PacifiCorp Energy
 Naughton Power Plant

Wyoming

Lighting Upgrade Audit/Study

November 2013

Executive Summary

PacifiCorp Energy hired Evergreen Consulting Group to conduct a lighting audit at the Naughton plant located in 1450 Naughton Rd, Kemmerer, WY 83101. Site visits were conducted on August $26^{\text {th }}-27^{\text {th }}, 2013$ and the following 3 recommendation phases for lighting upgrades are contained in this report.

- T12 Lighting Upgrade: Typical 1.5" diameter fluorescent tubes (4' or 8' lengths, some Utubes) should be replaced with longer life, high performance T8 linear fluorescent. Scope includes de-lamping most 4 and 3 lamp fixture due to the improved light output of the retrofit kits. T-12 lamps are phasing out and will be more expensive to maintain both on energy consumption and maintenance. Project will improve "quality of light," reduce maintenance by 75-85 percent over current levels, and allow for some controls in areas where fixtures don't need 24 hour operation (or occupancy). LED fixtures are an option (or retrofit kits), but costs are more than the T 8 technology with similar life of lamps. There are approximately 614 T 12 fixtures recommended for upgrade.
- Turbine Deck: Currently illuminated with 1,000-Watt (W) metal-halide lamps that have a 40 percent lamp lumen depreciation and a lamp life rated at 20,000 hours. Due to the high mounting height and long life LED high bays are recommended. LEDs also come with long life typically at 60,000 hours or more. Due to directionality of the LED lamps, uniformity is attained beyond standard fluorescent or high intensity discharge lamps allowing for somewhat lower foot-candles but with better visibility in space. Project will improve "quality of light," reduce maintenance by 60 percent over current levels, and allow for fixture mount occupancy sensors (if required). If taking in to account life cycle cost and any incremental cost difference (between high intensity discharge and fluorescent) LED should be considered for a long life cycle solution.

Industrial Fixtures: The primary fixtures are 175W metal halide or 150W high pressure sodium industrial low bay fixtures hanging throughout the entire facility. The recommended upgrade is a LED retrofit kit where the bottom portion of the housing is changed out on existing fixture. The new LED fixture is 78 W and lasts approximately 60,000 hours (L70) compared to the existing fixtures 15,000-24,000 hour lamp life. In addition to this specific location, these fixture types are typical at other PacifiCorp Energy power plants, and for cost savings to PacifiCorp, it is recommended that a bulk ordering agreement for the same fixture types be set up to share material orders in similar breakouts for all locations.

- Exterior fixtures are broken out as their own phase. These high intensity discharge fixtures can be upgraded with various fixture types. Some will match the typical low bay LED retrofits (78W Type RLB1) while some will be similar to Type AL1, WP1-2, FL4-5, and RW1 fixtures. Plant personal or contractor will determine fixture mounting hardware prior to ordering as well as verify fixture types.

Table 1: Breakout of Lighting Upgrades for phasing purposes

Recommended Breakout	Number of light fixtures	Rough Budget \$	kWh Savings
T-12 Lighting Upgrade	614	$\$ 71,300$	323,400
 Industrial Fixtures	1951^{*}	$\$ 1,623,700$	$2,781,533$
Exterior Lighting	537	$\$ 461,200$	579,089
Totals	$\mathbf{3 1 0 2}$	$\mathbf{\$ 2 , 1 5 6 , 1 4 0}$	$\mathbf{3 , 6 8 4 , 0 2 2}$

*Industrial fixtures represent 78W LED replacement fixtures and include lighting controls
${ }^{* *}$ Estimated total does not include all light fixtures throughout the plant. Misc. fixtures can be added to each phase as desired

Benefits of Recommendations

Why invest in lighting? The economics of the internal savings is not included in this report. PacifiCorp is unable to utilize Rocky Mountain Power's incentive unless they are physically paying a utility bill with an eligible industrial rate. Additionally, the actual cost of energy (in lighting tool) is not the "sell rate" to commercial/industrial customers for PacifiCorp Energy. So, once internal rates for power generation are applied, we don't expect projects to net on "energy savings alone" under a typical 2 years to make this an automatic capital investment. However, looking at the long-term benefits there are significant values for investing in these recommended lighting upgrades that should be added to energy costs:

1) The kWh (energy units) and kW (demand) are real and can be re-sold to PacifiCorp endusers
2) Maintenance savings for both hard and soft costs are significant. Recommendations above should reduce $75-85$ percent of the current lighting maintenance expenses each year for the next 10 years (and nominal increases thereafter).
3) Reduced safety risk to maintenance staff (minimizes access to restricted access areas/heights/lifts and lighting over process equipment).
4) Quality of light: New technology improves the color, enhances visibility and human comfort. Existing lighting has a color accuracy of $50-65$ percent; recommended lighting has a color accuracy of $80-90$ percent. Term in lighting is called CRI (color rendering index).
5) Increases productivity and safety by providing clearer distinction in colors (e.g., instrumentation wiring) and small details of equipment, etc.
6) Computer glare is reduced especially in the office areas. Additionally, current IES (Illuminating Engineering Society) light level recommendations can be met in those offices with these recommendations.
7) Make power available for other equipment: These projects are base load reductions, meaning power for panels and transformers are reduced and allow mores options to be used for new connections/loads or equipment, besides reducing stress on existing panels or overload situations.
8) In some cases, insurance premiums could qualify for reductions with some project improvements.
9) Net payback, once included cost benefits factors above (especially adding the human factors), and should meet all PacifiCorp's internal rates-of-returns to invest in all power plants. This report cannot identify the physical dollars associated to all these internal pieces to form a final financial calculation. But based in the nature that these power plants are long-term facilities and even if basic energy savings only net paybacks look longer to invest with more expensive LED technology, the secondary benefits on maintenance and improve working environment should make these projects a high priority on capital investments. The recommended technologies also provide 15-20 years equipment life for new fixtures and 12-15 years of equipment life on retrofits (for existing fixtures) before replacements or next capital investments should need to be reconsidered.

Lighting Audit Report

The Naughton Power Plant located at 1450 Naughton Plant Rd, Kemmerer, WY is comprised of three generating units with the total generating capability of 700+ megawatts. It has extensive interior and exterior industrial grated levels. The plant turned 50 -years old in 2013. Operating hours are 24 -hours a day, 365 days a year with the plant office operating from Monday-Friday.

A lighting audit for the Naughton Power Plant was performed by Dan Kuhl, LC of Evergreen Consulting Group. The entire facility consists of coal conveyer belts, mechanical, service walkways, offices, labs, maintenance shops, generating units, cooling towers and other miscellaneous buildings. The lighting audit encompasses all of Units 1-3 including every common area. The majority of the facility consists of lower wattage 175 W metal halide and some high pressure sodium low bay fixtures that provide general ambient lighting. Other wattages and lamp types typical of an industrial power plant are in use but the 175W "plant standard" is the most common with approximately $2,000+$ units installed. Older T12 lamps are also prevalent throughout the plant. These T12s fluorescent lamps with magnetic ballasts should be changed out in 2014 as replacement lamps are getting harder to find and the costs are increasing.

It was observed that most of the existing lighting equipment is at end-of-life and will require extensive maintenance or replacement in the near future. Local staff have started installing some new metal halide fixtures, and while this has helped improve the overall light levels, this technology matches the existing inefficient lighting with higher long term maintenance compared to current technology available. The best option for continued replacement of the existing lights (due to light loss, CRI, lamp life and maintenance), is new (or retrofit) LED fixtures (also known as solid state lighting). In addition, there are several areas throughout the facility that do not have any existing light fixtures permanently installed. These should be identified by staff so that during the retrofit, new fixtures can be included with bids.

This facility has very significant energy savings opportunities. The savings are a good faith estimate and can change depending upon what is actually installed. Final numbers can be accounted for in the post-inspection process after installation is completed.

Recommendations

Detail Lighting Survey: Appendix B contains a large spreadsheet (known as Lighting Tool) on each area showing baseline and proposed fixtures (recommended). Included in this appendix are four Lighting tools:

1. One - master spreadsheet with all baseline opportunities (all fixtures surveyed).
2. Three - breakout spreadsheets with baselines of your T12 fixtures, turbine and industrial area, and exterior lighting.

Recommended Fixtures: Appendix C contains specification sheets of the typical fixture type being recommended. No specific manufacturer is required and an "or-equal" alternative can be used for bid purposes.

- De-lamping 4' T12 to T8 retrofit kits: The typical 4' T12 fluorescent fixtures should be replaced with 2-lamp T8 CEE high performance ballast/lamp de-lamping kits. These kits fit inside the existing fixture housing and re-position the lamp holders for the new lamps and optimizing how much light projected out of the fixture. They increase the efficiency of the fixture using reflectors and lenses to give recommended light levels as needed for each area of the offices. Plant area T12's are typical 8' slim-line or high output fluorescent fixture that will be either de-lamped or retrofitted with 4' T8 lamps using a "kit" which allows for easy installation without removing the "body" of the fixture. The 8' lamps will be eliminated also, which is a significant maintenance expense and storage concern.
- Crouse Hinds - Currently, the plant has over 2,700 low bay industrial fixtures using either 175 W metal halide or 150 W high-pressure sodium. It is recommended to replace these with a retrofit kit that uses the existing back box when retrofitting the fixture, thereby reducing the labor time to replace. These retrofit kits are available from Dialight or Crouse-Hinds (at the time of this report). Other manufactures may have an equal product. Alternatives could be looked at as a cost saving measure only, which would be a LED screw-in retrofit hybrid kit. This would save money but not provide the "engineered" lighting pattern as described for the recommended retrofit option. Plant would need to do their due-diligence before approving the LED screw-in option (test for example).
- LED High Bay fixtures: We strongly recommend the plant select a high quality LED high bay fixture to replace the turbine area's existing high bay high intensity discharge (HID) lamps. Maintenance reduction, long life, safety, and lighting quality are all drivers here. Recently new fixtures designed specifically for high ceiling applications have been introduced to the market and would meet the space requirements for light levels, uniformity, and quality of light that the turbine area requires. In the turbine area, the existing average FC is $55-60$, which is higher than IES recommends (@30FC). Caution should be taken when recommending a new fixture and light level. Uniformity and higher quality light (CRI) is highly recommended if reducing FC's. It is recommended that the plant review multiple products before choosing a fixture for this area.
- Exterior fixtures: This area would receive a standard replacement with most recommended products changing to a new LED fixture. Time will need to be spent determining the proper fixtures that use the correct optics, wattage, and fixture design. Since the market has been using LED fixtures of this type for a few years now, it has
matured faster than other LED sectors, driving the price down where the incremental cost difference between existing technologies and LED are minimal.
- Why CEE/DLC: The fixtures recommended above can be found on the Consortium for Energy Efficiency (CEE) and Designlights Consortium (DLC) listed fixtures. The utility programs require these listed products for lamps/ballast and LED related products. These not only protect the owner from lower performance products being installed but also insure that they get the best available technology in the market for their buildings.
CEE uses NEMA (National Electrical Manufacturers Association) premium ballast specification and minimum lamp efficiency standards to identify the longest lasting and higher quality linear fluorescent lamps (U-tube and 4' lamps only are listed). By ordering CEE listed products (there are over 1,000+), your lamp life and quality will be maximized while saving energy and reducing maintenance costs. Estimated costs shown do include these products. Note: For all interior T8 lamps, it is recommended to use longer life 28W lamps (84,000 estimated hours). For all T8 ballasts, it is recommended to use "program start" ballasts in conjunction with these same lamps. Program start ballasts, besides being recommended where occupancy sensors are used, provide exact voltage and preheat the fluorescent lamp cathode, which extends the life of the lamps.
DLC is a national list for LED fixtures and retrofit kits that provides minimum performance standards to help identify less desirable products in the market. Because LED is an emerging technology and has experienced early products failures, a national standard was developed.

Recommended Maintenance and Life of Lighting: The primary fixtures are shown for comparison on life of lamps compared to existing.

- Existing T12 lighting at this location have an average lamp life of 12,000-20,000 hours (based on size or brand of lamps). This is typically 1.5 to 2.5 years before replacement.
- Recommended T8 lighting: Recommended new lamps replacing the T12 lamps have 84,000 hours or 9 years life span between burnouts. Adding controls will extend these fixtures longer than 9 years if currently operating 24 -hours a day. Office fixtures operating only M-F, could have 15-20 year life before burn-outs. Paying 1-2 dollars more for these lamps are well worth the investment up-front over the standard T8 lamps.
- Existing 175W metal halide fixtures have a lamp life of 12,000 hours or 1.5 years before they burn out.
- Existing 150W high-pressure sodium fixtures have a lamp life of $\mathbf{2 4 , 0 0 0}$ hours or $\mathbf{2 . 8}$ years before they burn out.
- Recommended LED fixtures have a useful (L70) life of $\mathbf{6 0 , 0 0 0 +}$ hours or 7+ years. Definition of "useful" is when the lumen output is at 70 percent of initial light output. LED lamps will keep burning, provide light past this useful life, and therefore offer some additional benefit over lamps that burn out; however, replacement/updates should be considered at the 70 percent light output mark.
- Existing 400W metal halide (high bay) fixtures have a lamp life of $\mathbf{2 0 , 0 0 0}$ hours or $\mathbf{2 . 8}$ years. Metal halide lamps have multiple drawbacks: poor color rendering (CRI), short lamp life and steep lamp lumen depreciation (40\% loss in light levels). Because of this, this plant is experiencing excessive maintenance (cost/time) and low light levels from existing light fixtures compared to today's technology options.
- Recommended LED high bay fixtures have $\mathbf{6 0 , 0 0 0}$ hours typical useful life (L70). You also get a product that uses less energy to deliver useful lumens (light) on your task with better uniformity than existing high intensity discharge as well as more light with this direct source of lighting. A side benefit is that these turn on "instantly" rather than having a 5 to 10 minute wait for a fixture to come up to full brightness allowing for controls to be added in storage areas that will extend the longevity of the fixture (years) and energy savings for not being used 24 -hours/day.

Costs/Budgets

Appendix D contains the detail cost breakout and shows all assumptions or logic for material and labor by fixture type.
Costs are an estimate only (budgeting) and disregard any notations to any utility incentive or dollar savings per year values in attached lighting tools. These values are only applicable if the power plant was able to participate in the Rocky Mountain Power FinAnswer Express/wattsmart Business incentive program. Any $\$$ values (savings or incentive) shown in attachments should be ignored; lighting tools are only used for calculating kW and kWh savings and identifying the fixture types by space.

Logic for cost estimates:

Most fixtures were budgeted at one hour per installation averages. Some will take longer but some will take less time. Labor cost was based at $\$ 80$ an hour, which is a typical hourly wage for electricians. Cost could be adjusted up or down depending on your evaluation of local labor rates and the difficulty of each installation; spreadsheets are provided to make those adjustments internally. Individual costs do not include such things as disposal, scaffolding, permitting, safety requirements, or cost of shut down if needed; but other contingency amounts were provided on a total that may be leveraged to cover some of these expenses. PacifiCorp Energy may have other contingency factors not provided for in this report that should be added as necessary based on location of site, security restriction time for contractors, and regional bidding environment of local/remote resources availability.

Cost reduction options:

For the purposes of this lighting survey/audit and ease of installation, the Crouse Hinds retrofit fixture was used for cost estimating. Other manufacturers (Dialight) have or may have a cost effective alternative that may meet the owner's needs with a lower installed cost than the Crouse Hinds fixture. It is recommended that these options be researched or Evergreen Consulting could assist in doing the research.

Upon request, we have changed the recommended the lighting fixture type from a fluorescent to a LED for the main open turbine area (when compared to the original preliminary report copies). A 511W (watt) LED high bay fixture is recommended as it offers the best maintenance option and longer life desired by facility owners and maintenance personal.
The costs can range dramatically on a project of this size and complexity. LEDs were considered for the plant standard 175W metal halide general low bays and for most of the $1,000 \mathrm{~W}$ metal halide high bays fixtures, as this would be the simplest and easiest to replace. Pricing is higher for this product technology (LED) but should be considered for its ease of change out and probability of substantial price reduction if pre-negotiated with the manufacturer prior to purchase for multiple plants (locations). We recommend arranging a national purchase agreement to consolidate same fixture purchases for all power plants over a 1-2 year time period purchasing window.

Appendix A

Fixture Summary Page

Fixture Legend

Fixture Codes			last Codes	
Code	Technology	Description	Code	Ballast Type
FCIT9	Fluorescent	Circleline T9	CEE IS	CEE Instant Start
FLE	Fluorescent	Linear Exit	CEE ISDIM	CEE Dimmable Instant Start
FUT12	Fluorescent	U Tube T12	CEE PS/PRSDIM	CEE Dimmable Program Start
FUT8	Fluorescent	U Tube 78	CEE RS/PRS	CEE Rapid Start
FUT8CEE	Fluorescent	U Tube CEE T8	IS	Instant Start
FCE	Fluorescent	Compact Exit	IS(E)	Efficient Instant Start
FCM	Fluorescent	Compact Medium Base	RS/PRS	Rapid/Program Start
FCP	Fluorescent	Compact Pin Base	RS/PRS(E)	Efficient Rapid/Program Start
FCPWP	Fluorescent	Compact Pin Base Wall Pack	MG	Magnetic
FCMG	Fluorescent	Compact Mogul Base	MG(E)	Efficient Magnetic
FCGU24	Fluorescent	Compact GU24	MGPH	Magnetic Pre-Heat
FLT8	Fluorescent	Linear T8	CWA	Constant Wattage Autotransformer
FLT8CEE	Fluorescent	Linear CEE T8	HIDLF	HID Low Freq Ballast
FLT8CEEHB	Fluorescent	Linear CEE T8 High Bay	INDN	Induction (Non-integral)
FLT10	Fluorescent	Linear T10	LR	Linear Reactor
FLT12	Fluorescent	Linear T12	RL	Regulated Lag
FLT12HO	Fluorescent	Linear T12HO	SCWA	Super CWA
FLT12VHO	Fluorescent	Linear T12VHO	Ballast Factor Codes	
FLT17	Fluorescent	Linear T17	Code	Description
FLT5	Fluorescent	Linear T5	L	Low ($\mathrm{BF} \leq 0.85$)
FLT5HO	Fluorescent	Linear T5HO	N	Normal ($0.85<B F \leq 1.0$)
FLT5HOHB	Fluorescent	Linear T5HO High Bay	H	High ($B F>1.0$)
FCCFL	Fluorescent	Cold Cathode	CEE L	CEE Low ($\mathrm{BF} \leq 0.85$)
CMH	HID	Ceramic Metal Halide	CEE N	CEE Normal ($0.85<\mathrm{BF} \leq 1.0)$
HPS	HID	High Pressure Sodium	CEE H	CEE High (BF > 1.0)
MV	HID	Mercury Vapor	Controls/Sensor Codes	
MH	HID	Metal Halide	Code	Description
MHPS	HID	Metal Halide Pulse Start	Integral	Integral
ICE	Incandescent	Exit	Occupancy	Occupancy
ICH	Incandescent	Halogen	Daylighting	Daylighting
ICMB	Incandescent	Medium Base	Ad. Daylighting	Advanced Daylighting
ICMG	Incandescent	Mogul Base	Time Clock	Time Clock
INRB	Induction	Remote-Ballasted	Dup. Occ	Duplicate Occupancy
INSB	Induction	Self-Ballasted	Dup. DL	Duplicate Daylighting
LEDSMC	LED	Surface Mount Canopy	Dup. Ad. DL	Duplicate Advanced Daylighting
LEDE	LED	Exit	Dup. TC	Duplicate Time Clock
LEDHB	LED	High Bay		
LEDSI	LED	Integral Screw-in	Additional Information	
LEDPM	LED	Pole Mount		
LEDDL	LED	Recessed Downlight	RMP: DLC, Energy Star, LDL Links and Information	
LEDWP	LED	Wall Pack	PP: DLC, Energy Star, LDL Links and Information	
PE	Photoluminescent	Exit		

Naughton Power Plant - All Lighting

Fixture Summary \& Count

Fluorescent
FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N 503
FLT8-17W x 3L x 2'-IS L 4
FLT8CEE-28W x 4L x 4'-CEE RS/PRS CEE N 62
FLT8CEEHB-32W x 4L x 4'-CEE IS CEE H 45
HID
Induction
LED
LEDHB-213W 67
Other
CUST: LEDHB-78W 2058
CUST: LEDHB-511W 123
CUST: 121W LED Flood Lite 66
CUST: LEDWP-47W 86
CUST: LED Flood 158W 88
Controls
Occupancy 45
Integral 187

Naughton Power Plant - T12 Phase

Fixture Summary \& Count

Fluorescent

FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N 503
FLT8-17W x 3L x 2'-IS L 4
FLT8CEE-28W x 4L x 4'-CEE RS/PRS CEE N 62
FLT8CEEHB-32W x 4L x 4'-CEE IS CEE H 45
HID
Induction
LED
Other

Controls
Occupancy 43
Integral 105

Naughton Power Plant - Industrial \& Turbine Phase

Fixture Summary \& Count

Fluorescent

HID

Induction

LED

LEDHB-213W 67
Other
CUST: LEDHB-78W 1779
CUST: LEDHB-511W 78
CUST: 121W LED Flood Lite 20
CUST: LEDWP-47W 7

Controls
Integral 82
Occupancy 2

Naughton Power Plant - Exterior Phase Fixture Summary \& Count

Fluorescent

HID
Induction

LED

Other

CUST: LEDWP-47W 79
CUST: LEDHB-511W 45
CUST: LEDHB-78W 279
CUST: LED Flood 158W 88
CUST: 121W LED Flood Lite 46
Controls

Appendix B

Lighting Tools

ROCKY MOUNTAIN POWER

Let's turn the answers on.

V 070113.5.3
Customer Information

Eligibility Information

Wyoming FinAnswer Express Program
07/01/13 Effective Date

Processing Information

Space Type \& Size

	Calculation Method	Whole Building	Allowed Wattage		360,000	
1	Other		$\begin{aligned} & F T^{2} \\ & F T^{2} \end{aligned}$	600,000	0.60	$\begin{aligned} & W / F T^{2} \\ & W / F T^{2} \end{aligned}$
			$F T^{2}$			W/FT ${ }^{2}$
			$F T^{2}$			W/FT ${ }^{2}$
			$F T^{2}$			W / F^{+1}
Other			$F T^{2}$	600,000	0.60	$W / F{ }^{2}$

Lighting Operation Schedule

\# of Holidays Closed?	Day	A	B	C	D	E
0	Mon Tue	24.0	12.0	12.0		
Op Weeks Per Year		24.0	12.0	12.0		
52	Wed	24.0	12.0	12.0		
"S" is for a seasonal	Thu	24.0	12.0	12.0		
operational schedule	Fri	24.0	12.0	12.0		
S is for 0 hrs/year	Sat	24.0	4.0	12.0		
X is for 8760 hrs/year	Sun	24.0	0.0	12.0		
Y is for 4380 hrs/year	Total	8,760	3,337	4,380		

Additional Information

19	B	Office Rm 212	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	$\begin{gathered} \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE N } \\ \hline \end{gathered}$	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
20	B	Office Janica Dever	FLT12-34W x 4L x 4'-2 MG(E)	3	144	432	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	3	Occupancy	49	147	L\&B Type BNLO1 \& Type L2
21	B	Office Envior. Dept.	FLT12-34W x 4L x 4'-2 MG(E)	10	144	1,440	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	10	Occupancy	49	490	L\&B Type BNLO1 \& Type L2
22	B	Office Rm 208	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
23	B	Office Empty Rm	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
24	B	Office Rm 204	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
25	B	Office Rm 205	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
26	B	Office Michael Tully	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
27	B	Office Empty Office	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
28	B	Office Ryan Whitbeck	FLT12-34W x 4L x 4'-2 MG(E)	5	144	720	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	5	Occupancy	49	245	L\&B Type BNLO1 \& Type L2
29	B	Office 2nd FIr. Hallway	FLT12-34W x 4L x 4'-2 MG(E)	5	144	720	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	5		49	245	L\&B Type BNLO1 \& Type L2
30	B	Office Computer Rm	FLT12-34W x 4L x 4'-2 MG(E)	8	144	1,152	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	8	Occupancy	49	392	L\&B Type BNLO1 \& Type L2
31	B	Office Kitchen Area	FLT12-34W $\times 4 \mathrm{~L} \times 4$--2 MG(E)	6	144	864	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	6	Occupancy	49	294	L\&B Type BNLO1 \& Type L2
32	B	Office Locked Rm	FLT12-34W x 4L x 4'-2 MG(E)	5	144	720	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	5	Occupancy	49	245	L\&B Type BNLO1 \& Type L2
33	B	Office Bob Wood	FLT12-34W x 4L x 4'-2 MG(E)	5	144	720	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	5	Occupancy	49	245	L\&B Type BNLO1 \& Type L2
34	B	Office Mens Locker	FLT12-34W x 4L x 4'-2 MG(E)	15	144	2,160	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	15		49	735	L\&B Type BNLO1 \& Type L2
35	B	Office Kim Rm	FLT12-34W x 4L x 4'-2 MG(E)	3	144	432	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	3	Occupancy	49	147	L\&B Type BNLO1 \& Type L2
36	B	Office Wash Machine	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
37	B	Wm locker Rm	FLT12-34W $\times 4 \mathrm{~L} \times 4$--2 MG(E)	12	144	1,728	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	12		49	588	L\&B Type BNLO1 \& Type L2
38	B	Office Lunch Rm	FLT12-34W $\times 4 \mathrm{~L} \times 4$--2 MG(E)	11	144	1,584	FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N	11	Occupancy	49	539	L\&B Type BNLO1 \& Type L2
39	B	Office Break Rm	FLT12-34W x 4L x 4'-2 MG(E)	6	144	864	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	6	Occupancy	49	294	L\&B Type BNLO1 \& Type L2
40												
41		UNIT \#1										UNIT \#1
42	A	UNIT \#1 Belt Line	HPS-150W	10	188	1,880	CUST: LEDHB-78W	10		78	780	Crouse Hinds Retrofit Kit to match existing - Type RLB1
43	A	UNIT \#1 Belt Line	MH-175W-CWA	72	215	15,480	CUST: LEDHB-78W	72		78	5,616	Crouse Hinds Retrofit Kit to match existing - Type RLB1
44	A	TRANFER TOWERConveyor Belt Exterior	HPS-150W	15	188	2,820	CUST: LEDHB-78W	15		78	1,170	Crouse Hinds Retrofit Kit to match existing - Type RLB1
45	A	T-Chlor	MH-175W-CWA	4	215	860	CUST: LEDHB-78W	4		78	312	Crouse Hinds Retrofit Kit to match existing - Type RLB1
46	A	Storage Shed	HPS-150W	8	188	1,504	CUST: LEDHB-78W	8		78	624	Crouse Hinds Retrofit Kit to match existing - Type RLB1

[^0]| 47 | A | Gas Fill Up | HPS-150W | 4 | 188 | 752 | CUST: LEDHB-78W | 4 | | 78 | 312 | Crouse Hinds Retrofit Kit to match existing - Type RLB1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | A | EQUIP SHOP | MH-400W-CWA | 8 | 458 | 3,664 | LEDHB-213W | 8 | | 213 | 1,704 | Type HB1 |
| 49 | A | Equip Shop-Truck
 Storage | MH-400W-CWA | 12 | 458 | 5,496 | LEDHB-213W | 12 | | 213 | 2,556 | Type HB1 |
| 50 | A | OIL STORAGE | MH-175W-CWA | 8 | 215 | 1,720 | CUST: LEDHB-78W | 8 | | 78 | 624 | Crouse Hinds Retrofit Kit to match existing - Type RLB1 |
| 51 | A | NEW SCRUBBER STACK | HPS-150W | 110 | 188 | 20,680 | CUST: LEDHB-78W | 110 | | 78 | 8,580 | Crouse Hinds Retrofit Kit to match existing - Type RLB1 |
| 52 | A | Adjacent building to Scrubber stack | MH-400W-CWA | 36 | 458 | 16,488 | CUST: LEDHB-78W | 36 | Integral | 78 | 2,808 | Crouse Hinds Retrofit Kit to match existing - Type RLB1 |
| 53 | A | Parking garage light | MH-175W-CWA | 22 | 215 | 4,730 | CUST: LEDHB-78W | 22 | | 78 | 1,716 | Crouse Hinds Retrofit Kit to match existing - Type RLB1 |
| 54 | A | Scrubber Tower \#1 Bldg | MH-175W-CWA | 6 | 215 | 1,290 | CUST: LEDHB-78W | 6 | | 78 | 468 | Crouse Hinds Retrofit Kit to match existing - Type RLB1 |
| 55 | A | INSULATION ABATEMENT | MH-400W-CWA | 6 | 458 | 2,748 | CUST: LEDHB-78W | 6 | Integral | 78 | 468 | Crouse Hinds Retrofit Kit to match existing - Type RLB1 |
| 56 | A | Insulation Abatement | FLT12HO-95W x $2 \mathrm{~L} \times 8$ 8'-MG(E) | 2 | 207 | 414 | FLT8CEE-28W x 4L x 4'-CEE RS/PRS CEE N | 1 | | 99 | 99 | $\begin{aligned} & \text { Refl Kit, L\&B - Type SK2, BNLO2, } \\ & \text { L2 } \end{aligned}$ |
| 57 | A | Insulation Abatement Back Room | FLT12-34W x 4'-MG(E) | 18 | 43 | 774 | $\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \\ \hline \end{gathered}$ | 18 | | 49 | 882 | L\&B Type BNLO1 \& Type L2 |
| 58 | A | Insulation AbatementTool room | FLT12HO-110W x 8'-MG | 1 | 121 | 121 | FLT8CEE-28W x 4L x 4'-CEE RS/PRS CEE N | 1 | Integral | 99 | 99 | $\begin{aligned} & \text { Refl Kit, L\&B - Type SK2, BNLO2, } \\ & \text { L2 } \end{aligned}$ |
| 59 | A | Insulation AbatementRR | FLT12-34W x 4'-MG(E) | 2 | 43 | 86 | FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N | 2 | Occupancy | 49 | 98 | L\&B Type BNLO1 \& Type L2 |
| 60 | A | MAINTENANCE BUILDING | MH-1000W-CWA | 24 | 1,080 | 25,920 | CUST: LEDHB-511W | 24 | Occupancy | 511 | 12,264 | Type HB6 |
| 61 | A | Maintenance Building paremeter wall mt. | MH-175W-CWA | 20 | 215 | 4,300 | CUST: 121W LED Flood Lite | 20 | | 121 | 2,420 | Type FL4 |
| 62 | A | Maintenance BuildingHigh Bay | MH-400W-CWA | 6 | 458 | 2,748 | LEDHB-213W | 6 | | 213 | 1,278 | Type HB1 |
| 63 | A | WAREHOUSE-High Bays | MH-400W-CWA | 40 | 458 | 18,320 | LEDHB-213W | 40 | Integral | 213 | 8,520 | Type HB1 |
| 64 | A | Warehouse-Office | FLT12-34W x 4'-MG(E) | 5 | 43 | 215 | $\begin{gathered} \hline \text { FLT8CEE-28W x 2L x 4'-CEE } \\ \text { RS/PRS CEE N } \\ \hline \end{gathered}$ | 5 | Occupancy | 49 | 245 | L\&B Type BNLO1 \& Type L2 |
| 65 | A | Warehouse-Lower Shelf Rows | FLT12HO-95W x $2 \mathrm{~L} \times 8$ 8'MG(E) | 59 | 207 | 12,213 | $\begin{gathered} \hline \text { FLT8CEE-28W } \times 4 \text { L } \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \end{gathered}$ | 59 | Integral | 99 | 5,841 | $\begin{aligned} & \text { Refl Kit, L\&B - Type SK2, BNLO2, } \\ & \text { L2 } \end{aligned}$ |
| 66 | A | Warehouse E. | FLT12-60W x 2L x 8'-MG(E) | 16 | 123 | 1,968 | FLT8CEE-28W x 4L x 4'-CEE RS/PRS CEE N | 1 | | 99 | 99 | $\begin{aligned} & \text { Refl Kit, L\&B - Type SK2, BNLO2, } \\ & \text { L2 } \end{aligned}$ |
| 67 | A | Warehouse E. | FLT12-34W x 4L x 4'-2 MG | 66 | 144 | 9,504 | $\begin{aligned} & \text { FLT8CEEHB-32W } \times 4 \mathrm{~L} \times 4 \text { 4'-CEE } \\ & \text { IS CEE H } \end{aligned}$ | 45 | Integral | 142 | 6,390 | Type BHLO2 \& L1 |
| 68 | A | MAINTENANCE OFFICE-Lunch | FLT12-34W x 4L x 4'-2 MG | 12 | 144 | 1,728 | FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N | 12 | Occupancy | 49 | 588 | L\&B Type BNLO1 \& Type L2 |
| 69 | A | Maintenance OfficeHallway High Ceiling | MH-1000W-CWA | 9 | 1,080 | 9,720 | CUST: LEDHB-511W | 9 | | 511 | 4,599 | Type HB6 |
| 70 | A | Maintenance OfficeHallway Office | FLT12-34W x 4L x 4'-2 MG | 12 | 144 | 1,728 | $\begin{gathered} \hline \text { FLT8CEE-28W x 2L x 4'-CEE } \\ \text { RS/PRS CEE N } \\ \hline \end{gathered}$ | 12 | | 49 | 588 | L\&B Type BNLO1 \& Type L2 |
| 71 | A | Maintenance OfficeWashing machine | FLT12-34W x 4L x 4'-2 MG | 8 | 144 | 1,152 | FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N | 8 | Occupancy | 49 | 392 | L\&B Type BNLO1 \& Type L2 |
| 72 | A | Mainenance OfficePrivate Offices | FLT12-34W x 4L x 4'-2 MG | 8 | 144 | 1,152 | $\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$ | 8 | Occupancy | 49 | 392 | L\&B Type BNLO1 \& Type L2 |
| 73 | A | Mainenance OfficeWarehouse Offices | FLT12-34W x 4L x 4'-2 MG | 27 | 144 | 3,888 | FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N | 27 | Occupancy | 49 | 1,323 | L\&B Type BNLO1 \& Type L2 |
| 74 | A | Mainenance OfficeHallway | FLT12-34W x 4L x 4'-2 MG | 3 | 144 | 432 | FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N | 3 | | 49 | 147 | L\&B Type BNLO1 \& Type L2 |

[^1]Page 17 of 62
11/22/2013

75		A	Mainenance OfficeMens/Women RR	FLT12-34W x 2L x 4'-MG(E)	8	72	576	$\begin{gathered} \text { FLT8CEE-28W } \times 2 L \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \end{gathered}$	8	Occupancy	49	392	L\&B Type BNLO1 \& Type L2
76		A	Mainenance OfficeLunch Rm.	FLT12-34W x 4L x 4'-2 MG	24	144	3,456	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	24	Occupancy	49	1,176	L\&B Type BNLO1 \& Type L2
77		A	Mainenance OfficePrivate Offices	FLT12-34W x 4L x 4'-2 MG	15	144	2,160	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	15	Occupancy	49	735	L\&B Type BNLO1 \& Type L2
78		A	Maintenance ShopStairwell	FLT12-34W x 2L x 4'-MG	6	72	432	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	6		49	294	L\&B Type BNLO1 \& Type L2
79		A	Maintenance ShopHallway 1st/2nd floor	FLT12-34W x 2L x 4'-MG	26	72	1,872	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$	26		49	1,274	L\&B Type BNLO1 \& Type L2
80		A	Maintenance ShopMens Locker	FLT12-34W x 4'-MG(E)	39	43	1,677	$\begin{gathered} \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE } \\ \hline \end{gathered}$	39		49	1,911	L\&B Type BNLO1 \& Type L2
81		A	Maintenance ShopMens Locker-Wall	FLT12-34W x 2L x 4'-MG	14	72	1,008	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	14		49	686	L\&B Type BNLO1 \& Type L2
82		A	ELECTRICAL SHOP	FLT12-34W x 4'-MG(E)	13	43	559	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	13		49	637	L\&B Type BNLO1 \& Type L2
83		A	Electrical Shop	FLT12-34W x 2L x 4'-MG	5	72	360	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \text { L } \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \\ \hline \end{gathered}$	5		49	245	L\&B Type BNLO1 \& Type L2
84		A	TURBINE ROOM	MH-1000W-CWA	36	1,080	38,880	CUST: LEDHB-511W	36		511	18,396	Type HB6
85		A	Turbine Rm-Crane Lights	MH-1000W-CWA	5	1,080	5,400	CUST: LEDHB-511W	5		511	2,555	Type HB6
86		A	PRECEP \#1,\#2, \#3(Plant Standard)	MH-175W-CWA	223	215	47,945	CUST: LEDHB-78W	223		78	17,394	Type RLB1
87	+		Precep -Wallpacks Exterior	MH-175W-CWA	22	215	4,730	CUST: LEDWP-47W	22		47	1,034	Type WP1
88		A	GENERATING UNITS \#1, \#2, \#3(Plant Standard) Includes Bunker and Boiler	MH-175W-CWA	1233	215	265,095	CUST: LEDHB-78W	1233		78	96,174	Type RLB1
89													
90		A	GENERATING UNITS \#1, \#2, \#3(Plant Standard) Includes Bunker and Boiler	HPS-150W	22	188	4,136	CUST: LEDHB-78W	22		78	1,716	Type RLB1
91		C	GENERATING UNITS \#1, \#2, \#3 Includes Bunker and Boiler/- Wallpacks	MH-175W-CWA	7	215	1,505	CUST: LEDWP-47W	7		47	329	Type WP1
92		A	SILO	MH-1000W-CWA	4	1,080	4,320	CUST: LEDHB-511W	4		511	2,044	LED High Bay to match Turbine room. May require special mounting hardware - Type HB6
93		A	Silo-Entry Add	LEDHB-213W	0	213	0	LEDHB-213W	1	Occupancy	213	213	This fixture added to entry area for safety. 4 lamp High Bay - Type HB1
94	+	C	OUTDOOR LIGHTING-High	MH-1000W-CWA	36	1,080	38,880	CUST: LEDHB-511W	36		511	18,396	High Mast Light - LED 511w
95	+	C	Outdoor LightingVarious locationsPlant Standard	MH-175W-CWA	79	215	16,985	CUST: LEDHB-78W	79		78	6,162	Type RLB1
96	+	C	Outdoor LightingVarious locationsPlant Standard	HPS-150W	37	188	6,956	CUST: LEDHB-78W	37		78	2,886	Type RLB1

97	+	C	Outdoor LightingFloods	HPS-1000W	9	1,100	9,900	CUST: LEDHB-511W	9	511	4,599	LED Flood 511w
98	+	C	Outdoor LightingFloods	HPS-400W	37	465	17,205	CUST: LED Flood 158W	37	158	5,846	Type FL3
99	+	C	Outdoor LightingWallpacks	MH-175W-CWA	31	215	6,665	CUST: LEDWP-47W	31	47	1,457	Type WP1
100	+	C	Outdoor LightingWallpacks	MH-250W-CWA	26	295	7,670	CUST: LEDWP-47W	26	47	1,222	Type WP1
101	+	C	Outdoor LightingCobra Heads	HPS-250W	46	295	13,570	CUST: 121W LED Flood Lite	46	121	5,566	Type FL4
102	+	C	Outdoor LightingFloods(Halogen)	ICH-500W	37	500	18,500	CUST: LED Flood 158W	37	158	5,846	Type FL3
103	+	A	SCRUBBER STACKS(Plant Standard)Exterior	MH-175W-CWA	128	215	27,520	CUST: LEDHB-78W	128	78	9,984	Type RLB1
104		A	MCC Rm	FLT12-34W x 2L x 4'-MG	12	72	864	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 L \times 4 \text { '-CEE } \\ \text { RS/PRS CEE N } \\ \hline \end{gathered}$	12	49	588	L\&B Type BNLO1 \& Type L2
105		A	Generator Room	FLT12-20W x 2L x 2'-MG	3	50	150	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$	3	49	147	L\&B Type BNLO1 \& Type L2
106		A	Mens/Women RR	FLT12-20W x 2L x 2'-MG	2	50	100	$\begin{gathered} \text { FLT8CEE-28W x } 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE N } \end{gathered}$	2	49	98	L\&B Type BNLO1 \& Type L2
107		A	Small Blg. Off Scrubber	FLT12-34W x 2L x 4'-MG	4	72	288	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$	4	49	196	L\&B Type BNLO1 \& Type L2
108	+	C	UNIT 3 COOLING TOWER-Stantion MTExterior	MH-175W-CWA	23	215	4,945	CUST: LEDHB-78W	23	78	1,794	Type RLB1
109	+	C	UNIT 3 COOLING TOWER-FloodsExterior	HPS-400W	7	465	3,255	CUST: LED Flood 158W	7	158	1,106	Type FL3
110	+	C	UNIT 2 COOLING TOWER-FloodExterior	HPS-400W	7	465	3,255	CUST: LED Flood 158W	7	158	1,106	Type FL3
111	+	C	UNIT 1 COOLING TOWER-Stantion Mt. - Exterior	MH-175W-CWA	12	215	2,580	CUST: LEDHB-78W	12	78	936	Type RLB1
112												
113												
114												
115												
116												
117												
118												
119												
120												
121												
122												
123												
124												
125												
126												

ROCKY MOUNTAIN
 POWER

Let's turn the answers on.
V 070113.5.3
Customer Information

Eligibility Information

Wyoming FinAnswer Express Program
07/01/13 Effective Date

Processing Information

Construction Type	Retrofit	Stage	Preliminary
Project Cost			
Material Labor Other	Total Project Cost		
$\$ 62,830.00$	$\$ 7,920.00$	$\$ 550.00$	$\$ 71,300.00$

Space Type \& Size

	Calculation Method	Whole Building	Allowed Wattage		360,000	
1	Other		$\begin{aligned} & F T^{2} \\ & F T^{2} \end{aligned}$	600,000	0.60	$\begin{aligned} & W / F T^{2} \\ & W / F T^{2} \end{aligned}$
			$F T^{2}$			W/FT ${ }^{2}$
			$F T^{2}$			W/FT ${ }^{2}$
			$F T^{2}$			W / F^{+1}
Other			$F T^{2}$	600,000	0.60	$W / F{ }^{2}$

Lighting Operation Schedule

\# of Holidays Closed?	Day	A	B	C	D	E
0	Mon Tue	24.0	12.0	12.0		
Op Weeks Per Year		24.0	12.0	12.0		
52	Wed	24.0	12.0	12.0		
"S" is for a seasonal	Thu	24.0	12.0	12.0		
operational schedule	Fri	24.0	12.0	12.0		
S is for 0 hrs/year	Sat	24.0	4.0	12.0		
X is for 8760 hrs/year	Sun	24.0	0.0	12.0		
Y is for 4380 hrs/year	Total	8,760	3,337	4,380		

Additional Information

19	B	Office Rm 212	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	$\text { FLT8CEE-28W x } 2 \mathrm{~L} \times 4 \text { 4-CEE }$ RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
20	B	Office Janica Dever	FLT12-34W x 4L x 4'-2 MG(E)	3	144	432	$\text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE }$ RS/PRS CEE N	3	Occupancy	49	147	L\&B Type BNLO1 \& Type L2
21	B	Office Envior. Dept.	FLT12-34W x 4L x 4'-2 MG(E)	10	144	1,440	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE N } \\ \hline \end{gathered}$	10	Occupancy	49	490	L\&B Type BNLO1 \& Type L2
22	B	Office Rm 208	FLT12-34W $\times 4 \mathrm{~L} \times 4$--2 MG(E)	4	144	576	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
23	B	Office Empty Rm	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
24	B	Office Rm 204	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE } \mathrm{N} \end{gathered}$	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
25	B	Office Rm 205	FLT12-34W $\times 4 \mathrm{~L} \times 4$--2 MG(E)	4	144	576	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
26	B	Office Michael Tully	FLT12-34W $\times 4 \mathrm{~L} \times 4$--2 MG(E)	4	144	576	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
27	B	Office Empty Office	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	$\text { FLT8CEE-28W } \times 2 L \times 4 \text { '-CEE }$ RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
28	B	Office Ryan Whitbeck	FLT12-34W x 4L x 4'-2 MG(E)	5	144	720	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	5	Occupancy	49	245	L\&B Type BNLO1 \& Type L2
29	B	Office 2nd FIr. Hallway	FLT12-34W x 4L x 4'-2 MG(E)	5	144	720	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	5		49	245	L\&B Type BNLO1 \& Type L2
30	B	Office Computer Rm	FLT12-34W x 4L x 4'-2 MG(E)	8	144	1,152	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$	8	Occupancy	49	392	L\&B Type BNLO1 \& Type L2
31	B	Office Kitchen Area	FLT12-34W x 4L x 4'-2 MG(E)	6	144	864	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	6	Occupancy	49	294	L\&B Type BNLO1 \& Type L2
32	B	Office Locked Rm	FLT12-34W $\times 4 \mathrm{~L} \times 4$--2 MG(E)	5	144	720	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	5	Occupancy	49	245	L\&B Type BNLO1 \& Type L2
33	B	Office Bob Wood	FLT12-34W $\times 4 \mathrm{~L} \times 4 \mathrm{4}-2 \mathrm{MG}(\mathrm{E})$	5	144	720	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	5	Occupancy	49	245	L\&B Type BNLO1 \& Type L2
34	B	Office Mens Locker	FLT12-34W x 4L x 4'-2 MG(E)	15	144	2,160	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	15		49	735	L\&B Type BNLO1 \& Type L2
35	B	Office Kim Rm	FLT12-34W x 4L x 4'-2 MG(E)	3	144	432	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	3	Occupancy	49	147	L\&B Type BNLO1 \& Type L2
36	B	Office Wash Machine	FLT12-34W x 4L x 4'-2 MG(E)	4	144	576	FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N	4	Occupancy	49	196	L\&B Type BNLO1 \& Type L2
37	B	Wm locker Rm	FLT12-34W x 4L x 4'-2 MG(E)	12	144	1,728	FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N	12		49	588	L\&B Type BNLO1 \& Type L2
38	B	Office Lunch Rm	FLT12-34W x 4L x 4'-2 MG(E)	11	144	1,584	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	11	Occupancy	49	539	L\&B Type BNLO1 \& Type L2
39	B	Office Break Rm	FLT12-34W x 4L x 4'-2 MG(E)	6	144	864	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	6	Occupancy	49	294	L\&B Type BNLO1 \& Type L2
40		UNIT \#1										
41	A	Insulation Abatement	FLT12HO-95W x $2 \mathrm{~L} \times 8^{\prime}-\mathrm{MG}(\mathrm{E})$	2	207	414	FLT8CEE-28W x 4L x 4'-CEE RS/PRS CEE N	1		99	99	$\begin{aligned} & \text { Refl Kit, L\&B - Type SK2, BNLO2, } \\ & \text { L2 } \end{aligned}$
42	A	Insulation Abatement Back Room	FLT12-34W x 4'-MG(E)	18	43	774	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	18		49	882	L\&B Type BNLO1 \& Type L2
43	A	Insulation AbatementTool room	FLT12HO-110W x 8'-MG	1	121	121	FLT8CEE-28W x 4L x 4'-CEE RS/PRS CEE N	1	Integral	99	99	$\begin{aligned} & \text { Refl Kit, L\&B - Type SK2, BNLO2, } \\ & \text { L2 } \\ & \hline \end{aligned}$
44	A	Insulation AbatementRR	FLT12-34W x 4'-MG(E)	2	43	86	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 L \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \\ \hline \end{gathered}$	2	Occupancy	49	98	L\&B Type BNLO1 \& Type L2
45	A	Warehouse-Office	FLT12-34W x 4'-MG(E)	5	43	215	FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N	5	Occupancy	49	245	L\&B Type BNLO1 \& Type L2
46	A	Warehouse-Lower Shelf Rows	FLT12HO-95W x $2 \mathrm{~L} \times 8$ 8'-MG(E)	59	207	12,213	FLT8CEE-28W x 4L x 4'-CEE RS/PRS CEE N	59	Integral	99	5,841	$\begin{aligned} & \text { Refl Kit, L\&B - Type SK2, BNLO2, } \\ & \text { L2 } \end{aligned}$

LT - Naughton Power Plant T12.xlsm
11/22/2013
Page 22 of 62

47	A	Warehouse E.	FLT12-60W x 2L x 8'-MG(E)	16	123	1,968	FLT8CEE-28W x 4L x 4'-CEE RS/PRS CEE N	1		99	99	```Refl Kit, L&B - Type SK2, BNLO2, L2```
48	A	Warehouse E.	FLT12-34W x 4L x 4'-2 MG	66	144	9,504	$\begin{gathered} \text { FLT8CEEHB-32W } \times 4 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { IS CEE H } \end{gathered}$	45	Integral	142	6,390	Type BHLO2 \& L1
49	A	MAINTENANCE OFFICE-Lunch	FLT12-34W x 4L x 4'-2 MG	12	144	1,728	FLT8CEE-28W x 2 L $\times 4$ '-CEE RS/PRS CEE N	12	Occupancy	49	588	L\&B Type BNLO1 \& Type L2
50	A	Maintenance OfficeHallway Office	FLT12-34W x 4L x 4'-2 MG	12	144	1,728	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE N } \\ \hline \end{gathered}$	12		49	588	L\&B Type BNLO1 \& Type L2
51	A	Maintenance OfficeWashing machine	FLT12-34W x 4L x 4'-2 MG	8	144	1,152	$\begin{gathered} \hline \text { FLT8CEE-28W x 2L x 4'-CEE } \\ \text { RS/PRS CEE N } \\ \hline \end{gathered}$	8	Occupancy	49	392	L\&B Type BNLO1 \& Type L2
52	A	Mainenance OfficePrivate Offices	FLT12-34W x 4L x 4'-2 MG	8	144	1,152	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } \mathrm{N} \end{gathered}$	8	Occupancy	49	392	L\&B Type BNLO1 \& Type L2
53	A	Mainenance OfficeWarehouse Offices	FLT12-34W x 4L x 4'-2 MG	27	144	3,888	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \\ \hline \end{gathered}$	27	Occupancy	49	1,323	L\&B Type BNLO1 \& Type L2
54	A	Mainenance OfficeHallway	FLT12-34W x 4L x 4'-2 MG	3	144	432	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 44^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE } \\ \hline \end{gathered}$	3		49	147	L\&B Type BNLO1 \& Type L2
55	A	Mainenance OfficeMens/Women RR	FLT12-34W x 2L x 4'-MG(E)	8	72	576	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \\ \hline \end{gathered}$	8	Occupancy	49	392	L\&B Type BNLO1 \& Type L2
56	A	Mainenance OfficeLunch Rm.	FLT12-34W x 4L x 4'-2 MG	24	144	3,456	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$	24	Occupancy	49	1,176	L\&B Type BNLO1 \& Type L2
57	A	Mainenance OfficePrivate Offices	FLT12-34W x 4L x 4'-2 MG	15	144	2,160	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4{ }^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$	15	Occupancy	49	735	L\&B Type BNLO1 \& Type L2
58	A	Maintenance ShopStairwell	FLT12-34W x 2L x 4'-MG	6	72	432	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \\ \hline \end{gathered}$	6		49	294	L\&B Type BNLO1 \& Type L2
59	A	Maintenance ShopHallway 1st/2nd floor	FLT12-34W x 2L x 4'-MG	26	72	1,872	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4{ }^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$	26		49	1,274	L\&B Type BNLO1 \& Type L2
60	A	Maintenance ShopMens Locker	FLT12-34W x 4'-MG(E)	39	43	1,677	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE N } \\ \hline \end{gathered}$	39		49	1,911	L\&B Type BNLO1 \& Type L2
61	A	Maintenance ShopMens Locker-Wall	FLT12-34W x 2L x 4'-MG	14	72	1,008	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE } \\ \hline \end{gathered}$	14		49	686	L\&B Type BNLO1 \& Type L2
62	A	ELECTRICAL SHOP	FLT12-34W x 4'-MG(E)	13	43	559	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ '-CEE RS/PRS CEE N	13		49	637	L\&B Type BNLO1 \& Type L2
63	A	Electrical Shop	FLT12-34W x 2L x 4'-MG	5	72	360	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \\ \hline \end{gathered}$	5		49	245	L\&B Type BNLO1 \& Type L2
64	A	MCC Rm	FLT12-34W x 2L x 4'-MG	12	72	864	FLT8CEE-28W x $2 \mathrm{~L} \times 4$ 4'-CEE RS/PRS CEE N	12		49	588	L\&B Type BNLO1 \& Type L2
65	A	Generator Room	FLT12-20W x 2L x 2'-MG	3	50	150	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4 \text { '-CEE } \\ \text { RS/PRS CEE } N \end{gathered}$	3		49	147	L\&B Type BNLO1 \& Type L2
66	A	Mens/Women RR	FLT12-20W x 2L x 2'-MG	2	50	100	FLT8CEE-28W x 2L x 4'-CEE RS/PRS CEE N	2		49	98	L\&B Type BNLO1 \& Type L2
67	A	Small Blg. Off Scrubber	FLT12-34W x 2L x 4'-MG	4	72	288	$\begin{gathered} \hline \text { FLT8CEE-28W } \times 2 \mathrm{~L} \times 4^{\prime}-\mathrm{CEE} \\ \text { RS/PRS CEE } \mathrm{N} \\ \hline \end{gathered}$	4		49	196	L\&B Type BNLO1 \& Type L2
68												
69												
70												
71												
72												
73												
74												
75												
76												
77												

ROCKY MOUNTAIN POWER

Let's turn the answers on.

V 070113.5.3

Customer Information

Contractor Information

Payee Information

Incentive Should Be Addressed To:		Installation Address	
Business Name	PacifiCorp Energy		
Attention	Ryan Witbeck		
Check Reference			
Address	1450 Naughton Plant Rd.		
City, State, Zip	Kemmerer	$W Y$	83101

Eligibility Information

Wyoming FinAnswer Express Program
07/01/13 Effective Date

	Project ID Lighting Coordinator Tool Prepared by Project Manager Account Manager	/01/13 Effective Date
You Can Now Use The Project Information Tab		
		Danita Skoglund
		Dan Kuhl

Processing Information

Construction Type	Retrofit	Stage	Preliminary
Project Cost			
Material Labor Other Total Project Cost $\$ 1,430,900.00$ $\$ 180,310.00$ $\$ 12,430.00$ $\$ 1,623,640.00$			

Space Type \& Size

	Calculation Method	Whole Building	Allowed Wattage		360,000	
1	Other		$\begin{aligned} & F T^{2} \\ & F T^{2} \end{aligned}$	600,000	0.60	$\begin{aligned} & W / F T^{2} \\ & W / F T^{2} \end{aligned}$
			$F T^{2}$			W/FT ${ }^{2}$
			$F T^{2}$			W/FT ${ }^{2}$
			$F T^{2}$			W / F^{+1}
Other			$F T^{2}$	600,000	0.60	$W / F{ }^{2}$

Lighting Operation Schedule

\# of Holidays Closed?	Day	A	B	C	D	E
0	Mon Tue	24.0	12.0	12.0		
Op Weeks Per Year		24.0	12.0	12.0		
52	Wed	24.0	12.0	12.0		
"S" is for a seasonal	Thu	24.0	12.0	12.0		
operational schedule	Fri	24.0	12.0	12.0		
S is for 0 hrs/year	Sat	24.0	4.0	12.0		
X is for 8760 hrs/year	Sun	24.0	0.0	12.0		
Y is for 4380 hrs/year	Total	8,760	3,337	4,380		

Additional Information

ROCKY MOUNTAIN POWER

Let's turn the answers on.

V 070113.5.3
Customer Information

Eligibility Information

Wyoming FinAnswer Express Program
07/01/13 Effective Date

Processing Information

Construction Type	Retrofit	Stage	Preliminary		
Project Cost					Total Project Cost
Material	Labor	Other	$\$ 461,200.00$		
$\$ 406,400.00$	$\$ 51,250.00$	$\$ 3,550.00$			

Space Type \& Size

	Calculation Method	Whole Building	Allowed Wattage		360,000	
1	Other		$\begin{aligned} & F T^{2} \\ & F T^{2} \end{aligned}$	600,000	0.60	$\begin{aligned} & W / F T^{2} \\ & W / F T^{2} \end{aligned}$
			$F T^{2}$			W/FT ${ }^{2}$
			$F T^{2}$			W/FT ${ }^{2}$
			$F T^{2}$			W / F^{+1}
Other			$F T^{2}$	600,000	0.60	$W / F{ }^{2}$

Lighting Operation Schedule

\# of Holidays Closed?	Day	A	B	C	D	E
0	Mon Tue	24.0	12.0	12.0		
Op Weeks Per Year		24.0	12.0	12.0		
52	Wed	24.0	12.0	12.0		
"S" is for a seasonal	Thu	24.0	12.0	12.0		
operational schedule	Fri	24.0	12.0	12.0		
S is for 0 hrs/year	Sat	24.0	4.0	12.0		
X is for 8760 hrs/year	Sun	24.0	0.0	12.0		
Y is for 4380 hrs/year	Total	8,760	3,337	4,380		

Additional Information

														ROCKY MOUNTAIN POWER Let's turn the answers on. Project Tracking	
CategoryFixtureLampLamp (W)Lamp QtyBallastFactor															
										579,089 kWh Saved Per Year					
														Preliminary	
										Lighting Power Density				Pre-Inspection	
				Custom Fixture						0.60	Code Existing Proposed	100.0% Better Than Code LPD			
										0.00				Agreement Needed	
				Standard Incentive (12.8\% of Cost Paid By Incentive)						0.00					
Preliminary									Naughton Power Plant - Exterior ONLY					Contracted	
	15 Out Of 127 Lines Used			Existing	 537 0 Interior Exterior				Proposed	537Qty		Interior Exterior		Post-Inspection	
			Space Description					0					0		
			182,616					0			67,940		Final Review Needed		
			Fixture	Qty	Controls	Fixture Wattage	Space Wattage	Fixture	Controls		Fixture Wattage	Space Wattage	$\downarrow \downarrow$ Project Notes $\downarrow \downarrow$		
1				UNIT \#1											UNIT \#1
2	+			Precep -W allpacks Exterior	MH-175W-CWA	22		215	4,730	CUST: LEDWP-47W	22		47	1,034	Type WP1
3	+		OUTDOOR LIGHTING-High Mast	MH-1000W-CWA	36		1,080	38,880	CUST: LEDHB-511W	36		511	18,396	High Mast Light - LED 511w	
4	+		Outdoor LightingVarious locationsPlant Standard	MH-175W-CWA	79		215	16,985	CUST: LEDHB-78W	79		78	6,162	Type RLB1	
5	+		Outdoor LightingVarious locationsPlant Standard	HPS-150W	37		188	6,956	CUST: LEDHB-78W	37		78	2,886	Type RLB1	
6	+		Outdoor LightingFloods	HPS-1000W	9		1,100	9,900	CUST: LEDHB-511W	9		511	4,599	LED Flood 511w	
7	+		Outdoor LightingFloods	HPS-400W	37		465	17,205	CUST: LED Flood 158W	37		158	5,846	Type FL3	
8	+		Outdoor LightingWallpacks	MH-175W-CWA	31		215	6,665	CUST: LEDWP-47W	31		47	1,457	Type WP1	
9	+		Outdoor LightingWallpacks	MH-250W-CWA	26		295	7,670	CUST: LEDWP-47W	26		47	1,222	Type WP1	
10	+		Outdoor LightingCobra Heads	HPS-250W	46		295	13,570	CUST: 121W LED Flood Lite	46		121	5,566	Type FL4	
11	+		Outdoor LightingFloods(Halogen)	ICH-500W	37		500	18,500	CUST: LED Flood 158W	37		158	5,846	Type FL3	
12	+		SCRUBBER STACKS(Plant Standard)Exterior	MH-175W-CWA	128		215	27,520	CUST: LEDHB-78W	128		78	9,984	Type RLB1	
13	+		UNIT 3 COOLING TOWER-Stantion MTExterior	MH-175W-CWA	23		215	4,945	CUST: LEDHB-78W	23		78	1,794	Type RLB1	
14	+		UNIT 3 COOLING TOWER-FloodsExterior	HPS-400W	7		465	3,255	CUST: LED Flood 158W	7		158	1,106	Type FL3	
15	+		UNIT 2 COOLING TOWER-FloodExterior	HPS-400W	7		465	3,255	CUST: LED Flood 158W	7		158	1,106	Type FL3	
16	+		UNIT 1 COOLING TOWER-Stantion Mt. - Exterior	MH-175W-CWA	12		215	2,580	CUST: LEDHB-78W	12		78	936	Type RLB1	

LT - Naughton Power Plant Exterior.xlsm

Appendix C

Fixture Specification Sheets

PacifiCorp Power Plant Projects Fixture Schedule

Fixture Type	Manufacturer	Catalog Number	Description	Other Lighting Tool Descriptions
BNLO1	Osram Sylvania	QTP2x32T8/UNV PSN-TC \# 51402	2L program start NLO Ballast	
BNLO2	Osram Sylvania	QTP4x32T8/UNV PSN-SC \# 51404	4L program start NLO Ballast	
BHLO2	Osram Sylvania	QHE 4x32T8/UNV PSH-HT \# 49455	4L program start HLO Ballast	
FL3	Lithonia	DSXF3 LED 8 A530/40K MSP MVOLT THK DDBXD	158w LED flood light	
FL4	Crouse Hinds	PFM9L CY/UNV1 76	121w LED flood light	
HB1	Lithonia	IBL 18L WD LP740 DLC	213w LED high bay	
HB6	Lithonia	IBL 48L WD LP740 DLC	515w LED high bay	
L1	Osram Sylvania	FO32/841/XPS/ECO3 \# 21681	21681 HPT8 lamp 32w	
L2	Osram Sylvania	FO28/841/XP/XL/ECO3 \# 22167	22167 HPT8 lamp 28w	
RLB1	Crouse Hinds	PVM7LDM2/UNV1	78W Retrofit low bay-Indust	
SK2	Lithonia	AVRK8 232 CW42 1/4 BINP WHR	HPT8 strip kit with reflector	
WP1	Lithonia	DSXW1 LED 20C 700 40K T3M MVOLT DDBXD	47w LED wall pack	
T8-17W			2 foot linear T8 17W 2'x2' kit	FLT8-17W \times 3L x 2'-IS(E) L
IC			integral occupancy sensor	
W-OCC			Wireless occupancy sensor	

d"series

Specifications

Luminaire

Width:	$13-3 / 4^{\prime \prime}$ $(34.9 \mathrm{~cm})$Weight:12 lbs $(5.4 \mathrm{~kg})$
Depth:$10^{\prime \prime}$ $(25.4 \mathrm{~cm})$	
Height:$6-3 / 8^{\prime \prime}$ $(16.2 \mathrm{~cm})$	

\section*{Back Box (BBW, ELCW)
 | Width: | $13-3 / 4^{\prime \prime}$ BBW
 $(34.9 \mathrm{~cm})$ Weight: | 5 lbs
 $(2.3 \mathrm{~kg})$ | |
| :--- | ---: | :--- | ---: |
| Depth: | $44^{\prime \prime}$ | ELCW | 10 lbs |
| | $(10.2 \mathrm{~cm})$ | Weight: | $(4.5 \mathrm{~kg})$ |}

Catalog Number
Notes
Fspo \quad FL3

Introduction

The D-Series Wall luminaire is a stylish, fully integrated LED solution for building-mount applications. It features a sleek, modern design and is carefully engineered to provide long-lasting, energy-efficient lighting with a variety of optical and control options for customized performance.
With an expected service life of over 20 years of nighttime use and up to 74% in energy savings over comparable 250W metal halide luminaires, over comparable 250W metal halide luminaires, lighting solution that produces sites that are exceptionally illuminated.

DSXF3 LED 8 A530/40K MSP MVOLT THK DDBXD

Ordering Information

conduit (BBW only)

EXAMPLE: DSXW1 LED 20C 1000 40K T3M MVOLT DDBTXD

DSXW1 LED

NOTES

1 MVOLT driver operates on any line voltage from $120-277 \mathrm{~V}(50 / 60 \mathrm{~Hz})$. Specify $120,208,240$ or 277 options only when ordering with fusing (SF, DF options), or photocontrol (PE option).
Back box ships installed on fixture. Cannot be field installed. Cannot be ordered as an accessory.
3 Photocontrol (PE) requires 120, 208, 240 or 277 voltage option. Not available with motion/ambient light sensors (PIR or PIRH).
4 Specifies the Sensor Switch SBR-10-ODP control; see Motion Sensor Guide for details. Includes ambient light sensor. Not available with "PE" option (button type photocell). Dimming driver standard.
5 Specifies the Sensor Switch SBR-6-ODP control; see Motion Sensor Guide for details. Includes ambient light sensor. Not available with "PE" option (button type photocell). Dimming driver standard.
6 Not available with 20 LED/1000 mA configuration (DSXW1 LED 20C 1000).
7 Not compatible with conduit entry applications. Not available with BBW mounting option.
8 Single fuse (SF) requires 120 or 277 voltage option. Double fuse (DF) requires 208 or 240 voltage option.
9 Also available as a separate accessory; see Accessories information.

Accessories

Accessories

L/GHTING.

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Actual wattage may differ by $+/-8 \%$ when operating between $120-480 \mathrm{~V}+/-10 \%$. Contact factory for performance data on any configurations not shown here.

LEDs	Drive Current (mA)	Performance Package	System Watts	Dist. Type	$\begin{gathered} 40 \mathrm{~K} \\ (4000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 50 \mathrm{~K} \\ (5000 \mathrm{~K}, 65 \mathrm{CRI}) \end{gathered}$					
					Lumens	B	U	G	LPW	Lumens	B	U	6	LPW	
530		10C530 --K	20 W	T2S	1724	1	0	1	86	1807	1	0	1	90	
		T2M		1729	1	0	1	86	1812	1	0	1	91		
		T3S		1709	1	0	1	85	1792	1	0	1	90		
		T3M		1753	1	0	1	88	1838	1	0	1	92		
		T4M		1753	1	0	1	88	1837	1	0	1	92		
		TFTM		1766	1	0	1	88	1851	1	0	1	93		
$\begin{gathered} 10 C \\ (10 \mathrm{LEDS}) \end{gathered}$	700		10C700 --K	27 W	T2S	2234	1	0	1	83	2341	1	0	1	87
					T2M	2241	1	0	1	83	2349	1	0	1	87
					T3S	2216	1	0	1	82	2322	1	0	1	86
					T3M	2272	1	0	1	84	2381	1	0	1	88
					T4M	2272	1	0	1	84	2381	1	0	1	88
		TFTM			2289	1	0	1	85	2399	1	0	1	89	
	1000	10C $1000-\mathrm{K}$	40W	T2S	2992	1	0	1	75	3136	1	0	1	78	
				T2M	3001	1	0	1	75	3146	1	0	1	79	
				T3S	2967	1	0	1	74	3110	1	0	,	78	
				T3M	3043	1	0	1	76	3189	1	0	1	80	
				T4M	3043	1	0	1	76	3189	1	0	1	80	
				TFTM	3066	1	0	1	77	3213	1	0	1	80	
20 C	530	20C530-K	36W	T2S	3545	1	0	1	98	3715	1	0	1	103	
				T2M	3556	1	0	1	99	3727	1	0	1	104	
				T3S	3515	1	0	1	98	3685	1	0	1	102	
				T3M	3606	1	0	2	100	3779	1	0	2	105	
				T4M	3605	1	0	1	100	3779	1	0	1	105	
				TFTM	3632	1	0	1	101	3807	1	0	1	106	
	700	20C700 --K	47 W	T2S	4357	1	0	1	93	4566	1	0	1	97	
				T2M	4370	1	0	1	93	4580	1	0	1	97	
				T3S	4320	1	0	1	92	4528	1	0	1	96	
				T3M	4431	1	0	2	94	4644	1	0	2	99	
				T4M	4430	1	0	1	94	4644	1	0	2	99	
				TFTM	4464	1	0	1	95	4678	1	0	1	100	
	1000	20C 1000 --K	75W	T2S	5745	2	0	2	77	6020	2	0	2	80	
				T2M	5763	1	0	2	77	6039	2	0	2	81	
				T3S	5697	1	0	1	76	5970	1	0	2	80	
				T3M	5843	1	0	2	78	6123	2	0	2	82	
				T4M	5843	1	0	2	78	6123	1	0	2	82	
				TFTM	5887	1	0	2	78	6169	1	0	2	82	

Lumen Ambient Temperature (LAT) Multipliers
Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.02
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.01
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.00
$\mathbf{2 5 ^ { \circ } \mathbf { C }}$	$\mathbf{7 7 ^ { \circ }} \mathbf{F}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	1.00
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.98

Projected LED Lumen Maintenance
Data references the extrapolated performance projections for the DSXW1 LED 20C 1000 platform in a $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM 80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance Factor	1.0	0.95	0.93	0.88

Electrical Load

			Current (A)					
LEDs	$\begin{array}{\|c\|} \text { Drive Current } \\ (\mathrm{mA}) \end{array}$	System Watts	120	208	240	277	347	480
	350	14 W	0.13	0.07	0.06	0.06	-	-
$10 ¢$	530	20 W	0.19	0.11	0.09	0.08	-	-
10 C	700	27 W	0.25	0.14	0.13	0.11	-	-
	1000	40 W	0.37	0.21	0.19	0.16	-	-
	350	25 W	0.23	0.13	0.12	0.10	-	-
	530	36 W	0.33	0.19	0.17	0.14	-	-
20 C	700	47 W	0.44	0.25	0.22	0.19	-	-
	1000	75 W	0.69	0.40	0.35	0.30	-	-

Photometric Diagrams

Isofootcandle plots for the DSXW1 LED 20C 1000 40K. Distances are in units of mounting height (15^{\prime}).

Distribution overlay comparison to 250 W metal halide

FEATURES \& SPECIFICATIONS

INTENDED USE

The energy savings, long life and easy-to-install design of the D-Series Wall Size 1 make it the smart choice for building-mounted doorway and pathway illumination for nearly any facility.

CONSTRUCTION

Two-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance. The LED driver is mounted to the door to thermally isolate it from the light engines for low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in textured and non-textured finishes. OPTICS
Precision-molded proprietary acrylic lenses provide multiple photometric distributions tailored specifi cally to building mounted applications. Light engines are available in 3000 K (80 min . CRI),

4000K (70 min. CRI) or 5000K (65 min. CRI) configurations
ELECTRICAL
Light engine(s) consist of 10 high-efficacy LEDs mounted to a metal-core circuit board to maximize heat dissipation and promote long life (L88/100,000 hrs at $25^{\circ} \mathrm{C}$). Class 1 electronic drivers have a power factor $>90 \%, \mathrm{THD}<20 \%$, and an expected life of 100,000 hours. Surge protection device meets a minimum Category C Low (per ANSI/IEEE C62.41.2).
INSTALLATION
Included universal mounting bracket attaches securely to any 4" round or square outlet box for quick and easy installation. Luminaire has a slotted gasket wireway and attaches to the mounting bracket via corrosion-resistant screws.

LISTINGS

CSA certified to U.S. and Canadian standards. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient.

WARRANTY

Five year limited warranty. Full warranty terms located at www.acuitybrands.com/ CustomerResources/Terms_and_conditions.aspx.

Note: Specifications subject to change without notice.

LITHONIA

FEATURES \& SPECIFICATIONS
INTENDED USE - The AVRK series retrofit kits are designed to convert existing 4' and 8' fluorescent strip fixtures to state of the art energy-efficient fluorescent lamp and ballast technology along with high performance reflectors for enhanced light output. Retrofitting older fixtures can greatly reduce energy consumption and lamp replacement costs while improving light. The channels are shipped fully assembled and pre-wired to allow fast, easy installation with minimal labor. Choice of channel widths ensures compatibility with the broadest range of existing fixtures. The AVRK strip reflector conversion kit maximizes fixture efficiency and provides enhanced uniform light distribution.
CONSTRUCTION - One-piece 4' or 8' nominal channels are formed from rugged corrosion resistant aluminum for durability and light weight. All channel aluminum is painted with high-reflectance white paint. Reflectors are precision formed aluminum with highly reflective white paint or 95% reflective specular aluminum. The AVRK is available in two channel widths designed to fit most commercial fluorescent strip fixtures, and the kit installs with simple hand tools. The conversion kit includes a "quick access" aluminum ballast cover secured to the channel with captive quarter-turn fasteners. The snap-in rotary lampholders, ballasts, and ballast quick-disconnect plug are shipped prewired for quick installation. Reflector panels (4' sections) attach to channel with captive quarter-turn fasteners.
ELECTRICAL - Standard ballast is high-efficiency, CEE (Consortium for Energy Efficiency) qualified NEMA premium, instant start, $<10 \%$ THD, universal voltage and sound rated A. Suggested lamps are high-lumen, long-life super T 8 lamps which contribute to optimizing system performance. Optional program start and step-dim bi-level ballasts are available as well as several ballast factor options to maximize energy savings and to allow the amount of light to be balanced to the application. Rotary lampholders and ballast disconnect plug are prewired to ballast assembly.
INSTALLATION - Two channel widths are available for optimum fit to the broadest range of commercial strip fixtures. One-piece aluminum covers with snap-in rotary lampholders attach to the existing channel using provided Tek screws. Ballast is factory mounted to the "quick access" plate and pre-wired to the lampholders. After wiring connection is made to included ballast disconnect plug, ballast access plate secures to channel cover with captive quarter-turn fasteners. Reflector panels (4' sections) attach to channel with captive quarter-turn fasteners.
Installation is designed for maximum speed and simplicity.
LISTING - UL classified for luminaire conversion, retrofit.
WARRANTY - 1-year limited warranty. Complete warranty terms located at:
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.
Note: Specifications subject to change without notice.

AVRK

ORDERINGINFORMATION
For shortest lead times, configure products using bold options.
Example: AVRK8 232 CW42 1/4 BINP WHR

Series	Number of lamps	Wattage	Width	Ballast configuration	Ballast type	Reflector type
AVRK4 4' long, no uplight AVRK8 8' long, no uplight AVRKA4 4' long, 10\% uplight AVRKA8 8' long, 10\% uplight	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	32	$\begin{aligned} & \text { CW42 } \\ & \text { CW50 } \end{aligned}$	AVRK4 / AVRKA4 (blank) 1 or 2-lamp ballast AVRK8 / AVRKA8 (blank) Two 2-lamp ballast 1/4 One 4-lamp ballast	BINP BIHP BILP BPNP BPHP BPLP BSNP ${ }^{1}$	$\begin{aligned} & \text { WHR } \\ & \text { SSR } \end{aligned}$

Notes
1 Not available as $1 / 4$
2 AVRK channels and reflectors will ship separately for field installation. Example:
(qty 1) AVRK8 232 (W42 BINP SSR ships as
(qty 1) AVRK8 232 CW42 1/4 BINP L/REFL (qty 2) AVRK 4FT SSR REFL

Ideal for general high bay/low bay illumination

The Champ ${ }^{\circledR}$ Pro PVM Family

Champ ${ }^{\otimes}$ Pro PVM Series Luminaires are designed to provide full-spectrum, crisp, white light with a true IES type V distribution Five versions of the PVM Series are available, providing ideal solutions for a wide range of applications.

Champ ${ }^{\text {P }}$ Pro PVM	Equivalent	
Pro PVM	HID	Typical Energy
Model	Luminaire	Savings / Lifetime
PVM3L	70W-100W	Up to 70\%
PVM5L	100W-150W	reduction in energy
PVM7L	150W-175W	costs and 60,000
PVM9L	175W-200W	hours of continuous
PVM11L	200W-400W	operation!
Certifi	cations	and
Compl	liances:	

- UL1598
- UL1598A
- cUL
- NEMA 4X; IP66
- DesignLights Consortium ${ }^{\circledR}$ approved for select models (refer to Ordering Information for details)

LED System:

- High brightness light emitting diode (LED) arrays
- Color temperature: 3000K (CRI 82) where a warmer color is preferred and 5600 K (CRI 65) where a cooler color is required
- Advanced heat sink design ensures LED does not exceed manufacturer's temperature ratings across all specified ambient conditions
Ordering Information:

M	3L Series \dagger	5L Series \dagger	7L Series \dagger	9L Series \dagger	11L Series \dagger
Luminaire Less Mounting Module	PVM3LDM2/UNV1	PVM5LDM2/UNV1	PVM7LDM2/UNV1	PVM9LDM2/UNV1	PVM11LDM1/UNV
3/4" Pendant	PVM3L2ADM2/UNV1	PVM5L2ADM2/UN	VM7L2ADM2/UNV1	VM9L2ADM2/UNV1	L2ADM1/UNV
1" Pendant	PVM3L3ADM2/UNV1	PVM5L3ADM2/UNV1	PVM7L3ADM2/UNV1	PVM9L3ADM2/UNV1	VM11L3ADM1/UNV
3/4" Cone Penda	PVM3L2BDM2/UNV	PVM5L2BDM2/UNV1	PVM7L2BDM2/UNV1	PVM9L2BDM2/UNV1	VM11L2BDM1/UNV
1" Cone Pendant	PVM3L3BDM2/UNV1	PVM5L3BDM2/U	PVM7L3BDM2/UNV1	VM9L3BDM2/UNV1	PVM11L3BDM1/UNV
3/4" Flexible Pendant	PVM3L2HADM2/UNV1	PVM5L2HADM2/UNV1	PVM7L2HADM2	PVM9L2HADM2/UNV1	M11L2HADM1/UNV
$3 / 4$ " Ceiling Mount Thru Feed	PVM3L2CDM2/UNV1	PVM5L2CDM2/UNV1	PVM7L2CDM2/UNV1	PVM9L2CDM2/UNV1	PVM11L2CDM1/UNV
1" Ceiling Mount Thru Feed	PVM3L3CDM2/UNV1	PVM5L3CDM2/UNV1	M7L3CDM2/UNV1	PVM9L3CDM2/UNV1	PVM11L3CDM1/UNV
3/4" Wall Mount Thru Feed	PVM3L2TWDM2/	P	PVM7L2TWDM2/UNV1	M9L	VM11L2TWDM1/UNV
1" Wall Mount Thru Feed	PVM3L3TWDM2/UNV1	PVM5L3TWDM2/UN	PVM7L3TWDM2/UN	PVM9L3TWDN	PVM11L3TWDM1/UNV
11/2" Stanchion 25°	PVM3LJDM2/UNV1	PVM5LJDM2/UNV1	PVM7LJDM2/UNV1	PVM9LJDM2/UNV1	PVM11LJDM1/UNV
11/2" Stanchion	PVM3LPDM2/UNV1	PVM5LPDM2/UNV1	VM7LPDM2/UNV1	PVM9LPDM2/UNV1	VM11LPDM1/UNV
\dagger DesignLights C DM2/UNV1 with For 347 VAC op enclosure for u For warm white co *5 year limited wa	nsortium approved mod DM2/120*. 11L model ap ion, replace DM2/UNV1 with 11L series. or temperature, use W desi ranty. Refer to page 2 of th	els. Cool white only. 3L proved at $120-277 \mathrm{~V}$. with DM3/347. For 480 VA gnation after luminaire style	rough 9L models appro option, replace DM2/U xample: PVM3LWDM2/UN	ed at 120 V only. For 12 V1 with DM4/480. NOT 1). NOTE: Not available for ouse-Hinds standard Terms	VAC option, replace : Requires additional 9L series. and Conditions.

Standard Materials:

- Lamp housing and adapter - die cast aluminum with Corro-free ${ }^{\text {TM }}$ epoxy powder coat
- Lens - heat- and impact-resistant glass
- Gaskets - silicone
- External hardware - stainless steel
- Factory-sealed, no external seals required

Drivers:

Model	3L -9L	11L
Standard	$90-305$ VAC, $50 / 60 \mathrm{~Hz} ; 108-250$ VDC	100-240, 277 VAC
Option 1	347 VAC Model	347 VAC Kit Available
Option 2	480 VAC Model	480 VAC Kit Available

Electrical Ratings:

	PVM3L	PVM5L	PVM7L	PVM9L	PVM11L
Voltage Range, VAC	$100-277 \mathrm{~V}$	$100-277 \mathrm{~V}$	$100-277 \mathrm{~V}$	$100-277 \mathrm{~V}$	$100-240,277 \mathrm{~V}$
Frequency	$50 / 60 \mathrm{~Hz}$				
Input Power	46 Watts	60 Watts	78 Watts	94 Watts	134 Watts
Input Amps (Max.)	0.5	0.7	0.8	0.98	1.7
Voltage Range, VDC	$108-250$	$108-250$	$108-250$	$108-250$	Not Available
Power Factor	>0.90	>0.90	>0.90	>0.90	>0.90

Champ ${ }^{\oplus}$ Pro PVM Series Luminaires

Ideal for general high bay/low bay illumination

Options:

Dimensions:

Family Tree:

Weights:
Net Luminaire Weight: $\quad 17.8 \mathrm{lb}$. $\quad 8.07$ kg.

Mounting Module add (lb.)

Pendant

1.25	0.57
4.00	1.81
1.50	0.68
2.75	1.25
4.50	2.04
3.50	1.59
4.50	2.04

Ambient Temperature:

Champ ${ }^{\circledR}$ Pro PVM Model	Max. Temp. ${ }^{\circ} \mathbf{C}$
PVM3L	55
PVM5L	55
PVM7L	55
PVM9L	55
PVM11L	40

UL/CUL Listed
NEMA 4X
IP66

Ideal for general high bay/low bay illumination

Photometric Data:

Champ ${ }^{\oplus}$ Pro 78 Watt* - PVM7L

CANDELAS		ZONAL LUMENS		
VERTICAL ANGLE	FRONT SIDE	ZONE	WITH LUMENS	$\%$ LUMEN
0	2245	$0-10$	212	4%
5	2234	$10-20$	612	10%
15	2167	$20-30$	941	15%
25	2041	$30-40$	1155	18%
35	1846	$40-50$	1207	19%
45	1566	$50-60$	1077	17%
55	1207	$60-70$	764	12%
65	775	$70-80$	286	5%
75	251	$80-90$	13	0%
85	0	$90-100$	0	0%
90	0	$100-120$	0	0%
		Total	6267	100%

Mtg. Hgt.	A	B	C	D	E	F
8^{\prime}	31.25	15.63	7.81	3.13	1.56	0.78
10^{\prime}	20.00	10.00	5.00	2.00	1.00	0.50
12^{\prime}	13.89	6.94	3.47	1.39	0.69	0.35
16^{\prime}	7.81	3.91	1.95	0.78	0.39	0.20
20^{\prime}	5.00	2.50	1.25	0.50	0.25	0.13

LUMEN OUTPUT FOR CHAMP® LED LUMINAIRES		
Luminaire Series System Watts Lumens PVM3L 46 3748 PVM5L 60 4654 PVM7L 78 6267 PVM9L 94 7085 PVM11L 134 8880		

*Testing performed in accordance with IES LM-79-08.

OCTRON® 800 XP® XL ECOLOGIC®

EXtended Performance EXtended Life Fluorescent Lamps

SYLVANIA OCTRON 800 XP XL ECOLOGIC3 lamps feature eXtended Life benefits of up to 75,000 hours life on instant start ballasts and 84,000 hours life on programmed rapid start ballasts. The life ratings reflect up to 88% longer life than T8 XP or XV lamps, which is the equivalent of an additional 8 years of maintenance-free lighting for typical operating cycles of 4,000 hours per year.

OCTRON 800 XP XL 32W lamps deliver 14\% more light than standard 700 series T8 lamp on normal ballast factor, instant start electronic ballasts. OCTRON 800 XP XL SUPERSAVER lamps provide up to 22% energy savings over standard 32 watt OCTRON lamps. Combining these lamps with QUICKTRONIC high efficiency instant start, low power ballasts will result in up to 42% energy savings over energy saving T12 magnetically ballasted fluorescent systems. Pair with QUICKTRONIC electronic ballast for the industry's first and most comprehensive QUICK 60 ${ }^{\circledR}$ System Warranty.

Key Features \& Benefits

- Available in full wattage (32 W) and reduced wattage SUPERSAVER ${ }^{\circledR}$ types
- Energy savings compared to standard 32 W T8 lamp
- Up to 12.5% with the 28 W XP/XL/SS
- Up to 22% with the 25 W XP/XL/SS
- Up to 96% mean lumens
- Dimmable (see application note 4)
- Lead-free and RoHS compliant
- Made in USA
- Retrofit lamp for existing T8 instant start systems
- Up to 75,000 hours average life @ 12 hours per start
- Operate 800 XP XL SUPERSAVER lamps on SYLVANIA's QUICKTRONIC ${ }^{\circledR}$ PROStart ${ }^{\text {® }}$ programmed rapid start ballasts
-84,000 hours average life @ 12 hours per start
- SUPERSAVER 25W and 28W types meet CEE reduced wattage T8 specifications

SYLVANIA OCTRON T8 ECOLOGIC3 fluorescent lamps pass the Federal Toxicity Characteristic Leaching Procedure (TCLP') criteria for classification as non-hazardous waste in most states².
ECOLOGIC3 represents a more comprehensive approach to sustainability encompassing high efficiency, long life and RoHS/TCLP compliance.
Complies with European Union Restriction of Hazardous Substances Directive (Directive 2002/95/EC)

1. TCLP test results are based on NEMA LL Series standards and are available on request.
2. Lamp disposal regulations may vary; check your local \& state regulations.

Product Offering

Lamp Type	Wattage	CCT
OCTRON 800 XP XL		
FO32/800/XP/XL/EC03	32	$3500 \mathrm{~K}, 4100 \mathrm{~K} \& 5000 \mathrm{~K}$
OCTRON 800 XP XL SUPERSAVER		
F028/800XP/XL/SS/ECO3	28	$3000 \mathrm{~K}, 3500 \mathrm{~K}, 4100 \mathrm{~K} \& 5000 \mathrm{~K}$
F032/25W/800/XP/XL/SS/EC03	25	$3500 \mathrm{~K} \& 4100 \mathrm{~K}$

Application Information

Applications

- Education
- Healthcare
- Industrial
- Office
- Retail

[^2]
Specification Data

Fixture Description:	Type
Project/Job:	
SYLVANIA lamp:	
SYLVANIA ballast:	
Notes:	

Ordering Information

Item Number	Ordering Abbreviation	Watts	Bulb	Base	Initial Lumens	Mean Lumens ${ }^{1}$	Im/W	Avg. Rated Life				CCT CRI
								Instant Start		Programmed Rapid Start		
								3 hrs/ start	$\begin{aligned} & 12 \mathrm{hrs} \\ & \text { start } \end{aligned}$	3 hrs/ start	12 hrs/ start	
21576	F032/835/XP/XL/EC03	32	T8	Med Bi-Pin	2950	2830	92	36,000	52,000	65,000	67,000	3500 K 85
21577	F032/841/XP/XL/EC03	32	T8	Med Bi-Pin	2950	2830	92	36,000	52,000	65,000	67,000	4100 K 85
22002	F032/850/XP/XL/EC03	32	T8	Med Bi-Pin	2950	2830	92	36,000	52,000	65,000	67,000	5000K 81
22166	F028/835/XP/XL/SS/EC03	28	T8	Med Bi-Pin	2600	2470	93	50,000	75,000	80,000	84,000	3500 K 85
22167	F028/841/XP/XL/SS/EC03	28	T8	Med Bi-Pin	2600	2470	93	50,000	75,000	80,000	84,000	4100K 85
22326	F028/850/XP/XL/SS/EC03	28	T8	Med Bi-Pin	2600	2470	93	50,000	75,000	80,000	84,000	5000K 81
22349	F032/25W/830/XP/XL/SS/EC03	25	T8	Med Bi-Pin	2400	2280	96	50,000	75,000	80,000	84,000	3000 K 85
22222	F032/25W/835/XP/XL/SS/EC03	25	T8	Med Bi-Pin	2400	2280	96	50,000	75,000	80,000	84,000	3500 K 85
22223	F032/25W/841/XP/XL/SS/EC03	25	T8	Med Bi-Pin	2400	2280	96	50,000	75,000	80,000	84,000	4100K 85

1. Measured at 40% of rated life

Ordering Guide

FO	28	1	8	41	XP/XL	1	ss	1	ECO3
Fluorescent	Wattage		CRI ≥ 81	Color	EXtended		SUPERSAVER		ECOLOGIC3
OCTRON	25, 28, 32			Temperature	Performance				
				$30=3000 \mathrm{~K}$	EXtended				
				$35=3500 \mathrm{~K}$	Life				
				$41=4100 \mathrm{~K}$					
				$50=5000 \mathrm{~K}$					

Lamp Dimensions

Related Literature

For maximum energy savings consider pairing with the following electronic ballasts:
Ballast Technology Applications \& Specification Guide (Literature Code: ECS-SPECGUIDE2013)
QUICKTRONIC ${ }^{\circledR}$ High Efficiency NEMA Premium Guide (Literature Code: ECS112)
QUICK 60+ System Warranty (Literature Code: ECS140) /sylvania

SYLVANIA, ECOLOGIC, OCTRON, PROStart, QUICK 60+, SUPERSAVER and XP are registered trademarks of OSRAM SYLVANIA Inc. SEE THE WORLD IN A NEW LIGHT is a registered trademark of OSRAM SYLVANIA Inc.
QUICKTRONIC is a registered trademark of OSRAM GmbH.
Specifications subject to change without notice.

Sample Specification

Lamp(s) shall be OCTRON ${ }^{\circledR}$ XP ${ }^{\circledR} \mathrm{XL}$ (32W, SUPERSAVER ${ }^{\oplus}$ XL 28W, SUPERSAVER XL 25W) ECOLOGIC ${ }^{\circledR}$ 3 4-foot lamp(s) having medium bi-pin bases. Lamp(s) shall be designed to pass the Federal TCLP test in force at the time of manufacture. Lamp(s) shall have an average rated life of ($36,000-67,000$ hrs on 32 W and 50,000-84,000 hrs on 28W and 25W) at 3 hours per start when operated on 78 (instant start, programmed start ballasts), (2950, 2600, 2400) initial lumens, 96% lumen maintenance on the 32 W and 95% lumen maintenance on the 28 and 25 W a correlated color temperature of ($3000 \mathrm{~K}, 3500 \mathrm{~K}, 4100 \mathrm{~K}, 5000 \mathrm{~K}$) and a CRI of (85, 81). The OCTRON ECOLOGIC3 lamp(s) shall be operated on QUICKTRONIC ${ }^{\circledR}$ electronic, high frequency ballasts with complete system warranty from the manufacturer covering lamps and ballast.

United States

OSRAM SYLVANIA
100 Endicott Street Danvers, MA 01923
1-800-LIGHTBULB

Trade

Phone: 800-255-5042
Fax: 800-255-5043

National Accounts

Phone: 800-562-4671
Fax: 800-562-4674

OEM/Special Markets

Phone: 800-762-7191
Fax: 800-762-7192
Retail
Phone: 800-842-7010
Fax: 800-842-7011
SYLVANIA Lighting Services
Phone: 800-323-0572
Fax: 800-537-0784

Display/Optic

Phone: 888-677-2627
Fax: 855-543-1043

Canada

OSRAM SYLVANIA LTD.
2001 Drew Road
Mississauga, ON L5S 1S4
1-800-LIGHTBULB
Trade
Phone: 800-263-2852
Fax: 800-667-6772
OEM/Special Markets/Display/Optic
Phone: 800-265-2852
Fax: 800-667-6772
Retail
Phone: 800-720-2852
Fax: 800-667-6772
SYLVANIA Lighting Services
Phone: 800-663-4268
Fax: 866-239-1278

Mexico

OSRAM MEXICO
Tultitlan/Edo de Mexico
Phone: 011-52-55-58-99-18-50

ENCELIUM Technologies

United States

Phone: 201-928-2400
Fax: 201-928-4028
Canada
Phone: 905-731-7678
Fax: 905-731-1401

OCTRON® XPS® ECOLOGIC®3

EXtended Performance Super Fluorescent Lamps

SYLVANIA OCTRON Extended Performance Super ECOLOGIC3 (XPS) lamps deliver the highest performance of all OCTRON lamps with initial and mean lumens that are up to 11% higher and substantially longer lamp life than standard T8 fluorescent lamps. These lamps are available in 2, 3 , and 4 -foot lengths, in a choice of correlated color temperatures with high lumen maintenance of 94%.

When OCTRON XPS ECOLOGIC lamps are operated on existing instant start ballasts as a retrofit lamp, they deliver higher lumen output than the installed system. In new installations paired with QUICKTRONIC PSX ballasts, 2-lamp systems deliver light levels comparable to 3-lamp 700 series T8 lamps, while maximizing energy savings and lamp life.

Key Features \& Benefits

- Highest lumen 4-foot OCTRON T8 lamps
- Also available in 2-foot (FO17) and 3-foot (FO25) sizes
- Longer lamp life than standard T8 lamps
- 40,000 hours rated life @ $12 \mathrm{hrs} /$ start on instant start ballast
- 42,000 hours rated life @ $12 \mathrm{hrs} /$ start on programmed rapid start ballasts
- 94\% Lumen maintenance
- TCLP compliant
- Lead free glass
- Made in USA
- QUICK 60+ ${ }^{\circledR}$ system warranty when paired with QUICKTRONIC ${ }^{\circledR}$ electronic ballasts
- Meets CEE Standards

SYLVANIA OCTRON 800 XPS ECOLOGIC3 fluorescent lamps are designed to satisfy the Federal Toxicity Characteristic Leaching Procedure (TCLP ${ }^{1}$) criteria for classification as non-hazardous waste in most states. ${ }^{2}$

ECOLOGIC3 represents a more comprehensive approach to sustainability encompassing high efficiency, long life and RoHS/TCLP compliance.

TCLP test results are based on NEMA LL Series standards
and are available on request.
${ }^{2}$ Regulations may vary. Check your local and state regulations.

This IIInt suure meets sestritions
on haza

on hazardous substances

Product Offering

| Ordering
 Abbreviation | Watts | Nominal
 Length (in) | CCT |
| :--- | :---: | :---: | :---: | | F017/800/XPS/EC03 | 17 | 24 | $3000 \mathrm{~K}, 3500 \mathrm{~K}, 4100 \mathrm{k}$ |
| :--- | :---: | :---: | :---: |
| F025/800/XPS/EC03 | 25 | 36 | $3000 \mathrm{~K}, 3500 \mathrm{~K}, 4100 \mathrm{k}$ |
| F032/800/XPS/EC03 | 32 | 48 | $3000 \mathrm{~K}, 3500 \mathrm{~K}, 4100 \mathrm{~K}$,
 $5000 \mathrm{~K}, 6500 \mathrm{~K}$ |

Application Information

Applications

- Hospitals
- Industrial
- Office
- Retail
- Schools

Application Notes

1. Minimum lamp starting temperature determined by ballast.
2. Operation below $50^{\circ} \mathrm{F}$ may affect lumen output or lamp operation.
3. For cold temperature applications, use in enclosed fixtures or use tube guards to maximize lamp performance.
4. Good ballast to socket to lamp contact essential for correct operation of system.
5. Actual lamp life dependent on ballast type, switching cycle and hours of operation per start.
6. These lamps may help facilitate compliance with national energy codes such as ASHRAE/IES 90.1 or IECC and state energy codes such as California Title 24. For more information contact your local building inspection office.

Ordering Information

Ordering Abbreviation	Watts (in)		Initial Lumens	Mean Lumens ${ }^{1}$	Lumens per Watt	Average Rated Life nt Start Programmed				CCT	CRI	
			3 hrs/ start			12 hrs/ start	3 hrs/ start	12 hrs/ start				
22150 F017/830/XPS/EC03	17	24		1400	1316	82	24,000	40,000	40,000	42,000	3000K	85
22151 F017/835/XPS/EC03	17	24	1400	1316	82	24,000	40,000	40,000	42,000	3500K	85	
22152 F017/841/XPS/EC03	17	24	1400	1316	82	24,000	40,000	40,000	42,000	4100K	85	
22153 F025/830/XPS/EC03	25	36	2200	2068	88	24,000	40,000	40,000	42,000	3000K	85	
22154 F025/835/XPS/EC03	25	36	2200	2068	88	24,000	40,000	40,000	42,000	3500K	85	
22155 F025/841/XPS/EC03	25	36	2200	2068	88	24,000	40,000	40,000	42,000	4100K	85	
21680 F032/830/XPS/EC03	32	48	3100	2914	97	24,000	40,000	40,000	42,000	3000K	85	
21697 F032/835/XPS/EC03	32	48	3100	2914	97	24,000	40,000	40,000	42,000	3500K	85	
21681 F032/841/XPS/EC03	32	48	3100	2914	97	24,000	40,000	40,000	42,000	4100K	85	
21660 F032/850/XPS/EC03	32	48	3100	2914	97	24,000	40,000	40,000	42,000	5000K	81	
21659 F032/865/XPS/EC03	32	48	3000	2820	94	24,000	40,000	40,000	42,000	6500K	81	
1. Measured at 40% of rated life.												

Ordering Guide

FO	32	I	8	35	XPS	I	ECO3
Fluorescent	Wattage:		$8=81-85 \mathrm{CRI}$	$30=3000 \mathrm{~K}$	EXtended		ECOLOGIC3
OCTRON ${ }^{\text {® }}$	17, 25,			$35=3500 \mathrm{~K}$	Performance		
	or 32 watts			$41=4100 \mathrm{~K}$	Super		
				$50=5000 \mathrm{~K}$			
				$65=6500 \mathrm{~K}$			

Lamp Dimensions

Item	(A) Max.	(B) Base Face			(D) Max.	A	
		to Opp	osite	(C) Max. Base		A	
	Overall	Pin (in		Face to Base	Outside	C	
Number	Length (in.)	Min.	Max.	Face (in.)	Diameter (in.)		
F017	23.78	23.41	23.50	23.22	1.1	$=$	T D
F025	35.78	35.40	35.50	35.22	1.1		
F032	47.78	47.41	47.50	47.22	1.1		

Technical Information

Lumen Maintenance
OCTRON XP, OCTRON XPS, OCTRON \& F4O/CW

Related Literature

For optimum system performance and warranty pair with these QUICKTRONIC ${ }^{\circledR}$ Systems:

High Efficiency NEMA Premium QUICKTRONIC ${ }^{\circledR}$ T8 Brochure (Literature Code: ECS112) Ballast Technology Applications \& Specification Guide (Literature Code: ECS-ELECTRONIC2009) QUICK 60+ ${ }^{\circledR}$ System Warranty (Literature Code: ECS140)

Specification Data

Fixture Description

Type

Project/Job

SYLVANIA Iamp

SYLVANIA ballast

Notes

Sample Specification

Lamp(s) shall be (a) OCTRON ${ }^{\circledR}$ EXtended Performance Super XPS $\begin{aligned} & \text { /ECO3 } \\ & \text { 2-foot, 3-foot, or 4-foot }\end{aligned}$ lamp(s) having medium bi-pin bases. Lamps shall pass the existing Federal TCLP limits. Lamp(s) shall have initial lumens of $(1400,2200,3100$, $3000)$, an average rated life of $(24,000,40,000)$ hours on (instant start, programmed rapid start) ballasts, a CRI of (85,81), 94% Iumen maintenance and a correlated color temperature of (3000K, 3500K, 4100K, 5000K or 6500K). Lamps shall be operated on QUICKTRONIC ballasts with complete system warranty from the manufacturer covering lamps and ballasts.

United States

OSRAM SYLVANIA
100 Endicott Street
Danvers, MA 01923

Trade

Phone: 1-800-255-5042
Fax: 1-800-255-5043

National Accounts

Phone: 1-800-562-4671
Fax: 1-800-562-4674

OEM/Special Markets

Phone: 1-800-762-7191
Fax: $\quad 1-800-762-7192$

Display/Optic

Phone: 1-888-677-2627
Fax: 1-800-762-7192

Canada

OSRAM SYLVANIA LTD.
2001 Drew Road
Mississauga, ON L5S 1S4

Trade
 Phone: 1-800-263-2852
 Fax: 1-800-667-6772

OEM/Special Markets/Display/Optic
Phone: 1-800-265-2852
Fax: 1-800-667-6772

FEATURES \& SPECIFICATIONS

INTENDED USE - Ideal one-for-one replacement of conventional high bay systems such as HID and fluorescent. Applications include warehousing, manufacturing and other large indoor spaces with mounting heights up to 60^{\prime}. Certain airborne contaminants can diminish integrity of acrylic. Click here for Acrylic Environmental Compatibility table for suitable uses.
CONSTRUCTION - Die-formed aluminum alloy chassis with integrated fins for superior cooling through natural convection. The channel is made of heavy-duty code gauge (20-gauge) steel which is powder coated after fabrication. The assembly is rigidly designed to resist twisting and bowing. Access plate on the back of the channel housing allows quick and easy wiring.
OPTICS - Narrow and wide distributions available to meet both horizontal and vertical light level requirements. Reflectors feature precision-formed optics utilizing reflective Alanod ${ }^{\circledR}$ MIRO-5 ${ }^{\oplus}$ aluminum. Semi-diffuse lens optional to provide glare control and LED protection.
ELECTRICAL - 89% lumen maintenance at 60,000 hours; predicted life of more than 100,000 hours. Thermally protected driver standard with 0-10V dimming.
LISTINGS — CSA Certified to U.S. and Canadian safety standards. Damp location listed. Suitable for ambient temperatures from $-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $131^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$. Patent pending.
WARRANTY - 5 -year limited warranty. Complete warranty terms located at www.acuitybrands.com/CustomerResources/Terms and conditions.aspx Actual performance may differ as a result of end-user environment and application. Actual wattage may differ by $+/-1 \%$ when operating between $120-277 \mathrm{~V}+/-10 \%$.
Note: Specifications subject to change without notice.

ORDERING INFORMATION
Lead times will vary depending on options selected. Consult with your sales representative.
Example: IBL 18L WD LP740 DLC

Accessories: Order as separate catalog number.					
Mounting:		Cord sets and	sensors for IMP option:	Field-installable	door and lens assemblies:
IBAC120 M20	Aircraft cable 10' with hook (one pair)	CSIWIMP	Straight plug, 120V9,10,15	DLIBL SD125	Semi-diffuse acrylic lens for use
IBAC240 M20	Aircraft cable 20' with hook (one pair)	CS3WIMP	Twist-lock, 12099,10,15		9L-24L
IBHMP	Hook monopoint	CS7WIMP	Straight plug, 277V9,10,15	DLIBL48 SD125	Semi-diffuse acrylic lens for use
ZACVH	Aircraft 10'V hanger (one pair) ${ }^{8}$	CS11WIMP	Twist-lock, 2779, 10,15		with 36L and 48L
IBLPMP	Pendant monopoint splice box, includes side covers for use with 9L-24L	CS25WIMP	Twist-lock 34779,10,15	Wire guards:	
IBLPMPHB	Pendant monopoint splice box, includes side covers (3/4" hub)for use with 9L-24L.	CS93WIMP	600 V S0 white cord, no plug	WGIBL	Wire guard for use with 9L-24L
IBLPMP48	Pendant monopoint splice box, includes side covers for use with 36L and 48L		(no voltage required) ${ }^{\text {², }}$,	WGIBL48	Wire guard for use with 36L
IBLPMPHB48	Pendant monopoint splice box, includes side covers (3/4" hub) for use with 36L and 48L	CS97WIMP	Twist-lock 480V9,10,15		and 48L
HC36	Hanger chain, 36^{18}	MSIIMP	Aisle sensor ${ }^{6,15}$		
THUN	Tong hanger bracket (one pair) ${ }^{8,14}$	MSI3601MP	360° sensor ${ }^{6,15}$		

IBL LED High Bay

Notes

1 Fixtures more than $24^{\prime \prime}$ wide can interfere with the operation of some fire sprinkler systems. Verify specific installation requirements with local fire official and insurance carrier. Emergency battery packs are not available with 36L or 48L.

2 Select product configurations are Design Lights Consortium (DLC) qualified; does not apply to 9 L packages or 12 ND SD125 LP740 configuration.
3 Specify voltage.
4 Not available with 347 voltage.
5 Must be factory-installed.
6 Must have "IMP" power cord to power fixture.
7 Must specify voltage. 120V or 277V only. Not available with cordset w/plug or OUTCTR option.
8 Not available with 36L or 48L lumen package. When using THUN option maximum ambient temperature is $35^{\circ} \mathrm{C}$
9 All cord sets are $18 / 3,6$, white
10 Cord sets are voltage specific. Specify voltage. Other configurations available. Consult factory.
11 Specify voltage; 120,277 or 347 only
12 Not available with battery pack.
13 Consult factory for dimming of 208,347 or 480V fixtures.
$1495^{\circ} \mathrm{F}\left(35^{\circ} \mathrm{C}\right)$ maximum ambient temperature when using the THUN.
15 Must have IMP option on fixture.

9L, 18L, and 36L lumen packages

$12 \mathrm{~L}, 24 \mathrm{~L}$, and 48L lumen packages

To create the $9 \mathrm{~L}, 18 \mathrm{~L}$, and 36 L lumen packages, the PCBA (LED board) is depopulated from the endcaps inward. The first LED is $5-1 / 2$ " from the end cap on those units, compared to $1-1 / 8$ " on the $12 L, 24 L$, and 48L product.

DIMENSIONS

Dimensions may vary with options or accessories.

OPERATIONAL DATA

Lumen Package	Ambient Rating (120V-277V)	Ambient Rating (347V / 480V)	Distribution	Delivered Lumens 5000K CCT @ $77^{\circ} \mathrm{F}$ ($25^{\circ} \mathrm{C}$) Ambient Temperature	Delivered Lumens 4000K CCT @ $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ Ambient Temperature	Lumen Multiplier @ $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ Ambient Temperature	Lumen Multiplier @ $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ Ambient w/SD125 Lens Kit
9 L	$\begin{aligned} & -40^{\circ} \mathrm{F} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$)	WD	10,039	9,794	0.98	0.901
			ND	8,888	8,671	0.98	0.950
12L	$\begin{aligned} & -40^{\circ} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ ($-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$)	WD	13,055	11,702	0.98	0.901
			ND	11,558	10,360	0.98	0.950
18L	$\begin{aligned} & -40^{\circ} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$	WD	19,893	19,406	0.98	0.901
			ND	17,612	17,181	0.98	0.950
24L	$\begin{aligned} & -40^{\circ} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$)	WD	24,052	23,463	0.98	0.901
			ND	21,294	20,772	0.98	0.950
36L	$\begin{aligned} & -40^{\circ} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$)	WD	36,805	36,480	0.98	0.901
			ND	35,599	35,284	0.98	0.950
48L	$-40^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}$ ($-40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$	WD	46,856	46,443	0.98	0.901
			ND	45,320	44,920	0.98	0.950

CHARACTERISTICS

Lumen Package	Wattage				Length	Width	Depth	Weight without Lens (Lens kit adds approx. 7 lbs .)	Comparable Light Source
	120V	277V	347V	480V	Dimensions are shown in inches (centimeters) unless otherwise noted.				
9 L	103	98	107	106	45 (114.3)	15-3/4 (40.0)	3-1/4 (8.3)	$12.5 \mathrm{lbs}.(5.7 \mathrm{~kg}$)	2-lamp T5HO
12L	134	131	142	141	45 (114.3)	15-3/4 (40.0)	3-1/4 (8.3)	12.5 lbs. (5.7 kg)	4-lamp T8, 250W HID
18L	213	199	213	211	45 (114.3)	15-3/4 (40.0)	3-1/4 (8.3)	$17.5 \mathrm{lbs}$. (7.9 kg)	4-lamp T5H0, 6-lamp T8, 400W HID
24L	262	258	284	281	45 (114.3)	15-3/4 (40.0)	3-1/4 (8.3)	17.5 lbs . 7.9 kg)	6-lamp T5H0, 8-lamp T8
36L	423	417	459	454	45 (114.3)	31-1/3 (79.5)	3-1/4 (8.3)	35 lbs . (15.9 kg)	8-lamp T5H0, 750 HID
48L	531	511	562	557	45 (114.3)	31-1/3 (79.5)	3-1/4 (8.3)	35 lbs (15.9 kg)	10-lamp T5H0,1000W HID

PROJECTED LUMEN MAINTENANCE

Operating Hours	0	10,000	20,000	25,000	35,000	50,000	60,000	75,000	100,000
Lumen Maintenance Factor	1	0.96	0.95	0.94	0.93	0.91	0.89	0.87	0.84

LUMENS VS. AMBIENT TEMPERATURE

Ambient $^{\circ} \mathbf{C}$	Ambient $^{\circ} \mathbf{F}$	Lumen Multiplier
0	32	1.02
5	41	1.015
10	50	1.01
15	59	1.008
20	68	1.005
25	77	1
30	86	0.995
35	95	0.985
40	104	0.98
45	113	0.97
50	122	0.965
55	131	0.96

PHOTOMETRICS

See www. lithonia.com.

SENSORS AND CONTROLS

Sensors are an excellent way to maximize the return on your high bay lighting investment. I-BEAMLED fixtures can be equipped with an occupancy sensor, photocell, nLight ${ }^{\ominus}$ or nWiFi'm. These devices are factory-installed and require minimal labor to set up during fixture installation.

TOP VIEW

MSI: The Sensor Switch CMRB 50 aisleway sensor offers a dedicated sensor and extended range, compared to competitive products.

Mounting Location: End Plate

- Provides 50° bi-directional and 10° wide coverage pattern
- $1.2 x$ mounting height equals approximate detection range in either direction
- Sensor lens turret rotates 90° in order to easily adjust the direction of the view pattern

HIGH VIEW

LOW VIEW

MSE360: The Sensor Switch SFR 5 open-area sensor is embedded in the fixture, making it less intrusive than traditional sensors.

Mounting Location: Center Channel

- Recommended for fixtures that have a 1.0 spacing-to-mounting height ratio or less
- Use provided masking kit to mask off a portion of the view pattern for end-of-aisle applications or, to trim sensor's side viewing to create a rectangular pattern for center-of-aisle viewing only.
LOW VIEW

- parter

MSI360: The Sensor Switch CMRB 6 open-area sensor has 360° coverage and can be integrated with a photocell (PE) for further energy savings.
Mounting Location: End Plate

- Best choice for 15 to $45 \mathrm{ft}(4.57$ to 13.72 m) mounting heights
- 15 to 20 ft (4.57 to 6.10 m) radial coverage overlaps area lit by a typical high bay fixture

All I-BEAM LED fixtures can be equipped with nLight. nLight is an exclusive and revolutionary system that cost-effectively combines time-based and sensor-based lighting controls. The digital interface allows for quick, easy modifications to time delays, photocell sensitivity and light levels at the individual fixture level.
nWiFi for nLight adds conventional WiFi technology to nLight devices, such as occupancy sensors and relays, enabling them to seamlessly communicate with both wired and wireless nLight lighting control zones. This powerful new nLight technology further simplifies installation and reduces hardware costs.

OPTIONS AND ACCESSORIES

The I-BEAM LED fixture offers numerous options for almost every electrical and optical component, including a long list of field-installable accessories.

WIRE GUARD (external)
Field- or factory-installed. Protects light engine from impact. Mounting hardware included.

Factory-installed option:
WGX
Field-installed options:
WGIBL
WGIBL48

EMBEDDED OCCUPANCY SENSOR
Can be placed in the channel cover which reduces the risk of sensor damage compared to non-embedded sensors.

Factory-installed option: MSE360

SURFACE MOUNT BRACKET
Rigidly attach I-BEAM LED to a hard ceiling. Can be placed anywhere along fixture.

Order as:
THUN (not for use in ambient temperatures exceeding $95^{\circ} \mathrm{F}\left(35^{\circ} \mathrm{C}\right)$, or on the 36 L or 48 L)

CORD SETS

Available in several lengths with or without molded plug. White is standard.

For available options, see ordering information on page 1.

DIFFUSER

Field- or factory-installed. Available in semidiffuse acrylic. Mounting hardware included.

Factory-installed option:
SD125
Field-installed option:
DLIBL SD125
DLIBL48 SD125

PENDANT MONOPOINT BRACKET

Accepts $3 / 4$ " rigid conduit for single-point mounting. The bracket can be adjusted to help counterbalance fixture to offset weight variance from end to end.

Order as:
IBLPMP
IBLPMPHB
IBLPMP48
IBLPMPHB48
INTEGRATED ELECTRICAL OPTIONS
Channel sized to accept emergency components, surge protector, fusing and embedded sensors.

HANGERS

Several lengths of aircraft cables and chains available; with or without V-hooks.

Order as:
IBAC120 M20
IBHMP
For others, see accessories on page 1.

INTEGRATED MODULAR PLUG (IMP)

Must be factory-installed and allows for field installation of various modular accessories including cordsets, motion sensors, photocells and LC\&D X-point ${ }^{\text {rT }}$ relays.

FEATURES \& SPECIFICATIONS

INTENDED USE - The I-BEAM ${ }^{\circledR}$ IBZ fluorescent high bay is ideal for new construction and renovation projects. It is a one-for-one replacement of common metal halide high bay systems. Applications include manufacturing, warehousing, commercial and industrial facilities. The IBZ fixture performs well at mounting heights from $15^{\prime}-40^{\prime}$. Certain airborne contaminants can diminish integrity of acrylic. Click here for Acrylic Environmental Compatibility table for suitable uses.
CONSTRUCTION - The highly configurable design of the IBZ high bay allows for a multitude of fixture options that can either be factory- or field-installed. In addition to the reliable operation of IBZ fixtures, the reflectors tightly control the distribution of light and effectively manage lamp heat to increase the overall efficiency. The result is superior optics in either narrow distribution for aisles, or wide distribution for general lighting. Installation is made quick and easy with IBZ hanging accessories such as the aircraft cable and single-point mounting bracket. IBZ fixtures can be factory-wired to have both sensors and cord sets, further reducing installation time. The configurability, performance and ease of installation make IBZ fixtures the preferred choice for fluorescent high bay lighting.
Channel is formed of heavy-duty code-gauge (22-gauge) steel to stand up to the most demanding elements. Lamp holder assembly protects from incidental damage or movement of sockets during handling and installation. Sockets include secure positioning rotating collars with enclosed contacts. Access plate on the back of the channel housing allows quick and easy wiring. Finish: Channel is high-gloss white baked enamel; five-stage iron phosphate pretreatment ensures superior paint adhesion and rust resistance.
OPTICS - Two optical systems are available. Narrow distribution is ideal for narrow or aisle lighting applications and features precision-formed segmented optics utilizing specular aluminum reflector. Provides 95% reflectivity and warranted for 25 years. Wide distribution includes high-reflectance white finish for general or open areas.
ELECTRICAL - Thermally protected, resetting, Class P, HPF, A+ sound-rated electronic ballast. AWM TFM or THHN wire used throughout rated for required temperatures. Ballast disconnect (BDP) is standard unless EL14 or cordset is requested.
INSTALLATION — Suitable for suspension by chain, cable, surface-mounting bracket, hook monopoint or single (pendant) monopoint. Surface mounting not recommended without optional surface mounting bracket.
LISTINGS - CSA Certified to U.S. and Canadian safety standards (UL1598 and CSA 250.0-08 for 25C ambient operation). Suitable for damp locations.
WARRANTY - 1-year limited warranty. Complete warranty terms located at www.acuitybrands.com/CustomerResources/Terms and conditions.aspx Actual performance may differ as a result of end-user environment and application. Note: Specifications subject to change without notice.

DIMENSIONS

Dimensions may vary with options or accessories.

IBL 18L WD LP740 DLC
Notes
ive HB1

Fluorescent High Bay

SPECIFICATIONS					
	Length	Width	Depth	Weight	
4-lamp	$48-1 / 16(1221)$	$13-1 / 4(337)$	$2-3 / 8(60)$	16 lbs. $(7.3 \mathrm{~kg})$	
6-lamp	$48-1 / 16(1221)$	$18-1 / 8(460)$	$2-3 / 8(60)$	20 lbs $(9.1 \mathrm{~kg})$	
8-lamp	$48-1 / 16(1221)$	$23-7 / 8(606)$	$2-3 / 8(60)$	$25 \mathrm{lbs} .(11.3 \mathrm{~kg})$	

All dimensions are inches (millimeters) unless otherwise specified and may vary with options or accessories.

ORDERING INFORMATION For shortest lead times, configure products using standard options (shown in bold). Example: IBZ 432L											
IBZ											
Series	Lamp type		Distribution			Shielding ${ }^{2}$			Voltage		Ballast configuration
IBZ Fortandem double-length unit, add prefix "T". Ex: TIBZ	Lamps installed ${ }^{1}$ 432L 4-lamp 32W T8 632L 6-lamp 32W T8 832L 8-lamp 32W T8 Unlamped 432 4-lamp 32W T8 632 6-lamp 32W T8 832 8-lamp 32W T8		(blank) Narrow distribution, $\leq 5 \%$ uplight NDU Narrow distribution, enhanced uplight, $\leq 13 \%$ uplight WD Wide distribution, $\leq 5 \%$ uplight WDU Wide distribution, enhanced uplight, $\leq 13 \%$ uplight			(blank) No shielding A12125 Pattern 12 acrylic, $0.125^{\prime 3}$ ACL Clear acrylic, $0.125^{" 3}$ PCL125 Clear polycarbonate, $0.125^{\prime 3}$			$\text { (blank) } \begin{aligned} & \text { MVOLT; } \\ & 120-277 \mathrm{~V} \end{aligned}$		(blank) Standard configuration
Ballast		Lamp color		Options							
(blank) GEB10IS GEB10PS GEB10PSH	T8 electronic, instant start, 1.15-1.20 BF T8 electronic ballast, $\leq 10 \%$ THD, instant start, 88 BF T8 electronic ballast, $\leq 10 \%$ THD, programmed rapid start, .88 BF T8 electronic ballast, $\leq 10 \%$ THD, programmed rapid start, 1.15-1.20 BF	(blank) F32T8/841 LP835 F32T8/835 LP850 F32T8/850		GLR GMF EL14 EL14SD 1162 OUTCTR OCS IMP FSP HBBSIC HBBS36IC	Internal fast-b Internal slow- Emergency ba Emergency bat diagnostic ${ }^{4}, 6$, 1250 lumens p Wiring leads p center of fixtu RELOC ${ }^{\circ}$ OnePa Integrated mo Integral full sid Chain hanger Chain hanger	ow fuse ${ }^{4,5}$ low fuse ${ }^{4,5}$ tery pack ${ }^{4,6,7}$ tery pack w/ self- er lamp battery ${ }^{4,6,8}$ ulled through back ss $5^{\text {' installed }}{ }^{4}$ dular plug, 10 e panels pair) with 36 " chain (pair)	Cord set CS1W CS3W CS7W CS11W CS25W CS97W CS93W	Straight p Twist-lock Straight p Twist-lock Twist-lock Twist-lock 600 SO w no plug (n required)	ug, $120 \mathrm{~V}^{11,12}$ $120 \mathrm{~V}^{11,12}$ ug, 277V1112 277V11.12 347V11,12 ,480 $\mathrm{V}^{11,12}$ ite cord, voltage	Motion sen MSI MSI360 MSE360 MSE360LB XP1 XP2 Wireguard WGX 2WGX	nsors: Aisle motion sensor, pre-wired ${ }^{13}$ 360° motion sensor, pre-wired ${ }^{13}$ 360° motion sensor, embedded ${ }^{14}$ 360° motion sensor, embedded ${ }^{15}$ XPoint single relay ${ }^{16}$ XPoint double relay ${ }^{16}$ ds: External wireguard installed Dual wireguard for top and bottom protection ${ }^{17}$

Accessories: Order as separate catalog number.							
Mounting:		Field-installable door and lens assemblies:2, ${ }^{\text {, } 19}$		Cord sets and sensors for IMP option:		Wireguards:	
IBAC120 M20	Aircraft cable 10 ' with hook (one pair)	DLIBZ14 A12125	4-lamp pattern 12 acrylic lens, 0125" 2,19	CS1WIMP	Straight plug, 120 ${ }^{11,12}$	WGIBZ14	Standard 4-lamp wireguard
IBAC240 M20	Aircraft cable 20' with hook (one pair)		lens, $0.125^{\prime 2,19}$	CS3WIMP	Twist-lock, 120V11,12	WGIBZ19	Standard 6-lamp wireguard
IBHMP	Hook monopoint	DLIBZ14 ACL	4-lamp clear acrylic lens ${ }^{2,19}$	CS7WIMP	Straight plug, 277V ${ }^{11,12}$	WGIBZ24	Standard 8-lamp wireguard
IBZACVH	Aircraft 10'V hanger (one pair)	DLIBZ14 PCL125	4-lamp clear polycarbonate lens, $0.125^{2,19}$	CS11WIMP	Twist-lock, 277V11,12		
IBZTFC	Tandem coupler and 8' side panel	DLIB719 A12125	6-lamp pattern 12 acrylis	CS25WIMP	Twist-lock, 347V		
IBZPMP	Pendant monopoint splice box, includes side covers ${ }^{18}$	DLB719 ACL	$\text { Iens, } 0.125^{122}, 19$	CS93WIMP	600 V 0 white cord, no plug (no voltage required) ${ }^{11}$		
IBZPMPHB	Pendant monopoint splice box, includes side covers ($3 / 4$ " hub) ${ }^{18}$	DLIBZ19 PCL125	6-lamp clear polycarbonate lens, $0.125^{" 2,19}$	CS97WIMP MSIIMP	Twist-lock, 480V Aisle sensor ${ }^{10,20}$		
HBBS36	Chain hanger, 36 " (one pair)	DLIBZ24 ACL	8-lamp clear acrylic lens ${ }^{2,19}$	MSI3601MP	360° sensor ${ }^{10,20}$		
IBLSMB	Surface-mounting bracket (one pair)	DLIBZ24 PCL125	8-lamp clear polycarbonate lens, $0.125^{\text {" } 2,19}$				

Notes

1 Lamps installed are F32T8/841 unless otherwise specified.
2 Not available with MSE360 or MSE360LB options.
3 For wireguard in door frame, add "WG" to shielding. Ex: A12125WG.
4 Specify voltage.
5 Not available with 347 voltage.
6 Battery options require a BACKPACK ${ }^{m}$ installed by the factory in order to accommodate the size of the battery. The BACKPACK is NOT field installable. May only be surface mounted using IBZSMB. Not available with pendant mount using IBZPMP or IBZ PMPHB. Not available with IMP.
7 Output in emergency mode varies with ambient temperature (911 lumens at $45^{\circ} \mathrm{C}$). Single-lamp operation only. 120 or 277 voltage only.
8 Max 3000 lumens when used with 78 lamps up to $55^{\circ} \mathrm{C}$ ambient temperature. Not available with IMP. 120 or 277 voltage only.
9 Must be factory-installed. Not available on TIBZ 16-lamp configurations.

10 Must have "IMP" power cord to power fixture.
11 All cord sets are $18 / 3$, 6 ', white.
12 Cord sets are voltage specific. Specify voltage. Other configurations available. Consult factory.
3 Specify voltage; $120,208,240,277,347$ or 480.
14 Recommended for heights of $30-40^{\prime}$. Not available with lensed units. 120,277 or 347 voltage only.
5 Recommended for heights up to 20^{\prime}. Not available with lensed units. 120, 277 or 347 voltage only.
Contact LC\&D for additional system components required.
17 External bottom wireguard factory installed. External top wireguard shipped separately for field installation. Not available with IBZPMP.
18 When ordering IBZPMP, two-ballast configurations are recommended. Ex: $2 / 2$. Not available with tandem units. Not available with any battery pack.
19 Add WG to nomenclature if wire guard is to be installed in door frame, ex: DLIBZ14 A12125WG.
$20 \quad 120$ or 277 voltage only.

STANDARD BALLAST CONFIGURATIONS			
	4 - lamp	6 - lamp	8-- lamp
T8 instant start (1.15-1.20 bf)	Two 2 - lamp ballasts	Two 3 - lamp ballasts	Two 4- lamp ballasts
T8 instant start (88 bf)	One 4 - lamp ballast	One 4- lamp and one 2 - lamp ballast	Two 4- lamp ballasts
T8 program rapid start (1.15-1.20 bf)	Two 2 - lamp ballasts	Two 3 - lamp ballast	One 2 - lamp and two 3 - lamp ballasts
T8 program rapid start (. 88 bf)	One 4 - lamp ballast	One 4- lamp and one 2 - lamp ballast	Two 4- lamp ballasts

FEATURES \& SPECIFICATIONS

INTENDED USE - Ideal one-for-one replacement of conventional high bay systems such as HID and fluorescent. Applications include warehousing, manufacturing and other large indoor spaces with mounting heights up to 60'. Certain airborne contaminants can diminish integrity of acrylic. Click here for Acrylic Environmental Compatibility table for suitable uses.
CONSTRUCTION — Die-formed aluminum alloy chassis with integrated fins for superior cooling through natural convection. The channel is made of heavy-duty code gauge (20-gauge) steel which is powder coated after fabrication. The assembly is rigidly designed to resist twisting and bowing. Access plate on the back of the channel housing allows quick and easy wiring.
OPTICS — Narrow and wide distributions available to meet both horizontal and vertical light level requirements. Reflectors feature precision-formed optics utilizing reflective Alanod ${ }^{\oplus}$ MIRO- 5^{\circledR} aluminum. Semi-diffuse lens optional to provide glare control and LED protection.
ELECTRICAL - 89% lumen maintenance at 60,000 hours; predicted life of more than 100,000 hours. Thermally protected driver standard with 0-10V dimming.
LISTINGS - CSA Certified to U.S. and Canadian safety standards. Damp location listed. Suitable for ambient temperatures from $-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $131^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$. Patent pending.
WARRANTY - 5 -year limited warranty. Complete warranty terms located at www.acuitybrands.com/CustomerResources/Terms and conditions.aspx Actual performance may differ as a result of end-user environment and application. Actual wattage may differ by $+/-1 \%$ when operating between $120-277 \mathrm{~V}+/-10 \%$.
Note: Specifications subject to change without notice.

ORDERING INFORMATION
Lead times will vary depending on options selected. Consult with your sales representative.
Example: IBL 18L WD LP740 DLC

Accessories: Order as separate catalog number.					
Mounting:		Cord sets and	sensors for IMP option:	Field-installable	door and lens assemblies:
IBAC120 M20	Aircraft cable 10' with hook (one pair)	CS1WIMP	Straight plug, 12009,10,15	DLIBL SD125	Semi-diffuse acrylic lens for use
IBAC240 M20	Aircraft cable 20' with hook (one pair)	CS3WIMP	Twist-lock, 120V9,10,15		9L-24L
IBHMP	Hook monopoint	CS7WIMP	Straight plug, 277V9,10,15	DLIBL48 SD125	Semi-diffuse acrylic lens for use
ZACVH	Aircraft $10^{\prime} \mathrm{V}$ hanger (one pair) ${ }^{8}$	CS11WIMP	Twist-lock, 2779, ${ }^{10,15}$		with 36L and 48L
IBLPMP	Pendant monopoint splice box, includes side covers for use with 9L-24L	CS25WIMP	Twist-lock 347V9,10,15	Wire guards:	
IBLPMPHB	Pendant monopoint splice box, includes side covers (3/4" hub)for use with 9L-24L.	CS93WIMP	600 V 0 white cord, no plug	WGIBL	Wire guard for use with 9L-24L
IBLPMP48	Pendant monopoint splice box, includes side covers for use with 36L and 48L		(no voltage required) ${ }^{9,15}$	WGIBL48	Wire guard for use with 36L
IBLPMPHB48	Pendant monopoint splice box, includes side covers (3/4" hub) for use with 36L and 48L	CS97WIMP	Twist-lock 480V9,10,15		and 48L
HC36	Hanger chain, $36{ }^{\text {"88 }}$	MSIIMP	Aisle sensor ${ }^{6,15}$		
THUN	Tong hanger bracket (one pair) ${ }^{\text {8,14 }}$	MSI360IMP	360° sensor ${ }^{6,15}$		

IBL LED High Bay

Notes

1 Fixtures more than $24^{\prime \prime}$ wide can interfere with the operation of some fire sprinkler systems. Verify specific installation requirements with local fire official and insurance carrier. Emergency battery packs are not available with 36L or 48L.

2 Select product configurations are Design Lights Consortium (DLC) qualified; does not apply to 9 L packages or 12 ND SD125 LP740 configuration.
3 Specify voltage.
4 Not available with 347 voltage.
5 Must be factory-installed.
6 Must have "IMP" power cord to power fixture.
7 Must specify voltage. 120V or 277V only. Not available with cordset w/plug or OUTCTR option.
8 Not available with 36L or 48L lumen package. When using THUN option maximum ambient temperature is $35^{\circ} \mathrm{C}$
9 All cord sets are $18 / 3,6$, white
10 Cord sets are voltage specific. Specify voltage. Other configurations available. Consult factory.
11 Specify voltage; 120,277 or 347 only
12 Not available with battery pack.
13 Consult factory for dimming of 208,347 or 480V fixtures.
$1495^{\circ} \mathrm{F}\left(35^{\circ} \mathrm{C}\right)$ maximum ambient temperature when using the THUN.
15 Must have IMP option on fixture.

9L, 18L, and 36L lumen packages

$12 \mathrm{~L}, 24 \mathrm{~L}$, and 48L lumen packages

To create the $9 \mathrm{~L}, 18 \mathrm{~L}$, and 36 L lumen packages, the PCBA (LED board) is depopulated from the endcaps inward. The first LED is $5-1 / 2$ " from the end cap on those units, compared to $1-1 / 8$ " on the $12 L, 24 L$, and 48L product.

DIMENSIONS

Dimensions may vary with options or accessories.

OPERATIONAL DATA

Lumen Package	Ambient Rating (120V-277V)	Ambient Rating (347V / 480V)	Distribution	Delivered Lumens 5000K CCT @ $77^{\circ} \mathrm{F}$ ($25^{\circ} \mathrm{C}$) Ambient Temperature	Delivered Lumens 4000K CCT @ $77^{\circ} \mathrm{F}\left(2^{\circ} \mathrm{C}\right)$ Ambient Temperature	Lumen Multiplier @ $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ Ambient Temperature	Lumen Multiplier @ $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ Ambient w/SD125 Lens Kit
9 L	$\begin{aligned} & -40^{\circ} \mathrm{F} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$	WD	10,039	9,794	0.98	0.901
			ND	8,888	8,671	0.98	0.950
12L	$\begin{aligned} & -40^{\circ} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ ($-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$)	WD	13,055	11,702	0.98	0.901
			ND	11,558	10,360	0.98	0.950
18L	$\begin{aligned} & -40^{\circ} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$	WD	19,893	19,406	0.98	0.901
			ND	17,612	17,181	0.98	0.950
24L	$\begin{aligned} & -40^{\circ} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$)	WD	24,052	23,463	0.98	0.901
			ND	21,294	20,772	0.98	0.950
36L	$\begin{aligned} & -40^{\circ} \text { to } 131^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C} \text { to } 55^{\circ}\right) \end{aligned}$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$	WD	36,805	36,480	0.98	0.901
			ND	35,599	35,284	0.98	0.950
48L	-40° F to $131^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$	$-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$	WD	46,856	46,443	0.98	0.901
			ND	45,320	44,920	0.98	0.950

CHARACTERISTICS

Lumen Package	Wattage				Length	Width	Depth	Weight without Lens (Lens kit adds approx. 7 lbs .)	Comparable Light Source
	120V	277V	347V	480V	Dimensions are shown in inches (centimeters) unless otherwise noted.				
9 L	103	98	107	106	45 (114.3)	15-3/4 (40.0)	3-1/4 (8.3)	$12.5 \mathrm{lbs}.(5.7 \mathrm{~kg}$)	2-lamp T5HO
12L	134	131	142	141	45 (114.3)	15-3/4 (40.0)	3-1/4 (8.3)	12.5 lbs. (5.7 kg)	4-lamp T8, 250W HID
18L	213	199	213	211	45 (114.3)	15-3/4 (40.0)	3-1/4 (8.3)	$17.5 \mathrm{lbs}$. (7.9 kg)	4-lamp T5H0, 6-lamp T8, 400W HID
24L	262	258	284	281	45 (114.3)	15-3/4 (40.0)	3-1/4 (8.3)	17.5 lbs . 7.9 kg)	6-lamp T5H0, 8-lamp T8
36L	423	417	459	454	45 (114.3)	31-1/3 (79.5)	3-1/4 (8.3)	35 lbs . (15.9 kg)	8-lamp T5H0, 750 HID
48L	531	511	562	557	45 (114.3)	31-1/3 (79.5)	3-1/4 (8.3)	35 lbs (15.9 kg)	10-lamp T5H0,1000W HID

PROJECTED LUMEN MAINTENANCE

Operating Hours	0	10,000	20,000	25,000	35,000	50,000	60,000	75,000	100,000
Lumen Maintenance Factor	1	0.96	0.95	0.94	0.93	0.91	0.89	0.87	0.84

LUMENS VS. AMBIENT TEMPERATURE

Ambient $^{\circ} \mathbf{C}$	Ambient $^{\circ} \mathbf{F}$	Lumen Multiplier
0	32	1.02
5	41	1.015
10	50	1.01
15	59	1.008
20	68	1.005
25	77	1
30	86	0.995
35	95	0.985
40	104	0.98
45	113	0.97
50	122	0.965
55	131	0.96

PHOTOMETRICS

See www. lithonia.com.

SENSORS AND CONTROLS

Sensors are an excellent way to maximize the return on your high bay lighting investment. I-BEAMLED fixtures can be equipped with an occupancy sensor, photocell, nLight ${ }^{\ominus}$ or nWiFi'm. These devices are factory-installed and require minimal labor to set up during fixture installation.

TOP VIEW

MSI: The Sensor Switch CMRB 50 aisleway sensor offers a dedicated sensor and extended range, compared to competitive products.

Mounting Location: End Plate

- Provides 50° bi-directional and 10° wide coverage pattern
- $1.2 x$ mounting height equals approximate detection range in either direction
- Sensor lens turret rotates 90° in order to easily adjust the

HIGH VIEW

LOW VIEW

MSE360: The Sensor Switch SFR 5 open-area sensor is embedded in the fixture, making it less intrusive than traditional sensors.

Mounting Location: Center Channel

- Recommended for fixtures that have a 1.0 spacing-to-mounting height ratio or less
- Use provided masking kit to mask off a portion of the view pattern for end-of-aisle applications or, to trim sensor's side viewing to create a rectangular pattern for center-of-aisle viewing only.
LOW VIEW

- parter

MSI360: The Sensor Switch CMRB 6 open-area sensor has 360° coverage and can be integrated with a photocell (PE) for further energy savings.
Mounting Location: End Plate

- Best choice for 15 to $45 \mathrm{ft}(4.57$ to 13.72 m) mounting heights
- 15 to 20 ft (4.57 to 6.10 m) radial coverage overlaps area lit by a typical high bay fixture
direction of the view pattern

All I-BEAM LED fixtures can be equipped with nLight. nLight is an exclusive and revolutionary system that cost-effectively combines time-based and sensor-based lighting controls. The digital interface allows for quick, easy modifications to time delays, photocell sensitivity and light levels at the individual fixture level.
nWiFi for nLight adds conventional WiFi technology to nLight devices, such as occupancy sensors and relays, enabling them to seamlessly communicate with both wired and wireless nLight lighting control zones. This powerful new nLight technology further simplifies installation and reduces hardware costs.

OPTIONS AND ACCESSORIES

The I-BEAM LED fixture offers numerous options for almost every electrical and optical component, including a long list of field-installable accessories.

WIRE GUARD (external)
Field- or factory-installed. Protects light engine from impact. Mounting hardware included.

Factory-installed option:
WGX
Field-installed options:
WGIBL
WGIBL48

EMBEDDED OCCUPANCY SENSOR
Can be placed in the channel cover which reduces the risk of sensor damage compared to non-embedded sensors.

Factory-installed option: MSE360

SURFACE MOUNT BRACKET
Rigidly attach I-BEAM LED to a hard ceiling. Can be placed anywhere along fixture.

Order as:
THUN (not for use in ambient temperatures exceeding $95^{\circ} \mathrm{F}\left(35^{\circ} \mathrm{C}\right)$, or on the 36 L or 48 L)

CORD SETS

Available in several lengths with or without molded plug. White is standard.

For available options, see ordering information on page 1.

DIFFUSER

Field- or factory-installed. Available in semidiffuse acrylic. Mounting hardware included.

Factory-installed option:
SD125
Field-installed option:
DLIBL SD125
DLIBL48 SD125

PENDANT MONOPOINT BRACKET

Accepts $3 / 4$ " rigid conduit for single-point mounting. The bracket can be adjusted to help counterbalance fixture to offset weight variance from end to end.

Order as:
IBLPMP
IBLPMPHB
IBLPMP48
IBLPMPHB48
INTEGRATED ELECTRICAL OPTIONS
Channel sized to accept emergency components, surge protector, fusing and embedded sensors.

HANGERS

Several lengths of aircraft cables and chains available; with or without V-hooks.

Order as:
IBAC120 M20
IBHMP
For others, see accessories on page 1.

INTEGRATED MODULAR PLUG (IMP)

Must be factory-installed and allows for field installation of various modular accessories including cordsets, motion sensors, photocells and LC\&D X-point ${ }^{\text {™ }}$ relays.

2L Champ ${ }^{\circledR}$ Pro PFM Series Luminaires

UL/cUL Listed NEMA 4X IP66

Drivers:

Model	5L - 13L
	Standard
Option 1	Hz; 105 VAC, 50 / 600 VDC
Option 2	347 VAC Model
480 VAC Model	

Standard Materials:

- Housing - copper-free aluminum with Corro-free ${ }^{\text {TM }}$ epoxy powder coat
- Lens - shatter-resistant glass
- Gaskets - silicone
- External hardware - stainless steel
- Factory-sealed, no external seals required

LED System:

- High brightness light emitting diode (LED) arrays
- Color temperature: 3000K (CRI 82) and 5600K (CRI 65) options available
- Advanced heat sink design ensures LED does not exceed manufacturer's temperature ratings across all specified ambient conditions

Champ	Pro	Equivalent MH HID
PFM Model	Energy Lamp	Savings
PFM5L	$100 \mathrm{~W}-150 \mathrm{~W}$	
PFM7L	$150 \mathrm{~W}-175 \mathrm{~W}$	Up to
PFM9L	$175 \mathrm{~W}-250 \mathrm{~W}$	$62 \%!$
PFM11L	$250 \mathrm{~W}-400 \mathrm{~W}$	
PFM13L	400 W	

62\%! PFM13L 400W
Certifications and Compliances:

- UL1598
- UL1598A
- cUL
- NEMA 4X; IP66
- DesignLights Consortium ${ }^{\circledR}$ approved for select models (refer to Ordering Information for details)

The Champ ${ }^{\circledR}$ Pro PFM

 FamilyChamp® Pro PFM Series Floodlights are designed to provide full-spectrum, crisp, white light. Five versions of the Champ PFM LED are available, providing ideal solutions for a wide range of applications.

Electrical Ratings:

	PFM5L	PFM7L	PFM9L	PFM11L	PFM13L
Voltage Range, VAC		100-277V 50-60 Hz			
		347 / 480V 60 Hz			
Voltage Range, VDC	108-250	108-250	108-250	108-250	108-250
Input Power (Nom.)	64	89	121	149	179
Input Amps (Max.)	0.550	0.800	1.083	1.608	1.608
Power Factor	>0.85	>0.85	>0.85	>0.85	>0.85
Ordering Information:					
Cool Color Temperature	PFM5LCY/UNV1 76	PFM7LCY/UNV1 76	PFM9LCY/UNV1 76	PFM11LCY/UNV1 76	PFM13LCY/UNV1 76
	PFM5LCY/120 76*	PFM7LCY/120 76*	PFM9LCY/120 76*	PFM11LCY/120 76*	PFM13LCY/120 76*
Warm Color Temperature	PFM5LWY/UNV1 76	PFM7LWY/UNV1 76	PFM9LWY/UNV1 76	PFM11LWY/UNV1 76	PFM13LWY/UNV1 76

To order fixture without optics, remove '76' from the end of the catalog number.
*5 year limited warranty. Refer to page 2 of the D-0413 authorized distributor price book for Cooper Crouse-Hinds standard Terms and Conditions.
DesignLights Consortium approved models. Cool white only.

Options:

Description	Suffix
Fused (only applies to UNV1 model, not available for 347 V or 480 V ; NOT marine or cUL Listed)	S658
Two conduit/cable glands of like thread installed	S886

Accessories:

Description
Bolt-on visor (sold separately)
Bolt-on wire guard (sold separately)
Floodlight slipfitter (sold separately)
Slipfitter wall mount adapter (sold separately)

Catalog No. Sold Separately

DSV1
P61
SFA6 SWB6

Perfect for outdoor/indoor flood illumination

Dimensions:

Weights:

Model	Lbs.
5L	39.11
7L	39.16
9L	39.73
11L	40.35
13L	40.35

Ambient Temperature:

Champ ${ }^{\oplus}$ Pro PFM Model Max. Temp. ${ }^{\circ} \mathrm{C}$

PFM5L	55
PFM7L	55
PFM9L	55
PFM11L	40
	55

Photometric Data:

MULTIPLIERS FOR OTHER LED FLOODLIGHITS

Luminaire Series	Wattage	Lumens* *
PFM5L	64	4386
PFM7L	89	6720
PFM9L	121	8478
PFM11L	149	10420

[^3]

Highititing DESIGNIIGHTS

d"series

Specifications

EPA:	$\begin{aligned} & 1.4 \mathrm{ft}^{2} \\ & \left(0.13 \mathrm{~m}^{2}\right) \end{aligned}$
Depth:	$\begin{array}{r} 5^{\prime \prime} \\ (12.7 \mathrm{~cm}) \end{array}$
Width:	$\begin{array}{r} 13^{\prime \prime} \\ (33.0 \mathrm{~cm}) \end{array}$
Height:	$\begin{gathered} 13-5 / 8^{\prime \prime} \\ (34.6 \mathrm{~cm}) \end{gathered}$
Overall Height	$\begin{gathered} 17-1 / 2^{\prime \prime} \\ (44.5 \mathrm{~cm}) \end{gathered}$
Weight:	$\begin{gathered} 21 \mathrm{lbs} \\ (9.5 \mathrm{~kg}) \end{gathered}$

Catalog
Number DSXF3 LED 8 A530/40K MSP MVOLT THK DD]
Type FL3

Introduction

The D-Series Size 3 Flood features precision optics to beautifully illuminate a variety of applications as its sleek, compact styling blends seamlessly with its environment.

The D-Series Flood reflector systems and cuttingedge chip-on-board LED technology produce low field-to-beam ratios for minimal spill light and incredible photometric performance. It's the ideal long-life replacement for 250-400W metal halide floods, with typical energy savings of 67% and expected service life of over 100,000 hours.

Ordering Information

For more control options, visit DTL and ROAM online.
EXAMPLE: DSXF3 LED 8 A530/40K FL MVOLT THK DDBXD

LITHONIA One Lithonia Way • Conyers, Georgia 30012 • Phone: 800.279.8041 • Fax: 770.918.1209 • www.lithonia.com
L/GHTING.

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Actual wattage may differ by $+/-8 \%$ when operating between $120-480 \mathrm{~V}+/-10 \%$. Contact factory for performance data on any configurations not shown here.

Light	Drive Current (mA)	Performance Package	System Watts	Dist. Type	Field Angle		Beam Angle		$\begin{gathered} 40 \mathrm{~K} \\ (4000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$			$\begin{gathered} 50 \mathrm{~K} \\ (5000 \mathrm{~K}, 67 \mathrm{CRI}) \end{gathered}$		
					${ }^{\circ} \mathrm{H}$	¢	${ }^{\circ} \mathrm{H}$	${ }^{\circ} \mathrm{V}$	Max Cd	Lumens	LPW	Max Cd	Lumens	LPW
6	530	A530/--K	115W	NSP	48	49	19	19	39,299	7471	65	39,177	7448	65
				MSP	50	48	24	23	36,284	8373	73	36,171	8347	73
				MFL	60	60	47	46	15,104	8948	78	15,057	8920	78
				FL	85	84	63	62	9985	9730	85	9954	9700	84
				WFL	106	106	71	72	7488	10,230	89	7465	10,199	89
				WFR	107	88	85	64	7460	10,461	91	7436	10,429	91
				HMF	100	62	80	13	6779	3301	29	6758	3290	29
8	530	A530/--K	158W	NSP	48	49	19	19	51,658	9820	62	51,496	9790	62
				MSP	50	48	24	23	47,694	11,006	70	47,546	10,971	69
				MFL	60	60	47	46	19,854	11,761	74	19,792	11,725	74
				FL	85	84	63	62	13,125	12,790	81	13,084	12,750	81
				WFL	106	106	71	72	9843	13,448	85	9812	13,406	85
				WFR	107	88	85	64	9805	13,751	87	9775	13,708	87
				HMF	100	62	80	13	8911	4338	27	8883	4325	27

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.05
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.03
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.01
$\mathbf{2 5 ^ { \circ }} \mathbf{C}$	$\mathbf{7 7}^{\circ} \mathbf{F}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	0.99
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the DSXF LED 8 A530 platform in a $\mathbf{2 5 ^ { \circ }} \mathbf{C}$ ambient, based on 8400 hours of LED testing (tested per IESNA LM-808 and projected per IESNA TM-21-11)

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance Factor	1.0	0.94	0.90	0.84

Electrical Load

			Current (A)					
Light Engines	Drive Current (mA)	System Watts	120	208	240	277	347	480
6	530	115W	1.06	0.61	0.53	0.46	0.37	0.27
8	530	158W	1.46	0.84	0.73	0.63	0.51	0.37

Photometric Diagrams

Isocandela plots for the DSXF3 LED 8 A530/40K

LEGEND
(\% Max cd)
10%
20%
30%
40%
50%
60%
75%
90%

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Flood Size 3 homepage.

FEATURES \& SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 3 Flood reflects the embedded high performance LED technology. It is ideal for wallwash, security and general area lighting in many commercial and institutional applications.

CONSTRUCTION

Die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. The LED driver is mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.4 ft ${ }^{2}$) for optimized wind loading.

INISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling.

OPTICS

A variety of precision-molded vacuum-metallized specular reflectors are engineered for superior field-to-beam ratios, uniformity and spacing. Light engines are available in 3000 K (80 CRI min .), 4000 K (70 CRI min.) or 5000K (67 CRI min .) configurations. Optional visors offer additional versatility.

ELECTRICAL

Light engines consist of chip-on-board (COB) LEDs directly coupled to the housing to maximize heat dissipation and promote long life (100,000 hrs at $\left.25^{\circ} \mathrm{C}, \mathrm{L} 84\right)$. Class 1 electronic driver has a power factor $>90 \%$, THD $<20 \%$, and has an expected life of 100,000 hours with $<1 \%$ failure rate. (Eight-engine unit uses two drivers.) Surge protection meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

INSTALLATION

Integral adjustable knuckle with 3/4-14 NPT threaded pipe, or yoke mounting, facilitates quick and easy installation to a variety of mounting accessories. This secure connection enables the D-Series Size 3 to withstand up to a 1.5 G vibration load rating per ANSI C136.31

LISTINGS

CSA certified to U.S. and Canadian standards. Luminaire is IP65 rated. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient

WARRANTY

Five year limited warranty. Full warranty terms located at www.acuitybrands.com/
CustomerResources/Terms and conditions.aspx.
Note: Specifications subject to change without notice.

L/THONIA
LIGHTING.

QUICKTRONIC® PROStart ${ }^{\circledR}$ PSN T8 Universal Voltage Systems

Professional Series

Lamp / Ballast Guide

Primary Systems 32W T8 OCTRON ${ }^{\circledR}$ lamps 1-lamp QTP1x32T8/UNV PSN-TC 2-lamp QTP2x32T8/UNV PSN-TC 3-lamp QTP3x32T8/UNV PSN-SC 4-lamp QTP4x32T8/UNV PSN-SC
Also operates:
FB032, FB031, F025, FB024, F017, FB016, F030/SS, FB030/SS (30W), FB029/SS, F028/SS (28W) \&
F025/SS (25W)

Key System Features

- PROStart ${ }^{\oplus}$ Programmed Rapid Start
- Increase lamp life
- Ideal for occupancy sensors
- NEMA Premium Electronic Ballast Program compliant
- Low profile enclosures:
- 1.00 " high "Thin Can"
- 1.18" high "Small Can"
- Min. Starting Temp:
- $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ for T8 lamps
- $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$ for Energy Saving T8 lamps
- Operates at $>40 \mathrm{kHz}$ to avoid interference with infrared control systems
- Universal Input Voltage (120-277V)
- RoHS compliant
- Lead-free solder, printed circuit board and manufacturing process

Application Information

SYLVANIA QUICKTRONIC

PROStart T8 ballasts
are ideally suited for:

- Any applications where extended lamp life is required to reduce maintenance costs
- Energy retrofits
- Occupancy sensors
- Building control systems

SYLVANIA QUICKTRONIC PROStart programmed rapid start electronic ballasts operate linear U-bend SUPERSAVER ${ }^{\circledR}$ equivalent 78 lamps in applications where extended lamp life is required.
QUICKTRONIC PROStart ballasts utilize a micro-controller based circuit to apply a precise amount of cathode heat prior to starting the lamp. This ensures that the cathodes have reached optimum temperature before the lamp is started. Once the lamp has ignited, the ballast eliminates the cathode voltage which optimizes system efficiencies similar to instant start ballasts.
QUICKTRONIC PROStart ballasts are NEMA Premium Electronic Ballast Program compliant. The program promotes the use of high efficiency $T 8$ electronic ballasts by meeting or exceeding the Ballast Efficiency Factors, (BEF) established by the CEE, (Consortium for Energy Efficiency). For additional information on this program go to: www.cee1.org or www.nema.org

In addition to substantial energy savings, QUICKTRONIC PSN ballasts deliver an optimized programmed start which extends lamp life. This advanced starting process drastically reduces the amount of cathode sputtering, resulting in improved lamp life in all applications including short start cycles.

QUICK $60+{ }^{\circledR}$ warranty coverage is included when you use SYLVANIA lamps and ballasts together as a system. See the QUICK 60+ warranty bulletin for complete details.
The QUICKTRONIC PROStart ballasts are ideally suited for applications requiring extended lamp life. In short cycle applications, our PROStart ballasts will deliver three times the number of start cycles compared to electronic Instant Start ballasts.

All SYLVANIA Professional Series (QTP) electronic ballasts feature high power quality ($<10 \%$ THD), lightweight, low profile designs.
This product is also offered in new banded packaging and pallet packs.

- Distributor-friendly for easy stocking
and individual ballast sales
- Reduced waste
- Easy removable bands
- No tangled wires

These ballasts are also RoHS compliant and feature lead-free solder, printed circuit boards and manufacturing process.

System Information		Input			Mea	Relative Mean	\%	\%
QUICKTRONIC PROStart ballasts provide optimum starting conditions to provide over 100,000 switching cycles for occupancy sensor and building control system applications.	Lamp \& Ballast Type	Power (W)	Initial Lumens	Initial LPW	System Lumens	Light Output	Energy Savings	Lamp Life
	$\begin{array}{\|l\|} \hline \text { 2-F032/700 } \\ \text { QTP 2x32 ISN } \end{array}$	59	4930	84	4435	Baseline	Baseline	Baseline
QUICKTRONIC PSN UNV operates from 120V through 277 V , eliminating "wrong voltage" wiring errors and reducing the number of models in inventory by half.	$\begin{array}{\|l\|} \hline \text { 2-F032/800/XP } \\ \text { QTP } 2 \times 32 \text { ISN } \end{array}$	59	5280	89	4965	112\%	0\%	100\%
	$\begin{aligned} & \text { 2-F032/800/XP } \\ & \text { QTP } 2 \times 32 \text { PSN } \end{aligned}$	59	5280	89	4965	112\%	0\%	150\%
	$\begin{array}{\|l} \hline \text { 2-F028/SS } \\ \text { QTP } 2 \times 32 \text { PSN } \end{array}$	52	4800	92	4510	102\%	12\%	150\%

Banded Pack, (add "-B" to Description). Banded Pack and 10-Pack contain 10 pieces each. Pallet Pack contains 840 pieces, (add "-PAL" to Description).
1: Ballast Efficiency Factor (BEF) shown = (Ballast Factor x 100) divided by Input Power (Note: calculation based on lowest wattage value).

4 lamp

Dimensions "TC \& SC" Enclosure:
"SC" Overall: 9.5" L x 1.68" W x 1.18" H "TC" Overall: $9.5^{\prime \prime}$ L x 1.68" W x 1.00 H Mounting: 8.90"
Weight: 1.6 lbs each

Wiring:

Leads only
(no connectors provided)

Item Number
QUICKTRONIC PROFESSIONAL
 Enclosure Type (TC or SC)

Number of Lamps (1, 2, 3, 4) Starting Type/Ballast Factor - PROStart/Normal BF Primary Lamp Type (F32T8)

Normal Ballast Factor

18PROStart ${ }^{\oplus}$ PSN UNV Professional Series Performance Guide

Data based upon SYLVANIA OCTRON® lamps shown. QUICKTRONIC® QTP PROStart ballasts are also compatible with other lamp manufacturers equivalent lamp types that meet ANSI specifications. QTP PROStart ballasts will also operate F17 \& F25, SUPERSAVER ${ }^{\oplus}$ \& U-Bend equivalent T8 lamps. Complete performance data is available in the QUICKSYSTEMS section of the SYLVANIA Ballast Technology \& Specification Guide.

Specifications,
Data wased on 13218
Ballast Factor: 0.88
Circuit Type: Series
Lamp Frequency: >40 kHz
Lamp CCF: Less than 1.6
Starting Temp: ${ }^{2}$
$0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ for OCTRON T8 lamps; $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$ for SUPERSAVER ${ }^{\circledR}$ T8 lamps Input Frequency: $50 / 60 \mathrm{~Hz}$
Low THD: <10\%
Power Factor: >98\%
Voltage Range: $\pm 10 \%$ of $120-277 \mathrm{~V}$ rated line (108-305V)
UL Listed Class P, Type 1, Outdoor CSA Certified
$70^{\circ} \mathrm{C}$ Max Case Temp.
FCC 47CFR Part 18 Non-Consumer
Class A Sound Rating
RoHS Compliant ${ }^{3}$
NEMA Premium Electronic Ballast Program compliant
ANSI C62.41 Cat A. Transient GFCI compatible
Emergency ballast compatible
Remote Mounting (Max. wire length from ballast case to lamp holder):

- 20 ft : full wattage T8s
- 10 ft: energy saving T8s
- 4 ft : 25W energy saving T8s (keep blue wires short, ie. lamp(s) attached to the blue leads to remain in the fixture that houses the ballast).
2 Operation below $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ may affect light output or lamp operation - see "Low Temp. Starting" definition.

3 Complies with European Union Restriction of Hazardous Substances Directive (Directive EC 2002/95)

System Life / Warranty

QUICKTRONIC products are covered by the QUICK $60+{ }^{\bullet}$ warranty, a comprehensive lamp and ballast system warranty. For additional details, refer to the QUICK 60+ warranty bulletin.

OSRAM SYLVANIA

National Customer
Service and Sales Center
1-800-LIGHTBULB
(1-800-544-4828)
www.sylvania.com
Specifications subject to change without notice.

SYLVANIA, Υ UMr the system solution, See the World in a New Light, OCTRON, PROStart, SUPERSAVER, XP and QUICK60+ are registered trademarks of OSRAM SYLVANIA Inc. QUICKTRONIC is a registered trademark of OSRAM GmbH.

QUICKTRONIC ${ }^{\circledR}$ PROStart ${ }^{\circledR}$ T8 High Ambient Temperature

Type CC, Lamp Striation Control \& Parallel Operation High Ballast Factor

High Efficiency Series

Lamp / Ballast Guide

Primary Systems
32W T8-OCTRON ${ }^{\ominus}$
2-lamp QHE2x32T8/UNV PSH-HT
3-lamp QHE3x32T8/UNV PSH-HT
4-lamp QHE4x32T8/UNV PSH-HT
Also operates:
FB032, FB031, F030/SS (30W), F028/SS (28W), FO25/SS (25W), FB030/SS (30W), FB029/SS (29W), F025, FB024, F017 \& FB016

Key System Features

- High Efficiency Systems over 90\% efficient
- NEMA Premium Ballast compliant
- PROStart Programmed Rapid Start
- Extends lamp life
- High ballast factor: 1.15
- Parallel operation, (one lamp out, remaining lamps stay lit)
- $90^{\circ} \mathrm{C}$ maximum case temp.
- UL Type CC
- LSC (Lamp Striation Control)
- Universal input voltage (120-277V)
- Min. Starting Temp:
- $0^{\circ} \mathrm{F} /-18^{\circ} \mathrm{C}$ for T 8 lamps
- $60^{\circ} \mathrm{F} / 16^{\circ} \mathrm{C}$ for Energy Saving T8 lamps

Application Information

SYLVANIA QUICKTRONIC

PROStart T8 is ideally suited for:

- High bay
- Warehouses
- Applications where extended lamp life is required to reduce maintenance costs
- Areas where frequent switching is desired
- Occupancy sensor usage
- Building control systems
- Areas that are underlit

SYLVANIA QUICKTRONIC PROStart programmed rapid start electronic T8 ballasts offer eight major advantages: 1. Operate 32 W linear and U-bend equivalent T 8 lamps at High Efficiency and high ballast factor which increases light levels while optimizing system performance.
2. Longer Lamp Life: System PSH, (Programmed Start High Ballast Factor) is the first SYLVANIA high ballast factor model to extend lamp life which is ideal for applications where long lamp life is desired to reduce maintenance costs.
3. High Ambient Temperature: specifically designed for those applications where the ballast is subjected to higher ambient temperatures, such as high bays in industrial installations.
4. Parallel Circuitry: keeps remaining lamps lit if one or more go out. First SYLVANIA PROStart ballast to offer parallel lamp operation.
5. Available in $2,3 \& 4$-lamp models which allows great flexibility for various light levels in high bay applications to replace HID or T12HO lighting systems.
6. NEMA Premium Ballast (NPB) program compliant. The NPB program promotes
 ballasts by meeting or exceeding the Ballast Efficiency Factors, (BEF) established by the CEE, (Consortium for Energy Efficiency). For additional information on this program go to: www.cee1.org or www.nema.org
7. UL Type CC compliant: ballasts utilize a micro-controller based circuit to reduce arcing caused by loose connections or improper lamp pin to socket connections.
8. Lamp Striation Control (LSC): T8 energy saving lamps should be operated above $60^{\circ} \mathrm{F}$, but under certain conditions the lamps may striate. LSC circuitry may minimize or eliminate this condition; however there are limited applications where LSC circuitry may not entirely mitigate lamp striations. (Please consult lamp manufacturers for additional details.)

System Information

SYLVANIA QUICKTRONIC High Efficiency (QHE) System advantages:

- Operate from 120V through 277V
- Eliminates "wrong voltage" errors
- Reduces inventory by 50%
- Utilizes Programmed Rapid Start operation for:
- Highest System Efficacy
- Longer Life
- Over 100,000 switching cycles for occupancy sensor and building control systems applications.
- Operate at $>42 \mathrm{~Hz}$ to reduce potential interference with infrared control systems

Ballast Type	Input Power (W)	Initial LPW	Mean Fixture* Lumens	Relative Fixture* Output	\% Energy Savings	@3hrs/ Lifert
M400/U Magnetic Ballast	452	61	17,784	Baseline	Baseline	Baseline

Comments

High Efficiency Type CC, Lamp Striation Control \& High Ambient (120-277V)

Item Number	OSRAM SYLVANIA Description	Input Current (AMPS)	Lamp Type	Rated Lumens (Im)	No. of Lamps	Ballast Factor (BF)	System Lumens	Mean Lumens	Input Power (W)	System Efficacy (Im/W)	BEF ${ }^{1}$
$\begin{aligned} & 49450 \\ & 49459 \end{aligned}$	QHE2x32T8/UNV-PSH-HTBanded PackPallet Pack	0.60/0.27	F032/700	2800	2	1.15	6440	5795	72/70	89/92	1.64
		0.60/0.27	F032/XP	3000	2	1.15	6900	6485	72/70	96/99	1.64
		0.57/0.25	F030/SS	2850	2	1.15	6555	6160	69/67	95/98	1.72
		0.53/0.23	F028/SS	2725	2	1.15	6270	5890	63/62	100/101	1.85
		0.47/0.20	F025/SS	2475	2	1.15	5695	5350	56/55	102/104	2.09
		0.46/0.20	F025/XP	2175	2	1.16	5045	4740	55	92	2.11
		0.32/0.14	F017/XP	1375	2	1.17	3220	3025	38	85	3.08
$\begin{aligned} & 49453 \\ & 49460 \end{aligned}$	QHE3x32T8/UNV-PSH-HTBanded PackPallet Pack	0.94/0.40	F032/700	2800	3	1.15	9660	8695	110/108	88/89	1.06
		0.94/0.40	F032/XP	3000	3	1.15	10,350	9730	110/108	94/96	1.06
		0.88/0.37	F030/SS	2850	3	1.15	9835	9245	104/101	95/97	1.14
		0.81/0.34	F028/SS	2725	3	1.15	9400	8835	95/93	99/101	1.24
		0.72/0.31	F025/SS	2475	3	1.15	8540	8025	85/84	100/102	1.37
		0.70/0.30	F025/XP	2175	3	1.17	7635	7175	83/82	92/93	1.43
		0.48/0.21	F017/XP	1375	3	1.18	4870	4575	56	87	2.11
$\begin{aligned} & 49455 \\ & 49470 \end{aligned}$	QHE4x32T8/UNV-PSH-HTBanded PackPallet Pack	1.22/0.53	F032/700	2800	4	1.15	12,880	11,590	143/141	90/91	0.82
		1.22/0.53	F032/XP	3000	4	1.15	13,800	12,970	143/141	97/98	0.82
		1.13/0.49	F030/SS	2850	4	1.15	13,110	12,325	132/130	99/101	0.88
		1.06/0.46	F028/SS	2725	4	1.15	12,535	11,785	124/123	101/102	0.93
		0.95/0.41	F025/SS	2475	4	1.15	11,385	10,700	112/110	102/104	1.05
		0.91/0.40	F025/XP	2175	4	1.17	10,180	9570	107/106	95/96	1.10
		0.63/0.28	F017/XP	1375	4	1.18	6490	6100	73	89	1.62

Banded pack contains 10 pieces, (add "-B" to Description). Pallet Pack contains 500 pieces, (add "-PAL" to Description).
1: Ballast Efficiency Factor (BEF) shown = (Ballast Factor x 100) divided by Input Power (Note: calculation based on lowest wattage value).

Data based upon SYLVANIA OCTRON ${ }^{\text {® }}$ lamps shown. QUICKTRONIC ${ }^{\oplus}$ QHE PROStart ballasts are also compatible with other lamp manufacturers equivalent lamp types that meet ANSI specifications.

QHE PROStart ballasts will also operate F17 \& F25, SUPERSAVER \& U-Bend equivalent T 8 lamps.

Specifications
Starting Method: Programmed Rapid-Start
Ballast Factor: 1.15
Circuit Type: Parallel
Lamp Frequency: >40 kHz
Lamp CCF: Less than 1.7
Starting Temp: ${ }^{2}$
$0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ for OCTRON T8 lamps; $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$ for SUPERSAVER ${ }^{\ominus}$ T8 lamps Input Frequency: $50 / 60 \mathrm{~Hz}$
THD: <10\%
Power Factor: >98\%
Voltage Range: $\pm 10 \%$ of $120-277 \mathrm{~V}$ rated line (108-305V)

UL Listed Class P, Type 1 Outdoor UL Type CC Rated
Lamp Striation Control (LSC)
CSA Certified
High Ambient Applications:
$90^{\circ} \mathrm{C}$ Max. Case Temp. (3 yr. warranty)
Standard Ambient Applications:
$70^{\circ} \mathrm{C}$ Max. Case Temp. (5 yr. warranty) FCC 47CFR Part 18 Non-Consumer Class A Sound Rating
ANSI C62.41 Cat A. Transient Protection GFCI compatible
Emergency ballast compatible
Remote Mounting (Max. wire length from ballast case to lampholder):

- 20 ft : full wattage $\mathrm{T8s}$
- 10 ft : energy saving T8s
- 4 ft : 25W energy saving T8s

2 Operation below $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ may affect light output or lamp operation - see "Low Temp. Starting" definition.

System Life / Warranty

QUICKTRONIC products are covered by our QUICK $60+{ }^{\oplus}$ warranty, a comprehensive lamp and ballast system warranty. For additional details, refer to our QUICK 60+ warranty bulletin.

```
OSRAM SYLVANIA
National Customer
Service and Sales Center
1-800-LIGHTBULB
(1-800-544-4828)
www.sylvania.com
```

תMMD- the system solutione Page 60 of 62

Appendix D

Budget Breakout

[^0]: Lighting Tool - Naughton Power Plant Final.xlsm

[^1]: Lighting Tool - Naughton Power Plant Final.xlsm

[^2]: Application Notes

 1. SUPERSAVER (SS) lamps are recommended to be used on T8 F32 Instant or Programmed Rapid Start ballasts with minimum open circuit voltage of 550V RMS at the lamp.
 a. Electronically ballasted fixture configurations which operate lamps remotely, such as Master/Satellite applications, can cause reduction of lamp open circuit voltage, in the remote fixture, below the minimum required for reliable lamp starting. For more information, please call 1-800-LIGHTBULB and ask for Ballast Technical Assistance or call your fixture manufacturer.
 b. Not recommended to be used: (1) in remotely ballasted fixtures with lamp open circuit voltages below 550 V , (2) in air handling fixtures, (3) on low power factor ballasts or (4) inverter operated emergency lighting systems unless any of the above equipment is specifically listed for SUPERSAVER (SS) lamps. Any of the above situations could result in lamp starting and stabilization problems, or system compatibility issues.
 2. If a 28 W SUPERSAVER lamp is exposed to drafts and/or the ambient temperature falls below $60^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{F}\right.$ for 25 W lamp), striation (a rhythmic pulsing pattern of light running down the tube) and/or reduction in lamp brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the lamp to normal operation.
 3. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.
 4. Contact OSRAM SYLVANIA for approved dimming ballasts.
[^3]: *PFM 13L output is 12,940 .

