BMX AMI 0810 Analog Input Module

5

Subject of this Chapter

This chapter presents the BMX AMI 0810 module, its characteristics, and explains how it is connected to the various sensors.

What Is in This Chapter?

This chapter contains the following topics:

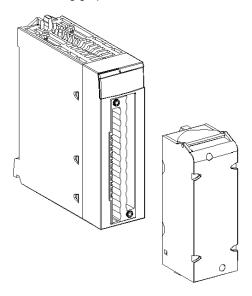
Topic	Page
Presentation	94
Characteristics	95
Functional Description	97
Wiring Precautions	104
Wiring Diagram	108
Use of the TELEFAST ABE-7CPA02/31/31E Wiring Accessory	109

Presentation

Function

The BMX AMI 0810 is a high density input analog module with 8 isolated channels.

This module is used in conjunction with sensors or transmitters; it performs monitoring, measurement, and continuous process control functions.


The BMX AMI 0810 module offers the following range for each input according to the selection made during configuration:

- Voltage +/-5 V/+/-10 V/0..5 V/0..10 V/1..5 V
- Current +/-20 mA/0..20 mA/4..20 mA

The module operates with voltage inputs. It includes four read resistors connected to the terminal block to perform current inputs.

Illustration

The following graphic shows the BMX AMI 0810 analog input module:

NOTE: The terminal block is supplied separately.

Characteristics

General Characteristics

The general characteristics for the BMX AMI 0810 and BMX AMI 0810H (see page 45) modules are as follows:

Type of inputs		High level isolated fast inputs		
Nature of inputs		Voltage / Current (250 Ω internally protected resistors)		
Number of channe	els	8		
Acquisition cycle time:				
Fast (periodic acchannels used)	equisition for the declared	1 ms + 1 ms x number of channels used		
Default (periodic channels)	acquisition for all	9 ms		
Display resolution	1	16-bit		
Digital filtering		1 st order		
Isolation:				
Between channel	els	+/-300 VDC		
Between channel	els and bus	1400 VDC		
Between channel	els and ground	1400 VDC		
Maximum overloa	d authorized for inputs:	Voltage inputs: +/- 30 VDC Current inputs: +/- 30 mA Protected against accidental wiring: -19.2 to 30VDC NOTE: The Protected for accidental wiring function is not supported when the module works with any Telefast interface.		
Power	Typical	0.32 W		
consumption (3.3 V)	Maximum	0.48 W		
Power	Typical	0.82 W		
consumption (24 V)	Maximum	1.30 W		

35011978 07/2012 95

Measurement Range

The BMX AMI 0810 and BMX AMI 0810H (see page 45) analog inputs have the following measurement range characteristics:

Measurement range	+/-10 V; +/-5 V; 010 V; 05 V; 15 V	+/-20 mA; 020 mA; 420 mA
Maximum conversion value	+/-11.4 V	+/-30 mA
Conversion resolution	0.36 mV	1.4 μΑ
Input impedance	10 ΜΩ	250 Ω Internal conversion resistor
Precision of the internal conversion resistor	-	0.1% - 15 ppm/° C
Measurement errors for sta	ndard module:	
At 25° C Maximum in the temperature range 060° C (32140° F)	0.075% of FS (1) 0.1% of FS (1)	Typically 0.15% of FS (1)(2) 0.3% of FS (1)(2)
Measurement errors for Ha	rdened module:	
 At 25° C Maximum in the temperature range - 2570° C (-13158° F) 	0.075% of FS (1) 0.2% of FS (1)	Typically 0.15% of FS (1)(2) 0.55% of FS (1)(2)
Temperature drift	30 ppm/° C	50 ppm/° C
Monotonicity	Yes	Yes
Crosstalk between channels DC and AC 50/60Hz	> 80dB	> 80dB
Non-linearity	0.001%	0.001%
Repeatability @25°C of 10 min. stabilization time	0.005% of FS	0.007% of FS
Long term stability after 1000 hours	< 0.004% of FS	< 0.004% of FS
Legend:		
(1) FS: Full Scale		
(2) With conversion resistor e	rror	

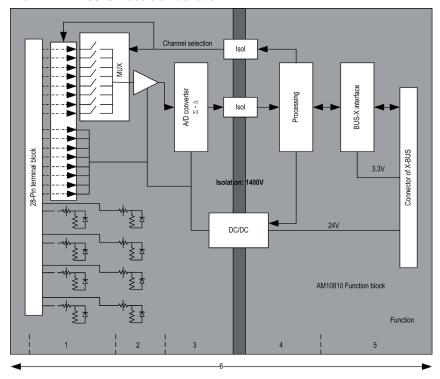
NOTE: If nothing is connected on a BMX AMI 0810 and BMX AMI 0810H (see page 45) analog module and if channels are configured (range 4..20 mA or 1..5 V), there is a detected I/O error as if a wire is broken.

Functional Description

Function

The BMX AMI 0810 is a high density input analog module with 8 isolated channels.

This module is used in conjunction with sensors or transmitters; it performs monitoring, measurement, and continuous process control functions.


The BMX AMI 0810 module offers the following range for each input according to the selection made during configuration:

- +/-10 V
- 0..10 V
- 0..5 V / 0..20 mA
- 1..5 V / 4..20 mA
- +/-5 V / +/-20 mA

The module operates with voltage inputs. It includes eight read resistors connected to the terminal block to perform current inputs.

Illustration

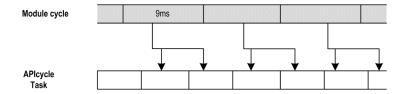
The BMX AMI 0810 module's illustration:

35011978 07/2012 97

Description:

No.	Process	Function
1	Adapting the Inputs and Multiplexing	 Physical connection to the process through a 28-pin screw terminal block Protection of the module against overvoltages Protection of the current reading resistors using limiters and resettable fuses Input signal analog filtering Scan input channels using static multiplexing through optoswitches, in order to provide the possibility of common mode voltage of +/- 300 Vdc
2	Amplifying Input Signals	 Gain selecting, based on characteristics of input signals, as defined during configuration (unipolar or bipolar range, in voltage or current) Compensation of drift in amplifier device
3	Converting	Conversion of analog Input signal into digital 24-bit signal using a ΣΔ converter
4	Transforming incoming values into workable measurements for the user.	 Takes into account recalibration and alignment coefficients to be applied to measurements and the module's self-calibration coefficients (Numeric) filtering fo measurements, based on configuration parameters Scaling of measurements, based on configuration
		parameters
5	Communicating with the Application	 Manages exchanges with CPU Topological addressing Receives configuration parameters from module and channels
		 Sends measured values, as well as module status, to application
6	Module monitoring and sending error notification back to application.	Conversion string test Testing for range overflow on channels Watchdog test

Measurement Timing

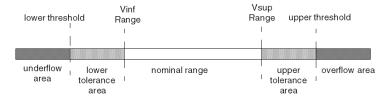

The timing of measurements is determined by the cycle selected during configuration (Normal or Fast Cycle):

- Normal Cycle means that the scan cycle duration is fixed.
- With the Fast Cycle, however, the system only scans the channels designated as being In Use. The scan cycle duration is therefore proportional to the number of channels In Use.

The cycle time values are based on the cycle selected:

Module	Normal Cycle	Fast Cycle
BMX AMI 0810	9 ms	1 ms + (1 ms x N) where N: number of channels in use.

NOTE: Module cycle is not synchronized with the PLC cycle. At the beginning of each PLC cycle, each channel value is taken into account. If the MAST/FAST task cycle time is less than the module's cycle time, some values will not have changed.



Overflow/Underflow Control

Module BMX AMI 0810 allows the user to select between 6 voltage or current ranges for each input.

This option for each channel have to be configured in configuration windows. Upper and lower tolerance detection are always active regardless of overflow/underflow control.

Depending on the range selected the module checks for overflow, it verifies that the measurement falls between a lower and an upper threshold:

35011978 07/2012 99

Description:

Designation	Description
Nominal range	measurement range corresponding to the chosen range
Upper Tolerance Area	varies between the values included between the maximum value for the range (for instance: +10 V for the +/-10 V range) and the upper threshold
Lower Tolerance Area	varies between the values included between the minimum value for the range (for instance: -10 V for the +/-10 V range) and the lower threshold
Overflow Area	area located beyond the upper threshold
Underflow Area	area located below the lower threshold

The values of the thresholds are configurable independently from one another. They may assume integer values between the following limits:

Range	BMX AM	BMX AMI 0810 Range										
	Underflow Area		Lower Tolerance Area		Nominal Range		Upper Tolerance Area		Overflow Area			
Unipolar												
010 V	-1,500	-1,001	-1,000	-1	0	10,000	10,001	11,000	11,001	11,400		
05 V / 020 mA	-5,000	-1,001	-1,000	-1	0	10,000	10,001	11,000	11,001	15,000		
15 V / 420 mA	-4,000	-801	-800	-1	0	10,000	10,001	10,800	10,801	14,000		
Bipolar	-		*	*	*			.	*			
+/- 10 V	-11,500	-11,001	-11,000	-10,001	-10,000	10,000	10,001	11,000	11,001	11,400		
+/- 5 V, +/- 20 mA	-15,000	-11,001	-11,000	-10,001	-10,000	10,000	10,001	11,000	11,001	15,000		
User												
+/- 10 V	-32,768				User- defined	User- defined				32,767		
010 V	-32,768				User- defined	User- defined				32,767		

Measurement Display

Measurements may be displayed using standardized display (in %, to two decimal places):

Type of Range	Display
Unipolar range 010 V, 05 V, 15 V, 020mA, 420mA	from 0 to 10,000 (0 % at +100.00 %)
Bipolar range +/- 10 V, +/- 5 mV +/- 20 mA	from -10,000 to 10,000 (-100.00 % at +100.00 %)

It is also possible to define the range of values within which measurements are expressed, by selecting:

- the lower threshold corresponding to the minimum value for the range: 0 % (or 100.00 %).
- the upper threshold corresponding to the maximum value for the range (+100.00 %).

The lower and upper thresholds must be integers between -32,768 and +32,767.

For example, imagine a conditioner providing pressure data on a 4-20 mA loop, with 4 mA corresponding to 3,200 millibar and 20 mA corresponding to 9,600 millibar. You have the option of choosing the User format, by setting the following lower and upper thresholds:

3,200 for 3,200 millibar as the lower threshold

9,600 for 9,600 millibar as the upper threshold

Values transmitted to the program vary between 3,200 (= 4 mA) and 9,600 (= 20 mA).

Measurement Filtering

The type of filtering performed by the system is called "first order filtering". The filtering coefficient can be modified from a programming console or via the program.

The mathematical formula used is as follows:

$$Meas_{f(n)} = \alpha \times Meas_{f(n-1)} + (1 - \alpha) \times Val_{b(n)}$$

where:

 α = efficiency of the filter

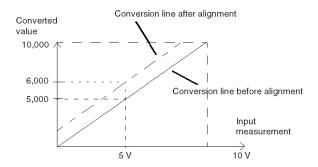
 $Meas_{f(n)}$ = measurement filtered at moment n

 $Meas_{f(n-1)}$ = measurement filtered at moment n-1

 $Val_{b(n)}$ = gross value at moment n

You may configure the filtering value from 7 possibilities (from 0 to 6). This value may be changed even when the application is in RUN mode.

NOTE: Filtering may be accessed in Normal or Fast Cycle.


The filtering values depend on the T configuration cycle (where T = cycle time of 5 ms in standard mode):

Desired Efficiency	Required Value	Corresponding α	Filter Response Time at 63%	Cut-off Frequency (in Hz)
No filtering	0	0	0	0
Low filtering	1 2	0.750 0.875	4 x T 8 x T	0.040 / T 0.020 / T
Medium filtering	3 4	0.937 0.969	16 x T 32 x T	0.010 / T 0.005 / T
High filtering	5 6	0.984 0.992	64 x T 128 x T	0.0025 / T 0.0012 / T

Sensor Alignment

The process of "alignment" consists in eliminating a systematic offset observed with a given sensor, around a specific operating point. This operation compensates for an error linked to the process. Replacing a module does not therefore require a new alignment. However, replacing the sensor or changing the sensor's operating point does require a new alignment.

Conversion lines are as follows:

The alignment value is editable from a programming console, even if the program is in RUN Mode. For each input channel, you can:

- view and modify the desired measurement value
- save the alignment value
- determine whether the channel already has an alignment

The alignment offset may also be modified through programming.

Channel alignment is performed on the channel in standard operating mode, without any effect on the channel's operating modes.

The maximum offset between measured value and desired (aligned) value may not exceed +/-1.500.

NOTE: To align several analog channels on the BMX ART/AMO/AMI/AMM modules, we recommand proceeding channel by channel. Test each channel after alignment before moving to the next channel in order to apply the parameters correctly.

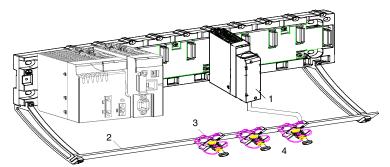
Wiring Precautions

Introduction

In order to protect the signal from outside interference induced in series mode and interference in common mode, we recommend that you take the following precautions.

Cable Shielding

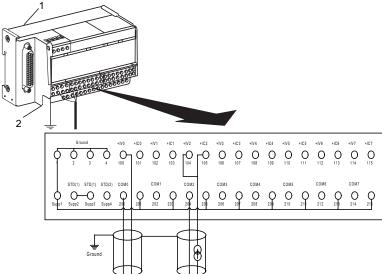
Connect the cable shielding to the grounding bar. Clamp the shielding to the grounding bar on the module side. Use the BMX XSP 0400/0600/0800/1200 electromagnetic protection kit (see Modicon M340 Using Unity Pro, Processors, Racks, and Power Supply Modules, Setup Manual) to connect the shielding.


A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

While mounting / removing the modules:

- make sure that each terminal block is still connected to the shield bar and
- disconnect voltage supplying sensors and pre-actuators.

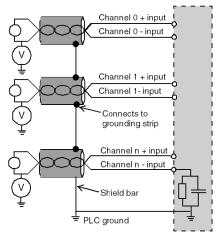

Failure to follow these instructions will result in death or serious injury.

- 1 BMX AMI 0810
- 2 Shield bar
- 3 Clamp
- 4 To sensors

Example of TELEFAST Connection

Connect the sensor cable shielding to the terminals provided and the whole assembly to the cabinet ground.

- 1 Telefast ABE-7CPA02
- 2 The grounding of cables is facilited using the ABE-7BV10 accessory
- 3 Shield wiring to the ground
- 4 To voltage sensors
- 5 To current sensors


Reference of Sensors in Relation to the Ground

In order for the acquisition system to operate correctly, it is recommended to take in account the following precautions:

- sensors must be close together (a few meters)
- all sensors must be referenced to a single point, which is connected to the PLC's ground

Using the Sensors Referenced in Relation to the Ground

The sensors are connected as indicated in the following diagram:

If the sensors are referenced in relation to the ground, this may in some cases return a remote ground potential to the terminal block. It is therefore **essential** to follow the following rules:

- The potential must be less than the permitted low voltage: for example, 30 Vrms or 42.4 VDC.
- Setting a sensor point to a reference potential generates a leakage current. You
 must therefore check that all leakage currents generated do not disturb the
 system.

NOTE: Sensors and other peripherals may be connected to a grounding point some distance from the module. Such remote ground references may carry considerable potential differences with respect to local ground. Induced currents do not affect the measurement or integrity of the system.

A DANGER

HAZARD OF ELECTRIC SHOCK

Ensure that sensors and others peripherals are not exposed through grounding points to voltage potential greater than acceptable limits.

Failure to follow these instructions will result in death or serious injury.

Electromagnetic Hazard Instructions

A CAUTION

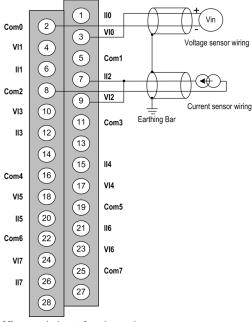
UNEXPECTED BEHAVIOR OF APPLICATION

Follow those instructions to reduce electromagnetic perturbations:

• use the BMX XSP 0400/0600/0800/1200 electromagnetic protection kit (see Modicon M340 Using Unity Pro, Processors, Racks, and Power Supply Modules, Setup Manual) to connect the shielding.

Electromagnetic perturbations may lead to an unexpected behavior of the application.

Failure to follow these instructions can result in injury or equipment damage.


Wiring Diagram

Introduction

Module BMX AMI 0810 is connected using the 28-pin terminal block.

Illustration

The terminal block connection and the sensor wiring are as follows:

VIx + pole input for channel x COM x - pole input for channel x IIx current reading resistor + input Channel 0 voltage sensor Channel 1 2-wire current sensor

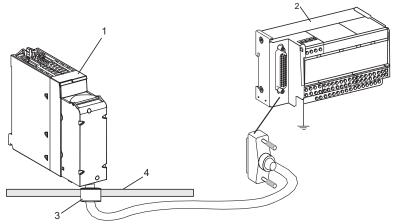
Wiring Accessories

Two cords BMXFTA150 (1.5 m (4.92 ft)) and BMXFTA300 (3 m (9.84 ft)) are provided to connect the module with Telefast interfaces ABE-7CPA02 (see page 89), ABE-7CPA31 (see page 89) or ABE-7CPA31E (see page 89).

In case HART information is part of the signal to be measured, a Telefast interface ABE-7CPA31E (see page 89) has to be used in order to filter this information that would disrupt the analog value.

Use of the TELEFAST ABE-7CPA02/31/31E Wiring Accessory

Introduction


The BMX AMI 0810 module can be connected to a TELEFAST ABE-7CPA02/31/31E accessory.

The module is connected using one of the following cables:

- BMX FTA 150: length 1.5 m (4.92 ft)
- BMX FTA 300: length 3 m (9.84 ft)

Connecting Modules

Modules can be connected to a TELEFAST ABE-7CPA02/31/31E as shown in the diagram below:

- 1 BMX AMI 0810
- 2 Telefast ABE-7CPA02/31/31E
- 3 Clamp
- 4 Shield bar

Connecting Sensors

Sensors may be connected to the ABE-7CPA02/31/31E accessory as shown in the illustration (see page 87).

The following table shows the distribution of analog channels on TELEFAST 2 terminal blocks with the reference ABE-7CPA02:

TELEFAST 2 terminal block number	25 pin SubD connector pin number	AMI08x0 pin out	Signal type	TELEFAST 2 terminal block number	25 pin SubD connector pin number	AMI08x0 pin out	Signal type
1	/		Ground	Supp 1	/		Ground
2	/		STD (1)	Supp 2	/		Ground
3	/		STD (1)	Supp 3	/		Ground
4	1		STD (2)	Supp 4	/		Ground
100	1	3	+IV0	200	14	2	COM0
101	2	1	+IC0	201	/		Ground
102	15	4	+IV1	202	3	5	COM1
103	16	6	+IC1	203	/		Ground
104	4	9	+IV2	204	17	8	COM2
105	5	7	+IC2	205	/		Ground
106	18	10	+IV3	206	6	11	СОМЗ
107	19	12	+IC3	207	1		Ground
108	7	17	+IV4	208	20	16	COM4
109	8	15	+IC4	209	/		Ground
110	21	18	+IV5	210	9	19	COM5
111	22	20	+IC5	211	/		Ground
112	10	23	+IV6	212	23	22	COM6
113	11	21	+IC6	213	1		Ground
114	24	24	+IV7	214	12	25	COM7
115	25	26	+IC7	215	/		Ground

⁺IVx: + pole voltage input for channel x +ICx: + pole current input for channel x

NOTE: The strap with the ABE7CPA02 must be removed from the terminal, otherwise the signal ground of the channel 0 will be shorted to the earth.

For the ground connection use the additional terminal block ABE-7BV20.

COMx: - pole voltage or current input for channel x

The following table shows the distribution of analog channels on TELEFAST 2 terminal blocks with the reference ABE-7CPA31:

TELEFAST 2 terminal block number	25 pin SubD connector pin number	AMI0810 pin out	Signal type	TELEFAST 2 terminal block number	25 pin SubD connector pin number	AMI0810 pin out	Signal type
1	/		Ground	Supp 1	/		24 V (sensor supply)
2	/		Ground	Supp 2	/		24 V (sensor supply)
3	/		Ground	Supp 3	1		0 V (sensor supply)
4	/		Ground	Supp 4	1		0 V (sensor supply)
100	/		+IS0	116	/		+IS4
101	1	3	+IV0	117	7	17	+IV4
102	2	1	+IC0	118	8	15	+IC4
103	14	2	0 V	119	20	16	0 V
104	/		+IS1	120	/		+IS5
105	15	4	+IV1	121	21	18	+IV5
106	16	6	+IC1	122	22	20	+IC5
107	3	5	0 V	123	9	19	0 V
108	/		+IS2	124	/		+IS6
109	4	9	+IV2	125	10	23	+IV6
110	5	7	+IC2	126	11	21	+IC6
111	17	8	0 V	127	23	22	0 V
112	/		+IS3	128	/		+IS7
113	18	10	+IV3	129	24	24	+IV7
114	19	12	+IC3	130	25	26	+IC7
115	6	11	0 V	131	12	25	0 V

⁺ISx: 24 V channel power supply

NOTE: For the ground connection use the additional terminal block ABE-7BV10.

⁺IVx: + pole voltage input for channel x

⁺ICx: + pole current input for channel x

COMx: - pole voltage or current input for channel x

The following table shows the distribution of analog channels on TELEFAST 2 terminal blocks with the reference ABE-7CPA31E:

TELEFAST 2 terminal block number	Terminal	Signal type	TELEFAST 2 terminal block number	Terminal	Signal type
1	/	Ground	Supp 1	/	24 V (sensor supply)
2	/	Ground	Supp 2	/	24 V (sensor supply)
3	/	Ground	Supp 3	/	0 V (sensor supply)
4	/	Ground	Supp 4	/	0 V (sensor supply)
100	/	+IS0	116	/	+IS4
101	/	T0	117	/	T4
102	/	+IC0	118	/	+IC4
103	/	0V0	119	/	0V4
104	/	+IS1	120	/	+IS5
105	/	T1	121	/	T5
106	/	+IC1	122	/	+IC5
107	/	0V1	123	/	0V5
108	/	+IS2	124	/	+IS6
109	/	T2	125	/	T6
110	/	+IC2	126	/	+IC6
111	/	0V2	127	/	0V6
112	/	+IS3	128	/	+IS7
113	/	Т3	129	/	T7
114	/	+IC3	130	/	+IC7
115	/	0V3	131	/	0V7

⁺ISx: 24 V channel power supply

NOTE: For the ground connection use the additional terminal block ABE-7BV10.

Tx: Reserved test pin for HART function, it's internally connected with +ICx

⁺ICx: + pole current input for channel x

COMx: - pole voltage or current input for channel x