
The Problem of Relapse in Myeloma

PARAMESWARAN HARI Medical College of Wisconsin

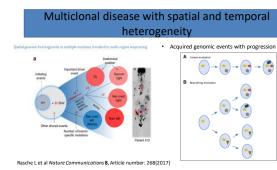
Relapse is the hallmark of multiple myeloma

- Definitions Relapse from CR / Biochemical
- Progression / Clinical Relapse
- Biological Correlates
- Choosing when to treat
- Risk Stratification of Relapse

Definitions- Relapse

From CR

- Mainly used for clinical trials
- Reappearance of serum or urine M-protein by immunofixation or electrophoresis or abnormal FLC ratio
- Development of ≥5% plasma cells in BM
 Any other sign of progression (ie, new plasmacytoma, lytic bone lesion, or hypercalcemia)
- Clinical relapse
 - New CRAB findings
 - New plasmacytomas or bone lesions (fractures do not necessarily count)
 Increasing size of existing plasmacytomas (<u>></u>50%)
 Hyperviscosity related to paraprotein


Kumar et al, Loncet Oncol, 2017

Definitions-Progression

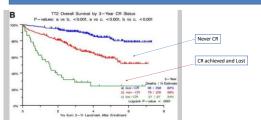
- Increase of 25% from lowest confirmed response value in one or more of: − Serum M-protein (absolute increase must be $\ge 0.5 \text{ g/dL}$) − Serum M-protein increase $\ge 1 \text{ g/dL}$, if the lowest M component was $\ge 5 \text{ g/dL}$

 - Urine M-protein (absolute increase must be ≥200 mg/24 h)
 Light chain disease: the difference between involved and uninvolved FLC levels (absolute increase must be >10 mg/dL)
- Non-secretory: 25% increase in bone marrow plasma-cell percentage irrespective of baseline status (absolute increase must be $\geq 10\%$) ٠
- Appearance of a new lesion(s), ≥50% increase from nadir
- $\geq\!\!50\%$ increase in circulating plasma cells (minimum of 200 cells per μL) if this is the only measure of disease ٠

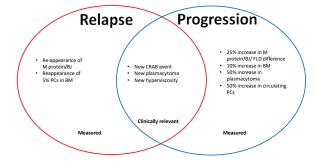
Kumar et al, Loncet Oncol, 2017

Case presentation

- 62 YO M with standard risk MM dx'd in 1/2013
 - Received RVD x $3 \rightarrow$ nCR
 - Auto-HCT with melphalan 200 in 6/2013→ sCR
- Maintenance lenalidomide started in 9/2013 On routine bloodwork 4/2017 SPEP shows reappearance of M protein at
- 0.1 g/dL


Now what??

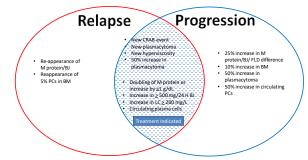
Importance of full re-staging at suspected relapse/progression

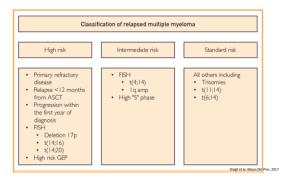

- History- determine co-morbidities
- Physical- determine PS
- Labs including PB flow for PCs
- Bone marrow, including FISH, cytogenetics, +/- GEP
 - Determine new clones
 - Risk stratification
 - Possibly help with clinical decision making (BCMA, 11:14)
- Imaging- beware of EMD
 - PET/CT
 - PET/MRI

Dingli et al, Mayo Clin Proc, 2017

Loss of CR or Never CR or Sustained CR

Hoering A et al Blood. 2009 Aug 13; 114(7): 1299–1305.

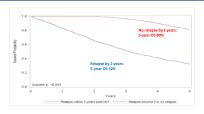

Making your decision


- · Immediate treatment for relapse
- Closer follow-up
- Regular follow-up

Indications for treatment

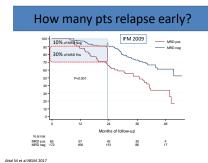
- Clinical relapse (CRAB or plasmacytomas)
- Significant biochemical progression without clinical relapse
 - Doubling of the M-component in two consecutive measurements separated by 2 months with the reference value of 5 g/L, (=0.5 g/dL) or
 - In two consecutive measurements any of the following increases:
 the absolute levels of serum M protein by ≥10 g/L (=1.0g/dL), or
 - an increase of urine M protein by ≥500 mg per 24 hours, or
 - an increase of involved FLC level by ≥20 mg/dL (= 200 mg/L) (plus an abnormal FLC ratio) or 25% increase (whichever is greater)

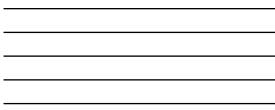
Ludwig et al, The Oncologist, 2014


_

_

When to treat if only biochemical relapse/progression


- Aggressive clinical disease at diagnosis
- Short treatment-free interval/ suboptimal response to previous treatment line
- Imminent risk for organ dysfunction (pts with previous light chaininduced renal impairment)
- Unfavorable cytogenetics (t(4;14) or del17p)


Natural History of early relapse after transplant

Kumar S et al Tandem BMT meetings 2017

Ludwig et al, Oncologist, 2014

Back to the case...

- 62 YO M with standard risk MM dx'd in 1/2013

 Received RVD x 3→ nCR

 - Auto-HCT with melphalan 200 in 6/2013→ sCR
 Maintenance lenalidomide started in 9/2013
- On routine bloodwork 4/2017 SPEP shows reappearance of M protein at 0.1 g/dL
- BM: 5% involvement by plasma cells, normal cytogenetics/FISH
- PET/CT negative
- Followed q3 months with labs
- 10/2013 M protein = 0.7
- 11/2013 M protein = 1.1

Gray areas

- On maintenance with an M protein rise $0.2 \rightarrow 0.6$
- Should we treat earlier if the patient is already on maintenance? · High-risk patients with increasing light chains, but not quite at
- progression
- Persistently PET avid plasmacytomas
- True biochemical progression but questionable performance status

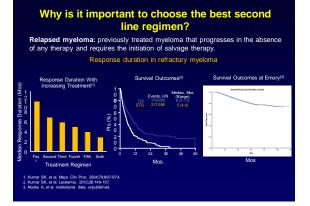
Next Talks

- Choosing a regimen at relapse
 - Early Relapse
 - Refractory Relapse
- Options for the multirelapsed and refractory patient
 - Immunotherapy
 - Clinical Trials of Newer Novel Agents

Early Relapse: Choosing Among Different Second Line Regimens

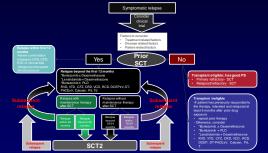
Ajay K. Nooka, MD, MPH, FACP Associate Professor Department of Hematology and Medical Oncology Winship Cancer Institute of Ernory University Atlanta, Georgia

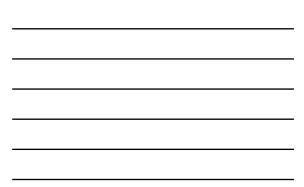
Disclosures


Advisory board: Celgene, Amgen, Novartis, Spectrum, Pharmaceuticals and Adaptive technologies

Clinical Vignette

72-year-old female with diagnosis of standard risk myeloma (hyperdiploidy on FISH studies) received induction therapy with RVd regimen. She underwent upfront transplant and achieved stringent CR. She opted not to go for maintenance therapy, and was monitored closely. Four years from her transplant, she started showing evidence of biochemical progression, and now she is anemic.


You suggest that the following second line regimen delivers the best depth of response (≥VGPR) based on the data from available lenalidomide based phase III studies:


- 1. Elotuzumab with lenalidomide and dexamethasone
- 2. Daratumumab with lenalidomide and dexamethasone
- 3. Ixazomib with lenalidomide and dexamethasone
- 4. Carfilzomib with lenalidomide and dexamethasone

Treatment Options for Relapsed and Refractory Myeloma (RRMM)

Factors to Consider to for Treatment Selection a Relapse: Disease related Factors

➤ Nature of relapse

- ➢indolent vs aggressive
- Risk stratification
- >Genetics of initial and relapsed marrow
- ➢ Disease burden
- ≻High vs low
- R-ISS staging
- ≻1 vs 2-3

Nocka AK, et al. Blood. 2015;125:3085-3099.
 Palumbo A, et al. N Engl J Med. 2011;384:1046-1080.
 Palumbo A, et al. Blood. 2011;118:4519-4529.
 Ortowski RZ I pniał S Clin Cancor Res. 2016;27:5443

Factors to Consider to for Treatment Selection a **Relapse: Treatment related Factors**

- Previous therapy
 Pts with PD receiving IMiDs, Pts, or cytotoxic doublet/triplet therapies can benefit from next-generation regimens
 Avoid agents of previous regimen-related toxicity

- National agents of proceeds of proceeds of the second states of the Neuropathy: consider neuropathy sparing durgs (avoid bortezomib, thalidomide)
 - Cardiac issues (uncontrolled HTN, CHF): careful consideration of carfilzomib > COPD: monoclonal antibodies with caution (daratumumab)

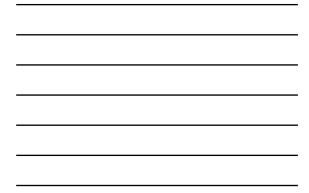
 - DVT/PE: use anticoagulation with IMiDs
- Depth and duration of previous response, tumor burden at relapse Retreatment with previous therapies an option if pt had previous response to the treatment, acceptable tolerance, and relapse occurred at least 6 mos after previous exposure

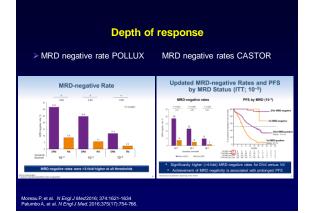
a AK, et al. Blood. 2015;125:3085-3099. hbo A, et al. N Engl J Med. 2011;384:1046-1060. hbo A, et al. Blood. 2011;118:4519-4529.

Factors to Consider to for Treatment Selection a **Relapse: Patient related Factors**

- > Renal insufficiency: disease related or due to comorbidities (hypertension, vascular disease, diabetes, nephrotoxicity)[1]
- > Hepatic impairment common in pts with RRMM^[1]
- > Comorbidities and fraility^[1]
 - >Treatment decisions complicated in elderly
 - ≻ ↑ toxicity due to \downarrow organ function, physiologic reserve
 - > European Myeloma Network vulnerability assessment algorithm anticipates regimen-related toxicities and assists individualizing therapy with least potential for interruption $^{\left[2,3\right]}$
- > Patient preferences
 - Convenience, ease of travel, insurance and other social factors

AK, et al. Blood. 2015;125:3085-3099. 50 A, et al. N Engl J Med. 2011;364:1046-1060. 50 A, et al. Blood. 2011;118:4519-4529.

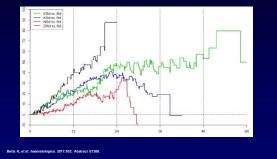

Lenalidomide and Bortezomib-Based Early Relapse Regimens: PFS and OS


Trial	Regimen	PFS (mon)	ORR (%)	VGPR (%)	PFS (HR, 95% CI)	OS (HR, 95% CI)	
ASPIRE ¹	Rd + Carfilzomib	26.3	87.1	69.9	.69 (.5783)	.79 (.6399)	
N=792	Rd	17.6	66.7	40.4	P=.0001	P=.04	
TOURMALINE-MM-12	Rd + Ixazomib	20.6	78.3	48.1	.74 (.5974)	NR	
N=722	Rd	14.7	71.5	39	P=.01	INK	
ELOQUENT-23	Rd + Elotuzumab	19.4	79	33	.70 (.5785)	.78 (.6396)	
N=646	Rd	14.9	66	28	P<.01	.78 (.6396)	
POLLUX ⁴	Rd + Daratumumab	NR	93	75.8	.37 (.2850)	.63 (.4295)	
N=569	Rd	18.4	76	44.2	P<.0001	.63 (.4295)	
PANORAMA ⁵	Vd + Panobinostat	11.99	60.7	28	.63 (.5276)	.87 (.69-1.10)	
N=768	Vd	8.08	54.6	16	P<.0001	P=.26	
CASTOR ⁶	Vd + Daratumumab	NR	83	59	.39 (.2853)	.63 (.4296)	
N=498	Vd	7.2	63	29	P<.0001	.63 (.4290)	
ENDEAVOR7	Carfilzomib + Dex	18.7	76.7	54	.53 (.4465)	.79 (.58-1.08)	
N=929	Vd	9.4	62.3	29	P<.0001	P=.06	
 Stewart K, et al. N Engl J Med2015;372:142-52. Z. Moreau P, et al. N Engl J Med2016; 374:1621-1634. Sami Mguel J, Lancet Oncol 2014; 15: 1195-206. F. Plaumbo A, et al. N Engl J Med2016; 375:478-1431. Sam Mguel J, Lancet Oncol 2014; 15: 1195-206. F. Plaumbo A, et al. N Engl J Med2016; 375:754-766. To Immodulos M. et al. Lancet Oncol 2016; 127:83. 							

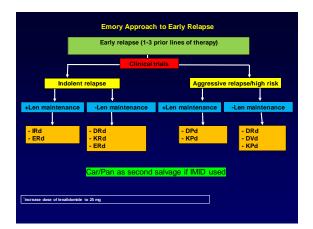
FDA Approvals of Novel Agents for Patients with RRMM					
Novel Agent or Regimen	FDA Approval Date	Patient Population			
Panobinostat + bortezomib/dexamethasone	February 23, 2015	 Patients with ≥2 prior standard therapies, including bortezomib and an IMiD agent 			
Carfilzomib + lenalidomide/dexamethasone	July 27, 2015	 Patients with relapsed disease who had received 1-3 prior lines of therapy 			
Daratumumab	November 16, 2015	 Patients with at least 3 prior treatments 			
lxazomib + lenalidomide/dexamethasone	November 20, 2015	 Patients who had received at least 1 prior therapy 			
Elotuzumab + lenalidomide/dexamethasone	November 30, 2015	Patients with 1-3 prior therapies			
Carfilzomib + dexamethasone	January 21, 2016	 Patients with relapsed disease and 1-3 prior therapies 			
Daratumumab + bortezomib/dexamethasone	November 21,2016	 Patients who had received at least 1 prior therapy 			
Daratumumab + lenalidomide/dexamethasone	November 21,2016	 Patients who had received at least 1 prior therapy 			
Daratumumab + pomalidomide/dexamethasone	June 16, 2017	 Patients who had received ≥2 prior standard therapies, including bortezomib and an IMiD agent 			

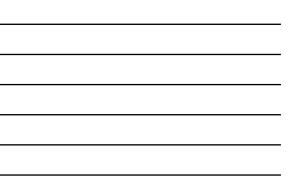
Available Regimens in Early Relapse NCCN Guidelines

Preferred Regimens	Other Regimens				
Level 1 Regimens Doubles Bortezomik/dexamethasone Carlizomik/dexamethasone Carlizomik/dekamethasone tenaildomide/dekamethasone Daratumumab/lenaildomide/dekamethasone Daratumumab/lenaildomide/dekamethasone Carlizomik/enaildomide/dekamethasone Charl Regimens Repeat primary induction therapy (if relapse at 56 months) Bortezomik/cyclopsphartide/dekamethasone Bortezom	Level Regimens Bortezomibiliposomal doxorubicin Panobinostalubottezomibildexamethasone Other PH-Based Elotuzumabibortezomibidexamethasone Alkylator-Based Bendamustine/tontezomibidexamethasone Bendamustine/tontezomibidexamethasone Bendamustine/tontezomibidexamethasone DECP (dex/cpclophamide/tenposide/splatin) DT-PACE (dex/thaldomide/cisplatin/doxorubicin/ cyclophosphamide/teposide/splatin/doxorubicin/ pACE) High-dose cyclophosphamide(teposide) ± bortezomib (VTD- PACE)				
Note: NCCN Guidelines do not break out regimens into separate categories of early and late relapse					
ICCN Guidelines, Version 3.2017. Accessed August, 2017.					


Benefit of antibodies as earlier lines of therapy: MRD negativity and PFS from CASTOR MRD –ve rate with DVd as 1st line vs ITT PFS with DVd as 1st line vs 2-3

Mateos MV, et al. Blood. 2016;128: Abstract 1150.



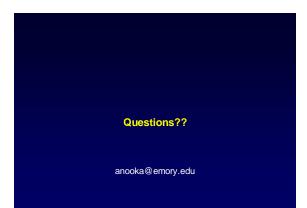


Salvage ASCT in the Relapsed Setting

TTP After ASCT1	Median From ASCT2, Mos (Range)				
TTPAIlerASCTT	PFS	OS			
< 12 mos	5.6 (3-8)	12.6 (4-23)			
< 18 mos	7.1 (6-8)	19.4 (10-42)			
< 24 mos	7.3 (6-10)	22.7 (13-62)			
< 36 mos	7.6 (7-12)	30.5 (19-62)			

Clinical Vignette

72-year-old female with diagnosis of standard risk myeloma (hyperdiploidy on FISH studies) received induction therapy with RVd regimen. She underwent upfront transplant and achieved stringent CR. She opted not to go for maintenance therapy, and was monitored closely. Four years from her transplant, she started showing evidence of biochemical progression, and now she is anemic.

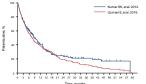

You suggest that the following second line regimen delivers the best depth of response (≥VGPR) based on the data from available lenalidomide based phase III studies:

- Elotuzumab with lenalidomide and dexamethasone
- Daratumumab with lenalidomide and dexamethasone
- Ixazomib with lenalidomide and dexamethasone
- Carfilzomib with lenalidomide and dexamethasone

Conclusions

- Novel agents in combination can achieve prolonged responses even in relapsed disease
 - >Depth of response is key even in relapsed disease
- There are many right ways to treat patients with multiple myeloma in relapse
- > There are also wrong ways to do it, know your options >Regimen with good tolerability, and efficacy (monoclonal antibodies)
- Despite major advances and newer options, a few challenges that we face today are
 - how to sequence the available regimens?
 - how to personalize therapy to derive the maximize benefit (eg: biomarkers)?

 - how to tailor therapy to minimize toxicity yet retain efficacy


Approach to the Patient with Refractory and Multiply Relapsed Multiple Myeloma

Peter Voorhees, M.D. Member, Plasma Cell Disorders Program

> Levine Cancer Institute

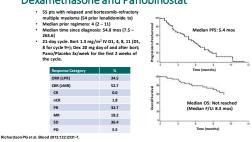
Relapsed/Refractory Disease : Outcomes

Despite the introduction of IMIDs and Pis, most patients relapse and outcomes are poor in relapsed or refractory patients³
 Median OS of 9 months in patients refractory to bortezombi and 21 IMIO³
 Median OS of 8 months in patients with relapsed or refractory MM who were double refractory or had relapsed after 23 priori lines of theragy, including pomalidomide and carfilzomib²

MM, multiple myeloma; IMID, im inhibitor; OS, overall survival. ory drug; Pl, pro 1.Kumar SK, et al. Leukemia. 2012;26(1):149-157. 2.Usmani S, et al. Oncologist. 2016. doi:10.1634/theoncologist.2016-0104.

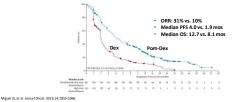
Outline

- Available Therapeutic Regimens for later relapse
- General Principles to Guide Therapy Decisions
- Treatment of Later Relapse / Progression (≥2 prior lines of therapy and/or lenalidomide/bortezomib refractory)
- Emerging therapeutics
- Conclusions


Available Regimens in Late Relapse: NCCN Guidelines

Preferred Regimens	Other Regimens
Late Relapse (>2 prior lines or len/bort refractory)	Late Relapse (>2 prior lines or len/bort refractory)
Level 1 Regimens	• Panobinostat/Dorte.comily dexamethasone
Doublets	+ Panobinostat/carlitomils
• Pomalidomide/dexamethasone	• Pomalialdomide/cyclophosphamide/etospoide/cisplatin)
Other Regimens	• DCFP (dex/pcohosphamide/etospoide/cisplatin)
• Pomalidomide/bortezomib/dexamethasone	• DT-PACE (dex/thaildomide/cisplatin/doxonubicin/
• Pomalidomide/daritumumab/dexamethasone	cyclophosphamide/etospoide) = bortezomib (VTD-PACE]
• Pomalidomide/daritumumab/dexamethasone	• High-dose cyclophosphamide

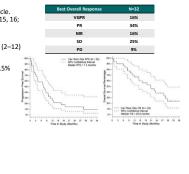
Note: NCCN Guidelines do not break out regimens into separate categories of early and late relapse


NCCN Guidelines, Version 3.2017, accessed August, 2017.

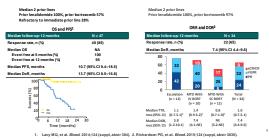
PANORAMA-2: A Phase 2 Study of Bortezomib, Dexamethasone and Panobinostat

Pomalidomide-Dex vs Dex for Relapsed/Refractory Multiple Myeloma

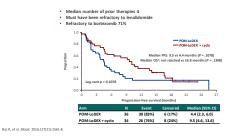
Randomized, phase III study of Pom-Dex vs Dex in relapsed/refractory myeloma
 Baseline characteristics: 1) Median number of prior therapies = 5; 2) Len and bort refractory 75%

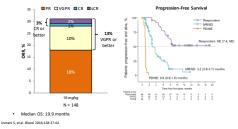

2

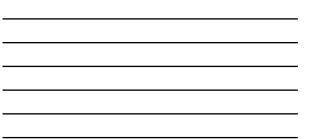
Carfilzomib, Pomalidomide and Dexamethasone for Relapsed/Refractory Multiple Myeloma


- MTD in phase I: 4-week cycle. CFZ 27 mg/m² D1, 2, 8, 9, 15, 16; Pom 4 mg D1-21; Dex 40 mg D1, 8, 15, 22
- Median lines of therapy: 6 (2–12)
- Len-refractory: 100%
- Bortezomib-refractory: 93.5%

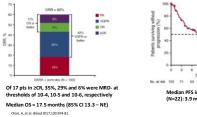
Median PFS 7.2 months, Median OS 20.6 months

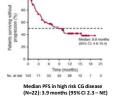

Shah Ji, et al. Blood. 2015;261:2284-2290.


Phase 1/2 Trial: Pomalidomide, Bortezomib and Dexamethasone

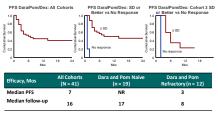


Phase 1/2 Trial: Pomalidomide, Cyclophosphamide and Dexamethasone




Daratumumab as Monotherapy for Relapsed/Refractory Multiple Myeloma

Pomalidomide, Dexamethasone and Daratumumab for Relapsed/Refractory MM Median number of prior lines of therapy: 4 (range 1 - 13), 71% PI and IMID refractory, 25% with high risk CGs


Analysis of Daratumumab, Pomalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma

Best Response	Dara and Pom Naive (n = 19)	Dara and/or Pom Refractory (n = 22)	Dara and Pom Refractory (n = 12)
ORR, n %	17 (89.0)	9 (40.9)	4 (33.3)
sCR, n %	7 (36.8)	0	0
CR, n %	1 (5.3)	0	0
VGPR, n %	3 (15.8)	1 (4.5)	1 (8.3)
PR, n %	8 (42.1)	8 (36.4)	3 (25.0)
MR/SD, n %	1 (5.3)	9 (40.9)	6 (50.0)
PD, n %	1 (5.3)	4 (18.2)	2 (16.7)
Median cycles of tx, n (range)	15 (1-23)	3 (1-8)	3 (1-8)

Nooka AK, et al. Blood. 2016;128:492.

4

Analysis of Daratumumab, Pomalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma

Nooka AK. et al. Blood. 2016:128:492.

- **General Treatment Principles**
- Overlap between early and late relapse treatment choices An early or late relapse regimen may be appropriate as $2^{nd} - 4^{th}$ line therapy (1 - 3 prior lines) depending on the circumstances
- The role of doublets and monotherapy is limited
 - Several novel triplets now available with good toxicity profiles
 Consider in the more frail, heavily pretreated patients
- Prior treatment toxicity, disease resistance patterns and co-morbidities figure particularly prominently into the decision making process for these patients
- Assess for the presence of t(11;14)
- · Always think about a clinical trial

PABST: The Blue Ribbon Approach to Therapy Decisions for Previously Treated Multiple Myeloma

- Past medical history What co-morbidities will impact tolerability of therapy?
- Adverse events
- What toxicities were experienced with prior therapy?
- <u>B</u>iochemical vs clinical relapse/progression
- Standard vs high-risk disease biology
- Treatment history
 - Is the disease resistant to specific drug classes?

Biochemical vs Clinical Progression

Biochemical progression:

- Progression of disease based on M protein parameter increase only
 Timing of therapy institution / escalation dependent on numerous factors
- ↑ of ≥2! one or n 1) Sen ≥0.! 2) Urin ≥20 3) Me only and incr 4) Nor (ab factors • Pace of progression • Original clinical presentation • Standardvs high-risk disease biology • Patient/ physician comfort level • Clinical relapse:
 - Inical relapse: "Direct indicators of increasing disease and/or end organ dysfunction (CRAB features) related to the undiffying clonal plasma-cell proliferative disorder" Mandates immediate institution / escalation of therapy

Kumar S et al. Lancet Oncol 2016;17:328-46

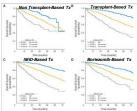
oBression		
IMWG Consensus Crite	eria for Response in N	i
Biochemical Progression	Clinic	al
5% from nadir response value in nore of the following the series of the following the series of the following for the series of the following for the series of the following for the series of the se	 Development : plasmaxytoms (osteopotoi c) constitute proj 2) Definite increa existing plasm lesions. A defir as a 50% (and measurable le 3) Hypercalcaemi 4) Decrease in ha not related to myeloma-relation 3) Rise in serum c or more from t and attributabi 6) Hyperviscosity paraprotein 	s nr s s s s s s s s s s s s s s s s s s

- the SPD§§ of th
- If up succession of the second second

250% increase in circulating plasma cells (minimum 200 cells / uL) if this is the only disease measure available

Standard vs High-Risk Disease Biology: IMWG
Consensus on Risk Stratification

	High-Risk	Standard-Risk	Low-Risk
Parameters	ISS II/III and t(4;14) or del(17p13)	Others	ISS I/II and absence of t(4;14), del(17p13) and +1q21 and age <55
% of Patients	20%	60%	20%
Median OS	2 years	7 years	>10 years


· Other factors: Gene expression profile, LDH. circulating plasma cells, response to prior therapy

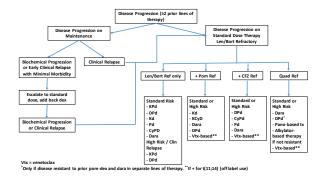
Chng WJ et al. Leukemia 2014;28:269-77

Revised International Staging System

□ R-ISS stage 1: normal LDH, no high risk cytogenetic abnormality (CA)*, ISS stage 1 disease □ R-ISS stage 2: not stage 1 or 3 □ R-ISS stage 3: ISS stage 3 disease PLUS high LDH OR high risk CA

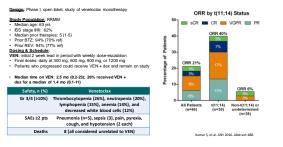
*High risk CA = del(17p) and/or t(4;14) and/or t(14;16)

nbo et al. JCO 2015;33:2863-2869 Palu


Treatment History

- What regimen(s) has the patient had in earlier lines of therapy?
- Is the disease refractory to car specific treatment?
 Refractory per the IMWG guidelines: disease progression on or within 60 days of the last dose of the regover.
 Lack of response (table disease) with prior therapy has been included in the definition of refractory in some studies
 Carrillominibas activity in henalidomide-refractory disease but the reverse has not been well studied
 Committee of the source of the disease of the disease of the disease of the reverse has not been well studied
- PromainDimide has activity in menaioomide-refractory disease but the reverse has not been were studied if refractory, did the patient have disease progression on standard dosing, reduced dosing due to prior toxicity or maintenance dosing?
 If dose reduced for toxicity, what were the toxicities, and how could they be better managed?
 For patients on maintenance, it is common practice to optimize therapy prior to changing to a non-cross resistant regimen.
 Increase the dose of lenaldomie and reincorporate desamethasone for a patient with progression on lenaldomide-maintenance. A 3²⁷ agent to four include in a scenano leg. Butournabl by patients with lenaldomide-refractory disease were not allowed to participate in the ELOQUENT-1 study and the additional impact of this maintened with studied

Treatment Choice Algorithm


• First Step

- Review resistance pattern with prior therapy
- Determine biochemical vs clinical relapse
- · Assess standard vs high risk disease
 - High risk FISH: del(1p), gain 1q, t(4;14), t(14;16), t(14;20), del(17p)
 High LDH, circulating plasma cells, plasma cell leukemia, extramedullary disease
- Second Step
 - Refine choice based on co-morbidities and tolerability of previously used drug classes

Venetoclax Monotherapy (N=66)

Venetoclax + Vd (N=66)

Desian: Phase lb, open label, dose escalation study of venetoclax + Vd			Obj	ective Responses	s Ra	ites for F		R/R MM
 Media ISS st Media Prior I Prior I Dosing VEN: da RP2D 	opulation: RRMM n age: 64 yrs age IIII: 59% n prior therapies: 3 (1-13) 372: 32%; ref 38 Schedule: ily, 50 mg – 1200 mg dose escalation 800 mg qd e and schedule not reported		Percentage of P	OPR 61% 275 275 275 275 275 275 275 275	45	34%	R 65% ORR 29% Therapies Hold 34 4 Hold 34	R ORR 94%. 22% 20% 20% Barte zemb Barte zemb Barte zemb
Safety, n (%)	Venetoclax	Efficacy	All	1-3 Priors		Efficacy	/ With	Without
Gr 3/4 (≥10%)	Thrombocytopenia (29%), anemia (15%) and neutropenia (14%)	DOR	8.8 mo	V non-ref: 10.6 mo V naïve: 15.8 mo			t(11;14)	t(11;14)
SAEs ≥2 pts	Febrile neutropenia, thrombocytopenia,	TTP	8.6 mo	V non-ref 11.3 mo		ORF	8 78%	66%
	cardiac failure, pyrexia, influenza, lower respiratory tract infection, pneumonia, sepsis, acute kidney injury, respiratory failure, embolism, and hypotension 1 DLT: lower abdominal pain (1200 mg Ven)		8.6 mo	V non-ref: 11.3 mo V naïve: 17.1 mo		(33),	ntinuations: 4 AE (5), withdra ot specified (3)	wn consent
Deaths	5 (4=PD, 1=RSV infection)							
						Moreau	P, et al. ASH 2016.	ADSTRACT 975.

STORM: Selinexor + Dex (N=79)

Vogl DT, et al. ASH 2016. Abstract 491.

8

PAVO: SC Daratumumab (N=41)

Design: Ph lb, open label, multicenter, dose-escalation study of SC Dara with rHuPH20 (Dara-PH20)

Study Population: N=41 • 22 prior lines of therapy • Prior therapy included an IMD and a PI

Dose & S D (cohort L Schedule: prt 1): 1200 mg in 60 mL over 20 min (n=8) prt 2): 1800 mg in 90 mL over 30 min (n=33)

Dara-PH20 was infused via a syringe pump in rotating areas on the abdomen in 4-week treatment cycles: QW for 8 weeks, Q2W for 16 weeks, and Q4W thereafter

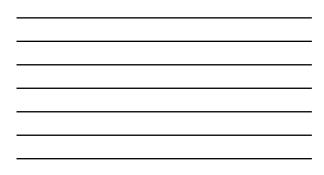
Efficacy	1200 mg	1800 mg
ORR	25%	41%
Safety		
Gr 3/4		uenza, hypertension, nor lysis syndrome
	ONLY SEEN IN	1200 MG DOSE
IRR (most Gr 1/2)		niting, itching, edema of rdiac chest pain, and
(wheezing; all occurred	at 1 st infusion and were with treatment
	NO GRADE 3 IRR SE	EN IN 1800 MG DOSE

Part 2 of the study will examine the RP2D of Dara-PH20 vs IV Dara mono
 1800 mg was selected as the RP2D

Usmani S, et al. ASH 2016. Abstract 1149.

First in Human Study with GSK2857916, An Antibody Drug Conjugated to Microtubule-disrupting Agent Directed Against B-cell Maturation Antigen (n=30)

BCMA expression is restricted to B cells at later stages of differentiation and is requisite for the survival of long lived plasma cells BCMA is broadly expressed at variable levels on malignant plasma cells



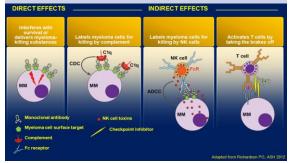
- SSK2857916 was well blenated with no DLBup to 4.6 mg/kg g3w. MTD was not reached
 AEs were manageable with ocular toxidy emerging as the most thequerit reason for dose modifications
 Hematologic succilies such as fortunocycopenia and anemia are sepected in the disease under study of the disease under study
 66.7% OR Including as simpler ICR observed at hyber doses of GSX2857916 in this relaciony population before an elementary
- population 3.4 mg/kg was selected as the dose to investigate in the expansion phase of the study based on the totalty of the data from Part 1 Pharmacodynamic and correlative analyses are ongoing

Cohen A, et al. ASH 2016.

B-cell Maturation Antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) for MM

	Anti-BCMA CAR	Bb2121	LCAR-B38M	CART-BCMA
Group/Company	NCI	Bluebird/Celgene/NCI	Nanjing Legend Biotech	Novartis/UPenn
Binder/co-stimulatory signaling	Murine/CD3 & CD28	Murine/CD3 & 41-BB	Murine/CD3 & 41-BB	Fullay human/CD3 & 41-BB
Transfection	Gamma-retroviral	Lentiviral	Lentiviral	Lentiviral
Trial ID	NCT02215967	NCT02658929	NCT03090659	NCT02546167
BCMA expression required?	Yes	Yes	Yes	No
Median prior lines of therapy	7	7	3	9
Latest efficacy	1 CR (relapsed), 7 PRs in 16 patients	4 CRs, 12 PRs in 18 patients	15 CRs and 13 PRs in 35 patients	1 CR, 3 PRs in 9 patients
Safety summary	Substantial but reversible	1 death, cardiopulmonary arrest (unrelated)	Transient CRS	1 death – progressive disease/candidaemia

Conclusions

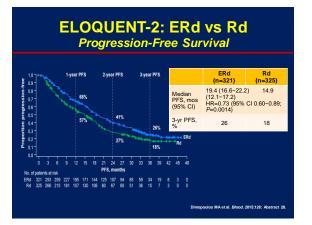

- There are many right ways to treat patients with multiple myeloma in relapse
 There are also wrong ways to do it
- As long as you have a PABST (review PMHx, adverse events, biochemical vs clinical relapse, standard vs high-risk disease, treatment history), you will come to a good answer for your patient
- Use your local/regional Myeloma Specialists as a resource when questions arise about risk status, when to change treatment in biochemical relapse, optimal therapy when the preferred regimens may not be good options
- Always consider a clinical trial, especially in increasingly refractory and / or high risk disease. We have gotten better at treating this disease but have a long ways to go!

2017 Trends in MM Rx: Restoring Immune Function

- Immunomodulatory drugs, other small molecules (eg, HDACi's)
- Monoclonal antibodies
- Checkpoint inhibitors
- Vaccines
- Cellular therapies

MIRACLE SCIENCE SOUL X CityofHope.

Monoclonal Antibodies Kill MM Through Multiple Mechanisms



***MIRACLE **SCIENCE ***SOUL X CityofHope

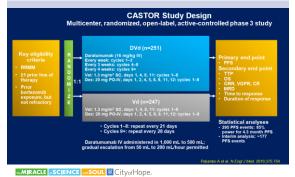
Hards Hards

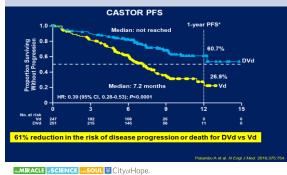
Primary end points: PFS, ORR
 Secondary end points: OS, DoR, QoL, safety

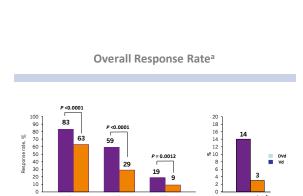
Lonial Set al. N Engl J Med. 2015;373:621

ELOQUENT-2: ERd vs Rd Efficacy						
Responses ¹						
¹⁰⁰]		ERd (n=321)	Rd (n=325)	HR; P value		
80 - 4 ORR 66%* 8 60 - 28 7 - CP	Median PFS, months ²	19.4	14.9	0.73; 0.0014		
\$\$ 60 - 28 7 CR \$\$ 21 VGPR \$\$ 40 - 46 38 \$\$	Median TTNT, months ²	33	21	0.62 (95% Cl 0.50– 0.77)		
0 ERd Rd	Median OS, months ²	43.7	39.6	0.77; 0.0257		
n=321 n=325 *Values may not sum due to rounding.	Median DoR, months ¹	20.7 1. Lonial S et	16.7 al. N Engl J Me tal. Blood 201	NR 1. 2015;373:621-31. 5126: Abstract 28.		

Daratumumab: Mechanism of Action




 Lammerts van Bueren J et al. Blood. 2014;124. Abstract 34/4. 2. Jansen JHM et al. Blood. 2012;120. Abstract 28/ 3. de Weers M et al. J Immunol. 2011;186:1840. 4. Overdijk MB et al. MAbs. 2015;7:31


MIRACLE SCIENCE SOUL CityofHope

Phase 3 Randomized Controlled Study of DVd vs Vd in Pts With Relapsed or Refractory MM: CASTOR

Phase 3 Randomized Controlled Study of DVd vs Vd in Pts With Relapsed or Refractory MM: CASTOR

19

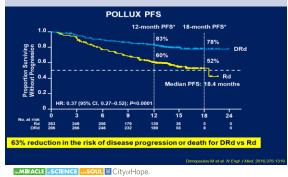
≥CR

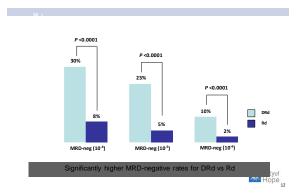

3 MRD-neg (10⁻⁴)

City₀f Hope

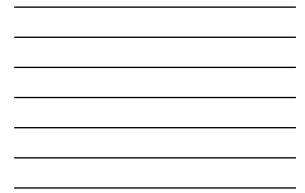
29

≥VGPR


ORR



Phase 3 Randomized Controlled Study of DRd vs Rd in Pts With Relapsed or Refractory MM: POLLUX


Key eligibility criteria RRMM 21 prior line of therapy Prior lenalidomide exposure, but not refractory Patients with	R A N D O M 1:1	DRd (n=286) Destumments filmgkg V • Ozer InCycles 1-2, ge'n in Cycles 3-6, then géw until R25mg PO • Days 1-27 of each cycle until PD • days 1-27 of each cycle until PD • 40 mg weekly until PD	Primary end point • PFS Secondary end point • OS • ORR, VGPR, CR • MRD • Time to response
creatinine clearance 230 mL/min Stratification factors No prior lines of therapy SS stage at study entry Prior lenalidomide	E	Rd (n=283) R 25 mg PO • Days 1-21 of each cycle until PD d 40 mg PO • 40 mg weekly until PD	Ouration of response Ouration of response Statistical analyses 295 PFS events: 85% power for 7.7 month PFS improvement
		Cycles: 28 days	Interim analysis: ~177 PFS events
		e-medication for the DRd treatment group consisted o amethasone 20 mg ^a , paracetamol, and an antihistamin	f

Phase 3 Randomized Controlled Study of DRd vs Rd in Pts With Relapsed or Refractory MM: POLLUX

MRD-negative Rate

Daratumumab in High-Risk Patients

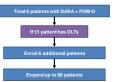
MIRACLE SCIENCE SOUL CityofHope.

Rationale for DARA + POM-D

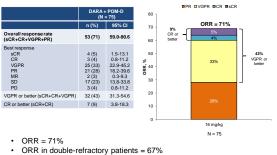
 In a randomized, Phase 3 study, pomalidomide plus low-dose dexamethasone (POM-D) in patients relapsed from or refractory to previous treatment with bortezomib or lenalidomide¹ resulted in the following:

- ORR = 31%

- Median PFS of 4.0 months
- Median OS of 12.7 months
- Median US of 12.7 months
- Pomalidomide increases CD38 expression in a time and dosedependent fashion in multiple myeloma cells²

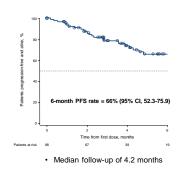

 San Miguel J, et al. Lancer Oncol. 2013;14(11)1655-1086.
 Baxhammer R, et al. Presented at 51st American Society of Clinical Oncology (ASCO) Annual Meeting May 29-Jane 2, 2015; Chicago. L. Abstract ISSB.

MMY1001: DARA + POM-D Arm


Eligibility criteria

- Refractory to last line of therapy
 ≥2 prior lines of therapy,
- including 2 consecutive cycles of lenalidomide and bortezomibPomalidomide naïve
- ECOG score ≤2
- Absolute neutrophil count ≥1.0×10⁹/L, and platelet count ≥75×10⁹/L for patients with <50% plasma cells (>50×10⁹/L, otherwise)
- Calculated creatinine clearance ≥45 mL/min/1.73 m²

study
(28-day cycles)
DARA* IV 16 mg/kg + Pomalidomide 4 mg (Days 1-21) + Dexamethasone 40 mg QW
OW for Cucles 1-2, O2W for Cucles 3-8, and O4W beyond



Overall Response Rate: DARA + POM-D

Clinical benefit rate (ORR + minimal response) = 73%

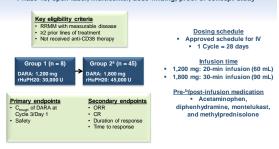
Progression-free Survival at 6 Months: DARA + POM-D

■ ENHANZE[™] platform of recombinant human hyaluronidase (rHuPH20) temporarily breaks down the hyaluronan barrier, allowing rapid absorption of injected drugs¹

Dosing time is 5 to 8 minutes with SC versus 0.5 to 6 hours with IV⁴⁻⁶

Aim: To determine the safety, pharmacokinetics, and efficacy of DARA as SC administration

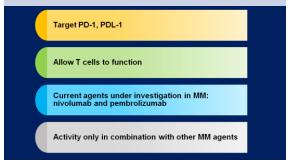
 Halozyme Therspeurics: Michanism of action for Hylenex recombinant (hyduronidase human injection). <u>www.hylanex.com/mechanism.of.action</u>. Access sed 11.8/2016.
 European Medicines Agency. Herceptin: EPAR – productinformation. 2016


European Medicines Agency. MabThera: EPAR – product information
 Ismael G, et al. Lancet Oncology. 2012;13(9):869-878.
 Shpilberg O, et al. JPJ Cancer. 2013;10(9)(1556-1561.
 De Cock E, et al. Plos One. 2016;11(6):a0157957.

18

Schematic of rHuPH201

PAVO: Study Design Phase 1b, open-label, multicenter, dose-finding, proof of concept study

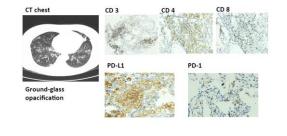

on; ORR, overall respo ate: CR. c W, pharmacokiesis: Owup 2 comprises 4 disfractorhors, each twated with DARA 1,800 mg and rHuPH20 45,000 LL. C_{traug}t on Cycle 3/Day 1 in Group 1 supported dose selection for Group 2. The study evaluation harm reviewed safetyahar Cycle 1 and PK after Cycle 3/Day 1 for each group. 19

		IRRs	5	
	1,200 mg n = 8	1,800 mg n = 45	•	All IRRs in the 1,800-mg group were grade 1 or 2
IRR, % (n)	13 (1)	24 (11)		0 1 0
Chills	13 (1)	9 (4)		One grade 5 livit of dysp
Pvrexia	0 (0)	9 (4)		in the 1,200-mg group
Pruritus	0 (0)	4 (2)		No grade 4 IRRs were
Dyspnea	13 (1)	0 (0)		observed
Flushing	0 (0)	2 (1)		observed
Hypertension	0 (0)	2 (1)		All IRRs occurred during
Hypotension	0 (0)	2 (1)		within 4 hours of the first
Nausea	0 (0)	2 (1)		infusion
Non-cardiac chest pain	13 (1)	0 (0)	•	No IRRs occurred during
Oropharyngeal pain	0 (0)	2 (1)		subsequent infusions in
Paresthesia	0 (0)	2 (1)		either group
Rash	0 (0)	2 (1)		Abdominal wall SC inject
Sinus headache	0 (0)	2 (1)		were well tolerated
Tongue edema	0 (0)	2 (1)		
	0 (0)	2 (1)		

- spnea
- g or st
- g
- ctions

20

Immune Checkpoint Inhibitors in MM



Immune Checkpoint Inhibitors for Relapsed/Refractory Multiple Myeloma

	Keynote-023: Pembrolizumab + Lenalidomide and Dexamethasone ¹	Phase 2 of Pembrolizumab + Pomalidomide and Dexamethasone ²
Patient population	RRMM for whom ≥2 prior therapies, including a proteasome inhibitor and an IMiD, have failed	RRMM for whom ≥2 prior therapies, including a proteasome inhibitor and an IMiD, have failed
Dosing		
Pembrolizu mab	200 mg fixed dose*	200 mg IV every 2 weeks
IMID	Lenalidomide: 25 mg	Pomalidomide: 4 mg daily × 21 days
Dexamethas one	40 mg (low-dose)	40 mg weekly
Response	17 patients; 76% response rate	11 of 22 evaluable patients (50% response rate)

MIRACLE SCIENCE MSSOUL X CityofHope.

Pneumonitis

MIRACLE SCIENCE SECUL CityofHope

Туре	Trial	Patient Types	Study Phase	Site(s)
	CART-19 for multiple myeloma	Relapsed/ refractory	1	University of Pennsylvania
CAR T	Safety study of CAR-modified T cells targeting NKG2D-ligands	Relapsed/ refractory	1	Dana-Farber Cancer Institute
CARI	Study of T cells targeting B-cell maturation antigen (BCMA) for previously treated multiple myeloma	Relapsed/ refractory	1	National Cancer Institute University of Pennsylvania
	Tadalafil and lenalidomide maintenance with or without activated marrow infiltrating lymphocytes (MILs) in high-risk myeloma	Newly diagnosed; relapsed (without prior ASCT)	2	Sidney Kimmel Comprehensive Cancer Center
MILs	Adoptive immunotherapy with activated marrow-infiltrating lymphocytes and cyclophosphamide graft-versus-host disease prophylaxis in patients with relapse of hematologic malignancies after allogeneic hematopoietic cell transplantation	Relapsed/ refractory	1	Sidney Kimmel Comprehensive Cancer Center
Affinity- enhanced T cells	Engineered autologous T cells expressing an affinity-enhanced TCR specific for NY-ESO-1 and LAGE-1	Relapsed/ refractory	1/2	City of Hope University of Maryland
DLI	CD3/CD28 activated Id-KLH primed autologous lymphocytes	Post-transplant	2	University of Pennsylvania

Myeloma CAR Therapy

- Which Target:
- CD19, CD138, CD38, CD56, kappa, Lewis Y, CD44v6, CS1 (SLAMF7), BCMA
- Many questions remain about CAR design:
- Optimal costimulatory domains
- Optimal vector
- Optimal dose and schedule
- Need for chemotherapy
- Perhaps "cocktails" of multiple CARs or CARs + chemotherapy will be required for best outcomes

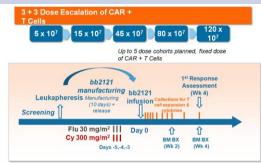

MIRACLE SCIENCE SOUL CityofHope.

Which Target: BCMA

B cell maturation antigen (BCMA)

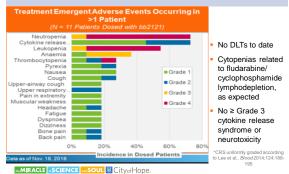
- A member of the TNF receptor superfamily
- Expression is largely restricted to plasma cells and mature B cells
- Not detectable in any other normal tissues
- Expressed nearly universally on multiple myeloma cells
- Anti-MM efficacy validated in initial studies¹

MIRACLE SCIENCE SOUL X CityofHope.

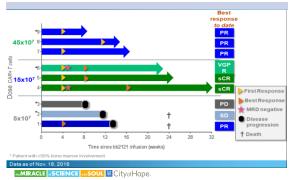


Multiple myeloma cells expressing BCMA

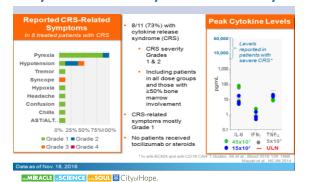
(brown color = BCMA protein)


1. Ali et al., Blood 2016 128: 1688. Cohen et al., ASH 2016, abstract 1147

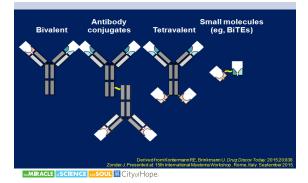
CRB-401 Study Design



MIRACLE SCIENCE SESOUL X CityofHope.


Adverse Events Generally Mild, No ≥ Grade 3 CRS* or Neurotoxicity

Best Response and Time Since bb2121 Infusion


Cytokine Release Syndrome Summary

UPENN; BCMA CAR TRIAL <u>Cohort 1</u> 1 - 5 x 10⁸ CAR+ T cells (n=3-6) Cohort 3 Cytox 1.5 g/m² Cohort 2 Cytox 1.5 g/m² 4 week delay between subjects → ⇒ + + + 1 - 5 x 10⁷ CAR+ T cells (n=3-6) + 1 - 5 x 10⁸ CAR+ T cells (n=3-6) ↓ ↓ ↓ Up to n=9 Up to n=9 Up to n=9 Primary objective - Safety 1) Flow 1, BCMA-CAR Safety Secondary Fesability Efficacy (response rates, PFS, OS, MRD) Exploratory: CaRT-ECMA expansion, persistence, phenotype Impact on normal B cell and PC compartments BCMA expression pre- and post-treatment Cytokine(chernokina levels Soluble CMA, BAFF, PAPRI, levels Assess for anti-CAR immune responses Impact on lumor microarritormment ImmarCLE INSCIENCE SCOLL M CityofHope. Day 7 2) qPCR

Patient characteristics – Cohort 1 (n=9)

Characteristic	Median (range) or %
Age	57 (44 - 70)
Gender	67% male; 33% female
Isotype	IgG (33%), IgA (44%), LC (22%)
Prior lines of therapy	9 (4-11)
Lenalidomide	100% (refractory: 78%)
Bortezomib	100% (refr: 89%)
Pomalidomide	100% (refr: 89%)
Carfilzomib	100% (refr: 89%)
Autologous SCT	78%
Cyclophosphamide	100% (refr: 67%)
Daratumumab	44% (refr: 44%)
Anti-PD1	33% (refr: 33%)
High-risk genetics -17p or <i>TP53</i> mutation	100% 67%
Extramedullary dz	33%
% BM plasma cells	80 (15 – 95)
Day 0 absolute CD3	258/µL (117 – 1354) ope

Bi-Specific Antibody (bsAb) Constructs

Conclusions

- Immunotherapy is an active strategy for myeloma therapy
- Optimal targets for immunotherapy remain under study

MIRACLE SCIENCE SOUL X CityofHope.

Cityof Hope