Dungeon Architect User Guide

for Unity 5

1 Introduction

Dungeon Architect is a plugin for Unity that helps in streamlining the level creation pro-
cess. It allows you to quickly create levels procedurally (or manually) by blocking out
volumes and having the plugin build the environment automatically around it. This doc-
ument introduces you to the various features of Dungeon Architect

2 Generation Overview

A dungeon is generated in two phases

¢ lLayout Generation
e Visual Generation

2.1 Layout Generation
In this phase, only the layout of the dungeon is generated in memory. No meshes or
actors are actually spawned.

Next, the level is populated with invisible points called Markers around the generated
layout. A marker has only a name and a transformation in the 3D space.

In the above image, after the layout has been built, the dungeon builder has populated
the level with marker points around the layout of the dungeon

Layout Generation || Visuals Generation
[Theme1][ThemeN]
. Marker .
t Dungeon Builder “ Emitters } Theming Engme ‘ Scene Provider J
Generate Emit Emit More Generate Scene Spawn Actors in
Layout Markers Markers Commands Gajlead
Model { Marker Pool Scene Commands M Game World

Figure 1: Architecture

2.2 Visual Generation

This phase spawns the actors in your scene. It takes all the marker points inserted in
the previous phase and replaces them with actors (meshes, lights, blueprints etc) that
you have mapped in your theme files

The theming engine is executed for each marker inserted in the Layout generation phase.
Inthe above example, when a Ground marker is encountered, it would look for a Ground
marker mapping in your theme file and replace the marker with the meshes you have
mapped to it

The advantage of this data driven theme based approach is that theme files can be
swapped to give your dungeon a completly different look. Theme files can also be
shared across mulitple projects / teams

Multiple themes can also be used within the same dungeon to create variations

3 Dungeon Prefab

A dungeon prefab is used to build your dungeons. Dungeon Architect supports building
dungeons with different layouts. The current supported ones are Grid, SimpleCity and

.
T 1 g [T 1T _ u |_|. I...xu_l_ TTTTTTTT
ll. |L|-..l|.|_| 1 e g |

il

--~'?"F:ij1

4.

-I |
|| IIBd TIRAVIRNOITES

ey
_-. .— 1 _
._.h. —l‘__J‘ s
R O
EEH
oy
R
.. ITTiLE
\

T

e

Figure 2: Layout of the dungeon in memory

The dungeon layout generator
populates the entire level

¢ ¢ ¢ with invisible named points
called markers

.)] .

.) (] . . .]]

.

.))

] . .

These markers are then
replaced with meshes,
lights, blueprints etc. based
on your theme mapping

Figure 3: Markers populated for a sample room

Markers are replaced with
meshes and other actors,
e [& | & [& | as defined by the user in
the theme asset
Ground Ground Ground Ground
L] [] L] []
Ground Ground Ground Ground
°* o o e JC e e e]
Ground Ground Ground Ground Ground Ground Grount
® [] L] L] L]
Ground Ground Ground Ground
. . ® e [& [@&]

___1 Meshes
Markers

Figure 4: Actors spawned by a theme mapping

Figure 5: Sample Theme Mapping

Figure 6: Result after theme mapping

Floorplan. Drop the appropriate dungeon prefab into the scene and reset its transform

3 Project

| Create T|

T3 Assets 4 Assets » DungeonArchitect » Pre

b 55 AssetStoreTools ==l
b 55 Cartoon Town and Farm ™ DungeonFloarPlanner
¥&3 DungeonArchitect ¥ DungeonGrid A
& Docs ® DungeonSimplecity

b5 Editor i) DungeonSnap

*= Prefabs i) MarkerReplaceVolume
b 55 Scripts i) NavigationCity
b 55 ThirdParty i) NavigationGrid

L

Figure 7: Dungeon Prefab

The dungeon game object generate a procedural layout for your dungeon based on the
various configuration paramters.

After the layout has been generated, it spawns meshes, lights, blueprints etc, based on
the mappings you have defined in the Theme file. This way you can define what meshes
needs to be attached to the floors, walls, ceilings, etc

3.1 Properties

The Dungeon game object lets you perform various actions on your procedural dungeon.
Select the Dungeon game object and have a look at the configuration in the Inspector
window

Build Dungeon: Builds a procedural dungeon. You need to define atleast one theme
before you build

Destroy Dungeon: Destroys an existing dungeon owned by this actor. If you want to
rebuild a dungeon after modifying the theme, there is no need to destroy first and you
can directly click build

Themes: A theme file lets you design the look and feel of your dungeon. The theme
editor lets you interactively design your own themes. You need to specify atleast one
theme file before you can build your dungeon (sample content comes with many pre-
created themes to get you started)

Debug Draw: Draws debug information in the scene view

¥ || ¥ Dungeon (Script) g #.
Script i Dungeon @
Debug Draw -
¥ Dungeon Themes
Size 2
Element 0 MobaK4_Base (Graph) @
Element 1 MobaK4_Trees (Graph) @
[Build Dungeon]
[Destroy Dungeon]

Figure 8: Dungeon Actor Properties

3.2 Config Parameters

Select the Dungeon Actor and navigate to the Inspector window

The various config parameters determine how the layout of the dungeon is generated
procedurally. The default layout generator algorithm is implemented based on the ex-
cellent writeup by TinyKeep’s author Phi Dinh

The various parameters are:

¢ Seed: Changing this number would completely change the layout of the dungeon.
This is the base random number seed that is used to build the dungeon. There is
a convenience function to randomize this value (button labeled R)

¢ Num Cells: The number of cells to use while building the dungeon. You will not
see these cells in the final result. A larger number would create a bigger and more
complex dungeon. A number of 100-150 builds a medium to large sized dungeon.
Experiment with different ranges

¢ Grid Cell Size: The dungeon generator works on a grid based system and required
modular mesh assets to be placed on each cell (floors, walls, doors etc). This
important field specifies the size of the cell to use. This size is determined by the
art asset used in the dungeon theme designed by the artist. In the demo, we
have a floor mesh that is 400x400. The height of a floor is chosen to be 200 units
as the stair mesh is 200 units high. Hence the defaults are set to 400x400x200.

http://www.reddit.com/r/gamedev/comments/1dlwc4/procedural_dungeon_generation_algorithm_explained/

Figure 9: Dungeon Config Parameters

You should change this to the dimension of the modular asset your designer has
created for the dungeon

Min/Max Cell Size: This is how big or small a cell size can be. While generation,
a cell is either converted to a room, corridor or is discarded completely. The Cell
width / height is randomly chosen within this range

Room Area Threshold: If a cell size exceeds past this limit, it is converted into a
room. After cells are promoted to rooms, all rooms are connected to each other
through corridors (either directly or indirectly. See spanning tree later)

Room Aspect Delta: The aspect ratio of the cells (width to height ratio). Keeping
this value near 0 would create square rooms. Bringing this close to 1 would create
elongated / stretched rooms with a high width to height ratio

Corridor Padding: The extra width to apply to one side of a corridor

Corridor Padding Double Sided: Flag to apply the padding on both sides of the
corridor

Height Variation Probability: Tweak this value to increase / reduce the height
variations (and stairs) in your dungeon. A value close to 0 reduces the height
variation and increases as you approach 1. Increasing this value to a higher level
might create dungeons with no place for proper stair placement since there is
too much height variation. A value of 0.2 to 0.4 seems good

Max Allowed Stair Height: The number of logical floor units the dungeon height
can vary. This determines how high the dungeon’s height can vary (e.g. max 2
floors high). Set this value depending on the stair meshes you designer has cre-
ated. In the sample demo, there are two stair meshes, one 200 units high (1 floor)
and another 400 units high (2 floors). So the default is set to 2

Spanning Tree Loop: Determines how many loops you would like to have in your
dungeon. Avalue near O will create fewer loops creating linear dungeons. Avalue
near 1 would create lots of loops, which would look unoriginal. Its good to allow
a few loops so a value close to zero (like 0.2 should be good)

Stair Connection Tolerance: The generator would add stairs to make different
areas of the dungeon accessible. However, we do not want too many stairs. For
e.g., before adding a stair in a particular elevated area, the generator would check
if this area is already accessible from a nearby stair. If so, it would not add it. This
tolerance parameter determines how far to look for an existing path before we

10

can add a stair. Play with this parameter if you see too many stairs close to each
other, or too few

* Normal Mean / Std: The random number generator used in the dungeon gener-
ator does not use a uniform distribution. Instead it uses a normal distribution to
get higher frequency of lower values and fewer higher values (and hence fewer
room cells and a lot more corridor cells). Play with these parameters for different

results

¢ |nitial Room Radius: Internal Usage. Keep to a low value like 10-15

4 Theme Overview

A theme file lets you design the look and feel of you dungeons with an intuitive graph
based approach

Themes are saved as a separate assets on disk. Dungeon Architect also provides an
interactive editor to help you design beautiful levels

Figure 10: An example theme

11

Layout Generation || Visuals Generation
[Theme1]{ ThemeN]
. Marker .
t Dungeon Builder “ Emitters } Theming Engme ‘ Scene Provider J
Generate Emit Emit More Generate Scene Spawn Actors in
Layout Markers Markers Commands Gajlead
Model { Marker Pool Scene Commands { Game World

Figure 11: Themes are used by the Theming Engine

4.1 Create a Theme

To create a new theme, right click in the content browser and choose “Dungeon Theme”

5 Theme Editor

Double click a dungeon theme asset to open it in the Theme Editor

5.1 Interactive Editing

As you design your theme, the scene view automatically gets updated based on your
theme graph mapping. To make this happen, you need to have a dungeon game object
in the scene with the current theme being edited applied to it

Whenever you change the theme, the theme editor would search for a dungeon game
object in the scene (that has this theme applied to it) and rebuild it. This way, you get
an immediate visual feedback while designing the look and feel of you levels

12

i Mavigate To ~ i

Folder

C# Script

@ =
DIE 15 2k

Javascript
Shader

» EternalCrypt » MyThemes

Compute Shader

This folder is empty
NGUI

Reveal in Finder
Open
Delete

Import New Asset...
Import Package
Export Package...

Select Dependencies

Refresh
Reimport

Reimport All

T —

BNne

Sync MonoDevelop Project

Prefab
Audio Mixer

Material

Lens Flare

Render Texture
Lightmap Parameters

Animator Controller
Animation

Animator Override Controller
Avatar Mask

L7

Physic Material

®R ' physics2D Material

GUI Skin
Custom Font
Shader Variant Collection

Legacy

'5(13,16): warning C50414: The

Figure 12: Create a dungeon theme

13

=
| &% | *
& Assets » EternalCrypt » MyThemes

il T

Figure 13: Dungeon Theme Asset

Dungeonarchite | E] Cansole © Animation 2 Animator =

Navigate To ~ Realtime Update

Figure 14: Dungeon Architect Theme Editor

v || ¥ Dungeon (Script) [%,
Script - Dungeon @
Dehua Dray L]

ize 2
Element 0 Ll MobakK4_Base (Graph) @
Element 1 Ll MobaK4_Trees (Graph) @
[Build Dungeon]
[Destroy Dungeon]

Figure 15: Dungeon Architect Theme Editor

14

6 Theme Nodes

A Theme can have 3 category of nodes

¢ Marker Nodes
¢ Visual Nodes
¢ Marker Emitter Nodes

WallDecoration

~ Marker Node

€——— Visual Node

+

WallDecoration <—— Marker Emitter Node

Figure 16: Theme Node categories

15

6.1 Marker Nodes

After the layout generation phase, the scene would be scattered with invisible named
points called Markers. Then, for every marker point in the scene, the theming engine
looks for a corresponding Marker Node with that marker name. If found, it would start
executing all the nodes defined below the marker node.

For e.g., if you have a marker node named Ground, it would be invoked for every Ground
marker found in the scene. Once invoked, the theming engine executes all the nodes
defined below it from left to right untill a certain condition is met

Cround

Figure 17: Ground Node

16

In the above example:

1. Inthe first phase, the layout builder has populated the map with ground markers,
wherever a ground mesh was expected.

2. Then in the next phase, the theming engine ecounters the Ground marker while
iterating through all the markers in the scene

3. It then looks for a Marker Node named Ground in the theme graph

4. Once found, it executes the visual nodes defined below it, starting from left to
right

When you create a new theme asset, the theme graph comes with a set of default
marker nodes.

You can define new marker nodes and build your own hierarcy for advanced theming

Names of custom marker nodes can be changed by double clicking on them, or from
the details tab

6.1.1 Creating marker nodes

To create a marker node, right click anywhere in the empty area and choose Add Marker
Node

6.2 Visual Nodes

Visual nodes are used for spawning visual objects into the scene (e.g. any game objects,
sprites etc). They are usually attached to a marker node and executed whenever an
marker with that name is encountered in the scene. When executed, it spawns a game
object defined within it and places it in the scene where the marker was encountered

You can create the following visual nodes:

¢ Game Object Node - Spawns any type of a game object. Expects a game object
template (e.g. prefabs)

¢ Sprite Node - Spawns a sprite for your 2D games. Expects a sprite reference. Also
have sprite specific properties

17

Add Marker Emitter: Door
Add Marker Emitter: Fence
Add Marker Emitter: FenceSeparator

Add Marker Emitter: Ground

Add Marker Emitter: Stair

Add Marker Emitter: Stair2x

Add Marker Emitter: Wall

Add Marker Emitter: WallDecoration
Add Marker Emitter: WallHalf

Add Marker Emitter: WallHalfSeparator
Add Marker Emitter: WallSeparator

Figure 18: Add new marker node from the Context Menu

18

6.2.1 Creating visual nodes

There are several ways to create a new visual node:

Drag and drop a game object from the Project window on to the theme editor to create
a Game Object or Sprite node

Frop_Chestl

Frop_Chest2

Figure 19: Drag an drop prefabs into the theme editor
Alternatively, drag a link out of the marker node you intend to attach it on and select
the appropriate visual node you desire

Then select the node and assign the game object template from the inspector window

6.3 Marker Emitter Nodes

Marker Emitters emit new markers into the scene. These nodes are attached to visual
nodes and if the parent visual node is executed, it would insert a named marker into
the scene.

Marker Emitter nodes are similar in apperarance to Marker Nodes. However, they are
purple in color and have an input pin, instead of an output pin

In the above example, the Wall Marker has 3 Mesh nodes attached to it with probability
such that any one for the 3 would be randomly chosen.
One of the 3 meshes has a window in it and we would like to decorate that mesh with

19

S
7

Add Game Object Node
Add Sprite Mode

Figure 20: Drag a link from existing marker nodes

20

RoomFreeSpace

MNone

Figure 21: This would create an empty visual node

curtains, but only if that node is selected. So, we define a new Marker named Curtains
(can be any name) and attach curtain meshes to it. Then we emit a Curtain Marker
Node from the desired visual node. Hence, if the mesh in the middle is executed, it
would also insert a marker named Curtain in its position. Then the theming engine
would execute everything beneath the Curtain marker and pick a random curtain and
attach to the wall

This ability of defining your own hierarchy lets you design powerful themes for your
levels

6.3.1 Creating marker emitter nodes
To create a Marker Emitter Node, drag a link out of a visual node and select a marker
name you would like to emit

Alternatively, right click anywhere in the empty area and expand the Marker Emitters
category and click choose a marker to emit

You can create a marker emitter for any of the existing markers in the scene

21

Figure 22: This would create an empty visual node

22

Figure 23: Marker Emitter Sample

6.3.2 Cycles

Cycles are not allowed when you emit markers since we do not want to continuously
emit markers in an infinite loop

The editor takes care of not allowing cycles and notifies you with a user-friendly message
when you attempt to create a connection with a marker emitter that might cause a loop

7 Theme Node Properties

A node in the theme graph can be customized from the Details Tab

7.1 Visual Nodes

Select a visual node (e.g. a Game Object node) and have a look at the details tab:

23

.-.
T
ama
Ll | B

TITITE.
L L

Figure 24: Sample Dungeon Scene

24

Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:

25

CorridorCarpets
CorridorFloorDeco
Curtains

Door

Fence

FenceDeco
FenceSeparator
Ground

PillarDeco

Stair

Stairgx
SupportPillars
SuppertPillarStrong
Wall

WallDeco

WallHalf
WallHalfSeparator
WallSeparator

Figure 25: Choose a Marker to emit from the filtered context menu

Add Game Object Node

Add Sprite Node
Add Marker Node

Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:
Add Marker Emitter:

CorridorCarpets
CorridorFloorDeco
Curtains

Door

Fence

FenceDeco
FenceSeparator
Ground

FillarDeco

Stair

Stair2X
SupportPillars
SupportPillarStrong

Add Marker Emitter: Wall

Add Marker Emitter: WallDeco

Add Marker Emitter: WallHalf

Add Marker Emitter: WallHalfSeparator
Add Marker Emitter: WallSeparator

Figure 26: Choose a Marker %emit from the context menu

Ground

¥

None None

Door

Figure 27: Cycles not allowed

27

tar

| < i

Figure 28: Game Object Node properties

28

The properties that are common to all Visual nodes (Game Object, Sprite etc) are ex-
plained below:

Offset: Apply transformation offset to your visual object relative to the marker location.
This is a very useful property while designing your theme. If the pivot of the mesh your
artist has designed isn’t where you wish it were, you can easily adjust it here to translate
/ rotate it around. You can also scale objects if they are too small / big. While designing
your theme, you’ll find this property useful to re-position your visual nodes, if required.

Probability: This is the probability of attachment. When this node is executed, the
theming engine looks at this variable and rolls a dice and decides whether to insert
this visual object into the scene or not. If this value is 1.0, then it would insert it 100%
of the time. If the value is 0, then it would not insert it since selection probability 0%. If
it is 0.5, then it would insert it 50% of the time

Consume on Attach: If the visual object was indeed spawned into the scene (based on
the probability above), the theming engine would then look at this flag to decide if we
need to execute the next sibling visual node. If it is checked, then execution stops for
this marker. If it is unchecked, the next sibling gets processed. Affinity and Consume on
Attach can be combined to create interesting possiblities in your theme

Selection Logic: Lets you define selection logic scripts. You have seen an example above
of node selected based on random probability (Probability property). The selection pro-
cess can be far more power than a simple random probability based selection. You can
define you own behavior scripts and assign it here so your custom logic can decide if a
node is to be selected or not. More details below

Transform Logic: In the Offset property as seen above, you can define a static offset
transformation to move/scale/rotate the visual object from the marker position. With
Transform Logic, your behavior scripts can provide dynamic tranform offsets based on a
logic. For e.g., you might want to rotate/scale/translate a tree randomly to give natural
variation instead of having them all face the same direction. More on this later

7.1.1 Game Object Node

A game object not lets you instantiate any type of game object on the scene

Template: Specify a game object template (prefab) to spawn in the scene. The node’s
thumbnail will update to reflect the game object assigned here

29

Game Object Node

Template Mone (Game Object) @
Is Static [+

Figure 29: Game Object Node specific properties

Static: Set this if you want to make your object static. If you are spawning dynamic
objects (like NPCs), then uncheck this flag

7.1.2 Sprite Class Node

If you are making a 2D game, you'll use Sprite nodes to build your scene
Here are the sprite specific parameters:

Sprite: Assign the sprite you would like to spawn with this node. The thumbnail of the
node displays this sprite, if assigned

Color: The color tint to assign on the sprite node

Material Override: Specify the different material to use on your sprite (e.g. translucent,
masked etc). If unassigned, the default material would be used that is spawned with
Unity’s sprite object

Sorting Layer Name: The name of the 2D sorting layer used with Unity’s 2D framework

Order in Layer: The order this mesh should appearin the layer. This valueis set in Unity’s
2D sprite object

Static: Set this if you want to make your object static. If you are spawning dynamic
objects (like NPCs), then uncheck this flag

7.2 Marker Node

You can change the name of a marker node by setting it’s Name field

30

#Scene € Game

© Inspector | 88 Navigation = Lighting &
E SpriteNode_143
Sprite Node

Sprite Wiy ptosis_tile-art-batch
Calar

Material Override [None (Materia) |
Sorting Layer Name |
Order In Layer 0

Is Static

Offset
Positian
Rotation
scale

Attachment
Probability 1
Consume On Attach ¥

Physics.
Collision Type Mone

Navigate To ~

O || snadea 20 <) - Gizmos +| (G
Oconsole © Animation 2 Animator Sprite Editor hite

J b

i

Figure 30: 2D Procedural Scene

31

Rules
[Selection Rule None (Man|
[Transform Rule None (Mon|

Corner_NW Corner_N

Cround
Corner_W

Figure 31: Sprite Nodes

32

Figure 32: Sprite Node Properties

Figure 33: Marker Node Properties

33

7.3 Marker Emitter Node

When you emit a marker, you can apply an offset to the emitted marker in the Offset
field

@ Inspector | =
E MarkerEmitterNode_275 @ %,

Marker Emitter Mode: CorridorCarpets

Offset
Position X |0 ¥ 0 Z: |0
Rotation X |0 Y. 0 Z |0
Scale X (1 ¥: (1 |1
Figure 34: Marker Emitter Node Properties
8 Rules

You can attach script to add logic on the theme nodes for more control. There are two
types of rules you can attach to Visual nodes

8.1 Selection Rule

A selection rule is a behavior script that is used to decide if the current node is to be
attached to the scene. This rule replaces the default Probability property that is used
for randomly deciding if visual node needs spawning based on a probability.

Selection rules gives you more power, when you need it. In the rule’s script logic, you
can query the dungeon model and determine if this node should be inserted into the
scene

34

Figure 35: Visual Node Rules

35

8.1.1 Using Selection Rules

To assing an existing rule into the node, Check the Use Selection Logic property and
drop in the Selection Rule script you would like to attach to the node

Rules
[+ Selection Rule - AlternateSelectionRule @ ©
[] Transform Rule Mone (MonoScript) @

Figure 36: Assign an existing Selection Rule
You can create new Selection Rules by overriding the AlternateSelectionRule class
under the DungeonArchitect namespace

using UnityEngine;
using System.Collections;
using DungeonArchitect;

public class MySelectionRule : SelectorRule {
public override bool CanSelect(PropSocket socket, Matrix4x4 propTransform, DungeonM
bool selected = false;
// Your selection logic here

return selected

8.1.2 Example #1
This theme decorates the sides of the walls with props. Sometimes, they get in the way
and block the doors.

A selection rule is used to query the dungeon model and check if it is near a door. If so,
it returns false indicating that we don’t want to insert it here

using UnityEngine;

36

Figure 37: Decorative props blocking the door pathway

37

Figure 38: Decorative props removed near doors

Rules

[+ Selection Rule [l NonDoorTileSelectionf| @
[Transform Rule ir ClampToGro undTran5| @

Figure 39: Rule to avoid creation of props near doors

38

using System.Collections;

using DungeonArchitect;

using DungeonArchitect.Utils;

using DungeonArchitect.Builders.Grid;

public class NonDoorTileSelectionRule : SelectorRule {
public override bool CanSelect(PropSocket socket, Matrix4x4 propTransform, DungeonM
if (model is GridDungeonModel) {
var gridModel = model as GridDungeonModel;
var config = gridModel.Config as GridDungeonConfig;
var cellSize = config.GridCellSize;

var position = Matrix.GetTranslation(ref propTransform);
var gridPositionF = MathUtils.Divide (position, cellSize);
var gridPosition = MathUtils.ToIntVector(gridPositionF);
var cellInfo = gridModel.GetGridCellLookup(gridPosition.x, gridPosition.z);
return !cellInfo.ContainsDoor;
} else {
return false;

8.1.3 Example #2

In this Diablo like dungeon level, the way our camera is setup, we don’t want a room
wall to block our view when we are inside a room

So we create non-view blocking fences instead of walls at certain wall facing directions

In the above theme, the rule is attached to the first node, and if true, it would emit a
RoomblockingWall marker which would create a wall and decorative props. Otherwise,
it would proceed to the next node, which emits a Fence marker and would create the
fence meshes defined under it

This is done with a simple rule that checks the direction of the wall and decides if the
view would be blocked from here

using UnityEngine;

39

¥

b

Solid Walls

A A
Non View blocking Fences &

g

Figure 40: Rule to disallow wall creation in the +X and +Z-axis

Figure 41: View not blocked by walls

40

Game Object Node

Template None (Came Ohject) @
Is Static)
Wall

Offset
Position X0 ¥: 0 Z: 0
Rotation X: 0 Y: |0 Z: |0
Scale X |1 ¥: |1 Z: |1
Artachment

Naone Probabhility 1

MNone

Consume On Attach [

Rules
[Selection Rule | NonViewBlockingSelec, @
[] Transfarm Rule — None (MonoScript) @

Figure 42: Rule assignment to the wall node

using System.Collections.Generic;
using DungeonArchitect;
using DungeonArchitect.Utils;

public class NonViewBlockingSelectionRule : SelectorRule {
static Vector3[] validDirections = new Vector3[] {
new Vector3(1, 0, 0),
new Vector3(o, 0, 1),

}s

public override bool CanSelect(PropSocket socket, Matrix4x4 propTransform, DungeonM
var rotation = Matrix.GetRotation(ref socket.Transform);
var baseDirection = new Vector3(1, 0, 90);
var direction = rotation * baseDirection;
foreach (var testDirection in validDirections) {
var dot = Vector3.Dot(direction, testDirection);
if (dot > ©.707f) return true;
}

return false;

41

8.1.4 Example #3

In this example the towers are too crowded and close to each other.

Figure 43: Towers are too close to each other

A selector rule is created to select alternate cells

using UnityEngine;
using System.Collections;
using DungeonArchitect;

public class AlternateSelectionRule : SelectorRule {
public override bool CanSelect(PropSocket socket, Matrix4x4 propTransform, DungeonM
return (socket.gridPosition.x + socket.gridPosition.z) % 2 == 0;

}

The above logic uses a checker board pattern, where you sum the X and Y position and
return true if it is an even number

42

None

Figure 44: Select alternate cells

Game Object Node
Template
Is Static

Offset

'None (Game Object) [}

o

Position X |0

Rotation X:

)

Scale X |1

Attachment
Probability
Consume On Attach

Rules
[selection Rule
[] Transform Rule

Figure 45: Rule assighment

43

I AlternateSelectionRule @

- None (MonoScript) @

8.2 Transform Rule

Dungeon Architect lets you specify offsets to your visual nodes to move/scale/rotate
them from their relative marker locations.

Offset

Position X0 Yo 0 Z:
Rotation X: |0 Yoo 0 Z
Scale X1 ¥: |1 Z:

Figure 46: Static node Offset

However, if you want a more dynamic way of applying offsets (based on scripts), you
can do so with a Transform Rule. This can be very useful to add variations to your levels
for certain props

8.2.1 Using Transform Rules
To assing an existing rule into the node, Check the Use Transform Logic property and
select the rule you would like to attach to the transform script

You can create new transform rules by implementing the TransformationRule class
under the DungeonArchitect namespace

using UnityEngine;

using System.Collections;
using DungeonArchitect;

using DungeonArchitect.Utils;

public class RandomRotYTransformRule : TransformationRule {

public override void GetTransform(PropSocket socket, DungeonModel model, Matrix4x4
base.GetTransform(socket, model, propTransform, random, out outPosition, out oL

// Your transform logic here.
// Update the outPosition, outRotation or outScale if necessary

44

Game Object Node

LRI Template Mone (Game Object) 2]

Is Static o
Offset
Position X0 Y: [0 Z: 0
Rotation X: O Y: 0 Z: 0

None Scale X: |1 ¥: |1 Z: |1
Attachment
Probability 1

Consume On Attach [

Rules
[Salactinn Bula bloa (Moo

[Transform Rule RandomRot?

Figure 47: Assigning a Transform Rule

45

8.2.2 Example #1

In this example, the cliff rocks are facing the same direction and look boring and unnat-
ural

Figure 48: Rocks without transform rules

using UnityEngine;

using System.Collections;
using DungeonArchitect;

using DungeonArchitect.Utils;

public class RandomCliffTransformRule : TransformationRule {

public override void GetTransform(PropSocket socket, DungeonModel model, Matrix4x4
base.GetTransform(socket, model, propTransform, random, out outPosition, out oL

// Randomly rotate along the Y-axis

var angle = random.NextFloat() * 360;
var rotation = Quaternion.Euler(®@, angle, 90);

46

Figure 49: Rocks randomly rotated and slightly translated

Game Object Node

Template ’m o]
omCliffRock Is Static ™

Offset

Position X: |0 Y: Z: (0

Rotation X: |0 Y: Z: (0

Scale X |1 Y: Z: 1
None

Attachment

Probability 1

Consume On Attach

Rules
[] Selection Rule
[Transform Rule

Figure 50: Rule assignment on the rock’s base node

47

&= Mone (Mono| @

[RandomCliff, @

outRotation = rotation;

// Slightly translate the node
var variation = new Vector3(@.25f, -1, 0.25f);
outPosition = Vector3.Scale (random.OnUnitSphere(), variation);

}

A similar rule is applied to trees to randomly rotate them along the Y-axis and randomly
scale them slightly

8.2.3 Example #2

In this example, the outer trees are spawned in the same height as the dungeon layout

Figure 51: Tree spawned near the dungeon layout

However, we also have a terrain that Dungeon Architect modifies, whose steepness
value is controlled by the user using a curve.

So, we would like to clamp this tree’s base on the dynamic terrain.

48

Figure 52: Proper offset applied to move it to the terrain ground

This is done by finding the height of the terrain at that location, and creating an offset
such that the tree would move up or down to properly clamp on it

using UnityEngine;

using System.Collections;
using DungeonArchitect;

using DungeonArchitect.Utils;

public class ClampToTerrainTransformRule : TransformationRule {

public override void GetTransform(PropSocket socket, DungeonModel model, Matrix4x4
base.GetTransform(socket, model, propTransform, random, out outPosition, out oL

var terrain = Terrain.activeTerrain;
if (terrain == null) {
return;

var position
var currentY

Matrix.GetTranslation(ref propTransform);
position.y;

49

var targetY = LandscapeDataRasterizer.GetHeight(terrain, position.x, position.:

// Apply an offset so we are touching the terrain
outPosition.y = targetY - currentY;

8.2.4 Example #3

In this example a small random rotation is applied to ground tiles. Useful while creating
ruins when laying down broken tile meshes

Figure 53: Transform rule applied to ground tiles
using UnityEngine;
using System.Collections;
using DungeonArchitect;

using DungeonArchitect.Utils;

public class BrokenTilesTransformRule : TransformationRule {

50

public float maxAngle = 5;

public override void GetTransform(PropSocket socket, DungeonModel model, Matrix4x4
base.GetTransform(socket, model, propTransform, random, out outPosition, out oL

var rx = random.Range(-maxAngle, maxAngle);
var ry = random.Range(-maxAngle, maxAngle);
var rz = random.Range(-maxAngle, maxAngle);

outRotation = Quaternion.Euler(rx, ry, rz);

9 Paint Mode

Dungeon Architect also allows you to paint your own dungeon layouts with an editor
extension. This gives you more artistic control as you are no longer restricted by what
the procedural algorithm creates for you

To Activate the Paint Editor mode and start painting, expand the DungeonGrid game
object and select the PaintMode game object. This would change your editor’s scene
view into Paint Mode
= Hierarchy I =
| Create ~ | (GrAll

Main Camera
Directional Light
¥ DungeonGrid
Dungeonltems
Terrain

Figure 54: Activate Paint Mode

When you are in the Paint Mode, the Scene View shows the layout of your dungeon in
Blue

51

You can now paint your layout on the Scene View

¢ Left Click: Paint layout
o Shift + Left Click: Delete painted layout
¢ Mouse Wheel: Change paint height

52

Figure 55: Starting Scene

Figure 56: Painted cells show up in Cyan color

53

Figure 57: Modifed layout

Another Example:

54

55

9.1 Paint Mode Properties

When you select the Paint mode game object, you can set various parameters to control

the paint tool:

i= Hierarchy
| Create | (T All) |

Main Camera
Directional Light

F Dungeonltems
Terrain

Figure 58: Paint Mode Game Object

56

“emspecor e
B PaintMode | [Istatic =

Tag | Untagged 4 | Layer| Default 4|

(Select [Revert Apply J

b .~ Transform) %
v Dungeon Paint Mode Grid (Script) %,
Script li DungeonPaintModeGrid | @
Cursor Logical Height] |
Owverlay Opacity |{}.1 |
Clear Paint Data]

Figure 59: Paint Mode Properties

9.2 Non-Procedural Painting

If you do not want any procedural content to be generated when you paint your level,
then set the Num Cells property to @ in your Dungeon Actor’s Configuration section

v Grid Dungeon Config (Script) #,
Core Config
Seed 0 [R]
Num Cells 1] |

Figure 60: Stop procedural layout generation

This way the dungeon would have an empty layout, allowing you to paint from scratch

If you do want procedural content but want to remove certain procedural areas that are
getting in your way, then use a Negation Volume

10 Volumes
Dungeon Architect provides various volumes to help you influence your dungeon as per

your requirements.

You can find the various volume prefabs under Assets/DungeonArchtitect/Prefabs

57

I- Assets » DungeonArchitect » Prefabs

== Prefabs

Figure 61: Platform Volume Prefab

10.1 Platform Volume

Place a platform volume anywhere in the scene and Dungeon Architect would adjust
the dungeon layout and create a platform (room or corridor) at that location. Scale
the volume along the XZ plane to change the size of the generated platform. You can
move the platform volume with the move tool to the desired location. (Rotation is not
supported)

This gives you artistic control and lets you manipulate the dungeon to suit your needs

To place a platform volume, navigate to Assets/DungeonArchtitect/Prefabs

o PlatformWolume

= Prefabs

Figure 62: Platform Volume Prefab

Drag and drop the Platform Volume Prefab into the scene view

Select the platform volume and have a look at it’s properties

58

Figure 63: Platform Volume Prefab

v Platform Volume (Script)) %
Script [z PlatformVolume | @
Dungeon |NnnE{DungE{m}| | o]
Cell Type | Room ™

Rebuild Dungeon

Figure 64: Platform Volume Properties

59

The Volume needs to know which dungeon the volume belongs to (DA Supports mulitple
dungeons within the same scene).

Assign the dungeon you’d like this volume to affect in the Dungeon field

Select the type of cell to create on this platform’s location (Room or Corridor)

Corridors form isolated platforms in the dungeon which merge nicely with existing cor-
ridor cells

Figure 65: Corridor platform

Rooms always connect to atleast one other room in the dungeon. Changing the Cell
type to Room creates this result

A button to rebuild the dungeon is provided for convenience. It rebuilds the dungeon
in the scene

10.2 Theme Override Volume

Give certain areas of you dungeons a different look and feel. Layout inside this volume
would use the theme defined by this volume.

60

Figure 66: Merges nicely with existing procedural layout

Figure 67: Volume moved up along the Y-axis

61

Figure 68: Volume moved down along the Y-axis

Figure 69: Room platform

62

This is useful for adding variations to your level

Figure 70: Sample Dungeon

Select the theme override volume and have a look at it’s properties
Dungeon: Set the dungeon game object this volume should affect

Override Theme: Set the dungeon theme asset you would like to apply to the geometry
within this volume

Note: When overriding, the themes needs to be designed for the same grid cell size for
proper results

A button to rebuild the dungeon is provided for convenience. It rebuilds the dungeon
in the scene

10.3 Negation Volume
This volume removes all procedural geometry inside of this volume. Use this to get rid
of procedural geometry in areas you do not need or when it is getting in the way while

manually painting your layout

63

Figure 71: Selective areas overriden by Theme Override Volumes

Select the negation volume and have a look at it’s properties
Dungeon: Set the dungeon game object this volume should affect

A button to rebuild the dungeon is provided for convenience. It rebuilds the dungeon
in the scene

10.4 Marker Replacement Volume

A marker replacement volume replaces marker in the dungeon with your own supplied
markers. This is useful if say, you want to replace a wall with a door. You would add a
mapping that would replace all the “Wall” markers with “Door” markers. Since this is
executed before the theming is applied, this gives you a lot of low level control

Check the video for instructions on how to use it

64

Figure 72: Geometry within the volume picks up the theme defined by the volume

L Theme Override Volume (Script)

3

Script v ThemeOverrideVolume

Dungeon |+ DungeonGrid (Dungeon)

oo o #

Override Theme mMrThema_StuneRail (Graph)

[Rebuild Dungeon

Figure 73: Theme Override Volume Properties

65

Figure 74: Procedural geometry we’d like to remove

Figure 75: Geometry inside the volume removed after a rebuild

& |nspector 3% Lighting

[NegationVolume

Tag | Dungeonvolume 4 | Layer| Default

| Select | Revert Apply

b .~ Transform

L Negation Volume (Script)
Script |+ MegationVolume
Dungeon [~ DungeonGrid (Dungeon)
[Rebuild Dungeon

Figure 76: Geometry inside the volume removed after a rebuild

67

View in Youtube

11 Landscape Transformer

Dungeon architect can also modify the landscape when it builds the dungeon. Starting
with an empty terrain, it can modify its height and paint it in intresting ways.

U Uiy £ A GameOtiect Dompomeet oo NGUA Mebiepudt | Viemd Suce o Wndow b SNIGRGE QD WD R O

qokon E=B"TOO0OADE orFiv o REE

Figure 77: Terrain Transformed along the dungeon layout

In the above screenshot, a blank terrain was provided as input to the script. It has
updated its height (based on a steepness curve provided by the user) and painted the
ground, cliffs and pathways with input textures (notice the organic dirt pathway along
the layout)

Here’s another Example:

11.1 Usage

Navigate to Assets/DungeonArchitect/Scripts/Dungeon/Landscape

Attach the script LandscapeTransformerGrid to the Dungeon actor

68

https://www.youtube.com/watch?v=aqc0HsaKOpM

Figure 78: Terrain Transformed along the dungeon layout

£3 Project |

=
|Create'

(@ | &% | *
L= Dunge;nAr{hitect & Assets » DungeonArchitect » Scripts = Dungeon
> Editor " & Filter
&3 Prefabs . LandscapeDataRasterizer
¥ Scripts LandscapeTransformerGrid
v Dungeon
&3 Builders
&3 Configs
b 53 MarkerEmitters

&3 Models

&3 PaintModes
E= Rulac

Figure 79: Landscape Transformer script

69

Figure 80: Landscape Transformer Properties

70

11.1.1 Terrain Setup

Create a new terrain and center it on the dungeon (e.g. set the X and Z to -250).

Also move the terrain down along Y by around -20 (an approx lowest point your dungeon
layout might reach). This is needed because the height map doesn’t take negative values

Select the terrain and go to settings and set the Control Texture Resolution

11.1.2 Properties

Terrain: Assign the this terrain reference to the Terrain field in the above script proper-
ties

Textures: Assign textures to paint the terrain transformer script and the terrain would
be painted based on the texture type

Ground Level Height: Set the default ground level height of the terrain

Layout Level Offset: If set to O, the terrain would raise up to touch the layout of the
dungeon. Sometimes you would like this value to be lower, if you already have a ground
mesh like the image below

Room Elevation Curve: The curve defines the steepness of the landscape around the
rooms

Corridor Elevation Curve: The curve defines the steepness of the landscape around the
corridors

Assign a preset curve if unassigned for the transformer to work properly

Smoothing Distance: The distance to perform the smoothing of the heights using the
above curves

RoomBlurDistance / CorridorBlurDistance: A smooth pathway is painted on the land-
scape using blurring algorithms. These fields affect how the smooth corridor painting is
performed along the rooms and corridors

71

FIFIPIAPARE |

Terrain Settings

()
{
| Bwilt tn $tandard &
{
{
()
{
-}
(7
()
{
{]
[

Figure 81: Increase Terrain texture resolution

72

— Cliff Texture

/ Fill Texture

Figure 82: Landscape Transformer Properties

Figure 83: Landscape touches the layout ground

73

Figure 84: Offset applied to move it down using LayoutLevelOffset

12 Marker Emitter Scripts

Marker Emitters are behavior scripts that lets you emit your own markers anywhere in
the map

As seen previously, Markers are emitted by the Dungeon Builder class around the layout
of the dungeon (e.g. Wall, Ground, Fence etc) and you can insert actors at that location
from the Theme graph. You can even create your own markers emitted off of those
parent markers, but without Marker Emitters you are restricted to the starting markers
the dungeon builder has initially emitted for you

Marker Emitters gives you a lot of flexibility and you can query the dungeon model and
emit markers anywhere in the map

A Marker Emitter is invoked right after the Dungeon Builder emits all the markers for
the dungeon (Ground, Wall etc)

12.1 Creating a Marker Emitter

To create a Marker Emitter, you need to create a script inherited from DungeonMarkerEmitter
under the DungeonArchitect namespace

74

[] Curve

« [e g g

Figure 85: Offset applied to move it down using LayoutLevelOffset

A

75

Figure 86: Corridor pathway texture

76

Layout Generation || Visuals Generation

[Theme1][ThemeN]

. Marker .
[Dungeon Builder W [Emitters J Theming Engme L Scene Provider J
Generate Emit Emit More Generate Scene Spawn Actors in
Layout Markers Markers Commands Game Thread
[Model Marker Pool Scene Commands Game World

Figure 87: Architecture

using UnityEngine;

using System.Collections;
using DungeonArchitect;

using DungeonArchitect.Utils;

public class MyAwesomeEmitter : DungeonMarkerEmitter

{

public override void EmitMarkers(DungeonBuilder builder)
{
base.EmitMarkers(builder);

// Your emitter logic here

// Emit as many markers as you like.
// Emit a marker like this:

// Fill up the marker data
var markerName = "MyMarker"; // This name will be picked up in your theme fi

var transform = Matrix4x4.TRS(position, rotation, scale);

// Additionaly specify the grid based meta data (optional)

77

var gridPosition = new IntVector(); // specify a position value here in grid cc
var cellld = -1;

builder.EmitMarker(markerName, transform, gridPosition, cellld);

}

To attach a marker emitter to your Dungeon game object, simply add this script to the
game object

> Grid Dungeon Config (Script) B,
> Grid Dungeon Builder (Script) o
> Grid Dungeon Model (Script) £,
> Pooled Dungeon Scene Provider (Script) *
v Marker Emitter Find Lowest Point (Script) £,
Script =) MarkerEmitterFindLowestPoint @
Marker Mame [LowestPoint]
Blackboard Key Lowest Y DungeonLowesty
v Marker Emitter Empty Space (Script) £,
Script [+ MarkerEmitterEmptySpace @
Distance To Cover 0
Marker Name EmptySpace
Indexed Marker Name Prefix EmptySpace_
Override Y]
Override ¥ Blackboard Key DungeonLowesty

Figure 88: Marker Emitters attached to the Dungeon Game Object

Explore the existing marker emitters that come with Dungeon Architect under
Assets/DungeonArchitect/Scripts/MarkerEmitters/Grid

12.2 Example #1

In this example, we’d like to decorate the area outside the dungeon layout that Dungeon
Architect has created for us. Since DA creates marker points within the layout, we create
a marker emitter to find nearby points in the empty space and emit markers named
“EmptySpace_N"” where N is 1, 2, 3, 4, 5 etc. These markers are then available to us in
the themem file

78

Figure 90: Theme to decorate the markers created by the emitter script

79

12.3 Example #2

Sometimes, it’s useful to find the lowest point of the dungeon, so a large plane can be
placed there (e.g. water plane, lava plane etc)

The MarkerEmitterFindLowestPoint lets you do just that

Figure 91: An acid plane created at the bottom of the dungeon

This emitter emits a marker named LowestPoint, at the lowest Y point of the dungeon
with the appropriate scale, which we can decorate with any object in the theme file

12.4 Example #3

A marker emitter is created to add extra contextual markers to beautify a 2D level layout
(can also be used with 3D)

Check the marker named MarkerEmitterCornerBeautifier

All the Corner_* markers seen in the theme file above were emitted by the marker
emitter script

80

LowestPoint

Figure 92: Node to attach a plane mesh to this marker

Figure 93: Simple layout with a red ground sprite

81

Figure 94: Added decorated sprites with spatial contextual markers

Figure 95: Theme to add the decorative sprites

82

13 Navigation Mesh

Dungeon Architect supports runtime navigation mesh generation, which is not sup-
ported in Unity 5 yet. This is necessary for moving your NPCs intelligently across your
procedurally generated level

Figure 96: Navigation

This is based on the Recast Navigation library, so it provides very high quality results.

13.1 Setup

To build a navigation mesh during runtime, place the DungeonNavigation prefab on to
your scene

Select the game object you just placed and have a look at the inspector window

To build the nav mesh, input geometry for walkable and blocked areas needs to be pro-
vided. This is done by Triangle Providers

There are two types of triangle providers already attached to the navigation object

83

@ project | L[EGansale

Create ™
Vi Assets 4| Assets » Dungeondrchitect » Pre
b5 AssetStoreTools & & zD

b 55 Cartoon Toewn and Farm
¥&5 DungeonArchitect

ﬁ[}ocs

') DungeenFloarPlanner
b L DungeonGrid
b L DungeonSimplecCity
b3l Editor 4/ DungeonSnap

== Prefabs MarkerReplaceVolume
b 55 Scripts ™ NavigationCity
b+ 5al ThirdParty * MavigationGrid h‘
b8 DungeonArchitect_Samples vmegﬂtiunumume

b 55 DungeonArchitect_ThridParty_Sa i PlatformVolume
(S L

Figure 97: Navigation Prefab

¢ Collision Triagle Provider: Uses the collision mesh of the colliders present in the

scene to build the navigation mesh
¢ Layout Floor Triangle Provider: This provides the floor layout of a dungeon as
walkable area to the navigation mesh input

Assign the dungeon reference you would like to use

Click Build

13.2 Theme Influence
The dungeon objects (meshes, prefabs etc) do not affect the navigation by default. You
need to set the Affects Navigation flag of the visual node to make it affect the navigation.

The object also has to be static in order to affect the navigation. So the Is Static flag also
needs to be set.

Important: You should set the Affects Navigation flag only when it is absolutly required
to maintain a good nav mesh generation speed while building

84

Figure 98: Navigation Properties

Figure 99: Navigation Triangle Provider

85

v @ [Dungeon Nav Mesh (Script) o,

Dungeon Mawv Mesh Builder

Agent Height 2
Agent Radius 0.5
Agent Climb Height 0.5
Cell Size 0.2
Max Crowd Agents 100
Wisualize 2D -

Build Mav Mesh

Figure 100: Navigation Properties

.= | @ Inspector =
MeshNode_12 &%,

Game Object Node
Template Ground]
Is Static [+

Affects Navigation %

Offset

Position X: 0 i 0.01
Rotation X: 0O ¥: |0
Scale X1 Tl

L I Y I
ol Ji= 0 Il =}

Figure 101: Influence Navigation from Theme Graph

v @ [Dungeon Nawv Mesh (Script) oty

Dungeon Mav Mesh Builder

Agent Height z

Agent Radius 0.5

Agent Climb Height |0.5

Cell Size 0.2

Max Crowd Agents 100

Visualize 2D]

[Build Nav Mesh]

Figure 102: Navigation Generation Config

86

13.3 Config

e Cell Size: Controls the mesh generation accuracy vs speed. It determines the res-
olution of the generated nav mesh. Lowering this number will generate nicer
edges and a more accurate navmesh but requires more procesing power and
slower. A good value is between 0.2 to 0.3

¢ Agent Height: The max height of the agents in your game

e Agent Radius: The max radius of the agents in your game

¢ Agent Climb Height: The max height an agent can climb on. Objects with height
lower than this will not be considered obstacles, as the agent would be able to
climb over them

¢ Max Crowd Agents: The max no. of agents that can be present in the game at a
time.

13.4 Triangle Providers

To generate a navigation mesh, the nav mesh system requires input triangles so it can
build a world and generate the nav mesh. Dungeon Architect comes with various tri-
angle providers to help you affect the nav mesh in various ways. We have seen two of
them already above

3 Project] -
|Create' (a ﬁl‘"l"*
V55 Assets 4| Assets » DungeonArchitect » Scripts »
¥&3 DungeonArchitect a CollisionZDTriangleProvider
&3 Docs CollisionTriangleProvider
k55 Editor LayoutFloorTriangleProvider

k55 Prefabs StaticMeshTriangleProvider
¥ &5 Scripts TerrainTriangIePrnvider
k55 Dungeon
k55 Graph
&5 Math

YE3 Navigation
b3 Triangulator
&3 Utils

&3 Volumes

[

Tl
Tl&l Cl_-

Figure 103: Navigation Mesh Triangle Providers

87

e StaticMeshTriangleProvider: Uses the mesh geometry (vertices, indices) for all
the meshes defined in the prefab as a source for the input triangles to generate
the nav mesh. This is usually slower but creates detailed results

¢ CollisionTriangleProvider: Uses the colliders defined in the prefab as a source for
the input triangles to generate the nav mesh. This is much faster than the Stat-
icMesh triangle provider as it works with the low poly collision geoemtry. How-
ever it requires a collider to be present in the prefab to work

¢ TerrainTriangleProvider: Feeds the terrain geometry into the nav mesh genera-
tion system. So you can have your dynamic navmesh build around terrains

¢ LayoutFloorTriangleProvider: Feeds the layout of a dungeon to the nav mesh
generation system. This is usually faster than providing a ground mesh in the
CollisionTriangleProvider

You can use multiple triangle providers at once. You can use only the CollisionTrian-
gleProvider for better performance. However, you can increase the performance even
further by disabling the gound mesh from affecting your navigation (because there will
be lots of ground meshes) and providing that ground data from an additional Layout-
FloorTriangleProvider script.

13.5 Navigation Agent

Use the NavAgent to move your NPCs in the dynamic navigation mesh

3 Project] LIRS
|C|'eate" (e x|‘i"'|“|!
¥ &3 DungeonaArchitect & Assets » DungeonArchitect » Scripts »
&8 Docs " G TriangleProviders
b3 Editor | DungeonNavAgent
b5 Prefabs | DungeonMavAgentZD
V& Scripts DungeoniavAgent3D
k55 Dungeon | DungeonNavMesh
&l Graph 5| DungeonNavMeshzDShader
& Math (J DungeonNavMeshMat
== Navigation 5| DungeonNavMeshShader
&3 TriangleProviders | NavigationBuildInveoker
b5 Triangulator E] MavigationTriangleProvider
&3 Utils
[I

Figure 104: Navigation Mesh Triangle Providers

88

An fully working example of this with Al is provided in the SurvivalShooter demo game
bundled with Dungeon Architect

“eproject

T ZomBear

Figure 105: Sample NPCs with Navigation Agent behaviors

The nav mesh agent requies a CharacterController script to be present in the game ob-
ject
var agent = GetComponent<DungeonNavAgent>();

// Move the agent to the target position
agent.Destination = targetPosition;

var velocity = agent.Velocity; // Agents velocity
var direction = agent.Direction; // Agents movement direction

var distanceToDestination = agent.GetRemainingDistance();

// Stop moving the agent
agent.Stop();

// Resume movement
agent.Resume();

89

® Inspector

Figure 106: Sample NPCs with Navigation Agent behaviors
90

Have a look at the shooter game demo in the samples folder for a complete example

3 Project
I

E_ Assets » DungeonArchitect

-t

-t

= HillSurvivalShooter h‘

Figure 107: Shooter Game Demo in the Samples folder

14 2D Support

Dungeon Architect fully supports 2D. You can use the same workflow to create beautiful
2D levels.

A sample 2D game comes along with Dungeon Architect to help you get started. It de-
mos dynamic 2D procedural level generation, dynamic 2D navigation mesh generation,
2D Al with patrol, seek and search behaviours

2D dynamic navigation mesh generation is also support.

91

scone‘ o SPACE - New MAP
°

Figure 108: Shooter Game Demo

SPAcE - New MAP

Figure 109: Shooter Game Demo

92

Figure 110: Shooter Game Demo

SPACE -NEWMAP
WASD - Move
CLICK - ATTACK
SHIFT - SPRINT

Powered by

Dungeon Architect

Development Build

Figure 111: 2D Demo game

93

Figure 112: Theme with 2D Sprites

15 Dungeon Builders

The Default dungeon builder used to create the layout is swappable and you can provide
your own implementation

This is useful if you want to use your own algorithm for generating the layout of your
dungeons.

You are not limited to a grid based system.

15.1 Creating a new Builder

To create a new builder, subclass DungeonBuilder under the DungeonArchitect
namespace and implement the virtual methods

using UnityEngine;

using System.Collections;

using System.Collections.Generic;
using System.Ling;

94

Figure 113: 2D Demo game

Layout Generation

Visuals Generation

[Tremet J-{ Toamen |
l !

Marker
Emitters

Themlng Englne [Scene Provider J

Generate Emit Emit More Ganerate Scene Spawn Actors in
Layout Markers Markers Commands Game Thread
Model { Marker Pool Scene Commands { Game World }

Figure 114: The Dungeon Builder can be swapped with your own implementation

95

using System.Text;
using DungeonArchitect.Utils;

[ExecuteInEditMode]
public class MyDungeonBuilder : DungeonBuilder

{

public override void BuildDungeon(DungeonConfig config, DungeonModel model) {
base.BuildDungeon(config, model);

// Add your builder logic here

public override void EmitMarkers() {
base.EmitMarkers();

// Emit markers here by calling EmitMarker()

}

Have alook at GridDungeonBuilder under Assets/DungeonArchitect/Scripts/Builders/GridDungeontE
for reference

15.2 Using a different Builder

If you’ve created a builder and would like to use it with your dungeon actor, drop in an
existing dungeon actor, remove the existing builder script and replace it with your own

15.3 Example Builders
Dungeon Architect comes with a sample builder named SimpleCity. It could be used as
a good reference for building your own builders

There are also examples on how this sample builder can be further extended by the
users using Marker Emitters script. It is used emit markers around the boundary of the
city, so theme files can decorate them as strongholds

96

tor
o Pbugeoneid | CJsunc
Tﬂg_ LawLWl—iJ

=
[
G
[
[E
[E

Figure 115: Dungeon builder script attached to the Dungeon game object

97

3 Project

-

&| Agsets » DungeonArchitect » Scrip

E SimpleCityDungeonBuilder h‘
G

SimpleCity

Figure 116: Builder Code Location

= Project

a

&| Agzsets » DungeonArchite

-
=4
-
=4

-
=4

Strongh :h‘_l Medieval

Figure 117: Builder Samples Location

98

Figure 119: Sample City Builder

99

Figure 120: Stronghold Wall Emitter

Figure 121: Stronghold Wall Emitter

100

	Introduction
	Generation Overview
	Layout Generation
	Visual Generation

	Dungeon Prefab
	Properties
	Config Parameters

	Theme Overview
	Create a Theme

	Theme Editor
	Interactive Editing

	Theme Nodes
	Marker Nodes
	Creating marker nodes

	Visual Nodes
	Creating visual nodes

	Marker Emitter Nodes
	Creating marker emitter nodes
	Cycles

	Theme Node Properties
	Visual Nodes
	Game Object Node
	Sprite Class Node

	Marker Node
	Marker Emitter Node

	Rules
	Selection Rule
	Using Selection Rules
	Example #1
	Example #2
	Example #3

	Transform Rule
	Using Transform Rules
	Example #1
	Example #2
	Example #3

	Paint Mode
	Paint Mode Properties
	Non-Procedural Painting

	Volumes
	Platform Volume
	Theme Override Volume
	Negation Volume
	Marker Replacement Volume

	Landscape Transformer
	Usage
	Terrain Setup
	Properties

	Marker Emitter Scripts
	Creating a Marker Emitter
	Example #1
	Example #2
	Example #3

	Navigation Mesh
	Setup
	Theme Influence
	Config
	Triangle Providers
	Navigation Agent

	2D Support
	Dungeon Builders
	Creating a new Builder
	Using a different Builder
	Example Builders

