parallel tasks.

See also Serial Task for tasks accounted with ParaStation.

admin-task See Administrative Task.

ARP See Address Resolution Protocol.

Data Network The data network is used for exchanging data between the compute
processes on the cluster nodes. Typically, high bandwidth and low latency
is required for this kind of network.

Interconnect types used for this network are Myrinet or InfiniBand, and
(Gigabit) Ethernet for moderate bandwidth and latency requirements.

Especially for Ethernet based clusters, the administration and data
network are often collapsed into a single interconnect.

CPU Modern multi-core CPUs provide multiple CPU cores within a physical
CPU package. Within this document, the term CPU will be used to refer to
a independing computing core, independent of the physical packaging.

DMA See Direct Memory Access.

Direct Memory Access In the old days devices within a computer were not able to put data into
memory on their own but the CPU had to fetch it from them and to store
it to the final destination manually.

Nowadays devices as Ethernet cards, harddisk controllers, Myrinet cards
etc. are capable to store chunks of data into memory on their own. E.g. a
disk controller is told to fetch an amount of memory from a hard disk and

http://www.faqs.org/rfcs/rfc826.html

92 ParaStation5 Administrator's Guide

to store it to a given address. The rest of the jobs is done by this controller
without producing further load to the CPU.

Obviously this concept helps to disburden the CPU from work which is not
its first task and thus gives more power to solve the actual application.

Forwarder See ParaStation Forwarder.

Logger See ParaStation Logger.

Master Node The evaluation of temporary node lists while spawning new tasks is done
only by one particular psid(8) within the cluster. The node running this
daemon is called master node.

The master node is dynamically selected within the cluster and may
change, if the current master node is no longer available. Election is based
on the node IDs, refer to parastation.conf(5).

Network Interface Card The physical device which connects a computer to a network. Examples
are Ethernet cards (which are nowadays often found to be on board) or
Myrinet cards.

NIC See Network Interface Card.

Non-Uniform memory
access (NUMA)

Non-Uniform memory access describes the fact that for some
multiprocessor design the access time to the memory depends on the
location of this memory. Within this designs, the memory is typically closely
attached to a CPU. CPUs have access to memory attached to other CPUs
using additional logic inducing additional latency. Therefore the access
time for different memory addresses may vary.

Parallel Task A bunch of processes distributed within the cluster forming an instance
of a parallel application. E.g. a MPI program running on several nodes
of a cluster can only act as a whole but consists of individual processes
on each node. ParaStation knows about their relationship and can handle
them as a distributed parallel task running on the cluster.

Sometimes also referred as job.

ParaStation Logger The counterpart to the ParaStation Forwarder. This process receives all
output collected by the forwarder processes and sends it to the final
destination, stdout or stderr. Furthermore input to the ParaStation task is
forwarded to a specific process.

The first process of the task started usually converts to the logger
processes after spawning all the other processes of the parallel task.

ParaStation Forwarder Collects output written by ParaStation controlled processes to stdout or
stderr and sends it to the ParaStation Logger.

Furthermore the forwarder controls the process and sends information
about its exit status to the local daemon.

PMI Process Manager Interface: protocol to standardize startup of tasks of a
parallel job. Implemented in mpd and ParaStation5 psid.

Process The atomic part of a Parallel Task. A process is at first a standard Unix
process. Since ParaStation knows about its membership in a parallel task,
it can be handled in a peculiar way if an event takes place on some other
node (e.g. another process of the task dies unexpectedly, a signal is send
to the task, etc.).

ParaStation5 Administrator's Guide 93

Serial Task A single process running on one of the compute nodes within the cluster.
This process does not communicate with other processes using MPI.
ParaStation knows about this process and where it is started from.

A serial task may use multiple threads to execute, but all this threads have
to share a common address space within a node.

94 ParaStation5 Administrator's Guide

	
	Table of Contents
	Chapter 1. Introduction
	1.1. What is ParaStation
	1.2. The history of ParaStation
	1.3. About this document

	Chapter 2. Technical overview
	2.1. Runtime daemon
	2.2. Libraries
	2.3. Kernel modules
	2.4. License

	Chapter 3. Installation
	3.1. Prerequisites
	3.2. Directory structure
	3.3. Installation via RPM packages
	3.4. Installing the documentation
	3.5. Installing MPI
	3.6. Further steps
	3.7. Uninstalling ParaStation5

	Chapter 4. Configuration
	4.1. Configuration of the ParaStation system
	4.2. Enable optimized network drivers
	4.3. Testing the installation

	Chapter 5. Insight ParaStation5
	5.1. ParaStation5 pscom communication library
	5.2. ParaStation5 protocol p4sock
	5.2.1. Directory /proc/sys/ps4/state
	5.2.2. Directory /proc/sys/ps4/ether
	5.2.3. Directory /proc/sys/ps4/local
	5.2.4. p4stat

	5.3. Controlling process placement
	5.4. Using the ParaStation5 queuing facility
	5.5. Exporting environment variables for a task
	5.6. Using non-ParaStation applications
	5.7. ParaStation5 TCP bypass
	5.8. Controlling ParaStation5 communication paths
	5.9. Authentication within ParaStation5
	5.10. Homogeneous user ID space
	5.11. Single system view
	5.12. Parallel shell tool
	5.13. Nodes and CPUs
	5.14. Integration with AFS
	5.15. Integrating external queuing systems
	5.15.1. Integration with PBS PRO
	5.15.2. Integration with OpenPBS
	5.15.3. Integration with Torque
	5.15.4. Integration with LSF
	5.15.5. Integration with LoadLeveler

	5.16. Multicasts
	5.17. Copying files in parallel
	5.18. Using ParaStation accounting
	5.19. Using ParaStation process pinning
	5.20. Using memory binding
	5.21. Spawning processes belonging to all groups
	5.22. Changing the default ports for psid(8)

	Chapter 6. Troubleshooting
	6.1. Problem: psiadmin returns error
	6.2. Problem: node shown as "down"
	6.3. Problem: cannot start parallel task
	6.4. Problem: bad performance
	6.5. Problem: different groups of nodes are seen as up or down
	6.6. Problem: cannot start process on front end
	6.7. Warning issued on task startup
	6.8. Problem: pssh fails
	6.9. Problem: psid does not startup, reports port in use
	6.10. Problem: processes cannot access files on remote nodes

	Reference Pages
	parastation.conf
	psiadmin
	psid
	test_config
	test_nodes
	test_pse
	p4stat
	p4tcp
	psaccounter
	psaccview
	mlisten

	Appendix A. Quick Installation Guide
	Appendix B. ParaStation license
	Appendix C. Upgrading ParaStation4 to ParaStation5
	C.1. Building and installing ParaStation5 packages
	C.2. Changes to the runtime environment

	Glossary

