
WHAT WE LEARNED LABELING 
1 MILLION IMAGES
A practical guide to image annotation for computer vision



 2

INTRODUCTION
On July 7th, 1966, a professor named Seymour Papert proposed 

a summer project to the Artificial Intelligence Group at MIT. 

Using a handful of undergrads as research assistants, Papert was 

confident he and his team could construct "a significant part of a 

visual system" over the course of a single summer. In fact, Papert 

titled this whole endeavor "The Summer Vision Project." And while 

it's a bit difficult to pinpoint what his team actually accomplished, 

50 years later, we can safely say that a summer in 1966 probably 

wasn't quite enough time to solve computer vision for good.

We've come a long way since the summer of ‘66. Facebook's 

clumsily named DeepFace system achieved human-level 

accuracy as early as 2014. In that same year, machines were 

reading radiology images correctly 95% of the time. Pinterest 

and eBay have both rolled out AI that allows you to shop for 

products from snapshots. Computer vision algorithms are 

looking at everything from satellite photographs to microscopic 

biopsy images and they're getting smarter and more accurate by 

the day.

Now, before we dig in too far, it’s a good idea to define what 

we mean when we talk about computer vision. Put simply, the 

goal of computer vision is to have machines see and understand 

images and videos. Often, from a business process perspective, 

computer vision is concerned with automating tasks that 

humans can do; for example, understanding radiology images so 

that doctors don’t spend all their time analyzing scans or seeing 

the road so that our car can drive for us (or, at least, keep us from 

crashing). 

And as far as we’ve come in the field over the past few decades, 

computer vision accuracy still isn't close to human accuracy. That 

same AI that can confidently score radiology images? It would 

be completely at sea looking at images of dogs. That's because AIs 

learn to "see" through labeled training data. To understand that an 

image is a dog, AIs need to have seen tens of thousands of images 

of dogs from all different angles, in all different poses. And even 

then, they may have problems with oddly colored dogs, drawings 

of dogs, or occluded pictures where it can only see a pair of eyes or 

a tail. 

This is true for nearly every use case. An AI that can accurately 

score radiology images can only do so because it's learned from 

labeled examples that show it what to look for. The same goes for 

autonomous drones, AIs that can predict deforestation from 

aerial imagery, penguin-counting algorithms, you name it. 

And while this means that a general AI capable of looking at and 

identifying any object in any image would take a preposterous 

amount of high-quality training data, it also highlights the fact that, 

no matter what your algorithm is supposed to "see," the steps to 

building a well-trained, accurate image classifier are essentially 

the same. 

At CrowdFlower, we've seen and helped with tons of these 

projects. We've labeled over a million images, helping some of 

the world's most innovative companies power and validate their 

computer vision models. In this guide, we'll share a bit of what 

we've learned along the way. You'll learn how to scope a computer 

vision project, what kind of source data you need to make it 

successful, what kind of tools fit your project best, how to label 

your dataset so your algorithms can learn, and a whole lot more. 
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SCOPING YOUR PROJECT
If you're doing a computer vision project, the first thing you need to 

do is decide what your goal actually is. This might seem trivial but 

it's actually incredibly important to do this right. You want to be 

as exacting as possible here, thinking both granularly and at a big 

picture level. Here’s an example:

Say your company is working on a self-driving car. If you're working 

on the AI that will allow the car to drive autonomously, you need to 

define what that means. Do you expect your car to: 

• Park itself?

• Drive itself on the freeway? 

• How about the city? 

• What happens in inclement weather?

• Drive on the left or the right? 

The answers to all these questions have serious implications for 

the sort of data you're going to need to train your AI. 

As for how much data you'll need? There really isn't a hard-and-fast 

rule. It's heavily dependent on how complex your problem is, how 

accurate you need to be, and what you're actually doing with your 

model. Many projects necessitate an ontology of some kind, so 

you’ll want to plan that out too (as well as be willing to amend and 

refine it as necessary). Up front, you may create an ontology for a 

retail vision project that contains only “dress” but then expands to 

include types and styles of dresses as you analyze your data and 

your model’s performance, for example. 

You should also keep in mind what happens when your models are 

wrong (or just not confident). What’s the cost to their inaccuracy? 

It’s probably obvious, but if you're building an algorithm that allows 

cameras to see inventory on grocery store shelves, your problem is 

a lot simpler than an autonomous vehicle model. Your surroundings 

will be more uniform, so you'll likely need much less training data, 

and, importantly, your penalty for inaccuracy isn't that big of a deal. 

If your algorithm incorrectly thinks there's no cereal on a shelf, that 

store ends up with extra Rice Krispies. If a self-driving car makes an 

error, lives are at stake. 

But back to how much data you need: you're not training a good 

computer vision algorithm on hundreds of images. You're going to 

need tens or hundreds of thousands of images per category. And 

even that might be underselling it. 

In fact, remember what we said in the intro about Facebook's 

success with facial recognition? The reason they've enjoyed so 

much accuracy is because they trained DeepFace on a gigantic, 

well-labeled image set: user images. Facebook has access to 

hundreds of billions of photos–labeled by users themselves–with 

350 million added daily. That's a lot of training data. 

As for where it comes from? Generally, it’s best practice to use 

your own, proprietary data. Open source data is usually not robust 

enough and, once you’ve run into edge cases or realize you’ll need 

more of that data, you may find yourself at an impasse. That said, 

for some applications, something like the CityScape dataset, 

Microsoft’s Coco dataset, ImageNet, or any other robust datasets 

can be a good place to start. 

You’ll want to leverage whatever in-house big data you have that 

fits the bill, but don’t be afraid to be scrappy. Taping a phone to a 

dashboard and taking video for your self-driving car project can 

provide you with a host of usable stills for annotation. Scraping 

sites for product images in retail or buying large datasets from 

satellite providers can be a good first step too. 
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We've all heard the phrase "garbage in, garbage out." That's especially true for training machine learning algorithms. A security robot 

trained on good data knows that a broken window means it should alert the police. A security robot trained on bad data wheels itself into 

a fountain. 

And it's not just quality, it's quantity. Take a look at this graph: 

What many people see when they look at this chart is that 

there's a difference between the accuracy in these algorithms. 

Which, certainly, is one way to look at it. What's at least as 

important, however, is how they converge as more and more 

data is added to them. In fact, the difference between state-of-

the-art methods and older ones effectively disappears when 

they've been fed enough information. 

In other words, more training data leads to smarter algorithms. 

Smaller datasets, like a lot of open source datasets you can get 

your hands on, are fine for toy use cases or graduate theses 

or general models that aren't trying for high accuracy. And 

while there are other reasons computer vision projects fail–

unreasonable timelines, fuzzy buy-in from business owners, 

budgets, changing priorities, and more–most often, it really does 

boil down to the data you're using. The more you can provide–

and the closer it hews to your actual end use case–the better. 

But image data–raw files like product images, satellite photos, street snapshots, or anything else–rarely comes labelled. That's where we 

come in. You choose what you parts of these images you need annotated; our platform leverages a network of human labelers to get the 

work done. 

Put another way: images without labels won't get you anywhere in your computer vision project. You'll just have raw data with pixel 

values. You'll know where some colors are, essentially, but that's it. Labeled images train algorithms to know the difference between 

a mother pushing a stroller and a fire hydrant, how to tell if a person's smiling, how to spot a new logging road carving through the 

rainforest. To label images accurately, you need good technology and good people. We've got both.
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IMAGE CLASSIFICATION
Image classification is an extremely common first step for all sorts 

of computer vision projects. It helps you parcel out work correctly, 

teaches you what's actually in your source data, and sets you up for 

higher accuracy and speed when you get to actually marking up the 

images themselves. 

So what is image classification? It's a fairly simple process where 

you have human labelers mark whether a picture contains a certain 

object (or objects) in your ontology. And it's probably easiest to 

explain with an example. 

Say you're trying to build a self-driving car algorithm. That means 

your source data is almost certainly street view pictures like 

dashcam stills of highways and crowded intersections. You might be 

tempted to start annotating those images straight away, but that's 

actually not the best idea. Let us explain why.

Take those two kinds of images we mentioned above: a city 

intersection and a stretch of highway. While a fully autonomous car 

will have to deal with both, the sorts of annotations you'll eventually 

be doing are wildly different. City images have all sorts of objects 

and a lot more going on than highway images (for example, you 

shouldn't expect pedestrians on the freeway). 

OKAY, SO TRAINING DATA MATTERS. 
NOW WHAT?
Let's get back to your project. Once you've taken a first pass at 

scoping, it's time to align the goals of your project with right kind of 

image processing tasks. Roughly, these break into three separate 

categories: 

• Classification

• Shape annotation

• Pixel labeling

They all have their pros and cons and each excel for different use 

cases. Again, what matters most here is which tasks and workflow 

make sense for the algorithm or classifier you're trying to build. You 

may need to run the same source data through different annotation 

tasks to find the most accurate model(s). You may need to use 

several different kinds of annotation tools for the same overall 

project or employ different algorithms for specific uses within your 

project. 

Take classification tasks, for example. They can be used to identify 

which images need annotation and then again to validate your 

algorithm’s performance. In fact, let’s start there. 
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Image classification is the best way to parcel out that data and keep 

it clean from the get-go. So for our example, all you'd need to do is 

present labelers with an image and ask them simple classification 

questions like: 

• Are there homes in this image? 

• Are there pools in this image? 

• Are there roads in this image?

There's a good reason for doing this. When people start labeling 

images with boxes (for example), they're much more accurate when 

they’re given discrete tasks. Asking a person to label every car in an 

image is a lot easier than asking them to mark each part of an image 

based on a taxonomy. They'll work faster and be far more accurate. 

Images with pedestrians can be sent to labelers who are working 

just on annotating pedestrians. They won't see those highway 

images because, hopefully, there aren't any pedestrians there and 

your labelers can concentrate on a single task. 

Classification can also keep your algorithm from overfitting. We'll 

get into this more later, but basically, if your image set is mostly 

cheese, your algorithm is going to assume most objects are cheese. 

Classifying your images allows you to make sure you're building 

a model that has a more nuanced view of its world and doesn't 

assume a mailbox is automatically a block of cheddar. 

One last thing: your classifications can be as specific as your 

project requires. Take the "are there pedestrians in this image?" 

question. For example, you can ask additional questions like "is this 

pedestrian pushing an object?" or "is this pedestrian on a bike or 

skateboard?" A mother pushing a stroller behaves much differently 

from a bicyclist, after all. 

IMAGE CLASSIFICATION
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BOUNDING BOX DOTS POLYGON SEMANTIC 

SEGMENTATION

COST Least expensive More expensive More expensive Most expensive

TIME 
COMMITMENT

Lowest Medium Medium Highest

PRECISION Good Great Great Excellent

INSTANCE-BASED  
(OUTPUT 
CONTAINS 
DISCRETE 
OBJECTS)

Yes Yes Yes No 

POSSIBLE TO 
LABEL SEVERAL 
OBJECTS?

Yes Yes Yes Yes

POSSIBLE TO 
LABEL SEVERAL 
CLASSES OF 
OBJECT IN A 
SINGLE JOB?

No No No Yes

OUTPUT*

X,Y coordinate, 

width and length of 

each box 

Series of x,y 

coordinates

Series of x,y coordinates, 

with shapes resolving

Coded RGB pixels as an 

image 

* see page 13

TOOL COMPARISON CHEAT SHEET
At a glance, here’s a quick overview of the tools we’ll discuss:

Now, often, we get asked which sort of tool we recommend 

for a particular project. We've seen a pretty wide variety of 

annotation jobs and we have a handle on which work well 

for which use case. But before we dig into that too far, it's 

important to level-set on what each tool is and how they 

work. We'll start with shapes, but first, here’s a chart to 

explain some high-level differences:
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SHAPE ANNOTATIONS
Once you've classified your images and parcelled them out, it's time 

to get annotating. Again, we recommend creating distinct tasks 

for labeling. In other words: "Draw a box around every car in this 

image" or "mark every pedestrian in this image" and so on. You can 

merge the image data from these separate tasks if an image contains 

multiple classes your algorithm cares about.  

Shape annotation tasks can generally be broken into three main 

categories: 

• Bounding boxes: 
Drawing a box around a particular object

• Dots:
Marking an image with a series of dots or points

• Lines (or polygons):
Drawing lines or creating shapes (polygons) with a

simple line drawing tool

There are pros and cons to each of these approaches and which 

one(s) you use, again, depends on what it is you need your model to 

do. Each approach, however, is attempting to do the same thing at a 

high level: mark objects in a real image. 

Since it's the most common tool, and a great place to start, let's look 

at bounding boxes. 

BOUNDING BOXES
It's probably safe to assume you know what a bounding box on an 

image looks like, but if not, here's a pretty common example. In 

the image above, a data scientist has asked a labeler to draw a box 

around each car.

Bounding boxes are a simple way to capture certain objects in 

images and are the easiest type of annotation. Depending on your 

quantity and quality of data, sometimes, a model can learn to 

identify the objects you need just by training with bounding boxes. 

So when should you use bounding boxes? What are some best 

practices? First off, you'll likely want to use bounding boxes when 

your objects are, well, boxable. Think of drawing a box around crate, 

for example. If your image is front-facing, labelers can draw a much 

tighter box around it than if your image is at, say, a three-quarter 

view.
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By way of example, a product on a shelf can usually be boxed, but, say, a river from an aerial photograph would be a bad candidate.

VS.

You'll also want to come up with a strategy for occluded images 

and this strategy should marry to the goal of your computer vision 

project. If we return to our self-driving car example, what would 

you do with a person who's partially obscured behind a parked car 

or a bus stop bench? Well, you want your model to know that the 

object is a person, not half a person. Many data scientists would 

advise boxing the entire individual, even if they're not completely 

visible. If you were simply building an algorithm that counted people 

in a particular location, that might not be as necessary. 

Bounding boxes are the easiest kind of annotation, requiring less 

attention and less complicated tools than pixel or polygon jobs. 

By virtue of this, they finish faster and cheaper than other types 

of image annotation. They're not as precise as the other methods 

we'll discuss, but they're simple and they work quite well for a lot of 

applications, including self-driving cars, general object recognition 

jobs, and multiple retail applications. Lastly, because boxes are less 

precise than pixels or polygons, you'll likely need a bit more training 

data to reach the accuracy of those methods. But, again, the 

labeling goes much quicker and is generally much cheaper, so don't 

let that fact discourage you. 

Next, we're going to look at the bounding box's first cousin: lines 

and polygons. 
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LINES AND POLYGONS
While there are occasional reasons to annotate an image with  

a single line, a vast majority of so-called "line" jobs involve  

labelers drawing shapes around objects. In many ways it can be  

seen as a bridge between boxes and semantic segmentation  

(a.k.a. pixel labeling). 

Line tools (like the one on CrowdFlower) allow labelers to draw tight 

shapes around the objects you need identified. Unlike boxes which 

can capture a lot of white space and additional noise, leading to 

confusion in vision models, polygons are far more precise. Remember 

the aerial photo from our last section? 

This is a perfect candidate for this sort of line/polygon annotation. 

While a box would capture far more grass than river, a polygon can 

be far more exacting. Same thing goes for the three-quarters view 

of a crate we showed above. 

Of course, drawing shapes requires more work for labelers, so these 

types of jobs cost a bit more–both in time and money–than bounding 

box annotation does. You'll often see them used for everything from 

aerial imagery to medical research.

Though the output will be a bit different than with bounding boxes 

(we’ll get to that later), the general processes, workflow, and best 

practices still apply here. Polygons should be as tight as possible and 

breaking up work with image classification tasks first will absolutely 

improve both the speed and accuracy of your labeling work.

Let's move off shapes into a completely different kind of 

annotation: dots. 
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Dot annotation is exactly what it sounds like. In these tasks, labelers 

place dots where you ask them to. Generally, these tools are used most 

often for counting jobs and gesture or facial recognition tasks. 

The counting jobs are pretty self explanatory. Say, for example, you 

want to count the cars in a parking lot in a large mall as a proxy for 

shopper density. Here, you'd have labelers annotate aerial imagery on 

that mall's parking lot, simply putting a dot on each car. More often, 

however, you'll see dots being used for gesture and facial recognition. 

As augmented reality initiatives become more and more common, so 

do gesture recognition AIs. Dot annotation is usually your best bet for 

these kinds of projects and the process is fairly simple. Essentially, you'd 

have labelers mark important points on the human body that your 

gesture project will care about, for example, every knuckle on a hand 

and the ends of each finger. With enough high-quality training data, this 

allows an AI to understand subtle but discrete hand motions, allowing 

end users to manipulate "objects" in augmented realities. 

Similarly, facial recognition tasks involve marking certain points 

on faces: the corners of each eye, the tip of the nose, the corners 

of the mouth, and so on. These, in turn, allow facial recognition 

algorithms to recognize individuals by analyzing the unique ratios 

between these points on a person's face. Additionally, if you 

combine facial recognition with a categorization task, you could 

create an algorithm that detected emotion. People are great at 

understanding, at a glance, if another person is upset, laughing, 

frustrated, or any other emotion. 

You’ll also see a dot tool used for certain consumer packaged goods 

(or CPG) jobs. Sometimes, this will happen as a simple counting 

job, i.e. “put a dot on each can of beans in this image.” You’ll also 

sometimes see jobs where labelers annotate the corners of, say, 

cereal or anything else in a box. This actually gets around the issue 

we were talking about with boxes vs. polygons earlier and works 

quite well for computer vision algorithms in this space as you can 
get fairly tight coordinates for every object you're "dotting."

DOT ANNOTATION
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Generally, it works like this: you provide a labeler with an image and 

an ontology of objects they need to find. This can be a city street 

for an automated vehicle project, an open box with parts in it for a 

manufacturing logistics job, or a whole host of other use cases. A 

labeler would see something like this: 

See those colors on the side? That's the ontology used to label this 

image. Interestingly, because labelers will be annotating several 

objects in an entire image, it's often unnecessary to send these 

through image classification tasks first. 

Semantic segmentation has become more and more common in the 

past few years. There are a few reasons for this. First off, it really is 

as exacting as you can get and, for a lot of computer vision projects, 

there's really no such thing as being too accurate. Additionally, 

semantic segmentation can be really ideal if you don't have copious 

amounts of source data. Because while more well-labeled data is 

always a good thing, if you have a limited amount for your project, 

you can get more actionable information for your models from every 

single image. 

The flipside is that annotating pixel-by-pixel takes a while and, out 

of all these tasks, the cognitive load on the labeler is the highest for 

semantic segmentation. Since each image takes serious time and many 

involve robust ontologies, there's a bit of a higher chance for error 

here as well. Which is to say, like any annotation task, there are pros 

and cons. If you're thinking about starting any of these projects, we 

can help you decide what the right solution is for you and your project. 

Now that we've gone over scoping and the tools, we thought we'd 

tell you a bit about how to actually get your images labeled. It’s our 

speciality. 

PIXEL LABELING  OR  
SEMANTIC SEGMENTATION
Semantic segmentation is by far the most exacting type of image 

annotation. It involves labelers labeling every part of an image so that 

every pixel is accounted for. If this sounds like it takes a while, that's 

because it does. A fairly average image–in terms of size and complexity–

takes anywhere from 45 minutes to an hour to annotate! That said, 

you'll generally need far fewer of these images to train a computer 

vision model because they're incredibly accurate. 
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HOW TO GET REAL PEOPLE TO 
LABEL YOUR DATA
No matter what kind of computer vision project you're undertaking, 

you need lots of high-quality data to make it work. And while press 

articles about the latest advances in the field often gloss over this fact, 

practitioners know that this training data can be more important and 

more vital than leveraging the newest models. 

Some companies have built in image labelers. Take the Facebook 

example we mentioned earlier: every time you tag your friend or your 

child on Facebook, somewhere behind the scenes, there's an algorithm 

understanding a bit more about what that person looks like and slowly 

learning to label him or her by itself. When a CAPTCHA modal pops up 

and asks you to click on every picture of a truck, you're actually doing 

double-duty: you're proving you're not a robot and you're training an 

algorithm. 

Most companies don't have access to these natural "workforces." 

Instead, they turn to platforms like CrowdFlower to train, test, and 
tune their computer vision models. On a very high level, it works like 

this: 

First, you upload the data you want annotated in a simple .csv. Then, 

you design the task you want people to do, using a template or 

creating your own. You choose the tool you want to use, write the 

instructions to get exactly what you want, and give a few examples of 

what you're looking for. Then? You launch your job. At that point, real 

human labelers–we call them contributors–get to classifying, labeling, 

and annotating your images. Our contributors work around the clock, 

following your instructions, and finish labeling your images. You 

download enriched data (or hook up to our API) and use that in your 

CV project. 

A QUICK WORD ABOUT OUTPUT
The tool you use determines the enriched data you'll receive as an 

output from your image annotation job. It breaks down as follows: 

•	Classification:	Full category breakdown of every image.

If you ask "is there a person in this image?" you'll know 

whether there is for each image. The same is true of every

question you ask. 

• Bounding boxes: The output here is the image

coordinate of the top left corner of your bounding box,

plus the width and height of the box. 

• Dots: A list of X/Y coordinates for each dot.

• Lines or Polygons: A series of coordinates for each

shape. If the shape connects, the first and last coordinate

will be the same. 

• Semantic segmentation: The output here encodes

ontology categories into an R,G,B pixel in the R value. If a 

contributor labels a certain pixel with the first category in

your ontology, that pixel's value would be 1,0,0. 
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CAN I USE SEVERAL DIFFERENT TOOLS FOR  
MY CV PROJECT? 

Not only can you, but most projects do. This is a case-by-case 

determination that you and your team will want to make, but more 

data–and more diverse data–tend to create smarter, more accurate 

algorithms. 

By the way, this extends beyond just image data. If you're working 

on autonomous vehicles, you're going to want to look at sensor data, 

LIDAR data, and a whole host of other sources to improve your 

performance. Variety's generally not a bad idea. 

HELP! MY MODEL'S OVERFITTING!

If your data has a preponderance of a certain category–and if it's 

missing a lot of another category–it's likely going to overfit. Which is to 

say, if all it knows are cars, it's going to think everything is a car. 

So how do you fix that? Simple! More data from under-represented 

categories. 

WHAT TOOL SHOULD I USE?

Like “how much data should I use?”, this is a tough question to answer 

without knowing the specifics of your project. If you’d like to get in 

touch, we’d be happy to help answer any questions you have. We’re at 

sales@crowdflower.com.

HOW DO I SOURCE IMAGES? 

Generally, you’re going to want to use your own source data. If you 

don’t have enough for your project, open datasets like Microsoft’s 

Coco or Imagenet can be a good place to start. You can also purchase 
image sets or scrape public pages in a pinch. 

FAQs



www.crowdflower.com

About CrowdFlower
CrowdFlower is the essential human-in-the-loop AI platform for data science teams. CrowdFlower helps customers generate high quality customized 
training data for their machine learning initiatives, or automate a business process with easy-to-deploy models and integrated human-in-the-loop 
workflows. The CrowdFlower software platform supports a wide range of use cases including self-driving cars, intelligent personal assistants, medical 
image labeling, content categorization, customer support ticket classification, social data insight, CRM data enrichment, product categorization, and 
search relevance.

Headquartered in San Francisco and backed by Canvas Venture Fund, Trinity Ventures, and Microsoft Ventures, CrowdFlower serves data science 
teams at Fortune 500 and fast-growing data-driven organizations across a wide variety of industries.  

For more information, visit www.crowdflower.com.




