Robotic Spine Surgery Introduction and Literature Review

Advancements in Robotic Spine Surgery Agenda

- History of Robotic Surgery and Literature Review
 Christopher R, Good MD, FACS
- Minimally Invasive Robotic Spine Surgery
 Michael Wang, MD, FACS
- Robotic Spinal Deformity Surgery
 Ronald Lehman, Jr, MD
- Robotic Assisted Spinal Tumor Resection
 Samuel Bederman, MD
- Robotic Sacroiliac Joint Fusion
 Bernard Guiot, MD
- The Future of Robotic Spine Surgery
 Christopher R, Good MD, FACS

VIRGINIA Spine Institute

Disclosures

- Consultant Mazor Robotics Consultant /Travel Reimbursement
 - > MOI: \$1000-\$10,000
- ➤ I use "guidance" in ~ 30% of my cases > First Robot Experience - 2005
- First Navigation Experience 2007
 Regular use Navigation -2010
- ➢ Regular use Robot- 2012

VIRGINIA Spine Institute

Robotic Spine Surgery History and Literature Review Agenda

- Robotic Surgery Background
- > "How it Works" for Spine surgery
- Case Examples
 Open Deformity
 MIS Deformity
- > Literature
- Potential advantagesPotential Weaknesses

Robotic-Guided Spine Surgery Posterior approaches (Open, MIS, Percutaneous)

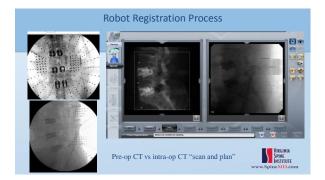
Spinal fixation

- Pedicle screws
 Transfacet, translaminar-facet screws
 Sacroiliac screws
- Spinal deformities Scoliosis posterior spinal instrumentation

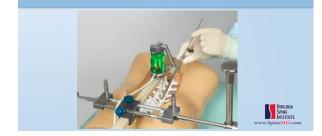
Cement augmentations – Kyphoplasty and vertebroplasty Oncological applications

Revision Surgery

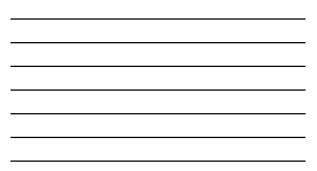

Robotic-Guided Spine Surgery



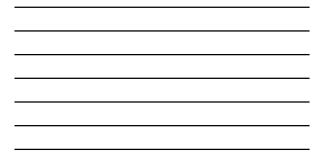
Workstation

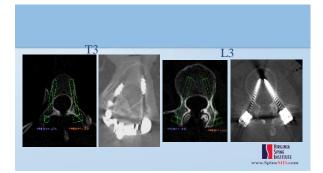


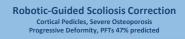


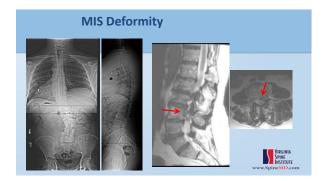

_

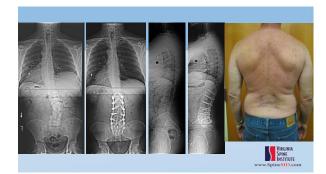
_

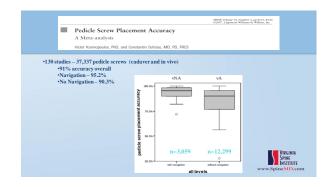

Robot mounted to patient via bone



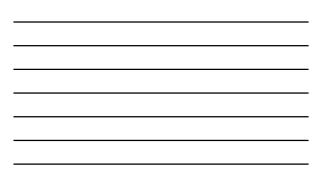








17		incisions		975 (ST
200	1		0	0
	- Andrews		e e o	°.



Annole The accuracy image guidai A systematic Alexander Mason, M Durnelikene, M.D. ¹²	review	ms	ason M. Debusica.	D.A. ¹ , Sharad Baipa	
 30 studies 1973 patie Results co 	ents - 93 1		screws t all spinal l	evels	
_	1				
Туре	Data sets	Total screws	Accurate screws	% accurate	
Type Conventional fluoroscopy				% accurate	
Conventional	sets	screws	screws		

SPINE Volume 33, Number 24, pp 2109-2115 02010, Lippincott Williams & Wilkins

Clinical Acceptance and Accuracy Assessment of Spinal Implants Guided With SpineAssist Surgical Robot Retrospective Study Damis P. Davia, MD,* Lean Kaplan, MD,† Ripert Dietl, MD,3 Mehael Heiler, MD,5

•Retrospective review •Radiographs (all) and CTs (646 screws) •635 cases in 14 medical centers •49% of implants placed percutaneously

*98.3% Accuracy of 3,271 implants
*CT data
*98% safe (<2mm)
*89% contained

VIRGINIA Spine Institute

Ear Spise J DOI 10.1007/s00586-011-1729-2 ORIGINAL ARTICLE

Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement Sven Raier Kanchardt - Ramon Martines -

Retrospective: 112 cases Robot vs freehand

Improved implant accuracy
94% vs 91%
Reduced fluoroscopy by 56%
34 sec vs 77 sec
Reduced complication rates by 48%
Reduced re-operations 46%
1% vs 12%
Reduced average length of stay 27%
10.6days vs 146.days

there and environments There are a start of the start of the

M. Lafrans^{2,63} - J. Politice^{1,8}

Cadaveric Study

- New robotic device
- Coupled with flat panel CT guidance

- 38 cadaver screws

- 37 (97.4%) fully contained
- 1 screw ,1mm lateral breach

•Operating time •Robot 187 min •Freehand 119 min Freehand
 Accuracy
 Robot
 36:40 successfully placed (4 manually placed)
 97% accurate
 Freehand
 50:50 successfully placed
 92% accurate

VIRGINIA Spine Institute

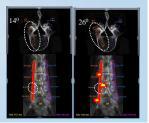
First Report from MIS ReFRESH - a Prospective, Comparative Study of Robotic- Guidance vs. Freehand Pedicle Screw Placement in Minimally Invasive Lumbar Surgery IMAST 2016 Zahrawi F., Schroerlucke SR., Good CR., Wang MY.

Prospective, comparative multi-center study – Robot vs Freehand
 Lumbar instrumented fusions: 1-3 levels
 Complications
 Accuracy
 Rate of revision surgery

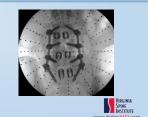
- 143 cases
 118 robot, 25 freehand

- Fluoro time

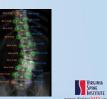
 3.2 sec/screw robot
 12.5 sec/screw freehand (p<0.001)


 Complications

 Robot no complications
 Freehand 1 neuro deficit, 1 infection (p=0.03)


Robotic-Guided Spine Surgery Potential Advantages

- Improved AccuracyLess Intra-op Radiation
- · Complex procedure / anatomy •DOES change my usual technique • MIS
- Screw cadence facilitates rod placementPlan skin incision


Robotic Weaknesses

- Maximum ~ 5 levels per scan
- Lack of live intra-op \geq feedback
- Cost / availability ×
- Learning curve Registration issues

Robotic Spine Surgery Conclusions

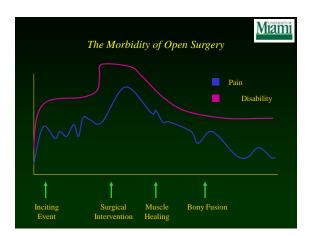
- Many robots in development, FDA approval/studies ongoing and growing
- First FDA approved robot
 - 120 systems worldwide, 80 USA
 >18,000 cases
 >120,000 Implants

Time when Robot is most beneficial:

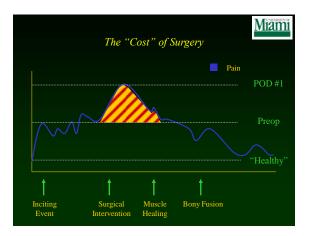
- Complicated anatomy
 - Severe deformity
 Congenital anomaly
 Previous surgery
- Osteoporosis
- Morbid Obesity
- > Minimal visualization

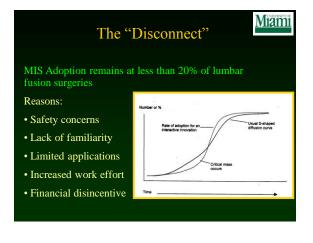
VIRGINIA Spine Institute

Advances in Robotics and Navigation for MIS Spinal Surgery


Michael Y. Wang, MD Professor & Spine Director Departments of Neurological Surgery & Rehab Medicine The Miller School of Medicine at the University of Miami

	Disclosures
Consultant:	Depuy Spine
	Aesculap Spine
	JoiMax
	K2M
Royalties:	Children's Hospital of Los Angeles
	Depuy Spine
	Springer Publishing
	Quality Medical Publishing
Stock:	Innovative Surgical Devices
	Spinicity
Grants:	Department of Defense





Disadvantages of Minimally Invasive Spine Surgery

- > Technically challenging
- > Inadequate visualization
- > Disorienting
- > Difficult to manipulate instruments & structures
- > ? Iatrogenic neural injury ?

High Complication Rates Resulted in a previous generation of spine surgeons being disabused of MIS

Miami

So what is the role of Robotics & Navigation?

ro.bot /'ro,bät, 'robet/ 4) noun a machine capable of carrying out a complex series of actions automatically, especially one programmable by a computer. synonyms: automaton, android, golem: More • (repicate certain human movements and functions automatically. co.bot /'kō,bät,-bət/ 4) noun

a computer-controlled robotic device designed to assist a person.

Who Needs Robotics?

Miami

- Too expensive
- It will slow me down
- I'm doing just fine
- Don't fix what isn't broken
- Just helps place K-wires
- Marketing ploy

"Maybe it's good for other surgeons, but I don't need it"

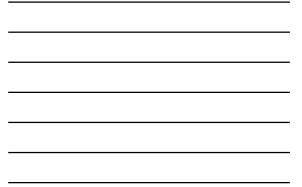
NCBI Resources	3 How To 3	59	n in to NCB
Publiced	PubMed Spine robot	· Surth	Hall
anianal institutes of readth	Create HSS Create alert Advanced		Hai
Artiscké typicis Climical Trial	Summary + 200 per page + Set by Most Recent +	Filters: Manage Filters	
Revize Curtoreire	Search results	Find related data	6
Text arrestability	Itams: 167	Database Select	
Statusci Inex Ault Incol			
Full best	Robot Assisted Posterior C1-2 Transarticular Screw Fixation for Atlantoaxial Instability: A Case Recort		
PubMed	Tian W	Search details	
Commona Reader comments Trending atticks	Spine (Phila Pa 1976), 2016 May 3 (Epub atend of print) Phila: 27145470	("spine"[NeIN Terms] OR "spine"[All Fields]	AND
	Simpler artistes	robot[All Fields]	
Publication dates	Minimaly invasive transforaminal lumbar interbody fusion with the ROSA(TM) Spine robot and		
0 years	 Intraoperative flat panel CT guidance. 		
Sustom range	Citemin L, Petter J, Lefranc M, Acta Neurochir (Wen), 2019 Jun; 159/6-1125-8. doi: 10.1067/e00701-010-2799-c. Epub 2019 Apr 11.	Search	See more
Species	ACE NEURODY (WHIL) 2019 JULY 106(1) 1125-8. BDC 10 106/19/01-019-2759-C. EDID 2019 ADV 11. PMID: 27063043		
Aumanis Other Azimalis	Sensitive anticlety	Recent Activity	e Of Cas
	Mechanical role of the posterior column components in the cervical spine.	Q. spine robot (167)	and she
Zinier, Adl	 Hartman RA, Tisherman RE, Wang C, Bell KM, Lee JY, Sowa GA, Kang JD. 	of them construction)	Funda
ivers additional filters	Eur Spine J. 2016 Apr 6 (Epub atseat of print) Psin(): 27082406	Q utilization of humbar fusion days (9)
	Sitting attacks	Q utilization of lumbar fusion (193)	Patrick
	The voluntary driven excellence involve Assistive Land 296L1 for postoperative training of thoracic essification of the posterior longhudinal learnerst, a case report.	Q, cervical arthroplasty (4201)	P.ante
	Fugit K, Abe T, Kubota S, Marushima A, Kawamoto H, Liens T, Matsushita A, Nakai K, Saotome K, Kadone H, Endo A, Haginoya A, Hada Y, Matsumara A, Sankar Y, Yamazaki M, J dhana Cant Mac 2019 Face 91:7. Driso Javad of cent 1.	Endoscopic minimally invasive transforantinal interbody fusion w	Base Puest
	PMRD: 20001108 Territor adulter		Oae more
	Redirecting pedicle screws: a revision spinal fusion strategy using three-dimensional image		
	5 guidance.		
	Yoon, JW, Nottmeier EW, Rahmathwila G, Fenton DS, Pinis Skit, Int J Med Robot. 2019 Jan 12. doi: 10.1002/ncs.1721. (Epuil: anward of pinit) Pinit: 2005/0720		

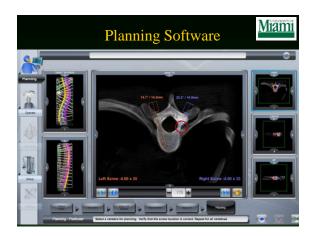
Pedicle Screw Misplacement

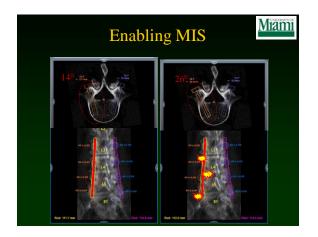
Problem:

The radiographic breach rate is >5% in open surgeries

- Solutions:
- 1. Experience
- 2. Intra-operative visualization/palpation
- 3. Proper X-ray guidance
- 4. Neuronavigation
- 5. Neuromonitoring
- Good judgment comes from experience, and experience comes from bad judgment




Can MIS Techniques Get You There?



Renaissance 4-Step Workflow	iami
Pre-Operative Hardware 3D Synchro-Surgical Blueprint Attachment nization Execution	h

	orived: 29.07.2013 / J M: 10.5137/1019-514				
Author	System	Application	Percutaneous/ Open	Number of Patients	Comments
Sukovicz W (2006) (30)	SpineAssist	TPS	Not stated	14	93% successful
Barzilay Y (2006) (1)	SpineAssist	TPS	0/9	9	Software- and patient-induced technical problems were encountered in 4 patients
Pechlivanis I (2009) (23)	SpineAssist	TPS	31/31	31	93.5% successful
Kantelhard SR (2011) (11)	SpineAssist	TPS	35/20	55	94.5% successful, 55% decrease in using x-ray
Zaulan Y (33)	SpineAssist	VP	23	23	65% decrease in using fluoroscopy
Hu X (2012) (10)	Renaissance	TPS	16/96	102	98.9% successful
Roser (2013) (25)	SpineAssist	TPS	30/46	46	Surgical comparison performed by Freehand and navigation: 40% decrease in radiation, 99% accuracy in screws
Togawa (2007) (32)	SpineAssist	TPS- translaminar screw	24 percutaneous, 43 screw, 19 level percutaneous translaminar	10 cadavers	TPS 95.3% in cadaver study, 100% success in translaminar, excluding two levels where the k-wire was broken

Review of evidence on Renaissance accuracy

	2013	Retrospective	960	98.9%	
Onen	2014	Prospective	136	98.5%	
	2015	RCT**	80	100%	
	2015	Cadaveric study	216	100%	
	2016	Retrospective	317	98.7%	
	Weighted average				

Fully within the pedicle or breaching <2mr ** RCT = Randomized Control Trial

Miami

Mami

MIS ReFRESH

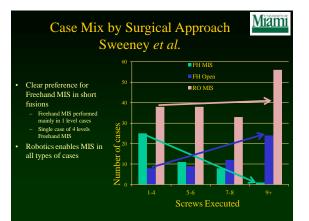
- Prospective
- Multi-center (currently 6 sites)
- · Controlled, partially randomized study
- Adult degenerative lumbar disease
- Fusion surgery of 1 to 3 levels

Outcome Measures

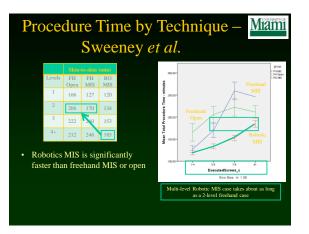
- Surgical complications
- Revision surgeries
- Intra-operative fluoroscopy

Miliami MIS ReFRESH - Surgical Outcomes • No significant differences in: - Charleson comorbidity Index (0.5) - Gender (60% female) - Age (58) - BMI (30.8)						
		Robotic	Freehand	P-value		
	Sites*	3	2			
	Patients	118	25			
	# levels	1.4 (1-3)	1.1 (1-2)	0.006		
	Fluoro/screw	3.2±2.8	12.5±7.9	< 0.001		
	Complications	0	2	0.034		
	Revisions	0	2	0.034		
	*1 surgeon rando	mized patients	to both arms			

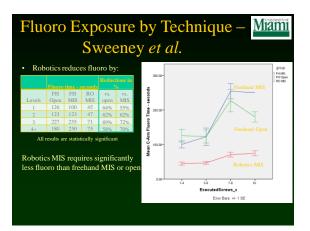
Retrospective Comparative Analysis Sweeney *et al.*

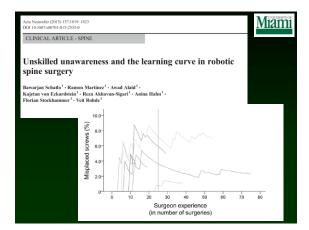

• Robotics MIS vs. Freehand MIS & Open

• Doctor's Hospital, Sarasota, FL


268 patientsAdults, thoracolumbar degenerative spine disease

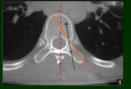
Parameter	Robot MIS	Total	Freehand	Freeh	and MIS	Freeha	nd Open
# of patients	167	99	p vs. robot	46	p vs. robot	53	p vs. robot
% female	48.5	42.4	>0.05	50.0	>0.05	35.8	>0.05
Age	68.3	62.6		60.5		64.6	0.093
BMI	31.4	31.2	>0.05	30.3	>0.05	31.7	>0.05
Screws per case	8.2	7.2		5.6		8.7	>0.05
% complications	4.8	10.1	>0.05	6.5	>0.05	13.2	0.034

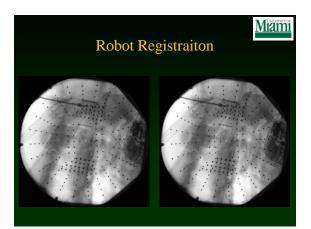


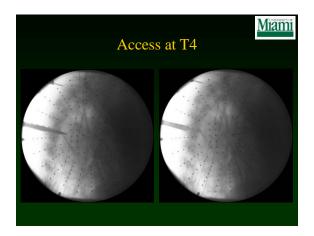


Miami Pros • Improved planning • Requires one mm CT · Implant management scan • Enables surgeons to do • Capital equipment costs complex surgery Learning curve Axial rotation & • Attachment to the deformity are no patient or bed longer a challenge • Dependence on • Stepping-stone technology technology

Unrecognized screw
 misplacement






Challenges in this case

Miami

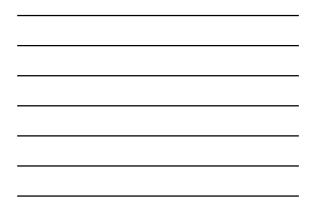
- Obesity
- Level localization (T4)
- Surrounding structures (blood vessels, lung, spinal cord, ribs, intercostal nerves)
- Access trajectory
- Medical co-mobidities

Miami A Marriage of Technologies

Robotic localization, trajectory, & access + Endoscopic debridement

Who likes the robot?

7th year resident Performed > 500 spine surgeries From Missouri Married w/ two dogs IQ ~ 145



Miami

1st year resident (intern) Performed < 10 spine surgeries Worked at Blackrock in NYC Single (but monogamous) IQ ~ 154

Robotic Assisted Spine Surgery (RASS) Use in Deformity

Ronald A. Lehman, Jr., MD Professor of Orthopedic Surgery, Tenure Chief, Degenerative, Minimally Invasive and Robotic Spine Surgery Director, Robotic Spine Surgery Complex Pediatric and Adult Scoliosis Service Co-Director, Spine Fellowship Director, Clinical Spine Research Co-Director, Orthopaedic Clinical Research

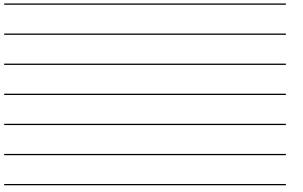
THE SPINE HOSPITAL

Why Surgical Guidance

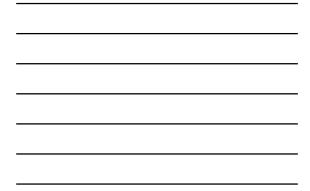
Surgical Planning

- · Create total 3D custom plan for patient
- Consider challenging anatomy
- Optimize implant size and placement
- Accommodate MIS (proximal facet joint, tulip head alignment, rod passage)

Intra-op Guidance


- Allows OR staff to be in sync with surgical plan
- · Streamline implant sizing and sequence to OR staff
- Execute surgical plan
- Lock trajectory any point, regardless of patient position

The Spine Hospital ab)


Robotic Assisted Spine Surgery

Robotic Assisted Spine Surgery

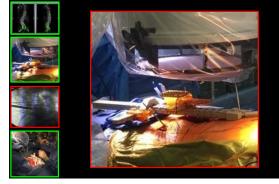
CT-based 3D Planning

obot Unit

Workstation

How Does it Work?

→ NewYork-Presbyterian Orthopedics	The Spine Hospital	COLUMBIA UNIVERSITY DEPARTMENT OF ORTHOPEDIC SURGERY
Orthopedics	ColumbiaDoctors - Newton Probyterian	College of Physicians & Surgeons



<section-header>

STEP 3: Acquire and Sync

Potential Advantages

- Less radiation
 - Surgical Team vs. MISS with Flouroscopic Assist
 - ? Patient (requires preop or intraop CT scan (similar to navigation)
- Less exposure
 - If employed in MISS or MAST Setting
- Accuracy = Big Question
 - Freehand?
 - Navigation?
 - Flouro Assist?
- Based on "segmentation" vs Navigation (alignment)

Work Flow					
Freehand Robotic Assistance					
1. Exposure	1.	Exp	osure		
2. Facetectomies	2.	Wire	es/Tap +/- Screws		
3. Decompression(s)		3. Facetectomies			
4. PCOs		4. Decompressions			
5. Screws (benefit open canal)		5. PCOs			
6. TLIFs		6. TLIFs			
7. Correction	7.	Corr	rection		
- New fork-Presbyterian		AL 0	2 COLUMNA UNIVERSITY DEPARTMENT OF ORTHOPEDIC SURGERY College of Physicians & Surgeons		

Screw Placement

NewYork-Presbyterian

The Spine Hospital

COLUMBIA UNIVERSITY DEPARTMENT OF OR

Adult Deformity

The Spine Hospital

No. of Concession, Name

COLUMBIA UNIVERSITY DEPARTMENT OF ORTHOPEDIC SURGES

HISTORY OF PRESENT ILLNESS:

HISTORY OF PRESENT LLEVESS: 57 yo F with several years of back and leg pain with scoliosis - Low back pain 70% - Leg pain 30%. right hip and right calf pain - Has right calf weakness and numbness

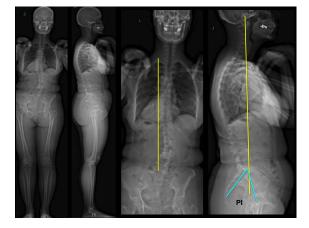
æ,

NewYork-Presbyterian Orthopedics

- Had an injection 3 months ago, which helped her for a little it.

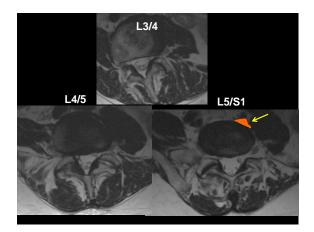
±2 o

PHYSICAL EXAMINATION: - Right EHL 4/5, gastroc 4/5

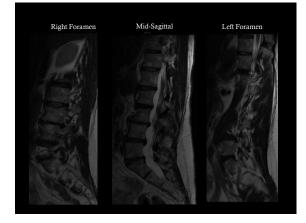

- Decreased sensation on the lateral aspect of right leg and right foot

IMAGING:


- Xray: scoliosis of approximately 50 degrees, fractional concavity on the right hand side. She has overall good sagittal balance. MRI: disc desiccation most prevalent at L4-L5 and L5-S1. She also has
- spondylosis and degenerative disc disease as well as facet hypertrophy.

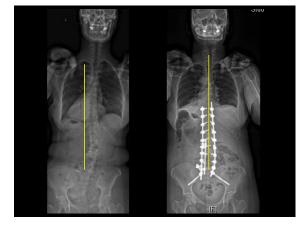

NewYork-Presbyterian Orthopedics

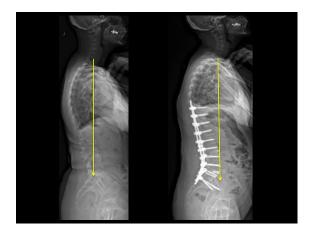
The Spine Hospital - New York

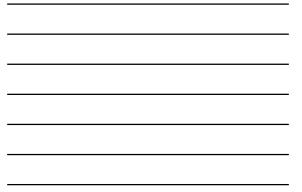


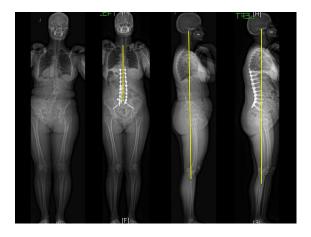
ASSESSMENT: 57 yo F with degenerative scoliosis and olisthesis, radiculopathy

PLAN:

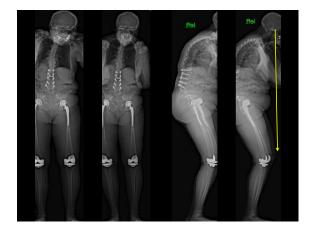

OLIF vs TLIF at L5/S1 PSF T10 to ilium Decompression R L4/5 and L5/S1 <u>Robotic Assistance – Left; Freehand on the Right</u>


NewYork-Presbyterian Orthopedics

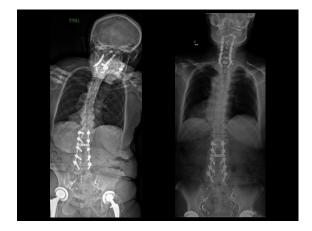

The Spine Hospital do.

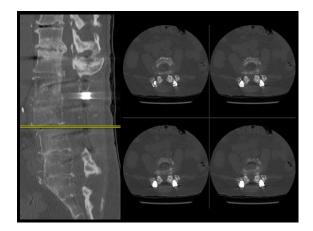


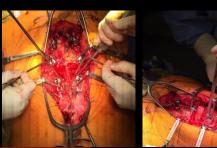
The Spine Hospital đ



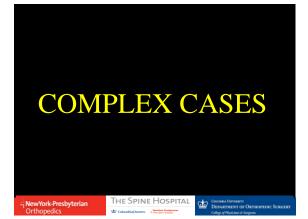
Three Column Osteotomies (3CO)


COLUMBIA UNIVERSITY DEPARTMENT OF ORTHOP





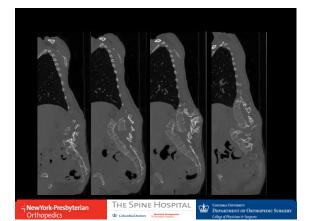
Pedicle Subtraction Osteotomy (PSO)

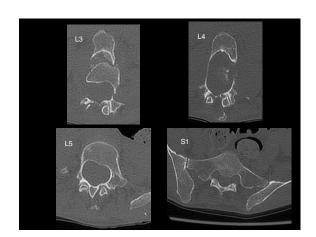


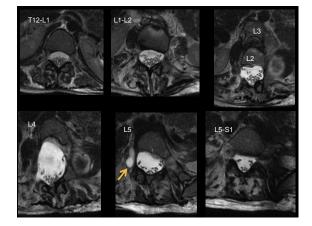
NewYork-Presbyterian

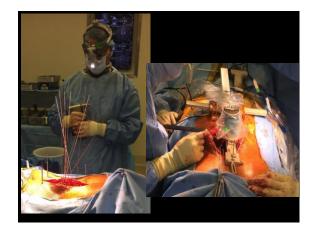
The Spine Hospital

₫ ŝ

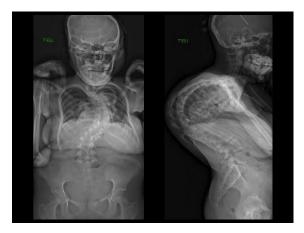




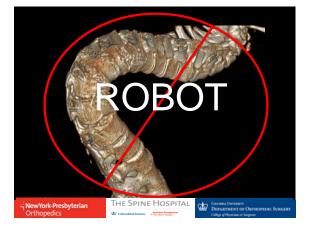


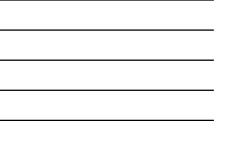


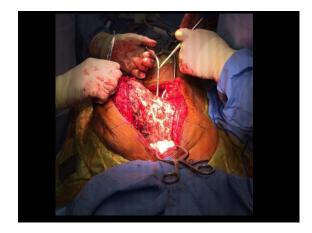


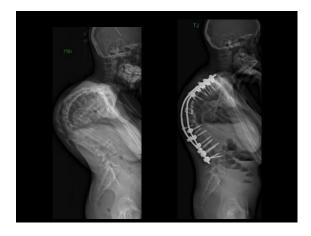


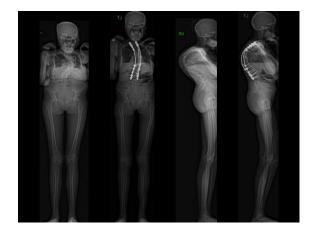
Current Limitations


- 1. Work Flow Changes
 - 1. Requires screw preparation first
 - 2. Cannot remove bone
- Mandates CT scan (pre or intraop)
 Less radiation for OR Team (vs. flouro)
 - 2. More radiation for patient (vs Freehand or flouro)
- 3. Time
 - 1. More than Freehand Technique
 - 2. </= Flouro and Navigation
- 4. Accuracy
- 5. Unable to negotiate difficult deformities









Future and Now

Intraoperative Alignment Correction

Improved DOF / Less Constraint

Thank You!

Ronald A. Lehman, Jr., MD

Ronald A. Lenman, Jr., MD Professor of Orthopedic Surgery, Columbia University Chief, Degenerative, Minimally Invasive & Robotic Spine Complex Pediatric and Adult Scoliosis Service Co-Director, Spine Fellowship Director, Clinical Spine Research Co-Director, Orthopaedic Clinical Research

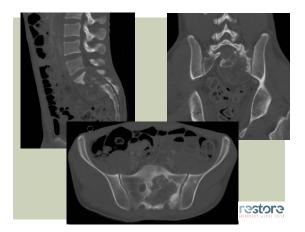
www.spinesurgeonlehman.com

THE SPINE HOSPITAL ColumbiaDoctors

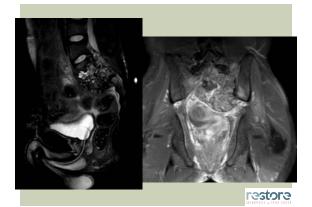
The Spine Hospital de

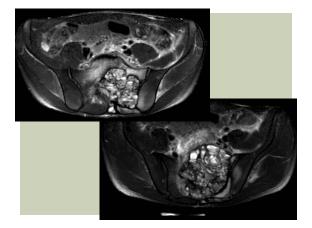
CASE REPORT: **ROBOTIC-ASSISTED EN BLOC SACRAL** OSTEOSARCOMA RESECTION

ORANGE COUNT


DISCLOSURES

- **MAZOR ROBOTICS**
- Consulting/Surgeon Education
- **SPINEART**
- Royalties
- Consulting
- Stock Options


HISTORY


- **22M** with one year history of progressive low back pain followed by bilateral leg pain.
- Developed urinary retention, scrotal numbness, and progressive difficulty ambulating secondary to pain
- Examination:
- saddle anesthesia and S1 numbness
- Full motor strength in bilateral lower extremities with normal patellar and Achilles reflexes

restore

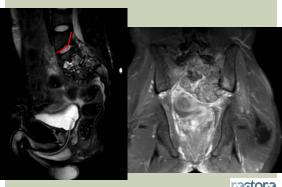
2

DIAGNOSIS BY OPEN BIOPSY

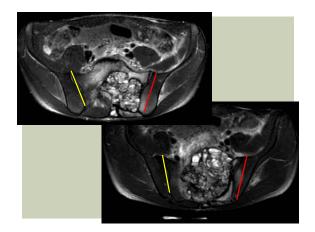
SACRAL **TELANGIECTATIC OSTEOSARCOMA**

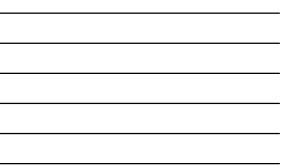
Pre-op chemo

Wide en-bloc sacrectomy with L3-Pelvis PSIF

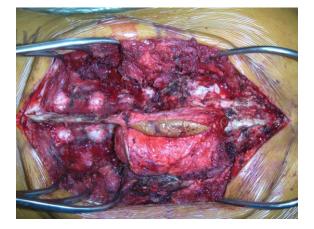

- Stage 1 (anterior)
 - L5-S1 disc release with anterior dissection
 - = L4-L5 ALIF

Stage 2 (posterior)

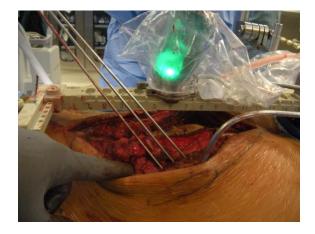

- En bloc sacrectomy
 - Trans-articular margin on right
 - Trans-iliac margin on left (ROBOTIC-ASSISTED)
 - Partial L5 corpectomy L3 to Pelvis instrumentation with anterior cage

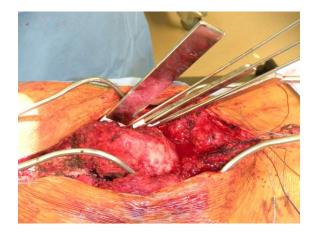

Post-op chemo

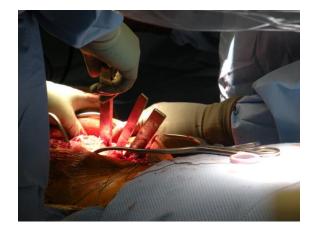
restore

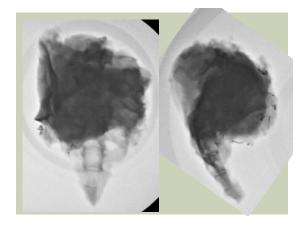

restore

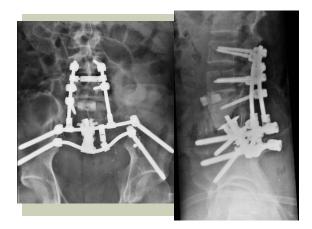
OSTEOTOMY PLANNING

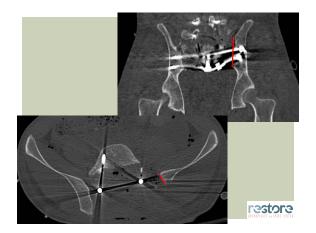












SI Joint Fusion with Mazor Renaissance

Ben Guiot, MD, FRCSC

December 2016

Case Presentation

• 58 year old male

 Sharp stabbing pain overlying the L SI joint 24/7. Worse with activity
non radiating

• no radicular symptoms or signs

Case Presentation - continued

Imaging:

- Plain x-rays reveal normal alignment
 CT scan DDD and facet arthropathy. Vacuum phenomenon in L SI joint.
- MRI DDD and facet arthropathy. No focal compression

Case Presentation - continued

• Non operative management:

- PT
 SI joint injections 100% pain relief in the anesthetic phase. No long term relief
- RFA no long term relief

SI Joint: Symptom Presentation

- Low back pain
- Buttock pain
- Thigh pain
- Sciatic-like symptoms
- Difficulty sitting in one place for too long due to pain
- · Poor sleep habits

Anatomy – Ligaments

- · Strong ligaments encase each joint
- Ligaments affect stability
- If damaged, may have excessive motion
- Excessive motion may inflame and disrupt the joint and surrounding nerves

Anatomy - Nerve Supply of Pelvis

Diagnosing: Provocative Tests

Distraction Test

- The sacroiliac joint is stressed by the examiner, attempting to pull the joint apart Compression Test
- The two sides of the joint are forced together. Pain may indicate that the sacroiliac joint is involved. Gaenslen's Test
- Lay on a table, one leg drops over the edge and the supported leg is flexed. In this position, sacroiliac joint problems will cause pain because of stress to the joint. FABER Test
- The leg is brought up to the knee, and the knee is pressed on to test for hip mobility.

Diagnosis

- Clinical
- Imaging limited benefit
- Injections

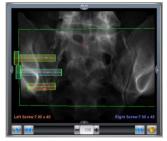
Treatment Options

- Non operative
 NSAIDs
 Analgesics

 - PT SI belt
 - InjectionsRFA
- Operative

Surgery

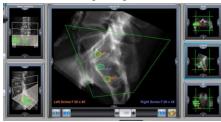
• Why use navigation?

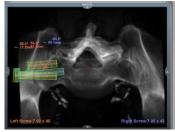

- Poor visualization of relevant anatomy on fluoroscopy
 Superior aspect of the sacral ala
 Anterior aspect of sacrum ala and body
 S1 neural foramina
 Percutaneous

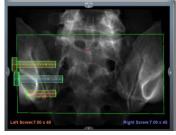
Surgery

Robotic guided SI joint immobilization:

- Pre operative CT scan of lower lumbar spine, sacrum and pelvis
 Pre operative planning for placement of device across the joint
- GPS speaks to robot


Planning in Coronal View


Planning in Axial View


Planning in Sagittal View

Planning in Axial Video

Planning in Coronal Video

Mounting Multi Directional Bridge

Operating

Post Operative View - 1

Post Operative View - 2

Post Op Lateral View

Case Information and Data Points

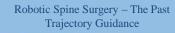
• Start Time: 1:56pm

• End Time: 2:38pm

• Registration Fluoro Time: Seven Seconds

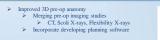
Total Fluoro: 41 seconds

Questions?


Thank You

The Future of Robotic Spine Surgery

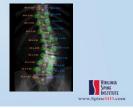
Christopher R. Good, MD, FACS Director of Research Director of Scoliosis and Spinal Deformity Surgery



1

Robotic Spine Surgery – The Future Current or developing technical advancements:

- Stronger Robotic Arms More accurate trajectories More tools available Purills, burrs, bone cutters
- Merge with Navigation
 Real-time feedback
- Merge with implants
 Contour/cuts rods
 Assist in Correction



Robotic Spine Surgery – The Future Conclusions

- Many robots in development, FDA approval/studies ongoing and growing
- Growing Literature
 - >30 Studies
 Increased accuracy

 - Decreased radiation
 Decreased complications
- First FDA approved robot
- 120 systems worldwide, 80 USA
 >18,000 cases
 >120,000 Implants
- 2 systems currently FDA approved - More to follow

