# Dry-Type Distribution Transformers



# **Contents**

| Pescription Pescription                       | Page  |
|-----------------------------------------------|-------|
| Standards and Certifications                  | . 314 |
| Catalog Number Selection                      | 315   |
| Product Selection                             | . 317 |
| Options and Accessories                       | 319   |
| Technical Data and Specifications             | . 322 |
| Glossary of Transformer Terms                 | 338   |
| Frequently Asked Questions About Transformers | . 341 |

#### **Standards and Certifications**

Eaton dry-type distribution transformers are approved, listed, recognized or may comply with the following standards.

#### **Engineering Standards**

| Catalog<br>Product<br>Name | UL<br>Standard ① | UL/cUL<br>File<br>Number | UL Listed<br>Control<br>Number | cUL Energy<br>Efficiency<br>File Number | CSA<br>File<br>Number | Insulation<br>System<br>Temp/°C | kVA<br>Single-<br>Phase | kVA<br>Three-<br>Phase | Applicable<br>IEC<br>Standard |
|----------------------------|------------------|--------------------------|--------------------------------|-----------------------------------------|-----------------------|---------------------------------|-------------------------|------------------------|-------------------------------|
| Industrial                 | Control Transfor | mer                      |                                |                                         |                       |                                 |                         |                        |                               |
| MTE                        | 5085             | E46323                   | 702X                           | _                                       | LR27533               | 105                             | 0.025-1.5               | N/A                    | 61558                         |
| MTK                        | 5085             | E46323                   | 702X                           | _                                       | LR27533               | 180                             | 0.05-5                  | N/A                    | 61558                         |
| Encapsula                  | ted Transformer  |                          |                                |                                         |                       |                                 |                         |                        |                               |
| AP                         | 5085             | E10156                   | 591H                           | _                                       | _                     | 180                             | 3–10                    | N/A                    | 61558                         |
| AP                         | 1561             | E78389                   | 591H                           | _                                       | _                     | 180                             | 15                      | N/A                    | 61558                         |
| EP                         | 5085             | E10156                   | 591H                           | _                                       | LR60545               | 180                             | 0.05-10                 | N/A                    | 61558                         |
| EP                         | 1561             | E78389                   | 591H                           | EV157 @                                 | LR60545 <sup>③</sup>  | 180                             | 15–50                   | N/A                    | 61558 4 / 726 5               |
| EPT                        | 5085             | E10156                   | 591H                           | _                                       | LR60545               | 180                             | N/A                     | 3–9                    | 61558 6 / 726 7               |
| EPT                        | 1561             | E78389                   | 591H                           | EV157 ®                                 | LR60545 9             | 180                             | N/A                     | 15–75                  | 726                           |
| MPC                        | 1062             | E53449                   | 591H                           | _                                       | LR60546               | 180                             | 3–25                    | 15–30                  | _                             |
| Ventilated                 | l Transformer    |                          |                                |                                         |                       |                                 |                         |                        |                               |
| DS-3                       | 1561             | E78389                   | 591H                           | _                                       | _                     | 220                             | 15–167                  | N/A                    | 60726                         |
| DT-3                       | 1561             | E78389                   | 591H                           | _                                       | _                     | 220                             | N/A                     | 15-750                 | 60726                         |
| KT                         | 1561             | E78389                   | 591H                           | _                                       | _                     | 220                             | N/A                     | 9-500                  | N/A                           |
|                            |                  |                          |                                |                                         |                       |                                 |                         |                        |                               |

#### Notes

- ① UL 5085 replaces UL 506.
- 2 Applies to 25-50 kVA.
- 3 Applies to 25 kVA.
- 4 Applies to 15–25 kVA.
- ⑤ Applies to 37.5 kVA.
- 6 Applies to 3 kVA.
- ② Applies to 5–9 kVA.
- 8 Applies to 30–75 kVA.
- Applies to 30 kVA.

In addition to the above standards, Eaton dry-type distribution transformers are also manufactured in compliance with the applicable standards listed below.

Not all of the following standards apply to every transformer.

**NEC:** National Electrical Code

**NEMA ST-1:** Specialty Transformers (C89.1) (control transformers).

**NEMA ST-20:** General-Purpose Transformers.

**NEMA TP-1:** Guide for Determining Energy Efficiency for Distribution Transformers.

**NEMA 250:** Enclosures for Electrical Equipment (1000 volts maximum).

IEEE C57.12.01: General Requirements for Dry-Type Distribution and Power Transformers (including those with solidcast and/or resin-encapsulated windings). **ANSI C57.12.70:** Terminal Markings and Connections for Distribution and Power Transformers.

**ANSI C57.12.91:** Standard Test Code for Dry-Type Distribution and Power Transformers.

**CSA C22 No. 47-M90:** Air-Cooled Transformers (Dry-Type).

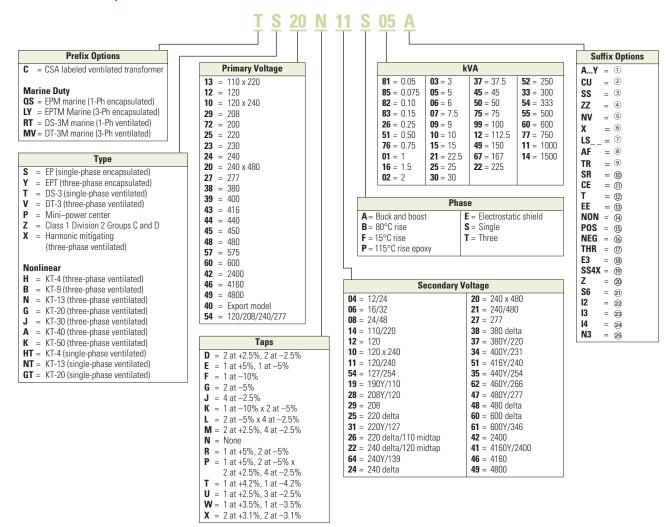
**CSA C9-M1981:** Dry-Type Transformers. **CSA C22.2 No. 66:** Specialty Transformers.

**CSA 802-94:** Maximum Losses for Distribution, Power and Dry-Type Transformers.

**NEMA TP-2:** Standard Test Method for Measuring the Energy Consumption of Distribution Transformers.

NEMA TP-3










# **Catalog Number Selection**

General-Purpose, Energy-Efficient, Mini-Power Center, Shielded Isolation, Nonlinear, Buck-Boost, Marine Duty Transformers—Example: S20N11S05A



#### Notes

- Model number is not used on newly designed/redesigned transformers.
- ② Copper windings.
- ③ Grade 304 stainless steel enclosure (does not imply a NEMA 4X rating).
- Open type core and coil assembly.
- ⑤ Totally enclosed non-ventilated DS-3 or DT-3.
- 6 50/60 Hz
- Low sound design. LS47 indicates low sound equal to 47 dB; LS42 indicates
- 8 Fungus proof.
- Certified test report of standard production tests for the specific serial number to be shipped.
- (ii) Certified sound level report.
- (ii) CE Marked.
- Thermal indicator embedded in center coil. Suffix "TT" indicates two thermal indicators of different temperature ratings, are installed.
- ® NEMA TP-1 efficient.


- 0° phase-shift (used with HMTs).
- (6) +15° phase-shift (used with HMTs).
- ⑥ −15° phase-shift (used with HMTs).
- ⑦ −30° phase-shift (used with HMTs).
   ® CSL3 DOE 2007 energy-efficient.
- NEMA 4X Grade 304 stainless steel enclosure.
- ② Easy install base.
- ② Grade 316 stainless steel enclosure (does not imply NEMA 4X rating).
- Integral 2-inch infrared viewing window.
- 23 Integral 3-inch infrared viewing window.
- Integral 4-inch infrared viewing window.

25 NEMA premium efficiency.

For Eaton's industrial control transformers catalog number selection, see Page 316.

Contact your local Eaton sales office for voltage combinations not shown. Use table for catalog number breakdown only. Do not use to create catalog numbers because all combinations may not be valid.

# Motor Drive Isolation Transformers—Example: MD145E89B



#### Notes

① For other tap combinations, contact your local Eaton sales office.

Contact your local Eaton sales office for voltage combinations not shown. Use table for catalog number breakdown only. Do not use to create catalog numbers because all combinations may not be valid.

#### **Product Selection**

#### Single-Phase Transformers

#### How to Select Single-Phase Units

- Determine the primary (source) voltage—the voltage presently available.
- 2. Determine the secondary (load) voltage—the voltage needed at the load.
- 3. Determine the kVA load:
  - If the load is defined in kVA, a transformer can be selected from the tabulated data
  - If the load rating is given in amperes, determine the load kVA from the chart (below right). To determine kVA when volts and amperes are known, use the formula:

$$kVA \ = \ \frac{Volts \times Amperes}{1000}$$

- If the load is an AC motor, determine the minimum transformer kVA from the chart at the right
- Select a transformer rating equal to or greater than the load kVA.
- 4. Define tap arrangements needed.
- 5. Define temperature rise.

Using the above procedure, select the transformer from the listings in this catalog.

### **Single-Phase AC Motors**

|            | Full Load A | Minimum<br>Transformer |           |           |       |
|------------|-------------|------------------------|-----------|-----------|-------|
| Horsepower | 115 Volts   | 208 Volts              | 220 Volts | 230 Volts | kVA ① |
| 1/6        | 4.4         | 2.4                    | 2.3       | 2.2       | 0.53  |
| 1/4        | 5.8         | 3.2                    | 3.0       | 2.9       | 0.70  |
| 1/3        | 7.2         | 4.0                    | 3.8       | 3.6       | 0.87  |
| 1/2        | 9.8         | 5.4                    | 5.1       | 4.9       | 1.18  |
| 3/4        | 13.8        | 7.6                    | 7.2       | 6.9       | 1.66  |
| 1          | 16          | 8.8                    | 8.4       | 8         | 1.92  |
| 1-1/2      | 20          | 11.0                   | 10.4      | 10        | 2.40  |
| 2          | 24          | 13.2                   | 12.5      | 12        | 2.88  |
| 3          | 34          | 18.7                   | 17.8      | 17        | 4.10  |
| 5          | 56          | 30.8                   | 29.3      | 28        | 6.72  |
| 7-1/2      | 80          | 44                     | 42        | 40        | 9.6   |
| 10         | 100         | 55                     | 52        | 50        | 12.0  |

#### Full Load Current in Amperes—Single-Phase Circuits

|      | Voltage | е    |      |      |      |      |      |      |      |
|------|---------|------|------|------|------|------|------|------|------|
| kVA  | 120     | 208  | 220  | 240  | 277  | 480  | 600  | 2400 | 4160 |
| 0.25 | 2.0     | 1.2  | 1.1  | 1.0  | 0.9  | 0.5  | 0.4  | 0.10 | 0.06 |
| 0.50 | 4.2     | 2.4  | 2.3  | 2.1  | 1.8  | 1.0  | 0.8  | 0.21 | 0.12 |
| 0.75 | 6.3     | 3.6  | 3.4  | 3.1  | 2.7  | 1.6  | 1.3  | 0.31 | 0.18 |
| 1    | 8.3     | 4.8  | 4.5  | 4.2  | 3.6  | 2.1  | 1.7  | 0.42 | 0.24 |
| 1.5  | 12.5    | 7.2  | 6.8  | 6.2  | 5.4  | 3.1  | 2.5  | 0.63 | 0.36 |
| 2    | 16.7    | 9.6  | 9.1  | 8.3  | 7.2  | 4.2  | 3.3  | 0.83 | 0.48 |
| 3    | 25      | 14.4 | 13.6 | 12.5 | 10.8 | 6.2  | 5.0  | 1.2  | 0.72 |
| 5    | 41      | 24.0 | 22.7 | 20.8 | 18.0 | 10.4 | 8.3  | 2.1  | 1.2  |
| 7.5  | 62      | 36   | 34   | 31   | 27   | 15.6 | 12.5 | 3.1  | 1.8  |
| 10   | 83      | 48   | 45   | 41   | 36   | 20.8 | 16.7 | 4.2  | 2.4  |
| 15   | 125     | 72   | 68   | 62   | 54   | 31   | 25   | 6.2  | 3.6  |
| 25   | 208     | 120  | 114  | 104  | 90   | 52   | 41   | 10.4 | 6.0  |
| 37.5 | 312     | 180  | 170  | 156  | 135  | 78   | 62   | 15.6 | 9.0  |
| 50   | 416     | 240  | 227  | 208  | 180  | 104  | 83   | 20.8 | 12.0 |
| 75   | 625     | 360  | 341  | 312  | 270  | 156  | 125  | 31.3 | 18.0 |
| 100  | 833     | 480  | 455  | 416  | 361  | 208  | 166  | 41.7 | 24.0 |
| 167  | 1391    | 802  | 759  | 695  | 602  | 347  | 278  | 69.6 | 40.1 |
| _    |         |      |      |      |      |      |      |      |      |

#### Notes

① If motors are started more than once per hour, increase minimum transformer kVA by 20%. When motor service factor is greater than 1, increase full load amperes proportionally. Example: If service factor is 1.15, increase above ampere values by 15%.

#### **Three-Phase Transformers**

#### How to Select Three-Phase Units

- Determine the primary (source) voltage—the voltage presently available.
- Determine the secondary (load) voltage—the voltage needed at the load.
- 3. Determine the kVA load:
  - If the load is defined in kVA, a transformer can be selected from the tabulated data
  - If the load rating is given in amperes, determine the load kVA from the chart (below right). To determine kVA when volts and amperes are known, use the formula:

$$kVA = \frac{Volts \times Amperes \times 1.732}{1000}$$

- If the load is an AC motor, determine the minimum transformer kVA from the chart at the right
- Select a transformer rating equal to or greater than the load kVA
- 4. Define tap arrangements needed.
- 5. Define temperature rise.

Using the above procedure, select the transformer from the listings in this catalog.

#### **Three-Phase AC Motors**

| Full Load Amperes |           |           |           |           |           | Minimum<br>Transformer |
|-------------------|-----------|-----------|-----------|-----------|-----------|------------------------|
| Horsepower        | 208 Volts | 230 Volts | 380 Volts | 460 Volts | 575 Volts | kVA ①                  |
| 0.5               | 2.2       | 2.0       | 1.2       | 1.0       | 0.8       | 0.9                    |
| 3/4               | 3.1       | 2.8       | 1.7       | 1.4       | 1.1       | 1.2                    |
| 1                 | 4.0       | 3.6       | 2.2       | 1.8       | 1.4       | 1.5                    |
| 1.5               | 5.7       | 5.2       | 3.1       | 2.6       | 2.1       | 2.1                    |
| 2                 | 7.5       | 6.8       | 4.1       | 3.4       | 2.7       | 2.7                    |
| 3                 | 10.7      | 9.6       | 5.8       | 4.8       | 3.9       | 3.8                    |
| 5                 | 16.7      | 15.2      | 9.2       | 7.6       | 6.1       | 6.3                    |
| 7.5               | 24        | 22        | 14        | 11        | 9         | 9.2                    |
| 10                | 31        | 28        | 17        | 14        | 11        | 11.2                   |
| 15                | 46        | 42        | 26        | 21        | 17        | 16.6                   |
| 20                | 59        | 54        | 33        | 27        | 22        | 21.6                   |
| 25                | 75        | 68        | 41        | 34        | 27        | 26.6                   |
| 30                | 88        | 80        | 48        | 40        | 32        | 32.4                   |
| 40                | 114       | 104       | 63        | 52        | 41        | 43.2                   |
| 50                | 143       | 130       | 79        | 65        | 52        | 52                     |
| 60                | 170       | 154       | 93        | 77        | 62        | 64                     |
| 75                | 211       | 192       | 116       | 96        | 77        | 80                     |
| 100               | 273       | 248       | 150       | 124       | 99        | 103                    |
| 125               | 342       | 312       | 189       | 156       | 125       | 130                    |
| 150               | 396       | 360       | 218       | 180       | 144       | 150                    |
| 200               | 528       | 480       | 291       | 240       | 192       | 200                    |

# **Full Load Current in Amperes—Three-Phase Circuits**

|       | Voltage |      |      |      |      |      |      |
|-------|---------|------|------|------|------|------|------|
| kVA   | 208     | 240  | 380  | 480  | 600  | 2400 | 4160 |
| 3     | 8.3     | 7.2  | 4.6  | 3.6  | 2.9  | 0.72 | 0.42 |
| 6     | 16.6    | 14.4 | 9.1  | 7.2  | 5.8  | 1.4  | 0.83 |
| 9     | 25      | 21.6 | 13.7 | 10.8 | 8.6  | 2.2  | 1.2  |
| 15    | 41.7    | 36.1 | 22.8 | 18.0 | 14.4 | 3.6  | 2.1  |
| 22.5  | 62.4    | 54.1 | 34.2 | 27.1 | 21.6 | 5.4  | 3.1  |
| 30    | 83.4    | 72.3 | 45.6 | 36.1 | 28.9 | 7.2  | 4.2  |
| 37.5  | 104     | 90.3 | 57.0 | 45.2 | 36.1 | 9.0  | 5.2  |
| 45    | 124     | 108  | 68.4 | 54.2 | 43.4 | 10.8 | 6.3  |
| 50    | 139     | 120  | 76   | 60.1 | 48.1 | 12.0 | 6.9  |
| 75    | 208     | 180  | 114  | 90   | 72   | 18.0 | 10.4 |
| 112.5 | 312     | 270  | 171  | 135  | 108  | 27.1 | 15.6 |
| 150   | 416     | 360  | 228  | 180  | 144  | 36.1 | 20.8 |
| 225   | 624     | 541  | 342  | 270  | 216  | 54.2 | 31.3 |
| 300   | 832     | 721  | 456  | 360  | 288  | 72.2 | 41.6 |
| 500   | 1387    | 1202 | 760  | 601  | 481  | 120  | 69.4 |
| 750   | 2084    | 1806 | 1140 | 903  | 723  | 180  | 104  |
| 1000  | 2779    | 2408 | 1519 | 1204 | 963  | 241  | 139  |

#### Notes

When motor service factor is greater than 1, increase full load amperes proportionally. Example: If service factor is 1.15, increase above ampere values by 15%.

# **Options and Accessories**

(Order separately)

#### Weathershield Kit

A weathershield kit consisting of a front and rear cover shield must be installed on all ventilated dry-type distribution transformers when the unit is located outdoors. The shields protect the transformer top ventilation openings against rain but allow for proper

ventilation. Field installation hardware is not required. Refer to specific transformer listing for selection of weathershield kit. Proper installation provides a NEMA 3R rating.

Note: For 304 stainless steel, add the suffix 'S' to the catalog

#### Terminal Extension Kit

A terminal extension kit is used to allow front access to the rear terminals on most 500 and 750 kVA transformers (transformers on frames 919 and 920) when insufficient space is available at the rear of the transformer. Eaton recommends a minimum 6-inch clearance from the wall to maintain proper ventilation.

# **Terminal Extension Kit**

| Fits Frame<br>Size(s) <sup>①</sup> | Bus<br>Material | Catalog<br>Number <sup>②</sup> |
|------------------------------------|-----------------|--------------------------------|
| 919                                | Aluminum        | EXT55AL                        |
| 919                                | Copper          | EXT55CU                        |
| 920                                | Aluminum        | EXT77AL                        |
| 920                                | Copper          | EXT77CU                        |
|                                    |                 |                                |

#### Weathershield Kit

# Weathershield Kit



| Fits Frame Size(s) ①                              | Catalog<br>Number ② |
|---------------------------------------------------|---------------------|
| 809, 810, 811, 816, 817, 818                      | WS11                |
| 814, 814E                                         | WS13                |
| 815                                               | WS15                |
| 819, 820                                          | WS16                |
| 808, 908, 909, 910, 911, 912, 910A, 911A, 912A    | WS31                |
| 912B, 912Z                                        | WS38                |
| 812, 813, 913A, 913B, 914A, 915A, 916, 914B, 915B | WS33                |
| 914D, 915D, 914Z, 915Z                            | WS39                |
| 916A, 916B, 912Z                                  | WS19                |
| 917, 918, 918A                                    | WS34                |
| 919, 920, 919E, 919EX, 920E, 920EX                | WS35                |
| 922                                               | WS36                |
| 923                                               | WS37                |

### Wall-Mounting Bracket

Wall-mounting brackets are used to wall-mount most 15 through 75 kVA ventilated Type DS-3 and DT-3 transformers. See availability guide. This bracket allows for a 6-inch clearance from the wall as recommended by Eaton.

Wall-mounting brackets are compatible with the following frames.

Catalog

# Wall-Mounting

### **Availability Guide Wall-Mounting Bracket WMB01**



| Frame Sizes ①                                                                                                     | Number ② |
|-------------------------------------------------------------------------------------------------------------------|----------|
| Type DS-3 (Single-Phase Compatib                                                                                  | le)      |
| 809, 810, 811, 812, 813, 815, 816, 817,<br>818, 819, 820, 835, 836, 837, 814A                                     | WMB01    |
| Type DT-3, K-Factor, Drive Isolation (Three-Phase Compatible)                                                     | l        |
| 908, 909, 910, 911, 912, 910A, 911A, 912A, 913A, 913B, 914A, 914B, 915A, 915B, 921B, 914D, 915D, 912Z, 914Z, 915Z | WMB01    |

#### Notes

- ① Effective June 1, 2001, frame numbers will have a prefix of FR, e.g., FR819. Dimensions, accessories and so on are still applicable as if the FR did not exist.
- ② For Grade 304 stainless steel weathershields, add the suffix "S" to a catalog number, e.g., WS31S.

# **Terminal Lug Kits for Type DT-3 Transformers**

|                                                     | Terminal Lugs                |          | Hardware                       |          |                |
|-----------------------------------------------------|------------------------------|----------|--------------------------------|----------|----------------|
| Typical Sizing                                      | Cable Range                  | Quantity | <b>Bolt Size</b>               | Quantity | Catalog Number |
| 15–37.5 kVA single-phase<br>15–45 kVA three-phase   | #14-#2<br>#6-250 kcmil       | 8<br>4   | 1/4-20 x 3/4                   | 8        | LKS1           |
| 50–75 kVA single-phase<br>75–112.5 kVA three-phase  | #6-250 kcmil                 | 12       | 1/4-20 x 3/4<br>1/4-20 x 1-3/4 | 8        | LKS2           |
| 100-167 kVA single-phase<br>150-300 kVA three-phase | #6-250 kcmil<br>#2-600 kcmil | 3<br>22  | 1/4-20 x 3/4<br>3/8-16 x 2     | 3<br>16  | LKS3           |
| 500 kVA three-phase                                 | #2-600 kcmil                 | 29       | 3/8-16 x 2                     | 18       | LKS4           |

#### **Rodent Screens**

| Description                           | Frame Size(s) ①                    | Catalog<br>Number |
|---------------------------------------|------------------------------------|-------------------|
| Rodent screens are used to            | 908, 909                           | RS01              |
| discourage entry by birds or rodents. | 910A, 911, 912                     | RS02              |
|                                       | 913B, 914B, 915B                   | RS03              |
|                                       | 916                                | RS04              |
|                                       | 917, 918, 918A                     | RS05              |
|                                       | 919, 920, 919E, 919EX, 920E, 920EX | RS06              |
|                                       | 916A, 916B                         | RS07              |
|                                       | 922                                | RS08              |
|                                       | 923                                | RS09              |
|                                       | 814, 821, 814E                     | RS11              |
|                                       | 815                                | RS12              |
|                                       | 816                                | RS13              |
|                                       | 817, 818                           | RS14              |
|                                       | 819, 820                           | RS15              |
|                                       | 912B, 912Z                         | RS16              |
|                                       | 914D, 915D, 914Z, 915Z             | RS17              |
|                                       | 916Z                               | RS07              |

### **Replacement Parts for Mini-Power Centers**

| Frame | Deadfront Cover<br>(Breaker Cover) | Front Cover |  |
|-------|------------------------------------|-------------|--|
| 283   | 47-37503                           | 7074C98H04  |  |
| 284   | 47-37503-2                         | 7074C98H01  |  |
| 285   | 47-37503-3                         | 7074C98H02  |  |
| 286   | 47-37503-4                         | 7074C98H02  |  |
| 287   | 47-37503-5                         | 7074C98H03  |  |
| 289   | 47-37459                           | 7074C44H01  |  |
| 290   | 47-37459-2                         | 7074C44H02  |  |
| 291   | 47-37459-3                         | 7074C44H03  |  |
| 289A  | 47-42072-1                         | 7074C44H01  |  |
| 290A  | 47-42072-2                         | 7074C44H02  |  |
| 291A  | 47-42072-3                         | 7074C44H03  |  |
|       |                                    |             |  |

#### Notes

① Effective June 1, 2001, frame numbers will have a prefix of FR, e.g., FR819. Dimensions, accessories and so on are still applicable as if the FR did not exist.

Lugs are rated AI/Cu and are suitable for use with either aluminum or copper conductors.

#### **Case Parts for Ventilated Units**

| Frame(s) ①       | Front Panel<br>(Upper) | Front Panel<br>(Lower) | Back Panel<br>(Upper) | Back Panel<br>(Lower) | Front or Back<br>Panel (Cutout<br>Cover Plate) | Top<br>Cover | Side Panel<br>(Two Required<br>per Transformer) | Bottom     |
|------------------|------------------------|------------------------|-----------------------|-----------------------|------------------------------------------------|--------------|-------------------------------------------------|------------|
| Single-Phase     |                        |                        |                       |                       |                                                |              |                                                 |            |
| 809              | 7073C16P03             | _                      | 7073C16P03            | _                     | _                                              | 7073C17P01   | 7073C18P04                                      | 7073C14P03 |
| 810              | 7073C16P01             | _                      | 7073C16P01            | _                     | _                                              | 7073C17P01   | 7073C18P01                                      | 7073C14P01 |
| 811              | 7073C16P01             | _                      | 7073C16P01            | _                     | _                                              | 7073C17P01   | 7073C18P01                                      | 7073C14P01 |
| 812              | 7073C16P02             | _                      | 7073C16P02            | _                     | _                                              | 7073C17P02   | 7073C18P02                                      | 7073C14P02 |
| 813              | 7073C16P02             | _                      | 7073C16P02            | _                     | _                                              | 7073C17P02   | 7073C18P02                                      | 7073C14P02 |
| 814, 814E        | 7073C54P01             | _                      | 7073C54P01            | _                     | _                                              | 7073C17P03   | 7073C18P05                                      | 7073C14P04 |
| 815              | 47-39433               | _                      | 47-39433              | _                     | _                                              | 47-39431     | 47-39430                                        | 47-39429   |
| 816              | 47-40452               | _                      | 47-40452              | _                     | _                                              | 47-40453     | 47-40451                                        | 47-40449   |
| 817              | 47-40457               | _                      | 47-40457              | _                     | _                                              | 47-40458     | 47-40456                                        | 47-40454   |
| 818              | 47-40457               | _                      | 47-40457              | _                     | _                                              | 47-40458     | 47-40456                                        | 47-40454   |
| 819              | 47-40574               | _                      | 47-40574              | _                     | _                                              | 47-40575     | 47-40573                                        | 47-40459   |
| 820              | 47-40574               | _                      | 47-40574              | _                     | _                                              | 47-40575     | 47-40573                                        | 47-40459   |
| Three-Phase      |                        |                        |                       |                       |                                                |              |                                                 |            |
| 908              | 7073C37P01             | _                      | 7073C37P01            | _                     | _                                              | 1714C45P01   | 1714C44P03                                      | 7073C20P05 |
| 909              | 7073C37P01             | _                      | 7073C37P01            | _                     | _                                              | 1714C45P01   | 1714C44P03                                      | 7073C20P05 |
| 910              | 1714C46P01             |                        | 1714C46P01            |                       |                                                | 1714C45P01   | 1714C44P01                                      | 7073C20P01 |
| 911              | 1714C46P01             | _                      | 1714C46P01            | _                     | _                                              | 1714C45P01   | 1714C44P01                                      | 7073C20P01 |
| 912              | 1714C46P01             | _                      | 1714C46P01            | _                     | _                                              | 1714C45P01   | 1714C44P01                                      | 7073C20P01 |
| 916              | 1714C60P01             | _                      | 1714C60P01            | _                     | _                                              | 1714C58P01   | 1714C56P01                                      | 7073C20P03 |
| 917              | 47-44973-1             | _                      | 47-44973-1            | _                     | _                                              | 1714C67P01   | 1714C64P01                                      | 7073C20P04 |
| 918              | 47-44973-1             | _                      | 47-44973-1            | _                     | _                                              | 1714C67P01   | 1714C64P01                                      | 7073C20P04 |
| 919, 919E, 919EX | 2D46331P03             | 2D46331P04             | 2D46331P03            | 2D46331P04            | 2D46331P01                                     | 2D46331P02   | 2D46332P01                                      | 2D46331P04 |
| 920, 920E, 920EX | 2D46331P03             | 2D46331P04             | 2D46331P03            | 2D46331P04            | 2D46331P01                                     | 2D46331P02   | 2D46332P01                                      | 2D46331P04 |
| 922              | 2D46391H06             | 2D46391H08             | 2D46391H03            | 2D46391H08            |                                                | 2D46391H02   | 2D46392H01                                      | _          |
| 923              | 47-45927-1             | _                      | 47-45927-1            | _                     | _                                              | 47-45926-1   | 47-45925-1                                      | 47-45759-1 |
| 910A             | 47-40592               |                        | 47-40592              | _                     | _                                              | 1714C45P01   | 47-40591                                        | 47-40589   |
| 911A             | 47-40592               | _                      | 47-40592              | _                     | _                                              | 1714C45P01   | 47-40591                                        | 47-40589   |
| 912A             | 47-40592               | _                      | 47-40592              | _                     | _                                              | 1714C45P01   | 47-40591                                        | 47-40589   |
| 912B             | 47-49323-1             | _                      | 47-49323-1            | _                     | _                                              | 47-49322-1   | 47-49321-1                                      | 47-49320-1 |
| 913A             | 1714C47P03             | _                      | 1714C47P03            | _                     | _                                              | 1714C45P02   | 1714C44P07                                      | 7073C30P02 |
| 913B             | 47-40580               | _                      | 47-40580              | _                     | _                                              | 1714C45P02   | 47-40578                                        | 47-41792   |
| 914A             | 1714C47P03             | _                      | 1714C47P03            | _                     | _                                              | 1714C45P02   | 1714C44P07                                      | 7073C30P02 |
| 914B             | 47-40580               | _                      | 47-40580              | _                     | _                                              | 1714C45P02   | 47-40578                                        | 47-41792   |
| 914D             | 47-49317-1             | _                      | 47-49317-1            | _                     | _                                              | 47-49316-1   | 47-49315-1                                      | 47-49314-1 |
| 915A             | 1714C47P03             | _                      | 1714C47P03            | _                     | _                                              | 1714C45P02   | 1714C44P07                                      | 7073C30P02 |
| 915B             | 47-40580               | _                      | 47-40580              | _                     | _                                              | 1714C45P02   | 47-40578                                        | 47-41792   |
| 915D             | 47-49317-1             |                        | 47-49317-1            |                       | _                                              | 47-49316-1   | 47-49315-1                                      | 47-49314-1 |
| 916A             | 47-41790               | _                      | 47-41790              | _                     | _                                              | 47-41791     | 47-41789                                        | 47-41788   |
| 918A             | 47-41801               | _                      | 47-41801              | _                     | _                                              | 47-41802     | 47-41800                                        | 47-41802   |
| 912Z             | 47-49323-1             |                        | 47-49323-1            | _                     | _                                              | 47-49322-1   | 47-49991-1                                      | 47-49989-1 |
| 915Z             | 47-49317-1             | _                      | 47-49317-1            | _                     |                                                | 47-49316-1   | 47-49994-1                                      | 47-49995-1 |
|                  |                        |                        |                       |                       |                                                | ****         |                                                 |            |

#### Notes

Parts listed are for standard catalog listed transformers. Units with modifications may require different parts. (Frame number from transformer nameplate required.) Transformer nameplate and UL label are not field replaceable.

① Effective June 1, 2001, frame numbers will have a prefix of FR, e.g., FR819. Dimensions, accessories and so on are still applicable as if the FR did not exist.

# **Technical Data and Specifications**

# Customer-Furnished Connecting Cables

Eaton recommends that external cables be rated 90°C (sized at 75°C ampacity) for encapsulated designs and 75°C for ventilated designs.

Primary and secondary terminal lugs are not included. Lug kits are available separately.

#### **Overload Capability**

Short-term overload capacity is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200% nameplate load for one-half hour, 150% load for one hour and 125% load for four hours without being damaged, provided that a constant 50% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

### Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified, and exceed requirements of the Uniform Building Code (UBC) and California Code Title 24.

#### Taps

Primary taps are available in most ratings to allow compensation for source voltage variations.

#### **Series-Multiple Windings**

Series-multiple windings consist of two similar coils in each winding that can be connected in series or parallel (multiple). Transformers with series-multiple windings are designated with a "x" or "/" between the voltage ratings, such as voltages of "120/240" or "240 x 480." If the series-multiple winding is designated by an "x," the winding can be connected only for a series or parallel. With the "/" designation, a midpoint also becomes

available in addition to the series or parallel connection. As an example, a 120 x 240 winding can be connected for either 120 (parallel) or 240 (series), but a 120/240 winding can be connected for 120 (parallel), 240 (series) or 240 with a 120 midpoint.

#### **Enclosures**

Eaton's ventilated transformers—Types DS-3, DT-3, MD and KT—use a NEMA 2 rated (drip-proof) enclosure as standard, and are rated NEMA 3R with the addition of weathershields. Eaton encapsulated—Types EP, EPT, EPZ and EPTZ—and totally enclosed, nonventilated (Types DS-3E and DT-3E) transformers use a NEMA 3R rated enclosure.

#### **Buck-Boost Transformers**

An autotransformer has only one winding, and is therefore smaller and more economical than the conventional two-winding transformer. In an autotransformer, the primary and secondary are electrically and mechanically connected. The required secondary voltage is obtained by "tapping-off" from the single winding.

Buck-boost autotransformers are insulated units with 120 x 240 or 240 x 480 volt primaries and 12/24, 16/32 or 24/48 volt secondaries, and provide a very economical method for minor voltage adjustments where circuit isolation is not needed.

Autotransformers can be used only where local electrical codes permit, and isolation of the two circuits is not required.

#### **Nonlinear Ratings**

The transformers shall be specifically designed to supply circuits with a harmonic profile equal to or less than a K-factor of 4 or 13, as described in the following table, without exceeding specified temperature rise.

### **Nonlinear Ratings**

| Harmonic    | K-4    | K-13   |
|-------------|--------|--------|
| Fundamental | 100.0% | 100.0% |
| 3rd         | 34.0%  | 70.0%  |
| 5th         | 22.0%  | 42.0%  |
| 7th         | 3.0%   | 5.0%   |
| 9th         | 1.0%   | 3.0%   |
| 11th        | 0.7%   | 3.0%   |
| 13th        | 0.5%   | 1.0%   |
| 15th        | 0.3%   | 0.7%   |
| 17th        | 0.3%   | 0.6%   |

#### **Sound Levels**

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation will likely be higher (up to 15 dB greater) due to electrical connections and environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.

All Eaton general-purpose dry-type distribution transformers are designed with sound levels lower than NEMA ST-20 maximum levels. However, consideration should be given to the specific location of the

transformers and their installation to minimize the potential for sound transmission to surrounding structures and sound reflection. It is suggested that the following installation methods be included:

- If possible, mount the transformer away from corners of walls or ceilings. For installation that must be near a corner, use soundabsorbing materials on the walls and ceilings if necessary to eliminate reflection.
- 2. Provide a solid foundation for mounting the transformer and then use vibration dampening mounts if not already provided in the transformer. (Eaton encapsulated EP/EPT designs use a special encapsulation system and ventilated DS/DT-3 designs contain a built-in vibration dampening system to minimize and isolate sound transmission.)
- 3. Provide flexible conduit to make the connections to the transformer.
- 4. Locate the transformer as far as possible from areas where high sound levels are undesirable.

#### Average Sound Levels ①

### NEMA ST-20 Average Sound Level in dB

| kVA       | Up to 1.2 kV<br>Ventilated | Encapsulated | Above 1.2 kV<br>Ventilated |  |
|-----------|----------------------------|--------------|----------------------------|--|
| 0–9       | 40                         | 45           | 45                         |  |
| 10-50     | 45                         | 50           | 50                         |  |
| 51-150    | 50                         | 55           | 55                         |  |
| 151–300   | 55                         | 57           | 58                         |  |
| 301–500   | 60                         | 59           | 60                         |  |
| 501-700   | 62                         | 61           | 62                         |  |
| 701–1000  | 64                         | 63           | 64                         |  |
| 1001-1500 | 65                         | 64           | 65                         |  |
|           |                            |              |                            |  |

#### Note

① Currently being reviewed and revised by NEMA.

#### Type EP 115°C Rise

|       | Weight | Lbs | Losses i   | n Watts | Efficienc   | су          |             |              | % Regula     | ntion       | % Impe | dance ② |                   |
|-------|--------|-----|------------|---------|-------------|-------------|-------------|--------------|--------------|-------------|--------|---------|-------------------|
| kVA   | AI     | Cu  | No<br>Load | Total   | 1/4<br>Load | 1/2<br>Load | 3/4<br>Load | Full<br>Load | 100%<br>P.F. | 80%<br>P.F. | Min.   | Max.    | Sound<br>Level dB |
| 0.05  | _      | 7   | 6          | 9       | 65.3        | 79.6        | 84.3        | 85.6         | 5.9          | 6.4         | 5.5    | 9.5     | 45                |
| 0.075 | _      | 7   | 7          | 14      | 66.0        | 79.0        | 82.5        | 82.8         | 9.4          | 9.2         | 7.5    | 11.0    | 45                |
| 0.10  | _      | 7   | 5          | 15      | 82.4        | 86.9        | 87.7        | 86.5         | 10.3         | 10.6        | 8.0    | 12.0    | 45                |
| 0.15  | _      | 8   | 7          | 20      | 83.4        | 88.2        | 88.9        | 87.8         | 9.0          | 9.6         | 8.0    | 12.0    | 45                |
| 0.25  | _      | 12  | 14         | 29      | 79.0        | 87.2        | 89.5        | 89.6         | 5.9          | 7.5         | 7.5    | 9.5     | 45                |
| 0.5   | _      | 13  | 20         | 47      | 85.1        | 90.3        | 91.4        | 91.4         | 5.5          | 7.0         | 5.0    | 7.0     | 45                |
| 0.75  | _      | 20  | 29         | 57      | 86.0        | 91.3        | 92.7        | 92.9         | 3.9          | 5.0         | 4.0    | 6.0     | 45                |
| 1     | _      | 30  | 24         | 60      | 90.8        | 93.9        | 94.5        | 94.4         | 3.8          | 4.9         | 3.8    | 5.8     | 45                |
| 1.5   | 65     | 40  | 30         | 90      | 92.5        | 94.7        | 95.0        | 94.6         | 4.1          | 5.2         | 2.5    | 4.5     | 45                |
| 2     | 113    | 40  | 30         | 100     | 94.2        | 95.7        | 95.8        | 95.4         | 3.6          | 4.7         | 3.3    | 5.3     | 45                |
| 3     | _      | 69  | 61         | 135     | 92.0        | 95.0        | 95.7        | 95.7         | 2.5          | 3.5         | 2.5    | 4.1     | 45                |
| 5     | _      | 120 | 104        | 215     | 91.8        | 95.0        | 95.8        | 95.9         | 2.3          | 3.3         | 2.0    | 4.6     | 45                |
| 7.5   | 123    | 133 | 129        | 250     | 93.2        | 96.0        | 96.7        | 95.9         | 1.5          | 2.4         | 2.4    | 3.4     | 45                |
| 10    | 193    | 208 | 153        | 295     | 93.9        | 96.3        | 97.0        | 97.2         | 1.5          | 2.5         | 2.0    | 3.3     | 50                |
| 15    | 216    | 235 | 209        | 435     | 94.4        | 96.6        | 97.1        | 97.2         | 1.6          | 2.8         | 1.6    | 3.6     | 50                |
| 25    | 385    | 414 | 191        | 440     | 96.8        | 98.0        | 98.3        | 98.4         | 1.1          | 2.5         | 1.6    | 4.2     | 50                |
| 37.5  | 735    | 856 | 225        | 370     | 97.4        | 98.3        | 98.5        | 98.4         | 1.2          | 2.6         | 2.8    | 4.0     | 50                |

# Type EPT 115°C Rise 3

|     | Weight I | Lbs  | Losses i   | n Watts | Efficien    | су          |             |              | % Regula     | ation       | % Imped | lance ② |                   |
|-----|----------|------|------------|---------|-------------|-------------|-------------|--------------|--------------|-------------|---------|---------|-------------------|
| kVA | AI       | Cu   | No<br>Load | Total   | 1/4<br>Load | 1/2<br>Load | 3/4<br>Load | Full<br>Load | 100%<br>P.F. | 80%<br>P.F. | Min.    | Max.    | Sound<br>Level dB |
| 3   | 116      | 123  | 110        | 165     | 87.3        | 92.6        | 94.3        | 94.9         | 2.1          | 6.1         | 2.4     | 8.0     | 45                |
| 6   | 143      | 153  | 145        | 275     | 90.9        | 94.5        | 95.5        | 95.7         | 2.2          | 3.1         | 2.9     | 4.9     | 45                |
| 9   | 166      | 178  | 195        | 375     | 91.6        | 95.0        | 95.9        | 96.1         | 2.0          | 2.8         | 2.0     | 3.6     | 45                |
| 15  | 275      | 300  | 265        | 545     | 93.0        | 95.7        | 96.5        | 96.6         | 1.9          | 3.1         | 1.9     | 3.9     | 50                |
| 30  | 422      | 504  | 250        | 665     | 96.5        | 97.7        | 98.0        | 97.9         | 1.5          | 2.5         | 1.8     | 3.8     | 50                |
| 45  | 660      | 745  | 300        | 740     | 97.2        | 98.2        | 98.4        | 98.5         | 1.0          | 2.1         | 1.8     | 4.0     | 50                |
| 75  | 1275     | 1450 | 400        | 945     | 97.7        | 98.6        | 98.8        | 98.8         | 0.8          | 1.6         | 1.7     | 3.4     | 55                |

#### Notes

Performance data is based upon 480 volt Delta primary and a 208Y/120 volt secondary for three-phase transformers; 240 x 480 volt primary and a 120/240 volt secondary for single-phase transformers. All data is subject to future revision. Refer to Eaton for 5 kV class information. All data is subject to future revision.

① Typical values for aluminum windings. Contact Eaton for values of copper windings. Up-to-date design data is available at www.eaton.com.

② Actual impedance may be ± 7.5%.

# Type DS-3 150°C Rise NEMA TP-1 Efficient

|      |        | Losses i   | n Watts              | Efficie | ency (Tris | se +20°)    |              | % Regi     | ulation   | % Imp.       | Х            | R            |                   |                   | Inrush           |                   |
|------|--------|------------|----------------------|---------|------------|-------------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA  | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%        | <b>75</b> % | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15   | 246    | 80         | 549                  | 97.6    | 97.6       | 97.2        | 96.6         | 2.0        | 2.9       | 4.3          | 3.0          | 3.1          | 45                | 97.70             | 737              | 245               |
| 25   | 359    | 300        | 848                  | 97.7    | 98.1       | 97.9        | 97.5         | 1.4        | 2.7       | 3.5          | 2.8          | 2.2          | 45                | 98.00             | 1139             | 379               |
| 37.5 | 374    | 125        | 1314                 | 98.1    | 97.8       | 97.2        | 96.6         | 2.2        | 4.6       | 5.8          | 4.8          | 3.2          | 45                | 98.20             | 1066             | 355               |
| 50   | 555    | 300        | 1668                 | 98.2    | 98.1       | 97.6        | 97.0         | 1.9        | 4.0       | 5.1          | 4.3          | 2.7          | 45                | 98.30             | 1585             | 528               |
| 75   | 740    | 170        | 2266                 | 98.4    | 98.2       | 97.6        | 97.0         | 2.3        | 5.3       | 6.9          | 6.3          | 2.8          | 50                | 98.50             | 2105             | 701               |
| 100  | 841    | 260        | 2543                 | 98.5    | 98.4       | 98.0        | 97.6         | 1.9        | 4.7       | 6.1          | 5.6          | 2.3          | 50                | 98.60             | 2834             | 944               |
| 167  | 1610   | 900        | 3987                 | 68.7    | 98.7       | 98.4        | 98.0         | 1.4        | 6.8       | 9.7          | 9.5          | 1.8          | 55                | 98.70             | 1250             | 416               |

# Type DS-3 115°C Rise NEMA TP-1 Efficient

|      |        | Losses ir  | ı Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | ılation   | % Imp.       | х            | R            |                   |                   | Inrush           |                   |
|------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA  | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15   | 246    | 80         | 519                  | 97.8    | 97.8      | 97.3    | 96.8         | 2.1        | 3.1       | 3.9          | 2.6          | 2.9          | 45                | 97.70             | 773              | 244               |
| 25   | 373    | 300        | 766                  | 97.7    | 98.1      | 98.0    | 97.7         | 1.4        | 2.8       | 3.3          | 2.8          | 1.9          | 45                | 98.00             | 1102             | 367               |
| 37.5 | 380    | 125        | 1182                 | 98.2    | 98.4      | 98.1    | 97.8         | 2.0        | 3.1       | 4.1          | 2.9          | 2.8          | 45                | 98.20             | 616              | 205               |
| 50   | 590    | 300        | 417                  | 98.4    | 98.3      | 97.9    | 97.4         | 1.8        | 4.1       | 5.2          | 5.2          | 0.2          | 45                | 98.30             | 1553             | 511               |
| 75   | 689    | 170        | 2356                 | 98.5    | 98.2      | 97.6    | 97.0         | 2.7        | 5.6       | 6.9          | 6.3          | 2.9          | 50                | 98.50             | 1717             | 572               |

# Type DS-3 80°C Rise NEMA TP-1 Efficient

|      |        | Losses ii  | ı Watts              | Efficie | ency (Tris | e +20°) |              | % Regu     | ulation   | % Imp.       | Х            | R            |                   |                   | Inrush           |                   |
|------|--------|------------|----------------------|---------|------------|---------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA  | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%        | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15   | 360    | 115        | 269                  | 97.4    | 98.3       | 98.4    | 98.4         | 0.8        | 1.7       | 2.0          | 1.8          | 1.0          | 45                | 97.70             | 1381             | 460               |
| 25   | 370    | 120        | 580                  | 97.8    | 98.2       | 98.0    | 97.8         | 1.5        | 3.2       | 3.9          | 3.4          | 1.8          | 45                | 98.00             | 1046             | 348               |
| 37.5 | 565    | 150        | 834                  | 98.1    | 98.4       | 98.1    | 97.8         | 1.5        | 3.3       | 4.1          | 3.6          | 1.8          | 45                | 98.20             | 1471             | 490               |
| 50   | 680    | 175        | 1014                 | 98.4    | 98.5       | 98.4    | 98.1         | 1.5        | 3.4       | 4.2          | 3.9          | 1.7          | 45                | 98.30             | 1733             | 577               |
| 75   | 900    | 260        | 1387                 | 98.3    | 98.6       | 98.5    | 98.2         | 1.4        | 3.5       | 4.3          | 4.0          | 1.5          | 50                | 98.50             | 2423             | 807               |

# Type DT-3 150°C Rise NEMA TP-1 Efficient

|        | Losses in                                                             | Watts                                                                                                                                                                                                                                                                                         | Efficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ncy (Tris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e +20°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % Regu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ılation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | % Imp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inrush                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weight | No<br>Load                                                            | Total at<br>Rise +20                                                                                                                                                                                                                                                                          | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Full<br>Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100%<br>PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80%<br>PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trise<br>+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trise<br>+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trise<br>+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sound<br>Level dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TP1<br>Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Absolute<br>Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Practical<br>Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 204    | 95                                                                    | 778                                                                                                                                                                                                                                                                                           | 96.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 291    | 165                                                                   | 1207                                                                                                                                                                                                                                                                                          | 97.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 381    | 210                                                                   | 1428                                                                                                                                                                                                                                                                                          | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 351    | 210                                                                   | 1911                                                                                                                                                                                                                                                                                          | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 531    | 270                                                                   | 1316                                                                                                                                                                                                                                                                                          | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 553    | 300                                                                   | 2917                                                                                                                                                                                                                                                                                          | 97.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 793    | 400                                                                   | 3693                                                                                                                                                                                                                                                                                          | 98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 913    | 490                                                                   | 4923                                                                                                                                                                                                                                                                                          | 98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1343   | 650                                                                   | 6476                                                                                                                                                                                                                                                                                          | 98.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1597   | 750                                                                   | 8239                                                                                                                                                                                                                                                                                          | 98.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2590   | 1400                                                                  | 9782                                                                                                                                                                                                                                                                                          | 98.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3340   | 1800                                                                  | 12,692                                                                                                                                                                                                                                                                                        | 98.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | 204<br>291<br>381<br>351<br>553<br>793<br>913<br>1343<br>1597<br>2590 | Weight         No Load           204         95           291         165           381         210           351         270           553         300           793         400           913         490           1343         650           1597         750           2590         1400 | Weight         Load         Rise +20           204         95         778           291         165         1207           381         210         1428           351         210         1911           531         270         1316           553         300         2917           793         400         3693           913         490         4923           1343         650         6476           1597         750         8239           2590         1400         9782 | Weight         No Load         Total at Rise +20         25%           204         95         778         96.6           291         165         1207         97.2           381         210         1428         97.5           351         210         1911         97.5           531         270         1316         97.7           553         300         2917         97.9           793         400         3693         98.0           913         490         4923         98.2           1343         650         6476         98.4           1597         750         8239         98.5           2590         1400         9782         98.6 | Weight         No Load         Total at Rise +20         25%         50%           204         95         778         96.6         96.7           291         165         1207         97.2         97.3           381         210         1428         97.5         97.4           531         270         1316         97.7         98.1           553         300         2917         97.9         97.7           793         400         3693         98.0         98.0           913         490         4923         98.2         98.0           1343         650         6476         98.4         98.2           1597         750         8239         98.5         98.3           2590         1400         9782         98.6         98.7 | Weight         No Load         Total at Rise +20         25%         50%         75%           204         95         778         96.6         96.7         96.0           291         165         1207         97.2         97.3         96.9           381         210         1428         97.5         97.5         97.0           351         210         1911         97.5         97.4         96.7           531         270         1316         97.7         98.1         97.9           553         300         2917         97.9         97.7         97.0           793         400         3693         98.0         98.0         97.5           913         490         4923         98.2         98.0         97.5           1343         650         6476         98.4         98.2         97.8           1597         750         8239         98.5         98.3         97.9           2590         1400         9782         98.6         98.7         98.5 | Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load           204         95         778         96.6         96.7         96.0         95.1           291         165         1207         97.2         97.3         96.9         96.2           381         210         1428         97.5         97.5         97.0         96.4           351         210         1911         97.5         97.4         96.7         96.0           531         270         1316         97.7         98.1         97.9         97.5           553         300         2917         97.9         97.7         97.0         96.3           793         400         3693         98.0         98.0         97.5         96.9           913         490         4923         98.2         98.0         97.5         96.9           1343         650         6476         98.4         98.2         97.8         97.2           1597         750         8239         98.5         98.3         97.9         97.3           2590         1400         9782         98.6         98.7         98.5 | Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF           204         95         778         96.6         96.7         96.0         95.1         4.8           291         165         1207         97.2         97.3         96.9         96.2         3.7           381         210         1428         97.5         97.5         97.0         96.4         3.5           351         210         1911         97.5         97.4         96.7         96.0         3.8           531         270         1316         97.7         98.1         97.9         97.5         2.2           553         300         2917         97.9         97.7         97.0         96.3         3.6           793         400         3693         98.0         97.5         96.9         3.2           913         490         4923         98.2         98.0         97.5         96.9         3.2           1343         650         6476         98.4         98.2         97.8         97.2         2.8           1597         750         8239         98.5         98.3 | Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         80% PF           204         95         778         96.6         96.7         96.0         95.1         4.8         4.0           291         165         1207         97.2         97.3         96.9         96.2         3.7         5.6           381         210         1428         97.5         97.5         97.0         96.4         3.5         5.5           351         210         1911         97.5         97.4         96.7         96.0         3.8         6.3           531         270         1316         97.7         98.1         97.9         97.5         2.2         4.0           553         300         2917         97.9         97.7         97.0         96.3         3.6         6.6           793         400         3693         98.0         98.0         97.5         96.9         3.2         7.5           913         490         4923         98.2         98.0         97.5         96.9         3.2         6.5           1343         650         6476         98.4 | Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         80% PF         Trise +20           204         95         778         96.6         96.7         96.0         95.1         4.8         4.0         4.8           291         165         1207         97.2         97.3         96.9         96.2         3.7         5.6         4.6           381         210         1428         97.5         97.5         97.0         96.4         3.5         5.5         4.5           351         210         1911         97.5         97.4         96.7         96.0         3.8         6.3         5.1           531         270         1316         97.7         98.1         97.9         97.5         2.2         4.0         3.2           553         300         2917         97.9         97.7         97.0         96.3         3.6         6.6         5.3           793         400         3693         98.0         98.0         97.5         96.9         3.2         7.5         6.0           913         490         4923         98.2         98.0         97.5 | Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         80% PF         Trise +20         Trise +20           204         95         778         96.6         96.7         96.0         95.1         4.8         4.0         4.8         1.4           291         165         1207         97.2         97.3         96.9         96.2         3.7         5.6         4.6         3.0           381         210         1428         97.5         97.5         97.0         96.4         3.5         5.5         4.5         3.1           351         210         1911         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4           531         270         1316         97.7         98.1         97.9         97.5         2.2         4.0         3.2         2.4           553         300         2917         97.9         97.7         97.0         96.3         3.6         6.6         5.3         4.0           793         400         3693         98.0         97.5         96.9         3.2         7.5         6.0         5.2 <td>Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         80% PF         Trise +20         Trise +20</td> <td>Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         80% PF         Trise +20         Trise +20         Level dB           204         95         778         96.6         96.7         96.0         95.1         4.8         4.0         4.8         1.4         4.6         45           291         165         1207         97.2         97.3         96.9         96.2         3.7         5.6         4.6         3.0         3.5         45           381         210         1428         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45           531         210         1911         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45           531         270         1316         97.7         98.1         97.9         97.5         2.2         4.0         3.2         2.4         2.1         45           553         300         2917         97.9         97.5         96.9         3.2         7.5         6.0         5.2         2.9</td> <td>Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         80% PF         Trise +20         Trise +20         Trise +20         Level dB         Efficiency           204         95         778         96.6         96.7         96.0         95.1         4.8         4.0         4.8         1.4         4.6         45         97.00           291         165         1207         97.2         97.3         96.9         96.2         3.7         5.6         4.6         3.0         3.5         45         97.50           381         210         1428         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45         97.70           351         210         1911         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45         97.70           531         270         1316         97.7         98.1         97.9         97.5         2.2         4.0         3.2         2.4         2.1         45         98.00           793         400         3693</td> <td>Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         89% PF         Trise +20         Trise +20         Trise Level dB         Efficiency         Absolute Max.           204         95         778         96.6         96.7         96.0         95.1         4.8         4.0         4.8         1.4         4.6         45         97.00         382           291         165         1207         97.2         97.3         96.9         96.2         3.7         5.6         4.6         3.0         3.5         45         97.00         479           381         210         1428         97.5         97.0         96.4         3.5         5.5         4.5         3.1         3.2         45         97.70         484           351         210         1911         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45         97.70         564           531         270         1316         97.7         98.1         97.9         97.5         2.2         4.0         3.2         2.4         2.1         45         98.00</td> | Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         80% PF         Trise +20         Trise +20 | Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         80% PF         Trise +20         Trise +20         Level dB           204         95         778         96.6         96.7         96.0         95.1         4.8         4.0         4.8         1.4         4.6         45           291         165         1207         97.2         97.3         96.9         96.2         3.7         5.6         4.6         3.0         3.5         45           381         210         1428         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45           531         210         1911         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45           531         270         1316         97.7         98.1         97.9         97.5         2.2         4.0         3.2         2.4         2.1         45           553         300         2917         97.9         97.5         96.9         3.2         7.5         6.0         5.2         2.9 | Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         80% PF         Trise +20         Trise +20         Trise +20         Level dB         Efficiency           204         95         778         96.6         96.7         96.0         95.1         4.8         4.0         4.8         1.4         4.6         45         97.00           291         165         1207         97.2         97.3         96.9         96.2         3.7         5.6         4.6         3.0         3.5         45         97.50           381         210         1428         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45         97.70           351         210         1911         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45         97.70           531         270         1316         97.7         98.1         97.9         97.5         2.2         4.0         3.2         2.4         2.1         45         98.00           793         400         3693 | Weight         No Load         Total at Rise +20         25%         50%         75%         Full Load         100% PF         89% PF         Trise +20         Trise +20         Trise Level dB         Efficiency         Absolute Max.           204         95         778         96.6         96.7         96.0         95.1         4.8         4.0         4.8         1.4         4.6         45         97.00         382           291         165         1207         97.2         97.3         96.9         96.2         3.7         5.6         4.6         3.0         3.5         45         97.00         479           381         210         1428         97.5         97.0         96.4         3.5         5.5         4.5         3.1         3.2         45         97.70         484           351         210         1911         97.5         97.4         96.7         96.0         3.8         6.3         5.1         3.4         3.8         45         97.70         564           531         270         1316         97.7         98.1         97.9         97.5         2.2         4.0         3.2         2.4         2.1         45         98.00 |

# Type DT-3 115°C Rise NEMA TP-1 Efficient

| /eight  <br> 2<br> 1  | No<br>Load<br>100<br>165 | <b>Total at Rise +20</b> 743  1492                   | <b>25%</b> 96.7                                                                         | <b>50%</b> 96.8                                                                                                                                                                                                  | <b>75%</b> 96.2                                                                                                                                                                                                                                                                 | Full<br>Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100%<br>PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80%<br>PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trise<br>+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trise<br>+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trise<br>+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sound<br>Level dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TP1<br>Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absolute<br>Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Practical<br>Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|--------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                     | 165                      |                                                      |                                                                                         | 96.8                                                                                                                                                                                                             | 96.2                                                                                                                                                                                                                                                                            | 05.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LCVCI UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lilicielicy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wax.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IVIAA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       |                          | 1492                                                 | 07.0                                                                                    |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                 | 95.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8 :                   |                          |                                                      | 97.3                                                                                    | 97.1                                                                                                                                                                                                             | 96.3                                                                                                                                                                                                                                                                            | 95.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 220                      | 1458                                                 | 97.8                                                                                    | 97.9                                                                                                                                                                                                             | 97.5                                                                                                                                                                                                                                                                            | 97.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6 :                   | 270                      | 1211                                                 | 97.6                                                                                    | 98.1                                                                                                                                                                                                             | 98.0                                                                                                                                                                                                                                                                            | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31 :                  | 300                      | 2415                                                 | 97.9                                                                                    | 97.9                                                                                                                                                                                                             | 97.5                                                                                                                                                                                                                                                                            | 96.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 29                    | 440                      | 3209                                                 | 98.0                                                                                    | 98.1                                                                                                                                                                                                             | 97.8                                                                                                                                                                                                                                                                            | 97.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 96                    | 530                      | 3781                                                 | 98.1                                                                                    | 98.3                                                                                                                                                                                                             | 97.9                                                                                                                                                                                                                                                                            | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 69                    | 720                      | 5205                                                 | 98.4                                                                                    | 98.4                                                                                                                                                                                                             | 98.1                                                                                                                                                                                                                                                                            | 97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 908                   | 830                      | 6926                                                 | 98.5                                                                                    | 98.5                                                                                                                                                                                                             | 98.2                                                                                                                                                                                                                                                                            | 97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17                    | 1650                     | 6968                                                 | 98.5                                                                                    | 98.9                                                                                                                                                                                                             | 98.8                                                                                                                                                                                                                                                                            | 98.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 384                   | 2000                     | 9335                                                 | 98.9                                                                                    | 99.1                                                                                                                                                                                                             | 99.0                                                                                                                                                                                                                                                                            | 98.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31<br>29<br>36<br>308 | 3                        | 270<br>300<br>440<br>530<br>3 720<br>3 830<br>7 1650 | 270 1211<br>300 2415<br>440 3209<br>530 3781<br>3 720 5205<br>3 830 6926<br>7 1650 6968 | 270     1211     97.6       300     2415     97.9       440     3209     98.0       530     3781     98.1       3     720     5205     98.4       3     830     6926     98.5       7     1650     6968     98.5 | 270     1211     97.6     98.1       300     2415     97.9     97.9       440     3209     98.0     98.1       530     3781     98.1     98.3       3     720     5205     98.4     98.4       3     830     6926     98.5     98.5       7     1650     6968     98.5     98.9 | 270         1211         97.6         98.1         98.0           300         2415         97.9         97.9         97.5           440         3209         98.0         98.1         97.8           530         3781         98.1         98.3         97.9           3         720         5205         98.4         98.4         98.1           8         830         6926         98.5         98.5         98.2           7         1650         6968         98.5         98.9         98.8 | 270         1211         97.6         98.1         98.0         97.7           300         2415         97.9         97.9         97.5         96.9           440         3209         98.0         98.1         97.8         97.3           530         3781         98.1         98.3         97.9         97.5           3         720         5205         98.4         98.4         98.1         97.8           3         830         6926         98.5         98.5         98.2         97.8           7         1650         6968         98.5         98.9         98.8         98.7 | 270         1211         97.6         98.1         98.0         97.7         1.9           300         2415         97.9         97.9         97.5         96.9         3.0           440         3209         98.0         98.1         97.8         97.3         2.6           530         3781         98.1         98.3         97.9         97.5         2.4           3         720         5205         98.4         98.4         98.1         97.8         2.2           3         830         6926         98.5         98.5         98.2         97.8         2.3           7         1650         6968         98.5         98.9         98.8         98.7         1.2 | 270         1211         97.6         98.1         98.0         97.7         1.9         3.7           300         2415         97.9         97.9         97.5         96.9         3.0         6.7           440         3209         98.0         98.1         97.8         97.3         2.6         3.6           530         3781         98.1         98.3         97.9         97.5         2.4         5.8           3         720         5205         98.4         98.4         98.1         97.8         2.2         6.8           3         830         6926         98.5         98.5         98.2         97.8         2.3         6.0           7         1650         6968         98.5         98.9         98.8         98.7         1.2         6.6 | 270         1211         97.6         98.1         98.0         97.7         1.9         3.7         3.2           300         2415         97.9         97.9         97.5         96.9         3.0         6.7         5.9           440         3209         98.0         98.1         97.8         97.3         2.6         3.6         3.1           530         3781         98.1         98.3         97.9         97.5         2.4         5.8         5.2           3         720         5205         98.4         98.4         98.1         97.8         2.2         6.8         6.2           3         830         6926         98.5         98.5         98.2         97.8         2.3         6.0         5.4           7         1650         6968         98.5         98.9         98.8         98.7         1.2         6.6         6.6 | 270         1211         97.6         98.1         98.0         97.7         1.9         3.7         3.2         2.6           300         2415         97.9         97.9         97.5         96.9         3.0         6.7         5.9         5.1           440         3209         98.0         98.1         97.8         97.3         2.6         3.6         3.1         1.9           530         3781         98.1         98.3         97.9         97.5         2.4         5.8         5.2         4.7           3         720         5205         98.4         98.4         98.1         97.8         2.2         6.8         6.2         5.8           3         830         6926         98.5         98.5         98.2         97.8         2.3         6.0         5.4         4.9           7         1650         6968         98.5         98.9         98.8         98.7         1.2         6.6         6.6         6.5 | 270         1211         97.6         98.1         98.0         97.7         1.9         3.7         3.2         2.6         1.9           300         2415         97.9         97.9         97.5         96.9         3.0         6.7         5.9         5.1         2.8           440         3209         98.0         98.1         97.8         97.3         2.6         3.6         3.1         1.9         2.5           530         3781         98.1         98.3         97.9         97.5         2.4         5.8         5.2         4.7         2.2           3         720         5205         98.4         98.4         98.1         97.8         2.2         6.8         6.2         5.8         2.0           3         830         6926         98.5         98.5         98.2         97.8         2.3         6.0         5.4         4.9         2.0           7         1650         6968         98.5         98.9         98.8         98.7         1.2         6.6         6.6         6.5         1.1 | 270     1211     97.6     98.1     98.0     97.7     1.9     3.7     3.2     2.6     1.9     45       300     2415     97.9     97.9     97.5     96.9     3.0     6.7     5.9     5.1     2.8     50       440     3209     98.0     98.1     97.8     97.3     2.6     3.6     3.1     1.9     2.5     50       530     3781     98.1     98.3     97.9     97.5     2.4     5.8     5.2     4.7     2.2     50       3     720     5205     98.4     98.4     98.1     97.8     2.2     6.8     6.2     5.8     2.0     55       3     830     6926     98.5     98.5     98.2     97.8     2.3     6.0     5.4     4.9     2.0     55       7     1650     6968     98.5     98.9     98.8     98.7     1.2     6.6     6.6     6.5     1.1     60 | 270         1211         97.6         98.1         98.0         97.7         1.9         3.7         3.2         2.6         1.9         45         98.00           300         2415         97.9         97.9         97.5         96.9         3.0         6.7         5.9         5.1         2.8         50         98.00           440         3209         98.0         98.1         97.8         97.3         2.6         3.6         3.1         1.9         2.5         50         98.20           530         3781         98.1         98.3         97.9         97.5         2.4         5.8         5.2         4.7         2.2         50         98.30           3         720         5205         98.4         98.1         97.8         2.2         6.8         6.2         5.8         2.0         55         98.50           3         830         6926         98.5         98.5         98.2         97.8         2.3         6.0         5.4         4.9         2.0         55         98.60           7         1650         6968         98.5         98.9         98.8         98.7         1.2         6.6         6.6         6.5 </td <td>270         1211         97.6         98.1         98.0         97.7         1.9         3.7         3.2         2.6         1.9         45         98.00         892           300         2415         97.9         97.9         97.5         96.9         3.0         6.7         5.9         5.1         2.8         50         98.00         758           440         3209         98.0         98.1         97.8         97.3         2.6         3.6         3.1         1.9         2.5         50         98.20         1301           530         3781         98.1         98.3         97.9         97.5         2.4         5.8         5.2         4.7         2.2         50         98.30         1534           3         720         5205         98.4         98.4         98.1         97.8         2.2         6.8         6.2         5.8         2.0         55         98.50         1875           3         830         6926         98.5         98.5         98.2         97.8         2.3         6.0         5.4         4.9         2.0         55         98.60         2678           7         1650         6968         98.5</td> | 270         1211         97.6         98.1         98.0         97.7         1.9         3.7         3.2         2.6         1.9         45         98.00         892           300         2415         97.9         97.9         97.5         96.9         3.0         6.7         5.9         5.1         2.8         50         98.00         758           440         3209         98.0         98.1         97.8         97.3         2.6         3.6         3.1         1.9         2.5         50         98.20         1301           530         3781         98.1         98.3         97.9         97.5         2.4         5.8         5.2         4.7         2.2         50         98.30         1534           3         720         5205         98.4         98.4         98.1         97.8         2.2         6.8         6.2         5.8         2.0         55         98.50         1875           3         830         6926         98.5         98.5         98.2         97.8         2.3         6.0         5.4         4.9         2.0         55         98.60         2678           7         1650         6968         98.5 |

# Type DT-3 80°C Rise NEMA TP-1 Efficient

|       |        | Losses in  | Watts                | Efficie | ncy (Tris | e +20°) |              | % Regu     | ılation   | % Imp.       | Х            | R            |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 276    | 165        | 551                  | 96.7    | 97.4      | 97.2    | 96.8         | 3.4        | 3.9       | 3.5          | 2.3          | 2.6          | 45                | 97.00             | 358              | 119               |
| 30    | 350    | 180        | 904                  | 97.3    | 97.8      | 97.6    | 97.2         | 2.5        | 3.9       | 3.4          | 2.5          | 2.4          | 45                | 97.50             | 337              | 112               |
| 45    | 540    | 290        | 1027                 | 97.7    | 98.2      | 98.2    | 97.9         | 1.7        | 3.5       | 3.3          | 2.9          | 1.6          | 45                | 97.70             | 953              | 317               |
| 75    | 810    | 360        | 1782                 | 97.8    | 98.2      | 98.0    | 97.7         | 0.3        | 3.5       | 4.3          | 3.9          | 1.9          | 50                | 98.00             | 1006             | 355               |
| 112.5 | 944    | 470        | 2521                 | 98.2    | 98.4      | 98.2    | 97.9         | 1.9        | 4.4       | 4.1          | 3.7          | 1.8          | 50                | 98.20             | 1554             | 518               |
| 150   | 1438   | 650        | 2760                 | 98.2    | 98.6      | 98.5    | 98.3         | 1.5        | 4.8       | 4.7          | 4.5          | 1.4          | 50                | 98.30             | 1665             | 555               |
| 225   | 1746   | 830        | 4047                 | 98.3    | 98.6      | 98.5    | 98.3         | 1.6        | 5.5       | 5.6          | 5.4          | 1.4          | 55                | 98.50             | 2003             | 667               |
| 300   | 2400   | 1100       | 5338                 | 98.6    | 99.0      | 99.0    | 98.9         | 1.6        | 5.9       | 6.1          | 5.9          | 1.4          | 55                | 98.60             | 2655             | 885               |
| 500   | 3418   | 1800       | 5858                 | 98.6    | 99.0      | 99.0    | 98.9         | 0.9        | 4.9       | 5.4          | 5.3          | 0.8          | 60                | 98.70             | 4462             | 1487              |

# Type KT-4 150°C Rise NEMA TP-1 Efficient

|       |        | Losses in  |                      | Efficie | ncy (Tris | e +20°)     | F11          | % Regu     |           | % Imp.       | X            | R            | Cd                | TD4               | Inrush           | Donation          |
|-------|--------|------------|----------------------|---------|-----------|-------------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | <b>75</b> % | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 206    | 100        | 883                  | 96.7    | 96.5      | 95.6        | 94.6         | 5.5        | 5.2       | 5.5          | 1.8          | 5.2          | 45                | 97.00             | 375              | 125               |
| 30    | 311    | 165        | 1263                 | 97.2    | 97.3      | 96.7        | 96.0         | 3.9        | 7.4       | 6.0          | 4.8          | 3.7          | 45                | 97.50             | 453              | 151               |
| 45    | 400    | 220        | 1554                 | 97.7    | 97.7      | 97.3        | 96.7         | 3.2        | 5.9       | 4.8          | 3.8          | 3.0          | 45                | 97.70             | 710              | 236               |
| 75    | 547    | 300        | 2622                 | 97.9    | 97.8      | 97.2        | 96.6         | 3.3        | 6.7       | 5.3          | 4.4          | 3.1          | 50                | 98.00             | 995              | 331               |
| 112.5 | 800    | 440        | 3525                 | 98.0    | 98.0      | 97.6        | 97.0         | 3.0        | 7.4       | 6.0          | 5.3          | 2.7          | 50                | 98.20             | 1082             | 360               |
| 150   | 1010   | 530        | 4055                 | 98.1    | 98.2      | 97.8        | 97.4         | 2.6        | 6.6       | 5.4          | 4.8          | 2.3          | 50                | 98.30             | 1574             | 524               |
| 225   | 1680   | 700        | 5879                 | 98.3    | 98.3      | 97.9        | 97.5         | 2.6        | 7.6       | 6.3          | 5.9          | 2.3          | 55                | 98.50             | 1943             | 647               |
| 300   | 2122   | 1100       | 5895                 | 98.4    | 98.6      | 98.4        | 98.1         | 1.9        | 6.8       | 5.9          | 5.7          | 1.6          | 55                | 98.60             | 2863             | 954               |
| 500   | 3201   | 1800       | 7054                 | 98.5    | 98.9      | 98.8        | 98.7         | 1.3        | 5.9       | 5.4          | 5.2          | 1.1          | 60                | 98.70             | 4588             | 1529              |

# Type KT-4 115°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | n Watts              | Efficie | ency (Tris | e +20°) |              | % Regu     | ılation   | % Imp.       | Х            | R            |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|------------|---------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%        | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 307    | 135        | 394                  | 96.3    | 97.5       | 97.6    | 97.5         | 1.8        | 2.7       | 2.2          | 1.4          | 1.7          | 45                | 97.00             | 491              | 163               |
| 30    | 313    | 165        | 1344                 | 97.4    | 97.3       | 96.6    | 95.9         | 4.1        | 5.1       | 4.6          | 2.4          | 3.9          | 45                | 97.50             | 584              | 194               |
| 45    | 400    | 220        | 1463                 | 97.8    | 97.9       | 97.5    | 97.0         | 3.0        | 6.1       | 5.2          | 4.4          | 2.8          | 45                | 97.70             | 591              | 197               |
| 75    | 587    | 285        | 2355                 | 97.9    | 97.9       | 97.5    | 97.0         | 2.9        | 6.7       | 5.9          | 5.2          | 2.8          | 50                | 98.00             | 823              | 274               |
| 112.5 | 947    | 470        | 2910                 | 97.9    | 98.1       | 97.9    | 97.5         | 2.4        | 5.0       | 4.3          | 3.7          | 2.2          | 50                | 98.20             | 1447             | 482               |
| 150   | 1243   | 560        | 4119                 | 98.1    | 98.2       | 97.8    | 97.4         | 2.5        | 6.6       | 5.7          | 5.2          | 2.4          | 50                | 98.30             | 1468             | 489               |
| 225   | 1680   | 700        | 5413                 | 98.3    | 98.3       | 98.1    | 97.7         | 2.3        | 7.5       | 7.0          | 6.7          | 2.1          | 55                | 98.50             | 1719             | 573               |
| 300   | 2480   | 1100       | 5735                 | 98.4    | 98.7       | 98.5    | 98.2         | 1.8        | 6.7       | 6.3          | 6.1          | 1.5          | 55                | 98.60             | 2547             | 849               |

#### Type KT-4 80°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | ılation   | % Imp.       | х            | R            |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 378    | 165        | 416                  | 96.4    | 97.6      | 97.7    | 97.6         | 1.7        | 2.9       | 2.5          | 1.9          | 1.7          | 45                | 97.00             | 482              | 160               |
| 30    | 365    | 188        | 877                  | 97.2    | 97.7      | 97.6    | 97.2         | 2.4        | 3.9       | 3.5          | 2.6          | 2.3          | 45                | 97.50             | 583              | 194               |
| 45    | 550    | 285        | 1055                 | 97.4    | 98.1      | 98.0    | 97.8         | 1.8        | 3.7       | 3.4          | 2.9          | 1.7          | 45                | 97.70             | 708              | 236               |
| 75    | 774    | 360        | 1784                 | 97.8    | 98.2      | 98.0    | 97.7         | 2.0        | 4.7       | 4.5          | 4.0          | 1.9          | 50                | 98.00             | 986              | 328               |
| 112.5 | 1380   | 550        | 1872                 | 97.9    | 98.5      | 98.5    | 98.4         | 1.3        | 4.2       | 4.2          | 4.1          | 1.2          | 50                | 98.20             | 1577             | 525               |
| 150   | 1604   | 700        | 2728                 | 98.0    | 98.5      | 98.5    | 98.3         | 1.4        | 4.4       | 4.5          | 4.3          | 1.4          | 50                | 98.30             | 1880             | 626               |
| 225   | 2336   | 850        | 3728                 | 98.4    | 98.7      | 98.6    | 98.4         | 1.4        | 5.0       | 5.2          | 5.1          | 1.3          | 55                | 98.50             | 2647             | 882               |
| 300   | 2689   | 1100       | 4589                 | 98.4    | 98.8      | 98.7    | 98.5         | 1.4        | 5.5       | 5.8          | 5.6          | 1.2          | 55                | 98.60             | 2610             | 870               |

# Type KT-13 150°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | ılation   | % Imp.       | Χ            | R            |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 271    | 165        | 604                  | 96.7    | 97.3      | 97.0    | 96.5         | 3.1        | 4.2       | 3.6          | 2.1          | 2.9          | 45                | 97.00             | 379              | 126               |
| 30    | 365    | 198        | 977                  | 97.1    | 97.6      | 97.3    | 96.9         | 2.7        | 4.3       | 3.5          | 2.4          | 2.6          | 45                | 97.50             | 565              | 188               |
| 45    | 545    | 280        | 1215                 | 97.5    | 98.0      | 97.8    | 97.4         | 2.2        | 4.2       | 3.3          | 2.6          | 2.1          | 45                | 97.70             | 890              | 277               |
| 75    | 812    | 360        | 2139                 | 97.7    | 98.0      | 97.8    | 97.4         | 2.6        | 5.9       | 4.9          | 4.3          | 2.4          | 50                | 98.00             | 907              | 302               |
| 112.5 | 920    | 490        | 3059                 | 98.0    | 98.2      | 97.8    | 97.4         | 2.4        | 5.0       | 4.1          | 3.4          | 2.3          | 50                | 98.20             | 1513             | 504               |
| 150   | 1221   | 530        | 4297                 | 98.1    | 98.1      | 97.7    | 97.2         | 2.7        | 6.5       | 5.3          | 4.6          | 2.5          | 50                | 98.30             | 1790             | 597               |
| 225   | 1960   | 830        | 4461                 | 98.3    | 98.6      | 98.3    | 98.0         | 1.9        | 6.6       | 6.1          | 5.9          | 1.6          | 55                | 98.50             | 1771             | 590               |
| 300   | 2358   | 1100       | 5931                 | 98.4    | 98.6      | 98.4    | 98.2         | 1.9        | 7.2       | 6.3          | 6.0          | 1.6          | 55                | 98.60             | 2543             | 847               |

# Type KT-13 115°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | ılation   | % Imp.       | Х            | R            |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 332    | 165        | 432                  | 96.6    | 97.6      | 97.6    | 97.4         | 1.9        | 3.2       | 2.8          | 2.2          | 1.8          | 45                | 97.00             | 409              | 136               |
| 30    | 390    | 200        | 903                  | 97.3    | 97.8      | 97.6    | 97.2         | 2.5        | 4.4       | 3.6          | 2.8          | 2.3          | 45                | 97.50             | 420              | 120               |
| 45    | 548    | 280        | 1187                 | 97.5    | 98.1      | 98.0    | 97.7         | 2.2        | _         | 3.0          | 2.3          | 2.0          | 45                | 97.70             | 836              | 278               |
| 75    | 808    | 360        | 1850                 | 97.8    | 98.1      | 97.8    | 97.5         | 2.4        | 5.6       | 4.8          | 4.3          | 2.2          | 50                | 98.00             | 805              | 268               |
| 112.5 | 990    | 540        | 2373                 | 97.9    | 98.3      | 98.2    | 98.0         | 1.8        | 4.5       | 4.0          | 3.6          | 1.6          | 50                | 98.20             | 1303             | 434               |
| 150   | 1600   | 650        | 2372                 | 98.1    | 98.5      | 98.4    | 98.1         | 1.3        | 3.4       | 3.0          | 2.8          | 1.1          | 50                | 98.30             | 1932             | 644               |
| 225   | 2306   | 850        | 4001                 | 98.3    | 98.7      | 98.6    | 98.3         | 1.6        | 4.9       | 5.1          | 4.9          | 1.4          | 55                | 98.50             | 2508             | 836               |
| 300   | 3291   | 1100       | 4583                 | 98.4    | 98.8      | 98.7    | 98.5         | 1.3        | 6.2       | 6.3          | 6.2          | 1.2          | 55                | 98.60             | 2851             | 950               |

# Type KT-13 80°C Rise NEMA TP-1 Efficient

|       |        | Losses in  | Watts                | Efficie | ncy (Tris | e +20°) |              | % Regu     | ılation   | % lmp.       | X            | R            |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|--------------|--------------|--------------|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | Trise<br>+20 | Trise<br>+20 | Trise<br>+20 | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 315    | 165        | 536                  | 96.4    | 97.3      | 97.2    | 96.9         | 2.5        | 3.9       | 3.6          | 2.5          | 2.5          | 45                | 97.00             | 375              | 125               |
| 30    | 408    | 188        | 854                  | 97.4    | 97.9      | 97.7    | 97.3         | 2.3        | 4.0       | 3.6          | 2.8          | 2.2          | 45                | 97.50             | 497              | 166               |
| 45    | 555    | 280        | 982                  | 97.6    | 98.2      | 98.2    | 98.0         | 1.6        | 3.2       | 3.0          | 2.5          | 1.6          | 45                | 97.70             | 656              | 218               |
| 75    | 838    | 400        | 1289                 | 97.8    | 98.4      | 98.5    | 98.4         | 1.3        | 3.0       | 2.9          | 2.6          | 1.2          | 50                | 98.00             | 1624             | 541               |
| 112.5 | 1367   | 550        | 1905                 | 97.9    | 98.5      | 98.5    | 98.4         | 1.3        | 4.2       | 4.4          | 4.2          | 1.2          | 50                | 98.20             | 1171             | 390               |
| 150   | 1607   | 668        | 2474                 | 98.2    | 98.6      | 98.6    | 98.4         | 1.4        | 4.6       | 4.7          | 4.5          | 1.2          | 50                | 98.30             | 1562             | 520               |
| 225   | 2582   | 850        | 3471                 | 98.3    | 98.7      | 98.7    | 98.5         | 1.3        | 5.1       | 6.3          | 6.2          | 1.2          | 55                | 98.50             | 2159             | 719               |
| 300   | 3228   | 1100       | 3978                 | 98.3    | 98.8      | 98.8    | 98.7         | 1.1        | 4.2       | 4.5          | 4.3          | 1.0          | 55                | 98.60             | 3255             | 1085              |

# Type DS-3 150°C Rise NEMA TP-1 Efficient

|      |        | Losses i   | in Watts             | Efficie | ncy (Tris | e +20°) |              | % Regu     | lation    |           |     |     |                   |                   | Inrush           |                   |
|------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA  | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15   | 270    | 80         | 605                  | 97.6    | 97.5      | 96.9    | 96.3         | 3.5        | 4.2       | 4.2       | 2.3 | 3.5 | 45                | 97.70             | 551              | 183               |
| 25   | 406    | 115        | 732                  | 97.9    | 98.1      | 97.7    | 97.3         | _          | _         | 3.5       | 2.5 | 2.5 | 45                | 98.00             | 1379             | 459               |
| 37.5 | 453    | 125        | 1154                 | 98.2    | 98.1      | 97.6    | 97.0         | 2.7        | 3.7       | 4.8       | 4.0 | 2.7 | 45                | 98.20             | 1321             | 440               |
| 50   | 657    | 160        | 1159                 | 98.3    | 98.4      | 98.1    | 97.7         | 2.0        | 3.3       | 3.8       | 3.8 | 2.0 | 45                | 98.30             | 1321             | 440               |
| 75   | 803    | 175        | 2259                 | 98.5    | 98.3      | 97.7    | 97.1         | 2.8        | 4.8       | 6.5       | 5.8 | 2.8 | 50                | 98.50             | 2133             | 711               |
| 100  | 960    | 250        | 2504                 | 98.6    | 98.4      | 98.0    | 97.5         | 2.3        | 4.3       | 5.5       | 5.0 | 2.3 | 50                | 98.60             | 2779             | 926               |
| 167  | 1665   | 570        | 3094                 | 98.7    | 98.8      | 98.6    | 98.3         | 1.5        | 6.3       | 9.0       | 8.8 | 1.5 | 50                | 98.70             | 2865             | 955               |

# Type DS-3 115°C Rise NEMA TP-1 Efficient

|      |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | lation    |           |     |     |                   |                   | Inrush           |                   |
|------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA  | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15   | 264    | 80         | 437                  | 97.8    | 98.1      | 97.8    | 97.3         | 2.4        | 2.2       | 3.3       | 2.2 | 2.4 | 45                | 97.70             | 718              | 239               |
| 25   | 420    | 110        | 603                  | 97.9    | 98.2      | 98.0    | 97.7         | 2.0        | 2.9       | 3.2       | 2.6 | 2.0 | 45                | 98.00             | 862              | 287               |
| 37.5 | 450    | 125        | 1217                 | 98.2    | 98.0      | 97.5    | 96.9         | 2.9        | 4.5       | 5.9       | 5.1 | 2.9 | 45                | 98.20             | 1300             | 433               |
| 50   | 703    | 300        | 1409                 | 98.4    | 98.4      | 98.0    | 97.6         | 2.2        | 3.8       | 4.7       | 4.1 | 2.2 | _                 | 98.30             | 1498             | 499               |
| 75   | 793    | 175        | 2178                 | 98.5    | 98.3      | 97.8    | 97.2         | 2.7        | 4.7       | 6.2       | 5.6 | 2.7 | 50                | 98.50             | 2107             | 702               |

# Type DS-3 80°C Rise NEMA TP-1 Efficient

|      |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | lation    |           |     |     |                   |                   | Inrush           |                   |
|------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA  | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15   | 407    | 115        | 293                  | 97.3    | 98.2      | 98.3    | 98.2         | 1.2        | 1.7       | 1.8       | 1.4 | 1.2 | 45                | 97.70             | 375              | 125               |
| 25   | 430    | 300        | 679                  | 97.9    | 98.4      | 98.3    | 98.1         | 1.5        | 2.6       | 3.0       | 2.6 | 1.5 | 45                | 98.00             | 494              | 164               |
| 37.5 | 685    | 300        | 729                  | 98.1    | 98.6      | 98.6    | 98.5         | 1.1        | 2.2       | 2.6       | 2.3 | 1.1 | 45                | 98.20             | 617              | 205               |
| 50   | 799    | 180        | 1013                 | 98.3    | 98.6      | 98.4    | 98.1         | 1.7        | 2.9       | 3.4       | 2.9 | 1.7 | 45                | 98.30             | 989              | 329               |
| 75   | 1042   | 250        | 1447                 | 98.3    | 98.6      | 98.4    | 98.1         | 1.6        | 3.4       | 3.8       | 3.5 | 1.6 | 50                | 98.50             | 1015             | 338               |

# Type DT-3 150°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | in Watts             | Efficie | ncy (Tris | e +20°)     |              | % Regu     | ılation   |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|-------------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | <b>75</b> % | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>lmp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 250    | 150        | 755                  | 98.9    | 97.0      | 96.4        | 95.7         | 4.2        | 5.3       | 4.8       | 2.6 | 4.0 | 45                | 97.00             | 321              | 107               |
| 30    | 350    | 165        | 1100                 | 97.3    | 97.5      | 97.0        | 96.5         | 3.2        | 4.5       | 5.2       | 4.1 | 3.1 | 45                | 97.50             | 614              | 204               |
| 37.5  | 415    | 210        | 1382                 | 97.5    | 97.6      | 97.1        | 96.5         | 3.2        | 4.8       | 4.0       | 2.5 | 3.1 | 45                | 97.70             | 639              | 213               |
| 45    | 416    | 215        | 1786                 | 97.4    | 97.4      | 96.9        | 96.2         | 3.6        | 5.5       | 4.6       | 3.0 | 3.5 | 45                | 97.70             | 637              | 212               |
| 50    | 647    | 270        | 1220                 | 97.7    | 98.2      | 98.0        | 97.7         | 2.0        | 3.5       | 2.8       | 2.0 | 1.9 | 45                | 98.00             | 1072             | 357               |
| 75    | 643    | 320        | 2903                 | 97.9    | 97.5      | 97.1        | 96.4         | 3.6        | 7.4       | 4.3       | 2.5 | 3.4 | 50                | 98.00             | 1015             | 338               |
| 112.5 | 876    | 420        | 3699                 | 97.9    | 97.9      | 97.4        | 96.8         | 3.0        | 6.7       | 5.1       | 4.2 | 2.9 | 50                | 98.20             | 1185             | 395               |
| 150   | 1064   | 530        | 4269                 | 98.1    | 98.2      | 97.8        | 97.3         | 2.7        | 5.3       | 4.3       | 3.5 | 2.5 | 50                | 98.30             | 1752             | 584               |
| 225   | 1569   | 560        | 7124                 | 98.4    | 98.1      | 97.5        | 97.0         | 3.2        | 8.7       | 7.4       | 6.8 | 2.9 | 55                | 98.50             | 2498             | 832               |
| 300   | 2050   | 730        | 7959                 | 98.4    | 98.3      | 97.9        | 97.4         | 2.6        | 6.7       | 5.5       | 4.9 | 2.4 | 55                | 98.60             | 2872             | 964               |
| 500   | 3681   | 1400       | 8292                 | 98.8    | 98.9      | 98.7        | 98.4         | 1.6        | 7.4       | 6.8       | 6.7 | 1.4 | 60                | 98.70             | 3839             | 1279              |

# Type DT-3 115°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°)     |              | % Regu     | ılation   |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|-------------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | <b>75</b> % | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 256    | 95         | 669                  | 97.7    | 97.8      | 97.3        | 96.7         | 4.0        | 5.4       | 4.8       | 2.9 | 3.8 | 45                | 97.00             | 229              | 76                |
| 30    | 337    | 180        | 1077                 | 97.7    | 97.8      | 97.3        | 96.8         | 3.0        | 6.2       | 4.6       | 3.5 | 3.0 | 45                | 97.50             | 433              | 144               |
| 45    | 446    | 215        | 1625                 | 97.7    | 97.7      | 97.2        | 96.6         | 3.2        | 5.2       | 4.4       | 3.1 | 3.1 | 45                | 97.70             | 658              | 219               |
| 50    | 630    | 270        | 1213                 | 97.8    | 98.2      | 98.0        | 97.7         | 2.0        | 3.5       | 3.0       | 2.3 | 1.9 | 45                | 98.00             | 960              | 320               |
| 75    | 662    | 320        | 2346                 | 97.9    | 98.0      | 97.6        | 97.0         | 2.8        | 5.4       | 4.7       | 3.9 | 2.7 | 50                | 98.00             | 842              | 280               |
| 112.5 | 914    | 400        | 2953                 | 98.1    | 98.2      | 97.9        | 97.4         | 2.5        | 5.7       | 5.0       | 4.5 | 2.3 | 50                | 98.20             | 1036             | 345               |
| 150   | 1132   | 530        | 3364                 | 98.3    | 98.5      | 98.2        | 97.8         | 2.0        | 4.8       | 4.4       | 4.0 | 1.9 | 50                | 98.30             | 1605             | 535               |
| 225   | 2036   | 650        | 6445                 | 98.4    | 98.3      | 97.8        | 97.3         | 2.9        | 8.8       | 8.1       | 7.7 | 2.6 | 55                | 98.50             | 1572             | 524               |
| 300   | 2325   | 830        | 6038                 | 98.6    | 98.7      | 98.4        | 98.1         | 2.0        | 5.7       | 5.2       | 4.9 | 1.7 | 55                | 98.60             | 1860             | 620               |
| 500   | 3681   | 1400       | 7841                 | 98.8    | 98.9      | 98.7        | 98.5         | 1.4        | 6.8       | 6.8       | 6.6 | 1.3 | 60                | 98.70             | 4033             | 1344              |

# Type DT-3 80°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | in Watts             | Efficie | ncy (Tris | e +20°)     |              | % Regu     | ılation   |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|-------------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | <b>75</b> % | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>lmp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 349    | 135        | 390                  | 96.6    | 97.7      | 97.7        | 97.6         | 1.8        | 2.4       | 2.1       | 1.3 | 1.7 | 45                | 97.00             | 449              | 150               |
| 30    | 410    | 210        | 823                  | 97.3    | 97.9      | 97.7        | 97.4         | 2.1        | 3.4       | 3.0       | 2.1 | 2.0 | 45                | 97.50             | 493              | 164               |
| 45    | 504    | 200        | 1308                 | 97.9    | 98.0      | 97.7        | 97.2         | 2.5        | 4.5       | 3.9       | 3.1 | 2.5 | 45                | 97.70             | 473              | 158               |
| 75    | 818    | 370        | 1837                 | 97.9    | 98.2      | 98.0        | 97.7         | 2.0        | 9.3       | 4.3       | 3.8 | 2.0 | 50                | 98.00             | 937              | 312               |
| 112.5 | 1065   | 440        | 2409                 | 98.1    | 98.3      | 98.0        | 97.6         | 1.8        | 3.8       | 3.3       | 2.8 | 1.8 | 50                | 98.20             | 1754             | 584               |
| 150   | 1410   | 650        | 3349                 | 98.3    | 98.5      | 98.3        | 97.9         | 1.9        | 3.9       | 3.7       | 3.2 | 1.8 | 50                | 98.30             | 1593             | 531               |
| 225   | 2030   | 830        | 4096                 | 98.4    | 98.7      | 98.5        | 98.3         | 1.6        | 5.4       | 5.4       | 5.2 | 1.5 | 55                | 98.50             | 2568             | 856               |
| 300   | 3041   | 1100       | 4646                 | 98.5    | 98.8      | 98.7        | 98.5         | 1.4        | 5.6       | 6.1       | 6.0 | 1.2 | 55                | 98.60             | 3753             | 1251              |

# Type KT-4 80°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | in Watts             | Efficie | ncy (Tris | e +20°) |              | % Regu     | lation    |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | х   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 251    | 100        | 635                  | 96.8    | 97.1      | 96.6    | 96.0         | 3.7        | 5.0       | 4.2       | 2.1 | 3.6 | 45                | 97.00             | 265              | 88                |
| 30    | 326    | 165        | 1134                 | 97.4    | 97.5      | 97.1    | 96.5         | 3.5        | 5.3       | 4.3       | 2.9 | 3.2 | 45                | 97.50             | 504              | 168               |
| 45    | 479    | 220        | 1505                 | 97.6    | 97.8      | 97.3    | 96.8         | 3.0        | 5.6       | 5.0       | 4.1 | 2.9 | 45                | 97.70             | 670              | 223               |
| 75    | 463    | 300        | 2883                 | 97.9    | 97.7      | 97.1    | 96.4         | 3.6        | 7.1       | 5.9       | 4.7 | 3.4 | 50                | 98.00             | 975              | 325               |
| 112.5 | 977    | 440        | 2952                 | 98.1    | 98.2      | 97.9    | 97.5         | 2.6        | 6.6       | 5.6       | 5.1 | 2.2 | 50                | 98.20             | 1031             | 344               |
| 150   | 1212   | 540        | 3716                 | 98.3    | 98.4      | 98.0    | 97.6         | 2.4        | 6.0       | 5.1       | 4.6 | 2.1 | 50                | 98.30             | 1574             | 524               |
| 225   | 1815   | 650        | 5420                 | 98.4    | 98.5      | 98.1    | 97.7         | 2.4        | 7.6       | 6.5       | 6.2 | 2.1 | 55                | 98.50             | 1694             | 565               |
| 300   | 2400   | 830        | 6259                 | 98.6    | 98.6      | 98.4    | 98.0         | 2.2        | 6.3       | 5.2       | 4.9 | 1.8 | 55                | 98.60             | 2594             | 864               |

# Type KT-4 115°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | in Watts             | Efficie | ncy (Tris | e +20°) |              | % Regu     | lation    |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 256    | 95         | 702                  | 96.7    | 96.9      | 96.3    | 95.6         | 4.2        | 5.7       | 5.0       | 2.9 | 4.0 | 45                | 97.00             | 279              | 93                |
| 30    | 341    | 165        | 1007                 | 97.4    | 97.6      | 97.3    | 96.8         | 3.0        | 4.8       | 4.2       | 3.1 | 2.8 | 45                | 97.50             | 466              | 155               |
| 45    | 526    | 220        | 1200                 | 97.9    | 98.1      | 97.9    | 97.5         | 2.3        | 5.0       | 4.1       | 3.5 | 2.2 | 50                | 97.70             | 633              | 211               |
| 75    | 759    | 300        | 1715                 | 98.1    | 98.3      | 98.1    | 97.8         | 1.9        | 5.0       | 4.5       | 4.1 | 1.9 | 50                | 98.00             | 929              | 309               |
| 112.5 | 1030   | 470        | 2735                 | 98.0    | 98.3      | 98.0    | 97.7         | 2.2        | 4.4       | 3.8       | 3.2 | 2.0 | 50                | 98.20             | 1171             | 390               |
| 150   | 1631   | 650        | 3076                 | 98.2    | 98.5      | 98.3    | 98.1         | 1.7        | 4.9       | 4.5       | 4.2 | 1.6 | 50                | 98.30             | 1250             | 416               |
| 225   | 1965   | 690        | 4434                 | 98.5    | 98.6      | 98.4    | 98.1         | 1.9        | 5.6       | 5.3       | 5.0 | 1.7 | 55                | 98.50             | 1979             | 659               |
| 300   | 2337   | 830        | 6127                 | 98.6    | 98.7      | 98.4    | 98.0         | 2.0        | 5.2       | 4.7       | 4.3 | 1.8 | 55                | 98.60             | 2187             | 729               |

#### Type KT-4 80°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | lation    |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 365    | 165        | 371                  | 97.0    | 98.0      | 98.1    | 98.0         | 1.5        | 2.3       | 2.1       | 1.5 | 1.4 | 45                | 97.00             | 499              | 166               |
| 30    | 424    | 210        | 787                  | 97.3    | 97.9      | 97.8    | 97.6         | 2.0        | 3.2       | 2.9       | 2.2 | 1.9 | 45                | 97.50             | 659              | 219               |
| 45    | 653    | 290        | 977                  | 97.4    | 98.1      | 98.1    | 98.0         | 1.6        | 3.1       | 3.0       | 2.5 | 1.5 | 45                | 97.70             | 925              | 308               |
| 75    | 640    | 350        | 1951                 | 97.8    | 98.1      | 97.8    | 97.5         | 2.2        | 5.2       | 4.9       | 4.4 | 2.1 | 50                | 98.00             | 854              | 284               |
| 112.5 | 1264   | 560        | 2009                 | 98.2    | 98.7      | 98.6    | 98.4         | 1.4        | 4.3       | 4.2       | 4.0 | 1.3 | 50                | 98.20             | 1449             | 483               |
| 150   | 1825   | 650        | 2873                 | 98.5    | 98.7      | 98.5    | 98.2         | 1.6        | 6.1       | 6.4       | 6.3 | 1.5 | 50                | 98.30             | 1288             | 429               |
| 225   | 2096   | 890        | 4449                 | 98.3    | 98.6      | 98.4    | 98.1         | 1.8        | 6.5       | 6.6       | 6.4 | 1.6 | 55                | 98.50             | 2292             | 764               |

#### Type KT-13 150°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | in Watts             | Efficie | ncy (Tris | e +20°) |              | % Regu     | ılation   |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | x   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 346    | 165        | 461                  | 96.2    | 97.4      | 97.5    | 97.3         | 2.1        | 3.0       | 2.5       | 1.6 | 2.0 | 45                | 97.00             | 527              | 176               |
| 30    | 390    | 190        | 908                  | 97.2    | 97.7      | 97.5    | 97.1         | 2.6        | 4.0       | 3.3       | 2.3 | 2.4 | 45                | 97.50             | 579              | 193               |
| 45    | 623    | 235        | 1328                 | 97.6    | 97.9      | 97.6    | 97.2         | 2.5        | 3.2       | 2.8       | 1.4 | 2.4 | 45                | 97.70             | 854              | 285               |
| 75    | 848    | 370        | 2402                 | 97.7    | 97.9      | 97.5    | 97.0         | 2.8        | 5.7       | 4.5       | 3.6 | 2.7 | 50                | 98.00             | 1046             | 348               |
| 112.5 | 1080   | 455        | 2991                 | 98.0    | 98.2      | 97.9    | 97.4         | 2.4        | 4.3       | 3.5       | 2.7 | 2.3 | 50                | 98.20             | 1180             | 393               |
| 150   | 1431   | 600        | 3686                 | 98.2    | 98.3      | 98.1    | 97.7         | 2.3        | 5.1       | 4.2       | 3.7 | 2.1 | 50                | 98.30             | 1250             | 416               |
| 225   | 2129   | 830        | 4250                 | 98.4    | 98.6      | 98.4    | 98.2         | 2.0        | 6.3       | 5.4       | 5.1 | 1.5 | 55                | 98.50             | 2771             | 923               |

# Type KT-13 115°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | lation    |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | x   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 341    | 165        | 378                  | 96.6    | 97.8      | 97.9    | 97.9         | 1.5        | 2.4       | 2.1       | 1.6 | 1.4 | 45                | 97.00             | 472              | 157               |
| 30    | 444    | 188        | 824                  | 97.1    | 97.8      | 97.6    | 97.3         | 2.2        | 3.6       | 3.1       | 2.2 | 2.1 | 45                | 97.50             | 620              | 206               |
| 45    | 598    | 250        | 1476                 | 97.4    | 97.7      | 97.4    | 96.9         | 2.8        | 4.6       | 4.0       | 2.9 | 2.7 | 45                | 97.70             | 939              | 313               |
| 75    | 894    | 350        | 2128                 | 97.9    | 98.1      | 97.9    | 97.5         | 1.9        | 5.1       | 4.6       | 4.0 | 2.4 | 50                | 98.00             | 847              | 282               |
| 112.5 | 1054   | 460        | 2612                 | 98.1    | 98.3      | 98.1    | 97.8         | 2.0        | 4.3       | 3.3       | 2.6 | 1.9 | 50                | 98.20             | 1375             | 458               |
| 150   | 1399   | 600        | 3185                 | 98.2    | 98.5      | 98.3    | 98.0         | 2.0        | 5.9       | 5.4       | 5.1 | 1.7 | 50                | 98.30             | 1379             | 460               |
| 225   | 2088   | 890        | 4382                 | 98.3    | 98.6      | 98.4    | 98.2         | 1.8        | 6.1       | 5.7       | 5.5 | 1.6 | 55                | 98.50             | 2490             | 830               |

# Type KT-13 80°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | in Watts             | Efficie | ncy (Tris | e +20°)     |              | % Regu     | ılation   |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|-------------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | <b>75</b> % | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | х   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 370    | 165        | 382                  | 96.7    | 97.8      | 97.9        | 97.8         | 1.5        | 2.4       | 2.2       | 1.6 | 1.4 | 45                | 97.00             | 472              | 157               |
| 30    | 490    | 188        | 595                  | 97.4    | 98.2      | 98.2        | 98.1         | 1.4        | 3.0       | 2.8       | 2.5 | 1.4 | 45                | 97.50             | 592              | 197               |
| 45    | 635    | 290        | 1189                 | 97.4    | 97.9      | 97.8        | 97.5         | 2.1        | 3.9       | 3.5       | 2.8 | 2.0 | 45                | 97.70             | 736              | 245               |
| 75    | 987    | 410        | 1351                 | 97.7    | 98.9      | 98.4        | 98.3         | 1.4        | 2.8       | 2.6       | 2.3 | 1.3 | 50                | 98.00             | 1590             | 530               |
| 112.5 | 854    | 560        | 2039                 | 98.1    | 98.6      | 98.5        | 98.3         | 1.4        | 4.2       | 4.3       | 4.1 | 1.3 | 50                | 98.20             | 1374             | 458               |
| 150   | 1807   | 650        | 3053                 | 98.0    | 98.4      | 98.3        | 98.0         | 1.7        | 4.3       | 4.0       | 3.7 | 1.6 | 50                | 98.30             | 1472             | 490               |
| 225   | 4091   | 1200       | 2364                 | 98.2    | 98.9      | 99.1        | 99.1         | 0.6        | 2.7       | 2.9       | 2.8 | 0.5 | 55                | 98.50             | 4321             | 1440              |

# Type KT-13 115°C Rise E3 Efficient

|       |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | ılation   |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 3.25   | 78         | 359                  | 97.6    | 98.1      | 98.0    | 97.7         | 2.0        | 3.7       | 3.2       | 2.6 | 1.9 | 45                | 98.00             | 307              | 102               |
| 30    | 370    | 125        | 636                  | 98.1    | 98.4      | 98.3    | 98.0         | 1.7        | 2.7       | 2.3       | 1.6 | 1.7 | 45                | 98.30             | 779              | 260               |
| 45    | 635    | 135        | 1076                 | 98.5    | 98.5      | 98.1    | 97.7         | 2.2        | 4.1       | 3.5       | 2.8 | 2.1 | 45                | 98.50             | 617              | 206               |
| 75    | 870    | 225        | 1529                 | 98.5    | 98.6      | 98.4    | 98.0         | 1.9        | 4.9       | 4.4       | 4.1 | 1.7 | 50                | 98.60             | 993              | 331               |
| 112.5 | 1526   | 350        | 1768                 | 98.6    | 98.8      | 98.7    | 98.5         | 1.3        | 3.5       | 3.1       | 2.8 | 1.3 | 50                | 98.80             | 2447             | 816               |
| 150   | 1665   | 350        | 2419                 | 97.8    | 98.9      | 98.7    | 98.4         | 1.5        | 4.5       | 4.2       | 3.9 | 1.4 | 50                | 98.90             | 1976             | 659               |
| 225   | 2094   | 650        | 3650                 | 98.9    | 98.9      | 98.8    | 98.5         | 1.5        | 5.4       | 5.2       | 5.1 | 1.3 | 55                | 99.00             | 2686             | 895               |
| 300   | 3900   | 750        | 3731                 | 98.9    | 99.1      | 99.0    | 98.8         | 1.3        | 5.2       | 5.2       | 5.1 | 1.0 | 55                | 99.04             | 2990             | 997               |

# Type KT-9 115°C Rise E3 Efficient

|       |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°)     |              | % Regu     | ılation   |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|-------------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | <b>75</b> % | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | Х   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 335    | 78         | 353                  | 97.4    | 98.0      | 98.0        | 97.7         | 2.0        | 3.7       | 3.2       | 2.6 | 1.8 | 45                | 98.00             | 287              | 96                |
| 30    | 406    | 125        | 670                  | 98.0    | 98.3      | 98.1        | 97.8         | 1.9        | 2.7       | 2.4       | 1.5 | 1.8 | 45                | 98.30             | 780              | 260               |
| 45    | 635    | 135        | 1075                 | 98.6    | 98.5      | 98.2        | 97.7         | 2.3        | 4.1       | 3.5       | 2.8 | 2.1 | 45                | 98.50             | 603              | 201               |
| 75    | 870    | 210        | 1551                 | 98.5    | 98.6      | 98.3        | 98.0         | 1.9        | 4.0       | 3.6       | 3.1 | 1.8 | 50                | 98.60             | 958              | 319               |
| 112.5 | 1526   | 350        | 1583                 | 98.6    | 98.9      | 98.8        | 98.6         | 1.2        | 3.0       | 2.7       | 2.5 | 1.1 | 50                | 98.80             | 2480             | 827               |
| 150   | 1665   | 350        | 2463                 | 98.8    | 98.9      | 98.7        | 98.4         | 1.6        | 4.5       | 4.2       | 4.0 | 1.4 | 50                | 98.90             | 1930             | 643               |
| 225   | 2094   | 650        | 3766                 | 98.8    | 98.9      | 98.7        | 98.4         | 1.7        | 5.5       | 5.2       | 5.0 | 1.4 | 55                | 99.00             | 2778             | 926               |

# Type NON HMT 115°C Rise NEMA TP-1 Efficient

|       |        | Losses     | in Watts             | Efficie | ncy (Tris | e +20°)     |              | % Regu     | ılation   |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|-------------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | <b>75</b> % | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | X   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | 362    | 80         | 527                  | 97.6    | 97.7      | 97.3        | 96.7         | 3.2        | 5.9       | 5.1       | 4.2 | 3.0 | 45                | 97.00             | _                | _                 |
| 30    | 430    | 100        | 1040                 | 98.3    | 98.0      | 97.4        | 96.7         | 3.2        | 6.2       | 5.4       | 4.4 | 3.1 | 45                | 97.50             | _                |                   |
| 45    | 627    | 170        | 1368                 | 98.3    | 98.2      | 97.7        | 97.2         | 2.8        | 6.0       | 5.2       | 4.4 | 2.7 | 45                | 97.70             | _                | _                 |
| 75    | 926    | 250        | 2096                 | 98.4    | 98.3      | 97.9        | 97.4         | 2.6        | 7.0       | 6.2       | 5.7 | 2.5 | 50                | 98.00             | _                |                   |
| 112.5 | 1628   | 400        | 2515                 | 98.4    | 98.5      | 98.3        | 97.9         | 2.0        | 5.5       | 4.9       | 4.5 | 1.9 | 50                | 98.20             | _                | _                 |
| 150   | 2001   | 500        | 2688                 | 98.5    | 98.7      | 98.6        | 98.3         | 1.6        | 5.6       | 5.2       | 5.0 | 1.5 | 50                | 98.30             | _                | _                 |
| 225   | 3596   | 590        | 3310                 | 98.8    | 98.9      | 98.8        | 98.6         | 1.5        | 6.2       | 6.0       | 5.9 | 1.2 | 55                | 98.50             | _                |                   |
| 300   | 3891   | 800        | 4854                 | 98.7    | 98.9      | 98.7        | 98.4         | 1.7        | 7.1       | 7.0       | 6.8 | 1.4 | 55                | 98.60             | _                |                   |

#### Type THR HMT 115°C Rise NEMA TP-1 Efficient

|       |        | Losses i   | n Watts              | Efficie | ncy (Tris | e +20°) |              | % Regu     | lation    |           |     |     |                   |                   | Inrush           |                   |
|-------|--------|------------|----------------------|---------|-----------|---------|--------------|------------|-----------|-----------|-----|-----|-------------------|-------------------|------------------|-------------------|
| kVA   | Weight | No<br>Load | Total at<br>Rise +20 | 25%     | 50%       | 75%     | Full<br>Load | 100%<br>PF | 80%<br>PF | %<br>Imp. | x   | R   | Sound<br>Level dB | TP1<br>Efficiency | Absolute<br>Max. | Practical<br>Max. |
| 15    | _      | 80         | 708                  | 97.1    | 97.0      | 96.4    | 95.5         | 4.3        | 7.4       | 6.3       | 4.7 | 4.2 | 45                | 97.00             | _                | _                 |
| 30    | 450    | 100        | 1409                 | 98.0    | 97.4      | 96.5    | 95.6         | 4.7        | 8.0       | 6.8       | 5.2 | 4.4 | 45                | 97.50             | _                |                   |
| 45    | 610    | 170        | 1374                 | 98.2    | 98.1      | 97.7    | 97.1         | 2.8        | 4.8       | 4.2       | 3.2 | 2.7 | 45                | 97.70             | _                | _                 |
| 75    | 868    | 250        | 2341                 | 98.2    | 98.1      | 97.6    | 97.0         | 2.9        | 6.6       | 5.8       | 5.0 | 2.8 | 50                | 98.00             | _                | _                 |
| 112.5 | 1643   | 400        | 2685                 | 98.3    | 98.4      | 98.1    | 97.7         | 2.2        | 5.5       | 5.0       | 4.6 | 2.0 | 50                | 98.20             | _                |                   |
| 150   | _      | 500        | 3304                 | 98.5    | 98.6      | 98.3    | 97.9         | 2.0        | 6.7       | 6.3       | 6.0 | 1.9 | 50                | 98.30             | _                | _                 |
| 225   | 3370   | 590        | 3712                 | 98.7    | 98.8      | 98.7    | 98.4         | 1.7        | 6.6       | 6.4       | 6.2 | 1.4 | 55                | 98.50             | _                | _                 |
| 300   | 3894   | 800        | 4688                 | 98.9    | 99.0      | 98.8    | 98.5         | 1.7        | 7.4       | 7.2       | 7.1 | 1.3 | 55                | 98.60             | _                |                   |

# Typical Specifications— General-Purpose (1000 kVA and Below)

#### General

Furnish and install, singlephase and three-phase general-purpose individually mounted dry-type transformers of the twowinding type, self-cooled, with ratings and voltages as indicated on the drawings. Transformers shall be manufactured by Eaton.

Transformers shall be designed, manufactured and tested in accordance with all the latest applicable ANSI, NEMA and IEEE Standards. All 600-volt class transformers through 1000 kVA shall be UL listed and bear the UL label.

Transformers shall be designed for continuous operation at rated kVA, for operation 24 hours a day, 365 days a year, with normal life expectancy as defined in ANSI C57.96.

#### Insulation Systems

Transformers shall be insulated as follows:

- Type EP or EPT: 0.050 through 75 kVA: 180°C insulation system
- Type DS-3 or DT-3: 15 kVA and above: 220°C insulation system

Required performance shall be obtained without exceeding the above indicated temperature rise in a 40°C maximum ambient, with a 30°C average over 24 hours.

All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635.

#### Core and Coil Assemblies

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point. The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed. Coils shall be wound of electrical-grade [aluminum] [copper] and continuous wound construction. BIL (basic impulse level) for all 600-volt class windings shall be 10 kV.

On encapsulated units rated [75 kVA and below] [15 kVA and below] [9 kVA and below], the core and coil assembly shall be completely encapsulated in a proportioned mixture of resin or epoxy and aggregate to provide a moisture-proof, shock-resistant seal. The core and coil encapsulation system shall minimize the sound level.

On ventilated units rated [15 kVA and above] [30 kVA and above] [112.5 kVA and above], the core and coil assembly shall be installed on vibrationabsorbing pads.

#### **Enclosures**

The enclosure shall be made of heavy-gauge steel and shall be finished using a continuous process of degreasing, cleaning and phosphatizing, followed by electrostatic deposition of a thermosetting polyester powder coating and subsequent baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use. The maximum temperature on top of the enclosure shall not exceed 90°C.

On units rated [75 kVA and below] [15 kVA and below] [9 kVA and below] encapsulated, the enclosure construction shall be totally enclosed, non-ventilated, NEMA 3R, with lifting provisions.

On units rated [15 kVA and above] [30 kVA and above] [112.5 kVA and above], the enclosure construction shall be ventilated, NEMA 2, dripproof, with lifting provisions. All ventilation openings shall be protected against falling dirt. On outdoor units, provide

suitable weathershields over ventilation openings. To ensure proper ventilation, locate the unit at least 6 inches (152.4 mm) from the adjacent wall or structure.

#### Tests

The following tests shall be performed as standard on all transformers:

- 1. Ratio tests at the rated voltage connection and at all tap connections.
- 2. Polarity and phase relation tests on the rated voltage connection.
- 3. Applied potential tests.
- 4. Induced potential test.
- No-load and excitation current at rated voltage on the rated voltage connection.

# Sound Levels

Transformer average sound levels shall not exceed the following ANSI and NEMA levels for self-cooled ratings measured in accordance with NEMA ST-20.

#### Average Sound Levels ①

# NEMA ST-20 Average Sound Level in dB

|           | Up to 1.2 kV |              | Above 1.2 kV |
|-----------|--------------|--------------|--------------|
| kVA       | Ventilated   | Encapsulated | Ventilated   |
| 0–9       | 40           | 45           | 45           |
| 10-50     | 45           | 50           | 50           |
| 51–150    | 50           | 55           | 55           |
| 151–300   | 55           | 57           | 58           |
| 301-500   | 60           | 59           | 60           |
| 501-700   | 62           | 61           | 62           |
| 701–1000  | 64           | 63           | 64           |
| 1001-1500 | 65           | 64           | 65           |

#### Note

① Currently being reviewed and revised by NEMA.

### Typical Specifications— **Dry-Type Transformers for Nonlinear Loads**

Furnish and install. individually mounted dry-type transformers of the twowinding type, self-cooled, with ratings and voltages as indicated on the drawings.

Transformers shall be manufactured by Eaton.

Transformers shall be designed, manufactured and tested in accordance with all the latest applicable ANSI, NEMA and IEEE Standards. All 600-volt class transformers through 500 kVA shall be UL listed as suitable for non-sinusoidal current loads with K factor not to exceed [4] [13] [20].

#### Insulation Systems

Transformers shall be insulated with a UL recognized 220°C insulation system. Winding temperature rise shall be [80°C] [115°C] [150°C].

Required performance shall be obtained without exceeding the above indicated temperature rise in a 40°C maximum ambient, with a 30°C average.

All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635.

#### **Core and Coil Assemblies**

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point. The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed.

Transformer coils shall be wound of electrical-grade [aluminum] [copper] conductor with continuous wound construction. An electrostatic shield consisting of a single turn of aluminum shall be placed between the primary and secondary winding and grounded to the transformer core. BIL (basic impulse level) for all 600-volt class windings shall be 10 kV.

The core and coil assembly shall be installed on vibrationabsorbing pads.

The neutral conductor shall be rated to carry 200% of normal phase current.

#### **Enclosures**

The enclosure shall be made of heavy gauge steel and shall be finished utilizing a continuous process of degreasing, cleaning and phosphatizing, followed by electrostatic deposition of a polymer polyester powder coating and baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use. The maximum temperature on top of the enclosure shall not exceed 90°C.

The enclosure construction shall be ventilated, NEMA 2, drip-proof, with lifting provisions. All ventilation openings shall be protected against falling dirt. On outdoor units, provide suitable weathershields over ventilation openings. To ensure proper ventilation, locate the unit at least 6 inches (152.4 mm) from the adjacent wall or structure.

### **Nonlinear Ratings**

The transformers shall be specifically designed to supply circuits with a harmonic profile equal to or less than a K-factor of 4 or 13 as described below without exceeding [80°C] [115°C] [150°C] temperature rise.

# **Nonlinear Ratings**

| Harmonic    | K-4    | K-13   |
|-------------|--------|--------|
| Fundamental | 100.0% | 100.0% |
| 3rd         | 34.0%  | 70.0%  |
| 5th         | 22.0%  | 42.0%  |
| 7th         | 3.0%   | 5.0%   |
| 9th         | 1.0%   | 3.0%   |
| 11th        | 0.7%   | 3.0%   |
| 13th        | 0.5%   | 1.0%   |
| 15th        | 0.3%   | 0.7%   |
| 17th        | 0.3%   | 0.6%   |

#### Tests

The following tests shall be performed as standard on all transformers:

- 1. Ratio tests at the rated voltage connection and at all tap connections.
- 2. Polarity and phase relation tests on the rated voltage connection.
- 3. Applied potential tests.
- 4. Induced potential test.
- 5. No-load and excitation current at rated voltage on the rated voltage connection.

#### Sound Levels

Transformer average sound levels shall not exceed the following ANSI and NEMA levels for self-cooled ratings measured in accordance with NEMA ST-20.

#### Average Sound Levels 1

# NEMA ST-20 Average Sound Level in dB

| kVA       | Up to 1.2 kV<br>Ventilated | Encapsulated | Above 1.2 kV<br>Ventilated |
|-----------|----------------------------|--------------|----------------------------|
| 0–9       | 40                         | 45           | 45                         |
| 10-50     | 45                         | 50           | 50                         |
| 51–150    | 50                         | 55           | 55                         |
| 151–300   | 55                         | 57           | 58                         |
| 301–500   | 60                         | 59           | 60                         |
| 501-700   | 62                         | 61           | 62                         |
| 701–1000  | 64                         | 63           | 64                         |
| 1001–1500 | 65                         | 64           | 65                         |
|           |                            |              |                            |

① Currently being reviewed and revised by NEMA

# Typical Specification— AC Adjustable Frequency Drive Isolation Transformers

#### General

Furnish and install, singlephase and three-phase general-purpose individually mounted dry-type transformers of the twowinding type, self-cooled, with ratings and voltages for input application as indicated on the drawings. Transformers shall be manufactured by Eaton.

Transformers shall be designed, manufactured and tested in accordance with all the latest applicable ANSI, NEMA and IEEE Standards. All 600-volt class transformers through 550 kVA shall be UL listed and bear the UL label.

Transformers shall be designed for continuous operation at rated kVA, for operation 24 hours a day, 365 days a year, with normal life expectancy as defined in ANSI C57.96.

### Insulation Systems

Transformers shall be insulated with a UL recognized 220°C insulation system.

Required performance shall be obtained without exceeding the above indicated temperature rise in a 40°C maximum ambient, with a 30°C average over 24 hours

All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635

#### Core and Coil Assemblies

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point. The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed. Coils shall be wound of electrical-grade [aluminum] [copper] and continuous wound construction. BIL (basic impulse level) for all 600-volt class windings shall be 10 kV.

A temperature sensing device shall be imbedded in the center coil.

The core and coil assembly shall be installed on vibration-absorbing pads.

#### Enclosures

The enclosure shall be made of heavy-gauge steel and shall be finished using a continuous process of degreasing, cleaning, and phosphatizing, followed by electrostatic deposition of a thermosetting polyester powder coating and subsequent baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use. The maximum temperature on top of the enclosure shall not exceed 90°C.

The enclosure construction shall be ventilated, NEMA 2, drip-proof, with lifting provisions. All ventilation openings shall be protected against falling dirt. To ensure proper ventilation, locate the unit at least 6 inches (152.4 mm) from the adjacent wall or structure. On outdoor units, provide suitable weathershields over ventilation openings.

#### Sound Levels

Transformer average sound levels shall not exceed the following ANSI and NEMA levels for self-cooled ratings measured in accordance with NEMA ST-20.

The following table lists the recommended kVA size of the drive isolation transformer for a specific horsepower requirement.

#### Three-Phase

| Horsepower<br>AC Motor | kVA<br>Minimum |
|------------------------|----------------|
| 5                      | 7.5            |
| 7.5                    | 11             |
| 10                     | 14             |
| 15                     | 20             |
| 20                     | 27             |
| 25                     | 34             |
| 30                     | 40             |
| 40                     | 51             |
| 50                     | 63             |
| 60                     | 75             |
| 75                     | 93             |
| 100                    | 118            |
| 125                    | 145            |
| 150                    | 175            |
| 200                    | 220            |
| 250                    | 275            |
| 300                    | 330            |
| 400                    | 440            |
| 500                    | 550            |
| 600                    | 660            |
| 700                    | 770            |

# Average Sound Levels ①

### NEMA ST-20 Average Sound Level in dB

|           | Up to 1.2 kV |              | Above 1.2 kV |
|-----------|--------------|--------------|--------------|
| kVA       | Ventilated   | Encapsulated | Ventilated   |
| 0–9       | 40           | 45           | 45           |
| 10–50     | 45           | 50           | 50           |
| 51–150    | 50           | 55           | 55           |
| 151–300   | 55           | 57           | 58           |
| 301–500   | 60           | 59           | 60           |
| 501-700   | 62           | 61           | 62           |
| 701–1000  | 64           | 63           | 64           |
| 1001–1500 | 65           | 64           | 65           |

#### Note

Currently being reviewed and revised by NEMA.

#### Typical Specifications— Mini-Power Centers (3-30 kVA)

Furnish and install, singlephase and three-phase general-purpose individually mounted mini-power centers of the two-winding type, self-cooled, with ratings and voltages as indicated on the drawings. Minipower centers shall be manufactured by Eaton.

Units shall be designed, manufactured and tested in accordance with all the latest applicable ANSI, NEMA, IEEE, CSA and UL standards, and shall be UL listed and CSA certified and bear the UL and CSA labels.

Units shall be designed for continuous operation at rated kVA, 24 hours a day, 365 days a year, with normal life expectancy as defined in ANSI C57.96.

Each mini-power center shall include a main primary breaker with an interrupting rating of 14 kA at 277/480 volts; an encapsulated dry-type transformer and a secondary panelboard with main breaker rated 10 kA interrupting rating at 120/240 volts.

- 1. All interconnecting wiring between the primary breaker and transformer, secondary main breaker and transformer, and distribution section shall be factory installed. Main primary, secondary and feeder breakers shall be enclosed with a padlockable hinged door.
- 2. The secondary distribution section shall accommodate one-inch, plug-in breakers with 10 kA interrupting capacity.
- On the all-copper, bolt-on designs, the secondary distribution section shall accommodate bolt-on breakers with 10 kA interrupting capacity.

#### Insulation System

Transformers shall be insulated with a 180°C insulation system.

Required performance shall be obtained without exceeding the above indicated temperature rise in a 40°C maximum ambient, with a 30°C average over

All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635.

#### **Core and Coil Assemblies**

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point.

The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed. Coils shall be wound of electrical-grade aluminum (copper) with continuous wound construction. BIL (basic impulse level) for all 600-volt class windings shall be 10 kV.

The core and coil assembly shall be completely encapsulated in a proportioned mixture of resin or expoxy and aggregate to provide a moisture-proof, shockresistant seal. The core and coil encapsulation system shall minimize the sound level.

#### **Enclosures**

The enclosure shall be made of heavy-gauge steel and shall be finished using a continuous process of degreasing, cleaning, and phosphatizing, followed by electrostatic deposition of a thermosetting polymer polyester powder coating and subsequent baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use. Mini-power centers shall be equipped with a wiring compartment suitable for conduit entry and large enough to allow convenient wiring. The maximum temperature on top of the enclosure shall not exceed 90°C. The core of the transformer shall be grounded to the enclosure. The enclosure shall be totally enclosed, non-ventilated, NEMA 3R, with lifting eyes.

#### Tests

The following tests shall be performed as standard on all transformers:

- 1. Ratio tests at the rated voltage connection and at all tap connections.
- 2. Polarity and phase relation tests on the rated voltage connection.
- 3. Applied potential tests.
- 4. Induced potential test.
- 5. No-load and excitation current at rated voltage on the rated voltage connection.

#### Sound Levels

Transformer average sound levels shall not exceed the following ANSI/NEMA levels for self-cooled ratings measured in accordance with NEMA ST-20.

#### Average Sound Levels 1

| kVA   | NEMA Average<br>Sound Level in dB |  |
|-------|-----------------------------------|--|
| 0–9   | 45                                |  |
| 10–30 | 50                                |  |

 Currently being reviewed and revised by NEMA.

# Typical Specification— NEMA TP-1-2002 Compliant Energy-Efficient Transformers

#### Genera

Furnish and install, three-phase energy-efficient dry-type transformers that comply with NEMA Standard TP-1-2002 and U.S. DOE 10 CFR Parts 430 and 431. Transformers shall be of the two-winding type, self-cooled, with ratings (kVA) as indicated on the drawings. Transformer's losses shall conform to NEMA TP-1 requirements. Transformers shall be manufactured by Eaton.

Transformers shall be designed, manufactured and tested in accordance with all the latest applicable ANSI, NEMA and IEEE Standards, and shall be listed by Underwriters Laboratories and bear the UL label.

Transformers shall be designed for continuous operation at rated kVA, for 24 hours a day, 365 days a year, with normal life expectancy as defined in ANSI C57.96.

#### Insulation System and Temperature Rise

Transformers shall be insulated with a 220°C insulation system.

Transformers shall be 150°C rise and shall be capable of carrying a 15% continuous overload without exceeding a 150°C rise.

Required performance shall be obtained without exceeding the above rise in a 40°C maximum, 30°C average ambient temperature.

All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635.

#### **Core and Coil Assemblies**

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point.

The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed. Coils shall be wound of electrical grade [aluminum] [copper] and continuous wound construction. BIL (basic impulse level) for all 600-volt class windings shall be 10 kV.

The core and coil assembly shall be installed on vibrationabsorbing pads.

#### **Enclosures**

The enclosure shall be made of heavy gauge steel and shall be finished utilizing a continuous process of degreasing, cleaning and phosphatizing, followed by electrostatic deposition of a thermosetting polyester powder coating and subsequent baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use.

The enclosure construction shall be ventilated, NEMA 2, drip-proof, with lifting provisions. All ventilation openings shall be protected against falling dirt. To ensure proper ventilation, locate the unit at least 6 inches (152.4 mm) from the adjacent wall or structure.

All transformers shall be equipped with a wiring compartment suitable for conduit entry and large enough to allow convenient wiring. The maximum temperature on top of the enclosure shall not exceed 90°C.

#### Tests

The following tests shall be performed as standard on all transformers:

- Ratio tests at the rated voltage connection and at all tap connections.
- 2. Polarity and phase relation tests on the rated voltage connection.
- 3. Applied potential tests.
- 4. Induced potential test.

 No-load and excitation current at rated voltage on the rated voltage connection.

#### Efficiency

Transformers shall be energy-efficient with minimum efficiencies as set forth per NEMA TP-1-2002 and U.S. DOE 10 CFR Parts 430 and 431 when operated at 35% of full load capacity.

#### **NEMA TP-1-2002 Efficiency Levels**

Tables of Energy Efficiency NEMA Class 1 Efficiency Levels Dry-Type Distribution Transformers—Low Voltage (600 V and below)

| Single-Phase |            | Three-Phase |            |
|--------------|------------|-------------|------------|
| kVA          | Efficiency | kVA         | Efficiency |
| 15           | 97.7       | 15          | 97.0       |
| 25           | 98.0       | 30          | 97.5       |
| 37.5         | 98.2       | 45          | 97.7       |
| 50           | 98.3       | 75          | 98.0       |
| 75           | 98.5       | 112.5       | 98.2       |
| 100          | 98.6       | 150         | 98.3       |
| 167          | 98.7       | 225         | 98.5       |
| 250          | 98.8       | 300         | 98.6       |
| 333          | 98.9       | 500         | 98.7       |
|              | _          | 750         | 98.8       |
|              | _          | 1000        | 98.9       |
|              |            |             |            |

#### Sound Levels

Transformer average sound levels shall not exceed the following ANSI and NEMA levels for self-cooled ratings.

#### **Average Sound Levels** ①

NEMA ST-20 Average Sound Level in dB

| · ·       | Up to 1.2 kV |              | Above 1.2 kV |
|-----------|--------------|--------------|--------------|
| kVA       | Ventilated   | Encapsulated | Ventilated   |
| 0–9       | 40           | 45           | 45           |
| 10-50     | 45           | 50           | 50           |
| 51–150    | 50           | 55           | 55           |
| 151-300   | 55           | 57           | 58           |
| 301-500   | 60           | 59           | 60           |
| 501-700   | 62           | 61           | 62           |
| 701–1000  | 64           | 63           | 64           |
| 1001-1500 | 65           | 64           | 65           |

#### Note

① Currently being reviewed and revised by NEMA.

# **Glossary of Transformer Terms**

**Air cooled:** A transformer that is cooled by the natural circulation of air around, or through, the core and coils.

Ambient noise level: The existing or inherent sound level of the area surrounding the transformer, prior to energizing the transformer. Measured in decibels.

#### Ambient temperature:

The temperature of the air surrounding the transformer into which the heat of the transformer is dissipated.

Ampacity: The currentcarrying capacity of an electrical conductor under stated thermal conditions. Expressed in amperes.

**Ampere:** The practical unit of electric current.

**Attenuation:** A decrease in signal power or voltage. Unit of measure is dB.

#### Autotransformer:

A transformer in which part of the winding is common to both the primary and the secondary circuits.

Banked: Two or more singlephase transformers wired together to supply a threephase load. Three singlephase transformers can be "banked" together to support a three-phase load. For example, three 10 kVA singlephase transformers "banked" together will have a 30 kVA three-phase capacity.

**BIL:** Basic impulse level. The ability of a transformer's insulation system to withstand high voltage surges. All Eaton 600V-class transformers have a 10 kV BIL rating.

BTU: British thermal unit. In North America, the term "BTU" is used to describe the heat value (energy content) of fuels, and also to describe the power of heating and cooling systems, such as furnaces, stoves, barbecue grills and air conditioners. When used as a unit of power, BTU "per hour" (BTU/h)

is understood, though this is often abbreviated to just "BTU."

**Buck-boost:** The name of a standard, single-phase, two-winding transformer application with the low voltage secondary windings connected as an autotransformer for boosting (increasing) or bucking (decreasing) voltages in small amounts. Applications can either be single-phase or three-phase.

**CE:** Mark to indicate thirdparty approved or selfcertification to specific requirements of the European community.

**Celsius (centigrade):** Metric temperature measure.

 $^{\circ}F = (1.8 \times ^{\circ}C) + 32$ 

 $^{\circ}C = (^{\circ}F-32) / 1.8$ 

**Center tap:** A tap at the midpoint of a winding. The center tap on three-phase delta-delta transformers is called a lighting tap. It provides 5% of the transformer's kVA for single-phase loads.

**Certified tests:** Actual values taken during production tests and certified as applying to a given unit shipped on a specific order. Certified tests are serial number–specific.

**Common mode:** Electrical noise or voltage fluctuation that occurs between all of the line leads and the common ground, or between ground and line or neutral.

#### Compensated transformer:

A transformer with a turns ratio that provides a higher than nameplate output (secondary) voltage at no load, and nameplate output (secondary) voltage at rated load. It is common for small transformers (2 kVA and less) to be compensated.

Conductor losses: Losses (expressed in watts) in a transformer that are incidental to carrying a load: coil resistance, stray loss due to stray fluxes in the windings, core clamps, and the like, as well as circulating currents (if any) in parallel windings. Also called load losses.

Continuous rating: The load that a transformer can handle indefinitely without exceeding its specified temperature rise.

Core losses: Losses (expressed in watts) caused by magnetization of the core and its resistance to magnetic flux. Also called no-load losses or excitation losses. Core losses are always present when the transformer is energized.

**CSA:** Canadian Standards Association. The Canadian equivalent of Underwriters Laboratories (UL).

**CSL3:** Candidate Standard Level 3 (CSL3) design criteria developed by the U.S. Department of Energy. This term is used when considering the maximum, practical efficiency of a transformer.

**cUL:** Mark to indicate UL Certification to specific CSA Standards.

**Decibel (dB):** Unit of measure used to express the magnitude of a change in signal or sound level.

**Delta connection:** A standard three-phase connection with the ends of each phase winding connected in series to form a closed loop with each phase 120 degrees from the other. Sometimes referred to as three-wire.

**Dielectric tests**: Tests that consist of the application of a voltage higher than the rated voltage for a specified time for the purpose of determining the adequacy against breakdowns of insulating materials and spacings under normal conditions.

**Dry-type transformer:** A transformer in which the core and coils are in a gaseous or dry compound insulating

medium. A transformer that is cooled by a medium other than a liquid, normally by the circulation of air.

**E3:** Eaton's version of a CSL3 transformer.

**Eddy currents:** The currents that are induced in the body of a conducting mass by the time variation of magnetic flux or varying magnetic field.

**Efficiency:** The ratio of the power output from a transformer to the total power input. Typically expressed as a %.

Electrostatic shield: Copper or other conducting sheet placed between primary and secondary windings, and grounded to reduce electrical interference and to provide additional protection from line-to-line or line-to-ground noise. Commonly referred to as "Faraday shield."

#### **Encapsulated transformer:**

A transformer with its coils either dipped or cast in an epoxy resin or other encapsulating substance.

**Enclosure:** A surrounding case or housing used to protect the contained equipment against external conditions and prevent personnel from accidentally contacting live parts.

**Environmentally preferable** product: A product that has a lesser or reduced negative effect on human health and the environment when compared to competing products that serve the same purpose. This comparison may consider raw materials acquisition, production, manufacturing, packaging, distribution, reuse, operation, maintenance and disposal of the product. This term includes recyclable products, recycled products and reusable products.

**EPACT:** The Energy Policy Act of 1992 (EPAct) is an important piece of legislation for efficiency because it established minimum efficiency levels for dry-type distribution transformers manufactured or imported after December 2006. EPAct, which was based on NEMA standards, defined a number of terms, including what constitutes an energyefficient transformer. The DOE issued a rule that defines these transformers and how manufacturers must comply. DOE EPAct rule (PDF): Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures, Labeling, and the Certification Requirements for Electric Motors. Final Rule. 10-CFR Part 431

**Excitation current:** No load current. The current that flows in any winding used to excite the transformer when all other windings are open-circuited. It is usually expressed in percent of the rated current of a winding in which it is measured. Also called magnetizing current.

**FCAN:** "Full Capacity Above Nominal" taps. Designates the transformer will deliver its rated kVA when connected to a voltage source which is higher than the rated primary voltage.

FCBN: "Full Capacity Below Nominal" taps. Designates the transformer will deliver its rated kVA when connected to a voltage source which is lower than the rated primary voltage.

Frequency: On AC circuits, designates the number of times that polarity alternates from positive to negative and back again per second, such as 60 cycles per second. Typically measured in Hertz (Hz).

**Ground:** Connecting one side of a circuit to the earth through low resistance or low impedance paths to help prevent transmitting electrical shock to personnel.

**Harmonic:** A sinusoidal waveform with a frequency that is an integral multiple of the fundamental frequency (60 Hz).

 $60 \, \mathrm{H_3}$  fundamental 120  $\, \mathrm{H_3}$  2nd harmonic 180  $\, \mathrm{H_3}$  3rd harmonic 240  $\, \mathrm{H_3}$  4th harmonic

#### Harmonic distortion:

Nonlinear distortion of a system characterized by the appearance of harmonic (non-sinusoidal) currents in the output, when the input is sinusoidal.

Harmonic distortion, total (THD): The square root of the sum of the squares of all harmonic currents present in a load, excluding the fundamental 60 Hz current. Usually expressed as a percent of the fundamental.

#### High voltage windings: In a two-winding transformer, the winding intended to have the greater voltage. Usually marked with "H" designations.

HMT: Harmonic Mitigating Transformer (HMT) is better able to handle the harmonic currents present in today's electrical power system. thereby increasing system capacity, reducing distortion throughout a facility, help to minimize downtime and "mysterious" maintenance on equipment, and return the longevity of equipment life through reduced operational energy losses, thereby running cooler.

**Hp:** Horsepower. The energy required to raise 33,000 pounds a distance of one foot in one minute. 1 hp is equal to 746 watts, or 0.746 kW.

Hi pot: A standard test on dry-type transformers consisting of extra-high potentials (voltages) connected to the windings. Used to check the integrity of insulation materials and clearances.

# Hottest-spot temperature:

The highest temperature inside the transformer winding. Is greater than the measured average

temperature of the coil conductors, when using the resistance change method.

**Hysteresis:** The tendency of a magnetic substance to persist in any state of magnetization.

**Impedance:** The retarding forces of current in an AC circuit; the current-limiting characteristics of a transformer. Symbol = Z

**Inductance:** In electrical circuits, the opposition to a change in the flow of electrical current. Symbol = L

#### Inducted potential test:

A standard dielectric test of transformer insulation. Verifies the integrity of insulating materials and electrical clearances.

Inrush current: The initial high peak of current that occurs in the first few cycles of energization, which can be 30 to 40 times the rated current.

# Insulating transformer:

Another term for an isolating transformer

**Insulation:** Material with a high electrical resistance.

**Insulation materials:** Those materials used to insulate the transformer's electrical windings from each other and ground.

Integral TVSS or SPD: Major Standard Change for Surge Protective Devices (formerly known as Transient Voltage Surge Suppressors). The primary safety standard for transient voltage surge suppressors (TVSS) has undergone major revisions in the past three years with mandatory compliance by manufacturers required by September 29, 2009. Even the name of the standard has changed from UL Standard for Safety for Transient Voltage Surge Suppressors, UL 1449 to UL Standard for Safety for Surge Protective Devices, UL 1449. This means that TVSS listed to the UL 1449 2nd Edition standard will no longer be able to be manufactured after September 29, 2009. All Surge Protective Devices must be designed, tested, manufactured and listed to the UL 1449 3rd Edition standard after this date.

#### Isolating transformer:

A transformer where the input (primary) windings are not connected to the output (secondary) windings (i.e., electrically isolated).

K-factor: A common industry term for the amount of harmonics produced by a given load. The larger the K-factor, the more harmonics that are present. Also used to define a transformer's ability to withstand the additional heating generated by harmonic currents.

**kVA:** Kilovolt-ampere. Designates the output that a transformer can deliver for a specified time at a rated secondary voltage and rated frequency without exceeding the specified temperature rise. When multiplied by the power factor, will give kilowatts or kW.

1000 VA = 1 kVA

**Lamination:** Thin sheets of electrical steel used to construct the core of a transformer.

### Limiting temperature:

The maximum temperature at which a component or material may be operated continuously with no sacrifice in normal life expectancy.

Linear load: A load where the current waveform conforms to that of the applied voltage, or a load where a change in current is directly proportional to a change in applied voltage.

**Live part:** Any component consisting of an electrically conductive material that can be energized under conditions of normal use.

**Load losses:** I<sup>2</sup>R losses in windings. Also see conductor losses.

#### Transformer Standards, Technical Data and Accessories

Low voltage winding: In a two-winding transformer, the winding intended to have the lesser voltage. Usually marked with "X" designations.

Mid-tap: See center tap.

Noise level: The relative intensity of sound, measured in decibels (dB). NEMA Standard ST-20 outlines the maximum allowable noise level for dry-type transformers.

Nonlinear load: A load where the current waveform does not conform to that of the applied voltage, or where a change in current is not proportional to a change in applied voltage.

Non-ventilated transformer: A transformer where the core and coil assembly is mounted inside an enclosure with no openings for ventilation. Also referred to as totally enclosed non-ventilated (TENV).

No load losses: Losses in a transformer that is excited at rated voltage and frequency but that is not supplying a load. No load losses include core losses, dielectric losses and conductor losses in the winding due to the exciting current. Also referred to as excitation losses.

Overload capability: Shortterm overload capacity is designed into transformers as required by ANSI. Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

### Percent IR (% resistance):

Voltage drop due to resistance at rated current in percent of rated voltage.

#### Percent IX (% reactance): Voltage drop due to reactance at rated current in percent of rated voltage.

Percent IZ (% impedance): Voltage drop due to impedance at rated current in percent of rated voltage. **Phase:** Type of AC electrical circuit; usually single-phase two- or three-wire, or three-phase three- or four-wire.

**Polarity test:** A standard test on transformers to determine instantaneous direction of the voltages in the primary compared to the secondary.

**Primary taps:** Taps added to the primary (input) winding. See Tap.

**Primary voltage:** The input circuit voltage.

**Power factor:** The cosine of the phase angle between a voltage and a current.

Ratio test: A standard test of transformers to determine the ratio of the input (primary) voltage to the output (secondary) voltage.

**Reactance:** The effect of inductive and capacitive components of a circuit producing other than unity power factor.

Reactor: A single winding device with an air or iron core that produces a specific amount of inductive reactance into a circuit. Normally used to reduce of control current.

**Regulation:** Usually expressed as the percent change in output voltage when the load goes from full load to no load.

#### Scott T connection:

Connection for three-phase transformers. Instead of using three sets of coils for a three-phase load, the transformer uses only two sets of coils.

#### Series/multiple winding:

A winding consisting of two or more sections that can be connected for series operation or multiple (parallel) operation. Also called seriesparallel winding.

**Short circuit:** A low resistance connection, usually accidental, across part of a circuit, resulting in excessive current flow.

Sound levels: All transformers make some sound mainly due to the vibration generated in its core by alternating flux. All Eaton general-purpose drytype distribution transformers are designed with sound levels lower than NEMA ST-20 maximum levels.

**Star connection:** Same as a wye connection.

#### Step-down transformer:

A transformer where the input voltage is greater than the output voltage.

#### Step-up transformer:

A transformer where the input voltage is less than the output voltage.

**T-T connection:** See Scott T connection.

**Tap:** A connection brought out of a winding at some point between its extremities, usually to permit changing the voltage or current ratio. Taps are typically used to compensate for above or below rated input voltage, in order to provide the rated output voltage. See FCAN and FCBN.

Temperature class: The maximum temperature that the insulation system of a transformer can continuously withstand. The common insulation classes are 105, 150, 180 (also 185) and 220.

Temperature rise: The increase over ambient temperature of the windings due to energizing and loading the transformer.

**Total losses:** The sum of the no-load losses and load losses.

Totally enclosed nonventilated enclosure: The core and coil assembly is installed inside an enclosure that has no ventilation to cool the transformer. The transformer relies on heat to radiate from the enclosure for cooling.

#### Transformer tests:

Per NEMA ST-20, routine transformer production tests are performed on each transformer prior to shipment. These tests are: Ratio tests on the rated voltage connection; Polarity and Phase Relation tests on the rated connection; No-Load and Excitation Current tests at rated voltage on the rated voltage connection and Applied Potential and Induced Potential tests. Special tests include sound level testing.

**Transverse mode:** Electrical noise or voltage disturbance that occurs between phase and neutral, or from spurious signals across metallic hot line and the neutral conductor.

**Turns ratio:** The ratio of the number of turns in the high voltage winding to that in the low voltage winding.

**Typical test data:** Tests that were performed on similar units that were previously manufactured and tested.

**UL (Underwriters Laboratories):** An independent safety testing organization.

**Universal taps:** A combination of six primary voltage taps consisting of 2 at +2-1/2% FCAN and 4 at -2-1/2% FCBN.

**Watt:** A unit of electrical power when the current in a circuit is one ampere and the voltage is one volt.

Wye connection: A standard three-wire transformer connection with similar ends of single-phase coils connected together. The common point forms the electrical neutral point and may be grounded. Also referred to as three-phase four-wire. To obtain the line-to-neutral voltage, divide the line voltage by  $\sqrt{3}(1.732)$ .

# **Frequently Asked Questions About Transformers**

# Can 60 Hz transformers be used at other frequencies?

Transformers rated for 60 Hz can be applied to circuits with a higher frequency, as long as the nameplate voltages are not exceeded. The higher the frequency that you apply to a 60 Hz transformer, the less voltage regulation you will have. 60 Hz transformers may be used at lower frequencies but only at reduced voltages corresponding to the reduction in frequency. For example, a 480 to 120 volt 60 Hz transformer can carry rated kVA at 50 Hz but ONLY when applied as a 400 to 100 volt transformer  $(50/60 \times 480 = 400)$ .

# Can single-phase transformers be used on a three-phase source?

Yes. Any single-phase transformer can be used on a three-phase source by connecting the primary terminals of the single-phase transformer to any two wires of a three-phase system. It does not matter whether the three-phase source is three-phase three-wire or three-phase four-wire. The output of the transformer will be single-phase.

# Can transformers be used to create three-phase power from a single-phase system?

No. Single-phase transformers alone cannot be used to create the phase-shifts required for a three-phase system. Phase shifting devices (reactors or capacitors) or phase converters in conjunction with transformers are required to change single-phase power to three-phase.

#### What considerations need to be taken into account when operating transformers at high altitudes?

At altitudes greater than 3300 feet (1000 meters), the density of the air is less than at lower elevations. This reduces the ability of the air surrounding a transformer to cool it, so the temperature

rise of the transformer is increased. Therefore, when a transformer is being installed at altitudes greater than 3300 feet above sea level, it is necessary to derate the nameplate kVA by 0.3% for each 330 feet (100 meters) in excess of 3300 feet (1000 meters).

#### What considerations need to be taken into account when operating transformers where the ambient temperature is high?

Eaton's dry-type transformers are designed in accordance with ANSI standards to operate in areas where the average maximum ambient temperature is 40°C. For operation in ambient temperatures above 40°C, there are two options:

- 1. Order a custom designed transformer made for the specific application.
- Derate the nameplate kVA of a standard transformer by 8% for each 10°C of ambient above 40°C.

# What is the normal life expectancy of a transformer?

When a transformer is operated under ANSI/IEEE basic loading conditions ANSI C57.96), its normal life expectancy is 20 years. The ANSI/IEEE basic loading conditions are:

- A. The transformer is continuously loaded at rated kVA and rated voltages.
- B. The average temperature of the ambient air during any 24-hour period is equal to 30°C and at no time exceeds 40°C.
- C. The altitude where the transformer is installed does not exceed 3300 feet (1000 meters).

#### What are insulation classes?

Insulation classes were originally used to distinguish insulating materials operating at different temperatures. In the past, letters were used for the different designations. Recently, insulation system temperatures (°C) have replaced the letters' designations.

#### **Insulation Classes**

| Previous<br>Designation | Insulation<br>System<br>Rating (°C) |
|-------------------------|-------------------------------------|
| Class A                 | 105                                 |
| Class B                 | 150                                 |
| Class F                 | 180                                 |
| Class H                 | 220                                 |
| Class R                 | 220                                 |

# How do you know if the enclosure temperature is too hot?

UL and CSA standards strictly regulate the highest temperature that an enclosure can reach. For ventilated transformers, the temperature of the enclosure should not increase by more than 50°C in a 40°C ambient at full rated current. For encapsulated transformers, the temperature of the enclosure should not increase by more than 65°C in a 25°C ambient at full rated current. This means that it is permissible for the temperature of the enclosure to reach 90°C (194°F). Although this temperature is very warm to the touch, it is within the allowed standards. A thermometer should be used to measure enclosure temperatures, not your hand.

#### Can transformers be reverseconnected (reverse-fed)?

Yes, with limitations. Eaton single-phase transformers rated 3 kVA and larger can be reverse-connected without any loss of kVA capacity or any adverse effects. Transformers rated 2 kVA and below, because there is a turns ratio compensation on the low voltage winding that adjusts voltage between no load and full load conditions, should not be reverse-fed.

Three-phase transformers with either delta-delta or delta-wye configurations can also be reverseconnected for step-up operation. When reversefeeding a delta-wye connected transformer, there are two important considerations to take into account: (1) The neutral is not connected, only the three-phase wires of the wye system are connected, and (2) the ground strap between X0 and the enclosure must be removed. Due to high inrush currents that may be created in these applications, it is recommended that vou do not reverse-feed transformers rated more than 75 kVA. The preferred solution is to purchase an Eaton step-up transformer designed specifically for your application.

#### Can transformers be connected in parallel?

Yes, with certain restrictions. For single-phase transformers being connected in parallel, the voltages and impedances of the transformers must be equal (impedances must be within 7.5% of each other). For three-phase transformers, the same restrictions apply as for single-phase transformers, plus the phase shift of the transformers must be the same. For example, a deltawye-connected transformer (30° phase shift) must be connected in parallel with another delta-wye-connected transformer, not a delta-delta connected-transformer (0° phase shift).

#### Why is the impedance of a transformer important?

The impedance of a transformer is important because it is used to determine the interrupting rating and trip rating of the circuit protection devices on the load or line side of the transformer. To calculate the maximum short circuit current on the load side of a transformer, use the following formula:

Maximum Short Circuit = Load Current (Amps)

Full Load Current (Amps) Transformer Impedance

Full load current for singlephase circuits is:

Nameplate Volt-Amps Load (output) Voltage

and for three-phase circuits, the full load current is:

Nameplate Volts-Amps Load (output) Volts  $\times \sqrt{3}$ 

Example: For a standard three-phase, 75 kVA transformer, rated 480 volt delta primary and 208Y/ 120 volt secondary (catalog number V48M28T75J) and impedance equal to 5.1%, the full load current is:

 $\frac{75,000 \text{ VA}}{208\text{V} \times 1.732} = 208.2\text{A}$ 

The maximum short circuit load current is:

 $\frac{208.2A}{1} = 4,082.4A$ 

The circuit breaker or fuse on the secondary side of this transformer would have to have a minimum interrupting capacity of 4083 amperes at 208 volts. NEMA ST-20 (1992).

A similar transformer with lower impedance would require a primary circuit breaker or fuse with a higher interrupting capacity.

#### What clearances are required around transformers when they are installed?

All dry-type transformers depend upon the circulation of air for cooling; therefore, it is important that the flow of air around a transformer not be impeded. UL 1561 requires that there be no less than 6 inches (152.4 mm) clearance between any side transformer with ventilation openings and any wall or obstruction. In compliance with NEC 450-9, Eaton's ventilated transformers have a note on their nameplates requiring a minimum of 6 inches (152.4 mm) clearance from the ventilation openings and walls or other obstructions. This clearance only addresses the ventilation needs of the transformer. There may be additional local codes and standards that affect installation clearances.

Transformers should not be mounted in such a manner that one unit will contribute to the additional heating of another unit, beyond allowable temperature limits. for example, where two units are mounted on a wall one above the other.

# Index

# A

abbreviated, 26 ability, 26-27, 29 able, 27 About, 1, 29 Above, 10, 21-23, 25, 27 above, 2, 5-6, 21-25, 28-30 Absolute, 12-20 absorbing, 10, 21-23, 25 AC, 5-6, 23, 27-28 access, 7 Accessories, 1-30 accessories, 7-9 accidental, 28 accidentally, 26 accommodate, 24 accordance, 21-25, 29 account, 29 acquisition, 26 across, 28 Act, 27 Actual, 10-11, 26 add, 7 added, 28 addition, 2, 10 additional, 10, 26-27, 30 addresses, 30 adequacy, 26 adjacent, 21-23, 25 Adjustable, 23 adjustments, 10

adjusts, 29 adverse, 29 AF, 3 affect, 30 after, 27 again, 27 against, 7, 21-23, 25-26 aggregate, 21, 24 aging, 21-25 Air, 2 air, 26, 28-30 AL, 7 Al, 8, 11 All, 10-11, 21-28, 30 all, 2-4, 7, 21-27 allow, 7, 10, 21-25 allowable, 28, 30 allowed, 10, 28-29 allows, 7 alone, 29 already, 10 Also, 26-28 also, 2, 10, 26, 28-29 alternates, 27 alternating, 28 Although, 29 altitude, 29 altitudes, 29 Aluminum, 7, 11-15 aluminum, 8, 11, 21-25 always, 26 Ambient, 26 ambient, 21-25, 28-29 America, 26

# ■Index -

| amount, 27-28             | Average, 10, 21-25             |
|---------------------------|--------------------------------|
| amounts, 26               | average, 21-25, 27, 29         |
| Ampacity, 26              | away, 10                       |
| ampacity, 10              | •                              |
| Ampere, 26                |                                |
| ampere, 5-6, 27-28        |                                |
| Amperes, 5-6              |                                |
| amperes, 5-6, 26, 30      | D                              |
| Amps, 30                  | В                              |
| An, 10, 22, 28            |                                |
| an, 5-6, 10, 24, 26-29    |                                |
| and, 1-30                 | Back, 9                        |
| angle, 28                 | back, 27                       |
| Another, 27               | baking, 21-25                  |
| another, 30               | Banked, 26                     |
| ANSI, 2, 10, 21-25, 28-29 | banked, 26                     |
| Any, 27, 29               | barbecue, 26                   |
| any, 26-27, 29-30         | base, 3                        |
| AP, 2                     | based, 11, 27                  |
| appearance, 27            | Basic, 26                      |
| Applicable, 2             | basic, 21-25, 29               |
| applicable, 2, 7-9, 21-25 | be, 3-7, 10-11, 21-30          |
| application, 23, 26, 29   | bear, 21, 23-25                |
| Applications, 26          | because, 3-4, 10, 27-30        |
| applications, 29          | becomes, 10                    |
| Applied, 21-22, 24-25, 28 | being, 10, 21-25, 29-30        |
| applied, 27-29            | Below, 21, 27                  |
| Applies, 2                | below, 2, 5-6, 21-25, 28-29    |
| apply, 2, 29-30           | better, 27                     |
| applying, 26              | between, 10, 22, 24, 26, 28-30 |
| approved, 2, 26           | beyond, 30                     |
| are, 2-3, 5-11, 26-30     | BIL, 21-26                     |
| area, 10, 26              | birds, 8                       |
| areas, 10, 29             | body, 26                       |
| around, 26, 30            | Bolt, 8                        |
| arrangements, 5-6         | bolt, 24                       |
| As, 10                    | Boost, 3, 10                   |
| as, 7-10, 21-30           | boost, 3, 10, 26               |
| Asked, 1, 29              | boosting, 26                   |
| Assemblies, 21-25         | both, 26                       |
| assembly, 3, 21-25, 28    | Bottom, 9                      |
| Association, 26           | Bracket, 7                     |
| ASTM, 21-25               | bracket, 7                     |
| At, 29                    | brackets, 7                    |
| at, 1-30                  | breakdown, 3-4                 |
| Attenuation, 26           | breakdowns, 26                 |
| Autotransformer, 26       | Breaker, 8                     |
| autotransformer, 10, 26   | breaker, 24, 30                |
| Autotransformers, 10      | breakers, 24                   |
| autotransformers, 10      | British, 26                    |
| Availability, 7           | brought, 28                    |
| availability, 7           | BTU, 26                        |
| available, 5-7, 10-11     | Buck, 3, 10, 26                |
| ,                         |                                |

# Index

bucking, 26 Certification, 26-27 Building, 10 certification, 26 built, 10 Certifications, 1 Bus, 7 CertificationsEaton, 2 but, 7, 10, 28-29 Certified, 3, 26 by, 5-8, 10, 21-29 certified, 24, 26 CFR, 25, 27 Change, 27 change, 26-29 changed, 27 changing, 28 characteristics, 27 characterized, 27 chart, 5-6 CA, 1-30 check, 27 Cable, 8 Circuit, 30 Cables, 10 circuit, 10, 27-28, 30 cables, 10 circuited, 27 cal, 19 Circuits, 5-6 calculate, 30 circuits, 10, 22, 26-27, 29-30 California, 10 circulating, 26 call, 1-30 circulation, 26, 30 called, 26-28 clamped, 21-25 Can, 29-30 clamps, 26 can, 5-6, 10, 26-29 Class, 3, 11-20, 25, 29 Canadian, 26 class, 10-11, 21-24, 26, 28 Candidate, 26 Classes, 29 cannot, 29 classes, 28-29 Capability, 10 cleaning, 21-25 capability, 28 clearance, 7, 30 capable, 25 clearances, 27, 30 capacitive, 28 closed, 26 capacitors, 29 coating, 21-25 Capacity, 27 Code, 2, 10 capacity, 10, 24-30 codes, 10, 30 carry, 22, 29 Coil, 21-25 carrying, 25-26 coil, 3, 21-28 Case, 9 Coils, 21, 23-25 case, 26 coils, 10, 22, 26, 28 cast, 2, 26 color, 21-25 Catalog, 1-3, 7-8 com, 1-30 catalog, 3-7, 9, 30 combination, 28 caused, 26 combinations, 3-4 CE, 3, 26 combustion, 21-25 ceilings, 10 Commercial, 1-30 Celsius, 26 Common, 26 Center, 3, 26 common, 26-28 center, 3, 23-24, 26, 28 Commonly, 26 Centers, 8, 24 community, 26 centers, 24 compared, 26, 28 centigrade, 26 comparison, 26 Certain, 27 compartment, 24-25 certain, 30 Compatible, 7

# **■ Index**

contained, 26

content, 26

Contents, 1

| compatible, 7                    | Continuous, 10, 26, 28    |
|----------------------------------|---------------------------|
| compensate, 28                   | continuous, 21-25         |
| Compensated, 26                  | continuously, 27-29       |
| compensated, 26                  | contribute, 30            |
| compensation, 10, 29             | Control, 2                |
| competing, 26                    | control, 2-3, 28          |
| completely, 21, 24               | convenient, 24-25         |
| compliance, 2, 27, 30            | conventional, 10          |
| Compliant, 25                    | converters, 29            |
| comply, 2, 25, 27                | cool, 28-29               |
| component, 27                    | Cooled, 2                 |
| components, 28                   | cooled, 21-26             |
| compound, 26                     | cooler, 27                |
| compressed, 21-25                | cooling, 26, 28, 30       |
| concern, 10                      | Copper, 3-4, 7, 16-20, 26 |
| conditioners, 26                 | copper, 8, 11, 21-25      |
| conditions, 10, 26-27, 29        | Core, 21-26               |
| conducting, 26                   | core, 3, 21-28            |
| conductive, 27                   | corner, 10                |
| Conductor, 26                    | corners, 10               |
| conductor, 22, 26-28             | corresponding, 29         |
| conductors, 8, 27                | cosine, 28                |
| conduit, 10, 24-25               | Cover, 8-9                |
| configurations, 29               | cover, 7                  |
| conform, 25, 28                  | create, 3-4, 29           |
| conforms, 27                     | created, 29               |
| conjunction, 29                  | criteria, 26              |
| connected, 10-11, 26-30          | CSA, 2-3, 24, 26, 29      |
| Connecting, 10, 27               | CSL, 3, 26                |
| connecting, 29                   | CU, 3-4, 7                |
| Connection, 28                   | Cu, 8, 11                 |
| connection, 10, 21-22, 24-26, 28 | cUL, 2, 26                |
| Connections, 2                   | Current, 5-6, 28, 30      |
| connections, 10, 21-22, 24-25    | current, 21-30            |
| consider, 26                     | Currently, 10, 21-25      |
| consideration, 10                | currents, 26-27, 29       |
| considerations, 29               | custom, 29                |
| considering, 26                  | Customer, 10              |
| consist, 10, 26                  | Cutout, 9                 |
| consisting, 7, 22, 27-28         | cycles, 27                |
| constant, 10                     |                           |
| constitutes, 27                  |                           |
| construct, 27                    |                           |
| constructed, 21-25               |                           |
| construction, 21-23, 25          |                           |
| Consumption, 2                   |                           |
| Contact, 3-4, 11                 |                           |
| contact, 4                       | damaged, 10               |
| contacting, 26                   | dampening, 10             |
| contain, 10                      | Data. 1-30                |

Data, 1-30

date, 11, 27

data, 5-6, 11, 28

# ■Index −

| day, 21, 23-25                | Dimensions, 7-9                    |
|-------------------------------|------------------------------------|
| days, 21, 23-25               | dipped, 26                         |
| dB, 3, 10-23, 25-26, 28       | direction, 28                      |
| dBresistant, 24               | directly, 27                       |
| dBused, 10                    | dirt, 21-23, 25                    |
| Deadfront, 8                  | discourage, 8                      |
| December, 1-30                | disposal, 26                       |
| Decibel, 26                   | dissipated, 26                     |
| decibels, 26, 28              | distance, 27                       |
| decrease, 26                  | distinguish, 29                    |
| decreasing, 26                | distor, 27                         |
| Define, 5-6                   | distortion, 27                     |
| define, 27                    | Distribution, 1-30                 |
| defined, 5-6, 21-25, 27       | distribution, 2, 7, 10, 24, 26-28  |
| defines, 27                   | disturbance, 28                    |
| degreasing, 21-25             | divide, 28                         |
| degrees, 26                   | Division, 3                        |
| deliberately, 10, 28          | Do, 3-4                            |
| deliver, 10, 27               | do, 29                             |
| Delivery, 1-30                | DOE, 3, 25, 27                     |
| Delta, 11, 26                 | does, 3, 28-29                     |
|                               |                                    |
| delta, 3-4, 26, 29-30         | door, 24                           |
| densities, 21-25              | down, 28                           |
| density, 29                   | downtime, 27                       |
| Department, 26                | drawings, 21-25                    |
| depend, 30                    | drip, 10, 21-23, 25                |
| deposition, 21-25             | Drive, 4, 7, 23                    |
| Derate, 29                    | drive, 23                          |
| derate, 29                    | drop, 28                           |
| describe, 26                  | Dry, 1-2, 10-20, 22, 25-26         |
| described, 10, 22             | dry, 2, 7, 10, 21-30               |
| Description, 1, 8             | DS, 2-3, 7, 10, 12, 16, 21         |
| design, 3-4, 10-11, 26, 28    | DT, 2-4, 7-8, 10, 12-13, 16-17, 21 |
| designated, 10                | Due, 29                            |
| Designates, 27                | due, 10, 26, 28                    |
| designates, 27                | during, 26, 29                     |
| Designation, 29               | Duty, 3                            |
| designation, 10               |                                    |
| designations, 27-29           |                                    |
| designed, 3, 10, 21-25, 27-29 |                                    |
| designs, 10, 24               |                                    |
| Determine, 5-6                |                                    |
| determine, 5-6, 28, 30        | $\mathbf{E}$                       |
| Determining, 2                | <del></del>                        |
| determining, 26               |                                    |
| developed, 26                 | Each, 24                           |
| device, 23, 28                | each, 10, 26-30                    |
| Devices, 27                   | earth, 27                          |
| devices, 29-30                | Easy, 3                            |
| did, 7-9                      | Eaton, 2-4, 7, 10-11, 21-26, 28-30 |
| Dielectric, 26                | eaton, 1-30                        |
| dielectric, 27-28             | economical, 10                     |
| different, 3, 9, 29           | Eddy, 26                           |
|                               |                                    |

# **■ Index** -

EPACT, 27 EPAct, 27 EPM, 3

| eddy, 21-25                          | epoxy, 3, 21, 26                 |
|--------------------------------------|----------------------------------|
| Edition, 27                          | EPT, 2-4, 10-11, 21              |
| EE, 3                                | EPTM, 3                          |
| effect, 26, 28                       | EPTZ, 10                         |
| Effective, 7-9                       | EPZ, 10                          |
| effects, 29                          | equal, 3, 5-6, 10, 22, 27, 29-30 |
| efficien, 3                          | Equipment, 2, 27                 |
| efficiencies, 25                     | equipment, 26-27                 |
| Efficiency, 2, 11-20, 25-27          | equipped, 24-25                  |
| efficiency, 3, 26-27                 | equivalent, 26                   |
| Efficiencyclass, 25                  | ES, 4                            |
| Efficient, 3, 12-20, 25              | established, 27                  |
| efficient, 3, 21-25, 27              | European, 26                     |
| eight, 11, 19                        | EV, 2                            |
| either, 8, 10, 26, 29                | Even, 27                         |
| Electric, 27                         | every, 2                         |
| electric, 26                         | EX, 7-9                          |
| Electrical, 2, 26, 28                | Example, 3-6, 30                 |
| electrical, 10, 21-28                | example, 10, 26, 29-30           |
| electrically, 10, 27                 | exceed, 10, 21-25, 29            |
| Electrostatic, 3-4, 26               | exceeded, 29                     |
| electrostatic, 21-25                 | exceeding, 10, 21-27             |
| elevations, 29                       | exceeds, 29                      |
| eliminate, 10                        | excess, 29                       |
| embedded, 3                          | excessive, 28                    |
| emperature, 28                       | Excitation, 27-28                |
| encapsula, 3                         | excitation, 21-22, 24-26, 28     |
| Encapsulated, 2, 4, 10, 21-23, 25-26 | excite, 27                       |
| encapsulated, 2-3, 10, 21-23, 23-20  | excited, 28                      |
| encapsulating, 26                    | exciting, 28                     |
| encapsulation, 10, 21, 24            | excluding, 27                    |
| <u>*</u>                             | _                                |
| enclosed, 3, 10, 21, 24, 28          | exist, 7-9                       |
| Enclosure, 26                        | existing, 26                     |
| enclosure, 3, 10, 21-25, 28-29       | expectancy, 21, 23-25, 27, 29    |
| Enclosures, 2, 10, 21-25             | Export, 3                        |
| ends, 26, 28                         | expoxy, 24                       |
| energization, 27                     | express, 26                      |
| energized, 26-27                     | Expressed, 26                    |
| energizing, 26, 28                   | expressed, 26-28                 |
| Energy, 2-3, 25-27                   | EXT, 7                           |
| energy, 3, 25-27                     | Extension, 7                     |
| Engineering, 2                       | extension, 7                     |
| enough, 24-25                        | external, 10, 26                 |
| ensure, 21-23, 25                    | extra, 27                        |
| entilated, 23                        | extremities, 28                  |
| entry, 8, 24-25                      | eyes, 24                         |
| environment, 10, 26                  |                                  |
| environmental, 10                    |                                  |
| Environmentally, 26                  |                                  |
| EP, 2-3, 10-11, 21                   |                                  |

## F

| facility, 27                   |
|--------------------------------|
| Factor, 7                      |
| factor, 5-6, 10, 22, 27-28     |
| factory, 24                    |
| falling, 21-23, 25             |
| far, 10                        |
| Faraday, 26                    |
| FCAN, 27-28                    |
| FCBN, 27-28                    |
| fed, 29                        |
| feed, 29                       |
| feeder, 24                     |
| feeding, 29                    |
| feet, 29                       |
| few, 27                        |
| Field, 7                       |
| field, 9, 26                   |
| File, 2                        |
| Final, 27                      |
| finished, 21-25                |
| first, 27                      |
| Fits, 7                        |
| flame, 21-25                   |
| flexible, 10                   |
| flow, 27-28, 30                |
| flows, 27                      |
| fluctuation, 26                |
| flux, 21-26, 28                |
| fluxes, 26                     |
| followed, 21-25                |
| following, 2, 7, 10, 21-25, 30 |
| follows, 10, 21                |
| foot, 27                       |
| For, 1-30                      |
| for, 2-4, 7-30                 |
| forces, 27                     |
| form, 26                       |
| formerly, 27                   |
| forms, 28                      |
| formula, 5-6, 30               |
| forth, 25                      |
| foundation, 10                 |
| four, 10, 28-29                |
| FR, 7-9                        |
| Frame, 7-9                     |
| frame, 7-9                     |
| frames 7                       |

frequencies, 29

Frequency, 23, 27 frequency, 27-29 Frequently, 1, 29 from, 5-7, 9-10, 21-23, 25-30 Front, 8-9 front, 7 fuels, 26 Full, 5-6, 11-20, 27, 30 full, 5-6, 25, 28-30 Fundamental, 10, 22 fundamental, 27 Fungus, 3 furnaces, 26 Furnish, 21-25 Furnished, 10 fuse, 30 future, 11

### G

gaseous, 26 gauge, 21-25 General, 2-3, 11-25 general, 10, 21, 23-24, 28 generated, 27-28 give, 27 given, 5-6, 10, 26-27 Glossary, 1, 26 goes, 28 going, 10 Grade, 3, 7 grade, 21-25 greater, 5-6, 10, 27-29 grills, 26 Ground, 27 ground, 26-27, 29 grounded, 22, 24, 26, 28 Groups, 3 GT, 3 Guide, 2, 7 guide, 7

# H

| half, 10                 |
|--------------------------|
| hand, 29                 |
| handle, 26-27            |
| Hardware, 8              |
| hardware, 7              |
| Harmonic, 3, 10, 22, 27  |
| harmonic, 10, 22, 27     |
| harmonics, 27            |
| has, 10, 26-28           |
| have, 7-9, 26-30         |
| HD, 4                    |
| health, 26               |
| heat, 26, 28             |
| heating, 26-27, 30       |
| heavy, 21-25             |
| help, 27                 |
| here, 10                 |
| Hertz, 27                |
| Hi, 27                   |
| High, 27                 |
| high, 10, 21-29          |
| higher, 10, 26-27, 29-30 |
| highest, 27, 29          |
| hinged, 24               |
| HMT, 3, 20, 27           |
| HMTs, 3                  |
| Horsepower, 5-6, 23, 27  |
| horsepower, 23           |
| hot, 28-29               |
| Hottest, 27              |
| hour, 5-6, 10, 26, 29    |
| hours, 10, 21, 23-25     |
| housing, 26              |
| How, 5-6, 29             |
| how, 27                  |
| However, 10              |
| Hp, 27                   |
| hp, 27                   |
| HT, 3                    |
| human, 26                |
| Hysteresis, 27           |
| hysteresis, 21-25        |
| Hz, 3-4, 27, 29          |

### I

| IECName, 2                |
|---------------------------|
| IEEE, 2, 21-25, 29        |
| If, 5-6, 10               |
| if, 7-10, 26, 29          |
| imbedded, 23              |
| Immediate, 1-30           |
| Imp, 12-20                |
| Impedance, 11, 27, 30     |
| impedance, 11, 27-28, 30  |
| impedances, 30            |
| impedances, 30            |
| imply, 3                  |
| important, 27, 29-30      |
| imported, 27              |
| impulse, 21-26            |
| In, 2, 10, 26-30          |
|                           |
| in, 2-3, 5-6, 10-30       |
| inch, 3, 7, 24            |
| inches, 21-23, 25, 30     |
| incidental, 26            |
| include, 24, 28           |
| included, 10              |
| includes, 26              |
| including, 2, 27          |
| increase, 5-6, 28-29      |
| increased, 29             |
| increasing, 26-27         |
| indefinitely, 26          |
| independent, 28           |
| indicate, 26              |
| indicated, 21-25          |
| indicates, 3              |
| indicator, 3              |
| indicators, 3             |
| individually, 21-24       |
| Induced, 21-22, 24-25, 28 |
| induced, 26               |
| Inductance, 27            |
| Inducted, 27              |
| inductive, 28             |
| Industrial, 2, 27         |
| industrial, 3             |
| industry, 27              |
| information, 11           |
| infrared, 3               |
| inherent, 26              |
| initial, 27               |
| input, 23, 26-28          |
|                           |

#### Index

June, 7-9

just, 26

Inrush, 12-20, 27 K inrush, 29 InrushNo, 12, 14, 16, 18, 20 inside, 27-28 install, 3, 21-25 kA, 24 installation, 7, 10, 30 kcmil, 8 installed, 3, 7, 10, 21-25, 28-30 Kilovolt, 27 instantaneous, 28 kilowatts, 27 Instead, 28 Kit, 7 insufficient, 7 kit, 7 insulate, 27 Kits, 8 insulated, 10, 21-25 kits, 10 Insulating, 27 KMParts, 1-30 insulating, 26-27, 29 know, 29 Insulation, 2, 21-25, 27, 29 known, 5-6, 27 insulation, 21-29 KT, 2-4, 10, 13-15, 17-19 Insulationis, 29 kV, 10-11, 21-26 Integral, 3, 27 kVA, 2-8, 10-27, 29-30 integral, 27 kW, 27 integrity, 27 intended, 27-28 intensity, 28 interconnecting, 24 interference, 26 interrupting, 24, 30 into, 10, 26, 28-29 IR, 28 iron, 28 label, 9, 21, 23, 25 Is, 27 labeled, 3 is, 3, 5-7, 10-11, 26-30 Labeling, 27 ise, 19 labels, 24 isolate, 10 Laboratories, 25-26, 28 isolated, 27 Lamination, 27 Isolating, 27 laminations, 21-25 isolating, 27 large, 24-25 Isolation, 3-4, 7, 23 larger, 27, 29 isolation, 10, 23 latest, 21-25 issued, 27 Lbs, 11 It, 10, 26-27, 29 leads, 26 it, 27, 29-30 least, 21-23, 25 its, 26-29 legislation, 27 IX, 28 less, 10, 22, 26, 28-30 IZ, 28 lesser, 26, 28 letters, 29 Level, 10-26 level, 3, 21-26, 28-29 Levels, 10, 21-25 levels, 10, 21-25, 27-28 Levelsconstruction, 24

Levelsnormal, 22 life, 21, 23-25, 27, 29

lifting, 21-25

lighting, 26

### **■ Index**

| like, 26                    |                                   |
|-----------------------------|-----------------------------------|
| likely, 10                  |                                   |
| limitations, 10, 29         | <b>1V1</b>                        |
| Limiting, 27                |                                   |
| limiting, 27                | 1 24 25 20                        |
| limits, 30                  | made, 21-25, 29                   |
| line, 26, 28, 30            | magnetic, 21-27                   |
| Linear, 27                  | magnetization, 26-27              |
| liquid, 26                  | magnetizing, 27                   |
| Listed, 2                   | magnitude, 26                     |
| listed, 2, 9-10, 21-25, 27  | Main, 24                          |
| listing, 7                  | main, 24                          |
| listings, 5-6               | mainly, 28                        |
| lists, 23                   | maintain, 7                       |
| Live, 27                    | maintenance, 26-27                |
| live, 26                    | Major, 27                         |
| LKS, 8                      | major, 27                         |
| Load, 5-6, 11-20, 27-28, 30 | make, 10, 28                      |
| load, 5-6, 10, 21-22, 24-30 | mandatory, 27                     |
| loaded, 29                  | manner, 30                        |
| loading, 10, 28-29          | manufactured, 2, 10, 21-25, 27-28 |
| Loads, 22                   | manufacturers, 27                 |
| loads, 22, 26               | manufacturing, 26                 |
| local, 3-4, 10, 30          | Marine, 3                         |
| Locate, 10                  | marine, 3                         |
| locate, 21-23, 25           | Mark, 26                          |
| located, 7                  | Marked, 3                         |
| location, 10                | marked, 27-28                     |
| long, 29                    | Markings, 2                       |
|                             | mass, 26                          |
| longer, 27                  | Material, 7, 27                   |
| longevity, 27               | material, 27                      |
| loop, 26                    | materials, 10, 21-27, 29          |
| loss, 26, 29                | matter, 29                        |
| Losses, 2, 11-20, 26, 28    | Max, 11-20                        |
| losses, 21-28               | Maximum, 2, 21-25, 30             |
| Low, 3, 25, 28              | maximum, 2, 10, 21-30             |
| low, 3, 21-29               | may, 2-4, 9-11, 26-30             |
| Lower, 9-10                 | MD, 4, 10                         |
| lower, 10, 27-30            | means, 27, 29                     |
| LR, 2                       | measure, 26, 29                   |
| LS, 3                       | Measured, 26                      |
| Lug, 8, 10                  | measured, 10, 21-24, 27-28        |
| Lugs, 8                     | Measuring, 2                      |
| lugs, 10                    | mechanically, 10                  |
| LY, 3                       | medium, 26                        |
|                             | meet, 10                          |
|                             | metallic, 28                      |
|                             | meters, 29                        |
|                             | Method 2 21-25                    |

method, 10, 27 methods, 10 Metric, 26

### **■ Index**

| Mid, 28                  | National, 2                        |
|--------------------------|------------------------------------|
|                          | natural, 26                        |
|                          | ND, 4                              |
|                          | nd, 27                             |
|                          | near, 10                           |
|                          | NEC, 2, 30                         |
|                          | necessary, 10, 29                  |
|                          | need, 29                           |
|                          | needed, 5-6, 10                    |
| minimum, 5-7, 25, 27, 30 | needs, 30                          |
|                          | NEG, 3                             |
| minute, 27               | negative, 26-27                    |
| Mitigating, 27           | NEMA, 2-3, 7, 10, 12-25, 27-28, 30 |
| mitigating, 3            | neutral, 22, 26, 28-29             |
| mixture, 21, 24          | newly, 3                           |
| mm, 21-23, 25, 30        | No, 2, 11-22, 24-25, 27-29         |
| mode, 26, 28             | no, 26-30                          |
| Model, 3                 | Noise, 28                          |
| model, 3                 | noise, 26, 28                      |
| modifications, 9         | Nominal, 27                        |
| moisture, 21, 24         | nominal, 21-25                     |
| more, 5-6, 10, 26-29     | NON, 3, 20                         |
| most, 7, 10              | Non, 28                            |
| Motor, 4, 23             | non, 3, 10, 21-25, 27-28           |
| motor, 5-6               | None, 3                            |
| Motors, 5-6, 27          | Nonlinear, 3, 10, 22, 27-28        |
| motors, 5-6              | normal, 21, 23-27, 29              |
| mount, 7, 10             | Normally, 28                       |
| mounted, 21-24, 28, 30   | normally, 26                       |
| Mounting, 7              | North, 26                          |
| mounting, 7, 10          | Not, 2                             |
| mounts, 10               | not, 3-4, 7-10, 21-25, 27-30       |
| MPC, 2                   | Note, 7, 10, 21-25                 |
| MTE, 2                   | note, 30                           |
| MTK, 2                   | Notes, 2-9, 11                     |
| Multiple, 10             | NT, 3                              |
| multiple, 10, 27-28      | Number, 1-3, 7-8                   |
|                          | number, 3-4, 7, 9, 26-28, 30       |
| must, 7, 10, 27, 29-30   | numbers, 3-4, 7-9                  |
| MV, 3                    | NV, 3                              |
| mysterious, 27           |                                    |
|                          |                                    |

### N

name, 26-27 Nameplate, 30 nameplate, 9-10, 26, 28-29 nameplates, 30



objective, 10, 28 obstruction, 30 obstructions, 30 obtain, 28 obtained, 10, 21-25

#### ■Index -

| occurs, 26-28                  | Part, 27                          |
|--------------------------------|-----------------------------------|
| of, 1-3, 7-11, 21-30           | part, 26-28                       |
| off, 10                        | Parts, 8-9, 25                    |
| office, 3-4                    | parts, 9, 26                      |
| often, 26                      | party, 26                         |
| On, 21-24, 27                  | past, 27, 29                      |
| on, 3, 7-10, 21-30             | paths, 27                         |
| once, 5-6                      | PDF, 27                           |
| one, 10, 24, 27-28, 30         | peak, 27                          |
| ONLY, 29                       | Per, 28                           |
| only, 3-4, 10, 28-30           | per, 5-6, 9, 25-27                |
| Open, 3                        | perated, 29                       |
|                                | <u> •</u>                         |
| open, 27                       | Percent, 28                       |
| openings, 7, 21-23, 25, 28, 30 | percent, 27-28                    |
| operate, 29                    | Performance, 11                   |
| operated, 25, 27               | performance, 21-25                |
| operating, 29                  | performed, 21-22, 24-25, 28       |
| operation, 21-26, 28-29        | period, 29                        |
| operational, 27                | permeability, 21-25               |
| opposition, 27                 | permissible, 29                   |
| Options, 1, 3, 7               | permit, 10, 28                    |
| options, 29                    | persist, 27                       |
| OptionsMD, 4                   | personnel, 26-27                  |
| or, 1-30                       | PF, 12-20                         |
| Order, 7, 29                   | Ph, 3                             |
| order, 26, 28                  | Phase, 2-3, 5-7, 9, 23, 25, 28-29 |
| organization, 28               | phase, 3, 8, 11, 21-26, 28-30     |
| originally, 29                 | phaseshifts, 29                   |
| otal, 13, 17, 19, 28           | phosphatizing, 21-25              |
| other, 4, 26-30                | piece, 27                         |
| out, 28                        | placed, 22, 26                    |
| outdoor, 21-25                 | Plate, 9                          |
| outdoors, 7                    | plug, 24                          |
| outlines, 28                   | plus, 30                          |
| output, 26-30                  | point, 21-26, 28                  |
| over, 21-24, 28                | Polarity, 21-22, 24-25, 28        |
| Overload, 10, 28               | polarity, 27                      |
| overload, 10, 25, 28           | Policy, 27                        |
| , ., ., .,                     | polyester, 21-25                  |
|                                | polymer, 22, 24                   |
|                                | POS, 3                            |
|                                | positive, 27                      |
|                                | possible, 10                      |
| P                              | pot, 27                           |
| <u> </u>                       | Potential, 28                     |
|                                | potential, 10, 21-22, 24-25, 27   |
| packaging, 26                  | potentials, 27                    |
| padlockable, 24                | pounds, 27                        |
| pads, 21-23, 25                | powder, 21-25                     |
| Page, 1, 3                     | <u> •</u>                         |
| Panel, 9                       | Power, 2-3, 8, 24, 28             |
| panelboard, 24                 | power, 3, 24, 26-29               |
| parallel, 10, 26, 28, 30       | Practi, 19                        |
| Pararior, 10, 20, 20, 50       | Practical, 12-20                  |

#### Index

| practical, 26                      |
|------------------------------------|
| PracticalkVA, 14                   |
| precedes, 10                       |
| preferable, 26                     |
| preferred, 29                      |
| Prefix, 3                          |
| prefix, 7-9                        |
| premium, 3                         |
| present, 26-27                     |
| presently, 5-6                     |
| prevent, 26-27                     |
| Previous, 29                       |
| previously, 28                     |
| primaries, 10                      |
| Primary, 3-4, 10, 28               |
| primary, 5-6, 10-11, 22, 24, 26-30 |
| prior, 26, 28                      |
| procedure, 5-6                     |
| Procedures, 27                     |
| process, 21-25                     |
| produced, 27                       |
| produces, 28                       |
| •                                  |
| producing, 28                      |
| Product, 1-2, 5                    |
| product, 26                        |
| production, 3, 26, 28              |
| products, 26                       |
| profile, 10, 22                    |
| Program, 27                        |
| proof, 3, 10, 21-25                |
| Proper, 7                          |
| proper, 7, 21-23, 25               |
| proportional, 27-28                |
| proportionally, 5-6                |
| proportioned, 21, 24               |
| protect, 7, 26                     |
| protected, 21-23, 25               |
| protection, 26, 30                 |
| Protective, 27                     |
| Provide, 10                        |
| provide, 10, 21-24, 26, 28         |
| provided, 10                       |
| provides, 7, 26                    |
| provisions, 21-23, 25              |
| purchase, 29                       |
| Purpose, 2-3, 11-21                |
| purpose, 10, 21, 23-24, 26, 28     |
| 1 1 , , , , , , , ,                |
|                                    |

## Q

QS, 3 Qualified, 10 qualified, 10 Quantity, 8 Questions, 1, 29

### R

radiate, 28 rain, 7 raise, 27 Range, 8 rated, 8, 10, 21-30 Rating, 29 rating, 3, 5-7, 24, 26, 30 Ratings, 10, 22 ratings, 3, 10, 21-25 Ratio, 21-22, 24-25, 28 ratio, 26, 28-29 raw, 26 rd, 10, 22, 27 reach, 29 Reactance, 28 reactance, 28 Reactor, 28 reactors, 29 rear, 7 Recently, 29 recognized, 2, 21-25 recommended, 7, 23, 29 recommends, 7, 10 recyclable, 26 recycled, 26 redesigned, 3 reduce, 26, 28 reduced, 26-27, 29 reduces, 29 reducing, 27 reduction, 29 Refer, 7, 11 referred, 26, 28 reflection, 10 regulate, 29 Regulation, 11-20, 28

### ■Index -

| regulation, 29           |                                          |
|--------------------------|------------------------------------------|
| Relation, 28             | C                                        |
| relation, 21-22, 24-25   | <b>D</b>                                 |
| relative, 28             |                                          |
| relies, 28               |                                          |
| removed, 29              | sacrifice, 27                            |
| replaceable, 9           | Safety, 27                               |
| replaced, 29             | safety, 27-28                            |
| Replacement, 8           | sales, 3-4                               |
| replaces, 2              | Same, 28                                 |
| report, 3                | same, 26, 30                             |
| require, 9, 30           | saturation, 21-25                        |
| Required, 9, 21-25       | Scott, 28                                |
| required, 7, 9-10, 27-30 | Screens, 8                               |
| requirement, 23          | screens, 8                               |
| Requirements, 2, 27      | sea, 29                                  |
| requirements, 10, 25-26  | seal, 21, 24                             |
| requires, 30             | second, 27                               |
| requiring, 30            | secondaries, 10                          |
| resin, 2, 21, 24, 26     | Secondary, 3-4                           |
| resistance, 26-28        | secondary, 5-6, 10-11, 22, 24, 26-28, 30 |
| resistant, 21            | section, 24                              |
| restrictions, 30         | sections, 28                             |
| resulting, 28            | See, 7, 10, 28                           |
| retardant, 21-25         | see, 3, 27                               |
| retarding, 27            | Seismically, 10                          |
| return, 27               | seismically, 10                          |
| reusable, 26             | Select, 5-6                              |
| reuse, 26                | select, 5-6                              |
| reverse, 29              | selected, 5-6                            |
| reverseat, 29            | Selection, 1, 3, 5                       |
| reverseoperation, 29     | selection, 3, 7                          |
| reviewed, 10, 21-25      | self, 21-26                              |
| revised, 10, 21-25       | sensing, 23                              |
| revision, 11             | separately, 7, 10                        |
| revisions, 27            | September, 27                            |
| right, 5-6               | serial, 3, 26                            |
| Rise, 11-20, 25          | Series, 10, 28                           |
| rise, 3-6, 10, 15, 21-29 | series, 10, 26, 28                       |
| Rodent, 8                | serve, 26                                |
| rodents, 8               | service, 5-6                             |
| rom, 5                   | set, 25                                  |
| root, 27                 | sets, 28                                 |
| routine, 28              | shall, 10, 21-25                         |
| RS, 8                    | sheet, 26                                |
| RT, 3                    | sheets, 27                               |
| Rule, 27                 | shield, 3-4, 7, 22, 26                   |
| rule, 27                 | Shielded, 3                              |
| running, 27              | shields, 7                               |
| 101111115, 27            | shift, 3, 30                             |
|                          | shifting, 29                             |
|                          | shipment, 28                             |
|                          | shipped, 3, 26                           |
|                          |                                          |

### ■Index -

| shock, 21, 24, 27                         | standards, 2, 24, 27, 29-30        |
|-------------------------------------------|------------------------------------|
| Short, 10, 28, 30                         | Star, 28                           |
| short, 30                                 | started, 5-6                       |
| should, 10, 29-30                         | state, 27                          |
| shown, 3-4                                | stated, 26                         |
| Side, 9                                   | steel, 3, 7, 21-25, 27             |
| side, 27, 30                              | Step, 28                           |
| signal, 26                                | step, 29                           |
| signals, 28                               | still, 7-9                         |
| silicon, 21-25                            | stoves, 26                         |
| similar, 10, 28, 30                       | strap, 29                          |
| Single, 2-3, 5, 7, 9, 25, 29              | stray, 26                          |
| single, 3, 8, 10-11, 21-24, 26, 28-30     | strictly, 29                       |
| sinusoidal, 22, 27                        | structure, 21-23, 25               |
| six, 28                                   | structures, 10                     |
| Size, 7-8                                 | subject, 11                        |
| size, 23                                  | subsequent, 21, 23-25              |
| sized, 10                                 | substance, 26-27                   |
| Sizes, 7                                  | substantially, 21-25               |
| Sizing, 8                                 | such, 10, 26-27, 30                |
| small, 26                                 | Suffix, 3-4                        |
| smaller, 10                               | suffix, 7                          |
| so, 7-9, 29                               | suggested, 10                      |
| solid, 2, 10                              | suitable, 8, 21-25                 |
| solution, 29                              | sum, 27-28                         |
| some, 28                                  | supply, 10, 22, 26                 |
| Sometimes, 26                             | supplying, 28                      |
| Sound, 10-25, 28                          | Support, 1-30                      |
| sound, 3, 10, 21-26, 28                   | support, 21-26                     |
| soundproof, 10<br>source, 5-6, 10, 27, 29 | Suppressors, 27<br>suppressors, 27 |
| space, 7                                  | Surge, 27                          |
| space, 7<br>spacings, 26                  | surge, 27                          |
| SPD, 27                                   | surges, 26                         |
| Special, 28                               | surrounding, 10, 26, 29            |
| special, 10                               | Symbol, 27                         |
| Specialty, 2                              | System, 2, 24-25, 29               |
| specific, 3, 7, 10, 23, 26, 28-29         | system, 10, 21-29                  |
| specifically, 10, 22, 29                  | Systems, 21-23                     |
| Specification, 23, 25                     | systems, 26                        |
| Specifications, 1, 10, 21-22, 24          | •                                  |
| specified, 10, 26-27                      |                                    |
| spot, 27                                  |                                    |
| spurious, 28                              |                                    |
| square, 27                                | T                                  |
| squares, 27                               | $\mathbf{T}$                       |
| SR, 3                                     |                                    |
| SS, 3                                     | . 11 2 4 10 22                     |
| ST, 2, 10, 21-25, 28, 30                  | table, 3-4, 10, 23                 |
| stainless, 3, 7                           | Tables, 25                         |
| Standard, 2, 21-28                        | tabulated, 5-6                     |
| standard, 3, 9-10, 21-22, 24-30           | take, 29<br>taken, 26, 29          |
| Standards, 1-30                           | uncii, 20, 27                      |
|                                           |                                    |

#### **■ Index** -

those, 2

| Tap, 28                                            | though, 26                         |
|----------------------------------------------------|------------------------------------|
| tap, 4-6, 21-26, 28                                | THR, 3, 20                         |
| tapping, 10                                        | Three, 2-3, 6-7, 9, 23, 25-26, 29  |
| Taps, 3-4, 10, 28                                  | three, 3, 8, 11, 21, 23-30         |
| taps, 10, 27-28                                    | through, 7, 21-23, 26-27           |
| Tech, 1-30                                         | throughout, 27                     |
| Technical, 1-30                                    | tightly, 21-25                     |
| ted, 3                                             | time, 26-27, 29                    |
| Temp, 2                                            | times, 27                          |
| Temperature, 25, 28                                | tion, 27                           |
| temperature, 3, 5-6, 10, 21-30                     | Title, 10                          |
| temperatures, 29                                   | To, 5-6, 21-23, 25, 28, 30         |
| tendency, 27                                       | to, 2-8, 10-11, 21-30              |
| TENV, 28                                           | today, 27                          |
| term, 10, 26-28                                    | together, 26, 28                   |
| Terminal, 2, 7-8                                   | too, 29                            |
| terminal, 7, 10                                    | Top, 9                             |
| terminals, 7, 29                                   | top, 7, 21-25                      |
| Terms, 1                                           | Total, 11-20                       |
| terms, 27                                          | total, 26-27                       |
| TermsAir, 26                                       | Totally, 3, 28                     |
| Test, 2, 21-25, 27                                 | totally, 10, 21, 24, 28            |
| test, 3, 21-23, 27<br>test, 3, 21-22, 24-25, 27-28 | touch, 29                          |
| tested, 21-25, 27-28                               | TP, 2-3, 12-20, 25                 |
| testing, 28                                        | TR, 3                              |
| Tests, 21-22, 24-26, 28                            | Transformer, 1-30                  |
| tests, 3, 21-22, 24-26, 28                         | transformer, 2-3, 5-7, 9-10, 21-30 |
| th, 10, 22, 27                                     | Transformers, 1-30                 |
| than, 5-6, 10, 22, 26-30                           | transformers, 2-3, 7, 9-11, 21-30  |
| that, 10, 25-30                                    | TransformersTerminal, 8            |
| THD, 27                                            | Transient, 27                      |
| The, 7, 10, 21-30                                  | transient, 27                      |
|                                                    |                                    |
| the, 2-3, 5-10, 21-30                              | transmission, 10                   |
| their, 10, 30                                      | transmitting, 27                   |
| then, 10                                           | Transverse, 28                     |
| There, 30                                          | trip, 30                           |
| there, 29-30                                       | Trise, 12-20                       |
| thereby, 27<br>Therefore, 29                       | TT, 3                              |
|                                                    | turn, 22                           |
| therefore, 10, 30                                  | Turns, 28                          |
| Thermal, 3                                         | turns, 26, 28-29                   |
| thermal, 3, 26                                     | TVSS, 27                           |
| thermometer, 29                                    | Two, 9, 26                         |
| thermosetting, 21, 23-25                           | two, 3, 10, 21-30                  |
| These, 10, 28                                      | Type, 1-4, 7-8, 11-22, 25, 28      |
| these, 27, 29                                      | type, 2-3, 7, 10, 21-30            |
| they, 30                                           | Types, 10                          |
| Thin, 27                                           | Typical, 8, 11-25, 28              |
| third, 26                                          | Typically, 26-27                   |
| This, 7, 26-27, 29-30                              | typically, 28                      |
| this, 5-6, 26-27, 29-30                            |                                    |
| Those, 27                                          |                                    |

### TJ

**UBC**, 10 UL, 2, 9, 21-30 under, 26-27, 29 undergone, 27 understood, 26 Underwriters, 25-26, 28 undesirable, 10 Uniform, 10 Unit, 26 unit, 7, 21-23, 25-26, 28, 30 Units, 5-6, 9, 24 units, 10, 21-23, 28, 30 unity, 28 Universal, 28 Up, 10-11, 21-23, 25 up, 10, 28-29 upon, 11, 30 Upper, 9 Use, 3-4 use, 3-6, 8, 10, 21-25, 27, 30 Used, 27 used, 3, 7-8, 26-30 uses, 28 Using, 5-6 using, 21, 23-24, 27-28 Usually, 27-28 usually, 27-28 utilizing, 22, 25

### $\mathbf{V}$

VA, 27, 30 valid, 3-4 value, 26 values, 5-6, 11, 26 variation, 26 variations, 10 varying, 26 Ventilated, 2, 9-10, 21-23, 25 ventilated, 3, 7, 10, 21-25, 28-30 ventilation, 7, 21-23, 25, 28, 30 Verifies, 27 version, 26 very, 10, 29 vibration, 10, 21-23, 25, 28 viewing, 3 Volt, 11-20, 30 volt, 10-11, 21-25, 28-30 Voltage, 3-5, 25, 27-28 voltage, 3-6, 10, 21-29 VoltagekVA, 6 voltages, 10, 21-24, 26-30 Volts, 5-6, 30 volts, 2, 5-6, 24, 30 Volume, 1-30 volume, 21-25

## W

Wall, 7 wall, 7, 21-23, 25, 30 walls, 10, 30 warm, 29 was, 27 Watt, 28 Watts, 11-20 watts, 26-27 waveform, 27-28 Weathershield, 7 weathershield, 7 weathershields, 7, 10, 21-23 Weight, 11-20 well, 26 were, 28-29 What, 29-30 what, 27 When, 5-6, 26-27, 29 when, 5-7, 10, 25-30 where, 10, 27-30 whether, 29 which, 26-27 Why, 30 will, 7-10, 26-27, 29-30 Winding, 22 winding, 10, 21-29 Windings, 10 windings, 2-4, 10-11, 21-28 window, 3 wire, 26, 28-29 wired, 26 wires, 29 wiring, 24-25

#### **■ Index**

With, 10 with, 2-3, 7-10, 21-30 within, 10, 28-30 without, 10, 21-27, 29 withstand, 26-28 WMB, 7 would, 30 Wound, 11-20 wound, 21-25 WS, 7 www, 1-30 Wye, 28 wye, 28-30

### Y

year, 21, 23-25 years, 27, 29 Yes, 29-30 you, 29 your, 3-4, 29

# Z

ZZ, 3

#### 0

°C, 2