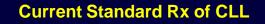
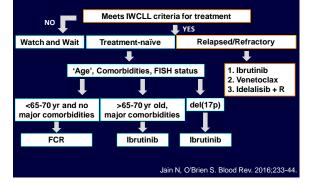


Nitin Jain, MD **Department of Leukemia MD Anderson Cancer Center** Houston, TX

March 2018

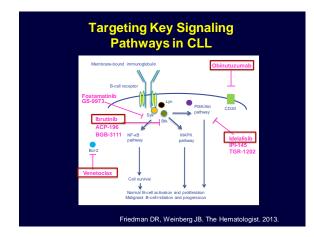

Financial Disclosures


Research Funding

Pharmacyclics, Abbvie, Genentech, Infinity, BMS, Pfizer, ADC Therapeutics, Seattle Genetics, Incyte, Celgene, AstraZeneca, Servier, Verastem, Cellectis, Adaptive Biotechnologies

Advisory Board

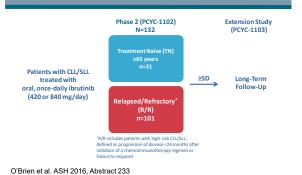
Pharmacyclics, Novartis, ADC Therapeutics, Pfizer, Servier, Novimmune, Abbvie, Verastem, Adaptive Biotechnologies, Janssen



Presentation Outline

- Approved therapies in R/R CLL
 - -BTK inhibitor Ibrutinib
 - -PI3K inhibitor Idelalisib + Rituximab
 - -BCL2 inhibitor Venetoclax
- Combination therapies in R/R CLL
- CART therapy in CLL

IBRUTINIB BTK Inhibitor

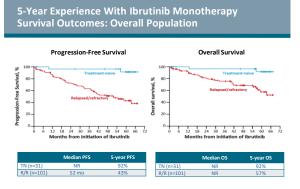


inhibition

In chronic lymphocytic leukemia • (CLL) cells promotes apoptosis and inhibits CLL cell migration and adhesion

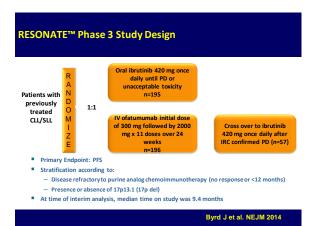
Advani, R. et al, J Clin Oncol. 2012;42:7906. Honigberg LA et al. Proc Natl Acad Sci U S A.2010;107:13075. Herman SEM et al. Blood 2011;117: 6287-6286. Ponader, et al. ASH Meeting Abstracts. 2010; 116:45.

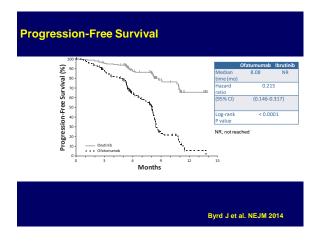
5-Year Experience With Ibrutinib Monotherapy PCYC-1102/1103 Phase 2 Study Design



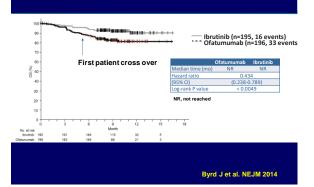
5-Year Experience With Ibrutinib Monotherapy Best Response

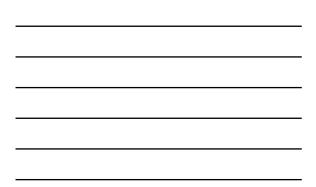
O'Brien et al. ASH 2016, Abstract 233

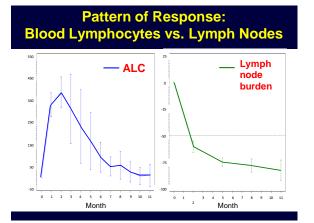



O'Brien et al. ASH 2016, Abstract 233

5-Year Experience With Ibrutinib Monotherapy Survival by FISH in R/R Patients*

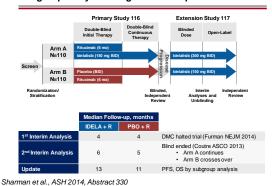

O'Brien et al. ASH 2016, Abstract 233

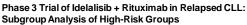


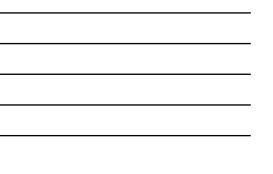


Overall Survival

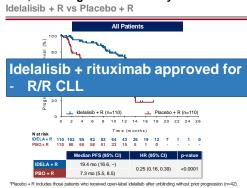
IDELALISIB


PI3K-δ Inhibitor


Idelalisib, A Novel Small Molecule Inhibitor



- Targeted, highly selective, oral inhibitor of PI3K-delta ($\delta)$
- Inhibits proliferation and induces apoptosis in CLL cells
- Inhibits homing and retention of CLL cells in lymphoid tissues reducing cell survival


Coutre et al. EHA 2014:S704

PFS, Including Extension Study*

Sharman et al., ASH 2014, Abstract 330

Serious Adverse Events In ≥2 Patients On IDELA + R

SAE, n (%)	IDELA + R (N=110)	Placebo + R (N=108)
Patients with any SAE	54 (49)	41 (38)
Pneumonia	10 (9)	11 (10)
Pyrexia	10 (9)	3 (3)
Febrile neutropenia	5 (5)	5 (5)
Sepsis	5 (5)	3 (3)
Pneumonitis	4 (4)	1 (1)
Pneum. jirov. pneumonia	3 (3)	1 (1)
Diarrhea	3 (3)	0
Hypercalcemia	2 (2)	2 (2)
Abdominal pain	2 (2)	1 (1)
Hypoxia	2 (2)	1 (1)
Colitis	2 (2)	0
Deep vein thrombosis	2 (2)	0
Sepsis syndrome	2 (2)	0
Neutropenia	2 (2)	0
Neutropenic sepsis	2 (2)	0
Lung infection	2 (2)	0
Transient ischemic attack	2 (2)	0

Colitis with PI3K-&	Inhibition
WT p1105 D910A/D910A V V V V	p1106 ^{D910A/D910A} - IBD like picture - Mucosal hyperplasia - Crypt abscess
vii viii	Clinical Management - Late event (>6mos) - Drug hold - Oral/IV steroids

Idelalisib Summary

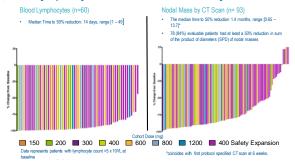
- Approved for patients with relapsed CLL in combination with rituximab
- Immune-mediated colitis, transaminitis, pneumonitis
- EMA/FDA Advisory (March 2016)
 - Increased deaths due to infections in Phase III trials of idelalisib vs. placebo
 - -All patients PCP prophylaxis
 - -CMV monitoring

VENETOCLAX (ABT-199)

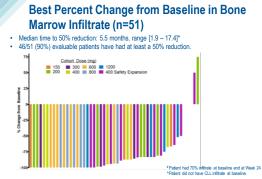
Bcl-2 Inhibitor

Bcl-2 in CLL

- Bcl-2 expression is uniformly high in CLL
- ABT-199 is a selective, potent, orally bioavailable Bcl-2 inhibitor
- ABT-199 binds Bcl-2 with high affinity and with substantially lower affinity to Bcl-x_L, Bcl-w and MCL-1



ABT-199


Souers et al. Nature Med. 2013

Venetoclax CRR and ORR Rates by Subgroups			
<u>Variable</u>	<u>No.</u>	<u>ORR</u> %	<u>CR</u> %
All patients	116	79	20
17p deletion	31	71	16
Unmutated IGHV	46	76	17
Flu - refractory	70	79	16
Prior Rx ≥ 4	56	73	16
Age ≥ 70	34	71	21
Nodes > 5 cm	67	78	8

Best Percent Change from Baseline in Blood Lymphocyte Count and Nodal Mass by CT Scan

Anti-tumor activity of ABT-199 was observed in all tumor compartments.

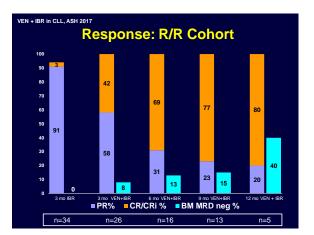
Relapsed CLL Combination Therapy: Future?
BCRi
+/-
BCL2i
+/-
CD20 mAb

MDANDERSON CANCER CENTER for Patients with Previously Untreated High-Risk CLL, and Relapsed/Refractory CLL A Phase II Trial

Combined Venetoclax and Ibrutinib

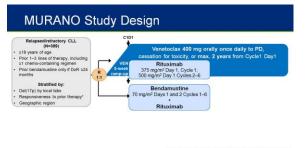
<u>Nitin Jain</u>, Philip Thompson, Alessandra Ferrajoli, Jan Burger, Gautam Borthakur, Koichi Takahashi, Prithviraj Bose, Zeev Estrov, Elias Jabbour, Marina Konopleva, Yesid Alvarado, Tapan Kadia, Musa Yilmaz, Courtney DiNardo, Maro Ohanian, Jorge Cortes, Rashmi Kanagal-Shamanna, Keyur Patel, Naveen Garg, Xuemei Wang, Nina Fru, Nichole Cruz, Varsha Gandhi, William Plunkett, Hagop Kantarjian, Michael Keating, William Wierda

Department of Leukemia, MDACC ASH 2017, Abstract 429


VEN + IBR in CLL, ASH 201	7	
B	CR vs. BCL2 Inhi	bitors
	BCR Inhibitor (Ibrutinib)	BCL2 Inhibitor (Venetoclax)
Response	Blood ++ LN +++ Marrow +	Blood +++ LN ++ Marrow +++
Lymphocytosis	+++	-
CR in R/R CLL	10%	20-25%
AE profile	Atrial fibrillation, neutropenia, bleeding	TLS, neutropenia

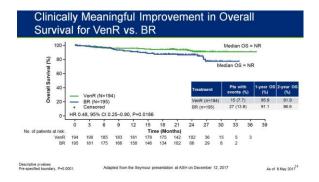
VEN + IBR in CLL, ASH 2017

Ibrutinib + Venetoclax Clinical Trial


- Investigator-initiated phase II trial
- Patients with a diagnosis of CLL/SLL
 - Cohort 1: relapsed/refractory CLL
 - Cohort 2: untreated with at least one high-risk feature
 - del(17p) or mutated TP53
 - del(11q)
 - unmutated IGHV
 - ≥65 yrs

Venetoclax Plus Rituximab is Superior to Bendamustine Plus Rituximab in Patients with Relapsed / Refractory Chronic Lymphocytic Leukemia – Results from Pre-Planned Interim Analysis of the Randomized Phase 3 MURANO Study

John F. Seymour¹, Thomas Kipps⁹, Barbara Eichhors¹, Peter Hillmen⁴, James D Rozario⁵, Saitt Assoullin⁶, Carolyn Owen⁷, John Gerottano¹, Tadeuuz Roba⁶, Javier De la Serna³ Utrich Jaeger¹¹, Guillaum C Catrolin¹, Marco Mollo¹¹, 3r det Humerichkous⁴, Elabeth A. Punnoss¹⁸, Yan Li¹³, Michelle Boyer¹⁴, Kathryn Humphrey¹⁶, Mchrdad Mobasher¹⁵, Amon P. Kater¹⁷ ¹¹Peter Linear Cate Category Cenergy Teams Instead and Category Category Category Category Category Category Category Cenergy Teams Instead and Category Category Category Category Category Cenergy Teams Instead Ca


Adapted from the Seymour presentation at ASH on December 12, 2017 "High-Inta CLL - any of following features: de(17)) or no response to find-line chemotherapy-containing regimen or relapsed s12 months after demotherapy or within S24 months after chemomiunotherapy.

tatus	Venetoclax + Rituximab (N=194)	Bendamustine + Rituximab (N=195)
ge, median (range), years	64.5 (28-83)	66.0 (22-85)
mphocyte count (×10 ⁹ /L), median (range)	43.1 (0.3-703)	54.7 (0.3-536)
l(17p)*, n/N (%)	46/173 (27)	46/169 (27)
imutated IGHV*, n/N (%)	123/180 (68)	123/180 (68)
tated TP53*, n/N (%)	48/192 (25)	51/184 (28)
umber of prior therapies, n (%) 1 2 3 >3	111 (57) 57 (29) 22 (11) 4 (2)	117 (60) 43 (22) 34 (17) 1 (1)
ior therapies, n (%)		
Alkylating agent	182 (93)	185 (95)
Purine analog	157 (81)	158 (81)
Anti-CD20 antibody	153 (78)	148 (76)
B-cell receptor pathway inhibitors	5 (3)	3 (2)

Superiority of VenR vs. BR Confirmed by Independent Review Committee-Assessed PFS

*Cer

High Peripheral Blood MRD Negativity Rate Maintained Over Time for VenR vs. BR Negative Assay positive Assay failure PD/death/withdrew Sample missing Venetoclax + Rituximab (N=194) Bendamustine + Rituximab (N=195) 100% 80% 60% 40% 20% 0% 12 15 12 15 10 (5) As of 8 May 2017¹³ 11 26 20 17 (6) (13) (10) (9) MRD negative, n (%) 88 121 117 110 116 (45) (62) (60) (57) (60)

JCAR014 CART in High-risk R/R CLL

- 24 pts with R/R CLL
 - No of prior therapies 5
 - Ibrutinib refractory 79%
 - Venetoclax refractory 25%
 - FDG-avid PET 93%
 - Documented RT/PLL 33%
- Response at 4 weeks (JCAR014 + Cy/Flu)
 - ORR 74%, CR 21%
 - PET+ disease CR 64%
 - Bone marrow disease 88% MRD^{neg}

Turtle C et al. ASH 2016

Conclusions

- Targeted therapies great future in CLL
 - Ibrutinib Approved for CLL
 - Idelalisib Approved for R/R CLL
 - Venetoclax Approved for R/R del(17p) CLL
- Combination therapies are the future

Thank you!

njain@mdanderson.org

Ibrutinib intolerance and resistance in CLL

Alexey V. Danilov MD, PhD

Associate Professor of Medicine Oregon Health & Science University Danilov@ohsu.edu

KNIGHT CANCER INSTITUTE

Disclosures for Danilov

Research funding:

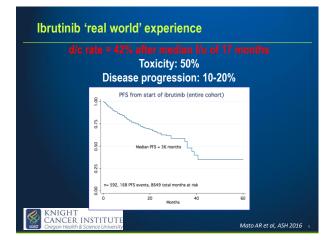
- Leukemia & Lymphoma Society
 Lymphoma Research Foundation
 NCI/SWOG
- Takeda Oncology
- Gilead Sciences
- Genentech
- Consultancy/Honoraria:

 - Genentech
 Verastem
 TG Therapeutics
 Astra Zeneca

 - Juno TherapeuticsGilead Sciences

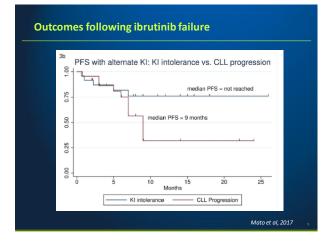
Post-ibrutinib world

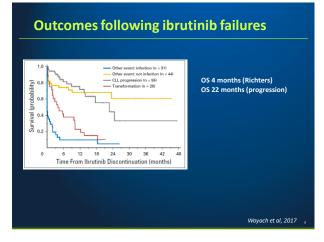
Ibrutinib intolerance

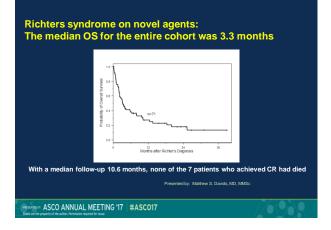

- -Role of other BTK inhibitors (acalabrutinib)
- -Alternative pathway medications
- -Factors predicting poor ibrutinib outcomes

Ibrutinib resistance

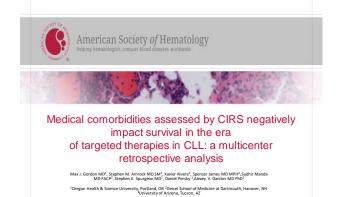
- -Mechanisms (in CLL) -What to do?
- KNIGHT CANCER INSTITUTE

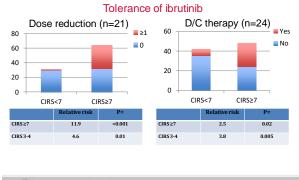

Ibrutinib clinical trials experience

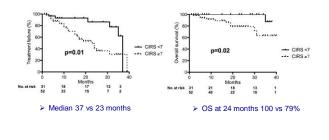

Disposition	TN (n=31)	R/R (n=101)
Median time on study, months (range)	62 (1–67)	49 (1–67)
Patients remaining on ibrutinib therapy, n (%)	20 (65%)	30 (30%)
Primary reason for discontinuation, n (%)		
Progressive disease	1 (3%)	33 (33%)
Adverse event	6 (19%)	21 (21%)
Consent withdrawal	3 (10%)	5 (5%)
Investigator decision	0	11 (11%)
Lost to follow-up	1 (3%)	1 (1%)
KNIGHT CANCER INSTITUTE Dregon Health & Science University O'Brien, Furman et al, ASH 2016		


Reasons for Discontinuation			
Front Line (%)	Relapsed (%)		
arthralgias (42)	atrial fibrillation (12.3)		
Afib (25)	Infection (11)		
Rash (16)	Pneumonitis (10)		
	Bleeding (9)		
	Diarrhea (7)		
Median Time to	Discontinuation		
Bleeding	8 months		
Diarrhea	7.5 months		
Atrial fibrillation	7 months		
infection	6 months		
arthralgia	5 months		
pneumonitis	4.5 months		
rash	3.5 months		

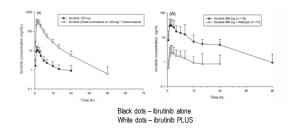
Reasons for Discontinuation







(S) American Society of Hematology



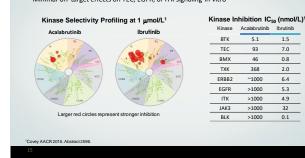
Outcomes with ibrutinib

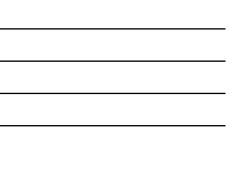
American Society of Hematology

Ibrutinib is a CYP3A4 substrate

KNIGHT CANCER INSTITUTE Oreaon Health & Science University

De Jong et al, 2015


Acalabrutinib Monotherapy in Patients With Ibrutinib Intolerance: Results From the Phase 1/2 ACE-CL-001 Clinical Study


Farrukh T. Awan,⁵ Anna Schuh,² Jennifer R. Brown,³ Richard R. Furman,⁴ John M. Pagel,⁵ Peter Hillmen,⁶ Deborah M. Stephens,⁷ Ahmed Hamdy,⁴ Raquel Izumi,⁹ Priti Patel,⁸ Min Hui Wang,¹John C. Byrd¹ ¹ The Ohio State University Comprehensive Cancer Center, Columbus, OH; ³Joinveisty of Odord, Oxford, UK, ³ Dana-Farber Cancer Institute, Boston, MA,⁶ Weill Cornell Medical College, New York Presbyterian Hospital, New York, WT, ⁵Swedish Medical Center, Seattle, WM,⁴ St. Jame's Stumiersity Hospital, Leeds, UK,⁷University of Utah Huntsman Cancer Institute, Salt Lake City, UT, ⁸Acerta Pharma, Redwood City, CA

Awan F, et al. ASH 2016

Acalabrutinib (ACP-196)

Acalabrutinib is a highly selective, potent BTK inhibitor
Minimal off-target effects on TEC, EGFR, or ITK signaling in vitro

Awan F, et al. ASH 2016

ACE-CL-001: Acalabrutinib Monotherapy in CLL

- ACE-CL-001 is an ongoing, multinational, phase 1/2 study designed to evaluate acalabrutinib monotherapy in patients with CLL/SLL.
- Previously reported ORR with acalabrutinib monotherapy:
- Relapsed/refractory: 95% (85% PR, 10% PRL; n = 60).¹
- Treatment-naïve: 97% (87.5% PR; 10% PRL; n = 72).²

JC, et al. N Engl J Med. 2016;374(4):323-332. ²Byrd JC, et al. ASCO 2016 [p

- Data are presented for 33 patients in the ibrutinib-intolerant cohort with data cut on 01 September 2016.

Awan F, et al. ASH 2016

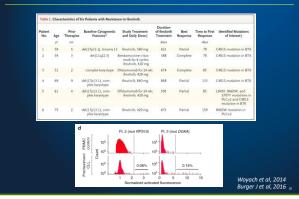
Patient Disposition

Treated	33 (100)
Discontinued treatment	9 (27)
Progressive disease	3 (9)
Adverse event ^a	3 (9)
Physician decision ^b	1 (3)
Other ^c	2 (6)
On treatment	24 (73)
Stroke (hemorrhagic) and fungal infection led to death (cancer (n = 1). Concurrent hemophilia. -increase in BTK C481S mutation frequency in peripheral (n = 1 patient each).	

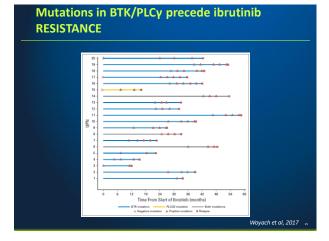
• Median time on treatment: 12.2 months (range, 0.2-23.6 months)

Awan F, et al. ASH 2016

Recurrence of Prior Ibrutinib-Related AEs

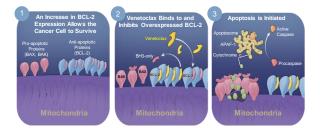

	Grade Change in Severity on Acalabrutinib vs on Ibrutinib		
Adverse Event	Increased	Decreased	Unchanged
Arthralgia (n = 1)		$2 \rightarrow 1$	
Atrial fibrillation (n = 1)			$2 \rightarrow 2$
Contusion (n = 1)	$1 \rightarrow 2^a$		
Diamhas (n. 2)		$2 \rightarrow 1$	
Diarrhea (n = 2)		$3 \rightarrow 1$	
Ecchymosis (n = 1)		$2 \rightarrow 1^{a}$	
Fatigue (n = 3)	$1 \rightarrow 2^a$	$2 \rightarrow 1$	$1 \rightarrow 1$
Muscle spasms (n = 1)			$1 \rightarrow 1$
Myalgia (n = 1)			$1 \rightarrow 1$
Peripheral edema (n = 1)			$1 \rightarrow 1$
Panniculitis (n = 1)		$3 \rightarrow 2^a$	
Rash (n = 3)		3 → 1*	$1 \rightarrow 1$
		$3 \rightarrow 1^{\circ}$	$1 \rightarrow 1^a$

Awan P, et al. ASH 2016


Key Findings

- Acalabrutinib was well tolerated in ibrutinib-intolerant patients.
 A total of 12 of 33 (36%) patients experienced AE recurrence, most of which were decreased or the same severity.
- No patients discontinued because of a recurrent AE.
- Acalabrutinib has promising activity in ibrutinib-intolerant patients. – ORR: 79%
- B1% of responding patients have a duration of response (PRL or better) ≥12 months.
 Median PFS has not been reached.
- Acalabrutinib efficacy in ibrutinib-intolerant patients is being evaluated in an ongoing phase 2 trial (NCT02717611).

Ibrutinib RESISTANCE



After ibrutinib – what's next?

- Acalabrutinib (ibrutinib-intolerant only)
- Alternative BTK inhibitors which do not bind C481S:
 - -GDC-0853
 - SNS-062
- -ARQ-531
- Venetoclax
- Idelalisib (Duvelisib, Umbralisib)
- Other: PD-1; CART; CDK inhibitors (dinaciclib, voruciclib)

Venetoclax: Selective BCL-2 Inhibitor

 Venetoclax is a potent, orally bioavailable agent with a BCR-independent mechanism of action and substantial activity in heavily pre-treated CLL (Roberts AW et al, NEJM 2015)

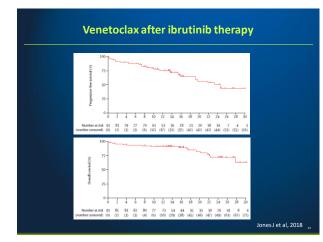
Venetoclax Dosing Schedule

All patients

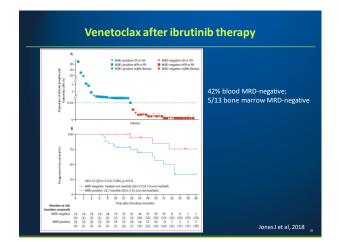
- had tumor burden assessment by imaging for nodal size and absolute lymphocyte count at enrollment
- received prophylaxis for tumor lysis syndrome (TLS) with uric acid reducers and hydration
- Patients with high tumor burden were hospitalized prior to dosing to facilitate TLS prophylaxis
- Laboratory values were monitored for evidence of tumor lysis for at least 24 hours after the first dose at each dose level

24

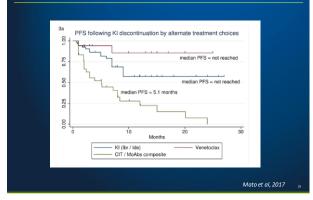
Venetoclax in IBRUTINIB resistance


	Main cohort	Expansion cohort	All patients (n=91)
	(n=43)	(n=48)	
Prognostic factors based on site-repo	rted data‡		
Non-mutated IGHV	25/29 (86%)	25/38 (66%)	50/67 (75%)
del(17)(p13.1)	21/43 (49%)	21/47 (40%)	42/90 (47%)
del(11)(q22.3)	13/43 (30%)	17/48 (33%)	30/91 (33%)
TP53 mutation	15/41 (37%)	14/46 (30%)	29/87 (33%)
CD38 positive	21/42 (50%)	16/44 (36%)	37/86 (43%)
ZAP-70 positive	12/24 (50%)	17/40 (43%)	29/64 (45%)
Treatment history			
Number of previous therapies	5 (1-12)	4 (1-15)	4 (1-15)
Previous ibrutinib use	43 (100%)	48 (100%)	91 (100%)
Time on ibrutinib (months)	18 (1-56)	21 (1-61)	20 (1-61)
Relapsed during or after ibrutinib	11 (26%)	17 (35%)	28 (31%)
Refractory to ibrutinib	32 (74%)	30 (63%)	62 (68%)
Previous idelalisib use§	4 (9%)	7 (15%)	11 (12%)
Time on idelalisib (months)	16 (2-31)	9 (2-33)	9 (2-33)
			Jones J et al, 2

Venetoclax after ibrutinib therapy


	Main cohort (n=43)	Expansion cohort (n=48)	All patients (n=91)
Overall response	30 (70%, 54-83)	29 (60%, 43-72)	59 (65%, 53-74)
Complete response or complete response with incomplete bone marrow recovery	4 (9%)	4 (8%)	8 (9%)
Nodular partial response	2 (5%)	1 (2%)	3 (3%)
Partial response	24 (56%)	24 (48%)	48 (52%)
itable disease	8 (19%)	14 (29%)	22 (24%)
)isease progression	1* (2%)	4* (8%)	5 (5%)
Discontinued before response assessment	4 (9%)	2 (4%)	6 (7%)

2: Response with venetoclax monotherapy as assessed by the investigator


ones J et al. 2018

Failed ibrutinib – what to do?

Summary

- Ibrutinib intolerance and resistance is becoming a common problem
- Ibrutinib does not 'protect' from Richter's transformation
- Second-generation BTK inhibitors may be a good option for patients intolerant of ibrutinib
- Venetoclax > PI3K in patients resistant to ibrutinib

An update on Richter Transformation

Dr. Philip Thompson The University of Texas M.D. Anderson Cancer Center, Department of Leukemia

Disclosures

- Pharmacyclics: Research support, Consultancy
- AbbVie: Research support, Consultancy
- Genentech: Consultancy
- Amgen: Research support, Consultancy

Background

- Richter Transformation (RT) is a transformation of CLL to an aggressive lymphoma, most commonly DLBCL and less commonly classical Hodgkin Lymphoma.¹
- Rare cases of transformation to plasmablastic lymphoma, histiocytic sarcoma and other uncommon lymphomas²
- Occurs in 2-10% of patients with CLL (0.5-1% per year).

¹Rossi, Blood 2011 ²Jain, P, Oncology 2012.

Risk factors for transformation

- Tends to be associated with high-risk CLL biology:
- 1. Unmutated IGHV¹
- 2. Del(17p), del(11q), trisomy 12²
- 3. Mutations in *NOTCH1*, which disrupt the PEST domain³
- Possible association with fludarabine-based chemotherapy.

¹Rossi Blood 2011 ²Strati CLML 2015 ³Rossi Blood 2012.

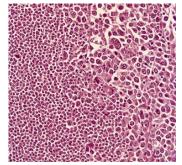
Clinical features of transformation

- Non-specific.
- Fevers, drenching night sweats, weight loss.
- Rapidly enlarging lymph nodes.
- Elevated LDH. Sometimes hypercalcemia.

PET/CT as a screening tool

PET/CT as a screening/prognostic tool

- 332 MDA patients had PET/CT and subsequent biopsy. Biopsy results classified as RT, histologically-aggressive CLL (HAC) and histologically-indolent CLL (HIC).¹
- SUV_max strongly correlated with histology: median 17.6 vs 6.8 vs 3.7 in RT vs HAC vs HIC, respectively.
- SUV_{max} \geq 5 had NPV of 92% but only 38% PPV for RT. PPV improved by cut-off of \geq 10 SUV_{max} \geq 10 had the optimal discriminatory power for survival by ROC analysis. Median OS was 56.7mo if SUV_{max} <10 and 6.9mo if \geq 10.
- Interestingly, the negative prognostic impact of ${\rm SUV}_{\rm max} \ge 10$ was identical, regardless of the histology.
- PET/CT also very useful in identifying optimal biopsy site

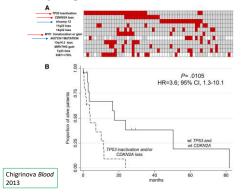

¹Falchi, Blood 2014

Why biopsy?

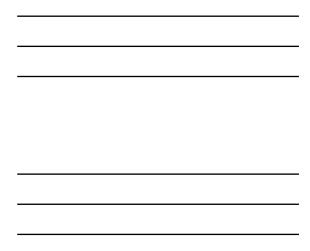
- Not all that is hot on PET/CT is RT.
- Multiple other entities may mimic RT:
- "Accelerated CLL" Important to distinguish as treatment is different¹
- ii) EBV-driven lymphomas (eg. after treatment of CLL with alemtuzumab, post-alloSCT. In contrast, RT is usually EBV negative.²
- iii) Herpetic lymphadenitits³, CMV, EBV.
- iv) Nocardiosis, fungal infection (esp. histoplasmosis).
- v) Granulomatous diseases (eg. TB).

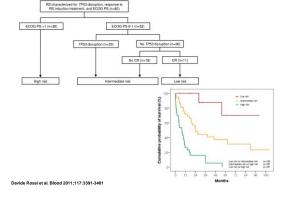
¹Gine Haematologica 2010 ²Asano Blood 2009 ³Joseph AJH 2001

RT DLBCL Histology

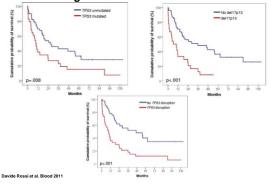


From: Warnke RA, Weiss LM, Chan JK, et al. Tumors of the lymph nodes and spleen. Atlas of tumor pathology (electronic fascicle), Third series, fascicle 14, 1995, Washington, DC. Armed Forces Institute of Pathology.

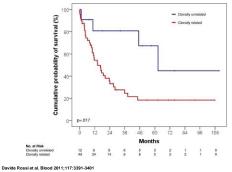

Genomic features of RT


- Clonal relationship to underlying CLL: 80% of DLBCL-RT arise from underlying CLL clone^{1,2} through acquisition of additional mutations.
- Genomically less complex than *de novo* DLBCL and molecularly distinct:
- RT frequently associated with TP53 mutations, inactivating mutations in CDKN2A/B, MYC overexpression, mutations in the PEST domain of NOTCH1, stereotyped B-cell receptor.
- 2. De novo DLBCL frequently associated with BCL2 and BCL6 translocations (not seen in RT).

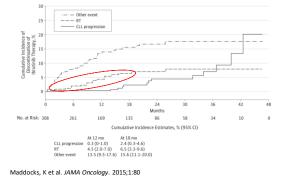
^{1.} Rossi, Blood 2011. ^{2.} Chigrinova, Blood 2013


Major genomic aberrations in RT

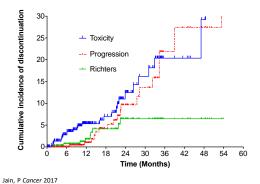



Patients with ECOG >1 and TP53 disruption have poor outcomes.

Loss of functional p53 is a key prognostic marker, regardless of the mechanism



Clonally-unrelated "RT" should be thought of as a different disease


RT is still a frequent event during targeted therapies for R/R CLL

- Ibrutinib ~5%.^{1,2}
- Venetoclax up to 16%.3
- Transformation in these studies was an early event.
- Likely driven by disease biology rather than treatment *per se*. These early phase studies were enriched for patients with biologically high-risk disease.

Ibrutinib discontinuations over time

MDA Data on ibrutinib discontinuation

Prognosis of RT with chemoimmunotherapy

Study	Regimen	n	Median age (years)	Results		
				ORR	CRR	Median OS
Anthracycline-containing Regimens						
Jenke et al, 2011	R-CHOP	15	69 (N/A)	67%	7%	27 months
Dabaja et al, 2001	HyperCVAD	29	61 (36-75)	41%	38%	10 months
Tsimberidou et al, 2003	Rituximab and GM-CSF with alternating hyperCVAD & MTX/cytarabine	30	59 (27-79)	43%	18%	8.5 months
Platinum-containing Re	gimens					
Tsimberidou et al, 2008	OFAR1	20	59 (34-77)	50%	20%	8 months
Tsimberidou et al, 2013	OFAR2	35	63 (40-81)	43%	8.6%	6.6 months
Fludarabine-containing	Regimens					
Giles et al, 1996	PFA or CFA	12	59 (49-74)	45%	N/A	17 months
Tsimberidou et al, 2002	FACPGM	15	62 (42-74)	5%	5%	2.2 months
Radio-Immunotherapy						\bigcirc
Tsimberidou et al, 2004	⁹⁰ Y-ibritumomab	7	56 (44-70)	0%	0%	N/A

Hematopoetic stem cell transplantation

- Durable responses achieved in patients who have achieved an objective response after chemoimmunotherapy (CIT).
- 3y OS 75% compared to 27% without transplant.¹
- Prolonged survival also achieved after autoSCT.²
 Consolidative transplant should be offered to
- patients who respond to CIT, with the exception of patients who haven't received treatment for CLL and achieve CR with CIT.

¹Tsimberidou, JCO 2006 ²Cwynarski JCO 2012.

Treatment of Hodgkin variant

- Generally treated similarly to *de novo* HL (eg. ABVD or BEACOPP).
- Outcome better than for DLBCL-RT, but worse than for *de novo* HL.^{1,2}

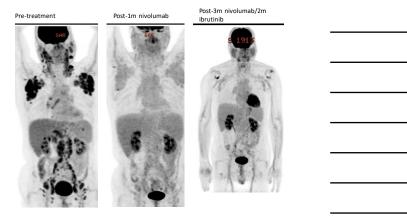
¹Tsimberidou, Cancer 2006 ²Brecher Am J Clin Pathol 1990

Novel therapeutic strategies for RT

Acalabrutinib

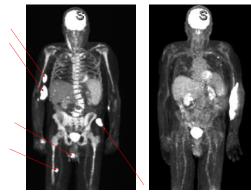
- 2nd generation BTK inhibitor.
- 29 patients with RT.
- Median 4 prior therapies.
- 21% del(17p).
- ORR 38% (14% CR). Median duration of response 5.7mo.
- Median PFS of 3mo.

Hillmen, P. ASH 2016.


Pembrolizumab

- A phase II trial of pembrolizumab in relapsed and transformed CLL included 9 patients with RT; ORR in these patients was 44% (CR 11%, PR 33%).¹
- For RT patients, the median progression-free and overall survival was 5.4 months and 10.7 months respectively.
- 0/16 patients with CLL responded.
- PD-L1 expression on RT cells: potentially useful biomarker for response.

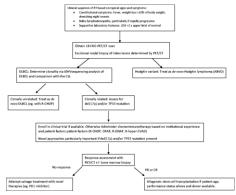
¹Ding Blood 2017


Novel therapeutics - ibrutinib + nivolumab

- Encouraging activity.
- Approximately 40% response rate in the first 15 patients¹
- Rapid responses in RT.

Blinatumomab

- CD3x19 bispecific antibody, approved in ALL.
- In R/R DLBCL, overall response rate of 43% (CRR 19%), using high-dose therapy (max 112mcg/d).
- 1 of first 3 patients achieved CR.


75M, developed RT on ibrutinib. Failed CIT, obinutuzumab and ibrutinib + nivolumab

EPOCH-R + venetoclax.

- Multi-center study (DFCI, OSU, UCSD, us) of 20 patients.
- Addition of venetoclax to R-EPOCH.
- Some single-agent activity with venetoclax, but of limited duration. Combination of bcl-2 inhibitor with chemoimmunotherapy may prevent BCL2mediated resistance to chemotherapy-induced apoptosis.

CAR T-cells

- KiTE CD19 CAR-T highly active in DLBCL. With in the group of DLBCL patients in ZUMA-1 study, ORR was 79% and CRR 52%. 3 patients had therapy-related death.
- Major toxicity. Grade 3 CRS in 13 cases. 28% neurotoxicity (all reversible). 3 treatment-related deaths.
- Despite the toxicity, this represents a major advance.
- Potential to be tested in RT.
- Turtle et al. reported 24 patients with CLL treated in Seattle. Mostly ibrutinib-refractory. Many also venetoclax refractory. ORR 74% (21% CR).
- Possibility to combine with checkpoint inhibition.

Khan and Thompson, Annals of Oncology 2017