Series C K-Frame 70-400A, 240-600V

Contents

Description Page
Catalog Number Selection 4
Digitrip 310+ Electronic Trip Unit
Types KD, CKD, HKD, CHKD
Long Delay (LD) and Short Delay (SD) with Flat Response and Override
(125A) (LSI, LSIG, ALSI, ALSIG) . TD012014EN 7
Long Delay (LD) and Short Delay (SD) with Flat Response and Override (250A, 400A) (LSI, LSIG, ALSI, ALSIG) TD012007EN 8
Long Delay Response and Short Delay with 12 T Response Curve and Override (125A) (LS, LSG) TD012015EN 9
Long Delay Response and Short Delay with $12 \top$ Response Curve and Override
(250A, 400A) (LSI, LSIG, ALSI, ALSIG) TD012008EN 10
Types KDC (Current Limiting)
Long Delay (LD) and Short Delay (SD) with Flat Response and Override (125A) (LSI, LSIG, ALSI, ALSIG) . TD012016EN 11
Long Delay (LD) and Short Delay (SD) with Flat Response and Override (240A, 400A) (LSI, LSIG, ALSI, ALSIG) TD012012EN 12
Long Delay Response and Short Delay with 12 T Response Curve and Override (125A) (LS, LSG) TD12017EN 13
Long Delay Response and Short Delay with 12 T Response Curve and Override (250A, 400A) (LS, LSG). TD012013EN 14
Types KD, CKD, HKD, CHKD, and KDC (125A, 250A and 400A)
Ground Fault Delay Response Curve (LSG, LSIG, ALSIG) TD012009EN 15
Remote Maintenance Mode Setting (ALSI, ALSIG) TD012010EN 16
KTThermal/Magnetic Trip Unit
Types KDB, KD, HKD SC-4118-87B 17
Types KDC 2-, 3-, and 4-pole SC-4119-87B 18
Let-through Curves
FDC, JDC, KDC, and LDC--240V AD-29-166A 19
FDC, JDC, KDC, and LDC--480V AD-29-166B 20
FDC, JDC, KDC, and LDC--600V AD-29-166C 21

Powering Business Worldwide

Contents (continued)

Digitrip OPTIM 550/1050 Electronic Trip Unit for all K-Frame
Long Delay I2T and Short Delay I2T Repsonse. SC-6924-98 22

Legacy Trip Unit Types

Earth Leakage Module Curves

UL Earth Leakage Curve ELFD, JD, and KD, three- and four-pole, 110-480V TC01212005E 29
IEC Earth Leakage Curve ELFD, JD, and KD, three- and four-pole, 110-480V TC01212006E 30

KES Digitrip RMS 310 Electronic Trip Unit
Types KDB, CKDB, HKDB, CHKDB, KD, CKD, HKD, CHKD
Types KES3400LS, KES3400LSG . SC-5638-93 31
Types KES3400LSI, KES3400LSIG . SC-5639-93 32
Types KES3250LS, KES3250LSG . SC-5640-93 33
Types KES3250LSI, KES3250LSIG . SC-5641-93 34
Types KES3125LS, KES3125LSG . SC-5642-93 35
Types KES3125LSI, KES3125LSIG . SC-5643-93 36
Type KDC
Types KES3400LS, KES3400LSG . SC-5644-93 37
Types KES3400LSI, KES3400LSIG . SC-5645-93 38
Types KES3250LS, KES3250LSG . SC-5646-93 39
Types KES3250LSI, KES3250LSIG . SC-5647-93 40
Types KES3125LS, KES3125LSG . SC-5648-93 41
Types KES3125LSI, KES3125LSIG . SC-5649-93 42
Types Ground Fault Protection
Types KES3400LSG, KES3400LSIG . SC-5650-93 43
Types KES3250LSG, KES3250LSIG . SC-5651-93 44
Types KES3125LSG, KES3125LSIG. SC-5652-93 45
Type KS Electronic Trip Unit
Type KS (KS3400T, KS3400TG). SC-4156-87A. 46

Note:

Time/Current characteristic curves for Series C K-frame circuit breakers--voltages shown in curve headings are maximum at which the breaker may be applied. Interrupting capacity of individual breaker is tabulated on each curve.

Note:

The following curves are UL489 Listed for use in North America.
The following circuit breakers are derived from Eaton, Westinghouse, or Cutler-Hammer history.
Time Current Curves are engineering reference documents for application and coordination purposes only. For field testing molded case circuit breakers, refer to NEMA AB 4 guidelines.

Note: Unless noted below, all curves remain unchanged from their prior revision.

Revision	Curve Number	Page	Date
Instantaneous curves adjusted		7-14	9-2015
to meet specifications.			
ZSI times added to short delay curves.		7-14	9-2015

Catalog Number Selection

This information is presented only as an aid to understanding catalog numbers.
It is not to be used to build catalog numbers for circuit breakers or trip units.

K-Frame with 310+ Electronic Trip Unit Technology

Table 1. 400A Frame Only

Table 2. 125/250/400A 310+ Electronic Trip Unit

Table 3. 125/ 250/400A K-Frame 310+ Factory Assembled Breaker (2)

[^0]
K-Frame with Thermal-Magnetic Trip Unit Technology

Table 4. Thermal-Magnetic Breaker/Frame

Table 5. Thermal-Magnetic Trip Unit

K-Frame with OPTIM 550/1050 Trip Unit Technology

Table 6. OPTIM 550/1050 Circuit Breaker/Frame

Figure 1. Digitrip 310+ Namplates

Figure 2. Front View of L-Frame Type OPTIM Trip Unit (K and N-Frame Designs are Similar)

Figure 3. Digitrip 310+Trip Units (125A), Long Delay and Short Delay with Flat Response and Override (LSI, LSIG, ALSI, ALSIG) Curve Number TD012014EN, September 2015

Figure 4. Digitrip 310+Trip Units (250A and 400A), Long Delay and Short Delay with Flat Response and Override (LSI, LSIG, ALSI, ALSIG) - Curve Number TD012007EN, September 2015

Digitrip 310+Circuit Breaker Time/Current Curves (Phase Current) Series C K-Frame Circuit Breakers (125A)
Catalog Types: KD, CKD, HKD, CHKD, KDB, CKDB, HKDB, CHKDB
Trip Unit Types: 33 (LS), 35 (LSG)
Long Delay and Short Delay with $I^{\mathbf{2}} \mathbf{T}$ Response

Available Sensors $\left(\mathbf{I}_{\mathbf{r}}\right) /\left(\mathbf{I}_{\mathbf{n}}\right)$	Rated Amperes $\mathbf{1 2 5 A}$
A	55 A
B	60 A
C	70 A
D	80 A
E	90 A
F	100 A
G	110 A
H	125 A

Notes:
$\mathbf{I}_{\mathbf{r}}=$ Continuous Current Setting or Rating Plug Value, $\mathbf{I}_{\mathbf{s}}=$ Current Sensor Frame Rating,
$\mathbf{I}_{\mathbf{n}}=$ Rating Plug Value, $\mathbf{I}_{\mathbf{g}}=$ Ground Current Pickup Multiplier, $\mathbf{I}_{\mathbf{i}}=$ Instantaneous Override Pickup.

1. Curve accuracy applies from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient. For possible continuous ampere derating for ambient above $40^{\circ} \mathrm{C}$, refer to Eaton. Temperatures above $+88^{\circ} \mathrm{C}$ cause an over-temperature protection trip.
2. Application frequency is $50 / 60$ Hertz.
3. There is a memory effect that can act to shorten the long delay. The memory effect comes into play if a current above the long delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in shorter time than normal. The amount of time reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately five minutes is required between overloads to completely reset the memory.
4. The right portion of the curve is determined by the interrupting rating of the circuit breaker
5. The left portion of the curve is shown as a multiple of the Long Delay Setting. (Long Delay Pickup $=115 \%$ of T_{r}. . Range is $110 \%-120 \%$
6. Total clearing times shown include the response times of the trip unit, the breake opening, and the interruption of the current.
7. The Short Delay Pick Up has 9 settings/positions, $2-8$ and $10,12 I_{\text {R }}$.
8. Short Delay $I^{2} T$ band has a tolerance of $\pm 15 \%$
9. Breakpoint back to FLAT response occurs at $8 x I_{R}$ for upper line of the $I^{2} T$ curve.
10. For high fault current levels, an additional fixed instantaneous hardware override is provided at 3000 A (Tolerance $\pm 15 \%$).
11. Maximum clearing time when using zone selective interlocking is 62 ms .

Interrupting Rating

	UL/CSA rms Sym. kA, $\mathbf{5 0 / 6 0} \mathbf{~ H z}$		
Breaker Type	$\mathbf{2 4 0 V}$	$\mathbf{4 8 0 V}$	$\mathbf{6 0 0 V}$
KD, CKD, KDB, CKDB	65	35	25
HKD, CHKD, HKDB, CHKDB	100	65	35

	IEC 60947-2 $\mathbf{~ r m s ~ S y m . ~ k A , ~} \mathbf{5 0 / 6 0 ~ \mathbf { ~ H z }}$		
Breaker Type	$\mathbf{2 4 0 V}$	$\mathbf{3 8 0 V}$	$\mathbf{4 1 5 V}$
KD, CKD, KDB, CKDB	65	40	40
HKD, CHKD, HKDB, CHKDB	100	65	65

Figure 5. Digitrip 310+ Trip Units (125A), Long Delay Response and Short Delay with $\mathrm{I}^{2} \mathrm{~T}$ Response Curve and Override (LS, LSG) TD012015EN, September 2015

Figure 6. Digitrip 310+Trip Units (250A and 400A), Long Delay Response and Short Delay with $\mathrm{I}^{2} \mathrm{~T}$ Response Curve and Override (LS, LSG) - Curve Number TD012008EN, September 2015

Figure 3. Digitrip 310+Trip Units (125A), Long Delay and Short Delay with Flat Response and Override (LSI, LSIG, ALSI, ALSIG) Curve Number TD012016EN, September 2015

Figure 4. Digitrip 310+ Trip Units (250A and 400A), Long Delay and Short Delay with Flat Response and Override (LSI, LSIG, ALSI, ALSIG) - Curve Number TD012012EN, September 2015

Figure 5. Digitrip 310+ Trip Units (125A), Long Delay Response and Short Delay with $\mathrm{I}^{2} \mathrm{~T}$ Response Curve and Override (LS, LSG) TD012017EN, September 2015

Figure 6. Digitrip 310+Trip Units (250A and 400A), Long Delay Response and Short Delay with $I^{2} T$ Response Curve and Override (LS, LSG) - Curve Number TD012013EN, September 2015

Figure 7. Ground Fault Delay Response Curve (LSG, LSIG, ALSIG) - Curve Number TD012009EN

Notes:

1. The Maintenance Mode feature must be ENABLED via application of 24 Vdc for these curves to apply. The blue LED is lit when in Maintenance Mode.
2. The end of the curve is determined by the interrupting rating of the circuit breaker
3. Total clearing times shown include the response times of the trip unit, the breaker opening, and the interruption of the current.
4. Nominal Values (Pickup) (Tolerance is $\pm 15 \%$) $2.5 \times I_{n}$.
5. The total clearing times shown are conservative and consider the maximum response time of the trip unit, the circuit breaker opening, and the interruption of the current in the worst case conditions such as: maximum rated voltages, single-phase interruption, and minimum power factor. Faster clearing times are possible depending on the specific system conditions.

Contact Eaton for additional information.

Figure 8. Maintenance Mode Setting (ALSI, ALSIG) - Curve Number TD012010EN, February 2014

Figure 9. Thermal-Magnetic Series C Types KDB, KD, HKD Circuit Breakers - Curve Number SC-4118-87B, February 2014

Figure 10. Thermal-Magnetic Series C Type KDC Circuit Breakers - Curve Number SC-4119-87B, February 2014

Figure 11. Peak Let-Through I2t Curve - 240 V - Curve Number AD-29-166A

Figure 12. Peak Let-Through Current Curve - 240 V - Curve Number AD-29-166A
E.T•N

Figure 13. Peak Let-Through 12t Curve - 480 V - Curve Number AD-29-166B

Figure 14. Peak Let-Through Current - 480 V - Curve Number AD-29-166B

Figure 15. Peak Let-Through $\mathrm{I}^{2} \mathrm{t}-\mathbf{6 0 0}$ V - Curve Number AD-29-166C

Figure 16. Peak Let-Through Current - 600 V - Curve Number AD-29-166C

Figure 17. Digitrip Optim Long Delay IT and Short Delay I2T Response - Curve Number SC-6924-98, May 1998

Figure 18. Digitrip Optim Long Delay I2T and Short Delay Flat Response - Curve Number SC-6925-98, May 1998

Figure 19. Digitrip Optim Long Delay $I^{4} \mathrm{~T}$ and Short Delay Flat Response - Curve Number SC-6926-98, May 1998

Figure 21. Digitrip Optim Instantaneous and Override, 250A Trip Unit - Curve Number SC-6928-98, May 1998

Figure 22. Digitrip Optim Instantaneous and Override, 400A Trip Unit - Curve Number SC-6929-98, May 1998

Figure 23. Digitrip Optim Ground Fault Trip or Ground Fault Alarm Only - Curve Number SC-6930-98, May 1998

- Legacy Product -

Figure 24. UL Series C K-Frame Circuit breaker Earth Leakage Module, 110-480V - Curve Number TC01212005E, March 2003

- Legacy Product -

Figure 25. IEC Series C K-Frame Circuit breaker Earth Leakage Module, 110-480V - Curve Number TC01212006E, March 2003

- Legacy Product -

E:T•N
Digitrip 310 Circuit Breaker Time/Current Curves (Phase Current) Series C K-Frame Circuit Breakers
Catalog Types: KES3400LS, KES3400LSG Digitrip RMS 310 Trip Units for use with Circuit Breaker Types KDB, CKDB, HKDB, CHKDB, KD, HKD, CKD, and CHKD, 400A. max.
Fixed Short Delay Time

Available Rating Plugs

Ampere Rating $\left(\mathbf{I}_{\mathbf{n}}\right)$	Type	Catalog Number	Short Delay Pickup Range Amperes
400	Fixed	4KES 400T	$800-3200$
350	Fixed	4KES 350T	$700-2800$
300	Fixed	4KES 300T	$600-2400$
250	Fixed	4KES 250T	$500-2000$
225	Fixed	4KES 225T	$450-1800$
200	Fixed	4KES 200T	$400-1600$
$200,250,300,400$	Adjustable	A4KES 400T1	$400-3200$
$250,300,350,400$	Adjustable	A4KES 400T3	$500-3200$

Interrupting Rating

Breaker Type	240V	480 V	600V
KD, CKD, KDB, CKDB	65	35	25
HKD, CHKD, HKDB, CHKDB	100	65	35
	IEC 60947-2 rms Sym. kA, 50/60 Hz		
Breaker Type	240V	380V	415 V
KD, CKD, KDB, CKDB	65	40	40
HKD, CHKD, HKDB, CHKDB	100	65	65

Notes:

$\mathbf{I}_{\mathbf{r}}=$ Continuous Current Setting or Rating Plug Value, $\mathbf{I}_{\mathbf{s}}=$ Current Sensor Frame Rating $\mathbf{I}_{\mathbf{n}}=$ Rating Plug Value, $\mathbf{I}_{\mathbf{g}}=$ Unit of Ground Current, $\mathbf{I}_{\mathbf{i}}=$ Instantaneous Override Pickup.
Digitrip RMS 310 trip units are suitable for functional field testing with test kit Cat. No. STK2. For field testing using primary injection methods, follow NEMA publication AB-4
There is a memory effect that can act to shorten the long delay. The memory effect comes into play if a current above the long delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately five minutes is required between overloads to completely reset the memory.
(1) Curve accuracy applies from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient. For possible continuous ampere derating for ambient above $40^{\circ} \mathrm{C}$, refer to Eaton. (Tolerance $\pm 15 \%$).
(3) The end of the curve is determined by the interrupting rating of the circuit breaker See above tabulation.
(4) Long Delay Pickup is 115% of $\operatorname{In},+/-5 \%$.

Figure 26. Series C Types KD, CKD, HKD, CHKD Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3400LS, KES3400LSG

Figure 27. Series C Types KD, CKD, HKD, CHKD Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3400LSI, KES3400LSIG

- Legacy Product -

E:T•N
Digitrip 310 Circuit Breaker Time/Current Curves (Phase Current) Series C K-Frame Circuit Breakers
Catalog Types: KES3250LS, KES3250LSG Digitrip RMS 310 Units for use with Circuit Breaker Types KDB, CKDB, HKDB, CHKDB, KD, HKD, CKD, and CHKD, 250A. max.

Available Rating Plugs

Ampere Rating $\left(\mathbf{I}_{\mathbf{n}}\right)$	Type	Catalog Number	Short Delay Pickup Range Amperes
250	Fixed	2KES 250T	$250-1000$
225	Fixed	2KES 225T	$220-880$
200	Fixed	2KES 200T	$200-800$
175	Fixed	2KES 175T	$180-720$
150	Fixed	2KES 150T	$140-560$
125	Fixed	2KES 125T	$250-1000$
$125,150,200,250$	Adjustable	A2KES 250T1	$250-2000$

Interrupting Rating			
	UL/CSA rms Sym. kA,	50/60 Hz	
Breaker Type	$\mathbf{2 4 0 V}$	$\mathbf{4 8 0 V}$	$\mathbf{6 0 0 V}$
KD, CKD, KDB, CKDB	65	35	25
HKD, CHKD, HKDB, CHKDB	100	65	35

	IEC 60947-2 $\mathbf{r m s}$ Sym. kA, 50/60 Hz		
Breaker Type	$\mathbf{2 4 0 V}$	$\mathbf{3 8 0 V}$	$\mathbf{4 1 5 V}$
KD, CKD, KDB, CKDB	65	40	40
HKD, CHKD, HKDB, CHKDB	100	65	65

Notes:
$\mathbf{I}_{\mathbf{r}}=$ Continuous Current Setting or Rating Plug Value, $\mathbf{I}_{\mathbf{s}}=$ Current Sensor Frame Rating,
$\mathbf{I}_{\mathbf{n}}=$ Rating Plug Value, $\mathbf{I}_{\mathbf{g}}=$ Unit of Ground Current, $\mathbf{I}_{\mathbf{i}}=$ Instantaneous Override Pickup.
Digitrip RMS 310 trip units are suitable for functional field testing with test kit Cat. No. STK2 For field testing using primary injection methods, follow NEMA publication AB-4.
There is a memory effect that can act to shorten the long delay. The memory effect comes into play if a current above the long delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the ore the equi anount of time that has elapsed since the previous oveload. Approximately five minutes is)
(1) Curve accuracy applies from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient. For possible continuous ampere derating for ambient above $40^{\circ} \mathrm{C}$, refer to Eaton
(2) For high fault current levels, a fixed instantaneous override is provided at 4000 A (Tolerance $\pm 15 \%$).
(3) The end of the curve is determined by the interrupting rating of the circuit breake See above tabulation
(4) Long Delay Pickup is 115% of $\operatorname{In},+/-5 \%$

Figure 28. Series C Types KD, CKD, HKD, CHKD Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3250LS, KES3250LSG

Figure 29. Series CTypes KD, CKD, HKD, CHKD Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3250LSI, KES3250LSIG

E:T•N
Digitrip 310 Circuit Breaker Time/Current Curves (Phase Current)

Series C K-Frame Circuit Breakers

Catalog Types: KES3125LS, KES3125LSG Digitrip RMS 310 Trip Units for use with Circuit Breaker Types: KDB, HKDB, CKDB, CHKDB, KD, HKD, CKD, and CHKD, 125A. max.

Available Rating Plugs

Ampere Rating $\left(\mathbf{I}_{\mathbf{n}}\right)$	Type	Catalog Number	Short Delay Pickup Range Amperes
125	Fixed	1KES 125T	$250-1000$
110	Fixed	1KES 110T	$220-880$
100	Fixed	1KES 100T	$200-800$
90	Fixed	1KES 90T	$180-720$
70	Fixed	1KES 70T	$140-560$
$70,90,100,125$	Adjustable	A1KES 125T1	$140-1000$

Interrupting Rating

	UL/CSA rms Sym. kA, $\mathbf{5 0 / 6 0} \mathbf{~ H z}$		
Breaker Type	$\mathbf{2 4 0 V}$	$\mathbf{4 8 0 V}$	$\mathbf{6 0 0 V}$
KD, CKD, KDB, CKDB	65	35	25
HKD, CHKD, HKDB, CHKDB	100	65	35
	IEC $\mathbf{6 0 9 4 7}$		
Breaker Type	$\mathbf{2 4 0 V}$	$\mathbf{3 8 0 V}$	$\mathbf{4 1 5 V}$
KD, CKD, KDB, CKDB	65	40	40
HKD, CHKD, HKDB, CHKDB	100	65	65
KDC	200	100	50

Notes:

$\mathbf{I}_{\mathbf{r}}=$ Continuous Current Setting or Rating Plug Value, $\mathbf{I}_{\mathbf{s}}=$ Current Sensor Frame Rating, $\mathbf{I}_{\mathbf{n}}=$ Rating Plug Value, $\mathbf{I}_{\mathbf{g}}=$ Unit of Ground Current, $\mathbf{I}_{\mathbf{i}}=$ Instantaneous Override Pickup.

Digitrip RMS 310 trip units are suitable for functional field testing with test kit Cat. No. STK2. For field testing using primary injection methods, follow NEMA publication AB-4

There is a memory effect that can act to shorten the long delay. The memory effect comes into play if a current above the long delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in shorter time than normal. The amount of time delay the amount of time that has elapsed since the previous overload Approximate required between overloads to completely reset the memory.
(1) Curve accuracy applies from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient. For possible continuous ampere derating for ambient above $40^{\circ} \mathrm{C}$, refer to Eaton.
(2) For high fault current levels, a fixed instantaneous override is provided at 3000A Tolerance $\pm 15 \%$).
(3) The end of the curve is determined by the interrupting rating of the circuit breaker See above tabulation
(4) Long Delay Pickup is 115% of $\operatorname{In},+/-5 \%$.

Figure 30. Series C Types KD, CKD, HKD, CHKD Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3125LS, KES3125LSG

Figure 31. Series C Types KD, CKD, HKD, CHKD Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3125LSI, KES3125LSIG

- Legacy Product -

E:T•N
Digitrip 310 Circuit Breaker Time/Current Curves (Phase Current)
Series C K-Frame Circuit Breakers
Catalog Types: KES3400LS, KES3400LSG Digitrip RMS 310 Trip Units for use with Circuit Breaker Type KDC, 400A. max.

Available Rating Plugs

Ampere Rating $\left(\mathbf{I}_{\mathbf{n}}\right)$	Type	Catalog Number	Short Delay Pickup Range Amperes
400	Fixed	4KES 400T	$800-3200$
350	Fixed	4KES 350T	$700-2800$
300	Fixed	4KES 300T	$600-2400$
250	Fixed	4KES 250T	$500-2000$
225	Fixed	4KES 225T	$450-1800$
200	Fixed	4KES 200T	$400-1600$
$200,250,300,400$	Adjustable	A4KES 400T1	$400-3200$
$200,250,300,400$	Adjustable	A4KES 400T3	$500-3200$

Notes:

$\mathbf{I}_{\mathbf{r}}=$ Continuous Current Setting or Rating Plug Value, $\mathbf{I}_{\mathbf{s}}=$ Current Sensor Frame Rating, $\mathbf{I}_{\mathbf{n}}=$ Rating Plug Value, $\mathbf{I}_{\mathbf{g}}=$ Unit of Ground Current, $\mathbf{I}_{\mathbf{i}}=$ Instantaneous Override Pickup.
Digitrip RMS 310 trip units are suitable for functional field testing with test kit Cat. No.STK2. For field testing using primary injection methods, follow NEMA publication AB-4.
There is a memory effect that can act to shorten the long delay. The memory effect comes into play if a current above the long delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in she the reduction is inverse required between overloads to completely reset the memory.

1) Curve accuracy applies from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient. For possible continuous ampere derating for ambient above $40^{\circ} \mathrm{C}$, refer to Eaton.
(2) For high fault current levels, a fixed instantaneous override is provided at 4000 A (Tolerance $\pm 15 \%$).
(3) The end of the curve is determined by the interrupting rating of the circuit breaker. See above tabulation.
(4) Long Delay Pickup is 115% of $\operatorname{In},+/-5 \%$.

Figure 32. Series C Type KDC Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3400LS, KES3400LSG

Figure 33. Series CType KDC Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3400LSI, KES3400LSIG

- Legacy Product -

Figure 34. Series CType KDC Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3250LS, KES3250LSG

Figure 35. Series C Type KDC Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3250LSI, KES3250LSIG

- Legacy Product -

Figure 26. Series C Type KDC Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3125LS, KES3125LSG

Figure 37. Series C Type KDC Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Types KES3125LSI, KES3125LSIG

- Legacy Product -

Figure 38. Series C Type KDC Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Ground Fault Protection (KES3400LSG, KES3400LSIG)

- Legacy Product -

E:T•N

Digitrip 310 Circuit Breaker Time/Current Curves (Ground Current) Series C K-Frame Circuit Breakers
Type Digitrip RMS 310 Trip Unit for use with Circuit Breaker Types KDB, CKDB, HKDB, CHKDB KD, HKD, KDC, CKD, and CHKD
For use with Trip Unit Catalog Numbers KES3250LSG
KES3250LSIG

Notes:
$\mathbf{I}_{\mathbf{r}}=$ Continuous Current Setting or Rating Plug Value, $\mathbf{I}_{\mathbf{s}}=$ Current Sensor Frame Rating, $\mathbf{I}_{\mathbf{n}}=$ Rating Plug Value, $\mathbf{I}_{\mathbf{g}}=$ Unit of Ground Current, $\mathbf{I}_{\mathbf{i}}=$ Instantaneous Override Pickup.
Curve accuracy applies from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient. For possible continuous ampere derating for ambient above $40^{\circ} \mathrm{C}$, refer to Eaton.

Digitrip RMS 310 trip units are suitable for functional field testing with test kit Cat. No. STK2 For field testing using primary injection methods, follow NEMA publication AB-4.

Figure 39. Series CType KDC Circuit Breakers Equipped with Type KES Digitrip RMS 310 Trip Units, Ground Fault Protection (KES3250LSG, KES3250LSIG)

- Legacy Product -

E:T•N
Digitrip 310 Circuit Breaker Time/Current Curves (Ground Current) Series C K-Frame Circuit Breakers

Type Digitrip RMS 310 Trip Unit for use with Circuit Breaker Types KD, HKD, KDC, CKD, and CHKD

For use with Trip Unit Catalog Numbers
KES3125LSG
KES3125LSIG

Notes:
$\mathbf{I}_{\mathbf{r}}=$ Continuous Current Setting or Rating Plug Value, $\mathbf{I}_{\mathbf{s}}=$ Current Sensor Frame Rating, $\mathbf{I}_{\mathbf{n}}=$ Rating Plug Value, $\mathbf{I}_{\mathbf{g}}=$ Unit of Ground Current, $\mathbf{I}_{\mathbf{i}}=$ Instantaneous Override Pickup.

Curve accuracy applies from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient. For possible continuous ampere derating for ambient above $40^{\circ} \mathrm{C}$, refer to Eaton

Digitrip RMS 310 trip units are suitable for functional field testing with test kit
Cat. No. STK2. For field testing using primary injection methods, follow NEMA publication AB-4.

Figure 41. KS Electronic Trip Unit Type KDC - Curve Number SC-4156-87A, 1987

[^0]: Notes
 (1) Only one B2x feature can be used
 (2) Not available in four-pole configurations.

