
Dungeon Architect User Guide

for Unity 5

1 IntroducƟon

Dungeon Architect is a plugin for Unity that helps in streamlining the level creaƟon pro-
cess. It allows you to quickly create levels procedurally (or manually) by blocking out
volumes and having the plugin build the environment automaƟcally around it. This doc-
ument introduces you to the various features of Dungeon Architect

2 GeneraƟon Overview

A dungeon is generated in two phases

• Layout GeneraƟon
• Visual GeneraƟon

2.1 Layout GeneraƟon

In this phase, only the layout of the dungeon is generated in memory. No meshes or
actors are actually spawned.

Next, the level is populated with invisible points called Markers around the generated
layout. Amarker has only a name and a transformaƟon in the 3D space.

In the above image, aŌer the layout has been built, the dungeon builder has populated
the level with marker points around the layout of the dungeon

1



Figure 1: Architecture

2.2 Visual GeneraƟon

This phase spawns the actors in your scene. It takes all the marker points inserted in
the previous phase and replaces them with actors (meshes, lights, blueprints etc) that
you have mapped in your theme files

The theming engine is executed for eachmarker inserted in the Layout generaƟon phase.
In the above example, when aGroundmarker is encountered, itwould look for aGround
marker mapping in your theme file and replace the marker with the meshes you have
mapped to it

The advantage of this data driven theme based approach is that theme files can be
swapped to give your dungeon a completly different look. Theme files can also be
shared across mulitple projects / teams

MulƟple themes can also be used within the same dungeon to create variaƟons

3 Dungeon Prefab

A dungeon prefab is used to build your dungeons. Dungeon Architect supports building
dungeons with different layouts. The current supported ones are Grid, SimpleCity and

2



Figure 2: Layout of the dungeon in memory

3



Figure 3: Markers populated for a sample room

4



Figure 4: Actors spawned by a theme mapping

5



Figure 5: Sample Theme Mapping

Figure 6: Result aŌer theme mapping

6



Floorplan. Drop the appropriate dungeon prefab into the scene and reset its transform

Figure 7: Dungeon Prefab

The dungeon game object generate a procedural layout for your dungeon based on the
various configuraƟon paramters.
AŌer the layout has been generated, it spawns meshes, lights, blueprints etc, based on
themappings you have defined in the Theme file. This way you can define what meshes
needs to be aƩached to the floors, walls, ceilings, etc

3.1 ProperƟes

TheDungeon game object lets you perform various acƟons on your procedural dungeon.
Select the Dungeon game object and have a look at the configuraƟon in the Inspector
window

Build Dungeon: Builds a procedural dungeon. You need to define atleast one theme
before you build

Destroy Dungeon: Destroys an exisƟng dungeon owned by this actor. If you want to
rebuild a dungeon aŌer modifying the theme, there is no need to destroy first and you
can directly click build

Themes: A theme file lets you design the look and feel of your dungeon. The theme
editor lets you interacƟvely design your own themes. You need to specify atleast one
theme file before you can build your dungeon (sample content comes with many pre-
created themes to get you started)

Debug Draw: Draws debug informaƟon in the scene view

7



Figure 8: Dungeon Actor ProperƟes

3.2 Config Parameters

Select the Dungeon Actor and navigate to the Inspector window

The various config parameters determine how the layout of the dungeon is generated
procedurally. The default layout generator algorithm is implemented based on the ex-
cellent writeup by TinyKeep’s author Phi Dinh

The various parameters are:

• Seed: Changing this numberwould completely change the layout of the dungeon.
This is the base random number seed that is used to build the dungeon. There is
a convenience funcƟon to randomize this value (buƩon labeled R)

• Num Cells: The number of cells to use while building the dungeon. You will not
see these cells in the final result. A larger numberwould create a bigger andmore
complex dungeon. A number of 100-150 builds a medium to large sized dungeon.
Experiment with different ranges

• Grid Cell Size: The dungeon generator works on a grid based system and required
modular mesh assets to be placed on each cell (floors, walls, doors etc). This
important field specifies the size of the cell to use. This size is determined by the
art asset used in the dungeon theme designed by the arƟst. In the demo, we
have a floor mesh that is 400x400. The height of a floor is chosen to be 200 units
as the stair mesh is 200 units high. Hence the defaults are set to 400x400x200.

8

http://www.reddit.com/r/gamedev/comments/1dlwc4/procedural_dungeon_generation_algorithm_explained/


Figure 9: Dungeon Config Parameters

9



You should change this to the dimension of the modular asset your designer has
created for the dungeon

• Min/Max Cell Size: This is how big or small a cell size can be. While generaƟon,
a cell is either converted to a room, corridor or is discarded completely. The Cell
width / height is randomly chosen within this range

• Room Area Threshold: If a cell size exceeds past this limit, it is converted into a
room. AŌer cells are promoted to rooms, all rooms are connected to each other
through corridors (either directly or indirectly. See spanning tree later)

• Room Aspect Delta: The aspect raƟo of the cells (width to height raƟo). Keeping
this value near 0would create square rooms. Bringing this close to 1would create
elongated / stretched rooms with a high width to height raƟo

• Corridor Padding: The extra width to apply to one side of a corridor

• Corridor Padding Double Sided: Flag to apply the padding on both sides of the
corridor

• Height VariaƟon Probability: Tweak this value to increase / reduce the height
variaƟons (and stairs) in your dungeon. A value close to 0 reduces the height
variaƟon and increases as you approach 1. Increasing this value to a higher level
might create dungeons with no place for proper stair placement since there is
too much height variaƟon. A value of 0.2 to 0.4 seems good

• Max Allowed Stair Height: The number of logical floor units the dungeon height
can vary. This determines how high the dungeon’s height can vary (e.g. max 2
floors high). Set this value depending on the stair meshes you designer has cre-
ated. In the sample demo, there are two stairmeshes, one 200 units high (1 floor)
and another 400 units high (2 floors). So the default is set to 2

• Spanning Tree Loop: Determines how many loops you would like to have in your
dungeon. A value near 0will create fewer loops creaƟng linear dungeons. A value
near 1 would create lots of loops, which would look unoriginal. Its good to allow
a few loops so a value close to zero (like 0.2 should be good)

• Stair ConnecƟon Tolerance: The generator would add stairs to make different
areas of the dungeon accessible. However, we do not want too many stairs. For
e.g., before adding a stair in a parƟcular elevated area, the generatorwould check
if this area is already accessible from a nearby stair. If so, it would not add it. This
tolerance parameter determines how far to look for an exisƟng path before we

10



can add a stair. Play with this parameter if you see too many stairs close to each
other, or too few

• Normal Mean / Std: The random number generator used in the dungeon gener-
ator does not use a uniform distribuƟon. Instead it uses a normal distribuƟon to
get higher frequency of lower values and fewer higher values (and hence fewer
room cells and a lot more corridor cells). Play with these parameters for different
results

• IniƟal Room Radius: Internal Usage. Keep to a low value like 10-15

4 Theme Overview

A theme file lets you design the look and feel of you dungeons with an intuiƟve graph
based approach

Themes are saved as a separate assets on disk. Dungeon Architect also provides an
interacƟve editor to help you design beauƟful levels

Figure 10: An example theme

11



Figure 11: Themes are used by the Theming Engine

4.1 Create a Theme

To create a new theme, right click in the content browser and choose “Dungeon Theme”

5 Theme Editor

Double click a dungeon theme asset to open it in the Theme Editor

5.1 InteracƟve EdiƟng

As you design your theme, the scene view automaƟcally gets updated based on your
theme graph mapping. To make this happen, you need to have a dungeon game object
in the scene with the current theme being edited applied to it

Whenever you change the theme, the theme editor would search for a dungeon game
object in the scene (that has this theme applied to it) and rebuild it. This way, you get
an immediate visual feedback while designing the look and feel of you levels

12



Figure 12: Create a dungeon theme

13



Figure 13: Dungeon Theme Asset

Figure 14: Dungeon Architect Theme Editor

Figure 15: Dungeon Architect Theme Editor

14



6 Theme Nodes

A Theme can have 3 category of nodes

• Marker Nodes
• Visual Nodes
• Marker EmiƩer Nodes

Figure 16: Theme Node categories

15



6.1 Marker Nodes

AŌer the layout generaƟon phase, the scene would be scaƩered with invisible named
points called Markers. Then, for every marker point in the scene, the theming engine
looks for a correspondingMarker Node with that marker name. If found, it would start
execuƟng all the nodes defined below the marker node.

For e.g., if you have amarker node named Ground, it would be invoked for every Ground
marker found in the scene. Once invoked, the theming engine executes all the nodes
defined below it from leŌ to right unƟll a certain condiƟon is met

Figure 17: Ground Node

16



In the above example:

1. In the first phase, the layout builder has populated themapwith groundmarkers,
wherever a ground mesh was expected.

2. Then in the next phase, the theming engine ecounters the Groundmarker while
iteraƟng through all the markers in the scene

3. It then looks for aMarker Node named Ground in the theme graph
4. Once found, it executes the visual nodes defined below it, starƟng from leŌ to

right

When you create a new theme asset, the theme graph comes with a set of default
marker nodes.

You can define new marker nodes and build your own hierarcy for advanced theming

Names of custom marker nodes can be changed by double clicking on them, or from
the details tab

6.1.1 CreaƟng marker nodes

To create amarker node, right click anywhere in the empty area and chooseAddMarker
Node

6.2 Visual Nodes

Visual nodes are used for spawning visual objects into the scene (e.g. any game objects,
sprites etc). They are usually aƩached to a marker node and executed whenever an
marker with that name is encountered in the scene. When executed, it spawns a game
object defined within it and places it in the scene where the marker was encountered

You can create the following visual nodes:

• Game Object Node - Spawns any type of a game object. Expects a game object
template (e.g. prefabs)

• Sprite Node - Spawns a sprite for your 2D games. Expects a sprite reference. Also
have sprite specific properƟes

17



Figure 18: Add new marker node from the Context Menu

18



6.2.1 CreaƟng visual nodes

There are several ways to create a new visual node:

Drag and drop a game object from the Project window on to the theme editor to create
a Game Object or Sprite node

Figure 19: Drag an drop prefabs into the theme editor

AlternaƟvely, drag a link out of the marker node you intend to aƩach it on and select
the appropriate visual node you desire

Then select the node and assign the game object template from the inspector window

6.3 Marker EmiƩer Nodes

Marker EmiƩers emit new markers into the scene. These nodes are aƩached to visual
nodes and if the parent visual node is executed, it would insert a named marker into
the scene.

Marker EmiƩer nodes are similar in apperarance to Marker Nodes. However, they are
purple in color and have an input pin, instead of an output pin

In the above example, the WallMarker has 3Mesh nodes aƩached to it with probability
such that any one for the 3 would be randomly chosen.
One of the 3 meshes has a window in it and we would like to decorate that mesh with

19



Figure 20: Drag a link from exisƟng marker nodes

20



Figure 21: This would create an empty visual node

curtains, but only if that node is selected. So, we define a newMarker named Curtains
(can be any name) and aƩach curtain meshes to it. Then we emit a Curtain Marker
Node from the desired visual node. Hence, if the mesh in the middle is executed, it
would also insert a marker named Curtain in its posiƟon. Then the theming engine
would execute everything beneath the Curtainmarker and pick a random curtain and
aƩach to the wall

This ability of defining your own hierarchy lets you design powerful themes for your
levels

6.3.1 CreaƟng marker emiƩer nodes

To create a Marker EmiƩer Node, drag a link out of a visual node and select a marker
name you would like to emit

AlternaƟvely, right click anywhere in the empty area and expand the Marker Emitters
category and click choose a marker to emit

You can create a marker emiƩer for any of the exisƟng markers in the scene

21



Figure 22: This would create an empty visual node

22



Figure 23: Marker EmiƩer Sample

6.3.2 Cycles

Cycles are not allowed when you emit markers since we do not want to conƟnuously
emit markers in an infinite loop

The editor takes care of not allowing cycles and noƟfies youwith a user-friendlymessage
when you aƩempt to create a connecƟon with a marker emiƩer that might cause a loop

7 Theme Node ProperƟes

A node in the theme graph can be customized from the Details Tab

7.1 Visual Nodes

Select a visual node (e.g. a Game Object node) and have a look at the details tab:

23



Figure 24: Sample Dungeon Scene

24



Figure 25: Choose a Marker to emit from the filtered context menu

25



Figure 26: Choose a Marker to emit from the context menu26



Figure 27: Cycles not allowed

27



Figure 28: Game Object Node properƟes

28



The properƟes that are common to all Visual nodes (Game Object, Sprite etc) are ex-
plained below:

Offset: Apply transformaƟon offset to your visual object relaƟve to the marker locaƟon.
This is a very useful property while designing your theme. If the pivot of the mesh your
arƟst has designed isn’t where youwish it were, you can easily adjust it here to translate
/ rotate it around. You can also scale objects if they are too small / big. While designing
your theme, you’ll find this property useful to re-posiƟon your visual nodes, if required.

Probability: This is the probability of aƩachment. When this node is executed, the
theming engine looks at this variable and rolls a dice and decides whether to insert
this visual object into the scene or not. If this value is 1.0, then it would insert it 100%
of the Ɵme. If the value is 0, then it would not insert it since selecƟon probability 0%. If
it is 0.5, then it would insert it 50% of the Ɵme

Consume on AƩach: If the visual object was indeed spawned into the scene (based on
the probability above), the theming engine would then look at this flag to decide if we
need to execute the next sibling visual node. If it is checked, then execuƟon stops for
this marker. If it is unchecked, the next sibling gets processed. Affinity and Consume on
AƩach can be combined to create interesƟng possibliƟes in your theme

SelecƟon Logic: Lets you define selecƟon logic scripts. You have seen an example above
of node selected based on random probability (Probability property). The selecƟon pro-
cess can be far more power than a simple random probability based selecƟon. You can
define you own behavior scripts and assign it here so your custom logic can decide if a
node is to be selected or not. More details below

Transform Logic: In the Offset property as seen above, you can define a staƟc offset
transformaƟon to move/scale/rotate the visual object from the marker posiƟon. With
Transform Logic, your behavior scripts can provide dynamic tranform offsets based on a
logic. For e.g., you might want to rotate/scale/translate a tree randomly to give natural
variaƟon instead of having them all face the same direcƟon. More on this later

7.1.1 Game Object Node

A game object not lets you instanƟate any type of game object on the scene

Template: Specify a game object template (prefab) to spawn in the scene. The node’s
thumbnail will update to reflect the game object assigned here

29



Figure 29: Game Object Node specific properƟes

StaƟc: Set this if you want to make your object staƟc. If you are spawning dynamic
objects (like NPCs), then uncheck this flag

7.1.2 Sprite Class Node

If you are making a 2D game, you’ll use Sprite nodes to build your scene

Here are the sprite specific parameters:

Sprite: Assign the sprite you would like to spawn with this node. The thumbnail of the
node displays this sprite, if assigned

Color: The color Ɵnt to assign on the sprite node

Material Override: Specify the different material to use on your sprite (e.g. translucent,
masked etc). If unassigned, the default material would be used that is spawned with
Unity’s sprite object

SorƟng Layer Name: The name of the 2D sorƟng layer used with Unity’s 2D framework

Order in Layer: The order thismesh should appear in the layer. This value is set in Unity’s
2D sprite object

StaƟc: Set this if you want to make your object staƟc. If you are spawning dynamic
objects (like NPCs), then uncheck this flag

7.2 Marker Node

You can change the name of a marker node by seƫng it’s Name field

30



Figure 30: 2D Procedural Scene

31



Figure 31: Sprite Nodes

32



Figure 32: Sprite Node ProperƟes

Figure 33: Marker Node ProperƟes

33



7.3 Marker EmiƩer Node

When you emit a marker, you can apply an offset to the emiƩed marker in the Offset
field

Figure 34: Marker EmiƩer Node ProperƟes

8 Rules

You can aƩach script to add logic on the theme nodes for more control. There are two
types of rules you can aƩach to Visual nodes

8.1 SelecƟon Rule

A selecƟon rule is a behavior script that is used to decide if the current node is to be
aƩached to the scene. This rule replaces the default Probability property that is used
for randomly deciding if visual node needs spawning based on a probability.

SelecƟon rules gives you more power, when you need it. In the rule’s script logic, you
can query the dungeon model and determine if this node should be inserted into the
scene

34



Figure 35: Visual Node Rules

35



8.1.1 Using SelecƟon Rules

To assing an exisƟng rule into the node, Check the Use SelecƟon Logic property and
drop in the SelecƟon Rule script you would like to aƩach to the node

Figure 36: Assign an exisƟng SelecƟon Rule

You can create new SelecƟon Rules by overriding the AlternateSelectionRule class
under the DungeonArchitect namespace

using UnityEngine;
using System.Collections;
using DungeonArchitect;

public class MySelectionRule : SelectorRule {
public override bool CanSelect(PropSocket socket, Matrix4x4 propTransform, DungeonModel model, System.Random random) {

bool selected = false;
// Your selection logic here

return selected
}

}

8.1.2 Example #1

This theme decorates the sides of the walls with props. SomeƟmes, they get in the way
and block the doors.

A selecƟon rule is used to query the dungeon model and check if it is near a door. If so,
it returns false indicaƟng that we don’t want to insert it here

using UnityEngine;

36



Figure 37: DecoraƟve props blocking the door pathway

37



Figure 38: DecoraƟve props removed near doors

Figure 39: Rule to avoid creaƟon of props near doors

38



using System.Collections;
using DungeonArchitect;
using DungeonArchitect.Utils;
using DungeonArchitect.Builders.Grid;

public class NonDoorTileSelectionRule : SelectorRule {
public override bool CanSelect(PropSocket socket, Matrix4x4 propTransform, DungeonModel model, System.Random random) {

if (model is GridDungeonModel) {
var gridModel = model as GridDungeonModel;
var config = gridModel.Config as GridDungeonConfig;
var cellSize = config.GridCellSize;

var position = Matrix.GetTranslation(ref propTransform);
var gridPositionF = MathUtils.Divide (position, cellSize);
var gridPosition = MathUtils.ToIntVector(gridPositionF);
var cellInfo = gridModel.GetGridCellLookup(gridPosition.x, gridPosition.z);
return !cellInfo.ContainsDoor;

} else {
return false;

}
}

}

8.1.3 Example #2

In this Diablo like dungeon level, the way our camera is setup, we don’t want a room
wall to block our view when we are inside a room

So we create non-view blocking fences instead of walls at certain wall facing direcƟons

In the above theme, the rule is aƩached to the first node, and if true, it would emit a
RoomblockingWallmarker which would create a wall and decoraƟve props. Otherwise,
it would proceed to the next node, which emits a Fence marker and would create the
fence meshes defined under it

This is done with a simple rule that checks the direcƟon of the wall and decides if the
view would be blocked from here

using UnityEngine;

39



Figure 40: Rule to disallow wall creaƟon in the +X and +Z-axis

Figure 41: View not blocked by walls

40



Figure 42: Rule assignment to the wall node

using System.Collections.Generic;
using DungeonArchitect;
using DungeonArchitect.Utils;

public class NonViewBlockingSelectionRule : SelectorRule {
static Vector3[] validDirections = new Vector3[] {

new Vector3(1, 0, 0),
new Vector3(0, 0, 1),

};

public override bool CanSelect(PropSocket socket, Matrix4x4 propTransform, DungeonModel model, System.Random random) {
var rotation = Matrix.GetRotation(ref socket.Transform);
var baseDirection = new Vector3(1, 0, 0);
var direction = rotation * baseDirection;
foreach (var testDirection in validDirections) {

var dot = Vector3.Dot(direction, testDirection);
if (dot > 0.707f) return true;

}
return false;

}

41



}

8.1.4 Example #3

In this example the towers are too crowded and close to each other.

Figure 43: Towers are too close to each other

A selector rule is created to select alternate cells

using UnityEngine;
using System.Collections;
using DungeonArchitect;

public class AlternateSelectionRule : SelectorRule {
public override bool CanSelect(PropSocket socket, Matrix4x4 propTransform, DungeonModel model, System.Random random) {

return (socket.gridPosition.x + socket.gridPosition.z) % 2 == 0;
}

}

The above logic uses a checker board paƩern, where you sum the X and Y posiƟon and
return true if it is an even number

42



Figure 44: Select alternate cells

Figure 45: Rule assignment

43



8.2 Transform Rule

Dungeon Architect lets you specify offsets to your visual nodes to move/scale/rotate
them from their relaƟve marker locaƟons.

Figure 46: StaƟc node Offset

However, if you want a more dynamic way of applying offsets (based on scripts), you
can do so with a Transform Rule. This can be very useful to add variaƟons to your levels
for certain props

8.2.1 Using Transform Rules

To assing an exisƟng rule into the node, Check the Use Transform Logic property and
select the rule you would like to aƩach to the transform script

You can create new transform rules by implemenƟng the TransformationRule class
under the DungeonArchitect namespace

using UnityEngine;
using System.Collections;
using DungeonArchitect;
using DungeonArchitect.Utils;

public class RandomRotYTransformRule : TransformationRule {

public override void GetTransform(PropSocket socket, DungeonModel model, Matrix4x4 propTransform, System.Random random, out Vector3 outPosition, out Quaternion outRotation, out Vector3 outScale) {
base.GetTransform(socket, model, propTransform, random, out outPosition, out outRotation, out outScale);

// Your transform logic here.
// Update the outPosition, outRotation or outScale if necessary

44



Figure 47: Assigning a Transform Rule

45



}
}

8.2.2 Example #1

In this example, the cliff rocks are facing the same direcƟon and look boring and unnat-
ural

Figure 48: Rocks without transform rules

using UnityEngine;
using System.Collections;
using DungeonArchitect;
using DungeonArchitect.Utils;

public class RandomCliffTransformRule : TransformationRule {

public override void GetTransform(PropSocket socket, DungeonModel model, Matrix4x4 propTransform, System.Random random, out Vector3 outPosition, out Quaternion outRotation, out Vector3 outScale) {
base.GetTransform(socket, model, propTransform, random, out outPosition, out outRotation, out outScale);

// Randomly rotate along the Y-axis
var angle = random.NextFloat() * 360;
var rotation = Quaternion.Euler(0, angle, 0);

46



Figure 49: Rocks randomly rotated and slightly translated

Figure 50: Rule assignment on the rock’s base node

47



outRotation = rotation;

// Slightly translate the node
var variation = new Vector3(0.25f, -1, 0.25f);
outPosition = Vector3.Scale (random.OnUnitSphere(), variation);

}
}

A similar rule is applied to trees to randomly rotate them along the Y-axis and randomly
scale them slightly

8.2.3 Example #2

In this example, the outer trees are spawned in the same height as the dungeon layout

Figure 51: Tree spawned near the dungeon layout

However, we also have a terrain that Dungeon Architect modifies, whose steepness
value is controlled by the user using a curve.

So, we would like to clamp this tree’s base on the dynamic terrain.

48



Figure 52: Proper offset applied to move it to the terrain ground

This is done by finding the height of the terrain at that locaƟon, and creaƟng an offset
such that the tree would move up or down to properly clamp on it

using UnityEngine;
using System.Collections;
using DungeonArchitect;
using DungeonArchitect.Utils;

public class ClampToTerrainTransformRule : TransformationRule {

public override void GetTransform(PropSocket socket, DungeonModel model, Matrix4x4 propTransform, System.Random random, out Vector3 outPosition, out Quaternion outRotation, out Vector3 outScale) {
base.GetTransform(socket, model, propTransform, random, out outPosition, out outRotation, out outScale);

var terrain = Terrain.activeTerrain;
if (terrain == null) {

return;
}

var position = Matrix.GetTranslation(ref propTransform);
var currentY = position.y;

49



var targetY = LandscapeDataRasterizer.GetHeight(terrain, position.x, position.z);

// Apply an offset so we are touching the terrain
outPosition.y = targetY - currentY;

}
}

8.2.4 Example #3

In this example a small random rotaƟon is applied to ground Ɵles. Useful while creaƟng
ruins when laying down broken Ɵle meshes

Figure 53: Transform rule applied to ground Ɵles

using UnityEngine;
using System.Collections;
using DungeonArchitect;
using DungeonArchitect.Utils;

public class BrokenTilesTransformRule : TransformationRule {

50



public float maxAngle = 5;

public override void GetTransform(PropSocket socket, DungeonModel model, Matrix4x4 propTransform, System.Random random, out Vector3 outPosition, out Quaternion outRotation, out Vector3 outScale) {
base.GetTransform(socket, model, propTransform, random, out outPosition, out outRotation, out outScale);

var rx = random.Range(-maxAngle, maxAngle);
var ry = random.Range(-maxAngle, maxAngle);
var rz = random.Range(-maxAngle, maxAngle);

outRotation = Quaternion.Euler(rx, ry, rz);
}

}

9 Paint Mode

Dungeon Architect also allows you to paint your own dungeon layouts with an editor
extension. This gives you more arƟsƟc control as you are no longer restricted by what
the procedural algorithm creates for you

To AcƟvate the Paint Editor mode and start painƟng, expand the DungeonGrid game
object and select the PaintMode game object. This would change your editor’s scene
view into Paint Mode

Figure 54: AcƟvate Paint Mode

When you are in the Paint Mode, the Scene View shows the layout of your dungeon in
Blue

51



You can now paint your layout on the Scene View

• LeŌ Click: Paint layout
• ShiŌ + LeŌ Click: Delete painted layout
• Mouse Wheel: Change paint height

52



Figure 55: StarƟng Scene

Figure 56: Painted cells show up in Cyan color

53



Figure 57: Modifed layout

Another Example:

54



55



9.1 Paint Mode ProperƟes

When you select the Paintmode game object, you can set various parameters to control
the paint tool:

Figure 58: Paint Mode Game Object

56



Figure 59: Paint Mode ProperƟes

9.2 Non-Procedural PainƟng

If you do not want any procedural content to be generated when you paint your level,
then set the Num Cells property to 0 in your Dungeon Actor’s ConfiguraƟon secƟon

Figure 60: Stop procedural layout generaƟon

This way the dungeon would have an empty layout, allowing you to paint from scratch

If you do want procedural content but want to remove certain procedural areas that are
geƫng in your way, then use a NegaƟon Volume

10 Volumes

Dungeon Architect provides various volumes to help you influence your dungeon as per
your requirements.

You canfind the various volumeprefabs underAssets/DungeonArchtitect/Prefabs

57



Figure 61: Plaƞorm Volume Prefab

10.1 Plaƞorm Volume

Place a plaƞorm volume anywhere in the scene and Dungeon Architect would adjust
the dungeon layout and create a plaƞorm (room or corridor) at that locaƟon. Scale
the volume along the XZ plane to change the size of the generated plaƞorm. You can
move the plaƞorm volume with the move tool to the desired locaƟon. (RotaƟon is not
supported)

This gives you arƟsƟc control and lets you manipulate the dungeon to suit your needs

To place a plaƞorm volume, navigate to Assets/DungeonArchtitect/Prefabs

Figure 62: Plaƞorm Volume Prefab

Drag and drop the Plaƞorm Volume Prefab into the scene view

Select the plaƞorm volume and have a look at it’s properƟes

58



Figure 63: Plaƞorm Volume Prefab

Figure 64: Plaƞorm Volume ProperƟes

59



TheVolumeneeds to knowwhich dungeon the volumebelongs to (DA Supportsmulitple
dungeons within the same scene).

Assign the dungeon you’d like this volume to affect in the Dungeon field

Select the type of cell to create on this plaƞorm’s locaƟon (Room or Corridor)

Corridors form isolated plaƞorms in the dungeon which merge nicely with exisƟng cor-
ridor cells

Figure 65: Corridor plaƞorm

Rooms always connect to atleast one other room in the dungeon. Changing the Cell
type to Room creates this result

A buƩon to rebuild the dungeon is provided for convenience. It rebuilds the dungeon
in the scene

10.2 Theme Override Volume

Give certain areas of you dungeons a different look and feel. Layout inside this volume
would use the theme defined by this volume.

60



Figure 66: Merges nicely with exisƟng procedural layout

Figure 67: Volume moved up along the Y-axis

61



Figure 68: Volume moved down along the Y-axis

Figure 69: Room plaƞorm

62



This is useful for adding variaƟons to your level

Figure 70: Sample Dungeon

Select the theme override volume and have a look at it’s properƟes

Dungeon: Set the dungeon game object this volume should affect

Override Theme: Set the dungeon theme asset you would like to apply to the geometry
within this volume

Note: When overriding, the themes needs to be designed for the same grid cell size for
proper results

A buƩon to rebuild the dungeon is provided for convenience. It rebuilds the dungeon
in the scene

10.3 NegaƟon Volume

This volume removes all procedural geometry inside of this volume. Use this to get rid
of procedural geometry in areas you do not need or when it is geƫng in the way while
manually painƟng your layout

63



Figure 71: SelecƟve areas overriden by Theme Override Volumes

Select the negaƟon volume and have a look at it’s properƟes

Dungeon: Set the dungeon game object this volume should affect

A buƩon to rebuild the dungeon is provided for convenience. It rebuilds the dungeon
in the scene

10.4 Marker Replacement Volume

A marker replacement volume replaces marker in the dungeon with your own supplied
markers. This is useful if say, you want to replace a wall with a door. You would add a
mapping that would replace all the “Wall” markers with “Door” markers. Since this is
executed before the theming is applied, this gives you a lot of low level control

Check the video for instrucƟons on how to use it

64



Figure 72: Geometry within the volume picks up the theme defined by the volume

Figure 73: Theme Override Volume ProperƟes

65



Figure 74: Procedural geometry we’d like to remove

66



Figure 75: Geometry inside the volume removed aŌer a rebuild

Figure 76: Geometry inside the volume removed aŌer a rebuild

67



View in Youtube

11 Landscape Transformer

Dungeon architect can also modify the landscape when it builds the dungeon. StarƟng
with an empty terrain, it can modify its height and paint it in intresƟng ways.

Figure 77: Terrain Transformed along the dungeon layout

In the above screenshot, a blank terrain was provided as input to the script. It has
updated its height (based on a steepness curve provided by the user) and painted the
ground, cliffs and pathways with input textures (noƟce the organic dirt pathway along
the layout)

Here’s another Example:

11.1 Usage

Navigate to Assets/DungeonArchitect/Scripts/Dungeon/Landscape

AƩach the script LandscapeTransformerGrid to the Dungeon actor

68

https://www.youtube.com/watch?v=aqc0HsaKOpM


Figure 78: Terrain Transformed along the dungeon layout

Figure 79: Landscape Transformer script

69



Figure 80: Landscape Transformer ProperƟes

70



11.1.1 Terrain Setup

Create a new terrain and center it on the dungeon (e.g. set the X and Z to -250).

Alsomove the terrain down along Y by around -20 (an approx lowest point your dungeon
layoutmight reach). This is needed because the heightmapdoesn’t take negaƟve values

Select the terrain and go to seƫngs and set the Control Texture ResoluƟon

11.1.2 ProperƟes

Terrain: Assign the this terrain reference to the Terrain field in the above script proper-
Ɵes

Textures: Assign textures to paint the terrain transformer script and the terrain would
be painted based on the texture type

Ground Level Height: Set the default ground level height of the terrain

Layout Level Offset: If set to 0, the terrain would raise up to touch the layout of the
dungeon. SomeƟmes you would like this value to be lower, if you already have a ground
mesh like the image below

Room ElevaƟon Curve: The curve defines the steepness of the landscape around the
rooms

Corridor ElevaƟon Curve: The curve defines the steepness of the landscape around the
corridors

Assign a preset curve if unassigned for the transformer to work properly

Smoothing Distance: The distance to perform the smoothing of the heights using the
above curves

RoomBlurDistance / CorridorBlurDistance: A smooth pathway is painted on the land-
scape using blurring algorithms. These fields affect how the smooth corridor painƟng is
performed along the rooms and corridors

71



Figure 81: Increase Terrain texture resoluƟon

72



Figure 82: Landscape Transformer ProperƟes

Figure 83: Landscape touches the layout ground

73



Figure 84: Offset applied to move it down using LayoutLevelOffset

12 Marker EmiƩer Scripts

Marker EmiƩers are behavior scripts that lets you emit your own markers anywhere in
the map

As seen previously,Markers are emiƩed by the Dungeon Builder class around the layout
of the dungeon (e.g. Wall, Ground, Fence etc) and you can insert actors at that locaƟon
from the Theme graph. You can even create your own markers emiƩed off of those
parent markers, but withoutMarker EmiƩers you are restricted to the starƟng markers
the dungeon builder has iniƟally emiƩed for you

Marker EmiƩers gives you a lot of flexibility and you can query the dungeon model and
emit markers anywhere in the map

A Marker EmiƩer is invoked right aŌer the Dungeon Builder emits all the markers for
the dungeon (Ground, Wall etc)

12.1 CreaƟng a Marker EmiƩer

To create aMarker EmiƩer, youneed to create a script inherited fromDungeonMarkerEmitter
under the DungeonArchitect namespace

74



Figure 85: Offset applied to move it down using LayoutLevelOffset

75



Figure 86: Corridor pathway texture

76



Figure 87: Architecture

using UnityEngine;
using System.Collections;
using DungeonArchitect;
using DungeonArchitect.Utils;

public class MyAwesomeEmitter : DungeonMarkerEmitter
{

public override void EmitMarkers(DungeonBuilder builder)
{

base.EmitMarkers(builder);

// Your emitter logic here

// Emit as many markers as you like.
// Emit a marker like this:

// Fill up the marker data
var markerName = "MyMarker"; // This name will be picked up in your theme file
var transform = Matrix4x4.TRS(position, rotation, scale);

// Additionaly specify the grid based meta data (optional)

77



var gridPosition = new IntVector(); // specify a position value here in grid coordinates
var cellId = -1;

builder.EmitMarker(markerName, transform, gridPosition, cellId);
}

}

To aƩach a marker emiƩer to your Dungeon game object, simply add this script to the
game object

Figure 88: Marker EmiƩers aƩached to the Dungeon Game Object

Explore the exisƟng marker emiƩers that come with Dungeon Architect under
Assets/DungeonArchitect/Scripts/MarkerEmitters/Grid

12.2 Example #1

In this example, we’d like to decorate the area outside the dungeon layout that Dungeon
Architect has created for us. Since DA createsmarker points within the layout, we create
a marker emiƩer to find nearby points in the empty space and emit markers named
“EmptySpace_N” where N is 1, 2, 3, 4, 5 etc. These markers are then available to us in
the themem file

78



Figure 89: Trees spawned outside the dungeon layout

Figure 90: Theme to decorate the markers created by the emiƩer script

79



12.3 Example #2

SomeƟmes, it’s useful to find the lowest point of the dungeon, so a large plane can be
placed there (e.g. water plane, lava plane etc)

The MarkerEmitterFindLowestPoint lets you do just that

Figure 91: An acid plane created at the boƩom of the dungeon

This emiƩer emits a marker named LowestPoint, at the lowest Y point of the dungeon
with the appropriate scale, which we can decorate with any object in the theme file

12.4 Example #3

Amarker emiƩer is created to add extra contextual markers to beauƟfy a 2D level layout
(can also be used with 3D)

Check the marker named MarkerEmitterCornerBeautifier

All the Corner_* markers seen in the theme file above were emiƩed by the marker
emiƩer script

80



Figure 92: Node to aƩach a plane mesh to this marker

Figure 93: Simple layout with a red ground sprite

81



Figure 94: Added decorated sprites with spaƟal contextual markers

Figure 95: Theme to add the decoraƟve sprites

82



13 NavigaƟon Mesh

Dungeon Architect supports runƟme navigaƟon mesh generaƟon, which is not sup-
ported in Unity 5 yet. This is necessary for moving your NPCs intelligently across your
procedurally generated level

Figure 96: NavigaƟon

This is based on the Recast NavigaƟon library, so it provides very high quality results.

13.1 Setup

To build a navigaƟon mesh during runƟme, place the DungeonNavigaƟon prefab on to
your scene

Select the game object you just placed and have a look at the inspector window

To build the nav mesh, input geometry for walkable and blocked areas needs to be pro-
vided. This is done by Triangle Providers

There are two types of triangle providers already aƩached to the navigaƟon object

83



Figure 97: NavigaƟon Prefab

• Collision Triagle Provider: Uses the collision mesh of the colliders present in the
scene to build the navigaƟon mesh

• Layout Floor Triangle Provider: This provides the floor layout of a dungeon as
walkable area to the navigaƟon mesh input

Assign the dungeon reference you would like to use

Click Build

13.2 Theme Influence

The dungeon objects (meshes, prefabs etc) do not affect the navigaƟon by default. You
need to set theAffects NavigaƟon flag of the visual node tomake it affect the navigaƟon.

The object also has to be staƟc in order to affect the navigaƟon. So the Is StaƟc flag also
needs to be set.

Important: You should set the Affects NavigaƟon flag only when it is absolutly required
to maintain a good nav mesh generaƟon speed while building

84



Figure 98: NavigaƟon ProperƟes

Figure 99: NavigaƟon Triangle Provider

85



Figure 100: NavigaƟon ProperƟes

Figure 101: Influence NavigaƟon from Theme Graph

Figure 102: NavigaƟon GeneraƟon Config

86



13.3 Config

• Cell Size: Controls the mesh generaƟon accuracy vs speed. It determines the res-
oluƟon of the generated nav mesh. Lowering this number will generate nicer
edges and a more accurate navmesh but requires more procesing power and
slower. A good value is between 0.2 to 0.3

• Agent Height: The max height of the agents in your game
• Agent Radius: The max radius of the agents in your game
• Agent Climb Height: The max height an agent can climb on. Objects with height

lower than this will not be considered obstacles, as the agent would be able to
climb over them

• Max Crowd Agents: The max no. of agents that can be present in the game at a
Ɵme.

13.4 Triangle Providers

To generate a navigaƟon mesh, the nav mesh system requires input triangles so it can
build a world and generate the nav mesh. Dungeon Architect comes with various tri-
angle providers to help you affect the nav mesh in various ways. We have seen two of
them already above

Figure 103: NavigaƟon Mesh Triangle Providers

87



• StaƟcMeshTriangleProvider: Uses the mesh geometry (verƟces, indices) for all
the meshes defined in the prefab as a source for the input triangles to generate
the nav mesh. This is usually slower but creates detailed results

• CollisionTriangleProvider: Uses the colliders defined in the prefab as a source for
the input triangles to generate the nav mesh. This is much faster than the Stat-
icMesh triangle provider as it works with the low poly collision geoemtry. How-
ever it requires a collider to be present in the prefab to work

• TerrainTriangleProvider: Feeds the terrain geometry into the nav mesh genera-
Ɵon system. So you can have your dynamic navmesh build around terrains

• LayoutFloorTriangleProvider: Feeds the layout of a dungeon to the nav mesh
generaƟon system. This is usually faster than providing a ground mesh in the
CollisionTriangleProvider

You can use mulƟple triangle providers at once. You can use only the CollisionTrian-
gleProvider for beƩer performance. However, you can increase the performance even
further by disabling the gound mesh from affecƟng your navigaƟon (because there will
be lots of ground meshes) and providing that ground data from an addiƟonal Layout-
FloorTriangleProvider script.

13.5 NavigaƟon Agent

Use the NavAgent to move your NPCs in the dynamic navigaƟon mesh

Figure 104: NavigaƟon Mesh Triangle Providers

88



An fully working example of this with AI is provided in the SurvivalShooter demo game
bundled with Dungeon Architect

Figure 105: Sample NPCs with NavigaƟon Agent behaviors

The nav mesh agent requies a CharacterController script to be present in the game ob-
ject

var agent = GetComponent<DungeonNavAgent>();

// Move the agent to the target position
agent.Destination = targetPosition;

var velocity = agent.Velocity; // Agents velocity
var direction = agent.Direction; // Agents movement direction
var distanceToDestination = agent.GetRemainingDistance();

// Stop moving the agent
agent.Stop();

// Resume movement
agent.Resume();

89



Figure 106: Sample NPCs with NavigaƟon Agent behaviors
90



Have a look at the shooter game demo in the samples folder for a complete example

Figure 107: Shooter Game Demo in the Samples folder

14 2D Support

Dungeon Architect fully supports 2D. You can use the sameworkflow to create beauƟful
2D levels.

A sample 2D game comes along with Dungeon Architect to help you get started. It de-
mos dynamic 2D procedural level generaƟon, dynamic 2D navigaƟon mesh generaƟon,
2D AI with patrol, seek and search behaviours

2D dynamic navigaƟon mesh generaƟon is also support.

91



Figure 108: Shooter Game Demo

Figure 109: Shooter Game Demo

92



Figure 110: Shooter Game Demo

Figure 111: 2D Demo game

93



Figure 112: Theme with 2D Sprites

15 Dungeon Builders

The Default dungeon builder used to create the layout is swappable and you can provide
your own implementaƟon

This is useful if you want to use your own algorithm for generaƟng the layout of your
dungeons.

You are not limited to a grid based system.

15.1 CreaƟng a new Builder

To create a new builder, subclass DungeonBuilder under the DungeonArchitect
namespace and implement the virtual methods

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using System.Linq;

94



Figure 113: 2D Demo game

Figure 114: The Dungeon Builder can be swapped with your own implementaƟon

95



using System.Text;
using DungeonArchitect.Utils;

[ExecuteInEditMode]
public class MyDungeonBuilder : DungeonBuilder
{

public override void BuildDungeon(DungeonConfig config, DungeonModel model) {
base.BuildDungeon(config, model);

// Add your builder logic here
}

public override void EmitMarkers() {
base.EmitMarkers();

// Emit markers here by calling EmitMarker()
}

}

Have a look atGridDungeonBuilderunderAssets/DungeonArchitect/Scripts/Builders/GridDungeonBuilder.cs
for reference

15.2 Using a different Builder

If you’ve created a builder and would like to use it with your dungeon actor, drop in an
exisƟng dungeon actor, remove the exisƟng builder script and replace it with your own

15.3 Example Builders

Dungeon Architect comes with a sample builder named SimpleCity. It could be used as
a good reference for building your own builders

There are also examples on how this sample builder can be further extended by the
users using Marker EmiƩers script. It is used emit markers around the boundary of the
city, so theme files can decorate them as strongholds

96



Figure 115: Dungeon builder script aƩached to the Dungeon game object

97



Figure 116: Builder Code LocaƟon

Figure 117: Builder Samples LocaƟon

98



Figure 118: Sample City Builder

Figure 119: Sample City Builder

99



Figure 120: Stronghold Wall EmiƩer

Figure 121: Stronghold Wall EmiƩer

100


	Introduction
	Generation Overview
	Layout Generation
	Visual Generation

	Dungeon Prefab
	Properties
	Config Parameters

	Theme Overview
	Create a Theme

	Theme Editor
	Interactive Editing

	Theme Nodes
	Marker Nodes
	Creating marker nodes

	Visual Nodes
	Creating visual nodes

	Marker Emitter Nodes
	Creating marker emitter nodes
	Cycles


	Theme Node Properties
	Visual Nodes
	Game Object Node
	Sprite Class Node

	Marker Node
	Marker Emitter Node

	Rules
	Selection Rule
	Using Selection Rules
	Example #1
	Example #2
	Example #3

	Transform Rule
	Using Transform Rules
	Example #1
	Example #2
	Example #3


	Paint Mode
	Paint Mode Properties
	Non-Procedural Painting

	Volumes
	Platform Volume
	Theme Override Volume
	Negation Volume
	Marker Replacement Volume

	Landscape Transformer
	Usage
	Terrain Setup
	Properties


	Marker Emitter Scripts
	Creating a Marker Emitter
	Example #1
	Example #2
	Example #3

	Navigation Mesh
	Setup
	Theme Influence
	Config
	Triangle Providers
	Navigation Agent

	2D Support
	Dungeon Builders
	Creating a new Builder
	Using a different Builder
	Example Builders


