FCC TEST REPORT

for

USB 2.0 VGA Adapter II

Model No.: UVA200

of

Applicant: Magic Control Technology Corporation Address: 6F,.#120-11, Chung Shan Rd, Sec. 3, Chung Ho, 235 Taipei, Taiwan, R. O. C.

Tested and Prepared by

ETS DR. GENZ TAIWAN PS CO., LTD

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679

A2LA Cert.No.: 2300.01

PTCRB Accredited Type Certification Test House

Report No.: W6M20705-8118-P-15B

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: ets@ets-bzt.com.tw

TABLE OF CONTENTS

1	General Information	2
1.1 1.2 1.3	Notes Tester Testing laboratory 1.3.1 Location	2 4 5 5
	1.3.2 Details of accreditation status	5
	1.3.3 Test location, where different from ETS Dr.Genz Taiwan PS Co., Ltd.	5
1.4 1.5 1.6	Details of applicant Application details Test item 1.6.1 Description of test item 1.6.2 Manufacturer (if different from applicant in point 1.4)	6 6 6 7
	1.6.3 Frequency behavior	7
1.7	Test standards	7
2	Technical test	8
2.1 2.2 2.3 2.4	Summary of test results Test environment Test equipment utilized Test results 2.4.1 Radiated Emission	8 8 9 11 12
	2.4.2 Conducted Emission	13
2.5	Test protocols 2.5.1 Radiated Emission	14 14
2.6	2.5.2 Conducted Emission	18
2.6	Equipment Modification	20
3	Normative references	21

Appendix: Pictures and diagrams

EIS

Registration number: W6M20705-8118-P-15B

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The tests were carried out and passed in accordance to the standards:

FCC part 15 : August 2006

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has Passed all the relevant tests conforms to a specification (only telecommunication products).

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that its performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.6.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the ETS Dr.Genz Taiwan PS Co., Ltd.

ETS DR.GENZ TAIWAN PS CO., LTD.

EIS®

Registration number: W6M20705-8118-P-15B

Important Notes:

Proper labeling is required for each device. Devices shall be labeled in accordance with labeling requirements pursuant to section 15.19 and section 2.1074 of the FCC rules.

Devices subject to a Declaration of Conformity shall be uniquely identified by the responsible party.

This identification shall not be of a format which could be confused with the FCC Identifier required on certified, notified type accepted or type approved equipment.

The responsible party shall maintain adequate identification records to facilitate positive identification for each device.

The user manual or instruction manual shall included also a warning statement that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Reference Section 15.21

Furthermore an information to the user regarding to the interference potential of the device and about simple measures that can be taken to correct interference is required.

Reference Section 15.105

The responsible party must warrant that each unit of equipment marketed under a Declaration of Conformity is identical to the unit tested and found acceptable with the standards and that the records maintained by the responsible party continue to reflect the equipment being produced under the Declaration of Conformity within the variation that can be expected due to quantity production and testing on a statistical basis.

1.2 Tester

May 28, 2007 Jay Chaing Jay Chaing

Date ETS-Lab. Test Engineer Signature

Technical responsibility for area of testing:

May 28, 2007 Steven Chuang Steven Chuang

Date ETS Name Signature

1.3 Testing laboratory

1.3.1 Location

OATS No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.)

Company

ETS Dr.Genz Taiwan PS Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel : 886-2-66068877 Fax : 886-2-66068875

1.3.2 Details of accreditation status

Accredited testing laboratory

A2LA-registration number: 2300.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679

PTCRB Accredited Type Certification Test House

1.3.3 Test location, where different from ETS Dr.Genz Taiwan PS Co., Ltd.

Name:	./.
Street:	./.
Town:	./.
Country:	./.
Telephone:	./.
Fax:	./.
Teletex:	./.

ETS DR.GENZ TAIWAN PS CO., LTD.

EIS PRODUCT SERVICE

Registration number: W6M20705-8118-P-15B

1.4 Details of applicant

Name : Magic Control Technology Corporation

Street : 6F,.#120-11,Chung Shan Rd, Sec. 3, Chung Ho,

 City
 : 235 Taipei,

 Country
 : Taiwan, R. O. C.

 Telephone
 : +886-2-3234-6616

 Fax
 : +886-2-3234-6606

1.5 Application details

Date of receipt of application : May 23, 2007 Date of receipt of test item : May 24, 2007

Date of test : from May 25, 2007 to May 28, 2007

1.6 Test item

1.6.1 Description of test item

Type of product : USB 2.0 VGA Adapter II

Type identification : UVA200

Multi-listing model number : ./.

Brand Name : ./.

Photos : Please find in Appendix.

1.6.2 Manufacturer (if different from applicant in point 1.4)

 Name
 : ./.

 Street
 : ./.

 Town
 : ./.

 Country
 : ./.

 Contact
 : ./.

 Phone
 : ./.

1.6.3 Frequency behavior

1.7 Test standards

FCC part 15 : August 2006

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	×
\mathbf{Or}	
The deviations as specified in 2.4 were ascertained in the course of the tests performed.	

2.2 Test environment

Temperature: 18 ... 25 °C

Relative humidity content 20 ... 75 %

Air pressure: 860 ... 1030 hPa

Details of power supply: 5 VDC (Power on PC)

Other parameters: without

2.3 Test equipment utilized

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2006/10/16	2007/10/15
ETSTW-CE 002	PREREULATOR MODE DC POWER SUPPLY	None	None		Functi	on Test
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Functi	on Test
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO- LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2006/10/16	2007/10/15
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2006/10/16	2007/10/15
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	In House	Certificate
ETSTW-CE 008	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2005/10/24	2007/10/23
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2006/8/17	2007/8/16
ETSTW-CE 013	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T4-02	20242	FCC	2005/12/8	2007/12/7
ETSTW-CE 014	STABILIZATION NETWORK	FCC-TLISN-T2-02	20241	FCC	2005/12/7	2007/12/6
ETSTW-CE 015	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T8-02	20307	FCC	2006/11/7	2008/11/6
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2006/11/21	2007/11/20
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	2005/10/14	2007/10/13
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2006/10/20	2007/10/19
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2006/10/30	2007/10/29
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2006/10/12	2007/10/11
ETSTW-RE 010	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070181	МОТЕСН	Functi	on Test
ETSTW-RE 011	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070165	МОТЕСН	Functi	on Test
ETSTW-RE 017	Log-Periodic Antenna	HL025	352886/001	R&S	2006/5/4	2008/5/3
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2004/11/8	2007/11/7
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Functi	on Test
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2006/10/11	2007/10/10
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	EMCO	2004/6/30	2007/6/29
ETSTW-RE 028	Log-Periodic DipoleArray Antenna	3148	34429	EMCO	2006/5/26	2008/5/25
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2006/5/26	2008/5/25
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2006/5/3	2008/5/2
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2006/10/11	2007/10/10
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P14508	LeCroy	2006/7/27	2007/7/26
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2005/10/17	2007/10/16
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2007/1/11	2009/1/10
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2006/5/8	2008/5/7

ETS DR.GENZ TAIWAN PS CO., LTD.

ETSTW-RE 044	Log-Periodic Antenna	HL050 100094		R&S	2006/5/29	2008/5/28
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170 HXYZ 9170-134 Sc		2005/3/22	2008/3/21
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2007/5/02	2009/5/01
ETSTW-RE 055	SPECTRUM ANALYZER	FSU-26	200074	R&S	2006/7/28	2007/7/27
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Functi	on Test

2.4 Test results

$lacktriangleq 1^{st}$ test \Box test after modification \Box production test

Test Emission / Imr	nunity		Done	Test passed	Test failed
Emission	Radiated Emission	FCC part 15.109	×	×	
Emission	Conducted Emission	FCC part 15.107	×	×	

Note: According to FCC part 15.109 (g), digital devices may be shown to comply with the standards contained in Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement".

2.4.1 Radiated Emission

2.4.1.1 Test Equipment

a) Biconical Antenna (HK116)

For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-RE 042

- b) Log-Periodic Dipole Antenna (HL223)
 - For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-RE 043
- c) EMI TEST RECEIVER (ESI-26)
 - For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-RE 003
- d) EMI TEST RECEIVER (ESI 40)
 - For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-RE 004
- e) Log-Periodic Antenna (HL025)
 - For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-RE 017
- f) Log-Periodic DipoleArray Antenna (3148)
 - For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-RE 028
- g) Biconical Antenna (3109)
 - For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-RE 029
- h) Double-Ridged Waveguide Horm Antenna (3117)
 - For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-RE 030
- i) Log-Periodic Antenna (HL050)
 - For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-RE 044

2.4.1.2 Test Procedures

• Test configuration

The test configuration corresponds to the standard CISPR 22. The equipment under test is placed on a non metallic table with 0,8m height. The power supply and the RF connection points are close to the equipment under test at the floor inside a connection box. The cables to this connection box are shielded and below the double floor. The receiving antenna is placed in a height at 1,0 to 4,0m, in a distance of 10m. The measurement receiver are placed in a special room. The observation of the equipment under test is realized by 3 video cameras and by a microphone.

• Test parameters and marginal conditions

The test are carried out with horizontal and vertical polarization of the antenna in a frequency range of $30~\mathrm{MHz}$ to $5000~\mathrm{MHz}$. Further information please find in the test protocol.

ETS DR.GENZ TAIWAN PS CO., LTD.

EIS PRODUCT SERVICE

Registration number: W6M20705-8118-P-15B

2.4.2 Conducted Emission

2.4.2.1 Test Equipment

a) ZWEILEITER-V-NETZNACHBILDUNG TWO-LINE V-NETWORK (ESH3-Z5) For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-CE 004

b) IMPULS-BEGRENZER PULSE LIMITER (ESH3-Z2)

For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-CE 006

c) EMI TEST RECEIVER (ESHS10)

For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-CE 001

d) AC Power Source (APS-9102)

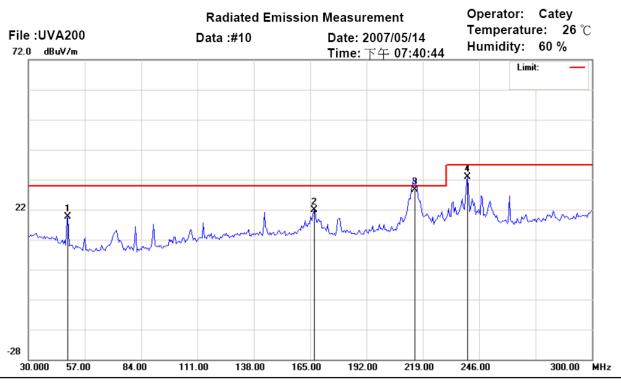
For your reference please find it in our test equipment list at page 9 to 10 as number: ETSTW-CE 003

• Test configuration

The test configuration is contained inside of a shielded chamber and corresponds to the standard CISPR 22. The equipment under test is placed in the facility on a wooden table 0.8m high. The equipment under test is connected with the artificial mains network (AMN) in a distance of 0,8m and also 0,8m from other subassembly and metallic area. The measurement receiver are placed in a special room adjacent to the chamber. The observation of the equipment under test is realized by 3 video cameras and by a microphone.

• Test parameters and marginal conditions

The test are carried out with a nominal impedance by 50Ω / $50\mu H$ of the AMN in a frequency range 150 kHz to 30 MHz. This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector, Further information please find in test report.



2.5 Test protocols

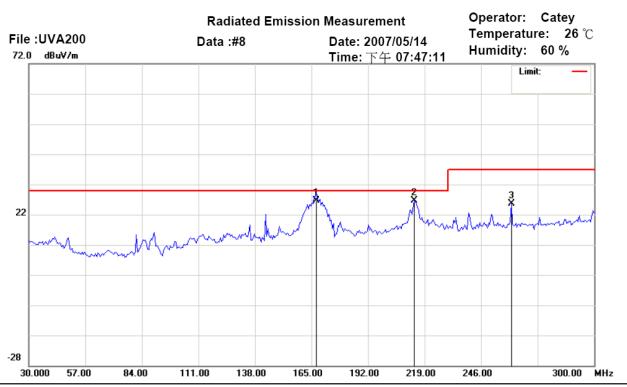
2.5.1 Radiated Emission

Radio Noise Field Strength

Emission

Site: site #1

Condition: CISPR22 ClassB 10m Radiation Polarization: Horizontal


EUT Model: UVA200 Distance:

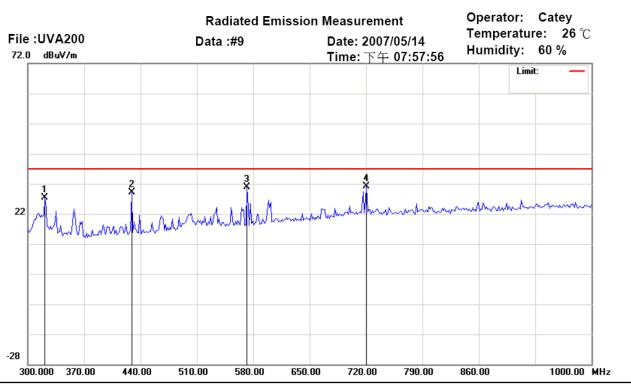
Execute Program:

Note:

Mk.	Frequency (MHz)	Reading (dBuV/m)	Detector	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Ant.Pos (cm)	Tab.Pos (deg.)	Margin (dB)	Comment
	48.9379	11.58	peak	7.98	19.56	30.00	323	270	-10.44	
	166.8938	12.44	peak	9.53	21.97	30.00	300	300	-8.03	
*	214.6286	16.01	QP	12.56	28.57	30.00	290	0	-1.43	
	240.4810	18.87	peak	14.11	32.98	37.00	265	180	-4.02	

Site: site #1

Condition: CISPR22 ClassB 10m Radiation Polarization: Vertical


EUT Model: UVA200 Distance:

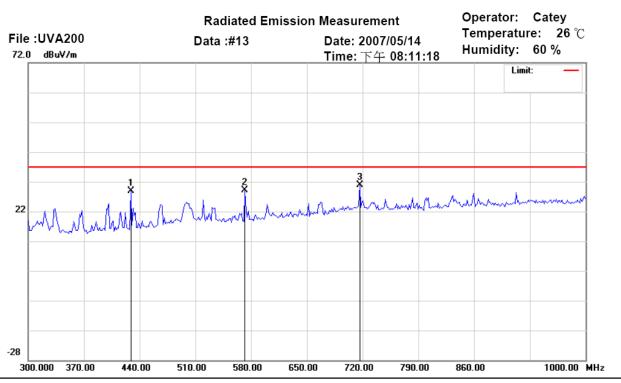
Execute Program:

Note:

Mk.	Frequency (MHz)	Reading (dBuV/m)	Detector	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Ant.Pos (cm)	Tab.Pos (deg.)	Margin (dB)	Comment
*	167.1043	17.71	QP	9.00	26.71	30.00	150	225	-3.29	
	213.9678	13.82	peak	12.82	26.64	30.00	195	300	-3.36	
	260.5010	9.81	peak	15.71	25.52	37.00	210	180	-11.48	

Site: site#1

Condition: CISPR22 ClassB 10m Radiation Polarization: Horizontal


EUT Model: UVA200 Distance:

Execute Program:

Note:

Mk.	Frequency (MHz)	Reading (dBuV/m)	Detector	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Ant.Pos (cm)	Tab.Pos (deg.)	Margin (dB)	Comment
	321.0421	16.36	peak	11.05	27.41	37.00	285	200	-9.59	
	429.0581	16.77	peak	12.45	29.22	37.00	260	270	-7.78	
	572.1443	15.84	peak	15.08	30.92	37.00	235	175	-6.08	
*	720.8417	12.21	peak	18.88	31.09	37.00	220	95	-5.91	

Site: site #1

Condition: CISPR22 ClassB 10m Radiation Polarization:

EUT Model: UVA200 Distance:

To this deli. The second secon

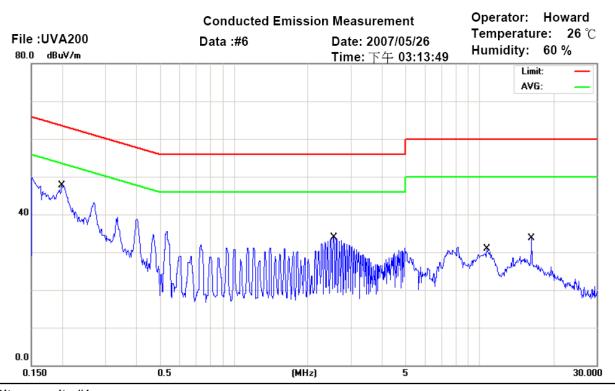
Execute Program :

Note:

Mk	Frequency (MHz)	Reading (dBuV/m)	Detector	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Ant.Pos (cm)	Tab.Pos (deg.)	Margin (dB)	Comment
	429.0581	16.33	peak	12.45	28.78	37.00	260	270	-8.22	
	572.1443	14.12	peak	15.08	29.20	37.00	245	180	-7.80	
*	716.6332	12.03	peak	18.87	30.90	37.00	290	320	-6.10	

Note 1. Correction Factor = Antenna factor + Cable loss - Preamplifier

- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.


Vertical

2.5.2 Conducted Emission

Conducted Emission

Emission

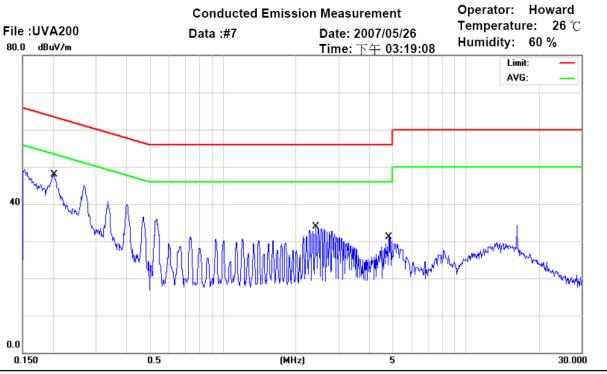
Site: site#1

Condition: FCC Part 15 Class B (QP)

Company: W6M20705-8118

EUT Model: UVA200 Execute Program :

Note:


Mk.	Frequency (MHz)	Reading (dBuV/m)	Detector	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Comment
	0.2014	36.54	QP	10.10	46.64	63.55	-16.91	
	0.2014	27.14	AVG	10.10	37.24	53.55	-16.31	
	0.2016	36.54	QP	10.10	46.64	63.54	-16.90	
	0.2016	27.15	AVG	10.10	37.25	53.54	-16.29	
	2.5425	23.30	QP	10.10	33.40	56.00	-22.60	
*	2.5425	21.84	AVG	10.10	31.94	46.00	-14.06	
	10.7734	18.54	QP	10.10	28.64	60.00	-31.36	
	10.7734	15.18	AVG	10.10	25.28	50.00	-24.72	
	16.3317	15.41	QP	10.10	25.51	60.00	-34.49	
	16.3317	8.84	AVG	10.10	18.94	50.00	-31.06	

Phase:

Power:

DC 5V

Phase:

Power:

L1

DC 5V

Site: site #1

Condition: FCC Part 15 Class B (QP)

Company: W6M20705-8118

EUT Model: UVA200 Execute Program :

Note:

Mk.	Frequency (MHz)	Reading (dBuV/m)	Detector	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Comment
	0.2017	36.70	QP	10.10	46.80	63.54	-16.74	
	0.2017	26.80	AVG	10.10	36.90	53.54	-16.64	
	2.4116	21.55	QP	10.10	31.65	56.00	-24.35	
*	2.4116	19.51	AVG	10.10	29.61	46.00	-16.39	
	4.8161	17.54	QP	10.10	27.64	56.00	-28.36	
	4.8161	12.15	AVG	10.10	22.25	46.00	-23.75	

Note 1. The formula of measured value as: Test Result = Reading + Correction Factor

- 2. The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.

2.6 Equipment Modification

No modification was made to pass all tests.

3 Normative references

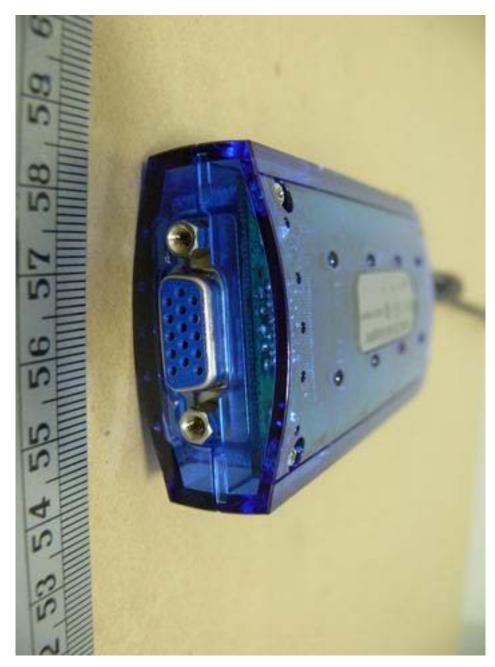
/1/ FCC part 15 Radio Frequency Devises

/2/ CISPR 22 Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment

Appendix

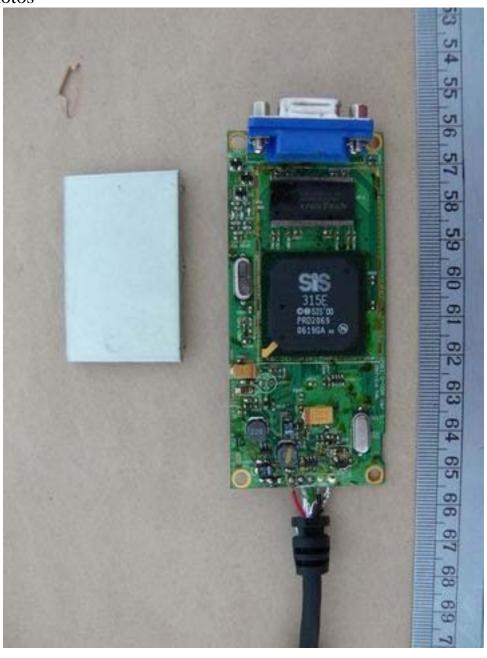
Photos

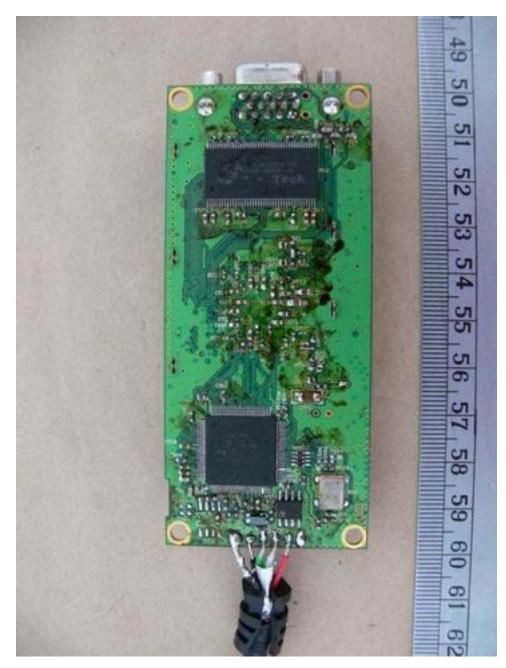
- 1. External Photos
- 2. Internal Photos
- 3. Set Up Photo of Radiated Emission
- 4. Set Up Photo of Conducted Emission

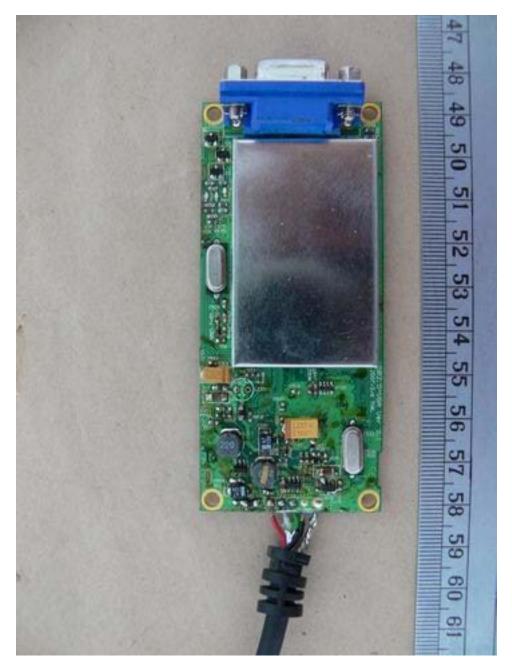


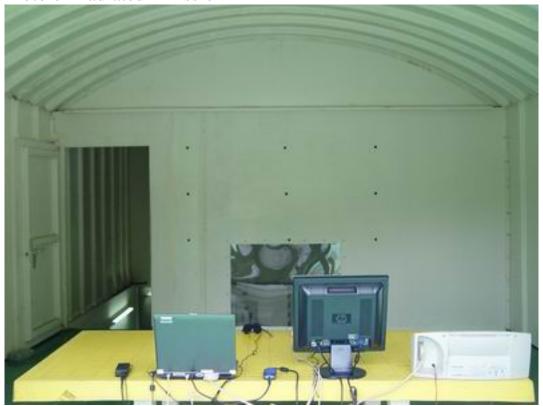
Pictures

External Photos






Internal Photos



Set Up Photo of Radiated Emission

Set Up Photo of Conducted Emission

