Thermo Scientific

TRACE GC Ultra

Gas Chromatograph

Standard Operating Procedures

PN 317 092 00, Revision May 2010_B

TRACE[™] GC Ultra - Standard Operating Procedures

May 2010 Edition Part Number 31709200 © 2007-2010 Thermo Fisher Scientific Inc. All rights reserved. Printed in Italy

Published by Thermo Fisher Scientific S.p.A., Strada Rivoltana, 20090 Rodano - Milan - Italy Tel: +39 02 95059355 Fax: +39 02 95059388

Printing History: First Edition, released June 1998. Second Edition, released November 1998. Third Edition, released June 1999. Fourth Edition, released May 2001 Fifth Edition, released January 2002 Sixth Edition, released, May 2003 Seventh Edition, released April 2004 Eighth Edition, released January 2005 Ninth Edition, released June 2005 Tenth Edition, released December 2005 Eleventh Edition, released June 2006 Twelfth Edition, released January 2007 Thirteenth Edition, released May 2007 Fourteenth Edition, released February 2008 Fifteenth Edition, released April 2009 Sixteenth Edition, released September 2009 Seventeenth Edition, released May 2010 B

Disclaimer

Technical Information contained in this publication is for reference purposes only and is subject to change without notice. Every effort has been made to supply complete and accurate information; however, Thermo Fisher Scientific assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use of this manual or the information contained therein (even if this information is properly followed and problems still arise).

This publication is not part of the Agreement of Sale between Thermo Fisher Scientific and the purchaser of a TRACE[™] GC Ultra system. In the event of any conflict between the provisions of this document and those contained in Thermo Fisher Scientific's Terms and Conditions, the provisions of the Terms and Conditions shall govern.

Reference to System Configurations and Specifications supercede all previous information and are subject to change without notice.

Trademarks

TRACETM GC Ultra is a trademark of Thermo Fisher Scientific Inc., and its subsidiaries. Other brand and product names may be trademarks or registered trademarks of their respective companies.

Contents

About This Manual	xiii
Overview	xiii
Conventions Used in This Manual	xiv
Abbreviations for Injectors and Detectors	xvi
Instrument Markings and Symbols	xvii
Safety Information	xix
Precaution for Gases	xix
Precaution for the Electron Capture Detector	xix
Using the TRACE GC Ultra Document Set	xx
Precaution for the Electron Capture Detector Using the TRACE GC Ultra Document Set	xix

SECTION I SOPs Overview

Chapter 1

General Overview	
Scope	
Parts Referenced	
Getting Started	

SECTION II SOPs Using FID

Chapter 2

Checkout Using FID with S/SL Injector	
SOP Number: P0292/07/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Splitless Injection	
Recommended Initial Operations	

Chapter 3

Checkout Using FID with OC Injector	
SOP Number: P0293/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for On-Column Injection	
Recommended Initial Operations	

Checkout Using FID with PKD Injector	57
SOP Number: P0307/07/E - 01 September 2009	
Scope	58
Parts Referenced	
Analytical Conditions Required for Packed Injector	60
Recommended Initial Operations	
Chapter 5	

Checkout Using FID with PPKD Injector	69
SOP Number: P0308/07/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Purged Packed Injector	
Recommended Initial Operations	

Chapter 6

Checkout Using FID with PTV Injector	81
SOP Number: P0309/07/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for PTV Splitless Injection	
Recommended Initial Operations	

SECTION III SOPs Using ECD

Chapter 7

Checkout Using ECD with S/SL Injector	95
SOP Number: P0294/07/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Splitless Injection	
Recommended Initial Operations	

Chapter 8

Checkout Using ECD with OC Injector	107
SOP Number: P0295/08/E - 01 September 2009	108

		100
	Scope	
	Parts Referenced	
	Analytical Conditions Required for On-Column Injection	
	Recommended Initial Operations	
Chapter 0		
Chapter 9	a FCD with DKD Injector	440
	g ECD with PND injector unber: P0310/07/E 01 Sentember 2000	
501 N	Scope	120
	Darts Deferenced	120
	Analytical Conditions Dequired for Dacked Injector	
	Analytical Conditions Required for Facked Injector	
	Recommended initial Operations	
Chapter 10		
Checkout Usin	a FCD with PPKD Injector	131
SOP N	umber: P0311/07/E - 01 September 2009	132
501 11	Scope	132
	Parts Referenced	132
	Analytical Conditions Required for Purged Packed Injector	134
	Recommended Initial Operations	135
Chapter 11		
Checkout Usin	g ECD with PTV Injector	
SOP N	umber: P0312/07/E - 01 September 2009	
	Scope	
	Parts Referenced	
	Analytical Conditions Required for PTV Splitless Injection	
	Recommended Initial Operations.	
	-	
SECTION IV		
SODe Lleine	חסא	
JUFS USING		
Chapter 12		

Chockout Using NPD with S/SL Injector	157
SOD Number P020(/08/E 01 Sectorsher 2000	150
SOP Number: P0296/08/E - 01 September 2009	
Scope	158
Parts Referenced	
Analytical Conditions Required for Splitless Injection	159

Contents

	Recommended Initial Operations	
Chapter 13		
Checkout Usin	g NPD with OC Injector	169
SOP N	umber: P0297/08/E - 01 September 2009	
	Scope	
	Parts Referenced	
	Analytical Conditions Required for On-Column Injection	
	Recommended Initial Operations	
Chapter 14		
Checkout Usin	g NPD with PKD Injector	181
SOP N	umber: P0313/08/E - 01 September 2009	
	Scope	
	Parts Referenced	
	Analytical Conditions Required for Packed Injector	
	Recommended Initial Operations	
Chapter 15		
Checkout Usin SOP N	g NPD with PPKD Injector umber: P0314/08/E - 01 September	195
50111	Scope	
	Parts Referenced	
	Analytical Conditions Required for Purged Packed Injector	198
	Recommended Initial Operations	
Chapter 16		
Chapter 16 Checkout Usin	a NPD with PTV Injector	
Chapter 16 Checkout Usin SOP N	g NPD with PTV Injector umber: P0315/08/E - 01 September 2009	209
Chapter 16 Checkout Usin SOP N	g NPD with PTV Injector umber: P0315/08/E - 01 September 2009 Scope	209
Chapter 16 Checkout Usin SOP N	g NPD with PTV Injector umber: P0315/08/E - 01 September 2009 Scope Parts Referenced	209 210 210 210 210
Chapter 16 Checkout Usin SOP N	g NPD with PTV Injector umber: P0315/08/E - 01 September 2009 Scope Parts Referenced Analytical Conditions Required for PTV Splitless Injection	209 210 210 210 210 211
Chapter 16 Checkout Usin SOP N	g NPD with PTV Injector umber: P0315/08/E - 01 September 2009 Scope Parts Referenced Analytical Conditions Required for PTV Splitless Injection Recommended Initial Operations	209 210 210 210 210 211 211 212
Chapter 16 Checkout Usin SOP N	g NPD with PTV Injector umber: P0315/08/E - 01 September 2009 Scope Parts Referenced Analytical Conditions Required for PTV Splitless Injection Recommended Initial Operations	209 210 210 210 210 211 211 212
Chapter 16 Checkout Usin SOP N	g NPD with PTV Injector umber: P0315/08/E - 01 September 2009 Scope Parts Referenced Analytical Conditions Required for PTV Splitless Injection Recommended Initial Operations	209 210 210 210 210 211 211 212
Chapter 16 Checkout Usin SOP N SECTION V SOPs Using	g NPD with PTV Injector umber: P0315/08/E - 01 September 2009 Scope Parts Referenced Analytical Conditions Required for PTV Splitless Injection Recommended Initial Operations	209 210 210 210 210 211 211 212

Charles II	225
SOP Number: PO316/08/F - 01 Sentember 2009	ZZ J 226
Scone	226
Parts Referenced	226
Analytical Conditions Required for Splitless Injection	220
Recommended Initial Operations	227
Recommended mitial Operations	
Chapter 18	
Checkout Using FPD with OC Injector	
SOP Number: P0317/09/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for On-Column Injection	
Recommended Initial Operations	
L L	
Chapter 19	
Checkout Using FPD with PKD Injector	
SOP Number: P0318/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Packed Injector	
Recommended Initial Operations	
Chanter 20	
Charles 20 Charles the DD with DDKD Interfer	262
SOP Number: PO310/08/E 01 Sentember 2000	203
Scope	
Parts Referenced	
Analytical Conditions Required for Purged Packed Injector	266
Recommended Initial Operations	267
Recommended mitial Operations	
Chapter 21	
Checkout Using FPD with PTV Injector	
SOP Number: P0320/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for PTV Splitless Injection	
Recommended Initial Operations	

SECTION VI SOPs Using PID

Chapter 23

Checkout Using PID with OC Injector	
SOP Number: P0322/09/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for On-Column Injection	
Recommended Initial Operations	

Chapter 24

Checkout Using PID with PTV Injector	321
SOP Number: P0325/08/E - 01 September 2009	322
Scope	322
Parts Referenced	322
Analytical Conditions Required for PTV Splitless Injection	324
Recommended Initial Operations	325

SECTION VII SOPs Using TCD

Parts Referenced	340
Analytical Conditions Required for Splitless Injection	341
Recommended Initial Operations	342

Checkout Using TCD with PKD Iniector	
SOP Number: P0328/11/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Packed Injector	
Recommended Initial Operations	

Chapter 27

Checkout Using TCD with PPKD Injector	
SOP Number: P0329/11/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Purged Packed Injector	
Recommended Initial Operations	

SECTION VIII SOPs Using PDD

Chapter 29

Checkout Using PDD with OC Injector	
SOP Number: P0382/06/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for On-Column Injection	
Recommended Initial Operations	

SECTION IX SOPs Using FID-NPD-FPD in Stacked Configuration

Checkout Using Tandem FID	
SOP Number: P0383/05/E - 01 September 2009	
Scope	
Checkout Overview	399
Important Considerations	400
FID Gas Required	400
Column Installation	400
FID Detector and Signal Menus	400

Chapter 31 Checkout U

heckout Using Tandem NPD	
SOP Number: P0384/06/E - 01 September 2009	
Scope	
Checkout Overview	
Important Considerations	
NPD Gas Required	
Column Installation	
NPD Detector and Signal Menus	

Chapter 32

Checkout Using Tandem FPD	
SOP Number: P0385/06/E - 01 September 2009	
Scope	
Checkout Overview	
Important Considerations	
FPD Gas Required	
Column Installation	
FPD Detector and Signal Menus	

SECTION X SOPs for Large Volume Applications

Chapter 33

Checkout Using FID with LVSL Injector	
SOP Number: P0430/04/E - 01 September 2009	
Scope	424
Parts Referenced	

Analytical Cond	litions Required for LVSL Injection	
Recommended I	Initial Operations	

Checkout Using FID with LVOC Injector	435
SOP Number: TE P0609/02/E-01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for LVOC Injection	
Analytical Condition for the GC	
Recommended Initial Operations	

Appendix A

Customer Communication	
How To Contact Us	
Reader Survey	
Glossav	
,	
Index	

Contents

About This Manual

Overview

This manual is organized as follows:

Section I, *SOPs Overview*, contains a general description of the Standard Operating Procedures.

Section **II**, *SOPs Using FID*, contains the procedure to test the TRACE GC Ultra with the Flame Ionization Detector (FID) using different injectors.

Section **III**, *SOPs Using ECD*, contains the procedure to test the TRACE GC Ultra with the Electron Capture Detector (ECD) using different injectors.

Section **IV**, *SOPs Using NPD*, contains the procedure to test the TRACE GC Ultra with the Nitrogen Phosphorus Detector (NPD) using different injectors.

Section V, *SOPs Using FPD*, contains the procedure to test the TRACE GC Ultra with the Flame Photometric Detector (FPD) using different injectors.

Section VI, *SOPs Using PID*, contains the procedure to test the TRACE GC Ultra with the Photoionization Detector (PID) using different injectors.

Section VII, *SOPs Using TCD*, contains the procedure to test the TRACE GC Ultra with the Thermal Conductivity Detector (TCD) using different injectors

Section **VIII**, *SOPs Using PDD*, contains the procedure to test the TRACE GC Ultra with the Pulsed Discharge Detector (PDD) using different injectors.

Section IX, *SOPs Using FID-NPD-FPD in Stacked Configuration*, contains the procedures to test the TRACE GC Ultra with the Flame Ionization Detector (FID), Nitrogen-Phosphorus Detector (NPD) or Flame Photometric Detector (FPD) in series (stacked configuration) with the Electron Capture Detector ECD using different injectors.

Section **X**, *SOPs for Large Volume Applications*, contains the procedures to test the TRACE GC Ultra for large volume application by using different injectors.

Appendix A, *Customer Communication*, contains contact information for Thermo Fisher Scientific offices worldwide. Use the *Reader Survey* in this section to give us feedback on this manual and help us improve the quality of our documentation.

The *Glossay* contains definitions of terms used in this guide and the help diskette. This also includes abbreviations, acronyms, metric prefixes, and symbols.

The *Index* contains an alphabetical list of key terms and topics in this guide, including cross references and the corresponding page numbers.

Conventions Used in This Manual

The following symbols and typographical conventions are used throughout this manual.

Bold	Bold text indicates names of windows, menus, dialog boxes, buttons, and fields.	
Italic	Italic indicates cross references, first references to important terms defined in the glossary, and special emphasis.	
Monospace	Monospace, or Courier, indicates filenames and filepaths, or to indicate text the user should enter with the keyboard.	
Monospace Bold	Monospace Bold indicates messages or prompts displayed on the computer screen or on a digital display.	
»	This symbol illustrates menu paths to select, such as File»Open	
KEY NAME	Bold, uppercase sans serif font indicates the name of a key on a keyboard or keypad, such as ENTER .	
	This symbol alerts you to an action or procedure that, if performed improperly, could damage the instrument.	
	This symbol alerts you to important information related to the text in the previous paragraph.	

This symbol alerts you to an action or procedure that, if performed improperly, could result in damage to the instrument or possible physical harm to the user. This symbol may be followed by icons indicating special precautions that should be taken to avoid injury.

This symbol indicates danger from high temperature surfaces or substances.

This symbol indicates an explosion hazard.

<u>\$\$\$</u>

This symbol indicates the presence of radioactive material.

Abbreviations for Injectors and Detectors

	Abbreviation
Split/splitless Injector	S/SL
Large Volume Splitless	LVSL
Cold On-Column Injector	OCI
Packed Column Injector	PKD
Packed Column with Septum Purge	PPKD
Programmable Temperature Vaporizing Injector	PTV

Detector	Abbreviation
Flame Ionization Detector	FID
Electron Capture Detector	ECD
Nitrogen-Phosphorus Detector	NPD
Flame Photometric Detector	FPD
Photoionization Detector	PID
Thermal Conductivity Detector	TCD
Pulsed Discharge Detector	PDD

Instrument Markings and Symbols

The following table explains the symbols used on Thermo Fisher Scientific instruments. Only a few of them are used on the TRACE GC Ultra gas chromatograph.

Symbol	Description
	Direct Current
\sim	Alternating Current
\sim	Both direct and alternating current
3~	Three-phase alternating current
	Earth (ground) terminal
	Protective conductor terminal
	Frame or chassis terminal
\checkmark	Equipotentiality
	On (Supply)
\bigcirc	Off (Supply)

Symbol	Description
	Equipment protected throughout by DOUBLE INSULATION or REINFORCED INSULATION (Equivalent to Class II of IEC 536)
4	Caution, risk of electric shock
	Caution, hot surface
\bigtriangleup	Caution (refer to accompanying documents)
	In-position of a bistable push control
	Out-position of a bistable push control
	Symbol in compliance to the Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE) placed on the european market after August, 13, 2005.

Safety Information

Precaution for Gases

Before using gases, carefully read the indications of hazard and the warning reported in the Safety sheet supplied by the manufacturer with reference to the relevant CAS number (Chemical Abstract Service).

WARNING! Hydrogen is a harmful gas that mixed with air may give rise to an explosion hazard. The use of hydrogen requires the operator's extreme caution and the recourse to special precautions due to the risk involved.

Precaution for the Electron Capture Detector

WARNING! The Electron Capture Detector (ECD) contains a 63Ni beta-emitting radioactive source of 370 MBq (10 mCi). For no reason should the detector be opened or handled by the operator. Any maintenance or service operations involving even partial disassembling of the instrument must be performed ONLY by qualified personnel at the laboratory expressly authorized by Thermo Fisher Scientific and specially licensed to handle radioactive material.

Using the TRACE GC Ultra Document Set

The TRACE GC Ultra Document Set (CD-Rom PN 317 095 00) includes all manuals in electronic format, and serves as your library for information about the TRACE GC Ultra hardware and software.

The TRACE GC Ultra Document Set (PN 317 093 00) as paper copy is also available Furthermore, Thermo Fisher Scientific part numbers (PN) for the paper copy manuals are provided for each book title.

Site Preparation and Installation Manual (PN 317 091 90)

This manual and diskette describes how to set up a workspace for the TRACE GC Ultra and how to connect the TRACE GC Ultra to the gas supplies and peripheral devices.

Acceptance Package (PN 317 092 20)

This folder contains required shipping documents and quality report forms.

Getting Started (PN 317 092 30)

This guide contains sequences for checking configuration, installing detectors, and making a first analysis with the TRACE GC Ultra.

Operating Manual (PN 317 091 70)

This manual provides descriptions of the TRACE GC Ultra hardware and software and instructions for their use.

UFM Ultra Fast Module Device (PN 317 093 98)

This manual provides descriptions of the TRACE GC Ultra equipped with the UFM device. and instructions for its use. The relevant *Standard Operating Procedure* is provided in a separated document PN 317 094 09.

Quick Reference Card (PN 317 092 40)

This reference card contains guidelines for carrier gas use and injection sequences.

K-Factor Quick Reference (P/N 317 092 41)

This card indicates the theoretical K-Factors related to the carrier gas and the column in use.

Preventive Maintenance Schedule (PN 317 092 80) This document provides a list of recommended scheduled maintenance and a year-long log book to record maintenance, observations, supply lists, and service records.

Maintenance and Troubleshooting Manual (PN 317 091 80) This manual contains instructions for diagnosing and resolving operational problems.

Standard Operating Procedures (PN 317 092 00) This manual contains instructions, operating sequences, and test criteria for final testing of the TRACE GC Ultra.

Spare Parts Catalog (PN 317 092 10) This catalog contains a list of spare parts for the TRACE GC Ultra. About This Manual

SECTION SOPs Overview

The *SOPs Overview* section contains a general description of the Standard Operating Procedures.

Chapter 1 *General Overview*, contains a guideline to apply correctly the SOPs.

General Overview

Chapter at a Glance...

Scope	
Parts Referenced	
Getting Started	
Operating Procedures	
Test Column Conditioning	

Scope

The Standard Operating Procedures (SOP) described in this book are a series of instructions, operations and test criteria derived from our quality policy procedures used for final testing of the TRACE GC Ultra. The SOPs have been developed to test and verify instrument complete analytical performance after the installation has been completed. This will help you as a guideline, to check if your TRACE GC Ultra continues to perform according to the original checkout testing specifications carried out in the factory premises. However, these tests alone cannot define if the instrument is not performing according to the original specifications. The checkout is carried out injecting a standard solution into a test column under analytical conditions set according to the injector(s) and detector(s) hardware provided with the GC. Before starting the test checkout, refer to the Parts Referenced and the Analytical Condition required.

Each SOP has a proper Registration and Revision Number (e.g. P0292/01/E - 12 June 1998), according to our Quality Management policy.

If your GC is equipped with the Ultra Fast Module, please refer to the relevant SOP (PN 317 094 09).

For specific operating or maintenance questions, please refer to the following manuals:

- TRACE GC Ultra Operating Manual PN 317 091 70
- TRACE GC Ultra Maintenance and Troubleshooting Manual PN 317 091 80
- TRACE GC Ultra Site Preparation and Installation Manual PN 317 091 90
- TRACE GC Ultra Getting Started Manual PN 317 092 30

Parts Referenced

The SOPs require the following parts:

Table 1-1	. SOPs Parts	Referenced
-----------	--------------	------------

	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long; 0.32 mm ID; 0.25 µm film thickness.	260 800 01
	Graphite ferrule for 0.32 mm ID column	290 134 87
Syringes	10 μl size; 70 mm needle length for S/SL injections	365 001 03
	10 μ l size; 75 mm needle length for OC injections	365 020 07
	10 μ l size; 50 mm needle length for PTV, PKD and PPKD injections	365 005 25
Test Mixtures	Test Mixture for FID checkout	338 190 20
	Test Mixture for ECD checkout	338 190 11
	Test Mixture for NPD checkout	338 190 06
	Test Mixture for FPD checkout	338 190 06
	Test Mixture for PID checkout	338 190 06
	Test Mixture for TCD checkout	338 190 16
	Test Mixture for PDD checkout	338 190 32
Gases	Gas Chromatographic-grade purity	
	<i>Carrier Gas</i> = Helium	
	Fuel Gases = Hydrogen - Air	
	<i>Make-up Gas</i> = Nitrogen	
	<i>Discharge gas for PDD</i> = Helium ultrapure (At least 99.999% of purity)	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Getting Started

Before starting checkout, perform the following preliminary operations sequentially:

1. Gas Supply Connections

Connect the gas supplies following the instructions reported in Chapter 4 of the TRACE GC Ultra Site Preparation and Installation Manual

2. Data Handling Connections

Connect your data handling following the instructions reported in Chapter 5 of the TRACE GC Ultra Site Preparation and Installation Manual

3. Column Installation

Install the test column according to the injector installed in your GC following the **Operating Sequences** reported in Chapter 14 "*Columns*" of the TRACE GC *Ultra Operating Manual.*

- Preparing a Capillary Column
- Connecting a Capillary Column to a Split/Splitless Injector
- Connecting a Capillary Column to an Cold On-Column Injector
- Connecting a Capillary Column to an Packed Column Injector
- Connecting a Capillary Column to an Purged Packed Injector
- Connect a Capillary Column to an Programmable Temperature Vaporizing Injector

4. Glass Liner and Septum Installation

Install the glass liner following the **Operating Sequences** "*Install a Liner and Septum*" reported in the TRACE GC Ultra Operating Manual.

- Chapter 5: Split/Splitless Injector
- Chapter 9: Packed Column Injector

- Chapter 10: Purged Packed Injector
- Chapter 11: Programmable Temperature Vaporizing Injector

5. Column Leak Test

Perform the column leak check following the **Operating Sequence** *"Performing a Leak Check"* reported in Chapter 14 *"Columns"* of the TRACE GC Ultra Operating Manual.

6. Column Evaluation

Set column length, nominal ID and film thickness to calculate the column K factor. It is also possible to manually set the carrier gas flow measured at the end of the column to obtain the effective K factor.

Perform column evaluation following the **Operating Sequence** "*Performing a Column Evaluation*" reported in Chapter 14 "*Columns*" of the TRACE GC Ultra Operating Manual.

7. Column Conditioning

N When performing column conditioning, the column should be connected only to the injector leaving the column outlet disconnected to avoid the possibility of contamination of the detector base body.

Column conditioning consists of passing a flow of carrier gas through the column and heating it to a temperature of 20-50 °C above the maximum temperature that will be used for running the analysis. If the Cold On-Column Injector is used, ensure that the injection valve is closed. Refer to Table 1-2 for the parameter setting and to the **Operating Procedure** "*Test Column Conditioning*" on page 31, to perform the operation.

8. Detector Connections

This operation should be carried out at the end of the column conditioning. Connect the test column to the detector following the **Operating Sequences** reported in Chapter 14 "*Columns*" of the TRACE GC Ultra Operating Manual.

- Connecting a Capillary Column to an FID, FPD or NPD Detector
- Connecting a Capillary Column to an ECD Detector

- Connect a Capillary Column to a PID Detector
- Connecting a Capillary Column to a TCD Detector
- Connecting a Capillary Column to a PDD Detector

OPERATING PROCEDURE

Test Column Conditioning

Refer to Table 1-2 for the parameters setting:

Gases	Carrier Gas: Helium = 30 kPa Constant Pressure
Oven Program	Initial Temperature = 50 °C
	Initial Time = 1 min.
	Ramp $1 = 20 $ °C/min.
	Final Temperature = 250 °C
	Final Time = 30 min.
Injector	Temperature = according to the injector in use

Table 1-2.	Column	Conditioning	Parameters
------------	--------	--------------	------------

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	S/SL, OCI, PKD, PPKD or PTV
Left carrier or Right carrier	He (helium)

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Pressure mode, press MODE/TYPE to access the selection menu, then select Constant pressure. Scroll to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Using **OVEN**, entry the Column Oven Control Table and set the oven temperature and the Oven Program required.

OVEN					
Temp	50.0	50.0			
Initial Time		1.00			
Ramp 1		20.0			
Final temp		250			
Final time 1		30.0<			
Ramp 2		Off			

3. Using LEFT INLET or RIGHT INLET, entry the appropriate Injector Control Table and set the required temperature setpoint Temp. In the case of Cold On-Column Injector, this step is not required.

	LEFT	INLET	(S/SL)	1
Temp			230	230<
Pres	sure		30.0	30.0
Mode	:		Spl	itless
1. These settings could also be for a right inlet.				

or

	LEFT	INLET	(OCI) ¹	
Press	sure		30.0	30.0<
Sec.	Cool	time		Off

1. These settings could also be for a right inlet.

or

	LEFT	INLET	(PKD) ¹	
Temp			200	200
Press	ure		30.0	30.0

1. These settings could also be for a right inlet.

	LEFT	INLE	Т	(PPKD)	1
Temp)			200	200
Pres	sure			30.0	30.0
Mode	:			Wide	bore<
Cons	tant	sept	p۱	arge?	Y<

1. These settings could also be for a right inlet.

or

	RIGHT	INLET	(PT	V)	
Temp				70	70
Pres	sure		30.	. 0	30.0
Mode	:	PT	V Sp	olit	cless

Press **PREP RUN** then **START** on the GC to begin the column conditioning.

Chapter 1 General Overview

SECTION

The *SOPs Using FID* section, contains the procedures to test the TRACE GC Ultra with the Flame Ionization Detector (FID) using different injectors.

Chapter 2, Checkout Using FID with S/SL Injector.

Chapter 3, Checkout Using FID with OC Injector.

Chapter 4, Checkout Using FID with PKD Injector.

Chapter 5, Checkout Using FID with PPKD Injector.

Chapter 6, Checkout Using FID with PTV Injector.
2

Checkout Using FID with S/SL Injector

Chapter at a Glance...

An exeting Dressedures	
Recommended Initial Operations	40
Analytical Conditions Required for Splitless Injection	
Parts Referenced	
Scope	
SOP Number: P0292/07/E - 01 September 2009	

Operating Procedures

FID-S/SL	Checkout in Sp	tless Mode	41
----------	----------------	------------	----

SOP Number: P0292/07/E - 01 September 2009

Scope

Use the following procedure to verify proper FID operation with the Split/Splitless Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 mt long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$.	
Glass Liner	3 mm ID for splitless injection	453 200 32
Liner Seal	Graphite seal for glass liner	290 334 06
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for S/SL injector	313 032 11
Syringe	10 μl size; 70 mm needle length	365 001 03
Test Mixture	Three components in n-Hexane:	338 190 20
	Component Concentration	
	Dodecane 20 µg/ml	
	Tetradecane 20 µg/ml	
	Hexadecane 20 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 2-1. FID-S/SL Parts Referenced

Analytical Conditions Required for Splitless Injection

	Parameters Setting
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure
	Hydrogen = 35 ml/min
	Air = 350 ml/min
	Make-up Gas: Nitrogen = 30 ml/min
Oven Program	Initial Temperature = 50 °C
	Initial Time = 1 minute
	Ramp 1 = 20 °C/minute
	Final Temperature = 200 °C
	Final Time = 1 minute
Injector	Operating Mode = Splitless
	Temperature = $230 ^{\circ}\text{C}$
	Splitless Time = 0.8 minutes
	Split Flow = 60 ml/min
	Constant Septum Purge = Yes
Detector	Base Temperature = 250 °C
	Detector Signal Range = 10°
Injected Volume	$1 \mu l + needle of Test Mixture$
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium
Digital Signal	Chrom-Card, ChromQuest, Atlas, Xcalibur
Output	Acquisition Frequency = 10 Hz

Table 2-2. FID-S/SL Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the glass liner.

The glass liner currently installed in your injector should be carefully removed and replaced with the 3 mm ID glass liner for splitless application, as required for the checkout, with the appropriate liner seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test.
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FID-S/SL Checkout in Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	S/SL
Left carrier or Right carrier	He (helium)
Left detector or Right detector	FID

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN			
Temp	50.0	50.0	
Initial Time		1.00	
Ramp 1		20.0	
Final temp		200	
Final time 1		1.00<	
Ramp 2		Off	

3. Use **LEFT INLET** or **RIGHT INLET** to display the appropriate Split/Splitless Injector Control Table. Set the required temperature *Temp* setpoint. Verify to operate in **Splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

LEFT INLET	(S/SL)	1
Temp	230	230
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.80	0.80
Constant sept p	urge?	У<

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate FID Detector Control Table. Set the required temperature Base Temp and the detector gases H2, Air and Mkup required setpoints.

LEFT DETECT	OR (FID) 1
Flame		Off
Base temp	250	250
Signal pA		(5.5)
Ign.thresh		2.0
Flameout retry		Off
Н2	35	35
Air	350	350
Mkup N2	30	30<

1. These settings could also be for a right detector.

- 5. Ignite the FID flame scrolling to Flame and pressing **ON**.
- 6. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate FID Detector Signal Control Table. Observe the FID flame signal at the display. This is the flame-on background offset. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIGNAL	(FID) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline Comp	Off
m1	0 1 1

1. These settings could also be for a right signal.

- 7. Activate your Data System and set the parameters required for the checkout.
- 8. In the FID Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.
- 9. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 2-3 according to the data handling in use.

- 10. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 11. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 12. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 2.1*.

Figure 2-1. FID-Splitless Injection

- 13. The following acceptance criteria indicate successful completion of FID-S/SL checkout according to the data handling in use.
- 14. If these criteria are not met, repeat the test.

		CHROM-CARD	
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
S	Noise (µV)	< 30	< 300
alue	Wander (µV)	< 50	< 500
Se (Drift (µV/h)	< 100	< 1 000
eptanc	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
Aco	Components	> 4 000 000 for each component	> 40 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	1 <u>+</u> 0.1

Table 2-3. FID-S/SL A	cceptance Criteria
-----------------------	--------------------

Computing-integrator (e.g. ChromJet)

	CHROMQUEST		
Acceptance Values	Baseline Parameters (1V Full Scale)		
	Noise (µV)	< 30	
	Wander (µV)	< 50	
	Drift (µV/h)	< 100	
	Analytical Results (1V Full Scale) - Area Counts (0.01 µVs)		
	Components	> 40 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	

ATLAS			
Baseline Parameters (10V Full Scale)			
Noise (µV)	< 300		
Wander (µV)	< 500		
Drift (µV/h)	< 1 000		
Analytical Results (10V Full Scale) - Area Counts (µVs)			
Components	> 4 000 000 for each component		
Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1		

Acceptance Values	XCALIBUR		
	Baseline Parameters (Acquisition Frequency = 10 Hz)		
	Noise (Counts)	< 3 000	
	Wander Counts)	< 5 000	
	Drift (Counts/h)	< 10 000	
	Analytical Results Area Counts (Cts*s)		
	Components	> 40 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	

Analytical Acceptance Comments			
1	When the make-up gas is not used, the acceptance values will result to be 2.5 times lower than the values reported in Table 2-3.		
2	When helium is used as make-up gas, the acceptance values will result to be 10 times lower than the values reported in Table 2-3.		

3

Checkout Using FID with OC Injector

Chapter at a Glance...

SOP Number: P0293/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for On-Column Injection	
Recommended Initial Operations	

Operating Procedures

FID-OCI Checkout in On-Column Mode

SOP Number: P0293/08/E - 01 September 2009

Scope

Use the following procedure to verify proper FID operation with the Cold On-Column Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID; 0.25 μm film.thickness.	
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Vespel Ferrule	Vespel Ferrule for 0.32 mm ID Column	290 134 60
Retaining Nut	M4 capillary column retaining nut	350 324 23
Syringe	10 μl size; 75 mm needle length	365 020 07
Test Mixture	Three components in n-Hexane:	338 190 20
	Component Concentration	
	Dodecane 20 µg/ml	
	Tetradecane 20 µg/ml	
	Hexadecane 20 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	
Syringe	10 μl size; 80 mm needle length	365 020 19
Pre-column	2 m long; 0.53 mm ID	260 603 75
Press-fit set	Set of Press-fir connectors for TRACE OC	350 038 45

Table 3-1. FID-OCI Parts Referenced

Analytical Conditions Required for On-Column Injection

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Hydrogen = 35 ml/min	
	Air = 350 ml/min	
	Make-up Gas: Nitrogen = 30 ml/min	
Oven Program	Initial Temperature = 70 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = $200 \ ^{\circ}C$	
	Final Time = 1 minute	
Injector	Secondary Cooling = 0.2 minutes	
Detector	Base Temperature = 250 °C	
	Detector Signal Range = 10°	
Injected Volume	1 µl of Test Mixture	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

าร
1

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

- Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- Install the test column. The column currently installed should be carefully removed and replaced with the required test column. In case of automatic On-column for TriPlus sampler, install the pre-column and connect it to the test column by press-fit connector.
- 3. Install and connect the TriPlus sampler and its components.
- 4. Perform Column Evaluation and Leak Test.
- Connect your data handling. Verify that your data handling is properly connected to your GC system.
- 6. Verify the opening/closing of the OC injector actuator by using the proper commands.
- 7. Verify the alignment of the syringe on the OC injector.

OPERATING PROCEDURE

FID-OCI Checkout in On-Column Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	OCI
Left carrier or Right carrier	He (helium)
Left detector or Right detector	FID

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature *Temp* and the Oven Program required.

OVEN			
Temp	70.0	70.0	
Initial Time		1.00	
Ramp 1		20.0	
Final temp		200	
Final time 1		1.00<	
Ramp 2		Off	

3. Use LEFT INLET or RIGHT INLET to display the appropriate Cold On-Column Injector Control Table. Scroll to Sec. cool time and set the required secondary cooling time.

	LEFT	INLET	(OCI) ¹	L
Press	sure		30.0	30.0
Sec.	Cool	Time		0.2<

1. These settings could also be for a right inlet.

4. Use **LEFT DETECTOR** or **RIGHT DETECTOR** to display the appropriate FID Detector Control Table. Set the required temperature Base Temp and the detector gases H2, Air and Mkup (if available) required setpoints.

	LEFT	DETECTOR	(FID)	1
Fla	me			Off
Bas	e tem	ıp	250	250
Sig	nal p	A		(5.5)
Ign	. thr	resh		2.0
Fla	meout	retry		Off
H2			35	35
Air			350	350
Mku	p N2		30	30<

1. These settings could also be for a right detector.

- 5. Ignite the FID flame scrolling to Flame and pressing **ON**.
- 6. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate FID Detector Signal Control Table. Observe the FID flame signal at the display. This is the flame-on background offset. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIGNAL	(FID) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline comp	Off
	a

1. These settings could also be for a right signal.

- 7. Activate your Data System and set the parameters required for the checkout.
- 8. In the FID Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 9. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 3-3 according to the data handling in use.

- 10. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 11. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 12. Perform the analysis

Manual injection

• Inject the test mixture and press **START** on the GC to begin the checkout .

Automatic injection with TriPlus sampler

- Fill a vial with the standard mix and place that vial in the sample tray.
- Load the method for OC and perform the sampling.

The resulting chromatogram should look like the one shown in Figure 3.1.

Figure 3-1. FID-On-Column Injection

- 13. The following criteria indicate successful completion of FID-OCI checkout.
- 14. If these criteria are not met, repeat the test.

	CHROM-CARD				
0	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)		
	Noise (µV)	< 30	< 300		
alue	Wander (µV)	< 50	< 500		
Se (Drift (µV/h)	< 100	< 1 000		
Acceptanc	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)		
	Components	> 2 500 000 for each component	> 25 000 000 for each component		
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	1 <u>+</u> 0.1		

Computing-integrator (e.g. ChromJet)

	CHROMQUEST			
ŝ	Baseline Parameters (1V Full Scale)			
alue	Noise (µV)	< 30		
ce V	Wander (µV)	< 50		
otan	Drift (µV/h)	< 100		
ccep	Analytical Results (1V Full Scale) - Area Counts (0.01 µVs)			
A	Components	> 25 000 000 for each component		
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1		

ATLAS				
Baseline Parameters (10V Full Scale)				
Noise (µV)	< 300			
Wander (µV)	< 500			
Drift (µV/h)	< 1 000			
Analytical Results (10V Full Scale) - Area Counts (μVs)				
Components	> 2 500 000 for each component			
Area Count Ratio Calculated as C12/C16	1 ± 0.1			

S	XCALIBUR			
	Baseline Parameters (Acquisition Frequency = 10 Hz)			
alue	Noise (Counts)	< 3 000		
ce V	Wander Counts)	< 5 000		
otan	Drift (Counts/h)	< 10 000		
Accep	Analytical Results Area Counts (Cts*s)			
	Components	> 25 000 000 for each component		
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1		

	Analytical Acceptance Comments				
1	When the make-up gas is not used, the acceptance values will result to be 2.5 times lower than the values reported in Table 3-3.				
2	When helium is used as make-up gas, the acceptance values will result to be 10 times lower than the values reported in Table 3-3.				

Checkout Using FID with PKD Injector

Chapter at a Glance...

Operating Procedures	
Recommended Initial Operations	61
Analytical Conditions Required for Packed Injector	60
Parts Referenced	
Scope	
SOP Number: P0307/07/E - 01 September 2009	

SOP Number: P0307/07/E - 01 September 2009

Scope

Use the following procedure to verify proper FID operation with Packed Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu\text{m}$ film thickness.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite ferrule for 0.53 mm ID Column	290 134 86
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Packed Injector	313 032 26
Syringe	10 µl size; 50 mm needle length	365 005 25

Table 4-1. FID-PKD Parts Referenced

Part		Description	Part Number
Test Mixture	Three components in n-Hexane:		338 190 20
	Component	Concentration	
	Dodecane	20 µg/ml	
	Tetradecane	20 µg/ml	
	Hexadecane	20 µg/ml	
Gases	Chromatographic-grade purity		
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,		
	Computing-integ	grator	

Table 4-1. FID-PKD Parts Referenced (Continued)

Analytical Conditions Required for Packed Injector

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Hydrogen = 35 ml/min	
	Air = 350 ml/min	
	Make-up Gas: Nitrogen = 30 ml/min	
Oven Program	Iso Temperature = $50 ^{\circ}\text{C}$	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 200 °C	
	Final Time = 1 minute	
Injector	Operating Mode = Packed	
	Temperature = $200 ^{\circ}C$	
Detector	Base Temperature = 250 °C	
	Detector Signal Range = 10°	
Injected Volume	$1 \mu l + needle of Test Mixture$	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Table 4-2. FID-PKD Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Ultra Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7. Perform the manual leak check following the Operating Procedure "*Perforing a Leak Check*" in Chapter 14 of the TRACE GC Ultra Operating Manual.
- 8. Connect the other end of the test column to the detector base body.
- 9. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FID-PKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	FID

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OV	EN	
Temp	50.0	50.0
Initial Time		1.00
Ramp 1		20.0
Final temp		200
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate PKD Injector Control Table. Set the required temperature setpoint Temp.Verify to operate in **Packed** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Packed.

	LEFT	INLET	(PKD)	1
Temp			200	200
Pres	sure		30.0	30.0
Mode	:			Packed

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR, entry the appropriate FID Detector Control Table. Set the required temperature Base Temp and the detector gases H2, Air and Mkup required setpoints.

LEFT DETEC	TOR (FID)	1
Flame		Off
Base temp	250	250
Signal pA		(5.5)
Ign.thresh		2.0
Flameout retr	У	Off
Н2	35	35
Air	350	350
Mkup N2	30	30<

1. These settings could also be for a right detector.

- 5. Ignite the FID flame scrolling to Flame and pressing **ON**.
- 6. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate FID Detector Signal Control Table. Observe the FID flame signal at the display. This is the flame-on background offset. Scroll to Range and set the electrometer amplifier input range required.
- 7. Activate your Data System and set the parameters required for the checkout.
- 8. In the FID Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.

NOTE

LEFT SIGNAL	(FID) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline comp	Off

1. These settings could also be for a right signal.

9. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 4-3 according to the data handling in use.

- 10. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 11. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 12. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 4.1*

Figure 4-1. FID-Packed Injection

- 13. The following criteria indicate successful completion of FID-PKD checkout.
- 14. If these criteria are not met, repeat the test.

	CHROM-CARD		
G	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
	Noise (µV)	< 30	< 300
alue	Wander (µV)	< 50	< 500
se V	Drift (µV/h)	< 100	< 1 000
ceptano	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
Aco	Components	> 3 600 000 for each component	> 36 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	1 <u>+</u> 0.1

Table 4-3. FID-PKD Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST	
S	Baseline Parameters (1V Full Scale)		
alue	Noise (µV)	< 30	
ce V	Wander (µV)	< 50	
otano	Drift (µV/h)	< 100	
cep	Analytical Results (1V Full Scale) - Area Counts (0.01 μVs)		
A	Components	> 36 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	

ATLAS			
Baseline Parameters (10V Full Scale)			
Noise (µV)	< 300		
Wander (µV)	< 500		
Drift (µV/h)	< 1 000		
Analytical Results (10V F	ull Scale) - Area Counts (μVs)		
Components	> 3 600 000 for each component		
Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1		

S	XCA	LIBUR	
	Baseline Parameters (Acquisition Frequency = 10 Hz)		
alue	Noise (Counts)	< 3 000	
ce V	Wander Counts)	< 5 000	
otan	Drift (Counts/h)	< 10 000	
depo	Analytical Results Area Counts (Cts*s)		
Ā	Components	> 36 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	

	Analytical Acceptance Comments
1	When the make-up gas is not used, the acceptance values will result to be 2.5 times lower than the values reported in Table 4-3.
2	When helium is used as make-up gas, the acceptance values will result to be 10 times lower than the values reported in Table 4-3.

5

Checkout Using FID with PPKD Injector

Chapter at a Glance...

Operating Procedures	
Recommended Initial Operations	73
Analytical Conditions Required for Purged Packed Injector	72
Parts Referenced	70
Scope	70
SOP Number: P0308/07/E - 01 September 2009	70

FID-PPKD Checkout

SOP Number: P0308/07/E - 01 September 2009

Scope

Use the following procedure to verify proper FID operation with Purged Packed Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite ferrule for 0.53 mm ID Column	290 134 86
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Purged Packed Injector	313 032 26
Syringe	10 μl size; 50 mm needle length	365 005 25

Table 5-1. FID-PPKD Parts Referenced

Part		Description	Part Number
Test Mixture	Three components in n-Hexane:		338 190 20
	Component	Concentration	
	Dodecane	20 µg/ml	
	Tetradecane	20 µg/ml	
	Hexadecane	20 µg/ml	
Gases	Chromatographic-grade purity		
Data Acquisition	Chrom-Card, Ch		
	Computing-integ		

Table 5-1. FID-PPKD Parts Referenced (Continued)

Analytical Conditions Required for Purged Packed Injector

Parameters Setting				
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure Hydrogen = 35 ml/min			
	Air = 350 ml/min			
	Make-up Gas: Nitrogen = 30 ml/min			
Oven Program	Initial Temperature = 50 °C			
	Initial Time = 1 minute			
	Ramp 1 = 20 °C/minute			
	Final Temperature = $200 \ ^{\circ}C$			
	Final Time = 1 minute			
Injector	Operating Mode = Wide bore			
	Temperature = $200 ^{\circ}\text{C}$			
Detector	Base Temperature = 250 °C			
	Detector Signal Range = 10°			
Injected Volume	$1 \mu l + needle of Test Mixture$			
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium			
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz			

Table 5-2. FID-PPKD Analytical Conditions
Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Ultra Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7. Perform the manual leak check following the Operating Procedure "*Perforing a Leak Check*" in Chapter 14 of the TRACE GC Ultra Operating Manual.
- 8. Connect the other end of the test column to the detector base body.
- 9. Perform Column Evaluation.
- 10. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FID-PPKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PPKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	FID

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVI	EN	
Temp	50.0	50.0
Initial Time		1.00
Ramp 1		20.0
Final temp		200
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate PPKD Injector Control Table. Set the required temperature setpoint Temp.Verify to operate in Wide bore mode. If not, scroll to Mode, press MODE/TYPE to access the selection menu, then select Widebore.

	LEFT	INLE	T (PPKD)) 1
Tem	p		200	200
Pre	ssure		30.0	30.0
Mode	e:		Wide	e bore<
Con	stant	sept	purge?	У<
. These settings could also be for a right inlet.				

- 4. Use **LEFT DETECTOR** or **RIGHT DETECTOR** to display the appropriate FID
- Detector Control Table. Set the required temperature Base Temp, and the detector gases H2, Air and Mkup required setpoints.

LEFT DETEC	TOR (FID)	1
Flame		Off
Base temp	250	250
Signal pA		(5.5)
Ign.thresh		2.0
Flameout retr	У	Off
Н2	35	35
Air	350	350
Mkup N2	30	30<

1. These settings could also be for a right detector.

- 5. Ignite the FID flame scrolling to Flame and pressing **ON**.
- 6. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate FID Detector Signal Control Table. Observe the FID flame signal at the display. This is the flame-on background offset. Scroll to Range and set the electrometer amplifier input range required.

	LEFT SIGNAL	(FID) ¹
	Output	(1000)
	Offset	100
	Auto zero?	Y/N
	Range 10^(03)	0<
	Analog filter	Off
	Baseline comp	Off
•	TT1 (1 1 1 1 1	C · 1 · · 1

^{1.} These settings could also be for a right signal.

- 7. Activate your Data System and set the parameters required for the checkout.
- 8. In the FID Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.
- 9. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 5-3 according to the data handling in use.

- 10. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 11. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 12. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 5.1*

Figure 5-1. FID-PPKD Injection

- 13. The following criteria indicate successful completion of FID-PPKD checkout.
- 14. If these criteria are not met, repeat the test.

	CHROM-CARD		
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
S	Noise (µV)	< 30	< 300
alue	Wander (µV)	< 50	< 500
se V	Drift (µV/h)	< 100	< 1 000
eptano	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
Aco	Components	> 3 600 000 for each component	> 36 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	1 <u>+</u> 0.1

Table 5-3. FID-PPKD Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST	
ş	Baseline Parameters (1V Full Scale)		
alue	Noise (µV)	< 30	
ce V	Wander (µV)	< 50	
otan	Drift (µV/h)	< 100	
ccep	Analytical Results (1V Full Scale) - Area Counts (0.01 μVs)		
A	Components	> 36 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 ± 0.1	

	A	TLAS	
	Baseline Parameters (10V Full Scale)		
	Noise (µV)	< 300	
	Wander (µV)	< 500	
	Drift (µV/h)	< 1 000	
Analytical Results (10V Full Scale) - Area Counts (μVs)		ull Scale) - Area Counts (μVs)	
	Components	> 3 600 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 ± 0.1	

	XCA	LIBUR
S	Baseline Parameters (Acquisition Frequency = 10 Hz)	
alue	Noise (Counts)	< 3 000
ce V	Wander Counts)	< 5 000
otan	Drift (Counts/h)	< 10 000
lecek	Analytical Results Area Counts (Cts*s)	
Ā	Components	> 36 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1

	Analytical Acceptance Comments		
1	When the make-up gas is not used, the acceptance values will result to be 2.5 times lower than the values reported in Table 5-3.		
2	When helium is used as make-up gas, the acceptance values will result to be 10 times lower than the values reported in Table 5-3.		

Checkout Using FID with PTV Injector

Chapter at a Glance...

Operating Procedures	
Recommended Initial Operations	
Analytical Conditions Required for PTV Splitless Injection	
Parts Referenced	
Scope	
SOP Number: P0309/07/E - 01 September 2009	

FID-PTV Checkout in PTV Splitless Mode	. 85
--	------

SOP Number: P0309/07/E - 01 September 2009

Scope

Use the following procedure to verify proper FID operation with the Programmable Temperature Vaporizing Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$.	
Liner	Silcosteel 2 mm ID	453 220 44
Liner Seal	Graphite seal for liner	290 034 17
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for PTV injector (set of 10)	313 132 25
Syringe	10 μl size; 50 mm needle length	365 005 25
Test Mixture	Three components in n-Hexane:	338 190 20
	Component Concentration	
	Dodecane 20 µg/ml	
	Tetradecane 20 µg/ml	
	Hexadecane 20 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 6-1. FID-PTV Parts Referenced

Analytical Conditions Required for PTV Splitless Injection

Gases	Carrier Gas: Helium = 30 kPa Constant Pressure
	Hydrogen = 35 ml/min
	Air = 350 ml/min
	Make-up Gas: Nitrogen = 30 ml/min
Oven Program	Initial Temperature = 50 °C
	Initial Time = 1 minute
	Ramp 1 = 20 °C/minute
	Final Temperature = 200 °C
	Final Time = 1 minute
Injector	Operating Mode = PTV splitless
	Splitless Time = 0.8 minutes
	Split Flow = 50 ml/min
	Constant Septum Purge = Yes
	Inject Temp = $50 ^{\circ}\text{C}$
	Inject Time = 0.1 minute
	Transfer ramp = 10 °C/sec
	Transfer Temperature = 260 °C
	Transfer time = 1 minute
Detector	Base Temperature = 250 °C
	Detector Signal Range = 10°
Injected Volume	1 μl of Test Mixture
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz

Table 6-2. FID-PTV Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the liner.

The liner currently installed in your injector should be carefully removed and replaced with the 2 mm ID Silcosteel liner, as required for the checkout, with the appropriate liner seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test.
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FID-PTV Checkout in PTV Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Right inlet	PTV
Right carrier	He (helium)
Right detector	FID

1. Use **RIGHT CARRIER** to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press **MODE/TYPE** to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

RIGHT	$CARRIER^1$	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN		
Temp	50.0	50.0
Initial Time		1.00
Ramp 1		20.0
Final temp		200
Final time 1		1.00<
Ramp 2		Off

3. Use **RIGHT INLET** to display the appropriate Programmable Temperature Vaporizing Injector Control Table. Set the required temperature setpoint Temp. Verify to operate in **PTV splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select PTV splitless. Scroll to Splitless time to set the required setpoint.

```
RIGHT INLET (PTV)Temp5050Pressure30.030.0Mode:PTV SplitlessTotal flow(53.0)Split Flow50.050.0Splitless time0.800.80Constant sept purge?YInject phase menu:Y<</td>
```

4. Scroll to Inject phase menu. Press MODE/TYPE to enter the PTV Phase Menu.

PTV PHASE MENU	
Ramped pressure?	Ν
Inject temp	50
Inject time	0.1
Transfer ramp	10
Transfer temp	260
Transfer time	1.00<

- 5. Select Ramped pressure? NO. Set the required Inject temp and *Inject time* setpoints as required. Then, set the Transfer ramp, the Transfer temp and the Transfer time required setpoints.
- 6. Use **RIGHT DETECTOR** to display the appropriate FID Detector Control Table. Set the required temperature Base Temp. and the detector gases H2, Air and Mkup required setpoints.

RIGHT DETECTO	DR (FII	D)
Flame		Off
Base temp	250	250
Signal pA		(5.5)
Ign.thresh		2.0
Flameout retry		Off
Н2	35	35
Air	350	350
Mkup N2	30	30<

7. Ignite the FID flame scrolling to Flame and pressing **ON**.

8. Use **RIGHT SIGNAL** to display the appropriate FID Detector Signal Control Table. Observe the FID flame signal at the display. This is the flame-on background offset. Scroll to Range and set the electrometer amplifier input range required.

RIGHT SIGNAL	(FID)
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline comp	Off

- 9. Activate your Data System and set the parameters required for the checkout.
- 10. In the FID Detector Signal Control Table, scroll to Auto zero? and turn it **ON**.
- 11. Activate your Data System and set the parameters required for the checkout.
- 12. In the FID Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.

13. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 6-3 according to the data handling in use.

- 14. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 15. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 16. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 6.1*

Figure 6-1. FID-PTV Injection

- 17. The following criteria indicate successful completion of FID-PTV checkout.
- 18. If these criteria are not met, repeat the test.

	CHROM-CARD		
G	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
	Noise (µV)	< 30	< 300
alue	Wander (µV)	< 50	< 500
se V	Drift (µV/h)	< 100	< 1 000
ceptano	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
Aco	Components	> 2 500 000 for each component	> 25 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	1 <u>+</u> 0.1

Table 6-3. FID-PPKD Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST	
alues	Baseline Parameters (1V Full Scale)		
	Noise (µV)	< 30	
ce V	Wander (µV)	< 50	
otano	Drift (µV/h)	< 100	
cep	Analytical Results (1V Full Scale) - Area Counts (0.01 μVs)		
A	Components	> 25 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	

ATLAS			
Baseline Parameters (10V Full Scale)			
Noise (µV) < 300			
Wander (µV)	< 500		
Drift (µV/h)	< 1 000		
Analytical Results (10V Full Scale) - Area Counts (μVs)			
Components	> 2 500 000 for each component		
Area Count Ratio Calculated as C12/C16	1 ± 0.1		

	XCALIBUR		
ş	Baseline Parameters (Acquisition Frequency = 10 Hz)		
alue	Noise (Counts)	< 3 000	
Ce V	Wander Counts)	< 5 000	
otan	Drift (Counts/h)	< 10 000	
ccep	Analytical Results Area Counts (Cts*s)		
Ā	Components	> 25 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	

Analytical Acceptance Comments			
1	When the make-up gas is not used, the acceptance values will result to be 2.5 times lower than the values reported in Table 6-3.		
2	When helium is used as make-up gas, the acceptance values will result to be 10 times lower than the values reported in Table 6-3.		

SECTION

The *SOPs Using ECD* section, contains the procedures to test the TRACE GC Ultra with the Electron Capture Detector (ECD) using different injectors.

Chapter 7 Checkout Using ECD with S/SL Injector.

Chapter 8 Checkout Using ECD with OC Injector.

Chapter 9 Checkout Using ECD with PKD Injector

Chapter 10 Checkout Using ECD with PPKD Injector.

Chapter 11 Checkout Using ECD with PTV Injector.

Checkout Using ECD with S/SL Injector

Chapter at a Glance...

SOP Number: P0294/07/E - 01 September 2009	96
Scope	96
Parts Referenced	
Analytical Conditions Required for Splitless Injection	
Recommended Initial Operations	

Operating Procedures

ECD-S/SL Checkout in Splitless Mode.	
--------------------------------------	--

SOP Number: P0294/07/E - 01 September 2009

Scope

Use the following procedure to verify proper ECD operation with the Split/Splitless Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long;	260 800 01
	0.32 mm ID ; $0.25 \mu\text{m}$ film thickness.	
Glass Liner	3 mm ID for splitless injections	453 200 32
Liner Seal	Graphite seal glass liner	290 334 06
Graphite Ferrule	Graphite Ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for S/SL injector	313 032 11
Syringe	10 μl size; 70 mm needle length	365 001 03
Test Mixture	Two components in Iso-octane	338 190 11
	Component Concentration	
	Lindane 0.030 µg/ml	
	Aldrin 0.030 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 7-1. ECD-S/SL Parts Referenced

Analytical Conditions Required for Splitless Injection

Parameters Setting			
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure		
	Make-up: Nitrogen = 30 ml/min		
Oven Program	Initial Temperature = 70 °C		
	Initial Time = 1 minute		
	Ramp 1 = 20 °C/minute		
	Final Temperature = 220 °C		
	Final Time = 1 minute		
Injector	Operating Mode = Splitless		
	Temperature = 230 °C		
	Splitless Time = 0.8 minutes		
	Split Flow = 60 ml/min		
	Constant Septum Purge = Yes		
Detector	Base Temperature = 250 °C		
	ECD temperature = $300 ^{\circ}\text{C}$		
	Reference Current = 1 nA		
	Pulse Amplitude = 50 V		
	Pulse Width = $1 \mu s$		
Injected Volume	1 μl + needle of Test Mixture		
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium		
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz		

ns
r

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the glass liner.

The glass liner currently installed in your injector should be carefully removed and replaced with the 3 mm ID glass liner for splitless application, as required for the checkout, with the appropriate liner seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test.
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

ECD-S/SL Checkout in Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	S/SL
Left carrier or Right carrier	He (helium)
Left detector or Right detector	ECD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN				
Temp	70.0	70.0		
Initial Time		1.00		
Ramp 1		20.0		
Final temp		220		
Final time 1		1.00<		
Ramp 2		Off		

3. Use **LEFT INLET** or **RIGHT INLET** to display the appropriate Split/Splitless Injector Control Table. Set the required temperature setpoint *Temp*. Verify to operate in **Splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

LEFT INLET	(S/SL)	1
Temp	230	230
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.80	0.80
Constant sept p	urge?	У<

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate ECD Detector Control Table. Set the required temperature Base Temp. and the Mkup gas required setpoints.

LEFT DETECTOR	(ECD)	1
Base temp	250	250
ECD Temp	300	300
Ref current nA		1.0
Freq kHz		(2.20)
Pulse amp V		50
Pulse width μ s		1.0
Mkup (N2)	30	30<

1. These settings could also be for a right detector.

- 5. Set the Reference Current to 1.0 nA.
- 6. Set the Pulse Amplitude to 50 V.
- 7. Scroll to Pulse Width and press ENTER to open the menu selection. Select the pulse width to 1µs then press ENTER.

8. Observe the ECD frequency value at the display. A base frequency value between 1 kHz and 3 kHz should be displayed.

If the ECD frequency value is less than 1kHz, reduce gradually the pulse amplitude till the base frequency value is about 1 kHz (the pulse amplitude value should not be less than 20V). Then, if necessary modify the reference current in order to have a base frequency of about 1-1,5 kHz. Let the detector signal to stabilize.

- 9. Activate your Data System and set the parameters required for the checkout.
- 10. Use LEFT SIGNAL or RIGHT SIGNAL to display the ECD Detector Signal Control Table. Scroll to Auto zero? and turn it YES.

LEFT SIGNAL	(ECD) ¹
Output	(1000)
Offset	100<
Auto zero?	Y/N
Baseline comp?	Off

1. These settings could also be for a right signal.

11. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 7-3 according to the data handling in use.

- 12. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 13. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 14. When the GC is ready, inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 7.1*.

Figure 7-1. ECD-Splitless Injection

- 15. Establish the integration parameters and the peak table identifying the test mix components.
- 16. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Lindane component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Lindane.
- Repeat the procedure to calculate the signal-to-noise ratio also for Aldrin.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Aldrin.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows: Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

17. The following criteria indicate successful completion of ECD-S/SL checkout.

18. If these criteria are not met, repeat the test.

Table 7-3. ECD-S/SL Acceptance Criteria

	CHROM-CARD			
Acceptance Values	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)	
	Noise (µV)	< 40	< 400	
	Wander (µV)	< 80	< 800	
	Drift (µV/h)	< 200	< 2 000	
	Analytical Results			
	Lindane Signal-to-Noise Ratio		> 4 000	
	Aldrin Signal-to-Noise Ratio		> 4 000	

Acceptance Values	CHROI	MQUEST
	Baseline Parameters (1V Full Scale)	
	Noise (µV)	< 40
	Wander (µV)	< 80
	Drift (µV/h)	< 200
	Analytical Results	
	Lindane Signal-to-Noise Ratio	> 4 000
	Aldrin Signal-to-Noise Ratio	> 4 000

TA	「LAS	
Baseline Parameters (10V Full Scale)		
Noise (µV)	< 400	
Wander (µV)	< 800	
Drift (µV/h)	< 2 000	
Analytical Results		
Lindane Signal-to-Noise Ratio	> 4 000	
Aldrin Signal-to-Noise Ratio	> 4 000	

Acceptance Values	XCA	LIBUR
	Baseline Parameters (Acquisition Frequency = 10 Hz)	
	Noise (Counts)	< 4 000
	Wander (Counts)	< 8 000
	Drift (Counts/h)	< 20 000
	Analytical Results	
	Lindane Signal-to-Noise Ratio	> 4 000
	Aldrin Signal-to-Noise Ratio	> 4 000

	Analytical Acceptance Comments		
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.		
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .		

8

Checkout Using ECD with OC Injector

Chapter at a Glance...

SOP Number: P0295/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for On-Column Injection	
Recommended Initial Operations	
1	

Operating Procedures

ECD-OCI Checkout in	On-Column Mode	. 111
---------------------	----------------	-------

SOP Number: P0295/08/E - 01 September 2009

Scope

Use the following procedure to verify proper ECD operation with the On-Column Injector.

Parts Referenced

	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long; 0.32 mm ID; 0.25 µm film thickness.	260 800 01
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Vespel Ferrule	Vespel ferrule for 0.32 mm ID Column	290 134 60
Syringe	10 µl size; 75 mm needle length	365 020 07
Test Mixture	Two components in Iso-octane	338 190 11
	Component Concentration	
	Lindane 0.030 µg/ml	
	Aldrin 0.030 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	
Syringe	10 μl size; 80 mm needle length	365 020 19
Pre-column	2 m long; 0.53 mm ID	260 603 75
Press-fit set	Set of Press-fir connectors for TRACE OC	350 038 45

Table 8-1. ECD-OCI Parts Referenced
Analytical Conditions Required for On-Column Injection

Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Make-up: Nitrogen = 30 ml/min	
Oven Program	Initial Temperature = 85 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 220 °C	
	Final Time = 1 minute	
Injector	Secondary Cooling = 3 seconds	
DetectorBase Temperature = 250 °C		
	ECD Temperature = 300 °C	
	Reference Current = 1 nA	
	Pulse Amplitude = 50 V	
	Pulse Width = $1 \mu s$	
Injected Volume	1 µl of Test Mixture	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur	
	Acquisition Frequency = 10 Hz	

Table 8-2. ECD-OCI Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

- Connect the required gas lines. Verify the required gas supplies are properly connected to your GC.
- Install the test column. The column currently installed should be carefully removed and replaced with the required test column. In case of automatic On-column for TriPlus sampler, install the pre-column and connect it to the test column by press-fit connector.
- 3. Install and connect the TriPlus sampler and its components.
- 4. Perform Column Evaluation and Leak Test.
- Connect your data handling. Verify that your data handling is properly connected to your GC system.
- 6. Verify the opening/closing of the OC injector actuator by using the proper commands.
- 7. Verify the alignment of the syringe on the OC injector.

OPERATING PROCEDURE

ECD-OCI Checkout in On-Column Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	OCI
Left carrier or Right carrier	He (helium)
Left detector or Right detector	ECD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVI	EN	
Temp Initial Time Ramp 1 Final temp Final time 1 Ramp 2	85.0	85.0 1.00 20.0 220 1.00< 0ff

3. Use LEFT INLET or RIGHT INLET to display the appropriate Cold On-Column Injector Control Table. Scroll to Sec. cool time and set the required secondary cooling time.

	LEFT	INLET	(OCI) ¹	
Pres Sec.	sure Cool	Time	30.0	30.0 3.00<

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate ECD Detector Control Table. Set the required temperature Base Temp. and the Mkup gas required setpoints.

LEFT DETECTOR	(ECD)) 1
Base temp ECD Temp	250 300	250 300
Ref current nA Freq kHz		1.0
Pulse amp V Pulse width µs Mkup (N2)	30	50 1.0 30<

1. These settings could also be for a right detector.

- 5. Set the Reference Current to 1.0 nA.
- 6. Set the Pulse Amplitude to 50 V.
- 7. Scroll to Pulse Width and press ENTER to open the menu selection. Select the pulse width to 1µs then press ENTER.
- 8. Observe the ECD frequency value at the display. A base frequency value between 1 kHz and 3 kHz should be displayed. If the ECD frequency value is less than 1kHz, reduce gradually the pulse amplitude till the base frequency value is about 1 kHz (the pulse amplitude value should not be less than 20V). Then, if necessary modify the reference current in order to have a base frequency of about 1-1,5 kHz. Let the detector signal to stabilize.
- 9. Activate your Data System and set the parameters required for the checkout.
- 10. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate ECD Detector Signal Control Table. Scroll to Auto zero? and turn it YES.

	LEFT	SIGNAL	(ECD) ¹
Outr Offs Auto Base	out set p zerc eline	o? comp?	(1000) 100< Y/N Off

1. These settings could also be for a right signal.

11. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 8-3 according to the data handling in use.

- 12. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 13. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 14. Perform the analysis

Manual injection

• Inject the test mixture and press **START** on the GC to begin the checkout run.

Automatic injection with TriPlus sampler

- Fill a vial with the standard mix and place that vial in the sample tray.
- Load the method for OC and perform the sampling.

The resulting chromatogram should look like the one shown in Figure 8.1.

- 15. Establish the integration parameters and the peak table identifying the test mix components.
- 16. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Lindane component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Lindane.
- Repeat the procedure to calculate the signal-to-noise ratio also for Aldrin.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Aldrin.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows:

Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

ON Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

- 17. The following criteria indicate successful completion of ECD-OCI checkout.
- 18. If these criteria are not met, repeat the test.

	CHROM-CARD		
ŝ	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
alue	Noise (µV)	< 40	< 400
ce V	Wander (µV)	< 80	< 800
otan	Drift (µV/h)	< 200	< 2 000
leoo	Analytical Results		
Ă	Lindane Signal-to-Noise Ratio		> 3 000
	Aldrin Signal-to-Noise Ratio		> 3 000

Table 8-3. ECD-OCI Acceptance Criteria

	CHRO	MQUEST	
ş	Baseline Parameters (1V Full Scale)		
alue	Noise (µV)	< 40	
ce V	Wander (µV)	< 80	
otan	Drift (µV/h)	< 200	
ccep	Analytical Results		
A	Lindane Signal-to-Noise Ratio	> 3 000	
	Aldrin Signal-to-Noise Ratio	> 3 000	

TA.	TLAS	
Baseline Parameters (10V Full Scale)		
Noise (µV)	< 400	
Wander (µV)	< 800	
Drift (µV/h)	< 2 000	
Analytic	cal Results	
Lindane Signal-to-Noise Ratio	> 3 000	
Aldrin Signal-to-Noise Ratio	> 3 000	

	XCA	LIBUR	
S	Baseline Parameters (Acquisition Frequency = 10 Hz)		
alue	Noise (Counts)	< 4 000	
ce V	Wander (Counts)	< 8 000	
otan	Drift (Counts/h)	< 20 000	
Accep	Analytical Results		
	Lindane Signal-to-Noise Ratio	> 3 000	
	Aldrin Signal-to-Noise Ratio	> 3 000	

	Analytical Acceptance Comments
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .

9

Checkout Using ECD with PKD Injector

Chapter at a Glance...

SOP Number: P0310/07/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Packed Injector	
Recommended Initial Operations	
On size the second size of	

Operating Procedures

ECD-PKD Checkout

SOP Number: P0310/07/E - 01 September 2009

Scope

Use the following procedure to verify proper ECD operation with Packed Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m}$ film thickness.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite ferrule for 0.53 mm ID Column	290 134 86
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Packed Injector	313 032 26
Syringe	10 μl size; 50 mm needle length	365 005 25

Table 9-1. ECD-PKD Parts Referenced

Part	Description	Part Number
Test Mixture	Two components in Iso-octane	338 190 11
	Component Concentration	
	Lindane 0.030 µg/ml	
	Aldrin 0.030 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 9-1. ECD-PKD Parts Referenced (Continued)

Analytical Conditions Required for Packed Injector

Parameters Setting			
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure		
	Make-up Gas: Nitrogen = 30 ml/min		
Oven Program	IsoTemperature = 140 °C		
	Initial Time = 10 minute		
Injector	Operating Mode = Packed		
	Temperature = $180 ^{\circ}\text{C}$		
Detector	Base Temperature = 250 °C		
	ECD temperature = $300 ^{\circ}\text{C}$		
	Reference Current = 1 nA		
	Pulse Amplitude = 50 V		
	Pulse Width = $1 \mu s$		
Injected Volume	1 μl + needle of Test Mixture		
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium		
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz		

Table 9-2. ECD-PKD Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Ultra Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7. Perform the manual leak check following the Operating Procedure "*Perforing a Leak Check*" in Chapter 14 of the TRACE GC Ultra Operating Manual.
- 8. Connect the other end of the test column to the detector base body.
- 9. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

ECD-PKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	ECD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN		
Temp	140	140
Initial Time		10.0
Ramp 1		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate PKD Injector Control Table. Set the required temperature setpoint Temp. Verify to operate in Packed mode. If not, scroll to Mode, press MODE/TYPE to access the selection menu, then select Packed.

	LEFT	INLET	(PKD)	1
Temp Pres Mode	sure :		180 30.0 P	180 30.0 acked

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate ECD Detector Control Table. Set the required temperature Base Temp and the Mkup gas required setpoints.

LEFT DETECTOR	(ECD)	1
Base temp	250	250
Ref current nA	500	1.0
Freq kHz Pulse amp V		(2.20)
Pulse width μ s		1.0
Mkup (N2)	30	30<

1. These settings could also be for a right detector.

- 5. Set the Reference Current to 1.0 nA.
- 6. Set the Pulse Amplitude to 50 V.
- 7. Scroll to Pulse Width and press ENTER to open the menu selection. Select the pulse width to 1µs then press ENTER.
- 8. Observe the ECD frequency value at the display. A base frequency value between 1 kHz and 3 kHz should be displayed. If the ECD frequency value is less than 1kHz, reduce gradually the pulse amplitude till the base frequency value is about 1 kHz (the pulse amplitude value should not be less than 20V). Then, if necessary modify the reference current in order to have a base frequency of about 1-1,5 kHz. Let the detector signal to stabilize.
- 9. Activate your Data System and set the parameters required for the checkout.
- 10. Use LEFT SIGNAL or RIGHT SIGNAL to display the ECD Detector Signal Control Table. Scroll to Auto zero? and turn it YES.

NOTE

	LEFT	SIGNAL	(ECD) ¹
Outr Offs Auto Base	out set p zerc eline	o? comp?	(1000) 100< Y/N Off

1. These settings could also be for a right signal.

11. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 9-3 according to the data handling in use.

- 12. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 13. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 14. When the GC is ready, inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 9.1*.

Figure 9-1. ECD-PKD Injection

- 15. Establish the integration parameters and the peak table identifying the test mix components.
- 16. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Lindane component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Lindane.
- Repeat the procedure to calculate the signal-to-noise ratio also for Aldrin.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Aldrin.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows:

Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

NOTE

Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

- 17. The following criteria indicate successful completion of ECD-PKD checkout.
- 18. If these criteria are not met, repeat the test.

Table 9-3. ECD-PK	O Acceptance	Criteria
-------------------	--------------	----------

	CHROM-CARD		
Acceptance Values	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
	Noise (µV)	< 40	< 400
	Wander (µV)	< 80	< 800
	Drift (µV/h)	< 200	< 2000
	Analytical Results		
	Lindane Signal-to-Noise Ratio		> 2 000
	Aldrin Signal-to-Noise Ratio		> 1 000

	CHRO	MQUEST	
otance Values	Baseline Parameters (1V Full Scale)		
	Noise (µV)	< 40	
	Wander (µV)	< 80	
	Drift (μ V/h)	< 200	
ccep	Analytical Results		
A	Lindane Signal-to-Noise Ratio	> 2 000	
	Aldrin Signal-to-Noise Ratio	> 1 000	

	ATLAS Baseline Parameters (10V Full Scale)			
Noise (μV) < 400				
	Wander (µV)	< 800		
	Drift (µV/h)	< 2 000		
	Analytical Results			
Lindane Signal-to-Noise Ratio > 2 00		> 2 000		
	Aldrin Signal-to-Noise Ratio	> 1 000		

otance Values	XCA	LIBUR	
	Baseline Parameters (Acquisition Frequency = 10 Hz)		
	Noise (Counts)	< 4 000	
	Wander (Counts)	< 8 000	
	Drift (Counts/h)	< 20 000	
leoo	Analytical Results		
A	Lindane Signal-to-Noise Ratio	> 2 000	
	Aldrin Signal-to-Noise Ratio	> 1 000	

Analytical Acceptance Comments			
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.		
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .		

Checkout Using ECD with PPKD Injector

Chapter at a Glance...

Operating Procedures	
Recommended Initial Operations	135
Analytical Conditions Required for Purged Packed Injector	134
Parts Referenced	
Scope	
SOP Number: P0311/07/E - 01 September 2009	

SOP Number: P0311/07/E - 01 September 2009

Scope

Use the following procedure to verify proper ECD operation with Purged Packed Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite ferrule for 0.53 mm ID Column	290 134 86
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Purged Packed Injector	313 032 26
Syringe	10 µl size; 50 mm needle length	365 005 25

Table 10-1. ECD-PPKD Parts Referenced

Part	Description	Part Number
Test Mixture	Two components in Iso-octane	338 190 11
	Component Concentration	
	Lindane 0.030 µg/ml	
	Aldrin 0.030 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 10-1. ECD-PPKD Parts Referenced (Continued)

Analytical Conditions Required for Purged Packed Injector

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure Make-up Gas: Nitrogen = 30 ml/min	
Oven Program	Initial Temperature = 70 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 220 °C	
	Final Time = 1 minute	
Injector	Operating Mode = Wide bore	
	Temperature = $200 ^{\circ}C$	
Detector	Base Temperature = 250 °C	
	ECD temperature = $300 ^{\circ}\text{C}$	
	Reference Current = 1 nA	
	Pulse Amplitude = 50 V	
	Pulse Width = $1 \mu s$	
Injected Volume	$1 \mu l + needle of Test Mixture$	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Table 10-2. ECD-PPKD Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7. Perform the manual leak check following the Operating Procedure "*Perforing a Leak Check*" in Chapter 14 of the TRACE GC Ultra Operating Manual.
- 8. Connect the other end of the test column to the detector base body.
- 9. Perform Column Evaluation.
- 10. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

ECD-PPKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PPKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	ECD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN	1	
Temp Initial Time Ramp 1 Final temp Final time 1 Ramp 2	70.0	70.0 1.00 20.0 220 1.00< Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate PPKD Injector Control Table. Set the required temperature setpoint Temp. Verify to operate in Wide bore mode. If not, scroll to Mode, press MODE/TYPE to access the selection menu, then select Wide bore.

	LEFT	INLE	Т	(PPKD)	1
Temp)			200	200
Pres	sure			30.0	30.0
Mode	:			Wide	bore<
Cons	tant	sept	pu	rge?	Y<

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate ECD Detector Control Table. Set the required temperature Base Temp and the Mkup gas required setpoints.

LEF	I DETI	ECTOR	(ECD)	1
Base te ECD Ter	qme an		250 300	250 300
Ref cui	rent	nA		1.0
Freq kH Pulse a	iz amp V			(2.20)
Pulse v	vidth	μs	20	1.0
MKUP (I	√∠)		30	30<

1. These settings could also be for a right detector.

- 5. Set the Reference Current to 1.0 nA.
- 6. Set the Pulse Amplitude to 50 V.
- 7. Scroll to Pulse Width and press ENTER to open the menu selection. Select the pulse width to 1µs then press ENTER.
- 8. Observe the ECD frequency value at the display. A base frequency value between 1 kHz and 3 kHz should be displayed. If the ECD frequency value is less than 1kHz, reduce gradually the pulse amplitude till the base frequency value is about 1 kHz (the pulse amplitude value should not be less than 20V). Then, if necessary modify the reference current in order to have a base frequency of about 1-1,5 kHz. Let the detector signal to stabilize.

NOTE

- 9. Activate your Data System and set the parameters required for the checkout.
- 10. Use LEFT SIGNAL or RIGHT SIGNAL to display the ECD Detector Signal Control Table. Scroll to Auto zero? and turn it YES.

LEFT SIGNAL	(ECD) ¹
Output	(1000)
Offset	100<
Auto zero?	Y/N
Baseline comp	Off

1. These settings could also be for a right signal.

11. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 10-3 according to the data handling in use.

- 12. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 13. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 14. When the GC is ready, inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 10.1*.

Figure 10-1. ECD-PPKD Injection

- 15. Establish the integration parameters and the peak table identifying the test mix components.
- 16. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Lindane component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Lindane.
- Repeat the procedure to calculate the signal-to-noise ratio also for Aldrin.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Aldrin.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows:

Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

NOTE

Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

- 17. The following criteria indicate successful completion of ECD-PPKD checkout.
- 18. If these criteria are not met, repeat the test.

s	CHROM-CARD				
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)		
alue	Noise (µV)	< 40	< 400		
Ce <	Wander (µV)	< 80	< 800		
tano	Drift (µV/h)	< 200	< 2 000		
ccep	Analytical Results				
Ac	Lindane Signal-to-Noise Ratio		> 3 000		
	Aldrin Signal-to-Noise Ratio		> 3 000		

Table 10-3.	ECD-PPKD	Acceptance	Criteria
-------------	----------	------------	----------

	CHRO	MQUEST	
Ś	Baseline Parameters (1V Full Scale)		
'alue	Noise (µV)	< 40	
ce V	Wander (µV)	< 80	
otan	Drift (µV/h)	< 200	
ccep	Analytical Results		
A	Lindane Signal-to-Noise Ratio	> 3 000	
	Aldrin Signal-to-Noise Ratio	> 3 000	

Ā	TLAS	
Baseline Parameters (10V Full Scale)		
Noise (µV)	< 400	
Wander (µV)	< 800	
Drift (µV/h)	< 2 000	
Analytical Results		
Lindane Signal-to-Noise Ratio	> 3 000	
Aldrin Signal-to-Noise Ratio	> 3 000	

S	XCA	LIBUR	
	Baseline Parameters (Acquisition Frequency = 10 Hz)		
alue	Noise (Counts)	< 4 000	
ce <	Wander (Counts)	< 8000	
otano	Drift (Counts/h)	< 20 000	
cep	Analytical Results		
Ā	Lindane Signal-to-Noise Ratio	> 3 000	
	Aldrin Signal-to-Noise Ratio	> 3 000	

	Analytical Acceptance Comments
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .

Checkout Using ECD with PTV Injector

Chapter at a Glance...

Operating Procedures	
Recommended Initial Operations	146
Analytical Conditions Required for PTV Splitless Injection	145
Parts Referenced	144
Scope	144
SOP Number: P0312/07/E - 01 September 2009	144

ECD-PTV Checkout in PTV S	Splitless Mode	147

SOP Number: P0312/07/E - 01 September 2009

Scope

Use the following procedure to verify proper ECD operation with the Programmable Temperature Vaporizing Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary ColumnTR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$.	
Liner	Silcosteel 2 mm ID (set of 2)	453 220 44
Liner Seal	Graphite seal for liner	290 034 17
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for PTV injector (set of 10)	313 132 25
Syringe	10 μl size; 50 mm needle length	365 005 25
Test Mixture	Two components in Iso-octane	338 190 11
	Component Concentration	
	Lindane 0.030 µg/ml	
	Aldrin 0.030 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 11-1. ECD-PTV Parts Referenced
Analytical Conditions Required for PTV Splitless Injection

Gases	Carrier Gas: Helium = 30 kPa Constant Pressure
	Make-up Gas: Nitrogen = 30 ml/min
Oven Program	Initial Temperature = 70 °C
	Initial Time = 1 minute
	Ramp 1 = 20 °C/minute
	Final Temperature = 220 °C
	Final Time = 1 minute
Injector	Operating Mode = PTV splitless
	Splitless Time = 0.8 minutes
	Split Flow = 50 ml/min
	Constant Septum Purge = Yes
	Inject Temp = 50 °C
	Inject Time = 0.1 minute
	Transfer ramp = 10 °C/sec
	Transfer Temperature = 260 °C
	Transfer time = 1 minute
Detector	Base Temperature = 250 °C
	ECD temperature = $300 ^{\circ}\text{C}$
	Reference Current = 1 nA
	Pulse Amplitude = 50 V
	Pulse Width = $1 \mu s$
Injected Volume	1 µl of Test Mixture
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz

Table 11-2 ECD-PTV Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the liner.

The liner currently installed in your injector should be carefully removed and replaced with the 2 mm ID Silcosteel liner, as required for the checkout, with the appropriate liner seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test.
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

ECD-PTV Checkout in PTV Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Right inlet	PTV
Right carrier	He (helium)
Right detector	ECD

1. Use **RIGHT CARRIER** to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press **MODE/TYPE** to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

RIGHT CARRIER ¹	
Pressure 30.0	30.0
Col.flow 3.00	
Lin. veloc.	(60.9)<

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN		
Temp Initial Time Ramp 1 Final temp Final time 1 Ramp 2	70.0	70.0 1.00 20.0 220 1.00< 0ff

3. Use **RIGHT INLET** to display the appropriate Programmable Temperature Vaporizing Injector Control Table. Set the required temperature setpoint Temp. Verify to operate in **PTV splitless** mode. If not, scroll to Mode, press

MODE/TYPE to access the selection menu, then select PTV splitless. Scroll to Splitless time to set the required setpoint.

```
RIGHT INLET (PTV)Temp70Pressure30.0Mode:PTV SplitlessTotal flow(53.0)Split Flow50.0Splitless time0.80Constant sept purge?YInject phase menu:Y
```

4. Scroll to Inject phase menu. Press MODE/TYPE to enter the PTV Phase Menu.

PTV PHASE MENU	
Ramped pressure?	Ν
Inject temp	50
Inject time	0.1
Transfer ramp	10
Transfer temp	260
Transfer time	1.00<

- Select Ramped pressure? NO. Set the required Inject temp and Inject time setpoints as required. Then, set the Transfer ramp, the Transfer temp and the Transfer time required setpoints.
- 6. Use **RIGHT DETECTOR** to display the appropriate ECD Detector Control Table. Set the required temperature Base Temp and the Mkup gas required setpoints.

RIGHT DETECT	OR (ECI))
Base temp	250	250
ECD Temp	300	300
Ref current nA		1.0
Freq kHz		(2.20)
Pulse amp V		50
Pulse width μ s		1.0
Mkup (N2)	30	30<

- 7. Set the Reference Current to 1.0 nA.
- 8. Set the Pulse Amplitude to 50 V.
- 9. Scroll to Pulse Width and press ENTER to open the menu selection. Select the pulse width to 1µs then press ENTER.
- 10. Observe the ECD frequency value at the display. A base frequency value between 1 kHz and 3 kHz should be displayed.
 If the ECD frequency value is less than 1kHz, reduce gradually the pulse amplitude till the base frequency value is about 1 kHz (the pulse amplitude value should not be less than 20V). Then, if necessary modify the reference current in order to have a base frequency of about 1-1,5 kHz. Let the detector signal to stabilize.
- 11. Activate your Data System and set the parameters required for the checkout.
- 12. Use **RIGHT SIGNAL** to display the ECD Detector Signal Control Table. Scroll to Auto zero? and turn it **YES**.

RIGHT SIGNAL	(ECD)
Output Offset	(1000) 100<
Auto zero?	Y/N
Baseline com'	Off

13. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

- Refer to the Acceptance Values reported in the Table 11-3 according to the data handling in use.
 - 14. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
 - 15. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
 - 16. When the GC is ready, inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 11.1*.

Figure 11-1. ECD-PTV Injection

- 17. Establish the integration parameters and the peak table identifying the test mix components.
- 18. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Lindane component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Lindane.
- Repeat the procedure to calculate the signal-to-noise ratio also for Aldrin.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Aldrin.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows:

Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

NOTE

Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

- 19. The following criteria indicate successful completion of ECD-PPKD checkout.
- 20. If these criteria are not met, repeat the test.

Table 11-3	ECD-PTV	Acceptance	Criteria
------------	---------	------------	----------

	CHROM-CARD		
ş	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
alue	Noise (µV)	< 40	< 400
ce V	Wander (µV)	< 80	< 800
otan	Drift (µV/h)	< 200	< 2000
beceb	Analytical Results		
Ă	Lindane Signal-to-Noise Ratio		> 3 000
	Aldrin Signal-to-Noise Ratio		> 3 000

	CHROMQUEST		
S	Baseline Parameters (1V Full Scale)		
alue	Noise (µV)	< 40	
ce V	Wander (µV)	< 80	
otan	Drift (µV/h)	< 200	
ccep	Analytical Results		
A	Lindane Signal-to-Noise Ratio	> 3 000	
	Aldrin Signal-to-Noise Ratio	> 3 000	

ATLAS		
Baseline Parameters (10V Full Scale)		
Noise (µV)	< 400	
Wander (µV)	< 800	
Drift (µV/h)	< 2 000	
Analytical Results		
Lindane Signal-to-Noise Ratio	> 3 000	
Aldrin Signal-to-Noise Ratio	> 3 000	

	XCA	LIBUR
Ş	Baseline Parameters (Acquisition Frequency = 10 Hz)	
alue	Noise (Counts)	< 4 000
ce V	Wander (Counts)	< 8 000
otan	Drift (Counts/h)	< 20 000
cep	Analytical Results	
A	Lindane Signal-to-Noise Ratio	> 3 000
	Aldrin Signal-to-Noise Ratio	> 3 000

	Analytical Acceptance Comments		
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.		
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .		

SECTION

The *SOPs Using NPD* section, contains the procedures to test the TRACE GC with the Nitrogen Phosphorus Detector (NPD) using different injectors.

Chapter 12, Checkout Using NPD with S/SL Injector.

Chapter 13, Checkout Using NPD with OC Injector.

Chapter 14, Checkout Using NPD with PKD Injector.

Chapter 15, Checkout Using NPD with PPKD Injector.

Chapter 16, Checkout Using NPD with PTV Injector.

Checkout Using NPD with S/SL Injector

Chapter at a Glance...

SOP Number: P0296/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Splitless Injection	
Recommended Initial Operations	

Operating Procedures

NPD-S/SL Checkout in Splitless Mode	
-------------------------------------	--

SOP Number: P0296/08/E - 01 September 2009

Scope

Use the following procedure to verify proper NPD operation with the Split/Splitless Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long; 0.32 mm ID; 0.25 µm film. thickness.	260 800 01
Glass Liner	3 mm ID for splitless injection	453 200 32
Liner Seal	Graphite seal for glass liner	290 334 06
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for S/SL injector	313 032 11
Syringe	10 μl size; 70 mm needle length	365 001 03
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 12-1. NPD-S/SL Parts Referenced

Analytical Conditions Required for Splitless Injection

Devenue of and Cattling		
Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Hydrogen = 2.3 ml/min	
	Air = 60 ml/min	
	Make-up: Nitrogen = 15 ml/min	
Oven Program	Initial Temperature = 70 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 230 °C	
	Final Time = 1 minute	
Injector	Operating Mode = Splitless	
	Temperature = $230 ^{\circ}\text{C}$	
	Splitless Time = 0.8 minutes	
	Split Flow = 60 ml/min	
	Constant Septum Purge = Yes	
Detector	Base Temperature = 300 °C	
	Source Current = <i>Refer to Source Ignition</i>	
	Polarizer voltage = 3.5 V	
	Detector Signal Range = 10°	
Injected Volume	$1 \mu l + needle of Test Mixture$	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Table 12-2. NPD-S/SL Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the glass liner.

The glass liner currently installed in your injector should be carefully removed and replaced with the 3 mm ID glass liner for splitless application, as required for the checkout, with the appropriate graphite seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

NPD-S/SL Checkout in Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	S/SL
Left carrier or Right carrier	He (helium)
Left detector or Right detector	NPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN	I	
Temp	70.0	70.0
Initial Time		1.00
Ramp 1		20.0
Final temp		230
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate Split/Splitless Injector Control Table and set the required temperature setpoint *Temp*. Verify to operate in **Splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

LEFT INLET	(S/SL)	1
Temp	230	230
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.80	0.80
Constant sept p	urge?	Y<

1. These settings could also be for a right inlet.

4. Use **LEFT DETECTOR** or **RIGHT DETECTOR** to display the appropriate NPD Detector Control Table.

LEFT DETECTOR	(NP)	D) ¹
Source cur,A		OFF
Base temp	300	300
Signal pA		(10.4)
Target curr. pA		(X.XX)
Auto adjust		No
Polarizer V		3.5
H2 delay time		Off
Н2	2.3	2.3
Air	60	60
Mkup N2	15	15

1. These settings could also be for a right detector.

5. Scroll to Polarizer V and set 3.5 V.

Source Ignition

- 6. Switch on the source operating as follows:
 - a. Open the detector gases H2, Air and Mkup and set the gas flow rates as follows:
 - H2 = 2.3 ml/min
 - Air = 60 ml/min
 - Mkup N2 = 15 ml/min)
 - b. Increase the Base Temp to 300°C and wait that the NPD cell reaches the correct set temperature.
 - c. Be sure that the backoff signal is between 0 and 0.5 pA.
 - d. Switch on the source with an initial current of 2.50 A. The backoff signal can slightly increase, but should remain within 0 and 1.5 pA.
 - e. Monitor the signal through the keypad or through the data system, increase the current value by steps of 0.002 A, until an immediate and strong increase of the signal is observed.
 - f. Wait five minutes to let the source stabilizes.
 - g. Check that source is correctly switched on decreasing hydrogen flow to 0.5 ml/min until signal decreases down to zero, then increase again to original value.
 - If the signal remains around zero, it means that the source is not switched on and it is necessary to increase further the current, accordingly to the procedure just described.
 - If the signal rises back to original value, it means that source is correctly switched on
 - h. Increase the current value of 2% of the actual ignition current. Let the signal stabilizes until its level drops below 20 pA.

7. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate NPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIGNAL	(NPD) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline comp	Off

1. These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the NPD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

- Refer to the Acceptance Values reported in the Table 12-3 according to the data handling in use.
 - 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
 - 12. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
 - 13. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 12.1*.

Verify the peak shape. If any peak distortion is visible, change the analytical test column.

Figure 12-1. NPD-Splitless Injection

- 14. Establish the integration parameters and the peak table identifying the test mix components.
- 15. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Azobenzene component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Azobenzene.
- Repeat the procedure to calculate the signal-to-noise ratio also for Parathion Methyl.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Parathion Methyl.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows:

Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

NOTE

TION Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

16. The following criteria indicate successful completion of NPD-S/SL checkout.

17. If these criteria are not met, repeat the test.

		CHROM-CARD	
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
nes	Noise (µV)	< 40	< 400
. Val	Wander (µV)	< 100	< 1 000
ance	Drift (µV/h)	< 300	<3 000
epta	Analytical Results		
Acc	Azobenzene Signal-to-Noise Ratio		> 800
	Parathion Methyl Signal-to-Noise Ratio		> 2 500
	Octadecane Signal-to-Noise Ratio		Negligible

Table 12-3. NPD-S/SL Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST		
ince Values	Baseline Parameters (1V Full Scale)			
	Noise (µV)	< 40		
	Wander (µV)	< 100		
	Drift (µV/h)	< 300		
epta	Analytical Results			
Acc	Azobenzene Signal-to-Noise Ratio	> 800		
	Parathion Methyl Signal-to-Noise Ratio	> 2 500		
	Octadecano Signal-to-Noise Ratio	Negligible		

	ATLAS Baseline Parameters (10V Full Scale)				
	Noise (μ V) < 400				
	Wander (µV)	< 1 000			
	Drift (µV/h)	< 3 000			
	Analytical Results				
	Azobenzene Signal-to-Noise Ratio> 800				
	Parathion Methyl Signal-to-Noise Ratio	> 2 500			
	Octadecano Signal-to-Noise Ratio	Negligible			

	XCA	ALIBUR	
Acceptance Values	Baseline Parameters (Acquisition Frequency = 10 Hz)		
	Noise (Counts)	< 4 000	
	Wander Counts)	< 10 000	
	Drift (Counts/h)	< 30 000	
	Analytical Results		
	Azobenzene Signal-to-Noise Ratio	> 800	
	Parathion Methyl Signal-to-Noise Ratio	> 2 500	
	Octadecano Signal-to-Noise Ratio	Negligible	

Checkout Using NPD with OC Injector

Chapter at a Glance...

SOP Number: P0297/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for On-Column Injection	171
Recommended Initial Operations	

Operating Procedures

NPD-OCI Checkout in On-Column Mode

SOP Number: P0297/08/E - 01 September 2009

Scope

Use the following procedure to verify proper NPD operation with the On-Column Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long;	260 800 01
	0.32 mm ID; 0.25 μm film thickness.	
Graphite Ferrule	Graphite Ferrule for 0.32 mm ID Column	290 134 87
Vespel Ferrule	Vespel Ferrule for 0.32 mm ID Column	290 134 60
Retaining Nut	M4 capillary column retaining nut	350 324 23
Syringe	10 μl size; 75 mm needle length	365 020 07
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	
Syringe	10 µl size; 80 mm needle length	365 020 19
Pre-column	2 m long; 0.53 mm ID	260 603 75
Press-fit set	Set of Press-fir connectors for TRACE OC	350 038 45

Table 13-1. NPD-OCI Parts Referenced

Analytical Conditions Required for On-Column Injection

Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Hydrogen = 2.3 ml/min	
	Air = 60 ml/min	
	Make-up: Nitrogen = 15 ml/min	
Oven Program	Initial Temperature = 85 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 230 °C	
	Final Time = 1 minute	
Injector	Secondary cooling = 0.2 minutes	
Detector	Base Temperature = 300 °C	
	Source Current = <i>Refer to Source Ignition</i>	
	Polarizer voltage = 3.5 V	
	Detector Signal Range = 10°	
Injected Volume	1 μl of Test Mixture	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Table 13-2. NPD-OCI Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

- 1. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- Install the test column. The column currently installed should be carefully removed and replaced with the required test column. In case of automatic On-column for TriPlus sampler, install the pre-column and connect it to the test column by press-fit connector.
- 3. Install and connect the TriPlus sampler and its components.
- 4. Perform Column Evaluation and Leak Test.
- Connect your data handling. Verify that your data handling is properly connected to your GC system.
- 6. Verify the opening/closing of the OC injector actuator by using the proper commands.
- 7. Verify the alignment of the syringe on the OC injector.

OPERATING PROCEDURE

NPD-OCI Checkout in On-Column Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	OCI
Left carrier or Right carrier	He (helium)
Left detector or Right detector	NPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVE	N	
Temp	85.0	85.0
Initial Time		1.00
Ramp 1		20.0
Final temp		230
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate On-Column Injector Control Table. Scroll to Sec.cool time and set the required secondary cooling time.

	LEFT	INLET	(OCI) ¹	
Pres	sure		30.0	30.0
Sec.	Cool	Time		0.2<

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate NPD Detector Control Table. Set the required temperature Base Temp and the detector gases H2, Air and Mkup required setpoints.

LEFT DETECTOR	(NPD) 1
Source cur,A		Off
Base temp	300	300
Signal pA	(]	10.4)
Target curr. pA		(X.XX)
Auto adjust		No
Polarizer V		3.5
H2 delay time		Off
Н2	2.3	2.3
Air	60	60
Mkup N2	15	15

1. These settings could also be for a right detector.

5. Scroll to Polarizer V and set 3.5 V.

Source Ignition

- 6. Switch on the source operating as follows:
 - a. Open the detector gases H2, Air and Mkup and set the gas flow rates as follows:

- H2 = 2.3 ml/min
- Air = 60 ml/min
- Mkup N2 = 15 ml/min
- b. Increase the Base Temp to 300°C and wait that the NPD cell reaches the correct set temperature.
- c. Be sure that the backoff signal is between 0 and 0.5 pA.
- d. Switch on the source with an initial current of 2.50 A. The backoff signal can slightly increase, but should remain within 0 and 1.5 pA.
- e. Monitor the signal through the keypad or through the data system, increase the current value by steps of 0.002 A, until an immediate and strong increase of the signal is observed.
- f. Wait five minutes to let the source stabilizes.
- g. Check that source is correctly switched on decreasing hydrogen flow to 0.5 ml/min until signal decreases down to zero, then increase again to original value.
 - If the signal remains around zero, it means that the source is not switched on and it is necessary to increase further the current, accordingly to the procedure just described.
 - If the signal rises back to original value, it means that source is correctly switched on
- h. Increase the current value of 2% of the actual ignition current. Let the signal stabilizes until its level drops below 20 pA.
- 7. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate NPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

NOTE

LEFT SI	GNAL	(NPD) ¹	
Output		(1	000)
Offset			100
Autozero?			Y/N
Range 10^(0	3)		0<
Analog filt	er		Off
Baseline co	mp		Off

1. These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the NPD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 13-3 according to the data handling in use.

- 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 12. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 13. Perform the analysis.

Manual injection

• Inject the test mixture and press **START** on the GC to begin the checkout run.

Automatic injection with TriPlus sampler

• Fill a vial with the standard mix and place that vial in the sample tray.

• Load the method for OC and perform the sampling.

The resulting chromatogram should look like the one shown in Figure 7.1.

Verify the peak shape. If any peak distortion is visible, change the analytical test column.

- 14. Establish the integration parameters and the peak table identifying the test mix components.
- 15. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Azobenzene component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Azobenzene.
- Repeat the procedure to calculate the signal-to-noise ratio also for Parathion Methyl.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Parathion Methyl.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows:

Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

NOTE

N Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

16. The following criteria indicate successful completion of NPD-OCI checkout. If these criteria are not met, repeat the test.

	CHROM-CARD		
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
lues	Noise (µV)	< 40	< 400
ș Val	Wander (µV)	< 100	< 1 000
ance	Drift (µV/h)	< 300	<3 000
epta	Analytical Results		
Acc	Azobenzene Signal-to-noise ratio		> 550
	Parathion Methyl Signal-to-noise ratio		> 1 500
	Octadecane Signal-to-noise ratio		Negligible

Table 13-3. NPD-OCI Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST	
	Baseline Parameters (1V Full Scale)		
lues	Noise (µV)	< 40	
e Val	Wander (µV)	< 100	
ance	Drift (µV/h)	< 300	
epta	Analytical Results		
Acc	Azobenzene Signal-to-noise ratio	> 550	
	Parathion Methyl Signal-to-noise ratio	> 1 500	
	Octadecane Signal-to-noise ratio	Negligible	

<u>/!</u>\

	ATLAS	
Baseline Parameters (10V Full Scale)		
	Noise (µV)	< 400
	Wander (µV)	< 1 000
	Drift (µV/h)	< 3 000
	Analytical Results	
	Azobenzene Signal-to-noise ratio	> 550
	Parathion Methyl Signal-to-noise ratio	> 1 500
	Octadecane Signal-to-noise ratio	Negligible

	XCA	LIBUR
10	Baseline Parameters (Acquisition Frequency = 10 Hz)	
Ines	Noise (Counts)	< 4 000
e Val	Wander Counts)	< 10 000
ance	Drift (Counts/h)	< 30 000
epta	Analytical Results	
Acc	Azobenzene	> 550
	Parathion Methyl	> 1 500
	Octadecane	Negligible

Checkout Using NPD with PKD Injector

Chapter at a Glance...

SOP Number: P0313/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Packed Injector	
Recommended Initial Operations	

Operating Procedures

NPD-PKD Checkout

SOP Number: P0313/08/E - 01 September 2009

Scope

Use the following procedure to verify proper NPD operation with Packed Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu\text{m}$ film thickness.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite ferrule for 0.53 mm ID Column	290 134 86
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Packed Injector	313 032 26
Syringe	10 µl size; 50 mm needle length	365 005 25

Table 14-1. NPD-PKD Parts Referenced

Part	Description	Part Number
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 14-1. NPD-PKD Parts Referenced (Continued)

Analytical Conditions Required for Packed Injector

Parameters Setting			
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure		
	Hydrogen = 2.3 ml/min		
	Air = 60 ml/min		
	Make-up Gas: Nitrogen = 15 ml/min		
Oven Program	IsoTemperature = $50 ^{\circ}C$		
	Initial Time = 1 minute		
	Ramp 1 = 20 °C/minute		
	Final Temperature = 200 °C		
	Final Time = 1 minute		
Injector	Operating Mode = Packed		
	Temperature = $200 ^{\circ}\text{C}$		
Detector	Base Temperature = 300 °C		
	Source Current = <i>Refer to Source Ignition</i>		
	Polarizer voltage = 3.5 V		
	Detector Signal Range = 10°		
Injected Volume	1 μl + needle of Test Mixture		
Analog Signal	Chrom-Card Acquisition Frequency = Medium		
Digital Signal	Chrom Card ChromQuest Atlas Vaslibur		
Output	Acquisition Frequency = 10 Hz		

Table 14-2. NPD-PKD Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Ultra Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7. Perform the manual leak check following the Operating Procedure "*Perforing a Leak Check*" in Chapter 14 of the TRACE GC Ultra Operating Manual.
- 8. Connect the other end of the test column to the detector base body.
- 9. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

NPD-PKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	NPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OV	EN	
Temp	50.0	50.0
Initial Time		1.00
Ramp 1		20.0
Final temp		200
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate PKD Injector Control Table. Set the required temperature setpoint Temp. Verify to operate in **Packed** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Packed.

	LEFT	INLET	(PKD)	1
Temp			200	200
Pres	sure		30.0	30.0
Mode	:			Packed

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate NPD Detector Control Table. Set the required temperature Base Temp and the detector gases H2, Air and Mkup required setpoints.

LEFT DETECTOR	(NPI	D) ¹
Source cur,A		Off
Base temp	300	300
Signal pA		(10.4)
Target curr. pA		(X.XX)
Auto adjust		No
Polarizer V		3.5
H2 delay time		Off
Н2	2.3	2.3
Air	60	60
Mkup N2	15	15

1. These settings could also be for a right detector.

5. Scroll to Polarizer V and set 3.5 V.

Source Ignition

- 6. Switch on the source operating as follows:
 - a. Open the detector gases H2, Air and Mkup and set the gas flow rates as follows:

- H2 = 2.3 ml/min
- Air = 60 ml/min
- Mkup N2 = 15 ml/min)
- b. Increase the ${\tt Base Temp}$ to 300°C and wait that the NPD cell reaches the correct set temperature.
- c. Be sure that the backoff signal is between 0 and 0.5 pA.
- d. Switch on the source with an initial current of 2.50 A. The backoff signal can slightly increase, but should remain within 0 and 1.5 pA.
- e. Monitor the signal through the keypad or through the data system, increase the current value by steps of 0.002 A, until an immediate and strong increase of the signal is observed.
- f. Wait five minutes to let the source stabilizes.
- g. Check that source is correctly switched on decreasing hydrogen flow to 0.5 ml/min until signal decreases down to zero, then increase again to original value.
 - If the signal remains around zero, it means that the source is not switched on and it is necessary to increase further the current, accordingly to the procedure just described.
 - If the signal rises back to original value, it means that source is correctly switched on
- h. Increase the current value of 2% of the actual ignition current. Let the signal stabilizes until its level drops below 20 pA.
- 7. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate NPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIC	GNAL (NPD) 1
Output		(1000)
Offset		100
Auto zero?		Y/N
Range 10^(0.	.3)	0<
Analog filte	r	Off
Baseline com	p	Off

1. These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the NPD Detector Signal Control Table scroll to Auto zero? and turn it YES.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 14-3 according to the data handling in use.

- 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 12. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 13. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 14.1*.

N Verify the peak shape. If any peak distortion is visible, change the analytical test column.

Figure 14-1. NPD-Packed Injection

- 14. Establish the integration parameters and the peak table identifying the test mix components.
- 15. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Azobenzene component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Azobenzene.
- Repeat the procedure to calculate the signal-to-noise ratio also for Parathion Methyl.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Parathion Methyl.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows:

Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

ON Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

16. The following criteria indicate successful completion of NPD-PKD checkout.

17. If these criteria are not met, repeat the test.

		CHROM-CARD	
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
ues	Noise (µV)	< 40	< 400
Val	Wander (µV)	< 100	< 1 000
ince	Drift (µV/h)	< 300	<3 000
epta	Analytical Results		
Acc	Azobenzene Signal-to-noise ratio		600
	Parathion Methyl Signal-to-noise ratio		1 700
	Octadecano Signal-to-noise ratio		Negligible

Table 14-3. NPD-PKD Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHROMQUEST			
nes	Baseline Parameters (1V Full Scale)			
	Noise (µV)	< 40		
Val	Wander (µV)	< 100		
ance	Drift (µV/h)	< 300		
epta	Analytical Results			
Acc	Azobenzene Signal-to-noise ratio	> 600		
	Parathion Methyl Signal-to-noise ratio	> 1700		
	Octadecane Signal-to-noise ratio	Negligible		

	ATLAS Baseline Parameters (10V Full Scale)				
	Noise (μ V) < 400				
	Wander (µV)	< 1 000 < 3 000			
	Drift (µV/h)				
	Analytical Results				
	Azobenzene Signal-to-noise ratio> 600				
	Parathion Methyl Signal-to-noise ratio> 1 700				
	Octadecane Signal-to-noise ratio	Negligible			

	XCA	LIBUR	
	Baseline Parameters (Acquisition Frequency = 10 Hz)		
nes	Noise (Counts)	< 4 000	
. Val	Wander Counts)	< 10 000	
ance	Drift (Counts/h)	< 30 000	
epta	Analytical Results		
Acc	Azobenzene Signal-to-noise ratio	> 600	
	Parathion Methyl Signal-to-noise ratio	> 1 700	
	Octadecane Signal-to-noise ratio	Negligible	

Checkout Using NPD with PPKD Injector

SOP Number: P0314/08/E - 01 September	
Scope	
Parts Referenced	
Recommended Initial Operations	
Operating Procedures	
NPD-PPKD Checkout	

SOP Number: P0314/08/E - 01 September

Scope

Use the following procedure to verify proper NPD operation with Purged Packed Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite ferrule for 0.53 mm ID Column	290 134 86
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Purged Packed Injector	313 032 26
Syringe	10 µl size; 50 mm needle length	365 005 25

Table 15-1. NPD-PPKD Parts Referenced

Part	Description	Part Number
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 15-1. NPD-PPKD Parts Referenced (Continued)

Analytical Conditions Required for Purged Packed Injector

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Hydrogen = 2.3 ml/min	
	Air = 60 ml/min	
	Make-up Gas: Nitrogen = 15 ml/min	
Oven Program	Initial Temperature = 50 °C	
	Initial Time = 1 minute	
	Ramp $1 = 20 \text{ °C/minute}$	
	Final Temperature = $200 ^{\circ}C$	
	Final Time = 1 minute	
Injector	Operating Mode = Wide bore	
	Temperature = $200 ^{\circ}C$	
Detector	Base Temperature = 300 °C	
	Source Current = <i>Refer to Source Ignition</i>	
	Polarizer voltage = 3.5 V	
	Detector Signal Range = 10 ⁰	
Injected Volume	1 μl + needle of Test Mixture	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Table 15-2. NPD-PPKD Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Ultra Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7. Perform the manual leak check following the Operating Procedure "*Perforing a Leak Check*" in Chapter 14 of the TRACE GC Ultra Operating Manual.
- 8. Connect the other end of the test column to the detector base body.
- 9. Perform Column Evaluation.
- 10. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

NPD-PPKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PPKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	NPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN				
Temp	50.0	50.0		
Initial Time		1.00		
Ramp 1		20.0		
Final temp		200		
Final time 1		1.00<		
Ramp 2		Off		

3. Use LEFT INLET or RIGHT INLET to display the appropriate PPKD Injector Control Table. Set the required temperature setpoint Temp. Verify to operate in Wide bore mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Widebore.

]	LEFT	INLE'	Г	(PPKD)	1
	Temp				200	200
	Press	sure			30.0	30.0
	Mode:				Wide	bore<
	Const	ant	sept	pι	irge?	У<
1	These	ttinga	and al	- L	a for a ri	alet in 1 at

- 1. These settings could also be for a right inlet.
- 4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate NPD Detector Control Table. Set the required temperature Base Temp and the detector gases H2, Air and Mkup required setpoints.

LEFT DETECTOR (NP	D) ¹
Source cur, A	Off
Base temp 300	300
Signal pA	(10.4)
Target curr. pA	(X.XX)
Auto adjust	No
Polarizer V	3.5
H2 delay time	Off
Н2 2.3	2.3
Air 60	60
Mkup N2 15	15

1. These settings could also be for a right detector.

5. Scroll to Polarizer V and set 3.5 V.

Source Ignition

- 6. Switch on the source operating as follows:
 - a. Open the detector gases H2, Air and Mkup and set the gas flow rates as follows:

- H2 = 2.3 ml/min
- Air = 60 ml/min
- Mkup N2 = 15 ml/min)
- b. Increase the Base Temp to 300°C and wait that the NPD cell reaches the correct set temperature.
- c. Be sure that the backoff signal is between 0 and 0.5 pA.
- d. Switch on the source with an initial current of 2.50 A. The backoff signal can slightly increase, but should remain within 0 and 1.5 pA.
- e. Monitor the signal through the keypad or through the data system, increase the current value by steps of 0.002 A, until an immediate and strong increase of the signal is observed.
- f. Wait five minutes to let the source stabilizes.
- g. Check that source is correctly switched on decreasing hydrogen flow to 0.5 ml/min until signal decreases down to zero, then increase again to original value.
 - If the signal remains around zero, it means that the source is not switched on and it is necessary to increase further the current, accordingly to the procedure just described.
 - If the signal rises back to original value, it means that source is correctly switched on
- h. Increase the current value of 2% of the actual ignition current. Let the signal stabilizes until its level drops below 20 pA.
- 7. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate NPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEFT	SIGNAL	(NPD) ¹	
Output		(1	.000)
Offset			100
Auto zero	?		Y/N
Range 10^	(03)		0<
Analog fi	lter		Off
Baseline o	comp		Off

1. These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the NPD Detector Signal Control Table scroll to Auto zero? and turn it YES.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 15-3 according to the data handling in use.

- 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 12. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 13. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 15.1*.

Verify the peak shape. If any peak distortion is visible, change the analytical test column.

Figure 15-1. NPD-PPKD Injection

- 14. Establish the integration parameters and the peak table identifying the test mix components.
- 15. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Azobenzene component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Azobenzene.
- Repeat the procedure to calculate the signal-to-noise ratio also for Parathion Methyl.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Parathion Methyl.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows: Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

ON Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous Baseline Acquisition and Analysis).

- 16. The following criteria indicate successful completion of NPD-PPKD checkout.
- 17. If these criteria are not met, repeat the test.

	CHROM-CARD		
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
nes	Noise (µV)	< 40	< 400
. Val	Wander (µV)	< 100	< 1 000
ance	Drift (µV/h)	< 300	<3 000
epta	Analytical Results		
Acc	Azobenzene Signal-to-noise ratio		600
	Parathion Methyl Signal-to-noise ratio		1 700
	Octadecane Signal-to-noise ratio		Negligible

Table 15-3. NPD-PPKD Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST
	Baseline Parameters (1V Full Scale)	
nes	Noise (µV)	< 40
Val	Wander (µV)	< 100
ance	Drift (µV/h)	< 300
epta	Analytical Results	
Acc	Azobenzene Signal-to-noise ratio	600
	Parathion Methyl Signal-to-noise ratio	1 700
	Octadecane Signal-to-noise ratio	Negligible

ATLAS		TLAS	
	Baseline Parameters (10V Full Scale)		
	Noise (µV)	< 400	
	Wander (µV)	< 1 000	
	Drift (µV/h)	< 3 000	
	Analytical Results		
	Azobenzene Signal-to-noise ratio	> 600	
	Parathion Methyl Signal-to-noise ratio	> 1 700	
	Octadecane Signal-to-noise ratio	Negligible	

	XCA	LIBUR
	Baseline Parameters (Acquisition Frequency = 10 Hz)	
nes	Noise (Counts)	< 4 000
: Val	Wander Counts)	< 10 000
ance	Drift (Counts/h)	< 30 000
epta	Analytical Results	
Acc	Azobenzene Signal-to-noise ratio	> 600
	Parathion Methyl Signal-to-noise ratio	> 1 700
	Octadecane Signal-to-noise ratio	Negligible

Checkout Using NPD with PTV Injector

Chapter at a Glance...

Operating Procedures	
Recommended Initial Operations	212
Analytical Conditions Required for PTV Splitless Injection	
Parts Referenced	210
Scope	210
SOP Number: P0315/08/E - 01 September 2009	210

NPD-PTV Checkout in PTV Splitless Mode	
--	--

SOP Number: P0315/08/E - 01 September 2009

Scope

Use the following procedure to verify proper NPD operation with the Programmable Temperature Vaporizing Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$.	
Liner	Silcosteel 2 mm ID (set of 2)	453 220 44
Liner Seal	Graphite seal for liner	290 034 17
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for PTV injector (set of 10)	313 132 25
Syringe	10 μl size; 50 mm needle length	365 005 25
Test Mixture Three components in Iso-Octane:		338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Gases	ases Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 16-1. NPD-PTV Parts Referenced

Analytical Conditions Required for PTV Splitless Injection

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Hydrogen = 2.3 ml/min	
	Air = 60 ml/min	
	Make-up Gas: Nitrogen = 30 ml/min	
Oven Program	Initial Temperature = 70 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = $230 \degree C$	
	Final Time = 1 minute	
Injector	Operating Mode = PTV Splitless	
	Splitless Time = 0.8 minutes	
	Split Flow = 50 ml/min	
	Constant Septum Purge = Yes	
	Inject Temp = $50 ^{\circ}\text{C}$	
	Inject Time = 0.1 minute	
	Transfer ramp = 10 °C/sec	
	Transfer Temperature = $260 ^{\circ}\text{C}$	
	Transfer time = 1 minutes	
Detector	Base Temperature = 300 °C	
	Source Current = <i>Refer to Source Ignition</i>	
	Polarizer voltage = 3.5 V	
	Detector Signal Range = 10°	
Injected Volume	1 μl of Test Mixture	

Table 16-2. NPD-PTV Analytical Conditions

Table 16-2. NPD-PTV Analytical Conditions	(Continued)
---	-------------

Parameters Setting	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the liner.

The liner currently installed in your injector should be carefully removed and replaced with the 2 mm ID Silcosteel glass liner, as required for the checkout, with the appropriate liner seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test.
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

NPD-PTV Checkout in PTV Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Right inlet	PTV
Right carrier	He (helium)
Right detector	NPD

1. Use **RIGHT CARRIER** to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press **MODE/TYPE** to access the selection menu, then select con pres. Scroll to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

RIGHT CARRIER ¹	
Pressure 30.0	30.0
Col.flow 3.00	
Lin. veloc.	(60.9)<

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN	1	
Temp	70.0	70.0
Initial Time		1.00
Ramp 1		20.0
Final temp		230
Final time 1		1.00<
Ramp 2		Off

3. Use **RIGHT INLET** to display the appropriate Programmable Temperature Vaporizing Injector Control Table. Set the required temperature setpoint

Temp. Verify to operate in **PTV splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select PTV splitless. Scroll to Splitless time to set the required setpoint.

RIGHT INLET	(PTV)	
Temp	70	70
Pressure	30.0	30.0
Mode: PT	V Spli	tless
Total flow	(53.0)
Split Flow	50.0	50.0
Splitless time	0.80	0.80
Constant sept pu	rge?	Y
Inject phase men	u:	Y<

4. Scroll to Inject phase menu. Press MODE/TYPE to enter the PTV Phase Menu.

PTV PHASE MENU	
Ramped pressure?	N
Inject temp	50
Inject time	0.1
Transfer ramp	10
Transfer temp	260
Transfer time	1.00<

- 5. Select Ramped pressure? NO. Set the required Inject temp and *Inject time* setpoints as required. Then, set the Transfer ramp, the Transfer temp and the Transfer time required setpoints.
- 6. Use **RIGHT DETECTOR** to display the appropriate NPD Detector Control Table. Set the required temperature Base Temp and the detector gases H2, Air and Mkup required setpoints.

RIGHT DETECTOR (NPD)		
Source cur, A		Off
Base temp	300	300
Signal pA		(10.4)
Target curr. pA		(X.XX)
Auto adjust		No
Polarizer V		3.5
H2 delay time		Off
Н2	2.3	2.3
Air	60	60
Mkup N2	15	15

7. Scroll to Polarizer V and set 3.5 V.

Source Ignition

- 8. Switch on the source operating as follows:
 - a. Open the detector gases H2, Air and Mkup and set the gas flow rates as follows:
 - H2 = 2.3 ml/min
 - Air = 60 ml/min
 - Mkup N2 = 15 ml/min)
 - b. Increase the Base Temp to 300°C and wait that the NPD cell reaches the correct set temperature.
 - c. Be sure that the backoff signal is between 0 and 0.5 pA.
 - d. Switch on the source with an initial current of 2.50 A. The backoff signal can slightly increase, but should remain within 0 and 1.5 pA.

- e. Monitor the signal through the keypad or through the data system, increase the current value by steps of 0.002 A, until an immediate and strong increase of the signal is observed.
- f. Wait five minutes to let the source stabilizes.
- g. Check that source is correctly switched on decreasing hydrogen flow to 0.5 ml/min until signal decreases down to zero, then increase again to original value.
 - If the signal remains around zero, it means that the source is not switched on and it is necessary to increase further the current, accordingly to the procedure just described.
 - If the signal rises back to original value, it means that source is correctly switched on
- h. Increase the current value of 2% of the actual ignition current. Let the signal stabilizes until its level drops below 20 pA.
- 9. Use **RIGHT SIGNAL** to display the appropriate NPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

RIGHT SIGNAL	(NPD)
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline comp	Off

- 10. Activate your Data System and set the parameters required for the checkout.
- 11. In the NPD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 12. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 16-3 according to the data handling in use.

- 13. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 14. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 15. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 16.1*.

Verify the peak shape. If any peak distortion is visible, change the analytical test column.

Figure 16-1. NPD-PTV Injection

- 16. Establish the integration parameters and the peak table identifying the test mix components.
- 17. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Azobenzene component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Azobenzene.
- Repeat the procedure to calculate the signal-to-noise ratio also for Parathion Methyl.
- Generate a report showing the chromatogram, peak area and signal-tonoise information for Parathion Methyl.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows: Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

- 18. The following criteria indicate successful completion of NPD-PTV checkout.
- 19. If these criteria are not met, repeat the test.

 Table 16-3.
 NPD-PTV Acceptance Criteria

	CHROM-CARD		
10	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
lues	Noise (µV)	< 40	< 400
e Va	Wander (μV)	< 100	< 1 000
Acceptance	Drift (µV/h)	< 300	<3 000
	Analytical Results		
	Azobenzene Signal-to-noise ratio		> 550
	Parathion Methyl Signal-to-noise ratio		> 1500
	Octadecane Signal-to-noise ratio		Negligible

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST	
lues	Baseline Parameters (1V Full Scale)		
	Noise (µV)	< 40	
e Va	Wander (µV)	< 100	
Ince	Drift (µV/h)	< 300	
epta	Analytical Results		
Acce	Azobenzene Signal-to-noise ratio	> 550	
	Parathion Methyl Signal-to-noise ratio	> 1500	
	Octadecane Signal-to-noise ratio	Negligible	
1			

	ATLAS			
	Baseline Parameters (10V Full Scale)			
	Noise (µV)	< 400		
	Wander (µV)	< 1 000		
	Drift (µV/h)	< 3 000		
	Analytical Results			
Azobenzene Signal-to-noise ratio > 550		> 550		
	Parathion Methyl Signal-to-noise ratio	> 1500		
	Octadecane Signal-to-noise ratio	Negligible		

lues	XCA	LIBUR
	Baseline Parameters (Acquisition Frequency = 10 Hz)	
	Noise (Counts)	< 4 000
e Va	Wander Counts)	< 10 000
ance	Drift (Counts/h)	< 30 000
epta	Analytical Results	
Acc	Azobenzene Signal-to-noise ratio	> 550
	Parathion Methyl Signal-to-noise ratio	> 1 500
	Octadecane Signal-to-noise ratio	Negligible

SECTION

SOPs Using FPD

The *SOPs Using Fast FPD* section, contains the procedures to test the TRACE GC Ultra with the fast Flame Photometric Detector (FPD) using different injectors.

Chapter 17, Checkout Using FPD with S/SL Injector.

Chapter 18, Checkout Using FPD with OC Injector.

Chapter 19, Checkout Using FPD with PKD Injector.

Chapter 20, Checkout Using FPD with PPKD Injector.

Chapter 21, Checkout Using FPD with PTV Injector.

Checkout Using FPD with S/SL Injector

Chapter at a Glance...

SOP Number: P0316/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Splitless Injection	
Recommended Initial Operations	

Operating Procedures

FPD-S/SL Checkout in Splitless Mode	
-------------------------------------	--

SOP Number: P0316/08/E - 01 September 2009

Scope

Use the following procedure to verify proper FPD operation with the Split/Splitless Injector. This SOP is applicable both for the control card labeled **FPD** and for the control card labeled **FPD/F**.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long; 0.32 mm ID; 0.25 µm film thickness.	260 800 01
Glass Liner	3 mm ID for splitless injection	453 200 32
Liner Seal	Graphite seal for glass liner	290 334 06
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for S/SL injector	313 032 11
Syringe	10 μl size; 70 mm needle length	365 001 03
Interferential Filter	526 nm for phosphorus 394 nm for sulphur	281 071 00 281 070 00
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 17-1. FPD-S/SL Parts Referenced

Analytical Conditions Required for Splitless Injection

Parameters Setting			
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure		
	Hydrogen = 90 ml/min		
	Air = 115 ml/min		
Oven Program	Initial Temperature = 70 °C		
	Initial Time = 1 minute		
	Ramp 1 = 20 °C/minute		
	Final Temperature = 230 °C		
	Final Time = 1 minute		
Injector	Operating Mode = Splitless		
	Temperature = $230 ^{\circ}\text{C}$		
	Splitless Time = 0.8 minutes		
	Split Flow = 60 ml/min		
	Constant Septum Purge = Yes		
Detector	Base Temperature = 300 °C		
	FPD Temperature = $150 ^{\circ}\text{C}$		
	High voltage mode = No		
	Detector Signal Range = 10^{0} (See Note)		
Injected Volume	$1 \mu l + needle of Test Mixture$		
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium		
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz		

Table 17-2. FPD-S/SI	_ Analytical	Conditions
----------------------	--------------	------------

In the case your GC is equipped with the previous non-fast FPD control card, labeled **FPD**, set Detector Signal Range to 10¹.

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the glass liner.

The glass liner currently installed in your injector should be carefully removed and replaced with the 3 mm ID glass liner for splitless application, as required for the checkout, with the appropriate graphite seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FPD-S/SL Checkout in Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	S/SL
Left carrier or Right carrier	He (helium)
Left detector or Right detector	FPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN			
Temp	70.0	70.0	
Initial Time		1.00	
Ramp 1		20.0	
Final temp		230	
Final time 1		1.00<	
Ramp 2		Off	

3. Use **LEFT INLET** or **RIGHT INLET** to display the appropriate Split/Splitless Injector Control Table and set the required temperature setpoint Temp.

Verify to operate in **Splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

LEFT INLET	(S/SL)	1
Temp	230	230
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.80	0.80
Constant sept p	urge?	У<

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate FPD Detector Control Table. Set the required temperatures Base Temp and FPD Temp. Then, set the detector gases H2 and Air required setpoints.

LEFT DETECTOR	(FPD)	1
Flame		Off
Base temp	300	300
FPD temp	150	150
Signal pA	(1.4)
High voltage mode	e?	Ν
Н2	90	90
Air	115	115
Mkup N2	00	00

1. These settings could also be for a right detector.

- 5. Verify that High voltage mode is set to NO.
- 6. Scroll to Flame and press **ON**. This start the ignition sequence. When ignition is confirmed, the photomultiplier tube is energized.

The baseline level Signal pA, will suddenly increase meaning that the flame is lit inside the detector. After a few seconds, the baseline should stabilize to the standing current of the system.

7. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate FPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIGNA	L (FPD) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03) 0<
Baseline comp	Off
mi 11.1	1 0 1 1

1. These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the FPD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 17-3 according to the data handling in use.

- 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 12. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 13. When the GC is ready, inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 17.1* or *17.2*.

Figure 17-1. FPD-Splitless Injection with 526 nm filter

Figure 17-2. FPD-Splitless Injection with 394 nm

- 14. Establish the integration parameters and the peak table identifying the test mix components.
- 15. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Parathion Methyl component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-to-noise information for the component.
- **NOTE** If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows: Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

FION Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

- 16. The following criteria indicate successful completion of FPD-S/SL checkout.
- 17. If these criteria are not met, repeat the test.

		C	HROM-CARD		
	Baseline	Analog (1V Full Scale)		Digital (10V Full Scale)	
nes	Parameters	394 nm (S) Filter	526 nm (P) Filter	394 nm (S) Filter	526 nm (P) Filter
; Val	Noise (µV)	< 50	< 50	< 500	< 500
ance	Wander (µV)	< 100	< 100	< 1 000	< 1 000
epta	Drift (µV/h)	< 100	< 100	< 1 000	< 1 000
Acc	Analytical Results				
	Parathion Methyl Signa	al to Noise Ratio		394 nm (S) Filter	526 nm (P) Filter
				>40	> 2 000

Table 17-3. FPD-S/SL Acceptance Criteria

	CHROMQUEST			
Baseline Parameters (1V Full Scale)				
ues			526 nm (P) Filter	
: Val	Noise (µV)	< 50	< 50	
ance	Wander (µV)	< 100	< 100	
epta	Drift (µV/h)	< 100	< 100	
Acc	Analytical Results			
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter	
		>40	> 2 000	
<u> </u>				

	ATLAS			
Baseline Parameters (10V Full Scale)				
526 nm (P) Filter				
Noise (µV)	< 500	< 500		
Wander (µV)	< 1 000	< 1 000		
Drift (µV/h)	< 1 000	< 1 000		
Anal	ytical Results			
Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter		
	> 40	> 2 000		

	X	CALIBUR		
	Baseline Parameters (Acquisition Frequency = 10 Hz)			
nes			526 nm (P) Filter	
Val	Noise (Counts)	< 5 000	< 5 000	
nce	Wander (Counts)	< 10 000	< 10 000	
epta	Drift (Counts/h)	< 10 000	< 10 000	
Acc	Analytical Results			
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter	
		> 40	> 2 000	

	Analytical Acceptance Comments
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .

Checkout Using FPD with OC Injector

Chapter at a Glance...

SOP Number: P0317/09/E - 01 September 2009	238
Scope	
Parts Referenced	
Analytical Conditions Required for On-Column Injection	
Recommended Initial Operations	

Operating Procedures

FPD-OCI Checkout in On-Column Mode	1
------------------------------------	---

SOP Number: P0317/09/E - 01 September 2009

Scope

Use the following procedure to verify proper FPD operation with the On-Column Injector. This SOP is applicable both for the control card labeled **FPD** and for the control card labeled **FPD**/F.

Parts Referenced

Part	Description	Part Number		
Test Column	Fused Silica Capillary Column TR-5; 7 m long; 0.32 mm ID; 0.25 µm film thickness.	260 800 01		
Graphite Ferrule	Graphite Ferrule for 0.32 mm ID Column	290 134 87		
Vespel Ferrule	Vespel Ferrule for 0.32 mm ID Column	290 134 60		
Retaining Nut	M4 capillary column retaining nut	350 324 23		
Syringe	10 μl size; 75 mm needle length	365 020 07		
Interferential Filter	526 nm for phosphorus 394 nm for sulphur	281 071 00 281 070 00		
Test Mixture	Three components in Iso-Octane:	338 190 06		
	Component Concentration			
	Azobenzene 1 µg/ml			
	Octadecane 1000 µg/ml			
	Parathion methyl 1 µg/ml			
Gases	Chromatographic-grade purity			
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,			
	Computing-integrator			
In ca	In case of automatic On-Column for TriPlus Sampler AS			
Syringe	10 μl size; 80 mm needle length	365 020 19		

Table 18-1. FPD-OCI Parts Referenced

Part	Description	Part Number
Pre-column	2 m long; 0.53 mm ID	260 603 75
Press-fit set	Set of Press-fir connectors for TRACE OC	350 038 45

Table 18-1. FPD-OCI Parts Referenced (Continued)

Analytical Conditions Required for On-Column Injection

Gases	Carrier Gas: Helium = 30 kPa Constant Pressure
	Hydrogen = 90 ml/min
	Air = 115 ml/min
Oven Program	Initial Temperature = 85 °C
	Initial Time = 1 minute
	Ramp 1 = 20 °C/minute
	Final Temperature = $230 ^{\circ}\text{C}$
	Final Time = 1 minute
Injector	Secondary cooling = 10 seconds
Detector	Base Temperature = 300 °C
	FPD Temperature = $150 ^{\circ}\text{C}$
	High voltage mode = No
	Detector Signal Range = 10° (see Note)
Injected Volume	1 μl of Test Mixture
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz

Table 18-2. FPD-OCI Analytical Conditions

In the case your GC is equipped with the previous non-fast FPD control card, labeled **FPD**, set Detector Signal Range to 10¹.

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

- 1. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- Install the test column. The column currently installed should be carefully removed and replaced with the required test column. In case of automatic On-column for TriPlus sampler, install the pre-column and connect it to the test column by press-fit connector.
- 3. Install and connect the TriPlus sampler and its components.
- 4. Perform Column Evaluation and Leak Test.
- Connect your data handling. Verify that your data handling is properly connected to your GC system.
- 6. Verify the opening/closing of the OC injector actuator by using the proper commands.
- 7. Verify the alignment of the syringe on the OC injector.

OPERATING PROCEDURE

FPD-OCI Checkout in On-Column Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	OCI
Left carrier or Right carrier	He (helium)
Left detector or Right detector	FPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVE	N	
Temp	85.0	85.0
Initial Time		1.00
Ramp 1		20.0
Final temp		230
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate On-Column Injector Control Table. Scroll to Sec. cool time and set the required secondary cooling time.

	LEFT	INLET	(OCI)	1
Pres	sure		30.0	30.0
Sec.	Cool	Time		10.00<
TT1		11 1 1	<u> </u>	1.1.1.1

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate FPD Detector Control Table. Set the required temperatures Base Temp and FPD Temp. Then, set the detector gases H2 and Air required setpoints.

LEFT DETECTOR	(FPD)	1
Flame		Off
Base temp	300	300
FPD temp	150	150
Signal pA	(1.4)
High voltage mod	e?	Ν
Н2	90	90
Air	115	115
Mkup N2	00	00

1. These settings could also be for a right detector.

- 5. Verify that High voltage mode is set to NO.
- 6. Scroll to Flame and press **ON**. This start the ignition sequence. When ignition is confirmed, the photomultiplier tube is energized. The baseline level Signal pA, will suddenly increase meaning that the flame is lit inside the detector. After a few seconds, the baseline should stabilize to the standing current of the system.
- 7. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate FPD Detector Signal Control Table. Scroll to *Range* and set the electrometer amplifier input range required.

LEFT SIG	NAL (FPD)) 1
Output		(1000)
Offset		100
Autozero?		Y/N
Range 10^(0	3)	0<
Baseline comp	ı	Off

1. These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the FPD Detector Signal Control Table scroll to Auto zero? and turn it YES.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 18-3 according to the data handling in use.

- 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 12. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 13. Perform the analysis.

Manual injection

• Inject the test mixture and press **START** on the GC to begin the checkout run.

Automatic injection with TriPlus sampler

- Fill a vial with the standard mix and place that vial in the sample tray.
- Load the method for OC and perform the sampling..

The resulting chromatogram should look like the one shown in *Figure 18.1* or *18.2*.

Figure 18-1. FPD-On-Column Injection with 526 nm filter

- 14. Establish the integration parameters and the peak table identifying the test mix components.
- 15. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Methylparathion component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-to-noise information for the component.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows: Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

NOTE

N Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

- 16. The following criteria indicate successful completion of FPD-OCI checkout.
- 17. If these criteria are not met, repeat the test.

	CHROM-CARD				
	Baseline	Analog (1V Full Scale)		Digital (10V Full Scale)	
nes	Parameters	394 nm (S) Filter	526 nm (P) Filter	394 nm (S) Filter	526 nm (P) Filter
; Val	Noise (µV)	< 50	< 50	< 500	< 500
ance	Wander (µV)	< 100	< 100	< 1 000	< 1 000
Accepta	Drift (µV/h)	< 100	< 100	< 1 000	< 1 000
	Analytical Results				
	Parathion Methyl Signa	al to Noise Ratio		394 nm (S) Filter	526 nm (P) Filter
				>20	> 1 000

Table 18-3. FPD-OCI Acceptance Criteria

	CH	IROMQUEST	
	Baseline Par	ameters (1V Full Scale)	
ues			526 nm (P) Filter
Val	Noise (µV)	< 50	< 50
nce	Wander (µV)	< 100	< 100
epta	Drift (µV/h)	< 100	< 100
Acc	Ana	lytical Results	
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter
		> 20	> 1 000
<u> </u>			

	ATLAS	
Baseline Parameters (10V Full Scale)		
		526 nm (P) Filter
Noise (µV)	< 500	< 500
Wander (µV)	< 1 000	< 1 000
Drift (µV/h)	< 1 000	< 1 000
Anal	ytical Results	
Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter
	> 20	> 1 000

)	KCALIBUR	
	Baseline Parameters (Acquisition Frequency = 10 Hz)		
nes			526 nm (P) Filter
Val	Noise (Counts)	< 5 000	< 5 000
nce	Wander (Counts)	< 10 000	< 10 000
epta	Drift (Counts/h)	< 10 000	< 10 000
Acc	Ana	lytical Results	
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter
		> 20	> 1 000

	Analytical Acceptance Comments
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .

Checkout Using FPD with PKD Injector

Chapter at a Glance...

SOP Number: P0318/08/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Packed Injector	
Recommended Initial Operations	

Operating Procedures

FPD-PKD Checkout

SOP Number: P0318/08/E - 01 September 2009

Scope

Use the following procedure to verify proper FPD operation with Packed Injector. This SOP is applicable both for the control card labeled **FPD** and for the control card labeled **FPD/F**.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m}$ film thickness.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite ferrule for 0.53 mm ID Column	290 134 86
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Packed Injector	313 032 26
Syringe	10 μl size; 50 mm needle length	365 005 25

Table 19-1. FPD-PKD Parts Referenced

Part	Description	Part Number
Interferential Filter	526 nm for phosphorus	281 071 00
	394 nm for sulphur	281 070 00
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 μ g/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 19-1. FPD-PKD Parts Referenced (Continued)

Analytical Conditions Required for Packed Injector

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Hydrogen = 90 ml/min	
	Air = 115 ml/min	
Oven Program	IsoTemperature = 70 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 230 °C	
	Final Time = 1 minute	
Injector	Operating Mode = Packed	
	Temperature = $200 ^{\circ}\text{C}$	
Detector	Base Temperature = 300 °C	
	FPD Temperature = $150 ^{\circ}\text{C}$	
	High voltage mode = No	
	Detector Signal Range = 10° (see Note)	
Injected Volume	1 μl + needle of Test Mixture	
Analog Signal	Chrom-Card Acquisition Frequency = Medium	
Digital Signal	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	
Output	Acquisition frequency = 10 112	

Table 19-2. FPD-PKD Analytical Conditions

In the case your GC is equipped with the previous non-fast FPD control card, labeled **FPD**, set Detector Signal Range to 10¹.
Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Ultra Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7. Perform the manual leak check following the Operating Procedure "*Perforing a Leak Check*" in Chapter 14 of the TRACE GC Ultra Operating Manual.
- 8. Connect the other end of the test column to the detector base body.
- 9. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FPD-PKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	FPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OV	EN	
Temp	70.0	70.0
Initial Time		1.00
Ramp 1		20.0
Final temp		230
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate PKD Injector Control Table. Set the required temperature setpoint Temp.Verify to operate in **Packed** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Packed.

	LEFT	INLET	(PKD)	1
Temp			200	200
Pres	sure		30.0	30.0
Mode	:		P	acked

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate FPD Detector Control Table. Set the required temperatures Base Temp and FPD Temp. Then, set the detector gases H2 and Air required setpoints.

LEFT DETECTOR	R (FPD)	1
Flame		Off
Base temp	300	300
FPD temp	150	150
Signal pA	(1.4)
High voltage mod	le?	N
Н2	90	90
Air	115	115
Mkup N2	00	00

1. These settings could also be for a right detector.

- 5. Verify that High voltage mode is set to NO.
- 6. Scroll to Flame and press **ON**. This start the ignition sequence. When ignition is confirmed, the photomultiplier tube is energized. The baseline level Signal pA, will suddenly increase meaning that the flame is lit inside the detector. After a few seconds, the baseline should stabilize to the standing current of the system.

7. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate FPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEFT	SIGNAL	(FPD) ¹
Output		(1000)
Offset		100
Auto zero	?	Y/N
Range 10^	(03)	0<
Baseline	comp	Off
		a

1. These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the FPD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 19-3 according to the data handling in use.

- 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 12. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 13. When the GC is ready, inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 19.1* or *19.2*.

Figure 19-1. FPD-PKD Injection with 526 nm filter

Figure 19-2. FPD-PKD Injection with 394 nm

- 14. Establish the integration parameters and the peak table identifying the test mix components.
- 15. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Methylparathion component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-to-noise information for the component.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows: Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

NOTE

TION Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

16. The following criteria indicate successful completion of FPD-PKD checkout.

17. If these criteria are not met, repeat the test.

	CHROM-CARD				
	Baseline	Analog (1V Full Scale)		Digital (10V Full Scale)	
nes	Parameters	394 nm (S) Filter	526 nm (P) Filter	394 nm (S) Filter	526 nm (P) Filter
; Val	Noise (µV)	< 50	< 50	< 500	< 500
ance	Wander (µV)	< 100	< 100	< 1 000	< 1 000
epta	Drift (µV/h)	< 100	< 100	< 1 000	< 1 000
Acc	Analytical Results				
	Parathion Methyl Signa	al to Noise Ratio		394 nm (S) Filter	526 nm (P) Filter
				> 30	> 1 500

Table 19-3. FPD-PKD Acceptance Criteria

	Сн	ROMQUEST	
	Baseline Parameters (1V Full Scale)		
ues			526 nm (P) Filter
Val	Noise (µV)	< 50	< 50
ince	Wander (µV)	< 100	< 100
epta	Drift (µV/h)	< 100	< 100
Acc	Analytical Results		
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter
		> 30	> 1 500
<u> </u>			

ATLAS					
Baseline Parameters (10V Full Scale)					
526 nm (P) Filter					
Noise (µV)	< 500	< 500			
Wander (µV)	< 1 000	< 1 000			
Drift (µV/h)	< 1 000	< 1 000			
Anal	ytical Results				
Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter			
	> 30	> 1 500			

	Х	CALIBUR	
	Baseline Parameters (Acquisition Frequency = 10 Hz)		
nes			526 nm (P) Filter
Val	Noise (Counts)	< 5 000	< 5 000
ance	Wander (Counts)	< 10 000	< 10 000
epta	Drift (Counts/h)	< 10 000	< 10 000
Acc	Analytical Results		
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter
		> 30	> 1 500

	Analytical Acceptance Comments
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .

Checkout Using FPD with PPKD Injector

Chapter at a Glance...

Oneverting Dreesedures	
Recommended Initial Operations	
Analytical Conditions Required for Purged Packed Injector	
Parts Referenced	
Scope	
SOP Number: P0319/08/E - 01 September 2009	

Operating Procedures

FPD-PPKD	Checkout	268
----------	----------	-----

SOP Number: P0319/08/E - 01 September 2009

Scope

Use the following procedure to verify proper FPD operation with Purged Packed Injector. This SOP is applicable both for the control card labeled **FPD** and for the control card labeled **FPD**/F.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m}$ film thickness.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite ferrule for 0.53 mm ID Column	290 134 86
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Purged Packed Injector	313 032 26
Syringe	10 μl size; 50 mm needle length	365 005 25

Table 20-1. FPD-PPKD Parts Referenced

Part	Description	Part Number
Interferential Filter	526 nm for phosphorus	281 071 00
	394 nm for sulphur	281 070 00
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 20-1. FPD-PPKD Parts Referenced (Continued)

Analytical Conditions Required for Purged Packed Injector

Parameters Setting				
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure			
	Hydrogen = 90 ml/min			
	Air = 115 ml/min			
Oven Program	Initial Temperature = 50 °C			
	Initial Time = 1 minute			
	Ramp 1 = 20 °C/minute			
	Final Temperature = 200 °C			
	Final Time = 1 minute			
Injector	Operating Mode = Wide bore			
	Temperature = $200 ^{\circ}\text{C}$			
Detector	Base Temperature = 300 °C			
	FPD Temperature = $150 ^{\circ}\text{C}$			
	High voltage mode $=$ No			
	Detector Signal Range = 10° (see Note)			
Injected Volume	$1 \mu l + needle of Test Mixture$			
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium			
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz			

Table 20-2. FPD-PPKD Analytical Conditions

In the case your GC is equipped with the previous non-fast FPD control card, labeled **FPD**, set Detector Signal Range to 10¹.

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Ultra Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7. Perform the manual leak check following the Operating Procedure "*Perforing a Leak Check*" in Chapter 14 of the TRACE GC Ultra Operating Manual.
- 8. Connect the other end of the test column to the detector base body.
- 9. Perform Column Evaluation.
- 10. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FPD-PPKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PPKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	FPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN				
Temp	70.0	70.0		
Initial Time		1.00		
Ramp 1		20.0		
Final temp		250		
Final time 1		1.00<		
Ramp 2		Off		

3. Use LEFT INLET or RIGHT INLET to display the appropriate PPKD Injector Control Table. Set the required temperature setpoint Temp. Verify to operate in Widebore mode. If not, scroll to Mode, press MODE/TYPE to access the selection menu, then select Widebore.

LEF	T INLE	T (PPKD)	1
Temp		200	200
Pressur	e	30.0	30.0
Mode:		Wide	bore<
Constan	t sept	purge?	У<
These settings	appld alar	ha far a righ	at inlat

These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate FPD Detector Control Table. Set the required temperatures Base Temp and FPD Temp. Then, set the detector gases H2 and Air required setpoints.

LEFT DETECTOR	R (FPD)	1
Flame		Off
Base temp	300	300
FPD temp	150	150
Signal pA	(1.4)
High voltage mod	le?	N
Н2	90	90
Air	115	115
Mkup N2	00	00

These settings could also be for a right detector.

- 5. Verify that High voltage mode is set to NO.
- 6. Scroll to Flame and press **ON**. This start the ignition sequence. When ignition is confirmed, the photomultiplier tube is energized. The baseline level Signal pA, will suddenly increase meaning that the flame is lit inside the detector. After a few seconds, the baseline should stabilize to the standing current of the system.

7. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate FPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIGNA	L (FPD) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Baseline comp	Off

These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the FPD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 20-3 according to the data handling in use.

- 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 12. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 13. When the GC is ready, inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 20.1* or *20.2*.

Figure 20-1. FPD-PPKD Injection with 526 nm filter

Figure 20-2. FPD-PPKD Injection with 394 nm

- 14. Establish the integration parameters and the peak table identifying the test mix components.
- 15. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Methylparathion component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-to-noise information for the component.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows: Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

NOTE

ON Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

- 16. The following criteria indicate successful completion of FPD-PPKD checkout.
- 17. If these criteria are not met, repeat the test.

	CHROM-CARD				
	Baseline	Analog (1V Full Scale)		Digital (10V Full Scale)	
nes	Parameters	394 nm (S) Filter	526 nm (P) Filter	394 nm (S) Filter	526 nm (P) Filter
: Val	Noise (µV)	< 50	< 50	< 500	< 500
ance	Wander (µV)	< 100	< 100	< 1 000	< 1 000
epta	Drift (µV/h)	< 100	< 100	< 1 000	< 1 000
Acc	Analytical Results				
	Parathion Methyl Signal to Noise Ratio		394 nm (S) Filter	526 nm (P) Filter	
				> 30	> 1 500

Table 20-3. FPD-PPKD Acceptance Criteria

	CHROMQUEST			
	Baseline Parameters (1V Full Scale)			
ues			526 nm (P) Filter	
Val	Noise (µV)	< 50	< 50	
nce	Wander (µV)	< 100	< 100	
epta	Drift (µV/h)	< 100	< 100	
Acc	Analytical Results			
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter	
		> 30	> 1 500	

ATLAS			
Baseline Parameters (10V Full Scale)			
		526 nm (P) Filter	
Noise (µV)	< 500	< 500	
Wander (µV)	< 1 000	< 1 000	
Drift (µV/h)	< 1 000	< 1 000	
Analytical Results			
Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter	
	> 30	> 1 500	

	X	CALIBUR	
	Baseline Parameters (Acquisition Frequency = 10 Hz)		
eptance Values			526 nm (P) Filter
	Noise (Counts)	< 5 000	< 5 000
	Wander (Counts)	< 10 000	< 10 000
	Drift (Counts/h)	< 10 000	< 10 000
Acc	Analytical Results		
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter
		> 30	> 1 500

Analytical Acceptance Comments		
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.	
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .	

Checkout Using FPD with PTV Injector

Chapter at a Glance...

Operating Procedures	
Recommended Initial Operations	
Analytical Conditions Required for PTV Splitless Injection	
Parts Referenced	
Scope	
SOP Number: P0320/08/E - 01 September 2009	

Operating Procedures

FPD-PTV Checkout in PTV	V Splitless Mode	
-------------------------	------------------	--

SOP Number: P0320/08/E - 01 September 2009

Scope

Use the following procedure to verify proper FPD operation with the Programmable Temperature Vaporizing Injector. This SOP is applicable both for the control card labeled **FPD** and for the control card labeled **FPD/F**.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$.	
Liner	Silcosteel 2 mm ID (set of 2)	453 220 44
Liner Seal	Graphite seal for liner	290 034 17
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for PTV injector (set of 10)	313 132 25
Syringe	10 μl size; 50 mm needle length	365 005 25
Interferential Filter	526 nm for phosphorus	281 071 00
	394 nm for sulphur	281 070 00
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 21-1. FPD-PTV Parts Referenced

Analytical Conditions Required for PTV Splitless Injection

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Hydrogen = 90 ml/min	
	Air = 115 ml/min	
Oven Program	Initial Temperature = 70 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 230 °C	
	Final Time = 1 minute	
Injector	Operating Mode = PTV splitless	
	Splitless Time = 0.8 minutes	
	Split Flow = 50 ml/min	
	Constant Septum Purge = Yes	
	Inject Temp = $50 ^{\circ}\text{C}$	
	Inject Time = 0.1 minute	
	Transfer ramp = 10 °C/sec	
	Transfer Temperature = $260 \ ^{\circ}C$	
	Transfer time = 1 minute	
Detector	Base Temperature = 300 °C	
FPD Temperature = $150 ^{\circ}\text{C}$		
	High voltage mode $=$ No	
	Detector Signal Range = 10° (see Note)	
Injected Volume	1 µl of Test Mixture	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Table 21-2. FPD-PTV Analytical Conditions

In the case your GC is equipped with the previous non-fast FPD control card, labeled **FPD**, set Detector Signal Range to 10¹.

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

- 1. Replace the liner. The liner currently installed in your injector should be carefully removed and replaced with the 2 mm ID Silcolsteel liner, as required for the checkout, with the appropriate liner seal.
- 2. Replace the septum A new septum should be installed properly in your injector.
- Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test.
- Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FPD-PTV Checkout in PTV Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Right inlet	PTV
Right carrier	He (helium)
Right detector	FPD

1. Use **RIGHT CARRIER** to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press **MODE/TYPE** to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

RIGHT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN			
70.0	70.0		
	1.00		
	20.0		
	230		
	1.00<		
	Off		
	70.0		

3. Use **RIGHT INLET** to display the appropriate Programmable Temperature Vaporizing Injector Control Table. Set the required temperature setpoint

Temp. Verify to operate in **PTV splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select PTV splitless. Scroll to Splitless time to set the required setpoint.

RIGHT INLET	(PTV)	
Temp	70	70
Pressure	30.0	30.0
Mode: PT	V Spli	tless
Total flow	(53.0)
Split Flow	50.0	50.0
Splitless time	0.80	0.80
Constant sept pu	rge?	Y
Inject phase men	u:	Y<

4. Scroll to Inject phase menu. Press MODE/TYPE to enter the PTV Phase Menu.

PTV PHASE MEN	U
Ramped pressure?	Ν
Inject temp	50
Inject time	0.1
Transfer ramp	10
Transfer temp	260
Transfer time	1.00<

- 5. Select Ramped pressure? NO. Set the required Inject temp and *Inject time* setpoints as required. Then, set the Transfer ramp, the Transfer temp and the Transfer time required setpoints.
- 6. Use **RIGHT DETECTOR** to display the appropriate FPD Detector Control Table. Set the required temperatures Base Temp and FPD Temp. Then, set the detector gases H2 and Air required setpoints.

RIGHT DETECTO	DR (FPI))
Flame		Off
Base temp	300	300
FPD temp	150	150
Signal pA	(1.4)
High voltage mod	le?	Ν
Н2	90	90
Air	115	115
Mkup N2	00	00

- 7. Verify that High voltage mode is set to NO.
- 8. Scroll to Flame and press **ON**. This start the ignition sequence. When ignition is confirmed, the photomultiplier tube is energized. The baseline level Signal pA, will suddenly increase meaning that the flame is lit inside the detector. After a few seconds, the baseline should stabilize to the standing current of the system.
- 9. Use **RIGHT SIGNAL** to display the appropriate FPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

RIGHT SIGNAL	(FPD)
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Baseline comp	Off

- 10. Activate your Data System and set the parameters required for the checkout.
- 11. In the FPD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.

12. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 21-3 according to the data handling in use.

- 13. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 14. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 15. When the GC is ready, inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 21.1* or *21.2*.

Figure 21-1. FPD-PTV Injection with 526 nm filter

Figure 21-2. FPD-PTV Injection with 394 nm filter

- 16. Establish the integration parameters and the peak table identifying the test mix components.
- 17. Set up the data system to calculate the signal-to-noise ratio.

Using Chrom-Card Data System

Operate as follows:

- Open the Method Editor and include the signal-to-noise Report into the Report Parameters Page.
- By clicking on the side icon, open the signal-to-noise calculation and set Methylparathion component as signal peak ID.
- Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).
- Generate a report showing the chromatogram, peak area and signal-to-noise information for the component.

If it is not possible to find a suitable part of baseline, to have a complete Chrom-Card final report proceed as follows: Start the acquisition on the data system. Let the system to acquire for about 1 minute and then inject the test mixture. The noise can be calculated during the first minute of acquisition. Since the retention time will shift by a delayed time, the Component Table has to be updated.

Using non-Chrom-Card Data System

Operate as follows:

• Set the parameters to calculate the signal-to-noise ratio according to the instruction reported in the relevant data system manual.

NOTE

ON Choose a part of baseline without peaks or interference signals and calculate the noise for 0.1 min. (Verify that the noise value is comparable with the one of the previous *Baseline Acquisition and Analysis*).

- 18. The following criteria indicate successful completion of FPD-PTV checkout.
- 19. If these criteria are not met, repeat the test.

	CHROM-CARD				
Acceptance Values	Baseline	Analog (1V Full Scale)		Digital (10V Full Scale)	
	Parameters	394 nm (S) Filter	526 nm (P) Filter	394 nm (S) Filter	526 nm (P) Filter
	Noise (µV)	< 50	< 50	< 500	< 500
	Wander (µV)	< 100	< 100	< 1 000	< 1 000
	Drift (µV/h)	< 100	< 100	< 1 000	< 1 000
	Analytical Results				
	Parathion Methyl Signal to Noise Ratio		394 nm (S) Filter	526 nm (P) Filter	
				> 20	> 1 000

Table 21-3. FPD-PTV Acceptance Criteria

	CHROMQUEST			
Acceptance Values	Baseline Parameters (1V Full Scale)			
			526 nm (P) Filter	
	Noise (µV)	< 50	< 50	
	Wander (µV)	< 100	< 100	
	Drift (µV/h)	< 100	< 100	
	Analytical Results			
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter	
		> 20	> 1 000	
	ATLAS			
--	-------------------	-------------------	--	
Baseline Parameters (10V Full Scale)				
		526 nm (P) Filter		
Noise (µV)	< 500	< 500		
Wander (µV)	< 1 000	< 1 000		
Drift (µV/h)	< 1 000	< 1 000		
Analytical Results				
Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter		
	> 20	> 1 000		

Values	X	CALIBUR	
	Baseline Parameters (Acquisition Frequency = 10 Hz))		
			526 nm (P) Filter
	Noise (Counts)	< 5 000	< 5 000
ince	Wander (Counts)	< 10 000	< 10 000
Accepta	Drift (Counts/h)	< 10 000	< 10 000
	Analytical Results		
	Parathion Methyl Signal to Noise Ratio	394 nm (S) Filter	526 nm (P) Filter
		> 20	> 1 000

Analytical Acceptance Comments		
1	Using Chrom-Card, set the signal-to-noise report parameters as described in the current procedure.	
2	Using ChromQuest, Atlas, Xcalibur or a Computing integrator (e.g. ChromJet), calculate the S/N ratio as <i>Peak Height (counts)/noise (counts)</i> .	

SECTION

SOPs Using PID

The *SOPs Using PID* section, contains the procedures to test the TRACE GC Ultra with the Photoionization Detector (PID) using different injectors.

Chapter 22, Checkout Using PID with S/SL Injector.

Chapter 23, Checkout Using PID with OC Injector.

Chapter 24, Checkout Using PID with PTV Injector.

Checkout Using PID with S/SL Injector

Chapter at a Glance...

SOP Number: P0321/09/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Splitless Injection	
Recommended Initial Operations	

Operating Procedures

PID-S/SL Checkout in Splitless Mode	98
-------------------------------------	----

SOP Number: P0321/09/E - 01 September 2009

Scope

Use the following procedure to verify proper PID operation with the Split/Splitless Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long;	260 800 01
	0.32 mm ID; $0.25 µm film thickness$.	
Glass Liner	3 mm ID for splitless injection	453 200 32
Liner Seal	Graphite seal for glass liner	290 334 06
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for S/SL injector	313 032 11
Syringe	10 μl size; 70 mm needle length	365 001 03
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion Methyl 1 µg/ml	
Detector UV Lamp	8.4 eV	305 030 13
	9.6 eV	305 030 14
	10.6 eV	305 030 15
	11.8 eV	305 030 16
Gases	Chromatographic-grade purity	

Table 22-1. PID-S/SL Parts Referenced

Part	Description	Part Number
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 22-1. PID-S/SL Parts Referenced (Continued)

Analytical Conditions Required for Splitless Injection

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Make-up: Nitrogen = 7 ml/min	
	Sheath Gas: Nitrogen = 40 ml/min	
Oven Program	Initial Temperature = 70 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 230 °C	
	Final Time = 1 minute	
Injector	Operating Mode = Splitless	
	Temperature = $230 ^{\circ}\text{C}$	
	Splitless Time = 0.8 minutes	
	Split Flow = 60 ml/min	
	Constant Septum Purge = Yes	
Detector	Base Temperature = 230 °C	
	High Current = No	
	Detector Signal Range = 10°	
Injected Volume	$1 \mu l + needle of Test Mixture$	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the glass liner.

The glass liner currently installed in your injector should be carefully removed and replaced with the 3 mm ID glass liner for splitless application, as required for the checkout, with the appropriate graphite seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

PID-S/SL Checkout in Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	S/SL
Left carrier or Right carrier	He (helium)
Left detector or Right detector	PID

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN				
Temp	70.0	70.0		
Initial Time		1.00		
Ramp 1		20.0		
Final temp		230		
Final time 1		1.00<		
Ramp 2		Off		

3. Use **LEFT INLET** or **RIGHT INLET** to display the appropriate Split/Splitless Injector Control Table and set the required temperature setpoint *Temp*. Verify to operate in **Splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

LEFT INLET	(S/SL)	1
Temp	230	230
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.80	0.80
Constant sept p	urge?	У<

1. These settings could also be for a right inlet.

4. Use **LEFT DETECTOR** or **RIGHT DETECTOR** to display the appropriate PID Detector Control Table. Set the required temperature *Base Temp* and the detector gases Mkup and Sheath Gas required setpoints.

LEFT DETECTOR	(PID)	1
Lamp		On
Base temp	230	230
High current		Ν
Signal pA	(15	5.4)
Mkup N2	7.0	7.0
Sheath Gas	40	40

1. These settings could also be for a right detector.

- 5. Verify that High current is set to NO.
- 6. Scroll to Lamp and press **ON**. This start the ignition sequence. The baseline level Signal pA, will suddenly increase meaning that the lamp is lit inside the detector. A short period of conditioning is required in order to obtain a stable baseline.

7. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate PID Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIGNAL	(PID) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline comp	Off

1. These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the PID Detector Signal Control Table scroll to Auto zero? and turn it YES.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 22-3 according to the data handling in use.

- 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 12. After the baseline the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 13. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatograms should look like the one shown in *Figures 22.1*, *22.2*, *22.3 or 22.4*.

Figure 22-1. PID-Splitless Injection with 8.4 eV UV Lamp

Figure 22-2. PID-Splitless Injection with 9.6 eV UV Lamp

Figure 22-3. PID-Splitless Injection with 10.6 eV UV Lamp

14. The following criteria indicate successful completion of PID-S/SL checkout.

15. If these criteria are not met, repeat the test.

				CHRC	OM-CARD				
	Baseline Parameters		Analog (1V Full Scale)			Digital (10V Full Scale)			
nes	Lamp (eV)	8.4	9.6	10.6	11.8	8.4	9.6	10.6	11.8
e Val	Noise (µV)	< 100	< 50	< 150	< 150	< 1 000	< 500	< 1 500	< 1 500
ance	Wander (μV)	< 150	< 100	< 100	< 100	< 1 500	< 1 000	< 1 000	< 1 000
cept	Drift (µV/h)	< 100	< 100	< 100	< 100	< 1 000	< 1 000	< 1 000	< 1 000
Act	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 µVs)			Digital (10V Full Scale) Area Counts (0.1 µVs)				
	Lamp (eV)	8.4	9.6	10.6	11.8	8.4	9.6	10.6	11.8
	Azobenzene	> 100*	> 160*	> 2 000*	> 40*	> 1 000*	>1 600*	> 20 000*	> 400*
!									

Table 22-3. PID-S/SL Acceptance Criteria

Computing-integrator (e.g. ChromJet)

		CHR	OMQUEST					
		Baseline Parameters (1V Full Scale)						
nes	Lamp (eV)	8.4	9.6	10.6	11.8			
Val	Noise (µV)	< 100	< 50	< 150	< 150			
nce	Wander (µV)	< 150	< 100	< 100	< 100			
epta	Drift (µV/h)	< 100	< 100	< 100	< 100			
Acc	Analytic	cal Results (1V Ful	ll Scale) - Area Col	unts (0.01 µVs)				
	Lamp (eV)	8.4	9.6	10.6	11.8			
	Azobenzene	> 1 000 000	> 1 600 000	> 20 000 000	> 400 000			

		ATLAS			
Baseline Parameters (10V Full Scale)					
Lamp (eV)	8.4	9.6	10.6	11.8	
Noise (µV)	< 1 000	< 500	< 1 500	< 1 500	
Wander (µV)	< 1 500	< 1 000	< 1 000	< 1 000	
Drift (µV/h)	< 1 000	< 1 000	< 1 000	< 1 000	
Anal	ytical Results (10)	/ Full Scale) - Area	Counts (µVs)		
Lamp (eV)	8.4	9.6	10.6	11.8	
Azobenzene	> 100 000	> 160 000	> 2 000 000	> 40 000	

		X	CALIBUR			
	Baseline Parameters (Acquisition Frequency = 10 Hz)					
nes	Lamp (eV)	8.4	9.6	10.6	11.8	
Val	Noise (Counts)	< 10 000	< 5 000	< 15 000	< 15 000	
Ince	Wander Counts)	< 15 000	< 10 000	< 10 000	< 10 000	
epta	Drift (Counts/h)	< 10 000	< 10 000	< 10 000	< 10 000	
Acc	Analytical Results Area Counts (Cts*s)					
	Lamp (eV)	8.4	9.6	10.6	11.8	
	Azobenzene	> 1 000 000	> 1 600 000	> 20 000 000	> 400 000	

Checkout Using PID with OC Injector

Chapter at a Glance...

Operating Presedures	
Recommended Initial Operations	
Analytical Conditions Required for On-Column Injection	
Parts Referenced	
Scope	
SOP Number: P0322/09/E - 01 September 2009	

Operating Procedures

PID-OCI Checkout in On-Column Mode	3]	1]	l
------------------------------------	----	---	---	---

SOP Number: P0322/09/E - 01 September 2009

Scope

Use the following procedure to verify proper PID operation with the On-Column Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long; 0.32 mm ID; 0.25 µm film thickness.	260 800 01
Graphite Ferrule	Graphite Ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Vespel Ferrule	Vespel Ferrule for 0.32 mm ID Column	290 134 60
Syringe	10 μl size; 75 mm needle length	365 020 07
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Detector UV Lamp	8.4 eV	305 030 13
	9.6 eV	305 030 14
	10.6 eV	305 030 15
	11.8 eV	305 030 16
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 23-1. PID-OCI Parts Referenced

Table 23-1. PID-OCI Parts Referenced (Continued)
--	------------

Part	Description	Part Number
ln ca		
Syringe	10 μl size; 80 mm needle length	365 020 19
Pre-column	2 m long; 0.53 mm ID	260 603 75
Press-fit set	Set of Press-fir connectors for TRACE OC	350 038 45

Analytical Conditions Required for On-Column Injection

Gases	Carrier Gas: Helium = 30 kPa Constant Pressure
	Make-up: Nitrogen = 7 ml/min
	Sheath Gas: Nitrogen = 40 ml/min
Oven Program	Initial Temperature = 85 °C
	Initial Time = 1 minute
	Ramp $1 = 20 \text{ °C/minute}$
	Final Temperature = 230 °C
	Final Time = 1 minute
Injector	Secondary cooling = 0.2 minutes
Detector	Base Temperature = $230 ^{\circ}\text{C}$
	High Current = No
	Detector Signal Range = 10°
Injected Volume	1 μl of Test Mixture
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz

Table 23-2. PID-OCI Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

- 1. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- Install the test column. The column currently installed should be carefully removed and replaced with the required test column. In case of automatic On-column for TriPlus sampler, install the pre-column and connect it to the test column by press-fit connector.
- 3. Install and connect the TriPlus sampler and its components.
- 4. Perform Column Evaluation and Leak Test.
- Connect your data handling. Verify that your data handling is properly connected to your GC system.
- 6. Verify the opening/closing of the OC injector actuator by using the proper commands.
- 7. Verify the alignment of the syringe on the OC injector.

OPERATING PROCEDURE

PID-OCI Checkout in On-Column Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	OCI
Left carrier or Right carrier	He (helium)
Left detector or Right detector	PID

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN	1	
Temp	85.0	85.0
Initial Time		1.00
Ramp 1		20.0
Final temp		230
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate On-Column Injector Control Table. Scroll to Sec. cool time and set the required secondary cooling time.

Pressure 30.0 30.0		LEFT	INLET	(OCI) ¹		
	Press	sure		30.0	30.0	
Sec. Cool Time 10.00<	Sec.	Cool	Time		10.00<	

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate PID Detector Control Table. Set the required temperatures Base Temp and the detector gases Mkup and Sheath Gas required setpoints.

LEFT DETECTOR	(PID)	1
Lamp		On
Base temp	230	230
High current		Ν
Signal pA	(1	5.4)
Mkup N2	7.0	7.0
Sheath Gas	40	40

1. These settings could also be for a right detector.

- 5. Verify that High current is set to NO.
- 6. Scroll to Lamp and press **ON**. This start the ignition sequence. The baseline level Signal pA, will suddenly increase meaning that the lamp is lit inside the detector. A short period of conditioning is required in order to obtain a stable baseline.
- 7. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate PID Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEF	Т	SIGNAL	(PID) ²	L
Output				(1000)
Offset				100
Autozer	03)		Y/N
Range 1	0 ^	(03)		0<
Analog	fi	lter		Off
Baselin	е	comp		Off

1. These settings could also be for a right signal.

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the PID Detector Signal Control Table scroll to Auto zero? and turn it YES.
- 10. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 23-3 according to the data handling in use.

- 11. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 12. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 13. Perform the analysis.

Manual injection

• Inject the test mixture and press **START** on the GC to begin the checkout run.

Automatic injection with TriPlus sampler

• Fill a vial with the standard mix and place that vial in the sample tray.

• Load the method for OC and perform the sampling.

The resulting chromatograms should look like the one shown in *Figures 23.1*, *23.2*, *23.3 or 23.4*.

Figure 23-1. PID-On-Column Injection with 8.4 eV UV Lamp

Figure 23-2. PID-On-Column Injection with 9.6 eV UV Lamp

Figure 23-3. PID-On-Column Injection with 10.6 eV UV Lamp

- 14. The following criteria indicate successful completion of PID-OCI checkout.
- 15. If these criteria are not met, repeat the test.

				CHRC	OM-CARD					
	Baseline Parameters		Analog (1V Full Scale)				Digital (10V Full Scale)			
ues	Lamp (eV)	8.4	9.6	10.6	11.8	8.4	9.6	10.6	11.8	
e Val	Noise (µV)	< 100	< 50	< 150	< 150	< 1 000	< 500	< 1 500	< 1 500	
ance	Wander (µV)	< 150	< 100	< 100	< 100	< 1 500	< 1 000	< 1 000	< 1 000	
cept	Drift (µV/h)	< 100	< 100	< 100	< 100	< 1 000	< 1 000	< 1 000	< 1 000	
Act	Analytical Results	Analog	Analog (1V Full Scale) Area Counts (0.1 µVs)				Digital (10V Full Scale) Area Counts (0.1 µVs)			
	Lamp (eV)	8.4	9.6	10.6	11.8	8.4	9.6	10.6	11.8	
	Azobenzene	> 60*	> 110*	> 1 300*	> 24*	> 600*	>1 100*	>13 000*	> 240*	

Table 23-3. PID-OCI Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHROMQUEST							
	Baseline Parameters (1V Full Scale)							
ues	Lamp (eV)	8.4	9.6	10.6	11.8			
Val	Noise (µV)	< 100	< 50	< 150	< 150			
nce	Wander (µV)	< 150	< 100	< 100	< 100			
epta	Drift (µV/h)	< 100	< 100	< 100	< 100			
Acc	Analytical Results (1V Full Scale) - Area Counts (0.01 µVs)							
	Lamp (eV)	8.4	9.6	10.6	11.8			
	Azobenzene	> 600 000	> 1 100 000	> 13 000 000	> 240 000			
_• _								

A

		ATLAS							
Baseline Parameters (10V Full Scale)									
Lamp (eV) 8.4 9.6 10.6 11.8									
Noise (µV)	< 1 000	< 500	< 1 500	< 1 500					
Wander (µV)	< 1 500	< 1 000	< 1 000	< 1 000					
Drift (µV/h)	< 1 000	< 1 000	< 1 000	< 1 000					
Anal	ytical Results (10)	/ Full Scale) - Area	Counts (µVs)						
Lamp (eV)	8.4	9.6	10.6	11.8					
Azobenzene	> 60 000	> 110 000	> 1 300 000	> 24 000					

		X	CALIBUR					
	Baseline Parameters (Acquisition Frequency = 10 Hz)							
nes	Lamp (eV)	8.4	9.6	10.6	11.8			
Val	Noise (Counts)	< 10 000	< 5 000	< 15 000	< 15 000			
ince	Wander Counts)	< 15 000	< 10 000	< 10 000	< 10 000			
epta	Drift (Counts/h)	< 10 000	< 10 000	< 10 000	< 10 000			
Acc	Analytical Results Area Counts (Cts*s)							
	Lamp (eV)	8.4	9.6	10.6	11.8			
	Azobenzene	> 600 000	> 1 100 000	> 13 000 000	> 240 000			

Checkout Using PID with PTV Injector

Chapter at a Glance...

One wating Dread was	
Recommended Initial Operations	
Analytical Conditions Required for PTV Splitless Injection	
Parts Referenced	
Scope	
SOP Number: P0325/08/E - 01 September 2009	

Operating Procedures

PID-PTV Checkout in PTV	/ Splitless Mode	
-------------------------	------------------	--

SOP Number: P0325/08/E - 01 September 2009

Scope

Use the following procedure to verify proper PID operation with the Programmable Temperature Vaporizing Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu\text{m}$ film thickness.	
Liner	Silcosteel 2 mm ID (set of 2)	453 220 44
Liner Seal	Graphite seal for liner	290 034 17
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Retaining Nut	M4 capillary column retaining nut	350 324 23
Septum	Standard septum for PTV injector (set of 10)	313 132 25
Syringe	10 μl size; 50 mm needle length	365 005 25
Test Mixture	Three components in Iso-Octane:	338 190 06
	Component Concentration	
	Azobenzene 1 µg/ml	
	Octadecane 1000 µg/ml	
	Parathion methyl 1 µg/ml	
Detector UV Lamp	8.4 eV	305 030 13
	9.6 eV	305 030 14
	10.6 eV	305 030 15
	11.8 eV	305 030 16
Gases	Chromatographic-grade purity	

Table 24-1. PID-PTV Parts Referenced

Part	Description	Part Number
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 24-1. PID-PTV Parts Referenced (Continued)

Analytical Conditions Required for PTV Splitless Injection

Gases	Carrier Gas: Helium = 30 kPa Constant Pressure
	Make-up: Nitrogen = 7 ml/min
	Sheath Gas: Nitrogen = 40 ml/min
Oven Program	Initial Temperature = 70 °C
	Initial Time = 1 minute
	Ramp 1 = 20 °C/minute
	Final Temperature = 230 °C
	Final Time = 1 minute
Injector	Operating Mode = PTV splitless
	Splitless Time = 0.8 minutes
	Split Flow = 50 ml/min
	Constant Septum Purge = Yes
	Inject Temp = $50 ^{\circ}\text{C}$
	Inject Time = 0.1 minute
	Transfer ramp = $10 \circ C/sec$
	Transfer Temperature = $260 ^{\circ}\text{C}$
	Transfer time = 1 minute
Detector	Base Temperature = 230 °C
	High Current = No
	Detector Signal Range = 10°
Injected Volume	1 µl of Test Mixture
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium
Digital Signal	Chrom-Card, ChromQuest, Atlas, Xcalibur
Output	Acquisition Frequency = 10 Hz

Table 24-2. PID-PTV Analytical Conditions
Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the liner.

The liner currently installed in your injector should be carefully removed and replaced with the 2 mm ID Silcosteel liner, as required for the checkout, with the appropriate liner seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test.
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

PID-PTV Checkout in PTV Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Right inlet	PTV
Right carrier	He (helium)
Right detector	PID

1. Use **RIGHT CARRIER** to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press **MODE/TYPE** to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

RIGHT	$CARRIER^1$	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN	1	
Temp	70.0	70.0
Initial Time		1.00
Ramp 1		20.0
Final temp		230
Final time 1		1.00<
Ramp 2		Off

3. Use **RIGHT INLET** to display the appropriate Programmable Temperature Vaporizing Injector Control Table. Set the required temperature setpoint

Temp. Verify to operate in **PTV splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select PTV splitless. Scroll to Splitless time to set the required setpoint.

RIGHT INLET	(PTV)	
Temp	70	70
Pressure	30.0	30.0
Mode: PT	V Spli	tless
Total flow	(53.0)
Split Flow	50.0	50.0
Splitless time	0.80	0.80
Constant sept pu	rge?	Y
Inject phase men	u:	Y<

4. Scroll to Inject phase menu. Press MODE/TYPE to enter the PTV Phase Menu.

PTV PHASE MENU	
Ramped pressure?	Ν
Inject temp	50
Inject time	0.1
Transfer ramp	10
Transfer temp	260
Transfer time	1.00<

- 5. Select Ramped pressure? NO. Set the required Inject temp and *Inject time* setpoints as required. Then, set the Transfer ramp, the Transfer temp and the Transfer time required setpoints.
- 6. Use **RIGHT DETECTOR** to display the appropriate PID Detector Control Table. Set the required temperature Base Temp and the detector gases Mkup and Sheath Gas required setpoints.

RIGHT DETECTO	DR (PII))
Lamp		On
Base temp	230	230
Lamp current		low
Signal pA	(1	5.4)
Mkup N2	7.0	7.0
Sheath Gas	40	40

- 7. Verify that High current is set to NO.
- 8. Scroll to Lamp and press **ON**. This start the ignition sequence. The baseline level Signal pA, will suddenly increase meaning that the lamp is lit inside the detector. A short period of conditioning is required in order to obtain a stable baseline.
- 9. Use **RIGHT SIGNAL** to display the appropriate PID Detector Signal Control Table. Scroll to *Range* and set the electrometer amplifier input range required.

RIGHT SIGNAL	(PID)
Output	(1000)
Offset	100
Autozero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Analog filter	Off

- 10. Activate your Data System and set the parameters required for the checkout.
- 11. In the PID Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 12. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 24-3 according to the data handling in use.

- 13. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 14. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 15. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatograms should look like the one shown in *Figure 24.1*, *24.2*, *24.3* or *24.4*.

Figure 24-1. PID-PTV Injection with 8.4 eV UV Lamp

Figure 24-2. PID-PTV Injection with 9.6 eV UV Lamp

Figure 24-3. PID-PTV Injection with 10.6 eV UV Lamp

- 16. The following criteria indicate successful completion of PID-PTV checkout.
- 17. If these criteria are not met, repeat the test.

				CHRC	OM-CARD				
nes	Baseline Parameters		Analog (1V Full Scale)			Digital (10V Full Scale)			
	Lamp (eV)	8.4	9.6	10.6	11.8	8.4	9.6	10.6	11.8
e Val	Noise (µV)	< 100	< 50	< 150	< 150	< 1 000	< 500	< 1 500	< 1 500
ance	Wander (µV)	< 150	< 100	< 100	< 100	< 1 500	< 1 000	< 1 000	< 1 000
cept	Drift (µV/h)	< 100	< 100	< 100	< 100	< 1 000	< 1 000	< 1 000	< 1 000
Act	Analytical Results	Analog	Analog (1V Full Scale) Area Counts (0.1 µVs)			Digital (10V Full Scale) Area Counts (0.1 μ Vs)			
	Lamp (eV)	8.4	9.6	10.6	11.8	8.4	9.6	10.6	11.8
	Azobenzene	> 60*	> 110*	> 1 300*	> 24*	> 600*	> 1 100*	>13 000*	> 240*

Table 24-3. PID-PTV Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHROMQUEST					
	Baseline Parameters (1V Full Scale)					
nes	Lamp (eV)	8.4	9.6	10.6	11.8	
Val	Noise (µV)	< 100	< 50	< 150	< 150	
ince	Wander (µV)	< 150	< 100	< 100	< 100	
epta	Drift (µV/h)	< 100	< 100	< 100	< 100	
Acc	Analytical Results (1V Full Scale) - Area Counts (0.01 µVs)					
	Lamp (eV)	8.4	9.6	10.6	11.8	
	Azobenzene	> 600 000	> 1 100 000	> 13 000 000	> 240 000	

A

ATLAS						
Baseline Parameters (10V Full Scale)						
Lamp (eV) 8.4 9.6 10.6 11.8						
Noise (µV)	< 1 000	< 500	< 1 500	< 1 500		
Wander (µV)	< 1 500	< 1 000	< 1 000	< 1 000		
Drift (µV/h)	< 1 000	< 1 000	< 1 000	< 1 000		
Anal	ytical Results (10)	/ Full Scale) - Area	Counts (µVs)			
Lamp (eV)	8.4	9.6	10.6	11.8		
Azobenzene	> 60 000	> 110 000	> 1 300 000	> 24 000		

		>	(CALIBUR			
	Baseline Parameters (Acquisition Frequency = 10 Hz)					
nes	Lamp (eV)	8.4	9.6	10.6	11.8	
, Val	Noise (Counts)	< 10 000	< 5 000	< 15 000	< 15 000	
ince	Wander Counts)	< 15 000	< 10 000	< 10 000	< 10 000	
epta	Drift (Counts/h)	< 10 000	< 10 000	< 10 000	< 10 000	
Acc	Analytical Results Area Counts (Cts*s)					
	Lamp (eV)	8.4	9.6	10.6	11.8	
	Azobenzene	> 600 000	> 1 100 000	> 13 000 000	> 240 000	

SOPs Using TCD

The *SOPs Using TCD* section, contains the procedures to test the TRACE GC Ultra with the Thermal Conductivity Detector (TCD) using different injectors.

Chapter 25, Checkout Using TCD with S/SL Injector.

Chapter 26, Checkout Using TCD with PKD Injector.

Chapter 27, Checkout Using TCD with PPKD Injector.

Checkout Using TCD with S/SL Injector

Chapter at a Glance...

SOP Number: P0326/11/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Splitless Injection	
Recommended Initial Operations	

Operating Procedures

TCD-S/SL Checkout in Splitless Mode	
-------------------------------------	--

SOP Number: P0326/11/E - 01 September 2009

Scope

Use the following procedure to verify proper TCD operation with the Split/Splitless Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long; 0.32 mm ID; 0.25 µm film thickness.	260 800 01
Glass Liner	3 mm ID for splitless injection	453 200 32
Liner Seal	Graphite seal for glass liner	290 334 06
Retaining Nut	M4 capillary column retaining nut	350 324 23
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for S/SL injector	313 032 11
Syringe	10 μl size; 70 mm needle length	365 001 03
Test Mixture	Three components in n-Hexane:	338 190 16
	Component Concentration	
	Dodecane 200 µg/ml	
	Tetradecane 200 µg/ml	
	Hexadecane 200 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 25-1. TCD-S/SL Parts Referenced

Analytical Conditions Required for Splitless Injection

Gases	Carrier Gas: Helium = 30 kPa Constant Pressure
	Make-up: Helium = 27.5 ml/min
	Reference Gas: Helium = 30 ml/min
Oven Program	Initial Temperature = 50 °C
	Initial Time = 1 minute
	Ramp 1 = 20 °C/minute
	Final Temperature = 190 °C
	Final Time = 1 minute
Injector	Operating Mode = Splitless
	Temperature = $200 ^{\circ}C$
	Splitless Time = 0.8 minutes
	Split Flow = 60 ml/min
	Constant Septum Purge = Yes
Detector	Block Temperature = 200 °C
	Transfer Temperature = 190 °C
	Constant Filament Temperature = No
	Filament Voltage = $10V$
	Filament Temperature limit = 350 °C (*)
	$Gain = x \ 10$
	Negative Polarity = No
Injected Volume	$1 \mu l + needle of Test Mixture$
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz

Table 25-2. TCD-S/SL	Analytical Conditi	ons
----------------------	--------------------	-----

^(*) In case of TCD with the polyimide coated filaments, set the filament temperature limit to 320 °C.

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the glass liner.

The glass liner currently installed in your injector should be carefully removed and replaced with the 3 mm ID glass liner for splitless application, as required for the checkout, with the appropriate graphite seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 5. Perform Column Evaluation and Leak Test
- 6. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

TCD-S/SL Checkout in Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	S/SL
Left carrier or Right carrier	He (helium)
Left detector or Right detector	TCD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN		
Temp	50.0	50.0
Initial Time		1.00
Ramp 1		20.0
Final temp		190
Final time 1		1.00<
Ramp 2		Off

3. Use **LEFT INLET** or **RIGHT INLET** to display the appropriate Split/Splitless Injector Control Table and set the required temperature setpoint *Temp*. Verify to operate in **Splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

LEFT INLET	(S/SL)	1
Temp	200	200
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.80	0.80
Constant sept p	urge?	У<

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate TCD Detector Control Table. Sequentially scroll to Block Temp, Transf Temp, Ref flow and mkup flow and set the required values.

LEFT DETECTOR	(TCD)	1
Filament power		Off
Fil status	(not	rdy)
Block temp	200	200
Transf temp	190	190
Const fil temp		Y/N
Fil volts (CV)		10
Fil temp limit 2		350
Ref flow	30.0	30.0
Mkup flow	27.5	27.5<

1. These settings could also be for a right detector.

- 2. In case of TCD with the polyimide coated filaments, the temperature limit is 320 °C
- 5. Scroll to Const fil temp and select it NO.
- 6. Scroll to Fil volts (CV) and set the filament voltage. Scroll to Fil temp limit and set the required limit temperature setpoint.

- 7. Scroll to Filament power and turn it **ON**. After a few seconds the ready is displayed on Fil status line.
- 8. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate TCD Detector Signal Control Table. Scroll to Gain and set the desired value.

```
LEFT SIGNAL (TCD)<sup>1</sup>
Output (1000)
Offset 100
Auto zero? Y/N
Gain (x1..x10) 10<
Neg polarity? N
Baseline comp Off
```

1. These settings could also be for a right signal.

- 9. Activate your Data System and set the parameters required for the checkout.
- 10. In the TCD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 11. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 25-3 according to the data handling in use.

- 12. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 13. After the baseline the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 14. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 25.1*.

Figure 25-1. TCD-Splitless Injection

- 15. The following criteria indicate successful completion of TCD-S/SL checkout.
- 16. If these criteria are not met, repeat the test.

	CHROM-CARD		
(0)	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
Ilues	Noise (µV)	< 30	< 300
e Va	Wander (µV)	< 140	< 1 400
tanc	Drift (µV/h)	< 200	< 2 000
Accept	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
	Components	> 33 000	> 330 000
		for each component	for each component

Table 25-3. TCD-S/SL Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHROMQUEST		
nes	Baseline Parameters (1V Full Scale)		
. Val	Noise (µV)	< 30	
ince	Wander (µV)	< 140	
epta	Drift (µV/h)	< 200	
Acc	Analytical Results (1V Full Scale) - Area Counts (0.01 μVs)		
	Components	> 330 000 for each component	

	ATLAS Baseline Parameters (10V Full Scale)				
	Noise (µV)	< 300			
	Wander (μ V)	< 1 400			
	Drift (µV/h)	< 2 000			
	Analytical Results (10V Full Scale) - Area Counts (µVs)				
	Components	> 33 000 for each component			

Values	XCALIBUR		
	Baseline Parameters (Acquisition Frequency = 10 Hz)		
	Noise (Counts)	< 3 000	
ance	Wander Counts)	< 14 000	
Accepta	Drift (Counts/h)	< 20 000	
	Analytical Results Area Counts (Cts*s)		
	Components	> 330 000 for each component	

Analytical Acceptance Comments

1 In case of TCD equipped with the polyimide coated filaments, the acceptance values of the Components Area will result to be 4 times lower than the values reported in Table 25-3.

Checkout Using TCD with PKD Injector

Chapter at a Glance...

SOP Number: P0328/11/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for Packed Injector	
Recommended Initial Operations	

Operating Procedures

TCD-PKD Checkout

SOP Number: P0328/11/E - 01 September 2009

Scope

Use the following procedure to verify proper TCD operation with Packed Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m}$ film thickness.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite Ferrule Graphite ferrule for 0.53 mm ID Column	
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Packed Injector	313 032 26
Syringe	10 µl size; 50 mm needle length	365 005 25

Table 26-1. TCD-PKD Parts Referenced

Part	Description		Part Number
Test Mixture	Three components in n-Hexane:		338 190 16
	Component	Concentration	
	Dodecane	200 µg/ml	
	Tetradecane	200 µg/ml	
	Hexadecane	200 µg/ml	
Gases	Chromatographic-grade purity		
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,		
	Computing-integrator		

Table 26-1. TCD-PKD Parts Referenced (Continued)

Analytical Conditions Required for Packed Injector

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Make-up: Helium = 27.5 ml/min	
	Reference Gas: Helium = 30 ml/min	
Oven Program	Iso Temperature = 50 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 190 °C	
	Final Time = 1 minute	
Injector	Operating Mode = Packed	
	Temperature = $180 ^{\circ}\text{C}$	
Detector	Block Temperature = 200 °C	
	Transfer Temperature = 190 °C	
	Constant Filament Temperature = No	
	Filament Voltage = 10V	
	Filament Temperature limit = 350 °C (*)	
	$Gain = x \ 10$	
	Negative Polarity = No	
Injected Volume	$1 \mu l + needle of Test Mixture$	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur	
Acquisition Frequency = 10 Hz		

Table 26-2. TCD-PKD Analytical Conditions

(*) In case of TCD with the polyimide coated filaments, set the filament temperature limit to 320 °C.

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Ultra Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7. Perform the manual leak check following the Operating Procedure "*Perforing a Leak Check*" in Chapter 14 of the TRACE GC Ultra Operating Manual.
- 8. Connect the other end of the test column to the detector base body.
- 9. Connect your data handling. Verify that your data handling is properly connected to your GC system

OPERATING PROCEDURE

TCD-PKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	TCD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OV	/EN	
Temp	50.0	50.0
Initial Time		1.00
Ramp 1		20.0
Final temp		190
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate PKD Injector Control Table. Set the required temperature setpoint Temp.Verify to operate in Packed mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Packed.

	LEFT	INLET	(PKD) ²	1
Temp			180	180
Pres	sure		30.0	30.0
Mode	:		Packed	

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate TCD Detector Control Table. Sequentially scroll to Block Temp, Transf Temp, Ref flow and mkup flow and set the required values.

LEFT DETECTOR	(TCD) ¹	L
Filament power		Off
Fil status	(not	rdy)
Block temp	200	200
Transf temp	190	190
Const fil temp		Y/N
Fil volts (CV)		10
Fil temp limit 2		350
Ref flow	30.0	30.0
Mkup flow	27.5	27.5<

1. These settings could also be for a right detector.

2. In case of TCD with the polyimide coated filaments, the temperature limit is 320 °C

- 5. Scroll to Const fil temp and select it NO.
- 6. Scroll to Fil volts (CV) and set the filament voltage. Scroll to Fil temp limit and set the required limit temperature setpoint.
- 7. Scroll to Filament power and turn it **ON**. After a few seconds the ready is displayed on Fil status line.

8. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate TCD Detector Signal Control Table. Scroll to Gain and set the desired value.

	LEFT SIGNAL	(TCD) ¹
	Output	(1000)
	Offset	100
	Auto zero?	Y/N
	Gain (x1x10)	10<
	Neg polarity?	Ν
	Baseline comp	Off
-		1 2 1 1 1

1. These settings could also be for a right signal.

- 9. Activate your Data System and set the parameters required for the checkout.
- 10. In the TCD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 11. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 26-3 according to the data handling in use.

- 12. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 13. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 14. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 26.1*

NOTE

Figure 26-1. TCD-Packed Injection

15. The following criteria indicate successful completion of TCD-PKD checkout.

16. If these criteria are not met, repeat the test.

	CHROM-CARD		
<i>(</i>)	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
Ines	Noise (µV)	< 30	< 300
e Va	Wander (µV)	< 140	< 1 400
tanc	Drift (µV/h)	< 200	< 2 000
Accept	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
	Components	> 30 000 for each component	> 300 000 for each component

Table 26-3. TCD-PKD Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST
nes	Baseline Parameters (1V Full Scale)	
Val	Noise (µV)	< 30
ince	Wander (µV)	< 140
epta	Drift (µV/h)	< 200
Acc	Analytical Results (1V Full Scale) - Area Counts (0.01 µVs)	
	Components	> 300 000 for each component

Ā	TLAS	
Baseline Parameters (10V Full Scale)		
Noise (µV)	< 300	
Wander (µV)	< 1 400	
Drift (µV/h)	< 2 000	
Analytical Results (10V F	ull Scale) - Area Counts (μVs)	
Components	> 30 000 for each component	

	XCA	ALIBUR
nes	Baseline Parameters (Acquisition Frequency = 10 Hz)	
. Val	Noise (Counts)	< 3 000
ance	Wander Counts)	< 14 000
epta	Drift (Counts/h)	< 20 000
Acc	Analytical Results Area Counts (Cts*s)	
	Components	> 300 000 for each component

Analytical Acceptance Comments	
1	In case of TCD equipped with the polyimide coated filaments, the acceptance values of the Components Area will result to be 4 times lower than the values reported in Table 26-3.

Checkout Using TCD with PPKD Injector

Chapter at a Glance...

Anarating Procedures	
Recommended Initial Operations	
Analytical Conditions Required for Purged Packed Injector	
Parts Referenced	
Scope	
SOP Number: P0329/11/E - 01 September 2009	

Operating Procedures

TCD-PPKD Checkout	366
-------------------	-----

SOP Number: P0329/11/E - 01 September 2009

Scope

Use the following procedure to verify proper TCD operation with Purged Packed Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu\text{m}$ film thickness.	
Glass Liner	2 mm ID tapered	453 220 50
Liner Seal	Graphite seal for glass liner	290 334 05
Pre-column	Fused Silica Capillary Column 0.5 mt long	260 603 75
	0.53 mm ID	
Retaining Nut	M4 capillary column retaining nut	350 324 23
Press-fit connections	For columns 0.53/0.32 mm ID	350 438 16
Injection side adapter	For Wide bore column	347 003 03
Retaining Nut	For Injection side adapter	350 024 04
Detector side adapter	For Wide bore column	347 103 04
Ferrule	6 mm ID double brass ferrule	290 341 37
Nut	1/4" G-6 mm ID nut	350 201 18
Graphite Ferrule	Graphite ferrule for 0.53 mm ID Column	290 134 86
	Graphite ferrule for 0.32 mm ID Column	290 134 87
Septum	Standard septum for Purged Packed Injector	313 032 26
Syringe	10 μl size; 50 mm needle length	365 005 25

Table 27-1. TCD-PPKD Parts Referenced

Part		Part Number		
Test Mixture	Three components in n-Hexane:		338 190 16	
	Component	Concentration		
	Dodecane	200 µg/ml		
	Tetradecane	200 µg/ml		
	Hexadecane	200 µg/ml		
Gases	Chromatograph	Chromatographic-grade purity		
Data Acquisition	Chrom-Card, Cl			
	Computing-inte	grator		

Table 27-1. TCD-PPKD Parts Referenced (Continued)

Analytical Conditions Required for Purged Packed Injector

Parameters Setting			
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure		
	Make-up: Helium = 27.5 ml/min		
	Reference Gas: Helium = 30 ml/min		
Oven Program	Initial Temperature = 50 °C		
	Initial Time = 1 minute		
	Ramp 1 = 20 °C/minute		
	Final Temperature =190 °C		
	Final Time = 1 minute		
Injector	Operating Mode = Wide bore		
	Septum Purge = Yes		
	Temperature = 180 °C		
Detector	Block Temperature = 200 °C		
	Transfer Temperature = 190 °C		
	Constant Filament Temperature = No		
	Filament Voltage = 10V		
	Filament Temperature limit = 350 °C (*)		
	$Gain = x \ 10$		
	Negative Polarity = No		
Injected Volume	$1 \mu l + needle of Test Mixture$		
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium		
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz		

Table 27-2. TCD-PPKD Analytical Conditions

(*) In case of TCD with the polyimide coated filaments, set the filament temperature limit to 320 °C.

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Insert the glass liner.

Remove the column and insert the 2 mm ID tapered glass liner, as required for the checkout, from the bottom of the injector with the appropriate liner seal. Fix the liner by using the appropriate adapter for capillary column. Refer to the TRACE GC Ultra Maintenance and Troubleshooting Manual.

- 2. Mount the adapter for capillary column on the detector base body.
- 3. Replace the septum A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the precolumn. Connect the precolumn to the injector.
- 6. Install the test column Connect the test column to the precolumn by using the press fit connections provided.
- 7.
- 8. Connect the other end of the test column to the detector base body.
- 9. Perform Column Evaluation.
- Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

TCD-PPKD Checkout

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	PPKD
Left carrier or Right carrier	He (helium)
Left detector or Right detector	TCD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OV	EN	
Temp	50.0	50.0
Initial Time		1.00
Ramp 1		20.0
Final temp		200
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate PPKD Injector Control Table. Set the required temperature setpoint Temp. Verify to operate in

Wide	bore	mode.	If not,	scroll	to Mode,	press	MODE/	TYPE to	access	the
selecti	on mer	nu, ther	n select	Wide	bore.					

	LEFT	INLE	T (PPKD)	1
Temp			180	180
Pres	sure		30.0	30.0
Mode	:		Wide	bore<
Cons	tant	sept	purge?	У<

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate TCD Detector Control Table. Sequentially scroll to Block Temp, Transf Temp, Ref flow and mkup flow and set the required values.

	LEFT DETECTOR	(TCD)	1
	Filament power		Off
	Fil status	(not	rdy)
	Block temp	200	200
	Transf temp	190	190
	Const fil temp		Y/N
	Fil volts (CV)		10
	Fil temp limit 1		350
	Ref flow	30.0	30.0
	Mkup flow	27.5	27.5<
_			

1. These settings could also be

2. In case of TCD with the polyimide coated filaments, the temperature limit is 320 °C

- 5. Scroll to Const fil temp and select it NO.
- 6. Scroll to Fil volts (CV) and set the filament voltage. Scroll to Fil temp limit and set the required limit temperature setpoint.
- 7. Scroll to Filament power and turn it **ON**. After a few seconds the ready is displayed on Fil status line.

8. Use LEFT SIGNAL or RIGHT SIGNAL to display the appropriate TCD Detector Signal Control Table. Scroll to Gain and set the desired value.

	LEFT SIGNAL	(TCD) ¹
	Output	(1000)
	Offset	100
	Auto zero?	Y/N
	Gain (x1x10)	10<
	Neg polarity?	Ν
	Baseline comp	Off
-		1 2 1 1 1

1. These settings could also be for a right signal.

- 9. Activate your Data System and set the parameters required for the checkout.
- 10. In the TCD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 11. Perform a blank analysis injecting pure iso-octane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 27-3 according to the data handling in use.

- 12. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 13. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 14. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 27.1*

NOTE

Figure 27-1. TCD-PPKD Injection

- 15. The following criteria indicate successful completion of TCD-PPKD checkout.
- 16. If these criteria are not met, repeat the test.

	CHROM-CARD			
lues	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)	
	Noise (µV)	< 30	< 300	
e Va	Wander (µV)	< 140	< 1 400	
tanc	Drift (µV/h)	< 200	< 2 000	
Accept	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)	
	Components	> 30 000 for each component	> 300 000 for each component	

Table 27-3. TCD-PPKD Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST	
eptance Values	Baseline Parameters (1V Full Scale)		
	Noise (µV)	< 30	
	Wander (µV)	< 140	
	Drift (µV/h)	< 200	
Acc	Analytical Results (1V Full Scale) - Area Counts (0.01 µVs)		
	Components	> 300 000 for each component	

ATLAS				
Baseline Parameters (10V Full Scale)				
Noise (µV)	< 300			
Wander (µV)	< 1 400			
Drift (µV/h)	< 2 000			
Analytical Results (10V Full Scale) - Area Counts (µVs)				
Components	> 30 000 for each component			

	XCALIBUR		
ues	Baseline Parameters (Acquisition Frequency = 10 Hz)		
. Val	Noise (Counts)	< 3 000	
ance	Wander Counts)	< 14 000	
epta	Drift (Counts/h)	< 20 000	
Acc	Analytical Results Area Counts (Cts*s)		
	Components	> 300 000 for each component	

	Analytical Acceptance Comments
1	In case of TCD equipped with the polyimide coated filaments, the acceptance values of the Components Area will
	result to be 4 times lower than the values reported in Table 27-3.

SECTION

SOPs Using PDD

The *SOPs Using PDD* section, contains the procedures to test the TRACE GC Ultra with the Pulsed Discharge Detector (PDD) using different injectors.

Chapter 28, Checkout Using PDD with S/SL Injector.

Chapter 29, Checkout Using PDD with OC Injector.

Checkout Using PDD with S/SL Injector

Chapter at a Glance...

On a wating a Dra a adurra a	
Recommended Initial Operations	
Analytical Conditions Required for Splitless Injection	
Parts Referenced	
Scope	
SOP Number: P0381/05/E - 01 September 2009	

Operating Procedures

PDD-S/SL Checkout in Splitless Mode	9
-------------------------------------	---

SOP Number: P0381/05/E - 01 September 2009

Scope

Use the following procedure to verify proper PDD operation with the Split/Splitless Injector.

Parts Referenced

Part	Description	Part Number	
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01	
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$.		
Glass Liner	3 mm ID for splitless injection	453 200 32	
Liner Seal	Graphite seal for glass liner	290 334 06	
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87	
Retaining Nut	M4 capillary column retaining nut	350 324 23	
Septum	Standard septum for S/SL injector	313 032 11	
Syringe	10 μl size; 70 mm needle length	365 001 03	
Test Mixture	Three components in n-Hexane:	338 190 32	
	Component Concentration		
	Dodecane 1 µg/ml		
	Tetradecane 1 µg/ml		
	Hexadecane 1 µg/ml		
Gases	Helium Chromatographic high grade purity (99.999%)		
Helium Purifier	Helium Purifier (VALCO)432 100 76		
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,		
	Computing-integrator		

Table 28-1. PDD-S/SL Parts Referenced

Analytical Conditions Required for Splitless Injection

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Discharge Gas: Helium = 30 ml/min (fixed value)	
Oven Program	Initial Temperature = 60 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 160 °C	
Final Time = 1 minute		
Injector	Operating Mode = Splitless	
	Temperature = 250 °C	
	Splitless Time = 0.5 minutes	
	Split Flow = 60 ml/min	
	Constant Septum Purge = Yes	
Detector	Base Temperature = 280 °C	
	Detector Signal Range = 10°	
Injected Volume	$1 \mu l + needle of Test Mixture$	
Analog Signal Output Chrom-Card Acquisition Frequency = Medium		
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Table 28-2. PDD-S/SL Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

1. Replace the glass liner.

The glass liner currently installed in your injector should be carefully removed and replaced with the 3 mm ID glass liner for splitless application, as required for the checkout, with the appropriate liner seal.

- 2. Replace the septum A new septum should be installed properly in your injector.
- 3. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 4. Verify that the helium purifier has been properly installed and purged.
- Install the test column. The column currently installed should be carefully removed and replaced with the required test column.
- 6. Perform Column Evaluation and Leak Test.
- 7. Connect your data handling. Verify that your data handling is properly connected to your GC system.

CAUTION When leak check has been successfully carried out, power the helium purifier On. Before starting checkout, wait about 2.5 hours to reach the complete activation of the helium purifier.

OPERATING PROCEDURE

PDD-S/SL Checkout in Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	S/SL
Left carrier or Right carrier	He (helium)
Left detector or Right detector	PDD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN			
Temp	60.0	60.0	
Initial Time		1.00	
Ramp 1		20.0	
Final temp		160	
Final time 1		1.00<	
Ramp 2		Off	

3. Use **LEFT INLET** or **RIGHT INLET** to display the appropriate Split/Splitless Injector Control Table. Set the required temperature *Temp* setpoint. Verify to operate in **Splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

etpoliti.		
LEFT INLET	(S/SL)	1
Temp	250	250
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.50	0.50
Constant sept p	urge?	У<

1. These settings could also be for a right inlet.

4. Use **LEFT DETECTOR** or **RIGHT DETECTOR** to display the appropriate PDD Detector Control Table. Set the required temperature Base Temp then turn the Pulse generator **ON**.

LEFT DETECTOR	(PDD) [:]	L
Pulse generator		On
Base temp 2	50	250
Signal pA	(190	0.0)

1. These settings could also be for a right detector.

5. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate PDD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIGNAL	(PDD) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline Comp	Off
m1	0 1 1

1. These settings could also be for a right signal.

- 6. Activate your Data System and set the parameters required for the checkout.
- 7. In the PDD Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.
- 8. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 28-3 according to the data handling in use.

- 9. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 10. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 11. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 28.1*.

Figure 28-1. PDD-Splitless Injection

- 12. The following criteria indicate successful completion of PDD-S/SL checkout.
- 13. If these criteria are not met, repeat the test.

		CHROM-CARD	
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
s	Noise (µV)	< 50	< 500
alue	Wander (µV)	< 500	< 5 000
Se V	Drift (µV/h)	< 500	< 5 000
ceptanc	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
Aco	Components	> 2 000 000 for each component	> 20 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	1 <u>+</u> 0.1

Table 28-3. PDD-S/SL Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHROMQUEST		
ş	Baseline Parameters (1V Full Scale)		
alue	Noise (µV)	< 50	
ce V	Wander (µV)	< 500	
otan	Drift (µV/h)	< 500	
ccep	Analytical Results (1V Full Scale) - Area Counts (0.01 µVs)		
Ā	Components	> 20 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 ± 0.1	

Â

ATLAS		
Baseline Parameters (10V Full Scale)		
Noise (µV)	< 500	
Wander (µV)	< 5 000	
Drift (µV/h)	< 5 000	
Analytical Results (10V Full Scale) - Area Counts (µVs)		
Components	> 2 000 000 for each component	
Area Count Ratio Calculated as C12/C16	1 ± 0.1	

	XCA	LIBUR
Ş	Baseline Parameters (Acquisition Frequency = 10 Hz)	
alue	Noise (Counts)	< 5 000
ce V	Wander Counts)	< 50 000
otan	Drift (Counts/h)	< 50 000
ccep	Analytical Results Area Counts (Cts*s)	
Ā	Components	> 20 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1

Checkout Using PDD with OC Injector

Chapter at a Glance...

SOP Number: P0382/06/E - 01 September 2009	
Scope	
Parts Referenced	
Analytical Conditions Required for On-Column Injection	
Recommended Initial Operations	

Operating Procedures

PDD-OCI Checkout in	On-Column Mode	
---------------------	----------------	--

SOP Number: P0382/06/E - 01 September 2009

Scope

Use the following procedure to verify proper PDD operation with the Cold On-Column Injector.

Parts Referenced

Part	Description	Part Number	
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01	
	0.32 mm ID; 0.25 μm film.thickness.		
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87	
Retaining Nut	M4 capillary column retaining nut	350 324 23	
Vespel Ferrule	Vespel Ferrule for 0.32 mm ID Column	290 134 60	
Syringe	10 μl size; 75 mm needle length	365 020 07	
Test Mixture	Three components in n-Hexane:	338 190 32	
	Component Concentration		
	Dodecane 1 µg/ml		
	Tetradecane 1 µg/ml		
	Hexadecane 1 µg/ml		
Gases	Helium Chromatographic high grade purity (99.999%)		
Helium Purifier	Helium Purifier (VALCO)432 100 76		
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,		
	Computing-integrator		
Syringe	10 μl size; 80 mm needle length365 020		
Pre-column	2 m long; 0.53 mm ID 260 603 75		
Press-fit set	Set of Press-fir connectors for TRACE OC350 038 45		

Table 29-1. PDD-OCI Parts Referenced

Analytical Conditions Required for On-Column Injection

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Discharge Gas: Helium = 30 ml/min (fixed value)	
Oven Program	Initial Temperature = 70 °C	
	Initial Time = 1 minute	
	Ramp 1 = 20 °C/minute	
	Final Temperature = 160 °C	
	Final Time = 1 minute	
Injector	Secondary Cooling = 0.2 minutes	
Detector	Base Temperature = 280 °C	
	Detector Signal Range = 10°	
Injected Volume	1 μl of Test Mixture	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Table 29-2. PDD-OCI Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

- Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- Install the test column. The column currently installed should be carefully removed and replaced with the required test column. In case of automatic On-column for TriPlus sampler, install the pre-column and connect it to the test column by press-fit connector.
- 3. Install and connect the TriPlus sampler and its components.
- 4. Perform Column Evaluation and Leak Test.
- Connect your data handling. Verify that your data handling is properly connected to your GC system.
- 6. Verify the opening/closing of the OC injector actuator by using the proper commands.
- 7. Verify the alignment of the syringe on the OC injector.

CAUTION When leak check has been successfully carried out, power the helium purifier On. Before starting checkout, wait about 2.5 hours to reach the complete activation of the helium purifier.

OPERATING PROCEDURE

PDD-OCI Checkout in On-Column Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	OCI
Left carrier or Right carrier	He (helium)
Left detector or Right detector	PDD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature *Temp* and the Oven Program required.

OVEN	I	
Temp	70.0	70.0
Initial Time		1.00
Ramp 1		20.0
Final temp		160
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate Cold On-Column Injector Control Table. Scroll to Sec. cool time and set the required secondary cooling time.

	LEFT	INLET	(OCI) ¹	-
Pres	sure		30.0	30.0
Sec.	Cool	Time		0.2<

1. These settings could also be for a right inlet.

4. Use **LEFT DETECTOR** or **RIGHT DETECTOR** to display the appropriate PDD Detector Control Table. Set the required temperature Base Temp then turn the Pulse generator **ON**.

LEFT DETECTOR	(PDD)	1
Pulse generator		On
Base temp	250	250
Signal pA	(19	00.0)

1. These settings could also be for a right detector.

5. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate PDD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIGNAL	(PDD) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline comp	Off

1. These settings could also be for a right signal.

6. Activate your Data System and set the parameters required for the checkout.

- 7. In the PDD Detector Signal Control Table scroll to Auto zero? and turn it **YES**.
- 8. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 29-3 according to the data handling in use.

- 9. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 10. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 11. Perform the analysis.

Manual injection

• Inject the test mixture and press **START** on the GC to begin the checkout run.

Automatic injection with TriPlus sampler

- Fill a vial with the standard mix and place that vial in the sample tray.
- Load the method for OC and perform the sampling.

The resulting chromatogram should look like the one shown in Figure 29.1.

Figure 29-1. PDD-On-Column Injection

- 12. The following criteria indicate successful completion of PDD-OCI checkout.
- 13. If these criteria are not met, repeat the test.

	CHROM-CARD		
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
S	Noise (µV)	< 50	< 500
alue	Wander (µV)	< 500	< 5 000
Se (Drift (µV/h)	< 500	< 5 000
eptanc	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
Aco	Components	> 1 000 000 for each component	> 10 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	1 <u>+</u> 0.1

Table 29-3. PDD-OCI Acceptance Criteria

Computing-integrator (e.g. ChromJet)

	CHRO	MQUEST	
្តុ	Baseline Parameters (1V Full Scale)		
'alue	Noise (µV)	< 50	
ce V	Wander (µV)	< 500	
otan	Drift (μ V/h)	< 500	
leoo	Analytical Results (1V Full Scale) - Area Counts (0.01 μVs)		
A	Components	> 10 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	

Â

ATLAS			
Baseline Parameters (10V Full Scale)			
Noise (µV)	< 500		
Wander (µV)	< 5 000		
Drift (µV/h)	< 5 000		
Analytical Results (10V Full Scale) - Area Counts (µVs)			
Components	> 1 000 000 for each component		
Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1		

	XCA	LIBUR	
alues	Baseline Parameters (Acquisition Frequency = 10 Hz)		
	Noise (Counts)	< 5 000	
ce V	Wander Counts)	< 50 000	
otan	Drift (Counts/h)	< 50 000	
ccep	Analytical Results Area Counts (Cts*s)		
A	Components	> 10 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	

SECTION

SOPs Using FID-NPD-FPD in Stacked Configuration

The SOPs Using FID-NPD-FPD in Stacked Configuration section, contains the procedures to test the TRACE GC Ultra with the Flame Ionization Detector (FID), Nitrogen-Phosphorus Detector (NPD) or Flame Photometric Detector (FPD) in series (stacked configuration) with the Electron Capture Detector ECD using different injectors.

Chapter 30, Checkout Using Tandem FID.

Chapter 31, Checkout Using Tandem NPD.

Chapter 32, Checkout Using Tandem FPD.

Checkout Using Tandem FID

Chapter at a Glance...

SOP Number: P0383/05/E - 01 September 2009	
Scope	
Checkout Overview	
Important Considerations	
r	

Operating Procedures

Example of FID	Tandem (Checkout				.401
----------------	----------	----------	--	--	--	------

SOP Number: P0383/05/E - 01 September 2009

Scope

Use the following procedure to verify proper Flame Ionization Detector (FID) installed in series (stacked configuration, see Figure 30-1) with the non-destructive Electron Capture Detector ECD using different injectors.

Figure 30-1. FID Tandem

Checkout Overview

The checkout must be carried out for each single ECD and FID detector, according to the injector used, referring to the relevant SOPs as reported in the following table.

Detector	Refer To:	
ECD	Checkout Using ECD with S/SL Injector on page 95.	
	Checkout Using ECD with OC Injector on page 107.	
	Checkout Using ECD with PKD Injector on page 119.	
	Checkout Using ECD with PPKD Injector on page 131.	
	Checkout Using ECD with PTV Injector on page 143.	
FID	Checkout Using FID with S/SL Injector on page 37.	
	Checkout Using FID with OC Injector on page 47.	
	Checkout Using FID with PKD Injector on page 57.	
	Checkout Using FID with PPKD Injector on page 69.	
	Checkout Using FID with PTV Injector on page 81.	

Table 30-1. FID-ECD SOPs Reference

WARNING! To perform ECD checkout, refer to the relevant operating procedures reporting in Section III of this manual.

Before starting FID checkout procedures, it is strongly recommended to read the paragraph *Important Considerations* on page 400.

Important Considerations

This paragraph details the differences for FID checkout respect to the standard one reported in Section II of this manual.

FID Gas Required

In FID Tandem (stacked) configuration the FID only requires air and hydrogen as fuel gas to supply the flame. The make-up gas is supplied by ECD.

Column Installation

When performing the checkout of the FID in stacked configuration it is not necessary any adjustment of the test column insertion depth. The test column remains connected to the ECD with the column insertion depth defined for this detector (109 mm measured from the bottom of the ferrule).

FID Detector and Signal Menus

When in stacked configuration, the FID is configured as **Auxiliary Detector**, then **AUX DETECTOR** and **AUX SIGNAL** instead of **LEFT/RIGHT DETECTOR** and **LEFT/RIGHT SIGNAL** must be pressed to access the relevant detector and signal menus.

The *Example of FID Tandem Checkout* operating procedure, on page 401, details the different procedure points respect to the standard FID checkout procedures reported in Section II of this manual.

OPERATING PROCEDURE

Example of FID Tandem Checkout

This procedure reports the different sequence points respect to the standard operating procedures reported in Section II. In the example, the S/SL injector is considered.

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	According to injector in use
Left carrier or Right carrier	He (helium)
Aux detector	FID

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

```
LEFT CARRIER<sup>1</sup>
Pressure 30.0 30.0
Col.flow 3.00
Lin. veloc. (60.9)<
```

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN		
Temp Initial Time Ramp 1 Final temp Final time 1 Ramp 2	50.0	50.0 1.00 20.0 200 1.00< 0ff

3. Use LEFT INLET or RIGHT INLET to display the appropriate Split/Splitless Injector Control Table. Set the required temperature *Temp* setpoint. Verify to operate in Splitless mode. If not, scroll to Mode, press MODE/TYPE to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

LEFT INLET	(S/SL)	1
Temp	230	230
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.80	0.80
Constant sept p	urge?	Y<

1. These settings could also be for a right inlet.

4. Use **AUX DETECTOR** to display the appropriate FID Detector Control Table. Set the required temperature **Base Temp** and the detector gases **H2** and **Air** required setpoints.

AUX DETECTOR	(FID)	
Flame		Off
Base temp	250	250
Signal pA		(5.5)
Ign.thresh		2.0
Flameout retry		Off
Н2	35	35
Air	350	350<

5. Since the make-up gas is supplied by ECD detector, set the value into the ECD detector Control Table.

1. These settings could also be for a right detector.

- 6. Ignite the FID flame scrolling to Flame and pressing **ON**.
- 7. Use **AUX SIGNAL** to display the appropriate FID Detector Signal Control Table. Observe the FID flame signal at the display. This is the flame-on background offset. Scroll to Range and set the electrometer amplifier input range required.

AUX SIGNAL	(FID)
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline Comp	Off

- 8. Activate your Data System and set the parameters required for the checkout.
- 9. In the Aux Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.
- 10. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Continue with Baseline Acquisition and Analysis.

31

Checkout Using Tandem NPD

Chapter at a Glance...

SOF Nullibel. F0364/00/E - 01 Septembel 2009	
Scope	
Checkout Overview	
Important Considerations	

Operating Procedures

Example of NPE	O Tandem Checkout	
----------------	-------------------	--

SOP Number: P0384/06/E - 01 September 2009

Scope

Use the following procedure to verify proper Nitrogen Phosphorus Detector (NPD) installed in series (stacked configuration, see Figure 31-1) with the non-destructive Electron Capture Detector ECD using different injectors.

Figure 31-1. NPD Tandem

Checkout Overview

The checkout must be carried out for each single ECD and NPD detector, according to the injector used, referring to the relevant SOPs as reported in the following table.

Detector	Refer To:	
ECD	Checkout Using ECD with S/SL Injector on page 95.	
	Checkout Using ECD with OC Injector on page 107.	
	Checkout Using ECD with PKD Injector on page 119.	
	Checkout Using ECD with PPKD Injector on page 131.	
	Checkout Using ECD with PTV Injector on page 143.	
NPD	Checkout Using NPD with S/SL Injector on page 157.	
	Checkout Using NPD with OC Injector on page 169.	
	Checkout Using NPD with PKD Injector on page 181.	
	Checkout Using NPD with PPKD Injector on page 195.	
	Checkout Using NPD with PTV Injector on page 209.	

Table 31-1. NPD-ECD SOPs Reference

WARNING! To perform ECD checkout, refer to the relevant operating procedures reporting in Section III of this manual.

Before starting NPD checkout procedures, it is strongly recommended to read the paragraph *Important Considerations* on page 408.

Important Considerations

This paragraph details the differences for NPD checkout respect to the standard one reported in Section IV of this manual.

NPD Gas Required

In NPD Tandem (stacked) configuration the NPD only requires air and hydrogen as fuel gas to supply the flame.

The make-up gas is supplied by ECD.

Column Installation

When performing the checkout of the NPD in stacked configuration it is not necessary any adjustment of the test column insertion depth. The test column remains connected to the ECD with the column insertion depth defined for this detector (109 mm measured from the bottom of the ferrule). For that reason, it is strongly recommended the use of the silcosteeled jet instead of the standard one.

NPD Detector and Signal Menus

When in stacked configuration, the NPD is configured as **Auxiliary Detector**, then AUX DETECTOR and AUX SIGNAL instead of LEFT/RIGHT DETECTOR and **LEFT/RIGHT SIGNAL** must be pressed to access the relevant detector and signal menus.

The Example of NPD Tandem Checkout operating procedure, on page 409, details the different procedure points respect to the standard NPD checkout procedures reported in Section IV of this manual.

OPERATING PROCEDURE

Example of NPD Tandem Checkout

This procedure reports the different sequence points respect to the standard operating procedures reported in Section IV. In the example, the S/SL injector is considered.

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	According to injector in use
Left carrier or Right carrier	He (helium)
Aux detector	NPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

```
LEFT CARRIER<sup>1</sup>
Pressure 30.0 30.0
Col.flow 3.00
Lin. veloc. (60.9) <
```

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

_			
	OVEN		
	Temp Initial Time Ramp 1 Final temp Final time 1 Ramp 2	70.0	70.0 1.00 20.0 230 1.00< Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate Split/Splitless Injector Control Table. Set the required temperature *Temp* setpoint. Verify to operate in Splitless mode. If not, scroll to Mode, press MODE/TYPE to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

LEFT INLET	(S/SL)	1
Temp	230	230
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.80	0.80
Constant sept p	urge?	Y<

1. These settings could also be for a right inlet.

 Use AUX DETECTOR to display the appropriate NPD Detector Control Table. Set the required temperature Base Temp and the detector gases H2 and Air required setpoints.

AUX DETECTOR	(NPE))
Source cur,A	200	Off 200
Signal pA	300	(10.4)
Target curr. pA		(X.XX)
Auto adjust		No
Polarizer V		3.5
H2 delay time		Off
H2	2.3	2.3
Air	60	60

5. Since the make-up gas is supplied by ECD detector, set the value into the ECD detector Control Table.

1. These settings could also be for a right detector.

- 6. Scroll to Polarizer V and set the required setpoint (3.5 V).
- 7. Scroll to Source cur, A and turn on the source as described in the relevant *Checkout Using NPD* procedure.
- 8. Use AUX Signal to display the appropriate NPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

AUX SIGNAL	(NPD)
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline Comp	Off

- 9. Activate your Data System and set the parameters required for the checkout.
- 10. In the Aux Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.
- 11. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Continue with Baseline Acquisition and Analysis.

Checkout Using Tandem FPD

Chapter at a Glance...

SOP Number: P0385/06/E - 01 September 2009	
Scope	
Checkout Overview	
Important Considerations	

Operating Procedures

Example of FPD	Tandem	Checkout	417
Example of FPD	Tandem	Checkout	417

SOP Number: P0385/06/E - 01 September 2009

Scope

Use the following procedure to verify proper Flame Photometric Detector (FPD) installed in series (stacked configuration, see Figure 32-1) with the non-destructive Electron Capture Detector ECD using different injectors.

Figure 32-1. FPD Tandem

Checkout Overview

The checkout must be carried out for each single ECD and FPD detector, according to the injector used, referring to the relevant SOPs as reported in the following table.

Detector	Refer To:	
ECD	Checkout Using ECD with S/SL Injector on page 95.	
	Checkout Using ECD with OC Injector on page 107.	
	Checkout Using ECD with PKD Injector on page 119.	
	Checkout Using ECD with PPKD Injector on page 131.	
	Checkout Using ECD with PTV Injector on page 143.	
FPD	Checkout Using FPD with S/SL Injector on page 225.	
	Checkout Using FPD with OC Injector on page 237.	
	Checkout Using FPD with PKD Injector on page 249.	
	Checkout Using FPD with PPKD Injector on page 263.	
	Checkout Using FPD with PTV Injector on page 277.	

Table 32-1. FPD-ECD SOPs Reference

WARNING! To perform ECD checkout, refer to the relevant operating procedures reporting in Section III of this manual.

Before starting FPD checkout procedures, it is strongly recommended to read the paragraph *Important Considerations* on page 416.

Important Considerations

This paragraph details the differences for FPD checkout respect to the standard one reported in Section V of this manual.

FPD Gas Required

In FPD Tandem (stacked) configuration the FPD only requires air and hydrogen as fuel gas to supply the flame.

The make-up gas supplied by ECD has to be maintained.

Column Installation

When performing the checkout of the FPD in stacked configuration it is not necessary any adjustment of the test column insertion depth. The test column remains connected to the ECD with the column insertion depth defined for this detector (109 mm measured from the bottom of the ferrule). For that reason, it is strongly recommended the use of the silcosteeled jet instead of the standard one.

FPD Detector and Signal Menus

When in stacked configuration, the FPD is configured as **Auxiliary Detector**, then **AUX DETECTOR** and **AUX SIGNAL** instead of **LEFT/RIGHT DETECTOR** and **LEFT/RIGHT SIGNAL** must be pressed to access the relevant detector and signal menus.

The *Example of FPD Tandem Checkout* operating procedure, on page 417, details the different procedure points respect to the standard FPD checkout procedures reported in Section V of this manual.

OPERATING PROCEDURE

Example of FPD Tandem Checkout

This procedure reports the different sequence points respect to the standard operating procedures reported in Section V. In the example, the S/SL injector is considered.

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	According to injector in use
Left carrier or Right carrier	He (helium)
Aux detector	FPD

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

```
LEFT CARRIER<sup>1</sup>
Pressure 30.0 30.0
Col.flow 3.00
Lin. veloc. (60.9)<
```

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OVEN		
Temp Initial Time Ramp 1 Final temp Final time 1 Ramp 2	70.0	70.0 1.00 20.0 230 1.00< Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate Split/Splitless Injector Control Table. Set the required temperature *Temp* setpoint. Verify to operate in Splitless mode. If not, scroll to Mode, press MODE/TYPE to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

LEFT INLET	(S/SL)	1
Temp	230	230
Pressure	30.0	30.0
Mode:	Spli	tless
Total flow		(63.0)
Split Flow	60.0	60.0
Splitless time	0.80	0.80
Constant sept p	urge?	Y<

1. These settings could also be for a right inlet.

4. Use **AUX DETECTOR** to display the appropriate FPD Detector Control Table. Set the required temperature **FPD Temp** and the detector gases **H2** and **Air** required setpoints.

AUX DETECTOR	(FPD)	
Flame		Off
FPD temp	150	150
Signal pA	(1.4)
High voltage mod	e?	N
Н2	90	90
Air	115	115

5. Since the make-up gas is supplied by ECD detector, set the value into the ECD detector Control Table.

Base temp	250	250
ECD Temp	300	300
Ref current nA		1.0
Freq kHz		(2.20)
Pulse amp V		50
Pulse width μ s		1.0
Mkup (N2)	30	30<

1. These settings could also be for a right detector.

- 6. Verify that High voltage mode is set to NO.
- 7. Scroll to Flame and press ON. This start the ignition sequence. When ignition is confirmed, the photomultiplier tube is energized. The baseline level Signal pA, will suddenly increase meaning that the flame is lit inside the detector. After a few seconds, the baseline should stabilize to the standing current of the system.
- 8. Use AUX Signal to display the appropriate FPD Detector Signal Control Table. Scroll to Range and set the electrometer amplifier input range required.

AUX SIGNAL	(FPD)
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Baseline Comp	Off

- 9. Activate your Data System and set the parameters required for the checkout.
- 10. In the Aux Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.
- 11. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Continue with Baseline Acquisition and Analysis.

SOPs for Large Volume Applications

The *SOPs for Large Volume Applications* section, contains the procedures to test the TRACE GC Ultra for large volume application by using different injectors.

Chapter 33, Checkout Using FID with LVSL Injector

Chapter 34, Checkout Using FID with LVOC Injector

Checkout Using FID with LVSL Injector

Chapter at a Glance...

Anarating Procedures	
Recommended Initial Operations	
Analytical Conditions Required for LVSL Injection	
Parts Referenced	
Scope	
SOP Number: P0430/04/E - 01 September 2009	

Operating Procedures

FID-LVSL Checkout in Splitless Mode

SOP Number: P0430/04/E - 01 September 2009

Scope

Use the following procedure to verify proper FID operation with the LVSL Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long	260 800 01
	0.32 mm ID ; $0.25 \mu \text{m film thickness}$	
Pre-column	Retention gap DPTMDS deactivated; 5 m long	260 800 10
	0.32 mm ID	
Press fit Deactivated universal press-tight connector (set of 5)		350 038 50
Glass Liner	Liner 5 mm ID for LVSL injection	
Graphite Ferrule	raphite Ferrule Graphite ferrule for 0.32 mm ID Column	
Retaining Nut	Retaining Nut M4 capillary column retaining nut	
LVSL Adapter	LVSL Adapter LVSL adapter for 9 mm septa	
Vespel seal Vespel seal for LVSL adapter		356 034 50
Septum Cap Cap for LVSL adapter		350 010 55
Septum holder	Septum holder Metallic holder for 9 mm septa	
Septum	9 mm septa for LVSL injector (set of 10)	313 032 41
Syringe	50 µl size; 50 mm needle length, 0.63C, conic tip	365 030 15

Table 33-1. FID-LVSL Parts Referenced

Part	Description	Part Number
Test Mixture	Three components in n-Hexane:	338 190 32
	Component Concentration	
	Dodecane 1 µg/ml	
	Tetradecane 1 µg/ml	
	Hexadecane 1 µg/ml	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur,	
	Computing-integrator	

Table 33-1. FID-LVSL Parts Referenced

Analytical Conditions Required for LVSL Injection

Parameters Setting		
Gases	Carrier Gas: Helium = 30 kPa Constant Pressure	
	Hydrogen = 35 ml/min	
	Air = 350 ml/min	
	Make-up Gas: Nitrogen = 30 ml/min	
Oven Program	Initial Temperature = 55 °C	
	Initial Time = 2 minutes	
	Ramp 1 = 25 °C/minute	
	Final Temperature = $200 ^{\circ}C$	
	Final Time = 1 minute	
Injector	Operating Mode = Splitless	
	Temperature = $230 ^{\circ}\text{C}$	
	Splitless Time = 0.8 minutes	
	Split Flow = 60 ml/min	
	Constant Septum Purge = Off	
	Stop Purge for $= 0.8$ minutes	
Detector	Base Temperature = 250 °C	
	Detector Signal Range = 10°	
Injected Volume	20 µl + needle of Test Mixture	
Analog Signal Output	Chrom-Card Acquisition Frequency = Medium	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

Table 33-2. FID-LVSL Analytical Conditions

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

- 1. Verify a "DPFC 2001" pneumatic module is installed.
- 2. Verify the LVSL kit is correctly installed (LVSL adapter, LV liner packed with glass wool).
- Replace the 9-mm septum.
 A new septum should be installed properly in your injector.
- 4. Connect the required gas lines Verify the required gas supplies are properly connected to your GC.
- 5. Install the pre-column and connect the test column by means of the press fit. The column currently installed should be carefully removed and replaced with the required test column.
- 6. Perform Column Evaluation and Leak Test.
- Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FID-LVSL Checkout in Splitless Mode

Before beginning, press **CONFIG** to verify the GC configuration:

Left inlet or Right inlet	S/SL
Left carrier or Right carrier	He (helium)
Left detector or Right detector	FID

1. Use LEFT CARRIER or RIGHT CARRIER to display the appropriate Carrier Gas Control Table. Verify to operate in constant pressure mode. If not, scroll to Flow mode, press MODE/TYPE to access the selection menu, then select con pres. Scrool to Pressure and set the pressure value to have the required carrier gas flow rate Col.flow.

LEFT	CARRIER ¹	
Pressure	30.0	30.0
Col.flow	3.00	
Lin. veloc.		(60.9)<

1. These settings could also be for a right carrier.

2. Use **OVEN** to display the Column Oven Control Table. Set the oven temperature and the Oven Program required.

OV	EN	
Temp	55.0	55.0
Initial Time		2.00
Ramp 1		25.0
Final temp		200
Final time 1		1.00<
Ramp 2		Off

3. Use LEFT INLET or RIGHT INLET to display the appropriate Split/Splitless Injector Control Table. Set the required temperature *Temp* setpoint. Verify to

operate in **Splitless** mode. If not, scroll to Mode, press **MODE/TYPE** to access the selection menu, then select Splitless. Scroll to Splitless time to set the required setpoint.

```
LEFT INLET (S/SL)<sup>1</sup>
               230
                      230
Temp
            30.0 30.0
Pressure
Mode:
               Splitless
Total flow
                    (63.0)
Split Flow 60.0
                    60.0
Splitless time 0.80
                     0.80
Constant sept purge?
                        Ν
Stop purge for
                      0.8
```

1. These settings could also be for a right inlet.

4. Use LEFT DETECTOR or RIGHT DETECTOR to display the appropriate FID Detector Control Table. Set the required temperature Base Temp and the detector gases H2, Air and Mkup required setpoints.

LEFT DETECTOR	(FID)	1
Flame		Off
Base temp	250	250
Signal pA		(5.5)
Ign.thresh		2.0
Flameout retry		Off
Н2	35	35
Air	350	350
Mkup N2	30	30<

1. These settings could also be for a right detector.

- 5. Ignite the FID flame scrolling to Flame and pressing **ON**.
- 6. Use **LEFT SIGNAL** or **RIGHT SIGNAL** to display the appropriate FID Detector Signal Control Table. Observe the FID flame signal at the display. This is the

flame-on background offset. Scroll to Range and set the electrometer amplifier input range required.

LEFT SIGNAL	(FID) ¹
Output	(1000)
Offset	100
Auto zero?	Y/N
Range 10^(03)	0<
Analog filter	Off
Baseline Comp	Off

1. These settings could also be for a right signal.

- 7. Activate your Data System and set the parameters required for the checkout.
- 8. In the FID Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.
- 9. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 33-3 according to the data handling in use.

- 10. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 11. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 12. Inject the test mixture and press **START** on the GC to begin the checkout run. The resulting chromatogram should look like the one shown in *Figure 2.1*.

Figure 33-1. FID-LV Splitless Injection

- 13. The following criteria indicate successful completion of FID-LVSL checkout.
- 14. If these criteria are not met, repeat the test.

	CHROM-CARD		
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
S	Noise (µV)	< 30	< 300
alue	Wander (µV)	< 50	< 500
se V	Drift (µV/h)	< 100	< 1 000
eptano	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
Aco	Components	> 1 500 000 for each component	> 15 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	1 <u>+</u> 0.1

Table 33-3. FID-LVSL Acceptance Criteria

Acceptance Values	CHROMQUEST			
	Baseline Parameters (1V Full Scale)			
	Noise (µV)	< 30		
	Wander (µV)	< 50		
	Drift (µV/h)	< 100		
	Analytical Results (1V Full Scale) - Area Counts (0.01 µVs)			
	Components	> 15 000 000 for each component		
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1		
ATLAS				
---	--	--------------------------------	--	--
	Baseline Parameters (10V Full Scale)			
	Noise (µV)	< 300		
	Wander (µV)	< 500		
	Drift (µV/h)	< 1 000		
Analytical Results (10V Full Scale) - Area Counts (μVs)		ull Scale) - Area Counts (μVs)		
	Components	> 1 500 000 for each component		
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1		

	XCALIBUR		
Acceptance Values	Baseline Parameters (Acquisition Frequency = 10 Hz)		
	Noise (Counts)	< 3 000	
	Wander Counts)	< 5 000	
	Drift (Counts/h)	< 10 000	
	Analytical Results Area Counts (Cts*s)		
	Components	> 15 000 000 for each component	
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	

Analytical Acceptance Comments		
1	When the make-up gas is not used, the acceptance values will result to be 2.5 times lower than the values reported in Table 33-3.	
2	When helium is used as make-up gas, the acceptance values will result to be 10 times lower than the values reported in Table 33-3.	

Checkout Using FID with LVOC Injector

Chapter at a Glance...

SOP Number: TE P0609/02/E-01 September 2009	
Scope	
Parts Referenced	
Recommended Initial Operations	
Analytical Conditions Required for LVOC Injection	

Operating Procedures

SOP Number: TE P0609/02/E-01 September 2009

Scope

Use the following procedure to verify proper FID operation with the LVOC Injector.

Parts Referenced

Part	Description	Part Number
Test Column	Fused Silica Capillary Column TR-5; 7 m long 0.32 mm ID; 0.25 µm film thickness	260 800 01
Pre-column UNCORET column, 15 m, 3 m coated with SE 54, 0.25 μm f.t.		260 604 27
Restrictor	Restrictor Restrictor for SVE valve, 25 cm x 25µm ID	
Connector T-shaped connector		347 084 48
Vespel Ferrule	Vespel ferrule 0.9 mm hole (for connecting T-piece to SVE)	290 334 98
	Vespel ferrule for for 0.53 mm ID Column	290 134 71
Graphite Ferrule	Graphite ferrule for 0.32 mm ID Column	290 134 87
	Graphite ferrule for 0.53 mm ID Column	290 134 86
Retaining Nut	M4 capillary column retaining nut	350 324 23
	Column retaining nut and backwasher for OC	452 100 01
Seal	O-ring	290 113 02
Syringe	250 μl size; removable needle	365 004 90
Needle	(0,47/80 cone) for syringe p/n 365 004 90	365 664 80
Vial	2 ml screw-top vials	240 140 21
Сар	Screw-top cap for 2 ml vials p/n 240 140 21	386 060 92

Table 34-1. FID-LVOC Parts Referenced

Part	Description	Part Number
Test Mixture	Three components in n-Hexane:	338 190 32
	Component Concentration	
	Dodecane 1 µg/ml	
	Tetradecane 1 µg/ml	
	Hexadecane 1 µg/ml	
Sampler	TriPlus autosampler	
Gases	Chromatographic-grade purity	
Data Acquisition	Chrom-Card, ChromQuest, Atlas, Xcalibur	

Table 34-1. FID-LVOC Parts Referenced (Continued)

Analytical Conditions Required for LVOC Injection

Analytical Condition for the GC

GC Parameters Setting		
Gases	Carrier Gas: Helium = 60 kPa Constant Pressure	
	SVE flow = > 10 ml/min	
	Sweep flow = ≥ 0.05 ml/min	
	Hydrogen = 35 ml/min	
	Air = 350 ml/min	
	Make-up Gas: Nitrogen = 30 ml/min	
Oven Program	Program Initial Temperature = 72 °C	
	Initial Time = 2.5 minutes	
	Ramp 1 = 50 °C/minute	
	Final Temperature = 220 °C	
	Final Time = 1 minute	
Injector	Operating Mode = LVOC	
	Secondary cooling = 6 s	
	SVE Temperature = 150 °C	
	SVE Duration = 12 s	
Detector	Base Temperature = 250 °C	
	Detector Signal Range = 10°	
Injected Volume	100 µl of Test Mixture	
Digital Signal Output	Chrom-Card, ChromQuest, Atlas, Xcalibur Acquisition Frequency = 10 Hz	

|--|

Analytical Condition for the TriPLus Autosampler

1 ADIE 34-3. FID-LVOC ANAIVILLAI CONULIUNS IOI LITE THEIUS AULUSAINDIEI
--

TriPlus Parameters Setting		
Sampling	Sampling vol (μ L) = 100	
	Plunger strokes = 0	
	Air volume (μ L) = 10	
	Filling volume (μ L) = 110	
Injection depth mode	h mode Pre-injection dwell time $(s) = 0,2$	
	Post-injection dwell time $(s) = 0,3$	
	Injection depth (mm) = 71	
	Injection speed $(\mu L/s) = 10$	
Sampling depth in vial	Sampling vial depth % = 100	
Sample viscosity	Sample pull up speed (μ L/s) = 5	
	Delay after bubble elimination $(s) = 1$	
	Viscosity delay (s) = 0.3	
GC syncro start	Synchro type = Delayed	
Advanced parameters	Wash solvent depth $\% = 96$	
	Waste depth $\% = 20$	
	Needle speed into vial $(mm/s) = 100$	
	Solvent filling pull-up speed (μ L/s) =10	
	Bubble elimination pull-up speed (μ L/s) =10	
	Delay between strokes $(s) = 0.1$	

Recommended Initial Operations

Before starting the checkout, the following operations should be carried out:

- Connect the required gas lines. Verify the required gas supplies are properly connected to your GC.
- 2. Verify a "DPFC 2001" pneumatic module is installed.
- 3. Verify the LVOC actuator for TriPlus is correctly installed.
- Replace the O-ring. A new O-ring should be installed properly in your injector
- Installation of the pre-column and test column The column currently installed should be carefully removed and replaced with the required test column. Install the pre-column and connect it to the test column and the SVE by using the T-shaped connector. Insert the column into the precolumn for about two cm.
- 6. Install and connect the TriPlus sampler and its components.
- 7. Verify the opening/closing of the OC injector actuator by using the proper commands.
- 8. Verify the alignment of the sirynge on the OC injector.
- 9. Perform Column Evaluation and Leak Test.
- 10. Check the sweep flow at the outlet of the restrictor. It should be ≥ 0.05 ml/min.
- 11. Check the SVE flow. It should be > 10 ml/min.
- 12. Connect your data handling. Verify that your data handling is properly connected to your GC system.

OPERATING PROCEDURE

FID-LVOC Checkout in LVOC Mode

- 1. Set the GC parameters required to perform a LVOC injection listed in Table 34-2 on page 438.
- 2. Set the TriPlus parameters required to perform a LVOC injection listed in Table 34-3 on page 439
- 3. In the FID Detector Signal Control Table, scroll to Auto zero? and turn it **YES**.
- 4. Perform a blank analysis injecting pure hexane and press **START** on the GC to begin the checkout run.

Baseline Acquisition and Analysis

Refer to the Acceptance Values reported in the Table 34-4 according to the data handling in use.

- 5. With the GC in Stand-by/Prep Run condition, activate the data system for 10 minutes to evaluate your baseline in isothermal condition.
- 6. After the baseline evaluation has been completed, set-up the data system to acquire a single run.
- 7. Fill one 2 ml vial with the sample and cap. Install the vial into the autosampler tray position 1.
- 8. Set up in the data system a sequence of three runs.
- 9. Perform the sequence. The resulting chromatogram should look like the one shown in *Figure 34-1*.

Figure 34-1. FID-LVOC Injection

- 10. The following criteria indicate successful completion of FID-LVOC checkout.
- 11. If these criteria are not met, repeat the test.

	CHROM-CARD		
	Baseline Parameters	Analog (1V Full Scale)	Digital (10V Full Scale)
Acceptance Values	Noise (µV)	< 30	< 300
	Wander (µV)	< 50	< 500
	Drift (µV/h)	< 100	< 1 000
	Analytical Results	Analog (1V Full Scale) Area Counts (0.1 μVs)	Digital (10V Full Scale) Area Counts (0.1 μVs)
	Components	> 10 000 000 for each component	> 100 000 000 for each component
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1	1 <u>+</u> 0.1

Table 34-4. FID-LVOC Acceptance Criteria

	CHROMQUEST				
tance Values	Baseline Parameters (1V Full Scale)				
	Noise (µV)	< 30			
	Wander (µV)	< 50			
	Drift (µV/h)	< 100			
ccep	Analytical Results (1V Full Scale) - Area Counts (0.01 µVs)				
A	Components	> 100 000 000 for each component			
	Area Count Ratio Calculated as C12/C16	1 <u>+</u> 0.1			

ATLAS				
Baseline Parameters (10V Full Scale)				
Noise (µV)	< 300			
Wander (µV)	< 500			
Drift (μ V/h)	< 1 000			
Analytical Results (10V Full Scale) - Area Counts (μVs)				
Components	> 10 000 000 for each component			
Area Count Ratio Calculated as C12/C16	1 ± 0.1			

Acceptance Values	XCALIBUR				
	Baseline Parameters (Acquisition Frequency = 10 Hz)				
	Noise (Counts)	< 3 000			
	Wander Counts)	< 5 000			
	Drift (Counts/h)	< 10 000			
	Analytical Results Area Counts (Cts*s)				
	Components	> 100 000 000 for each component			
	Area Count Ratio Calculated as C12/C16	1 ± 0.1			

	Analytical Acceptance Comments				
1	When the make-up gas is not used, the acceptance values will result to be 2.5 times lower than the values reported in Table 34-4.				
2	When helium is used as make-up gas, the acceptance values will result to be 10 times lower than the values reported in Table 34-4.				

Customer Communication

Thermo Fisher Scientific provides comprehensive technical assistance worldwide and is dedicated to the quality of our customer relationships and services.

This appendix also contains a one-page *Reader Survey*. Use this survey to give us feedback on this manual and help us improve the quality of our documentation

How To Contact Us

Use http://www.thermo.com/com/cda/resources/resource_detail/1,,12512,00.html address for products information.

Use http://www.gc-gcms-customersupport.com/WebPage/Share/Default.aspx address to contact your local Thermo Fisher Scientific office or affiliate GC-GC/ MS Customer Support.

Reader Survey

Product:TRACE GC UltraManual:Standard Operating Procedures ManualPart No.:317 092 00

Please help us improve the quality of our documentation by completing and returning this survey. Circle one number for each of the statements below.

	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
The manual is well organized.	1	2	3	4	5
The manual is clearly written.	1	2	3	4	5
The manual contains all the information I need.	1	2	3	4	5
The instructions are easy to follow.	1	2	3	4	5
The instructions are complete.	1	2	3	4	5
The technical information is easy to understand.	1	2	3	4	5
Examples of operation are clear and useful.	1	2	3	4	5
The figures are helpful.	1	2	3	4	5
I was able to install the system using this manual.	1	2	3	4	5

If you would like to make additional comments, please do. (Attach additional sheets if necessary.)

Fax or mail this form to: Thermo Fisher Scientific S.p.A. Strada Rivoltana km 4 20090 Rodano (MI) ITALY Fax: 39 02 95059388 This section contains an alphabetical list and descriptions of terms used in this guide and the help diskette. This also includes abbreviations, acronyms, metric prefixes, and symbols.

Α	
А	ampere
ac	alternating current
ADC	analog-to-digital converter
В	
b	bit
В	byte (8 b)
baud rate	data transmission speed in events per second
C	
°C	Celsius
CIP	Carriage and Insurance Paid To
cm	centimeter
COC	Cold On-Column Injector
CPU	central processing unit (of a computer)
CSE	Customer Service Engineer
<ctrl></ctrl>	control key on the terminal keyboard
D	
d	depth
DAC	digital-to-analog converter
dc	direct current
DS	data system

Glossay

E	
ECD	Electron Capture Detector
EMC	electromagnetic compatibility
ESD	electrostatic discharge
F	
°F	Fahrenheit
FID	Flame Ionization Detector
FOB	Free on Board
FPD	Flame Photometric Detector
ft	foot
G	
g	gram
GC	gas chromatograph
GND	electrical ground
Н	
h	height
h	hour
harmonic distortion	A high-frequency disturbance that appears as distortion of the fundamental sine wave.
HV	high voltage
Hz	hertz (cycles per second)
I	
IEC	International Electrotechnical Commission

impulse	See <i>transient</i>
in.	inch
I/O	input/output
К	
k	kilo (10 ³ or 1024)
K	Kelvin
kg	kilogram
kPa	kilopascal
L	
l	length
1	liter
LAN	Local Area Network
lb	pound
LED	light-emitting diode
LVOCI	Large Volume On-Column Injector
LVSL	Large Volume Splitless
Μ	
m	meter (or milli [10 ⁻³])
М	mega (10 ⁶)
μ	micro (10 ⁻⁶)
min	minute
mL	milliliter
mm	millimeter

Glossay

m/z	mass-to-charge ratio
Ν	
n	nano (10 ⁻⁹)
NPD	Nitrogen Phosphorous Detector
0	
Ω	ohm
Р	
р	pico (10 ⁻¹²)
Pa	pascal
РСВ	printed circuit board
PDD	Pulsed Discharge Detector
PID	Photo Ionization Detector
PN	part number
psi	pounds per square inch
R	
RAM	random access memory
<return></return>	<return> key on the keyboard</return>
RF	radio frequency
ROM	read-only memory
RS-232	industry standard for serial communications
S	
S	second

sag	See <i>surge</i>
slow average	A gradual, long-term change in average RMS voltage level, with typical durations greater than 2 s.
SOP	Standard Operating Procedure
surge	A sudden change in average RMS voltage level, with typical duration between 50 μs and 2 s.
т	
TCD	Thermal Conductivity Detector
transient	A brief voltage surge of up to several thousand volts, with a duration of less than 50 μ s.
U	
UFM	Ultra Fast Module
V	
V	volt
V ac	volts, alternating current
V dc	volts, direct current
VGA	Video Graphics Array
W	
W	Width
W	Watt

NOTE The symbol for a compound unit that is a quotient (for example, degrees Celsius per minute or grams per liter) is written with a negative exponent with the denominator. For example: °C min⁻¹ instead of °C/min g L⁻¹ instead of g/L Glossay

Index

Α

- Acceptance Criteria
 - ATLAS 168, 180, 193, 207, 221, 236, 248, 261, 275, 289, 306, 319, 335, 348, 359, 371, 384, 394, 433, 444
 - CHROM-CARD 55, 66, 78, 90, 104, 116, 129, 141, 153, 167, 179, 192, 206, 220, 235, 247, 260, 274, 288, 358, 370, 383, 393, 432, 443
 - CHROMQUEST 55, 78, 104, 116, 129, 153, 167, 179, 192, 206, 220, 235, 247, 260, 274, 288, 305, 318, 334, 347, 358, 370, 383, 393, 432, 443
 - Computing-integrator (e.g. ChromJet) 55, 66, 78, 90, 167, 179, 192, 206, 220, 305, 318, 334, 347, 358, 370, 383, 393
 - XCALIBUR 105, 117, 130, 142, 154, 168, 180, 193, 207, 221, 236, 248, 261, 275, 289, 306, 319, 335, 348, 359, 371, 384, 394, 433, 444
- adapter for capillary column 61, 73, 123, 135, 185, 199, 253, 267, 353, 365
- Air 27, 39, 49, 60, 72, 83, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 426, 438
- Aldrin 96, 108, 121, 133, 144
- Analytical Acceptance Comments 46, 56, 67, 79, 91, 105, 117, 130, 142, 154, 236, 248, 261, 275, 289, 348, 359, 371, 433, 444
- Analytical Column 38, 58, 70, 82, 120, 132, 144, 182, 196, 210, 250, 264, 278, 322, 350, 362, 376, 424, 436
- Analytical Conditions Required for LVSL Injection 426, 438
- Analytical Conditions Required for On-Column Analysis 171, 239, 309
- Analytical Conditions Required for On-Column Injection 49, 109, 387
- Analytical Conditions Required for PTV Splitless Injection 83, 145, 211, 279, 324
- Analytical Conditions Required for Splitless Injection 39, 60, 72, 83, 97, 122, 134, 145, 159, 184, 198, 211, 227, 252, 266, 279, 341, 352, 364, 377, 425, 437
- ATLAS 433, 444
- Atlas 27, 38, 48, 59, 71, 82, 96, 108, 121, 133, 144, 158, 170, 183, 197, 210, 226, 238, 251, 265, 278, 295, 308, 323, 340, 351, 363, 376, 386, 425, 437
- Azobenzene 158, 165, 170, 177, 183, 190, 197, 204, 210, 218, 226, 238, 251, 265, 278, 294, 301, 302, 303,

304, 308, 314, 315, 316, 317, 322, 330, 331, 332, 333

В

Base Temperature 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438

С

- Carrier Gas 27, 31, 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438
- Checkout Using Electron Capture Detector with Cold On- Column Injector 107
- Checkout Using Electron Capture Detector with Split Splitless Injector 95
- Checkout Using FID Tandem 397
- Checkout Using Flame Ionization Detector with Cold On-Column Injector 47, 385, 397, 405, 413
- Checkout Using Flame Ionization Detector with Split Splitless Injector 37, 57, 81, 119, 143, 181, 209, 249, 277, 321, 349, 375, 423, 435
- Checkout Using FPD Tandem 413
- Checkout Using Nitrogen Phosphorus Detector with Cold On-Column Injector 169, 237, 307
- Checkout Using Nitrogen Phosphorus Detector with Split Splitless Injector 157, 225, 293, 339
- Checkout Using NPD Tandem 405
- Checkout Using PDD with OC Injector 385, 397, 405, 413
- Checkout Using PDD with S/SL Injector 375
- ChromQuest 27, 38, 48, 59, 71, 82, 96, 108, 121, 133, 144, 158, 170, 183, 197, 210, 226, 238, 251, 265, 278, 295, 308, 323, 340, 351, 363, 376, 386, 425, 437
- Column Conditioning 29
- Column Conditioning Parameters 31
- Column Evaluation 29
- Column Installation 28
- Column Leak Check 29
- Computing -integrator 38, 48, 59, 71, 82, 96, 108, 121, 133, 144, 158, 170, 183, 197, 210, 226, 238, 251, 265, 278, 295, 308, 323, 340, 351, 363, 376, 386, 425, 437

Computing-integrator 27

- Connect the required gas lines 40, 50, 61, 73, 84, 98, 110, 123, 135, 146, 160, 172, 185, 199, 212, 228, 240, 253, 267, 280, 297, 310, 325, 342, 353, 365, 378, 388, 427, 440
- Connect your data handling 40, 50, 61, 73, 84, 98, 110, 123, 135, 146, 160, 172, 185, 199, 212, 228, 240, 253, 267, 280, 297, 310, 325, 342, 353, 365, 378, 388, 427, 440
- Constant Filament Temperature 341, 352, 364
- Constant Septum Purge 39, 83, 97, 145, 159, 211, 227, 279, 296, 324, 341, 377, 426

D

- Data Acquisition 27, 38, 48, 59, 71, 82, 96, 108, 121, 133, 144, 158, 170, 183, 197, 210, 226, 238, 251, 265, 278, 295, 308, 323, 340, 351, 363, 376, 386, 425, 437
- Data Handling Connections 28
- Detector 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 184, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438
- Detector Connections 29
- Detector side adapter 58, 120, 182, 250, 350, 362
- Detector Signal Range 39, 49, 60, 72, 83, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 377, 387, 426, 438
- Detector UV Lamp 294, 308, 322
- Digital Chrom-Card 27, 38, 48, 59, 71, 82, 96, 108, 133, 144, 158, 170, 183, 197, 238, 251, 265, 278, 295, 308, 323, 340, 363, 376, 386, 425, 437
- Dodecane 38, 48, 59, 71, 82, 340, 351, 363, 376, 386, 392, 425, 437
- Drift 45, 46, 55, 56, 66, 67, 78, 79, 90, 91, 104, 105, 116, 117, 129, 130, 141, 142, 153, 154, 167, 168, 179, 180, 192, 193, 206, 207, 220, 221, 235, 236, 247, 248, 260, 261, 274, 275, 288, 289, 305, 306, 318, 319, 334, 335, 347, 348, 358, 359, 370, 371, 383, 384, 393, 394, 432, 433, 443, 444

Е

- ECD 127, 139, 151
- ECD temperature 97, 109, 122, 134, 145
- ECD-COC Checkout in On-Column Mode 111
- ECD-COC Parts Referenced 108
- ECD-OCI Analytical Conditions 109
- ECD-OCI Checkout in On-Column Mode 111

- ECD-OCI Parts Referenced 108 ECD-On-Column Injection 114 ECD-PTV Checkout in PTV Splitless Mode 147 ECD-S/SL Analytical Conditions 97 ECD-S/SL Checkout in Splitless Mode 99 ECD-S/SL Parts Referenced 96 ECD-Splitless Injection 102 ECD-SSL Analytical Conditions 97 ECD-SSL Checkout in Splitless Mode 99 ECD-SSL Injection 102
- ECD-SSL Parts Referenced 96

F

- FID 65, 77, 89
- FID Tandem
- Checkout Overview 399
- Connecting Test Column 401 Important Considerations 400
- FID-ECD SOPs Reference 399
- FID-LVSL Analytical Conditions 426, 438
- FID-LVSL Checkout in Splitless Mode 428, 441
- FID-LVSL Parts Referenced 424, 436
- FID-OC Parts Referenced 48, 386
- FID-OCI Analytical Conditions 49
- FID-OCI Checkout in On-Column Mode 51, 389
- FID-OCI Checkout in On-Column Mode 327 385, 397, 413
- FID-OCI Parts Referenced 48, 386
- FID-On-Column Injection 54, 392
- FID-PTV Checkout in PTV Splitless Mode 85
- FID-S/SL
 - Analytical Acceptance Criteria 45, 55, 66, 78, 90, 104, 116, 129, 141, 153, 167, 179, 192, 206, 220, 235, 247, 260, 274, 288, 305, 318, 334, 347, 358, 370, 383, 393, 432, 443
- FID-S/SL Acceptance Criteria
 - ATLAS 46, 56, 67, 79, 91
 - CHROM-CARD 45
 - **CHROMOUEST 45**
 - Computing-integrator (e.g. ChromJet) 45
 - XCALIBUR 46, 56, 67, 79, 91
- FID-S/SL Analytical Conditions 39, 60, 72, 83, 122, 134, 145, 184, 198, 211, 252, 266, 279, 324, 352, 364, 377, 426, 438

FID-S/SL Parts Referenced 38, 58, 70, 82, 120, 132, 144, 182, 196, 210, 250, 264, 278, 322, 350, 362, 424, 436 FID-Splitless Injection 44, 65, 77, 89, 127, 139, 151, 190, 204, 218, 357, 369, 431, 442 FID-SSL Analytical Conditions 39, 60, 72, 83, 122, 134, 145, 184, 198, 211, 252, 266, 279, 324, 352, 364, 377, 426, 438 FID-SSL Checkout in Splitless Mode 41, 123, 147, 185, 213, 253, 281, 326, 353, 379, 428, 441 Filament Temperature limit 341, 352, 364 Filament Voltage 341, 352, 364 Final Temperature 31, 39, 49, 60, 72, 83, 97, 109, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438

FID-S/SL Checkout in Splitless Mode 41, 85, 123,

147, 185, 213, 253, 281, 326, 353, 379, 428, 441

- Final Time 31, 39, 49, 60, 72, 83, 97, 109, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438
- Flame Ionization Detector 35, 155
- FPD Tandem
- Checkout Overview 415
- Connecting Test Column 417
- Important Considerations 416
- FPD Temperature 227, 239, 252, 266, 279
- FPD-ECD SOPs Reference 415
- FPD-On-Column Injection with 394 nm 245
- FPD-On-Column Injection with 526 nm filter 244
- FPD-PKD Injection with 394 nm 258
- FPD-PKD Injection with 526 nm filter 257
- FPD-PPKD Injection with 394 nm 272
- FPD-PPKD Injection with 526 nm filter 271
- FPD-PTV Checkout in PTV Splitless Mode 281
- FPD-PTV Injection with 394 nm filter 286
- FPD-PTV Injection with 526 nm filter 285
- FPD-Splitless Injection with 394 nm 233, 245, 258 FPD-Splitless Injection with 526 nm filte 232, 244,
- 257, 271

Fuel Gases 27

G

Gain 341, 352, 364 Gas Supply Connections 28

- Gases 27, 38, 39, 48, 49, 59, 60, 71, 72, 82, 83, 96, 97, 108, 109, 121, 122, 133, 134, 144, 145, 158, 159, 170, 171, 183, 184, 197, 198, 210, 211, 226, 227, 238, 239, 251, 252, 265, 266, 278, 279, 294, 296, 308, 309, 322, 324, 340, 341, 351, 352, 363, 364, 376, 377, 386, 387, 425, 426, 437, 438
- General Overview 25
- Getting Started 28
- Glass Liner 38, 58, 70, 82, 96, 120, 132, 144, 158, 182, 196, 210, 226, 250, 264, 294, 340, 350, 362, 376, 424
- Glass Liner Installation 28
- Graphite Ferrule 48, 96, 108, 158, 170, 226, 238, 294, 308, 340, 386
- Graphite ferrule for 0.32 mm ID Column 38, 58, 70, 82, 120, 132, 144, 182, 196, 210, 250, 264, 278, 322, 350, 362, 376, 424, 436
- Graphite seal for glass liner 38, 58, 70, 82, 120, 132, 144, 158, 182, 196, 210, 226, 250, 264, 278, 294, 322, 340, 350, 362, 376
- Graphite seal glass liner 96

Н

- Helium 27, 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438
- Helium Purifier 376, 386
- helium purifier
- Verify 378
- Hexadecane 38, 48, 59, 71, 82, 340, 351, 363, 376, 386, 392, 425, 437
- High Current 296, 309, 324
- High voltage mode 252, 266, 279
- Hydrogen 27, 39, 49, 60, 72, 83, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 426, 438

I

Initial Temperature 31, 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438

Initial Time 31, 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438

- Inject Temp 83, 145, 211, 279, 324
- Inject Time 83, 145, 211, 279, 324

- Injected Volume 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438
- Injection side adapte 182
- Injection side adapter 58, 70, 120, 132, 196, 250, 350, 362
- Injector 31, 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438
- Install the analytical column 40, 61, 73, 84, 98, 123, 135, 146, 185, 199, 212, 253, 267, 280, 325, 353, 365, 378, 427, 440
- Install the test column 50, 61, 73, 110, 123, 135, 160, 172, 185, 199, 228, 240, 253, 297, 310, 342, 353, 365, 388
- Interferential Filter 226, 238, 250, 264, 278

L

- Lamp Current 296, 309, 324, 341, 352, 364
- Leak Test 30, 98, 160, 212, 228, 280, 297, 325, 342
- Lindane 96, 108, 121, 133, 144
- Liner Seal 38, 58, 70, 82, 96, 120, 132, 144, 158, 182, 196, 210, 226, 250, 264, 278, 294, 322, 340, 350, 362, 376

Μ

- Make-up 97, 109, 159, 171, 296, 309, 324, 341, 352, 364
- Make-up Gas 27, 39, 49, 60, 72, 83, 122, 134, 145, 184, 198, 211, 426, 438
- manual leak check 61, 73, 123, 135, 185, 253, 267, 353, 365

Ν

- Negative Polarity 341, 352, 364
- Nitrogen 27, 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 171, 184, 198, 211, 296, 309, 324, 341, 352, 364, 426, 438
- Noise 45, 46, 55, 56, 66, 67, 78, 79, 90, 91, 104, 105, 116, 117, 129, 130, 141, 142, 153, 154, 167, 168, 179, 180, 192, 193, 206, 207, 220, 221, 235, 236, 247, 248, 260, 261, 274, 275, 288, 289, 305, 306, 318, 319, 334, 335, 347, 348, 358, 359, 370, 371, 383, 384, 393, 394, 432, 433, 443, 444
- NPD 190, 204, 218
- NPD Tandem

Checkout Overview 407

- Important Considerations 408
- NPD Tandem Checkout
- Example 409
- NPD-COC Analytical Conditions 171, 239, 309
- NPD-COC Checkout in On-Column Mode 173, 241, 311
- NPD-COC Parts Referenced 170, 238, 308
- NPD-ECD SOPs Reference 407
- NPD-OCI Analytical Conditions 171, 239, 309
- NPD-OCI Checkout in On-Column Mode 173, 241, 311
- NPD-OCI Parts Referenced 170, 238, 308
- NPD-On-Column Injection 177
- NPD-On-column Injection 177
- NPD-PTV Checkout in PTV Splitless Mode 213
- NPD-S/SL Analytical Conditions 159, 227, 296, 341
- NPD-S/SL Checkout in Splitless Mode 161, 229, 298, 343
- NPD-S/SL Parts Referenced 158, 226, 294, 340
- NPD-Splitless Injection 165, 232, 244, 257, 271, 301, 302, 303, 304, 314, 315, 316, 317, 330, 331, 332, 346
- NPD-SSL Analytical Conditions 159, 227, 296, 341
- NPD-SSL Checkout in Splitless Mode 161, 229, 298, 343
- NPD-SSL Injection 165, 232, 244, 257, 271, 301, 302, 303, 304, 314, 315, 316, 317, 330, 331, 332, 346
- NPD-SSL Parts Referenced 158, 226, 294, 340

0

- Octadecan 165, 177, 190, 204, 218, 301, 302, 303, 304, 314, 315, 316, 317, 330, 331, 332, 333
- Octadecane 158, 170, 183, 197, 210, 226, 238, 251, 265, 278, 294, 308, 322
- Operating Mode 39, 60, 72, 83, 97, 122, 134, 145, 159, 184, 198, 211, 227, 252, 266, 279, 296, 324, 341, 352, 364, 377, 426, 438
- Operating Procedure 28
- Oven Program 31, 39, 49, 60, 72, 83, 97, 109, 122, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438

Ρ

Parathion methyl 158, 170, 183, 197, 210, 226, 238, 251, 265, 278, 294, 308, 322

Parts Referenced 27, 48, 96, 108, 158, 170, 226, 238, 294, 308, 340, 386, 424, 436 PDD-OCI Analytical Conditions 387 PDD-OCI Checkout in On-Column Mode 389 PDD-OCI Parts Referenced 386 PDD-On-Column Injection 392 PDD-S/SL Analytical Conditions 377 Checkout in Splitless Mode 379 Parts Referenced 376 PDD-Splitless Injection 382 Perform Column Evaluation 73, 135, 199, 365 Perform Leak Test and Column Evaluation 40, 50, 84, 98, 110, 146, 160, 172, 212, 228, 240, 280, 297, 310, 325, 342, 378, 388, 427, 440 PID-On-Column Injection with 10.6 eV or 11.8 eV UV Lamp 316, 317 PID-On-Column Injection with 10.6 eV UV Lamp 316 PID-On-Column Injection with 11.8 eV UV Lamp 317 PID-On-Column Injection with 9.6 eV UV Lamp 315 PID-PKD Injection with 10.6 eV or 11.8 eV UV Lamp 332 PID-PKD Injection with 8.4 eV UV Lamp 330 PID-PKD Injection with 9.6 eV UV Lamp 331 PID-PPKD Injection with 10.6 eV or 11.8 eV UV Lamp 332 PID-PPKD Injection with 8.4 eV UV Lamp 330 PID-PPKD Injection with 9.6 eV UV Lamp 331 PID-PTV Injection with 10.6 eV or 11.8 eV UV Lamp 332 PID-PTV Injection with 10.6 eV UV Lamp 332 PID-PTV Injection with 11.8 eV UV Lamp 333 PID-PTV Injection with 8.4 eV UV Lamp 330 PID-PTV Injection with 9.6 eV UV Lamp 331 PID-Splitless Injection with 10.6 eV or 11.8 eV UV Lamp 303, 304, 316, 317, 332 PID-Splitless Injection with 10.6 eV UV Lamp 303 PID-Splitless Injection with 11.8 eV UV Lamp 304 PID-Splitless Injection with 8.4 eV UV Lamp 301, 302, 303, 304, 314, 315, 316, 317, 330, 331, 332 PID-Splitless Injection with 9.6 eV UV Lamp 302, 303, 304, 315, 316, 317, 331, 332 Polarizer voltage 159, 171, 184, 198, 211, 239, 252

- Press 70
- Press-fit cconnections 70
- Press-fit connections 58, 70, 120, 132, 182, 196, 250, 350, 362
- Pulse Amplitude 97, 109, 122, 134, 145
- Pulse generator 380, 390
- Pulse Width 97, 109, 122, 134, 145

R

- Ramp 1 31, 39, 49, 60, 72, 83, 97, 109, 134, 145, 159, 171, 184, 198, 211, 227, 239, 252, 266, 279, 296, 309, 324, 341, 352, 364, 377, 387, 426, 438
- Recommended 40, 73, 135, 146, 267, 280, 325, 365, 378, 427, 440
- Recommended Initial Operations 40, 50, 73, 83, 98, 110, 122, 135, 146, 160, 172, 184, 198, 212, 228, 240, 252, 267, 280, 310, 325, 342, 365, 378, 388, 427, 440
- Reference Current 97, 109, 122, 134, 145
- Reference Gas 341, 352, 364
- Registration and Revision Number 26
- Replace the glass liner 98, 160, 228, 297, 342
- Replace the glass liner. 40, 61, 73, 84, 123, 135, 146, 185, 199, 212, 253, 267, 280, 325, 353, 365, 378
- Replace the septum 40, 61, 73, 84, 98, 123, 135, 146, 160, 185, 199, 212, 228, 253, 267, 280, 297, 325, 342, 353, 365, 378, 427

S

- Scope 26, 38, 48, 58, 70, 82, 96, 108, 120, 132, 144, 158, 170, 182, 196, 210, 226, 238, 250, 264, 278, 294, 308, 322, 340, 350, 362, 376, 386, 398, 406, 414, 424, 436
- Secondary Cooling 49, 109, 387
- Secondary cooling 171, 239, 309
- Septum 38, 58, 70, 82, 96, 120, 132, 144, 158, 182, 196, 210, 226, 250, 264, 278, 294, 322, 340, 350, 362, 376, 424, 436
- Septum Installation 28
- Shealth Gas 296, 309, 324, 341, 352, 364
- SOPs Parts Referenced 27
- Source Current 159, 171, 184, 198, 211, 227, 239, 252, 266, 279
- Split Flow 39, 83, 97, 145, 159, 211, 227, 279, 296, 324, 341, 377, 426

Splitless Time 39, 83, 97, 145, 159, 211, 227, 279, 296, 324, 341, 377, 426

Standard 26

- Standard Operating Procedures 26
- Syringe 27, 38, 48, 58, 70, 82, 96, 108, 120, 132, 144, 158, 170, 182, 196, 210, 226, 238, 250, 264, 278, 294, 308, 322, 340, 350, 362, 376, 386, 424, 436

т

- TCD 357, 369
- Temperature 39, 60, 72, 97, 122, 134, 159, 184, 198, 227, 252, 266, 296, 341, 352, 364, 377, 426
- Test Column 27, 48, 96, 108, 158, 170, 226, 238, 294, 308, 340, 386
- Test Mixture 38, 48, 59, 71, 82, 96, 108, 121, 133, 144, 158, 170, 183, 197, 210, 226, 238, 251, 265, 278, 294, 308, 322, 340, 351, 363, 376, 386, 425, 437 Test Mixtures 27
- Test Mixtures 27
- Tetradecane 38, 48, 59, 71, 82, 340, 351, 363, 376, 386, 392, 425, 437
- Transfer ram 83, 145, 279, 324
- Transfer ramp 83, 145, 211, 279, 324
- Transfer Temperature 83, 145, 211, 279, 324
- Transfer time 83, 145, 211, 279, 324

W

Wander 45, 46, 55, 56, 66, 67, 78, 79, 90, 91, 104, 105, 116, 117, 129, 130, 141, 142, 153, 154, 167, 168, 179, 180, 192, 193, 206, 207, 220, 221, 235, 236, 247, 248, 260, 261, 274, 275, 288, 289, 305, 306, 318, 319, 334, 335, 347, 348, 358, 359, 370, 371, 383, 384, 393, 394, 432, 433, 443, 444

Х

Xcalibur 27, 38, 48, 59, 71, 82, 96, 108, 121, 133, 144, 158, 170, 183, 197, 210, 226, 238, 251, 265, 278, 295, 308, 323, 340, 351, 363, 376, 386, 425, 437

Operating Procedures

Test Column Conditioning	
FID-S/SL Checkout in Splitless Mode	41
FID-OCI Checkout in On-Column Mode	51
FID-PKD Checkout	62
FID-PPKD Checkout	74
FID-PTV Checkout in PTV Splitless Mode	
ECD-S/SL Checkout in Splitless Mode	99
ECD-OCI Checkout in On-Column Mode	111
ECD-PKD Checkout	
ECD-PPKD Checkout	
ECD-PTV Checkout in PTV Splitless Mode	147
NPD-S/SL Checkout in Splitless Mode	161
NPD-OCI Checkout in On-Column Mode	173
NPD-PKD Checkout	
NPD-PPKD Checkout	
NPD-PTV Checkout in PTV Splitless Mode	
FPD-S/SL Checkout in Splitless Mode	
FPD-OCI Checkout in On-Column Mode	241
FPD-PKD Checkout	254
FPD-PPKD Checkout	
FPD-PTV Checkout in PTV Splitless Mode	
PID-S/SL Checkout in Splitless Mode	
PID-OCI Checkout in On-Column Mode	
PID-PTV Checkout in PTV Splitless Mode	
TCD-S/SL Checkout in Splitless Mode	
TCD-PKD Checkout	
TCD-PPKD Checkout	
PDD-S/SL Checkout in Splitless Mode	
PDD-OCI Checkout in On-Column Mode	
Example of FID Tandem Checkout	
Example of NPD Tandem Checkout	
Example of FPD Tandem Checkout	
FID-LVSL Checkout in Splitless Mode	
FID-LVOC Checkout in LVOC Mode	

Figures

Figure 2-1.	FID-Splitless Injection	.44
Figure 3-1.	FID-On-Column Injection	. 54
Figure 4-1.	FID-Packed Injection	. 65
Figure 5-1.	FID-PPKD Injection	.77
Figure 6-1.	FID-PTV Injection	. 89
Figure 7-1.	ECD-Splitless Injection	. 102
Figure 8-1.	ECD-On-Column Injection	.114
Figure 9-1.	ECD-PKD Injection	. 127
Figure 10-1.	ECD-PPKD Injection	. 139
Figure 11-1.	ECD-PTV Injection	.151
Figure 12-1.	NPD-Splitless Injection	.165
Figure 13-1.	NPD-On-Column Injection	. 177
Figure 14-1.	NPD-Packed Injection	. 190
Figure 15-1.	NPD-PPKD Injection	.204
Figure 16-1.	NPD-PTV Injection	.218
Figure 17-1.	FPD-Splitless Injection with 526 nm filter	.232
Figure 17-2.	FPD-Splitless Injection with 394 nm	.233
Figure 18-1.	FPD-On-Column Injection with 526 nm filter	.244
Figure 18-2.	FPD-On-Column Injection with 394 nm	.245
Figure 19-1.	FPD-PKD Injection with 526 nm filter	.257
Figure 19-2.	FPD-PKD Injection with 394 nm	.258
Figure 20-1.	FPD-PPKD Injection with 526 nm filter	.271
Figure 20-2.	FPD-PPKD Injection with 394 nm.	.272
Figure 21-1.	FPD-PTV Injection with 526 nm filter	.285
Figure 21-2.	FPD-PTV Injection with 394 nm filter	.286
Figure 22-1.	PID-Splitless Injection with 8.4 eV UV Lamp	. 301
Figure 22-2.	PID-Splitless Injection with 9.6 eV UV Lamp	. 302
Figure 22-3.	PID-Splitless Injection with 10.6 eV UV Lamp	. 303
Figure 22-4.	PID-Splitless Injection with 11.8 eV UV Lamp	. 304
Figure 23-1.	PID-On-Column Injection with 8.4 eV UV Lamp	.314
Figure 23-2.	PID-On-Column Injection with 9.6 eV UV Lamp	.315
Figure 23-3.	PID-On-Column Injection with 10.6 eV UV Lamp	.316
Figure 23-4.	PID-On-Column Injection with 11.8 eV UV Lamp	.317
Figure 24-1.	PID-PTV Injection with 8.4 eV UV Lamp	.330
Figure 24-2.	PID-PTV Injection with 9.6 eV UV Lamp	. 331
Figure 24-3.	PID-PTV Injection with 10.6 eV UV Lamp	. 332
Figure 24-4.	PID-PTV Injection with 11.8 eV UV Lamp	. 333

Figure 25-1.	TCD-Splitless Injection	
Figure 26-1.	TCD-Packed Injection	
Figure 27-1.	TCD-PPKD Injection	
Figure 28-1.	PDD-Splitless Injection	
Figure 29-1.	PDD-On-Column Injection	
Figure 30-1.	FID Tandem	
Figure 31-1.	NPD Tandem	
Figure 32-1.	FPD Tandem	414
Figure 33-1.	FID-LV Splitless Injection	
Figure 34-1.	FID-LVOC Injection	

Tables

Table 1-1.	SOPs Parts Referenced	27
Table 1-2.	Column Conditioning Parameters	
Table 2-1.	FID-S/SL Parts Referenced	
Table 2-2.	FID-S/SL Analytical Conditions	
Table 2-3.	FID-S/SL Acceptance Criteria	45
Table 3-1.	FID-OCI Parts Referenced	
Table 3-2.	FID-OCI Analytical Conditions	49
Table 3-3.	FID-OCI Acceptance Criteria.	55
Table 4-1.	FID-PKD Parts Referenced	58
Table 4-2.	FID-PKD Analytical Conditions	60
Table 4-3.	FID-PKD Acceptance Criteria	66
Table 5-1.	FID-PPKD Parts Referenced	70
Table 5-2.	FID-PPKD Analytical Conditions	72
Table 5-3.	FID-PPKD Acceptance Criteria	78
Table 6-1.	FID-PTV Parts Referenced	
Table 6-2.	FID-PTV Analytical Conditions	
Table 6-3.	FID-PPKD Acceptance Criteria	90
Table 7-1.	ECD-S/SL Parts Referenced	96
Table 7-2.	ECD-S/SL Analytical Conditions	97
Table 7-3.	ECD-S/SL Acceptance Criteria	104
Table 8-1.	ECD-OCI Parts Referenced	
Table 8-2.	ECD-OCI Analytical Conditions	
Table 8-3.	ECD-OCI Acceptance Criteria	116
Table 9-1.	ECD-PKD Parts Referenced	
Table 9-2.	ECD-PKD Analytical Conditions	
Table 9-3.	ECD-PKD Acceptance Criteria	129
Table 10-1.	ECD-PPKD Parts Referenced	132
Table 10-2.	ECD-PPKD Analytical Conditions	134
Table 10-3.	ECD-PPKD Acceptance Criteria	141
Table 11-1.	ECD-PTV Parts Referenced	144
Table 11-2	ECD-PTV Analytical Conditions	145
Table 11-3.	ECD-PTV Acceptance Criteria	153
Table 12-1.	NPD-S/SL Parts Referenced	158
Table 12-2.	NPD-S/SL Analytical Conditions	159
Table 12-3.	NPD-S/SL Acceptance Criteria	167
Table 13-1.	NPD-OCI Parts Referenced	170
Table 13-2.	NPD-OCI Analytical Conditions	171

Table 13-3.	NPD-OCI Acceptance Criteria	179
Table 14-1.	NPD-PKD Parts Referenced	182
Table 14-2.	NPD-PKD Analytical Conditions	184
Table 14-3.	NPD-PKD Acceptance Criteria	192
Table 15-1.	NPD-PPKD Parts Referenced	196
Table 15-2.	NPD-PPKD Analytical Conditions	198
Table 15-3.	NPD-PPKD Acceptance Criteria	206
Table 16-1.	NPD-PTV Parts Referenced	210
Table 16-2.	NPD-PTV Analytical Conditions	211
Table 16-3.	NPD-PTV Acceptance Criteria	220
Table 17-1.	FPD-S/SL Parts Referenced	226
Table 17-2.	FPD-S/SL Analytical Conditions	227
Table 17-3.	FPD-S/SL Acceptance Criteria	235
Table 18-1.	FPD-OCI Parts Referenced	238
Table 18-2.	FPD-OCI Analytical Conditions	239
Table 18-3.	FPD-OCI Acceptance Criteria.	247
Table 19-1.	FPD-PKD Parts Referenced	250
Table 19-2.	FPD-PKD Analytical Conditions	252
Table 19-3.	FPD-PKD Acceptance Criteria	260
Table 20-1.	FPD-PPKD Parts Referenced	264
Table 20-2.	FPD-PPKD Analytical Conditions	266
Table 20-3.	FPD-PPKD Acceptance Criteria	274
Table 21-1.	FPD-PTV Parts Referenced	278
Table 21-2.	FPD-PTV Analytical Conditions	279
Table 21-3.	FPD-PTV Acceptance Criteria	288
Table 22-1.	PID-S/SL Parts Referenced	294
Table 22-2.	PID-S/SL Analytical Conditions	296
Table 22-3.	PID-S/SL Acceptance Criteria	305
Table 23-1.	PID-OCI Parts Referenced	308
Table 23-2.	PID-OCI Analytical Conditions	309
Table 23-3.	PID-OCI Acceptance Criteria	318
Table 24-1.	PID-PTV Parts Referenced	322
Table 24-2.	PID-PTV Analytical Conditions	324
Table 24-3.	PID-PTV Acceptance Criteria	334
Table 25-1.	TCD-S/SL Parts Referenced	340
Table 25-2.	TCD-S/SL Analytical Conditions	341
Table 25-3.	TCD-S/SL Acceptance Criteria	347
Table 26-1.	TCD-PKD Parts Referenced	350

Table 26-2.	TCD-PKD Analytical Conditions	
Table 26-3.	TCD-PKD Acceptance Criteria	
Table 27-1.	TCD-PPKD Parts Referenced	
Table 27-2.	TCD-PPKD Analytical Conditions	
Table 27-3.	TCD-PPKD Acceptance Criteria	
Table 28-1.	PDD-S/SL Parts Referenced	
Table 28-2.	PDD-S/SL Analytical Conditions	
Table 28-3.	PDD-S/SL Acceptance Criteria	
Table 29-1.	PDD-OCI Parts Referenced	
Table 29-2.	PDD-OCI Analytical Conditions	
Table 29-3.	PDD-OCI Acceptance Criteria	
Table 30-1.	FID-ECD SOPs Reference	
Table 31-1.	NPD-ECD SOPs Reference	
Table 32-1.	FPD-ECD SOPs Reference	
Table 33-1.	FID-LVSL Parts Referenced	
Table 33-2.	FID-LVSL Analytical Conditions	
Table 33-3.	FID-LVSL Acceptance Criteria	
Table 34-1.	FID-LVOC Parts Referenced	
Table 34-2.	FID-LVOC Analytical Conditions for the GC	
Table 34-3.	FID-LVOC Analytical Conditions for the TriPlus Autosampler	
Table 34-4.	FID-LVOC Acceptance Criteria	