Reducing Surgical Site Infection in Cardiac Surgery

Scott Schubach, MD

Chairman, Dept. of Thoracic & Cardiovascular Surgery Winthrop University Hospital Associate Professor, Surgery Stony Brook School of Medicine

Presentation sponsored by ConvaTec

Introduction Curriculum Vitae

- Education
 - Medical degree from Baylor College of Medicine
 - Trained in general surgery at Dartmouth Hitchcock Medical Center
 - Trained in cardiac surgery at University of Pittsburgh
- Physician at Winthrop University Hospital since 1991
- Chairman of Dept. of Thoracic & Cardiovascular Surgery since 2001

Introduction athrop University Hospital

- Teaching hospital
- Affiliate of SUNY Stony Brook
- Located in Mineola, NY
- 520 open heart procedures done annually by group of 4 surgeons

Surgical Site Infections (SSI) Defined by CDC

- At or near operative site
- Occurs in post-op period
- Reportable if it occurs within 30 days post-op
- Three major sources
 - ✓ Patient
 - ✓ Healthcare Team
 - ✓ OR environment
- Most common pathogens for sternal wound infections¹
 - ✓ Staph aureus
 - ✓ Staph epidermis

¹Singh, K et al, Overview and Management of Sternal Wound Infection, Seminars in Plastic Surgery, Volume 25, Number 1 20

SSIs: Scope of the Problem Surgical wound infections

- MOST common infection in surgical patients
- Common nosocomial infection
- Associated with substantial morbidity and mortality¹
 - 60% more likely ICU admit
 - 2x increase in mortality during perioperative period
- post-op LOS¹
- treatment costs¹

¹Banbury, MK, Experience in prevention of sternal wound infections in nasal carriers of Staphylococcus aureus, Surgery, 2003

SSIs: Scope of the Problem Cardiac Surgery

- Annual US procedural volume:
 - >600,000 cardiac procedures¹
 395,000 CABG procedures²
- 3.5% infection rate post-CABG procedures³
- Cost to treat mediastinitis estimated to be \$40,000 \$50,000³

*Elgharably H, et al. First Evidence of Sternal Wound Biofilm Following Cardiac Surgery, PLoS One, 2013 Aug 1;8(8),
*http://www.cdc.gov/nchs/fastats/insurg.htm. *http://www.infectioncontrolloday.com/articles/2008/03/cabg-infections-arecord-and-dispersions-stiff-in-marketcord-and-dispersions-stiff-in-marketproceeding-and-d

Sternal Wound Infections (SWI) Risk Factors

- Obesity
- Renal insufficiency
- Diabetes
- □ COPD
- Peripheral Vascular Disease
- Existing pre-op infection
- Steroid use
- Malnutrition

Sternal Wound Infections

- Incidence of Sternal Wound Infection (SWI): 1-8%¹
- SWI mortality rates reaching 40%¹
- Treatment requires:¹
 - Prolonged antibiotic courses
 - Repeated surgical interventions
 - Longer hospital stay
- Can occur in any procedure requiring median sternotomy

¹ Elgharably H, et al. First Evidence of Sternal Wound Biofilm Following Cardiac Surgery, PLoS One, 2013 Aug 1;8(8)

Deep Sternal Wound Infections

- Increased hospital LOS > 2 full weeks compared to any other post-op complication¹
- Associated with other complications such as:¹
 - Prolonged ventilation
 - Bleeding
 - Renal failure
 - Atrial fibrillation
 - Increased rates of stroke
 - Need for inotropic or mechanical cardiac support

¹Atkins, Z, Wolfe, W, Sternal Wound Complications following Cardiac Surgery, www.intechopen.com

-			

Reimbursement Challenges

- No CMS reimbursement for treatment of
 - > SSI, mediastinitis, following Coronary Artery Bypass Graft (CABG)
 - > SSI following Cardiac Implantable Electronic Device (CIED)

http://www.cms.gov/HospitalAcqCond

State Reporting of SSI's Government Oversight and Physician Data Tracking

- Twenty one (21)states require hospitals to report surgical site infection, 14 states so far have posted the information publicly
- Report and data available to public- CA, OR, WA, CO, IL, MO, PA, OH, SC, NJ, NY, MA, VT And NH

http://www.ama-assn.org/amednews/2012/04/02/prsb0402.htm

Winthrop Story

- > Increased Sternal Wound Infection rate
- > Infection rate is state and patient reportable
- > Hospitals do not get paid for Sternal Wound Infection readmissions

Task force formed to reduce incidence of SWI

Evaluated Current Practices

- Operating room team's sterile technique
- Hand washing technique
- Room ventilation
- Instrument sterilization
- Operating room traffic

Basel	ine	SWI	Pre	vent	ion
	S	trate	gy		

- Adherence to core pre-operative antibiotic protocols
 - Administer antibiotics within 1 hour of incision (2 hours for Vancomycin)

Approach to SWI Prevention

Address all potential sources of infection:

- Pre-operative Preparation
- Operating Room Environment
- Operating Room Team
- Post-operative Care of Patient and Wounds
- Patient Co-morbidities

Operation Room Environment

Limit traffic in and out of OR

Operating Room Team

- Stopped using Avagard gel and returned to practice of scrubbing hands
- 2. Change gloves more frequently
- 3. Educated entire team on sterile field

Patient

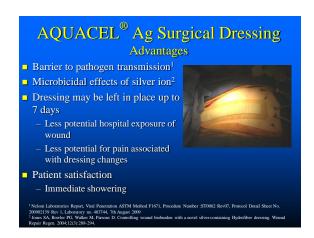
- Use chlorhexidine to cleanse the skin
- 2. Apply occlusive dressing, AQUACEL® Ag Surgical, in operating room
- 3. Dressing left on for 5 days, removed prior to discharge
- 4. Emphasize at discharge patients can wash over incision with soap and water

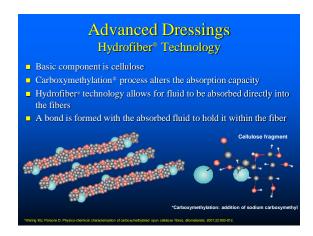
Considerations When Choosing Surgical Dressing

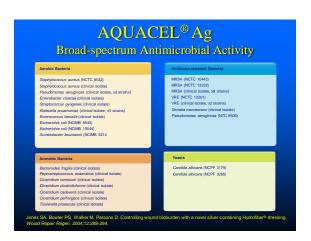
- 1. Permeable:
 - Moist wound environment promotes healing
 - Excessive moisture predisposed wounds to maceration and blister formation
- 2. Barrier:
 - Prevent microbial ingress into wound
 - Waterproof to allow showering
- 3. Occlusive:
 - Creates hypoxic environment
 - Accelerates angiogenesis

National Institute for Health and Clinical Excellent Surgical Site Infection Guideline.

Gauze Dressings Disadvantages


- Non-Occlusive
 - Non-optimal wound environment
- Require Frequent Changes
 - Exposure of wound
 - Adhesive can cause skin injury
- Not waterproof


Occlusive Dressings


- Improved re-epithelialization
- Increase in collagen synthesis by 2-6x compared to wounds open to the air
- Lower rate of wound infection (Hutchinson study 1990)
 - With occlusive dressing 2.6%
 - With non-occlusive dressing 7.1%

Patel C, Surgical Wound Infections. Current Treatment in Infectious Diseases. 2000;2:147-153. Michie D. Influence of Occlusive and Impregnated Dressings on Incisional Healing: Ann Plastic Surg. 1994. Hulten L. Dressings for Surgical Wounds. Am J Surg. 1994. Xi et al. Wound Repirit, 2000. Huchtmon, JJ. McGuckin, M. Occlusive dressings: A

Hydrofiber® Ag Dressing Bacterial Sequestration & Bactericidal Activity | Sequestration & Sequestrati

Dressing Change Technique
 Stretching of hydrocolloid portion (like stretching "taffy") allows gentle adhesive release from skin. Skin traction is avoided

AQUACEL® Ag Surgical Dressing CLINICAL RESULTS


Rothman Institute Study Results

- Retrospective study- Journal of Arthroplasty, 2014
- 1,778 patients undergoing primary THA/TKA
 - 875 standard gauze dressing
 903 AQUACEL® Ag Surgica
- 76% reduction in incidence of surgical site infection in AQUACEL® Ag Surgical group
- Multivariate analysis
 - no other independent variables such as patient co-morbidities, age, or BMI impacted the reduction in infection

infection

an infection

all Raman JA, Pavisa J, Smith EB, Sharkey PF. The Aquaci® Ag Hydrofiber Wound Dressing with lonic Silver Reduces the Rate
of Acute Pringmothic Joint Infection Following Tod Joint Anthroplasty. Poster presented at 22th annual AAMSS meeting, Nov 2-4,

OrthoCarolina Clinical Trial Results

- Prospective Randomized Study American Journal of Orthopedics, 2015
- Orthopedics, 2015

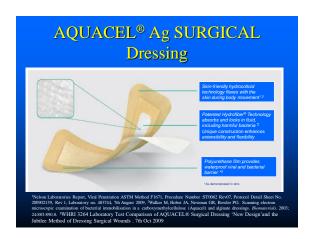
 AQUACEL® Ag Surgical vs.
 Control
- □ 300 pts
- Midterm analysis of 150
- Significant reduction in wound complications (p=0.009)
- Significantly less # dressing changes (p<0.001)
- Improved patient satisfaction, perception of hygiene

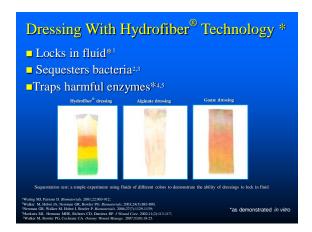
Springer, BD, Beaver, W, Griffin, W, Mason, JB, Dennos, A, Odum, S. The Role of Surgical Dressings in Total Knee Arthroplasty: Randomized Clinical Trial, Poster presented at 2013 AAOS annual meeting: March 19-23, 2013.

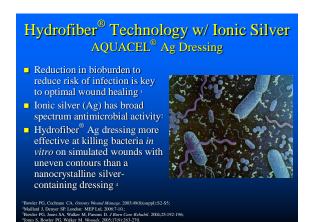
Winthrop AQUACEL® Ag Surgical Study

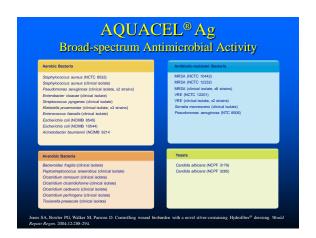
- Began using AQUACEL® Ag Surgical in May 2011
- Conducted a study that involved*:
 - Retrospective look at 503 patients with sternal incisions covered with sterile 4x4 gauze pads and tape
 - 208 patients with AQUACEL® Ag Surgical dressing
- Patients included in the study were any patients with a sternotomy incision

*Data not yet submitted for publication


Study Results


Dressing Type	# of Deep SWI	% of Deep SWI
Gauze and Tape	17	3.4%
AQUACEL® Ag Surgical	0	0%


To date, approximately 500 patients have had the AQUACEL® Ag Surgical dressing applied to their sternal wound with only 1 deep sternal wound infection.


Thank You

Appendix

Ta 23 mms Ta 25 mms Green = Alive Red = Dead T = Time in minutes Confort microscopy of Paradomonan	
Red = Dead T = Time Institutes Conford mismacray of Panalamoury	
To 40 mins T + 40 mins arrayinous on byfused Hydroffber* Ag dessing fiber	

Incidence & Burden of Infections Following Cardiac Surgery

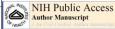
Gorav Ailawadi, MD Chief, Adult Cardiac Surgery University of Virginia May 2, 2016

Disclosures

- Convatec
- Abbott Vascular
- St. Jude
- Edwards
- Mitralign
- Atricure

Outline

- Overview of Major Infections Following Cardiac Surgery
 - Incidence
 - Cost
- DSWI
- Pneumonia


Hospital Acquired Infections

- 1.7 million individuals acquire HAI
- · Leads to 100,000 deaths annually
- · Results in additional \$6.5 billion additional health care expenditures

Perencevich EN, Pittet D. JAMA 2009; 301: 1285-7.

Published in final edited form as: J Am Coll Cardiol. 2014 July 29; 64(4): 372–381. doi:10.1016/j.jace.2014.04.052.

MANAGEMENT PRACTICES AND MAJOR INFECTIONS AFTER CARDIAC SURGERY

Annetine C, Gelijns, PhD', Alan J, Moskowitz, MD', Michael A, Acker, MDl', Michael Argenziano, MD², Nancy L, Geller, PhD⁵, John D, Puskas, MDl, Louis P, Perrautt, MD, PhD⁶, Peter K, Smith, MD', Irving L, Kron, MD', Robert E, Michier, MDl', Marissa A, Miller, MD', Mydra T, Timothy J, Gardner, MD⁵, Bobard N, D, Sacheim, MD, Gorav Allawad, MD.'', Pamela Lackner, BA^{III}, Lyn A, Goldsmith, MA, RN, BSN¹, Sophie Robichaud, RT⁶, Rachel A, Miller, MD⁷, Eric A. Rose, MD'. T. Bruce Ferguson Jr., MD⁷⁰, With H. Horvath, MD'', Ellen G, Moquete, RN, BSN, Michael K, Parides, PhD', Emilia Bagiella, PhD', Patrick T, O'Gara, MDl'II', and Eugene H. Blackstone, MD¹⁰ for the Cardiothoracic Surgical Trials Network (CTSN)

CTSN

- Supported by U01 HL088942 Cardiothoracic Surgical Trials Network (CTSN)
- Funding Agencies:
- · National Heart, Lung, and Blood Institute
- · National Institute of Neurological Disorders and Stroke
- · Canadian Institutes for Health Research

Investigators

- Data Coordinating Center: InCHOIR
 Montefiore Einstein
- Emory University
- Duke UniversityHôpital Laval
- University of Virginia Health System
 Montreal Heart Institute
 University of Pennsylvania

- Columbia University Medical Center Cleveland Clinic Foundation
- University of Maryland
- · Brigham and Women's Hospital
- Sacré-Cœur de Montréal
 Ohio State University Medical Center
- East Carolina Heart Institute Wellstar / Kennestone
- Baylor Research Institute
- University of Southern California St. Michael's Hospital
- Toronto General Hospital
- Mission Hospital NIH Heart Center at Suburban Hospital
- Inova Heart & Vascular Institute
- University of Alberta Hospital
 Centre Hospitalier de l'Université de
 Montréal
- Sunnybrook Health Sciences Centre
- · Aarhus University

Methods

- 5,158 patients prospectively enrolled at 10 core CTSN sites
- Infections identified and adjudicated up to 65 days after index surgery
- 4.6% (237 patients) experienced major infection
- · SSI (sternum or secondary site), mediastinitis, infectious pericarditis, endocarditis, cardiac device infection, pneumonia, C Diff colitis

Frequency, Type and Timing of Infection

Frequency, Type and Timing of Infection

	# of Events	# of Patients	% of Patients (N=5158)	Days from su	rgery to fir	t infection
Type of Infection				Median	Min	Max
Pneumonia	125	123	2.38	8	1	62
Bloodstream Infection	59	56	1.09	15	0	65
C. Difficile Colitis	52	50	0.97	17	3	63
Deep Incision Surg site infection (chest)*	26	26	0.56	20.5	5	54
Mediastinitis	12	12	0.23	24.5	6	60
Deep Incision Surg site infection (groin)	10	10	0.21	26	6	49
Myocarditis or pericarditis	5	4	0.08	16	14	27
Empyema	4	3	0.06	56	13	63
Endocarditis	3	3	0.06	25	25	51
Device-related percut site infection	3	3	0.06	54	9	62
Pocket infection [†]	2	2	2.33	38.5	15	62

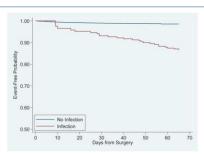
stor for patients with a deep SSI is patients having a sternotomy (N=4669)

ator for pocket infection is patients who had LVAD placed, replaced, or removed for heart transplant (N=86)

Organism Type

Organism

Pneumonia	96	Endocarditis	96
Gram Positive Bacteria	12.6	Gram Positive Bacteria	100
Staphylococcus Aureus	9.5	Staphylococcus Aureus	66.7
Meth Resistant (44%)		Meth Resistant (50%)	
Streptococcus sp	3.2	Staphylococcus Hominis	33.3
Gram Negative Bacteria	82.1	Empyema	
Enterobacteriaceae	43.2	Gram Positive Bacteria	60
Pseudomonas	15.8	Staphylococcus Aureus	60
Other Health Care GNR*	13.7	Meth Resistant (67%)	
Serratia Marcesens	6.3	Gram Negative Bacteria	20
H. Influenzae	3.2	Pseudomonas	20
Other	5.3	Other	20



Organism Type

Gram Positive Bacteria	47.5	Gram Positive Bacteria	62.9
Staphylococcus Aureus	13.1	Staphylococcus Aureus	4
Meth Resistant (38%)		Meth Resistant (50%)	
Staphylococcus Epi	9.8	Staphylococcus Epi	14.
Meth Resistant (50%)		Meth Resistant (80%)	
Enterococcus	11.5	Enterococcus	5.7
Fungi (Candida)	9.8	Fungi (Candida)	2.9
Streptococcus sp	1.6	Gram Negative Bacteria	28.
Staph Hominis (Coag neg)	1.6	Enterobacteriaceae	17.
Gram Negative Bacteria	47.5	Pseudomonas	5.7
Enterobacteríaceae	29.5	Other Health Care GNR*	2.9
Serratia Marcesens	8.2	Other (Unidentified)	2.9
Other Health Care GNR*	4.9	Other	8.1
Pseudomonas	3.3	Myocarditis/Pericarditis	

Survival Impact of Major Infection

Gelijns AC, et al. J Am Coll Cardiol. 64(4):372-81, 2014.

Sites of Infection

Site of infection	N, %	Incidence
Bacteremia	9 (30%)	5.23%
 Sternotomy site infection 	8 (26.7%)	4.65%
 Infection of vascular catheters 	5 (16.7%)	2.90%
Pneumonia	4 (13.3%)	2.32%
 Mediastinitis 	1 (3.3%)	0.58%
 Urinary tract infection 	1 (3.3%)	0.58%
• Total	30 (100%)	17.42%

Lola, et. Al Journal of Cardiothoracic Surgery2011 6:151

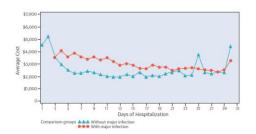
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

© 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

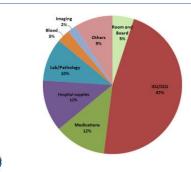
VOL. 65, NO. 1, 2015 ISSN 0735-1097/\$36.00

Costs Associated With Health Care-Associated Infections in Cardiac Surgery

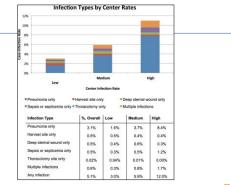
Giampaolo Greco, Pull, MFH,* Wei Shi, MS,* Robert E. Michler, MD, David O. Meltzer, MD, Pull, Gorav Allawadi, MD,| Samuel F. Holmann, Pull,| Vinod H. Thourani, MD,† Michael Argenziano, MD,* John H. Alexander, MD,* Kathy Saniovic, RN,| Hops Gupta, MFH; Bugene H. Blackstone, MD,| Holhael A. Acker, MD, MI, Haw I. R. Bussone, MD, Albert Lee, Pull,| Sandra G. Burka, RN,| Annetine G. Gelijns, Pull,* Emilia Bagiella, Pull,* Alan J. Moskowitz, MD,* Timothy J. Gardner, MD,† T


Cost of Infection

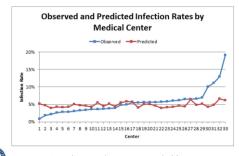
		Cost, Median (95% C), U.S. \$	Length of Stay, I	itedian (95% CI), Days
Patient Type	Median	Unadjusted Mean	Adjusted* Incremental	Unadjusted Mean	Adjusted* Increment
AD and transplantation incl	uded				
No infection (n = 4,201)	24,513	31,530 (30,654-32,407)	Reference	9.4 (9.2-9.7)	Reference
Infection (n = 119)	83,833	110,155 (94,664-125,646)	37,513 (30,403-45,318)	33.4 (29.4-37.5)	14 (11-17)
AD and transplantation excl	uded				
No infection (n = 4,108)	24,308	28,577 (27,980-29,174)	Reference	8.9 (8.8-9.1)	Reference
Infection (n = 102)	73,268	93,363 (80,215-106,513)	39,264 (32,532-49,700)	30.0 (26.4-33.7)	14.1 (11.8-16.8)


Average Cost Per Day With Infection

Incremental Costs By Type



Center Variability in Infection



Circ Cardiovasc Qual Outcomes. 2014 Jul; 7(4): 567–573

Survival Impact of Infection

Circ Cardiovasc Qual Outcomes. 2014 Jul; 7(4): 567–573

DSWI

DSWI Incidence and Impact

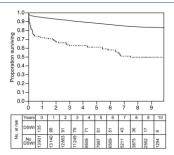
• Incidence ranges: 0.5% -6.8%

• In hospital Mortality: 7-35%

• 1 year survivors of DSWI: 15% survival disadvantage

• 10 yr survival after CABG:

- Without DSWI: 70%


- With DSWI: 39%!

Cotogni P, et al. World J Crit Care Med. 4(4), 2015.

Survival Impact of DSWI

Bilal H, et al. Interact Cardiovasc Thorac Surg. 2013 17(3):479-484.

Timing of DSWI

Pneumonia		
	X	
CTSN: Pneumonia		
• 2.4% (123 of 5,158 patients)		
40% of all major infections67% diagnosed during index hospitalization		
 86% diagnosed within 30 days 14% developed pneumonia after 1st month 		
	<u> </u>	
	*	
Time to Pneumonia		
Median Days to First Pneumonia: 8 (4, 18) During Index Hospitalization: 82 (66.7%) First 30 Days After Surgery: 106 (86.2%)		
30 -		
20 -		

Impact of Pneumonia on Mortality

Variable	HR (95% CI)	P Value	
Pneumonia	8.89 (5.02, 15.75)	< 0.001	
Age (year)	1.03 (1.01, 1.05)	< 0.001	
Male	0.60 (0.39, 0.91)	0.02	
Diabetes* (yes/no)	1.57 (1.03, 2.41)	0.04	
Heart Failure (yes/no)	1.86 (1.24, 2.80)	0.003	
Creatinine, mg/dL	1.17 (1.06, 1.30)	0.002	
Hemoglobin, g/dL	0.85 (0.75, 0.95)	0.005	

Conclusions

- Increasing patient comorbidities
- Surgical infections still prevalent
- Significant financial burden of infections
- Significant mortality effect from infections

Conclusions

- Increasing patient comorbidities
- Surgical infections still prevalent
- Significant financial burden of infections
- Significant mortality effect from infections
- No consensus on Best Management!

Thank You			
Questions?gorav@virginia.edu			
	X		

Risk Factors of Infections After Cardiac Surgery

Justin Sambol MD FACS
Chief, Division of Cardiothoracic Surgery
Rutgers-New Jersey Medical School

Disclosures

- * Consultant for ConVatec
- * No other disclosures

Infections Following Cardiac Surgery

- * Infection following cardiac surgery associated with significant cost
- * Increases hospital LOS
- * Increases Morbidity
- * Increases need for further surgery
- * Increases mortality

•	
-	

Types of Infections After Cardiac Surgery

- * Pneumonia
- * Surgical Site Infections
- * Superficial Sternal Wound Infections
- * Deep Sternal Wound Infections
- * Saphenectomy Site
- * Septicemia

Why do Infections Occur?

- * Preoperative Factors
- * Intraoperative Events
- * Postoperative Course

Preoperative Risk Factors

- * Age >70
- * Obesity with BMI >30 kg/m2
- * Immunosuppression
- * COPD
- * Diabetes (NIDDM as well as IDDM)
- * Renal Insufficiency
- Critical preoperative status (infections, sepsis, cardiogenic shock)

~
•

Intraoperative Risk Factors

- * Prolonged operative time
- * Prolonged bypass time
- * Use of Bilateral Internal Mammary Artery
- * Intraoperative use of blood products

Postoperative Risk Factors

- * Prolonged mechanical ventilation
- * Vasopressor support
- * Need for transfusions
- * Reoperation for bleeding (data is variable)

From: Management Practices and Major Infections After Cardiac Surgery

J Am Coll Cardiol. 2014;64(4):372-381. doi:10.1016/j.jacc.2014.04.052

Baseline Variable | HR (95% CT) | 9 Value | COPTO (yes/no) | 1.66 (1.21-226) | 0.002 | 1.47 (1.11-1.95) | 0.007 (yes/no) | 1.15 (1.08-1.22) | 0.007 (yes/no) | 1.15 (1.08-1.22) | 0.007 (yes/no) | 0.90 (0.84-0.97) | 0.008 | 1.7M/DTx (yes/no) | 0.90 (0.84-0.97) | 0.008 | 1.7M/DTx (yes/no) | 0.35 (2.62-15) | 0.901 (yes/no) | 0.35 (2.62-15) | 0.901 (yes/no) | 0.31 (1.21-1.41) | 0.001

_ . . _ . .

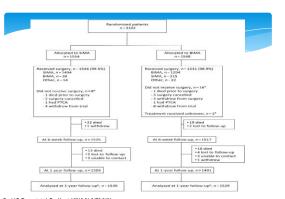
Table Title:

Baseline and Procedure Characteristics Associated With Infection

te of download: 4/12/2016

Copyright © The American College of Cardology. All rights reser

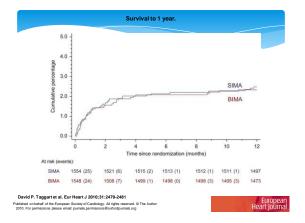
Mitigation of Risk Factors


- * Optimization of blood glucose (HbA1C < 8.0%)
- * Reduce Obesity (BMI <30 kg/m2)
- * Cessation of Cigarette Smoking
- * Optimization of COPD
- * Avoid operative time > 7 hours
- * CPB time <180 min
- * Optimize postoperative cardiac output
- * Minimize bleeding and postoperative transfusion

Sajja LR, International Journal of Surgery 16 (2015) 171-178

Bilateral Internal Mammary Artery

- * The use of Bilateral Internal Mammary Artery (BIMA) requires special consideration
- Emerging data that BIMA improves survival following CABG
- * Increased risk of Deep Sternal Wound Infection???



David P. Taggart et al. Eur Heart J 2010;31:2470-2481

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2010. For permissions please email: journals.permissions@codordjournals.org

Heart Journa

Table 3 Adverse event data by randomized group

SIMA (n = 1552) BIMA (n = 1542) Relative risk (95% CI)

Sternal wound reconstruction	9 (0.6%)	29 (1.9%)	3.24 (1.5	54-6.83)
No history of diabetes	4	15		
Insulin-dependent diabetes	2	5		
Non-insulin-dependent diabetes	3	9		
MI event at 30 days	23 (1.5%)	22 (1.4%)	0.96 (0.	.54-1.72)
CVA event at 30 days	19 (1.2%)	15 (1.0%)	0.79 (0.	40-1.56)
Revascularization at 30 days	6 (0.4%)	11 (0.7%)	1.85 (0.	68-4.98)
MI event at 1 year	31 (2.0%)	30 (2.0%)	0.97 (0.	59-1.60)
CVA event at 1 year 1.43)		28 (1.8%)	23 (1.5%)	0.83 (0.48-
Revascularization at 1 year	20 (1.3%)	27 (1.8%) 1.36 (0.77-2.41)	

Conclusion

- * Infections following cardiac surgery increase cost, morbidity and mortality
- * Risks of Infection are multifactorial
- * Mitigation of these risks, when possible, can significantly reduce the sequeli of these infection
- * The benefits of the use of BIMA should be carefully weighed against the added risk of infection