Optimizing Therapy of Relapsed/Refractory Multiple Myeloma

Noopur Raje, MD

Director, Center for Multiple Myeloma MGH Cancer Center Professor of Medicine Harvard Medical School

Disclosures

- Consultant /Advisory Board: Celgene, Millenium Takeda, Amgen-Onyx, Novartis, Janssen, BMS, Merck, Bluebird
- Research Funding: Astra Zeneca
- Steering Committee: Amgen, Roche

Myeloma: Scope of the Problem

Kumar SK, et al. Leukemia. 2014;28:1122-1128.

Confronting Disease Relapse in Myeloma

Kumar SK, et al. Mayo Clin Proc. 2004;79:867-874. Kumar SK, et al. Leukemia. 2012;26:149-157.

Current estimates for patients refractory to both IMiDs and PIs

Kumar et al. Leukemia 20

Clonal Evolution with Progression Mutation Load by Disease Stage Aftered Genes per Patient Light visible and the stage of the stage

Targeting the drivers- Myc: IMiDs

Targeting the Proteasome

Gillmore, Cancer Cell, 12(2), p95–97, 14 August 2007; Anderson Clin Cancer Res 2016;22:5419-5427

Rational combination strategies in relapsed, refractory MM

Selected phase III trials in relapsed disease

Name of trial	No. prior lines	Arm		PFS (months)	ORR	≥VGPR	≥CR
ENDEAVOR	1-3	Kd	464	18.7	77%	54%	13%
		Vd	465	9.4	63%	29%	6%
TOURMALINE-MM1	1-3	IRd	360	20.6	78%	48%	12%
		Rd	362	14.7	72%	39%	7%
ELOQUENT-2	1-3	Elo-Rd	321	19.4	79%	33%	4%
		Rd	325	14.9	66%	28%	7%
ASPIRE	1-3	KRd	396	26.3	87%	70%	32%
		Rd	396	17.6	67%	40%	9%
PANORAMA 1	1-3	Pano-Vd	387	11.99	61%		11%
		Vd	381	8.08	55%		6%
NIMBUS (MM-003)	≥2§	Pd	302	4.0	31%	6%	196
		D	153	1.9	10%	1%	0%
CASTOR	≥1	Vd-dara	251	NE	82.9%	59.2%	19.2%
		Vd	247	7.2	63.2%	29.1%	9%
POLLUX	≥1	Rd-dara	286	NE	93%	76%	43%
		Rd	283	18.4	76%	44%	19%

A.R.R.O.W. Study Design

What about Len refractory patients?

Len-refractory RRMM

Available Efficacy Data on Len-refractory RRMM Patients

Trial/Regimen	Analysis set	N	PFS	ORR	MRD neg. rate at 10-6
				9% vs 0% P = 0.0082	
MMY1001 ⁴ D-Pd	All treated (89% len-refractory)	n = 103	Median: 9.9 mo 24-mo PFS rate: 31%	66%	7%
ENDEAVOR ^{5,6} Kd vs Vd	Len-refractory	Kd: n = 113 Vd: n = 122	Median: 8.6 mo vs 6.6 mo ⁵ HR: 0.80; 95% CI, 0.57-1.11 ⁶	N/R	N/R
MM-003 ⁷ P-low d vs high d	Len-refractory	P-low d: n = 286 High d: n = 141	Median: 3.9 mo vs 1.9 mo HR: 0.50; 95% CI, 0.40-0.62	30% vs 9% P <0.0001	N/R

1. Harousseau JL and Atla M. Bicod2017;13098-973-2. Sargasyadeth St, et al. Bicod Cancer J 2017;7(3)e55. 3. Lentzuch St, et al. Onel presentation at JSH, Oct 20-22, 2017;Tolyp, Japan; Abstract OS3-12; 2.4. Facon T, et al. Potest presented at. ASH, Dac 9-12; 2017;Atlanta, GA; Abstract 1824. 5. Moreau P, et al. Leukemia 2017;31:115-122. 6. Dimopolios MA, et al. Lencet Oncol2016;7(1):27-38. 7. Ser-Migue J. et al. Lencet Oncol2016;14(11):1055-106.

Ajai Chari, MD waranceme, vo, concommensure, ve, programor-me survan; C Ajai Chari, MD warancementar, MRD, minimal residual disease; RR, hazard ratio; Pd, portalidorrido/desamethasone; Kd, cardizomb/desamethasone; NR, not reported; Si

What about Pomalidomide?

Efficacy Results of Pomalidomide + LoDEX in advanced RR MM (Phase II/III Studies MM002 & MM003)

response; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; POM pomalidomide; PR, partial response; sCR, stringent

1.Richardson PG, et al. Blood 2014;123:1826-32.2. San Miguel J, et al. Lancet Oncology 2013;14:1655-1686.3. San Miguel et al: ASH 2013; Oral Presentation and Abstract 686.

Efficacy Results of POM-based Triple Therapy Combinations in Advanced RRMM

Oprozomib in Myeloma: still in development

CC-122: New IMiD

Venetoclax Background

- BCL-2 and MCL-1 promote multiple myeloma (MM) cell survival
 Venetociax is a selective, orally available small molecule BCL-2 inhibitor¹ and bortezomib can indirectly inhibit MCL-1
 Venetociax enhanced bortezomib

Phase 1 Venetoclax for RRMM: response and TTP in all patients and by t(11;14) status

Ph 1: Venetoclax in combination with Btz+Dex

Ven (50-500mg po daily); Btz (1.3mg/msq days 1,4,8,11); Dex (20mg days 1-2, 4-5, 8-9, 11-12) x8 cycles N=32

Criteria	Response % (36 pts)
CR	9% (3)
VGPR	11% (4)
PR	25% (10)

Cytogenetics	ORR % (36 pts)
t(11;14) (n=4)	75%
t(4;14) (n=3)	33%
del17p (n=8)	25%
Hyperdiploid (n=14)	64%

A Phase 3, multicenter, randomized, double blind, placebo-controlled study of venetoclax plus bortezonib and dexamethasone in subjects with relapsed or refractory myeloma in 1-3 prior lines of therapy and are sensitive or naïve to proteasome inhibitors

hanan-Khan Lugano 2015

Selinexor Mechanism of Action

Exportin 1 (XPO1) is the only nuclear exporter for the majority of tumor suppressor proteins (TSPs), the glucocorticoid receptor (GR), and eIF4E-bound oncoprotein mRNAs

Selinexor is a first-in-class XPO1 inhibitor that induces nuclear retention and activation of TSPs and the GR in the presence of steroids and suppresses oncoprotein expression

Tracking Genetic Hetrogeneity

BASKET STUDY: VEMURAFENIB	
for BRAF mutant MM (n=9)	
Sample Sa	
3	
The state of the s	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
reduced factors Rayle et al. ASH 2015	
An open-label, pilot study of dabrafenib	
and/or trametinib in patients with relapsed and/or refractory multiple	
myeloma	
Jens Lohr, MD PhD Noopur Raje, MD	
BCMA: A Promising Target in Multiple Myeloma (MM)	
B cell maturation antigen (BCMA)	
A member of the TNF receptor superfamily Expression is largety restricted to plasma	
Expression is largely restricted to plasma cells and mature B cells Not detectable in any other normal tissues	
Expressed nearly universally on multiple	
myeloma cells - Anti-MM efficacy validated in initial studies¹ - Comparison of the studies¹ - Comparison of the studies¹ - Comparison of the studies of	
(brown cater – Boynes protein)	

GSK 2857916:Background

DREAMM-1 Part 2: Maximum % Reduction in M-Protein or Free Light Chain from Baseline

One patient with a VGPR had a <00% reduction in serum M-protein due to missing laboratory data, which was confirmed by investigators as too small to quantify after the data cut-off.

DREAMM-1 Part 2: Efficacy – Progression-free Survival and duration of response

I, confidence interval; f/u, follow-up; N/A, not available; Q, quartile

Chimeric Antigen Receptor (CAR) T cells

bb2121: AN OPTIMAL BCMA CAR T CELL DESIGN

- Autologous T cells transduced with a lentiviral vector encoding a CAR specific for human BCMA
- State of the art lentiviral vector system
- Optimal 4-1BB costimulatory signaling domain: associated with less acute toxicity and more durable CAR T cell persistence than CD28 costimulatory domain¹

1. Ali SI, et al. Blood. 2016;128(13):1688-70

PROGRESSION-FREE SURVIVAL

mPFS of 11.8 months at active doses (≥150 × 10⁶ CAR+T cells) in 18 subjects in dose escalation phase
 mPFS of 17.7 months in 16 responding subjects who are MRD-negative

ista cutoff March 29, 2018. Median and 95% Ci from Kaplan-Maier estimate. NE, not estimable. "PFS in dose escalation cohort.

Current Understanding		
	Combinations will allow us to improve responses and cure a higher fraction of patients.	
	Drugs with different MOA will overcome genetic heterogeneity	
	High risk disease can be identified and specifically targeted	

Future Directions in Myeloma Post ASCO: Clinical Trials Krina Patel MD MSc Assistant Professor Department of Lymphoma/Myeloma University of Texas MD Anderson Cancer Center	
Optimizing Dosing Schedule	
Once-weekly Versus Twice-weekly Carfilzomib Dosing in Patients with Relapsed and Refractory Multiple Myeloma: Results of the Randomized Phase 3 Study A.R.R.O.W. Mark Victors Marker, Philippe Norman, James R. Generon, Patilla Wood, Android Lazard, News Song, Middoo, A. Dimpopular, Med James R. Generon, Patilla Wood, Android Lazard, News Song, Middoo, A. Dimpopular, Med James R. Generon, Patilla Wood, Android Lazard, News Song, Middoo, A. Dimpopular, Med James R. Generon, Patilla School, News Song, Middoo, A. Dimpopular, Med James R. Generon, Patilla School, News Song, Middoo, A. Dimpopular, Med James R. Generon, Patilla School, News Song, Middoo, A. Dimpopular, Med James R. Generon, Patilla School, News Song, Middoo, Middoo, A. Dimpopular, Med James R. Generon, Patilla School, News Song, Middoo, Middoo, A. Dimpopular, Med James R. Generon, Middoo, Middoo, A. Dimpopular, Middoo, Middoo, A. Dimpopular, Middoo, Middoo, A. Dimpopular, Middoo, Middo	

Category	Once-weekly Kd (n=238)	Twice-weekly Kd (n=235)
Median duration of treatment, weeks Carfilzomib Dexamethasone	38.0 37.1	29.1 29.1
TEAEs, % Any grade AE Grade ≥3 AE Serious AE Leading to carfitzomib discontinuation Leading to carfitzomib dose reduction	95 68 43 13	97 62 41 12 5
Deaths on study, %	9	8
Treatment-related deaths n (%)	5 (2%)*	1 (<1%)**
* sepsis (1), acute respiratory distress syndrome ** congestive heart failure (1) - Exposure-adjusted incidence of grade 23 AEs exposure-adjusted for SAEs, AEs leading to ca treatment groups	was slightly higher in once-weekly	rys twice-weekly group, but the

AE, % (SMQN) Once-weekly Kd Twice-weekly Kd				
AC, 3 (SMUN)	(n=	238) Grade ≥3	(n=	235) Grade ≥3
Peripheral neuropathy	All grades	0	7	<1
Acute renal failure	7	4	7	6
Cardiac failure	4	3	5	4
schemic heart disease	2	1	1	1
Pulmonary hypertension	2	0	1	<1

Maintenance Revlimid

Does dose matter?

Safety			
	Arm A 25 mg	Arm 8 5mg	
Discontinuation	61 (65%)	74 (78%)	
due to disease progression	27 (29%)	42 (45%)	
due to AE	27 (29%)	26 (28%)	
due to death *	3 (3%)	1 (1%)	
due to refusal	4 (4%)	5 (5%)	
Median time until EOT (median, range; months	s) 26.8 (0.5 – 87)	22.9 (0.3 - 69)	
AEs			
any AE	100 %	100 %	
any AE ≥ grade 3	87.5 %	64.6 %	
any AE ≥ grade 4	27.1%	12.5 %	
any SAE	61.7 %	56.3 %	
SAE	97	53	
SUSAR	1	1	

Conclusions	
 Low-dose lenalidomide is associated with significantly shorter EFS compared to the concept of upholding high-dose 	
lenalidomide. • The rate of toxicity observed and the need for dose reductions in most patients requires reconsideration of the high-dose schedule and awaits outcomes of long-term OS analyses	
schedule and awaits outcomes of long-term os analyses	
PRIMITED 2018 ASCO ASCOIL FRANCE OF STATE OF STA	
_	
Presented By Elizabeth O'Donnell at 2018 ASCO Annual Meeting	
_	
_	
Targeted therapy	
raigeted therapy	
_	
_	
_	
	1
Phase 2 Study of Venetoclax Plus Carfilzomib and	
Dexamethasone in Patients With Relapsed/Refractory Multiple Myeloma	
Luciano J. Costa, [†] Edward Stadtmauer, ² Gareth Morgan, ³ Gregory Monohan, ⁴ Tibor Kovacsovics, ⁵ Nicholas Burwick, ⁶ Andrzej Jakubowiak, ⁷ Mehrdad Mobasher, ⁸ Kevin Freise, ⁹ Jeremy A. Ross, ⁹ John Pesko, ⁹ Wijith Munasinghe, ⁹ Jaclyn	
Cordero, P. Lura Morris, Paulo Maciag, P. Orlando F. Bueno, Shaji Kumar ¹⁰ University of Alabama at Birmingham, Birmingham, AL; *University of Pennsylvania, Philadelphia, PA; *University of Arkansas for Medical Sciences, Little Rock, AR; *University of Kentsky, Lesington, KY; *Hunturan Cancer Institute, University of Usin, Salt Lisle City, UT; *VA Ruger Sound Health Care System, University of Variagington, Sastile, West, The University of Using Medicine, Citega, University of Variagington, Sastile, West, The University of Using Medicine, Citega, University of Variagington, Sastile, West, The University of Using Medicine, Citega, University of Variagington, Sastile, West, The University of Using Medicine, Citega, University of Variagington, Sastile, West, The University of Using Medicine, Citega, University of Variagington, Sastile, West, The University of Using Medicine, Using University of Variagington, Sastile, West, The University of Using Medicine, Using Using Medicine, Using	
University of washington, Salettie, wit, "he university of Unicago Needone, Unicago, it, "Needon Enc., South San Francisco, Ut," Adorve Inc., North Chicago, It, "Meyo Clinic, Rochester, M. American Society of Clinical Oncology (ASCO) – Se [®] Annual Meeting Chicago, It, USA ● June 1, 2018	

Study Overview

- Phase 2, dose-escalation study of venetoclax combined with K and dexamethasone (VenKd) for relapsed/refractory MM (NCT02899052)
- o Part 1: Dose escalation; Part 2: Expansion with selected dose
- o Primary study objectives: Safety and tolerability
- o Secondary and exploratory objectives: PK, ORR, TTP, DoR, MRD sub-study by FDG-PET scan imaging

- | Key Inclusion criteria: Previously treated MM (1-3 prior therapy) Pirefractory (besides K) were allowed
- Pirefractory (besides K) were allowed
 Measurable Disease
 M-protein ≥0.5 g/dL (serum)/≥200 mg/24h (urine)
 sFLC≥10 mg/dL
 ECOG Score ≤2

- ECOG Score ≤2
 Adequate Organ Function
 ANC ≥1000/µL Hb ≥8 g/dL
 Platelets ≥50,000/mm³ CrCl ≥30 mL/min

Key Exclusion criteria: Prior treatment with K

- Grade 3 or 4 peripheral neuropathy
 Significant cardiovascular disease, including uncontrolled angina, hypertension, arrhythmia, and LVEF ≤ 40%

Dosing

Patients received treatment in 28-day cycles:

Dosing regimens:	Day 12	8 9	15 16	22 23	28
Ven 400 mg QD + K 27 mg/m ² + d 40 mg	8*	8•	80	0	
Ven 800 mg QD + K 27 mg/m ² + d 40 mg	8*	8*	8*	0	
Ven 800 mg QD + K 70 mg/m ² + d 40 mg	8	8	8	0	
Ven 800 mg QD + K 56 mg/m ² + d 20 mg	88	88	88	00	
	K (car	filzomib) dose	O d (dex	amethasone) o	lose

- Carfilzomib was administered at 20mg/m² on cycle 1 days 1 and 2
- The 27mg/m² and 56mg/m² carfilzomib twice weekly dosing were based on the USPI
- Patients stay on combination therapy for up to 18 cycles with the option to continue on venetoclax monotherapy

Enrollment and Patient Disposition

a. 1. Secretificated by withdrawing consent, and 2 people who did not complete 1 cycle discontinued due to an AE (shortness of breath) or death (references and prevances).
b. This does combination was selected for the expansion based on patient convenience and the CH4AMPICR-1 study results (seeme as a local 2016).
6. And 154y2018.

Summary of Safety (N=42) Adverse event, n (%) Any Grade | Grade 3/4

Adverse event, n (%)	Any Grade	Grade 3/4
Any adverse event	40 (95)	29 (69)
AEs for ≥20% of patients for any grad	de or for ≥10% w	rith grade 3/4
Diarrhea	24 (57)	0
Fatigue	17 (41)	3 (7)
Platelet count decreased	15 (36)	3 (7)
Nausea	14 (33)	1(2)
Lymphocyte count decreased	13 (31)	10 (24)
Dyspnea	10 (24)	2 (5)
Insomnia	10 (24)	1(2)
WBC count decreased	9 (21)	4 (10)
Other AEs of interest		
Hypertension	4(10)	3 (7)

Serious adverse event	n (%)
Any serious event	12 (29)
Serious adverse events in ≥2 pa	tients
Acute kidney injury	2 (5)
Congestive heart failure	2 (5)
Influenza	2 (5)
Pneumonia	2 (5)
Other SAEs of interest	
TLS	1(2)3

By MedDRA preferred terms

a. patient was 1(11;14) positive with > 80% BM infiltration at screening, was hospitalized, received hydration and allopurinot, TLS labs resolved and treatment resumed

Presented By Luciano Costa at 2018 ASCO Annual Meeting

Objective Responses in All Patients and Those Refractory to PIs and IMiDs

1 PR was unconfirmed as of 18Apr2018

Presented By Luciano Costa at 2018 ASCO Annual Meetin

Conclusions

- To date, the combination of VenKd appears tolerable with no additional safety concerns
 - $-\,$ Once weekly dose of carfilzomib (70mg/m²) was selected based on patient convenience and the CHAMPION-1 study results 1
- VenKd has shown promising preliminary efficacy (ORR of 83%, and ≥VGPR of 57%) that supports the investigation of this combination in patients with relapsed/refractory multiple myeloma
- While responses in the small subset of t(11;14) patients were highest, high-risk and standard-risk patients had comparable responses with VenKd
- Venetoclax exposures when co-administered with carfilzomib appear comparable to those observed when venetoclax was co-administered with bortezomib
- The study continues with 42 patients enrolled to date

1. Berenson et al Blood 2016 14

Presented By Luciano Costa at 2018 ASCO Annual Meet

New combinations with "old"drug	ţ s

Pomalidomide, Bortezomib, and Low-Dose Dexamethasone (PVd) vs Bortezomib and Low-Dose Dexamethasone (Vd) in Lenalidomide-Exposed Patients With Relapsed or Refractory Multiple Myeloma: Phase 3 OPTIMISMM Trial Paul Richardson, "Albert Oriol," Menal Bekasa, "Anna Marina Liberati, "Monica Galli," Fredrik Schjewold," Indrinka Lindsay, "Katja Weiself, "Darrell White, "Thierry Fason," Jesus San Miguel, "I Statutaka Somman," Peter O'German, "Pieter Sommened," Xin Yu, "Dimass Deeri," Sannine Bensmaine, "Mohamed Zaki," "Kenneth Anderson, "Meletics Dimopoulos" on behalf of the O'PTIMISMM trial investigators **Indrawa Marina Myelmon Care. Symptometric of Meletic Dimopoulos" on behalf of the O'PTIMISMM trial investigators **Indrawa Myelmon Care. Symptometric of Meletic Dimopoulos" on behalf of the O'PTIMISMM trial investigators **Indrawa Myelmon Care. Symptometric of Meletic Dimopoulos" on behalf of the O'PTIMISMM trial investigators **Indrawa Myelmon Care. Symptometric of Meletic Dimopoulos" on behalf of the O'PTIMISMM trial investigators **Indrawa Myelmon Care. Symptometric of Meletic Dimoration, Meletic Myelmon Myelmon Care. Symptometric Myelmon Myelmon

 Median treatment duration: 8.8 months with PVd vs 4 Median follow-up: 15.9 months Most common reason for treatment discontinuation v 		
Characteristic	PVd (n = 281)*	Vd (n = 278) ^b
Median duration of treatment, months ^c	8.8	4.9
Ongoing treatment, n (%)	93 (33.1)	45 (16.2)
Discontinued treatment, n (%)	185 (65.8)	225 (80.9)
PD	110 (39.1)	131 (47.1)
AE	30 (10.7)	49 (17.6)
Withdrawal of consent	21 (7.5)	21 (7.6)
Death (all cause)	18 (6.4)	9 (3.2)
Other ^d	6 (2.1)	15 (5.4)
"3 patients did not recolve treatment in the Pril arm." 8 patients did not recolve treatment in masons, but to follow-up, and pregnancy.	the Vid arm. "Calculated in the safety population: PVI, n = 1 INCATE: Fad Scharfore, 16:	278; Vd, n = 270. "Other included other

CONCLUSIONS AND FUTURE DIRECTIONS	
Phase 3 OPTIMISMM trial: significantly improved PFS and ORR with PVd in RRMM (100% LEN exposed and 70% LEN refractory) This study investigated a clinically relevant and growing patient population who received upfront LEN but for whom LEN is no longer a treatment option PVd significantly reduced the risk of disease progression or death by 39% vs Vd PFS benefit generally consistent among subgroups, including LEN-refractory patients, prior PI exposure, and high-risk cytogenetics PFS and ORR improvements were more pronounced in patients with 1 prior line of therapy Safety profile consistent with known toxicities associated with POM + LoDEX and BORT therapy Longer treatment duration and exposure reported with PVds vs Vd These results support the use of PVd in first relapse in patients with RRMM and prior exposure to LEN Future directions include analysis of correlatives, MRD, and QoL	
Improving Monoclonal Antibodies	
A phase II study of elotuzumab in combination with pomalidomide, bortezomib and dexamethasone (Elo-PVD) in relapsed and refractory myeloma (abstract 8012) • Elotuzumab is a monoclonal antibody targeting SLAMF7 • Elotuzumab doesn't have single agent activity in RRMM; however does increase the activity of Rd and to some extent Vd 1.2 • Is not expected to have overlapping toxicity with PVD (caution: Elo-RVD in NDMM was associated with 2 infectious death) 3 • Experience with PVD in RRMM • PVD with weekly bortezomib (28 day cycle): ORR 86% 4 • PVD with a twice weekly bortezomib (21 day cycle): ORR 65% 3 • OPTIMISM 1 study (PVD versus VD) is reported at this meeting #8001 • ORR 82% for PVD and mPFS 11.2 months	
HILLERI DE . 2016 ASCO MACOUS HILLERI DE . MACOU	
Presented By Rachid Baz at 2018 ASCO Annual Meeting	

Subcutaneous daratumumab in patients with relapsed or refractory multiple myeloma (RRMM): Part 2 update of the open label, multicenter, dose escalation Phase lb study (PAVO) (abstract 8013)

• IV Dara is safe but

• IRR occur in about 40-50% of patients / mostly first infusions

• First infusion duration of about 7 hours

• Dara SC: pre-mixed co-formulation of daratumumab and recombinant human hyaluronidase with a higher daratumumab concentration, lower injection volume, and shorter injection time with manual SC injection in the abdomen

• Dara SC: IRR 4% and ORR 42% (ASH 2017) 1

• Dara SC + CyBorD (ANDROMEDA): IRR 2/15 pts (13%) 2

Change of the ACCO 2018 About 2011

**Comment of the ACCO 2018 About 2011

Phase 1b Study of Isatuximab and Carf Treatment of Relapsed and/or Refracto (abstract 8014)	
Isatuximab (Isa) ORR 32% as a single agent ORR 52% in combination with Len/ Dex in lenal ORR 56% in combination with Pom / Dex Orgoning phase III trial comparing Isa Pom Dex v Phase Ib combination study CFZ + Isa Study population: at least 2 prior lines, IMID an no prior CD38 mab Kd given 20/27 mg/m² D1,2,8,9,15,16 3 cohorts: Isa 10 mg/kg Q2W; Isa 10 mg/kg 20 mg/kg QW x 4, then Q2W.	ersus Pom Dex d PI. CFZ refractory allowed but
 Note that Dara KD data presented at this m 	neeting #8002
PRESENTS AS 2018 ASCO ANNUAL MEETING ANNUAL OF TRESENTS EX.	Chari et al. ASCO 2018 abstract 8014 1- Martin T. et al. Blood 2015 126:509 2- Martin T. et a. Blood. 2017 126:25:12204-3300 3- Richardson P et al. Blood 2017 130:1887
Presented By Rachid Baz at 2018 ASCO An	nual Meeting

	Dara KD ¹ N=85	Isa KD ² N=33
D dose and schedule	20 / 70 mg/m ² D1,8,15 ³	20/27 mg/m ² D1,2,8,9,15,16
Nedian prior therapy (range)	2 (1-3)	3 (2-8)
rior Carfilzomib	No	Yes, 30% refractory to CFZ
PRR	86%	61% 50% in CFZ refractory pts (5/10)
hrombocytopenia Gr3+ leutropenia Gr 3+ lypertension Gr 3+ RR	27% 18% 12% 42%	3% 3% 9% 48%

Conclusions

- Available myeloma treatments are increasing at a rate higher than ever before.
- Trials are aimed at continuing to improve efficacy as well as quality of life.
- Optimal combinations of the varying categories of treatments and sequence of these combinations needs continued evaluation.

Thank you!	
ides from ASCO meeting library	
patel1@mdanderson.org	
_	
_	

Generic Chimeric Antigen Receptor (CAR)

B cell maturation antigen (BCMA)

- \bullet Consistently expressed on plasma cells/MM cells 1
- \bullet Possibly protects MM cells in BM niche 2
- BMCA expression increases with disease progression³
- Limited expression on normal, non-hematopoietic cells¹

Carpenter et al, Clinical Cancer Research, 20

Summary of ongoing BCMA CAR-T Trials for MM

•			•	•	
	Name	Anti-BCMA CAR	Bb2121	LCAR-B38M	CART-BCMA
	Group	NCI	Bluebird/Celgene	Nanjng/Legend Biotech	Novartis/Penn
	Binder/co- stimulatory signal	Murine/CD3ζ, CD28	Murine/CD3ζ 4- 1BB	Murine/CD3ζ, 4- 1BB	Fully human/CD3ζ, 4- 1BB
	Transfection	γ-retroviral	Lentiviral	Lentiviral	Lentiviral
	BCMA expression required?	Yes	Yes	Yes	No

ABSTRACT 8007

bb2121 Anti-BCMA CAR T Cell Therapy in Patients With Relapsed/Refractory Multiple Myeloma: Updated Results From a Multicenter Phase I Study

Deepu Madduri, MD, Jacalyn Rosenblatt, MD, Marcela Maus, MD, PhD, 1 Ashley Pturka, 9 Lyh Ping Lam, PharmD, 9 Richard A. Morgan, PhD, 9
M. Travis Quidlew Monica Massaro, MPH, 9 Kristen Heoe, MD, 19 Ashley Petrocca, MD, 9 and James N, Kochenderfer, MD11

Massachusets General Hospilal Cancer Center. Boston, Mil. **Savah Cannon Research Institution and Tennessee Oncology, Mashirlia T.R.Mayor Clinic, Ricchester. et al. **Chann-France Cancer Institution, Southern Hospital, Southern Marchanes All. **Machiesasch, Mil. **Savah Cannon Research Institution Cancer Institution Cancer Canter Institution Cancer Canter Institution Cancer Institution

CRB-401 PHASE 1 STUDY DESIGN

Manufacturing success rate of 100%

TREATMENT HISTORY

		lation =21)	Expa (N=	
Median (min, max) prior regimens	7 (3	, 14)	8 (3	. 23)
Prior autologous SCT, n (%)	21 (100)	19	(86)
0		0	3 (14)
1	15	(71)	14 ((64)
>1	6 (29)	5 (:	23)
	Escalation	on (N=21)	Expansi	on (N=22)
	Exposed	Refractory	Exposed	Refractory
Prior therapies, n (%)				
Bortezomib	21 (100)	14 (67)	22 (100)	16 (73)
Carfilzomib	19 (91)	12 (57)	21 (96)	14 (64)
Lenalidomide	21 (100)	19 (91)	22 (100)	18 (82)
Pomalidomide	19 (91)	15 (71)	22 (100)	21 (96)
Daratumumab	15 (71)	10 (48)	22 (100)	19 (86)
Exposed/Refractory, n (%)				
Bort/Len	21 (100)	14 (67)	22 (100)	14 (64)
Bort/Len/Car/Pom/Dara	15 (71)	6 (29)	21 (96)	7 (32)

ADVERSE EVENTS OF SPECIAL INTEREST

CAR T Treatment-Emergent Adverse Events All Infused Patients (N=43)				
TEAE, n (%)	Overall	Grade ≥3		
Cytokine release syndrome ^a	27 (63)	2 (5)		
Neurotoxicity ^b	14 (33)	1 (2)		
Neutropenia	35 (81)	34 (79)		
Thrombocytopenia	26 (61)	22 (51)		
Anemia	24 (56)	19 (44)		
Infection ^c				
Overall First Month	26 (61) 10 (23)	9 (21) 2 (5)		

- No grade 4 CRS events
 No fatal CRS or neurotoxicity events
- 31/40 (78%) recovered ANC to ≥1000/μL by Day 32 22/40 (55%) recovered PLT to ≥50,000/μL by Day 32

from count Marco 39, 2018 NC, not estimate. ~CDG uniformly graded per Lea CDM, et al. 2004; D4Q5;355-102. *Gents occurring in front 2014 drawl including dutriesses, braightnesses, secretarioss, contrained state, epistagerous, interaction, moreory implicated, department bear of consciousness, secretariosity, Marroy, secret and industration. For childup the SQC CDM contrained and Marcolantion. Contrained to the 10th including period in the contrained of the CDM contrained and Marcolantion. Contrained to the CDM contrained and Marcolantion and Marcolantion. Contrained to the CDM contrained and Marcolantion and Marcolantion. Contrained to the CDM contraine

CYTOKINE RELEASE SYNDROME: MOSTLY LOW GRADE AND MANAGEABLE

Parameter	Dosed Patients (N=43)
Patients with a CRS event, n (%)	27 (63)
Maximum CRS grade* None 1 2 3 4	16 (37) 16 (37) 9 (21) 2 (5) 0
Median (min, max) time to onset, d	2 (1, 25)
Median (min, max) duration, d	6 (1, 32)
Tocilizumab use, n (%)	9 (21)
Corticosteroid use, n (%)	4 (9)

TUMOR RESPONSE: DOSE-RELATED; INDEPENDENT OF TUMOR BCMA EXPRESSION

uses custre matrix by, JULE, U, complete insporting music, means custon or insporting out, dejective response reserve, by, progressive essent, MY, partial response, LLV, stringent us; Vever, ever good partial response. Pu

PROGRESSION-FREE SURVIVAL

- mPFS of 11.8 months at active doses (\geq 150 \times 106 CAR+ T cells) in 18 subjects in dose escalation phase
- mPFS of 17.7 months in 16 responding subjects who are MRD-negative

Data cutoff: March 29, 2018. Median and SSN CI from Kaplan-Meier estimate. NE, not estimable. +PFS in dose escalation coho

Summary of ongoing BCMA CAR-T Trials for MM

Name	Anti-BCMA CAR	8b2121	LCAR-B38M	CART-BCMA
Group	NCI	Bluebird/Celgene	Nanjng/Legend Biotech	Novartis/Penn
Binder/co- stimulatory signal	Murine/CD3Z, CD28	Murine/CD3ζ 4-1BB	Murine/CD3ζ, 4- 188	Fully human/CD3ζ, 4-188
Transfection	y-retroviral	Lentiviral	Lentiviral	Lentiviral
BCMA expression required?	Yes	Yes	Yes	No
Median prior lines of tx	7,11	7	3	9
Efficacy	1 sCR (relapsed), 1 VGPR, 2 PR, 8 SD Responses in highest cell dose; 9/11 in top dose	10 CRs, 6 VGPR, 1 PRs (4 eventual PD), n=18 at >5 e7 : 94% RR 9 MRD neg	33 CR or VGPR, n=35, 1 relapse; 5 MRD neg > 1 yr	6/9, 2/5, 5/6 responses in 3 cohorts
Safety	Toxicity substantial (Gr3-4CRS) but reversible esp in highest doses (9 e6/kg); protocol modified to pts with lower tumor burden	CRS in 71%; transient Gr3 10%; 5 deaths (cardio-pulm arrest, unrelated, 1 MDS, 3 PD at lowest dose) Early report of 1 Gr 4 neurotoxicity	Transient CRS 29/35, no neurotox	CRS in 17/21 pts (6 with Gr2), with neurotox in 3 pts 1 death – candidemia/PD

JNJ-68284528 (LCAR-B38M CAR-T cells)	
Genetically modified autologous T-cell immunotherapy directed at B-cell maturation antigen (BCMA) which is being developed for the treatment of Multiple Mydoma	
2 different and BCMAVHH domains for enhanced avidity — Tell function is avidity driven	
Vaneraredouse domain 4-188: built-in "2"d	
The meaning of the continued and the continued of the con	
GSX squelling activation state = (Stylend, Sense	
JNJ-528 is a unique bispecific CAR that binds with high affinity to 2 different epitopes on BCMA, enabling tight binding of the CAR to the BCMA-expressing cells	
JNJ-68284528 (LCAR-B38M) CAR T cell: designed for high affinity interaction	
with BCMA-expressing tumor cells	
	_
Conventional CAR-T LCAR-B38M VHH multi-specific CAR	
₹\$	
scFv-Conventional CAR VHH-8i-epitope CAR VHH-multi-specific CAR Country of Amount	
Summary of ongoing BCMA CAR-T Trials for	
Name Anti-BCMA CAR BB2121 LCAR-B38M CART-ACMA Group NCI Bluebird/Colgene Namipid_Ingent Rovartis/Penn	
Binder (po- stimulatory grand Murine)(CDE), CD28 Murine)(CDE), 4-188 Murine)(CDE), 4-188 grand g	
BCMA expression Vies Vies Vies No (included in the Communication View	
1 SCR (relapsed), 1 VBR, 2 PR, 8 S D Efficacy Responses in highest DRR= 57%, 96% in prs Esponses in highest ### 150 e6; mPrs m=35, 1 relapse; 5 responses in 3	
cell dose; 9/11 in top MRD neg pts MRD neg > 1 yr cohorts	

Challenges in CAR T therapy for MM • CRS (hopefully not as much of an issue as with ALL) • Persistence • Lymphodepletion Cytokine-based T-reg elimination Virus-specific T cells as primary CAR-T population Virus-specific T cells as primary CAR-T population Challenges in CAR T therapy for MM • CRS (hopefully not as much of an issue as with ALL) • Persistence • Lymphodepletion Cytokine-based T-reg elimination Virus-specific T cells as primary CAR-T population • Optimizing co-stimulatory signaling • 41BB>CD28 • Nature of MM is waxing and waning, should the cells be that way as well? • "ON-switch" CARs Targeting multiple antigens

T cells redirected for universal cytokine-mediated killing (TRUCKs)

"On" switch CAR T cells T cells redirected for universal cytokine-mediated killing (TRUCKs) Cellectis Universal SLAMF7-Specific CAR T (abs 502) • "Off-the-shelf" • Normal healthy PB donors Inactivation of the TCRa constant (TRAC) gene using TALEN* gene-editing technology to prevent GVHD and expression of T cell SLAMF7.

Poseida: CARTyrin (abs 3068)

- DNA transposon system
- iCasp9-based safety switch
- Anti-BCMA CARTyrin
- Selection gene (~ 100% pure CAR+ product)
- Enrich stem cell memory T cell subset

But where are we really going...?

- Timing of CART
- Disease burden
- Position relative to autologous transplant
- Cost
- \bullet Time and financial cost of proving superiority
 - Clinical trial design
 - MRD as endpoint

"It's my CAR-T and I'll cry if I want to..."

Caca	
Case • 65 YO M without significant PMH presents with new back pain and	
incidentally found abnormal protein level • Further work-up shows IgG kappa M-spike 3.8 g/dL	
Additional labs: normal Cr, Ca; Hb=11.8 g/dL	
MRI shows new L4 compression fracture	
BM biopsy: 60% kappa-restricted plasma cells, normal cytogenetics, FISH	
positive for t(11;14)	
Treatment course	
Treatment course	
• VRD induction → achieves VGPR after 6 cycles	
Mel 200 ASCT → sCR at day 100 with MRD negativity	
Len maintenance x 2.5 y> biochemical progression	
KRD with PR; Goes 18 months but then presents with new bone	
lesions	
• Starts DRD→ Stable x 12 months but then presents wit new anemia.	
BM with 70% plasma cells and clonal evolution (-16)	
Now what??	
Thank you!	
nina.shah@ucsf.edu	
nina.snan@ucsi.euu	-

Smoldering Myeloma Irene Ghobrial, MD Associate Professor of Medicine Harvard Medical School Dana Farber Cancer Institute Boston, MA

What is the definition of MM or SN Panel: Revised International Myelona Working or copy diagnostic criteria for multiple Improvate and structure in programs. Definition of multiple myelona Coral bone marrow plasma cells a 20% or biopoly-proven bony or extramedullary plasmacytoma* and any one or more of the following myelona defining events: Belonco of ord carps damage that can be attributed to the underlying plasma cell Coral bone marrow plasma cells and core to the following myelona cell Playmortal cernis as of ord carps damage that can be attributed to the underlying plasma cell Coral	IM?
Any one or more of the following biomarkers of malignancy: Cloral bone marrow plasma cell percentage* ±60% Involvedarinnovleed serum feer light chain ratio's ±100 >1 focal lesions on MRI studies*	Rajkumar et al. Lancet Oncology 2014; 15: e538-48
DANA-FARBER CANCER INSTITUTE WOMEN'S HOSPITAL	HARVARE MEDICAL SCHOOL

What is high risk SMM? Identification of high-risk SMM→ 50% of progression risk at 2y • Mayo Clinic: ≥10% clonal plasma cell bone marrow infiltration, and ≥30g/L of serum M-protein, and serum-free light ratio >0.125 or <8 • Spanish: ≥55% of dearnat plasma cells measured by flow plus >25% decrease in one or both uninvolved immunoglobulins • Heidelberg: Tumor mass defined by Mayo risk model plus (4;14)/del17p/gains of 1q/ • Japanese: Beta 2-microglobulin ≥ 2.5 mg/L plus M-protein increment rate > 1 mg/dL/day • SWOG: serum M-protein ≥2 g/dL plus involved free light chain >25 and GEP >-0.26 (71% of risk progression at 2 yrs) • PENN: ≥ 40% clonal PCBM infiltration plus sFLC ratio ≥ 50 plus Albumin □ 3.5 mg/dL (81% of risk at 2 yrs) • Barcelona: evolving pattern plus serum M-protein ≥ 3 g/dL plus imvolved/uninvolved sFLC > 30 (81% of risk at 2 yrs)

Which patient population to consider for high risk SMM? Each model appears to identify patients at high risk, with some but not complete overlap Bone marrow clonal plasma cells 10% and any one or more of the following: Serum M protein 23 Jgm/dt. IgA SMM Immunoparesis with reduction of two uninvolved immunoglobulin isotypes Serum involved/uninvolved free light chain ratio 28 (but less than 100) Progressive increase in Myrotein level (Evolving type of SMM) Bone marrow clonal plasma cells 10% 60% Abnormal plasma cell munophenotype (295% of bone marrow plasma cells are clonal) and reduction of one or more uninvolved immunoglobulin isotypes (16,14) of del 17p or 1q gain Increased circulating plasma cells Mill with diffuse abnormalities or 1 focal lesion (25mm) PETCT with one focal lesion (55mm) with increased uptake without underlying osteolytic bone destruction Monoclonal light chain excretion of 500mg/24 hours or higher

Current Studies in High-Risk Smoldering MM Lenalidomide or observation (phase III)¹ Ixazomib + Ienalidomide + dexamethasone (phase III)² Isatuximab (phase II)³ Daratumumab single agent at different doses (Centaurus trial)⁴ Dara ph II for high-risk MGUS and low-risk smoldering⁵ Randomized Ph III AQUILA (sc)⁵ A Study of Subcutaneous Daratumumab Versus Active Monitoring in Participants With High-Risk Smoldering Multiple Myeloma Recuritment status. Recruiting Start date. November 2017 Estimated completion date: December 2025 1. ClinicalTrials, gev. NCT03169337. 2. ClinicalTrials, gev. NCT0316931. 3. ClinicalTrials, gev. NCT0316931.

