(SDCONTROL DATA

CDC ${ }^{\circledR}$ CC63X
 DISPLAY TERMINAL

HARDWARE MAINTENANCE MANUAL

REVISION	DESCRIPTION
$\begin{gathered} A \\ (05-03-82) \end{gathered}$	Manual released. Includes information from manual verification and product testing. This edition obsoletes all previous editions.
$\begin{aligned} & \text { B Interim } \\ & (07-30-82) \end{aligned}$	Incorporates ECO 15137, ECO 15166, and ECO/FCO 15337 plus various editorial corrections.
$\begin{gathered} C \\ (09-08-82) \end{gathered}$	Manual revised to incorporate ECOs 15167, 15251, 15259, 15344, 15345 and 15347. Incorporates ECO 15337 (B-Interim) in its final form and makes technical corrections/changes.
$\begin{gathered} \text { D } \\ (04-07-83) \end{gathered}$	Manual revised to incorporate ECOs 15553, 15659, 15679, 15705, and 15717. Makes technical corrections/additions to SAMs listings.
$\begin{gathered} \mathrm{E} \\ (09-18-83) \end{gathered}$	Manual revised to include information on internal 1200/1200 baud modem option, 4.0 terminal firmware, and power-cord interlock. This revision also includes various technical and editorial corrections. This edition obsoletes all previous editions.
$\underset{(11-16-83)}{F}$	Manual revised to incorporate ECOs 16044, 16133 and 16125; a new touchpanel adjustment procedure; and technical changes/additions.
$\begin{gathered} \mathrm{G} \\ (04-18-84) \end{gathered}$	Manual revised to incorporate ECOs 16480, 16564, 16591, and 16602.
$\stackrel{H}{(06-15-84)}$	Manual revised to incorporate ECOs 16273, 16702, and 16710.
$\begin{gathered} \mathrm{J} \\ (03-15-85) \end{gathered}$	Manual revised to incorporate ECOs 16868, 16896, 16972, and 17023.
$\begin{gathered} K \\ (06-20-85) \end{gathered}$	Manual revised to incorporate ECO 17107 and miscellaneous changes.
$\stackrel{\mathrm{L}}{(10-25-85)}$	Manual revised to incorporate ECOs 17518 and 17571.
$\stackrel{M}{(08-29-86)}$	Manual revised to include Procedure 19.1 which describes removal and replacement of touchpanel outer mylar and incorporate ECOs 17794 and 17827.
62940034	

REVISION LETTERS I, O, Q, S, X AND Z ARE NOT USED.

	Address comments concerning this manual to:
	Control Data Corporation Technology and Publications Division 4201 North Lexington Avenue
All rights reserved	St. Paul, Minnesota 55126-6198
Printed in the United States of America	or use Comment Sheet in the back of this manual.

This manual reflects the equipment configurations listed below.

EXPLANATION: Locate the equipment type and series number, as shown on the equipment $F C O$ log, in the list below. Immediately to the right of the series number is an FCO number. If that number and all of the numbers underneath it match all of the numbers on the equipment FCO log, then this manual accurately reflects the equipment.

MANUAL TO EQUIPMENT LEVEL CORRELATION SHEET (CONTD)

EQUIPMENT TYPE	SERIES	WITH FCO'S	COMMENTS
XA358-A	$\begin{aligned} & 01 \\ & 02 \\ & 03 \end{aligned}$	-	ECO 15347 (S/N 106)
XA $360-\mathrm{A}$	01		
XA368-A	01		
XA369-A	01		
YA274-A	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	-	ECO 16145
YA274-B	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	-	ECO 16145
YA274-C	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	-	ECO 16145
YA274-D	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	-	ECO 16145

MANUAL TO EQUIPMENT LEVEL CORRELATION SHEET (CONTD)

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE	REV								
Cover	-	6-14	E	6B-37	M				
Title Page	-	6A-1	E	$6 \mathrm{~B}-38$	M				
ii	M	6A-2	E	6B-38.1	M				
iii	M	6A-3	B	6B-38.2	M				
iv	F	6A-4	K	6B-38.3	M				
v	F	6A-5	E	6B-38.4	M				
vi	F	6A-6	D	6B-39	E				
vii	M	6A-7	A	6B-40	E				
viii	M	6A-8	E	6B-41	H				
ix	K	6A-9	E	6B-42	H				
x	E	6A-10	E	6B-42. 1	H				
xi	F	6A-11	E	$6 B-42.2$	H				
xii	K	6A-12	E	6B-43	H				
xiii	M	6A-13	E	6B-44	E				
xiv	M	6A-14	E	6B-45	E				
$\mathrm{x} v$	E	6A-15	E	6B-46	E				
$x \mathrm{vi}$	E	6A-16	E	6B-47	H				
1-1	E	6A-17	E	7-1	C				
1-2	E	6A-18	E	7-2	L				
1-3	C	6B-1	E	7-3	M				
1-4	E	6B-2	E	7-4	J				
1-5	E	6B-3	E	7-5	J				
1-6	F	6B-4	E	7-6	M				
1-7	A	6B-5	E	7-7	M				
2-1	A	6B-6	E	7-8	J				
2-2	B	6B-7	K	7-9	M				
2-3	E	6B-8	E	7-10	J				
2-4	F	6B-9	E	A-1	A				
3-1	F	6B-10	F	A-2	A				
3-2	K	6B-11	F	B-1	A				
4-1	B	6B-12	K	B-2	E				
4-2	E	6B-13	K	Comment					
4-3	E	6B-14	K	Sheet	M				
4-4	A	6B-15	E	Mailer	M				
4-5	E	6B-16	E	Back Cover	-				
4-6	E	6B-17	E						
5-1	L	6B-18	F						
5-2	H	6B-19	E						
5-3	A	6B-20	E						
5-4	A	6B-21	E						
5-5	L	6B-22	F						
5-6	L	6B-22.1	F						
5-7	J	6B-22.2	F						
5-8	J	6B-22.3	F						
5-9	K	6B-22.4	F						
5-10	J	6B-23	F						
6-1	E	6B-24	E						
6-2	A	6B-25	E						
6-3	B	6B-26	E						
6-4	E	6B-27	E						
6-5	E	6B-28	E						
6-6	E	6B-29	E						
6-7	E	6B-30	E						
6-8	E	6B-31	E						
6-9	E	6B-32	E						
6-10	E	6B-33	E						
6-11	F	6B-34	E						
6-12	E	6B-35	E						
6-13	E	6B-36	E						

+

This manual provides maintenance information for the display terminal hardware only. For the maintenance of any applications (hardware, software, or firmware) added to the terminal, refer to the applicable maintenance manual covering that application.

This manual is also the only training document. Due to few parts, self-contained diagnostics, and modular construction of the display terminal, no classroom instruction is offered. By carefully reading the information in this manual, the customer engineer (CE) will be prepared to isolate display terminal hardware problems.

Section lists the self-study objectives, and section 6 lists the tasks to be performed before responding to a customer request for maintenance.

Reference to the following listed manuals may be necessary during maintenance. These manuals are divided into groups which cover the enhanced model terminals and the original model terminals. An enhanced model terminal is either a new production CC634-B/CC638-B unit or an earlier built CC634-A/CC638-A unit with the YR109-A enhanced firmware option installed. An original model terminal is a CC634-A/CC638-A unit without the YR109-A option installed.

MANUALS COVERING ENHANCED MODEL TERMINALS:

Title
721 Display Terminal Owner's Manual*
721 Enhanced Display Terminal Hardware Reference Manual

62950102

[^0]721 Display Terminal Operator's Guide/
Installation Instructions

721-X0 Display Terminal Reference Manual 62940020

All manuals may be ordered from:

Control Data Corporation
Literature and Distribution Services 308 North Dale Street
St. Paul, Minnesota 55103

1. GENERAL DESCRIPTION
Introduction 1-1
Terminal Applications and Building Blocks 1-1
Customer Engineering Training 1-5
Equipment Specifications 1-6
Physical Specifications 1-6
Electrical Specifications 1-6
Environmental Specifications 1-7
2. OPERATION
Controls and Indicators 2-1
Keyboard Configurations 2-4
3. INSTALLATION AND CHECKOUT
Introduction 3-1
4. THEORY OF OPERATION
General 4-1
Major Assemblies 4-3
Display Monitor 4-3
Keyboard 4-4
Logic Drawer Assembly 4-5
Enclosure 4-5
External Interfaces 4-6
5. DIAGRAMS
Installation Drawing, Large Option 5-5
6. MAINTENANCE
Introduction 6-1
Suggested Emergency Maintenance Procedure 6-2
Before Leaving for Customer Site 6-2
Upon Arriving at Customer Site 6-3
Maintenance Aids 6-3
Resident Diagnostics 6-4

Procedure 17 - Removing and Replacing AC Line Filter 6B-35
Procedure 18 - Removing and Replacing Circuit Breaker 6B-36
Procedure 19 - Removing and Replacing the Touchpanel Assembly 6B-36
Procedure 19.l - Removing and Replacing the Touchpanel Outer Mylar 6B-38
Procedure 20 - Removing and Replacing Keyboard Switch Module 6B-38. 3
Procedure 21 - Removing and Replacing Line Voltage Switch 6B-39
Procedure 22 - Check and Adjustment of the Tilt Tension 6B-40
Procedure 23 - Removing and ReplacingInternal 1200/1200 B/S Modem 6B-40Procedure 24 - Internal Modem FunctionCheck6B-45
7. SPARE PARTS
Spare Parts Kit, 721 Display Terminal 7-2
721 Display Terminal 7-3
Genealogy Chart 721 Display Terminal 7-7
APPENDICES
A. KEYSTATION CODE ASSIGNMENTS A-1
B. RASTER DRIFT B-1
FIGURES

1. GENERAL DESCRIPTION

l-1 Basic Terminal Configuration 1-3
1-2 Expanded Terminal Configuration 1-4
2. OPERATION
2-1 Location of Controls and Indicators 2-4
4. THEORY OF OPERATION
4-1 Display Terminal Block Diagram 4-2
4-2 Major Assemblies 4-4
4-3 Display Terminal Interfaces 4-6
5. DIAGRAMS
5-1 Interconnection Diagram (4 sheets) 5-1

6-1	Display After Test l if Everything Failed	6-6
6-2	Example of a SAM	6-13
6-3	Organization of SAMs and Corrective Maintenance Procedures	6-14
6A-1	Location of Controls for Use in SAMs	6A-2
6B-1	Power On Test with TEST Switch Enabled and Default Mode Names Displayed .	6B-2
6B-2	Operator Intervention Test Display	6B-4
6B-3	Alignment Raster	6B-5
6B-4	Cabinet Access	6B-7
6B-5	Terminal Parts Identification	6B-8
6B-6	Removing the Bezel Assembly	$6 \mathrm{~B}-10$
6B-7	Removing the Bezel Adapter Assembly	6B-11
6B-8	BRIGHTNESS/CONTRAST Control Assembly Mounting	6B-13
6B-9	Power Supply Board Test Points	6B-14
6B-10	Power Supply Board Mounting Detail	6B-15
6B-11	Removing Main Logic Board	6B-18
6B-12	Power Wiring Detail	6B-19
6B-13	Removing CRT Monitor Board Assembly	6B-21
6B-14	Display Screen for Touchpanel Video Alignment	6B-23
6B-15	Yoke Ring Tabs .	6B-24
6B-16	Video Adjustment Controls Identification	6B-25
6B-17	Video Alignment and Test Pattern	6B-28
6B-18	Correct Pattern Alignment	6B-29
6B-19	Vertical Centering Alignment .	6B-33
6B-20	Horizontal Centering Alignment	6B-34
6B-20.1	Touchpanel Outer Mylar Replacement	6B-38.
6B-21	Keyboard Showing Non-Removable Keyswitch Modules	6B-38.3
6B-22	Keyboard Switch Module Mounting Details	6B-38.3
6B-23	Location of Internal Modem in Terminal	6B-42
6B-24	Removal/Replacement of Internal Modem Assembly	6B-42.
6B-25	Factory-Set Positions of Modem Jumper	

1. GENERAL DESCRIPTION
1-1 Display Terminal Features and Options l-2
2. OPERATION
2-1 Controls and Indicators 2-1
3. MAINTENANCE
6A-1 Symptoms/SAMs Correlation 6A-1
6B-1 Video Adjustment Controls 6B-26

This section describes the functions, major assemblies, external interfaces, electrical requirements and physical specifications of the terminal.

INTRODUCTION

The CDC CC63X Multifunction Display Terminal is a microprocessorcontrolled input/output hardware device with a detached keyboard and loadable 64 K memory.

The basic resident terminal mode supports CYBER (Advanced) Mode and Control Data Shared Network (CDSN) downline load capability. It will operate as an IST III terminal via the CDSN.

The major application of this terminal, however, is the versatility offered by the addition of hardware options and the capability for loading various operating programs. One of the available options is an internal 1200/1200-baud (bit-per-second or b / s) modem that enables terminal connection to CDSN via the telephone lines and incorporates user oriented features such as automatic dialing (call originate mode) and automatic answering (answer mode).*

TERMINAL APPLICATIONS AND BUILDING BLOCKS

The display terminal is a versatile input/output device that can be configured to operate in many modes by the addition of options and any number of pluggable ROM packs. The operational mode of the terminal is determined by the application of the user.

The memory is loadable through the communications line or an operator plug-in memory module (ROM pack). The terminal contains internal interfaces which allow the addition of several options, including a touchpanel and/or an internal 1200/1200 b/s modem. Refer to table l-l for display terminal features and options.

[^1]TABLE 1-1. DISPLAY TERMINAL FEATURES AND OPTIONS

FACTORY-INSTALLED FEATURES	DISPLAY TERMINALS					
64K RAM (main logic board)	X	X	X	X		
Dot graphics board with						
touchpanel				X	X	
Enhanced (revision 4) firmware		x		x		
Power-cord interlock (enables						
internal $1200 / 1200 \mathrm{~b} / \mathrm{s}$ modem						
and dot graphics board to be						
user installed)		x		X		
$120-\mathrm{V}$ ac, $60-\mathrm{Hz}$ operation	X			X		
		X	X			
AVAILABLE OPTIONS THAT ARE SERVICE CENTER INSTALLED:						
- XA358-A dot graphics board with touchpanel on CC634-A/B terminals.						
- XA360-A internal $1200 / 1200 \mathrm{~b} / \mathrm{s}$ modem on CC634-A/CC638-A terminals.						
XA368-A dot graphics board on CC634-A terminals. XA369-A touchpanel on CC634-A/B terminals with XA368-A dot graphics board installed.						
- YA109-A enhanced (revision 4) firmware on CC634-A/CC638-A terminals.						
\|AVAILABLE OPTIONS THAT ARE CUSTOMER INSTALLED:						
- XA360-A internal $1200 / 1200 \mathrm{~b} / \mathrm{s}$ modem on CC634-B/CC638-B terminals.						
XA368-A dot graphics board on CC634-B terminals.						
YA274-A United Kingdom keycap kit.						
YA274-B Spanish keycap kit.						
YA274-C German keycap kit.						
YA274-D French keycap kit.						
YA274-E Swedish/Finnish keycap kit.						
YA274-F Danish/Norwegian keycap kit.						
YA275-A $220 / 240-\mathrm{V}$ ac, $50-\mathrm{Hz}$ power conversion kit.						
YRIO1-A dual asynchronous-interface board.						
YR102-A parallel-interface board.						
- YR107-A/B graphics memory module (ROM pack).						

Figure 1-1. Basic Terminal Configuration

Since it is difficult to determine all possible display terminal applications, this manual covers only on-site maintenance for the display terminal in its basic and expanded configurations as indicated in figures $1-1$ and 1-2. That is, the maintenance information contained in this manual covers the basic terminal, the graphics board with touchpanel, and the internal modem. The maintenance of any other hardware, software, or firmware added to or used with the terminal is covered in their respective maintenance manuals.

The memory of the terminal includes 20 K bytes of ROM and 64 K bytes of RAM plus any ROM pack that may be inserted. The 20K bytes of ROM contains the resident CYBER mode as well as programs that perform self-testing of the terminal hardware by resident diagnostics. The ROM pack allows a program to be loaded into the terminal.

Operating parameters are loaded through the keyboard. The parameters are stored in a nonvolatile memory (NVM), which will retain this information after the terminal is turned off or unplugged (the NVM is battery-supported). The resident ROM contains subroutines that allow qualified personnel to change the stored parameters, when necessary.

CUSTOMER ENGINEERING TRAINING

In addition to providing display terminal maintenance information, this manual will also serve as the only maintenance training document. Due to a low piece-part count, internal diagnostics and modular construction, there is no display terminal classroom instruction offered. By reading and using this manual, the CE will acquire the expertise to isolate display terminal malfunctions. Section 6 lists the main tasks a CE must be able to perform before responding to a customer request for maintenance on the terminal.

The CC63X display terminal training course consists of reading this manual and taking a final test found on Engineering Services Educations PLM. This test covers the following objectives:

- Locate and list the function of all major assemblies, components and controls.
- List the steps necessary to initiate, execute and terminate the resident diagnostic tests.
- List the field-replaceable units (as specified by the SAM listings) for terminal malfunctions.

The following paragraphs describe the physical, electrical, and environmental specifications for the display terminal.

PHYSICAL SPECIFICATIONS

The size and weight of the monitor and control module and detached keyboard module are as follows:

- Monitor and control logic module

Height: $440 \mathrm{~mm}(17.3 \mathrm{in})$ nominal position
Width: 430 mm (16.9 in) maximum
Depth: 430 mm (16.9 in) maximum
Weight: $19.5 \mathrm{~kg}(43 \mathrm{lb})$ maximum
Weight (packaged): $22.2 \mathrm{~kg}(49 \mathrm{lb})$ maximum

- Keyboard module

ELECTRICAL SPECIFICATIONS

The display terminal has the following electrical power requirements:

- $120 \mathrm{~V} \mathrm{ac}, 50 / 60 \mathrm{~Hz}$, at 1.0 A , nominal;
- 220 V ac, $50 / 60 \mathrm{~Hz}$, at 0.5 A , nominal;
0.71 A, maximum
- 240 V ac, $50 / 60 \mathrm{~Hz}$, at 0.5 A , nominal;
- $85 \mathrm{~W}(290 \mathrm{Btu} / \mathrm{hr})$, heat dissipation configuration without options

ENVIRONMENTAL SPECIFICATIONS

The display terminal has the following environmental requirements:

- OPERATING:

Temperature range:	$10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ to $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
Temperature change:	$10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right) / 60$ minutes
Relative humidity range:	20 to 80 percent
Humidity change:	10 percent $/ 60$ minutes
Altitude:	$3000 \mathrm{~m}(9850 \mathrm{ft})$ maximum

- NONOPERATING:

Temperature range:	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$
Temperature change:	$20^{\circ} \mathrm{C}\left(36^{\circ} \mathrm{F}\right) / 60$ minutes
Relative humidity range:	5 to 100 percent
Humidity change:	10 percent $/ 60$ minutes

This section describes the operator accessible controls and indicators on the display terminal.

CONTROLS AND INDICATORS

Refer to table 2-1 for a description of controls and indicators mounted on the cabinet (figure 2-1).

TABLE 2-1. CONTROLS AND INDICATORS

TABLE 2-1. CONTROLS AND INDICATORS (CONTD)

TABLE 2-1. CONTROLS AND INDICATORS (CONTD)

KEYBOARD CONFIGURATIONS

Refer to section 4 for keyboard configurations.

FRONT VIEW

04218-2

This section contains installation information.

INTRODUCTION

The installation of the display terminal plus the installation of certain options are the responsibility of the customer. Therefore, this section only refers to the installation of those options that are the responsibility of CE personnel. For a breakdown of terminal features and available options, refer to table l-1 in section l. For information concerning the installation and checkout of the terminal, refer to the terminal operator's guide/installation instructions manual or the terminal owner's manual (preface lists publication numbers).

OPTIONS INSTALLED BY CUSTOMER ENGINEERING PERSONNEL

The options requiring installation by CE personnel include the:

- YRl09-A enhanced firmware option that applies to a CC634-A/CC638-A terminal. For this installation, refer to the installation drawing in section 5 .
- XA360-A $1200 / 1200 \mathrm{~b} / \mathrm{s}$ internal modem if it is to be installed in a CC634-A/CC638-A terminal. For this installation, refer to procedure 23 in section 6B.
- XA369-A touchpanel, the XA368-A dot graphics board (customer installed in CC634-B terminals but not in CC634-A terminals), or the XA358-A touchpanel/dot graphics board combination. These options apply to a CC634-A/B terminal and their installation is described with the installation drawing, section 5.

GENERAL

The operational mode of the display terminal is determined by parameters set in from the keyboard. Parameters may be selected to initiate the resident CYBER mode, or to load and initiate host programs. The terminal contains firmware for the resident CYBER mode; any other program must be downline-loaded from the host. The terminal also contains firmware for self tests and for loading host controlware.

Operations within the terminal are controlled by a microprocessor. It can interface asynchronously with a higher-level processor either directly or through a modem. The terminal is multifunctional with the base unit being an alphanumeric display. It contains interfaces for three small option boards and two large option boards. These boards provide interfaces to host computers, modems, and peripheral equipment. Refer to figure 4-1 for a block diagram of the display terminal.

The operator uses the keyboard to enter, change, or delete information and to select initial operating parameters. The terminal is multifunctional, having the capability for one standard and six foreign languages and a variety of graphics symbols. Terminal-operating parameters are entered from the keyboard into a nonvolatile RAM, and read by the microprocessor. There are three groups of operating parameters:

- Terminal installation parameters (select terminal-related conditions, such as interfaces, memory option, or type of peripheral to be used).
- Mode installation parameters (selects port rates and data rates of each operating mode, such as CYBER).
- Mode operator parameters (determines conditions within which selected mode will operate, i.e., on line, off line, 80/132, cursor type, alert, etc.).

The terminal uses a Z 80 B microprocessor which controls all operations inside the terminal. It directs the operations of associated peripherals such as printers and modems. The microprocessor uses 64 K of dynamic RAM for instruction processing. This RAM is dedicated for program operations and CRT refresh.

NOTES:
(1) power is distributed throughout the terminal via the main logic board
(2) options shown in I/FI AND I/F3 CAN be in ANY OF THE I/F-1 THROUGH I/F-3 SLOTS

Figure 4-1. Display Terminal Block Diagram

An internal ROM (figure 4-1) contains the resident CYBER mode, resident diagnostics, and controlware loaders. The diagnostics consist of self tests which are performed each time the terminal is activated for use. (POWER on or RESET.)

The nonvolatile memory (NVM) is a RAM device which stores keyboard-entered operating parameters for a selected operation. A battery maintains the stored data when terminal power is removed. If terminal power is ever turned off and the battery removed, default parameters are forced into the nonvolatile memory (default parameters are described in the manuals listed in the preface).

The pluggable memory module (ROM pack) is optional and can be used in a number of special operations. The terminal can checksum the ROM pack contents, and load operating firmware from the memory module.

MAJOR ASSEMBLIES

Figure 4-2 depicts the major assemblies comprising the display terminal and the following paragraphs describe those assemblies.

DISPLAY MONITOR

The display monitor consists of a cathode-ray tube (CRT) with yoke and a CRT monitor board. The CRT screen provides a display of alphanumeric and graphic symbols. A green phosphor screen and reduced-glare faceplate is used. The screen measures 380 mm (15 inches) diagonally with a 203 mm (8 inch) by 262 mm (10.3 inch) viewable area.

The CRT monitor board contains the horizontal and vertical deflection circuits, video circuits, and the high voltage power supply. These circuits are responsible for generating and deflecting the electronic beam in the CRT/yoke assembly. The video signal unblanks (illuminates) the screen dots at the proper times to present readable information. Vertical and horizontal sync pulses ensure a stable trace. The sync pulses and video signal originate on the main logic board.

[^2]
KEYBOARD

The detached keyboard provides for operator entry of symbols and control codes. Each key, when depressed, sends an 8-bit serial code and parity to the keyboards universal asynchronous receiver/transmitter (UART). A similar code is sent when the key is released. This allows the terminal program to monitor the state of the keyboard and assign and/or define a resultant activity. There are 104 keystations. Keyboard arrays are available to support foreign language transmission. When using a foreign language, the keyboard is modified by installing selected keycaps. The keyboard contains an adjustable leg for selecting one of two operating positions. There are three keyboard modes, shift, lock, and control. These modes are controlled by the terminal. The installation parameters allow the selection of character generation to match the key-cap set.

Figure 4-2. Major Assemblies

The logic drawer assembly consists of a removable rack on which the main logic assembly board, power supply board, memory module, small option boards (if any), and the large option boards (if used) are mounted. The logic drawer assembly contains an internal plug-in board for mounting the small option boards (if used). The rear of the logic drawer assembly forms the backpanel of the terminal. The backpanel contains input/output connectors (I/Fi through I/F 5), switches, circuit breaker, and the terminal power cord. A battery is mounted in an enclosure accessible from the backpanel. (The battery is used to retain stored parameters in the event of power loss.)

- Main Logic Board - The main logic board is a large printed circuit board containing most of the display terminal logic. It contains a microprocessor that provides control of display operations as determined by preselected installation parameters. The main logic board also contains counters, control logic, ROMS, RAMS, UARTS, and external interfaces. It interfaces the CRT monitor, and installed option boards through a flat ribbon cable.
- Power Supply Board - The switcher power supply provides fully regulated dc power with minimal power loss. It supplies +5 , +12 , -12 , and +24 V dc power.
- Large Option Boards - These options, if installed, enable additional functions of the terminal. Currently available large option boards include the dot-graphics board and the internal $1200 / 1200 \mathrm{~b} / \mathrm{s}$ modem board (refer to figure 4-2).

ENCLOSURE

All the internal parts of the terminal are housed in the enclosure or hood. The enclosure (figure 4-2) attaches to the CRT bezel adapter assembly, which contains the CRT, yoke, and CRT monitor board. The bezel assembly is attached to the CRT/bezel adapter assembly. If the graphics option is installed the touchpanel is mounted in back of the bezel assembly.

EXTERNAL INTERFACES

The internal and external interfaces used in the terminal connect to the main logic board as shown in figure 4-3. The terminal may be connected to a host either through the RS232-C interface (connector Jl) or through the internal modem interface (I/F-4 slot). The main bus interface (connector J4) can accommodate up to three small option modules and two large option modules. A small option mother board (internal to the terminal) provides a fanout of the bus to accommodate the three small options. These small options plug into I/F 1, I/F 2, and I/F 3 slots in the rear of the terminal (connect to mother-board J2, J3, and J4 connectors respectively). If installed, the memory module connects to main logic board connector J3. The main logic board connectors J2, J5, J6 and J8 contain internal interfaces. A diagram of these interfaces is shown in figure 5-1.

Figure 4-3. Display Terminal Interfaces
DIAGRAMS 5
This section contains an interconnection diagram for the display
terminal (figure 5-l) plus installation drawings for the large

NOTE: Switch $\mathrm{Sl}(115-220 \mathrm{~V})$ is numbered as viewed from inside the terminal.

Figure 5-1. Interconnection Diagram (Sheet 2 of 4)

Figure 5-1. Interconnection Diagram (Sheet 3 of 4)

Figure 5-1. Interconnection Diagram (Sheet 4 of 4)

table I XA358-A FIELO InSTALLATION NOTES

1. remove top access cover per hum (hardware maintenance manual) (62940034)
2. remove logic oramer assembiy per proceoure describeo in the display terminal hmm
3. remove bezel assembly as shown in figure 1 .
4. remove vioeo filter assembly (refer to figure 3)

5A. SEE Note 4.
5. SECuRE TOUCH panel cable (shielded portion) with bracket (71493b33) as shown in figure 2.
6A. REMOVE ANO DISCARO CHANNEL (51942165 SHONN IN FIGRRE 4) TO RELEASE END OF 50 PIN RIBBON CABLE
6. install card assembiy (iald) and cable assembly (61409163) as Shown in figure 2
7. Position jumper on caro assembly iajo as shown in figure 2 viem a-a.
8. Connect 50 pin ribbon cable as shown in figure 2.
9. replace logic dramer assembly per procedure in hum
10. attach touch panel cable to caro assembly (ialo),
11. replace bezel and access cover per procedure in himu.
12. ado the enu puent Ioentification number, series cooe, part numer ano serial
number to the eou pment configuration log, information is containe on quality NuMBER TO THE EOUIPMENT CONFIO
ASSURACE TAG OF THIS OPTION.
13. adjust vioeo al ganment with graphics touch panel per procedure in hmy
 FOR CC6348 (СС638B)
table 2 Xa360-A FIELD instal ation notes
NOTE: THESE INSTRUCTIONS ARE FOR INSTALLATION INTO A CC634-A OR CC638-A ONLY. INSTALLATION INTO A CC634-b or
(
14. hemove logic dramer assembly and top access cover per procedure described
15. hemove cover plate at i/f 4 position. refer to figure 4 .
16. Remove from the modem the shipp ing bracket that is secure with Two (2) wing nuts, save

CONNECT The short 50 Pin extension cable provided. refer to figure 5 .
5. SLIOE MODEM CARO ASSEWBLY INTO $1 / \mathrm{F} 4$ SLOT. SECURE WITH THE 2 NUTS PROVIDED.
CAUTION: ASSURE THAT THE EXENSION CABLE ANO CONNECTOR TO THE BUS CABLE ARE HELD

7. connect the free eno of the 50 pin extension cable to the sualler boaro, refer
8. replace logic drawer assembly ano top access cover per procediure in hmm.

10. remove any telephone cable from the wall mounted jack for the telephone to be used WITH THE MODEEM. INSERT THE DUPLEE PLUG(PN 51917918) INTO THE MALL JACK. REINSER
 OUPLEX PLIIG,
THE MOOEM.
11. SET TeRMMal installation parameters (configuvation f3-1 equal to 1), SEt mode INSTALLATION PARAME
FOR (CG634A $(C 638 A)$.

TABLE 3 XA 368-A FIEL.D INSTALLATION NOTES

1. Remove logic doamer assembly per procedure described in the display terminal hma (haromare maintenance
2. remove ano discard channel (51942165 shown in figure 4) to release end of 50 pin ribbon cable
3. install card assembly (Ialo) and cable assembly (61409163) as shown in figure 2
4. position uumper on card assembly lajo as shown in figure 2 view a-a
5. Connect 50 pin ribbon cable as shown in figure 2
6. replace logic doaner assembly per procedure in ham

table 4 XA 369-A FIELO INSTALLATION NOTES
7. Remove logic dramer assembir and tep access cover per procenure descrized in the display terminal hem
(haroware maintenace manual) (62940034)
ther artar
8. remove bezel assembiy as shown in figure ,
9. remove video fllter assembiy (refer to fi iuré 3)
10. monvt touch panel assembly mith haroware as shown in figure i, pass cable between adapter anu crta

4a SEE Note 4
4A SEE Note 4
5. SECCRE tonch panel cable (Shieloed portion) With bracket (71493833) as shown in figube 2
6. attach touch pane! cable to caro assembly (ialo).

1. replace bezel ano access cover per proceouze in ham
2. ado the equipment Ioentification number. s:ries cooe part number and serial number to the
equipment conf giration log. Information is containe on ouality assuance tag of this option
3. adjust video alignment with graphics touch panel per procedure in hem
4. Set terminal installation parameter (coni iguration f2-2 SEt to 1) ano checkout per operators iuloe (62940019 FOR CC634A CC638A) OR (62950101 FRR CC634B CC63BB).
table 5 yr 109 field installation notes
5. Remove logic orawer assembly aiiu top access cover per procedure describeo in the display terainal hem
6. remove "main logic pcb" per procegure in ham. oo not disconnect the eatitery
7. Remove firmuare chips from locations ki. K2 ano ks on main logic board (SEE figure 586 note chip ondionas replacement chips will be orientated the same.
8. INSTRLLL CHIP P N 66315365 IN LDCATION K1. 66315366 at K2 ANO 66315367 At K5
9. replace "main logic pcb" per proceeure in hmm.

INTRODUCTION

As stated in section 1 , this manual deals only with display terminal problems. As a customer engineer (CE), the internal resident diagnostics and visual indications are the only maintenance tools available. If the diagnostics execute correctly, it is assumed that the terminal is not the source of the customers maintenance request. If the diagnostic tests indicate an error, the SAM listings in section 6A should be used to isolate the failing field replaceable unit. To use these listings, you must be able to do the following:

- Initiate and execute resident diagnostic test 1 and interpret the test results (see procedure 2 , section 6B).
- Initiate, execute and terminate resident diagnostic test 3 and interpret the test results (see procedure 2 , section 6B) .
- Locate the SAM listings and state the major symptom covered by each listing (see listings in section 6A).
- Locate the major assemblies and components found in the display terminal (see figures in all sections of the manual).

> In addition to the SAM listings, this section provides information necessary to perform site maintenance on the terminal. Information is organized under the following major headings:

[^3]- MOS Circuit Board Handling Precautions - describes special procedures to be used when replacing MOS circuit boards.
- Diagnostic and Corrective Maintenance Procedures - contain SAM (structured analysis method) listings that provide information for troubleshooting terminal malfunctions and associated corrective maintenance procedures. Preceding the listings and procedures is a description of the format and use of the SAMs.

SUGGESTED EMERGENCY MAINTENANCE PROCEDURE

The following procedure provides suggested steps for the CE to follow when responding to a customer request for maintenance on the terminal.

BEFORE LEAVING FOR CUSTOMER SITE

Before leaving for the customer site, contact the person operating the terminal at the time the malfunction occurred, and then:
l. Determine the following:
a. The type of maintenance coverage on the customers equipment; i.e., on-call or carry-in. (Check warranty and shipping tag.)
b. Specific configuration of terminal; for example, does it have an internal modem, additional RAM, and/or interfaces?
c. Type of symptoms terminal exhibited to indicate that a malfunction occurred.
d. Whether terminal is operating and what symptoms, if any, are present when an attempt is made to operate. (Analyze diagnostics, loopbacks, etc.)
2. Determine a course of action, considering the following suggestions:
a. If it becomes apparent that the terminal itself is not at fault and, for example, it becomes likely that the cause of problem is either communication lines or a power loss, direct the customer to contact appropriate maintenance personnel.
b. Determine that an error in operating procedure rather then an equipment failure is probable cause of problem, and notify customer of correct operating procedure.
c. If appropriate, suggest that the terminal be brought into a repair center.
d. Go to customer site and begin troubleshooting.
3. If a site maintenance trip is required, determine a probable cause for failure and gather necessary tools, manuals, and spare parts that may be needed.

UPON ARRIVING AT CUSTOMER SITE

Upon arriving at the customer site, locate the appropriate supervisory personnel and again discuss the malfunction with the terminal operator. Then proceed as follows:

1. Visually inspect terminal to ensure that correct input/ output cable connections exist.
2. Verify that a malfunction does exist, and then begin troubleshooting the terminal, as follows:
a. Run the diagnostics described later in this section.
b. Refer to the SAM in this section that covers the malfunction and perform the prescribed corrective actions.
3. After malfunction has been corrected, proceed as follows:
a. Rerun diagnostics to ensure that terminal is operational.
b. Perform follow-up maintenance tasks listed in this section.
c. Inform or demonstrate to customer that terminal is now operating properly.
d. Complete all administrative paperwork (MAFs and defective tags, etc.).

MAINTENANCE AIDS

Resident diagnostics provide error indications of basic hardware faults in the display terminal. The successful completion of the diagnostic routine indicates that the terminal is operational.

The resident diagnostics contain three terminal self-testing routines, listed as follows:

- Test 1 (Quicklook)
- Test 2, RAM test
- Test 3, CRT alignment, touchpanel, ROM, LED, and keyboard tests

Test 1 runs without operator intervention whenever the POWER or RESET switch is pressed. Test 2 also runs without operator intervention and is initiated upon receiving the Initial Test Command fram the host while running in CYBER mode. It can also be initiated from the keyboard. Test 3 diagnostic routines require operator intervention and are described in this section. Refer to procedure 2 in section 6B for the initiation, execution and termination for each resident diagnostic.

Test 1 (Quicklook)

Test 1 checks the overall operation of the terminal. It checks the microprocessor, the program memory, communications element, the programmable timer, and the audible alarm. The test does not display the status of its testing unless a failure occurs. The test consists of the following sections:

- Character RAM Test - A 55 hexadecimal and an AA hexadecimal is written, read and compared throughout the RAM character generator memory. A failure of this test will display CHARACTER RAM FAIL on the next line of the CRT.
- RAM Test - A 55 hexadecimal and a AA hexadecimal is written, read, and compared throughout the 64 K resident RAM. A failure of this test causes a display of RAM FAIL XXXX AA EE on the next line of the CRT (assuming a failure mode does not prevent display) where: XXXX = failing address; $A A=$ actual data read; $E E=$ expected data read. Nothing will be displayed if there are no failures. Parity error interrupts are enabled during the RAM test, and a failure will be reported if a parity error is detected.
- Graphics, Option RAM - If this option is present, the graphics RAM will be selected and a 55 hexadecimal and AA hexadecimal pattern will be stored and tested. A failure of the test will be displayed on the next line saying GRAPHICS RAM FAIL XXXX, AA EE.
- Graphics Bulk Write - If this option is present, a bulk write of zeros will be output to the graphics RAM. If the bulk write busy status does not set and clear, the message GRAPHICS FAIL will be displayed. If the graphics RAM does not contain all zeros, the message GRAPHIC FAIL will be displayed.
- ROM Test - A checksum is run on each memory chip of the resident ROM. A failure of this test displays ROM FAIL XX XX XX. The first value is ROM 1 , the second is ROM 2, and the third is ROM 3. A value other than 00 indicates the failure location.
- NVM Test - A checksum is run on the nonvolatile memory (NVM), and if an error occurs, either NVM ALTERED or NVM FAIL displays. The NVM ALTERED message applies to terminals having the enhanced firmware and the message NVM FAIL applies to terminals that do not have the enhanced firmware.
- Loopback Test - The test is comprised of transferring 128 characters from the processor to the communications UART, which is conditioned to echo rather than transmit all data. The data is tested as it is received. Transmitter speed is fixed at 9600 baud. A failure of the test will display COMM FAIL on the next line of the CRT. The same test is conducted on the UART to the keyboard. A failure of this test will display the message KEYBOARD FAIL on the next line of the CRT.
- Timer Test - The timer will be started for a 5-millisecond delay with the timer interrupt enabled. If a timer interrupt does not occur before 6 milliseconds, interrupts will be disabled and the message TIMER FAIL displayed.
- Battery Test - This test will sample the battery low status. If the battery voltage level is low, BATTERY LOW will be displayed. This is not an error condition, but indicates battery should be replaced before NVM is lost.
- Serial Ports - If this option is present, this test will test both ports A and B which are conditioned to echo rather than transmit all data. The data is tested as it is received. Transmission speed is fixed at 9600 baud. A failure of the test will cause a display of PORT A or PORT B FAIL.
- Test Switch - The position of the TEST switch on the rear panel will be tested. If enabled, the message TEST SWITCH ENABLED is displayed. In addition, the keyboard clock is tested and the message KBD CLOCK FAIL displays if it is defective. Also, the keyboard loopback test is run in external mode and the message EXT KBD LOOPBACK FAIL displays if a failure occurs.
- Internal Modem - This test checks the modem assembly ROM, UART, and modem board (modem loopback section) and displays an appropriate error message plus the revision level of the modem if a failure occurs (see figure 6-1). The modem loopback section takes approximately 10 seconds and is enabled/disabled by the third bit in the $F 4$ field of terminal installation parameters. If the loopback section is to run with the rest of the internal modem test, that parameter bit must be a l.
- Serial Port Test Switch - If the TEST/NORMAL switch on the dual serial interface board is in the TEST position, the message SERIAL PORT TEST SWITCH ENABLED will be displayed.
- Diagnostic ROM Pack - If a ROM PACK containing a diagnostic is installed, a call will be made to the ROM PACK diagnostic input. The ROM PACK diagnostic should perform a ROM checksum, test any additional hardware used, display any error messages, and display the ROM PACK name and revision level.
- Revision Level and Copyright - On terminals having the enhanced firmware, this section displays the revision level of the firmware plus a Control Data copyright message (see figure 6-1). This occurs at the end of the test when the mode selection menu appears (the message and menu do not appear if automatic mode selection is in effect). On terminals that do not have the enhanced firmware, this section displays only the revision level of the firmware when a failure occurs.
- Completion of test 1 is signaled by the audible alarm sounding at a soft, loud, then soft level. See Figure 6-1 for internal diagnostic failure format after test.

Figure 6-1. Display After Test 1 If Everything Failed

Test 2 is similar to test 1 , but test 2 does not perform the internal modem UART or loopback checks if the terminal is online. If an error occurs in test 2, an error flag is set.

NOTE

This test can be initiated from the keyboard in local CYBER mode or upon receipt of the Initiate Test Command from the host during online operations in CYBER mode. The test can be used to aid in the isolation of intermittant terminal problems. Refer to procedure 2 for initiation.

- Host-initiated - At the completion of the test, if the error flag is set, an error response is sent to the host. The error mesage will not remain on the screen. If the error flag is not set, a positive response is sent to the host and the screen is cleared.
- Locally-initiated - If the operator holds down the CTRL key and presses the $=$ key and the V key while in local CYBER mode, the test will be run. As long as no errors are detected, the test will loop and keep running. It can be cleared by pressing RESET. If an error occurs, the test is halted, displaying the failure, and the RESET switch must be pressed to exit.

Test 3, CRT Alignment, Touchpanel, ROM, LED, and Keyboard Tests

Test 3 is initiated if the operator presses the F 8 key while the mode selection menu is displayed. This test performs the following checks:

- Graphics Option - If this option is present, the graphics video will be enabled and a pattern of every other dot will be displayed. This pattern will alternate between a 480 and 512 vertical line display. Pressing any key will exit the graphics display and continue the test.
- Alignment Raster - This test clears the display and enters an alignment pattern around the outer edge of the display area.
- ROM Character Generator - Seven lines will be displayed as follows:
- 32 Control codes
- 33 Numeric and special characters
- 32 Uppercase alpha and special characters
- 31 Lowercase and special characters
- 32 Foreign character symbols
- 32 Line drawing characters
- 64 PLATO characters

NOTE
If a foreign character set is selected, they will appear in their assigned locations.

NOTE
The external RAM characters will not be displayed since they cannot be displayed simultaneously with PLATO characters.

- Attribute Test - A line (BLINK DIM UNDERSCORE INVERSE BLANK) will be displayed with each word having the associated bit set in background. If BLANK is seen on the CRT, the function is not working.
- Keyboard Test - This test displays KEYBOARD TEST on one line on the CRT. As the operator presses a key, the hexadecimal code received from the key will be displayed after the words KEYBOARD TEST. For the hexadecimal code corresponding to each key, refer to Appendix A.

NOTE

The keyboard sends a code with 2^{7} clear whenever a key is pressed and the same code with 2^{7} set when the key is released. The codes sent by the keyboard are not ASCII codes, for example:

KEYBOARD TEST 55 (when the u key is pressed)
KEYBOARD TEST D5 (when the u key is released)

- Indicator Test - The eight indicators that are controlled by the firmware will be stepped on and off at the rate of one-half second. After the first indicator is lit, every one-half second it will be shifted right. After the last indicator has been lit one-half second, the first will again be lit.
- Touch-Panel Test - The touch-panel interrupt will be enabled. When the screen is touched, an interrupt occurs and the cursor will be moved to the area touched.
- External Loopback - A message displays near the bottom of the screen describing how to run external loopback. It displays: TO RUN EXTERNAL LOOPBACK - ENABLE TEST SWITCH.

When the TEST switch on the rear panel is pulled out:

- The UART clock for the keyboard I/F will be tested and the message KBD CLOCK OK or KBD CLOCK FAIL will be displayed.
- PARALLEL PORT - If a parallel-interface graphics printer is installed, a 55 hexadecimal and AA hexadecimal are sent to the printer, which is conditioned to echo the data. If incorrect data or no response is received, the error message PARALLEL PORT FAIL is displayed and no further testing occurs on the port. If no error is detected, the message PARALLEL PORT OK is displayed. The graphics printer must be powered on (terminator power also on) for approximately 20 seconds before pulling out the TEST switch or an invalid error will occur.
- If a parallel-interface graphics printer is not installed, a test is made for the presence of a flexible disk drive. The test consists of sending a read ID to the disk drive. If an improper status is received, the message PARALLEL PORT FAIL is displayed. If proper status is received, the message PARALLEL PORT OK is displayed. The primary disk drive involved in the test must have a disk installed or an invalid error will occur.
- KEYBOARD LOOPBACK - The message KEYBOARD RUNNING will be displayed. A total of 128 characters from 00 hexadecimal to 7 F hexadecimal will continuously be looped back. If an error occurs, the word RUNNING will change to FAIL.
- COMMUNICATIONS LOOPBACK - The message COMM RUNNING will be displayed. A total of 128 characters from 00 hexadecimal to 7 F hexadecimal will continuously be looped back. If an error occurs, the word RUNNING will change to FAIL.
- SERIAL PORT A and B - If the dual serial port board is installed, the message PORT A (or B) RUNNING will be displayed. A total of 128 characters from 00 hexadecimal to 7 F hexadecimal will continuously be looped back. However, these actions require that the TEST/NORMAL switch on the dual serial port board be set to TEST prior to enabling the rear-panel TEST switch. Otherwise, an invalid error will occur. If an error occurs, the word RUNNING changes to FAIL.

To exit test 3, the operator must position the TEST and TEST/NORMAL switches for normal operation and press the RESET switch.

CUSTOMER-PERFORMED MAINTENANCE

The following suggested customer-performed maintenance steps should help to minimize field trips by verifying correct CRT alignment and related operations of the terminal. General inspection of the terminal, including proper seating of cable connectors, should also be made.

Remove power from terminal (procedure 1) and clean as follows:

CAUTION

Do not use solvents to clean keyboard. Solvents can cause defective keyswitch operation and damage keycaps.

> The following agents may be used for exterior cleaning surfaces including keytops. Only these cleaning agents are recommended; any others should not be used. Place agent on cloth before application to avoid discoloring runs.

> Bafix Germicidal Cleaner (Hysan)
> Tide Detergent (2% in $\mathrm{H}_{2} \mathrm{O}$ solution)
> Joy Detergent (1% in $\mathrm{H}_{2} \mathrm{O}$ solution)
> Formula 409 Household cleaner
> Windex with Ammonia

1. Dust keyboard with soft-bristled brush.
2. Clean touchpanel or glare filter in front of CRT screen using a soft cloth dampened with a mild soap and water solution. Apply cleaning solution to cloth to prevent solution from entering behind the bezel. Move keyboard away from area before cleaning touchpanel.
3. Wipe exterior of the terminal using a damp lint-free cloth.

Reapply terminal power and verify correct display alignment.

SPECIAL TOOLS

In addition to common hand tools for metric hardware and electronic test equipment, a drawer extender cable (part number 66315789) is required. An alignment tool kit (part number 12263463) is recommended for making adjustments on the CRT monitor board, if required.

NOTE

All hardware is metric.

MOS CIRCUIT BOARD HANDLING PRECAUTIONS

The display terminal circuit boards contain a number of MOS (metal oxide semiconductor) integrated circuits. The MOS circuits are susceptible to irreparable damage if they are exposed to excessive static electricity and thus require special handling. Follow the precautions listed here at all times when handling these boards.

- Never insert, remove, or otherwise connect/disconnect any circuit(s) while power is applied.

CAUTION

To prevent accidental shock when observing static-grounding precautions, do not touch powered-on electrical equipment and chassis frame at the same time.

- Before handling any circuit, cable connector, or board, always touch hands or tools to an exposed portion of the associated chassis frame to discharge any buildup of static electricity. This is especially true when dry ambient atmospheric conditions prevail.
- When removing, replacing, or otherwise handling any board that contains MOS circuits, do not touch circuit paths or conductors. Do not carry a MOS circuit board across a room while touching its circuits. Ordinary static charges present in a room environment have the potential to damage sensitive memory chips.
- All spare circuit boards come in a conductive envelope. Do not remove a board from its envelope until ready for replacement. Upon replacement, store the replaced board in the envelope.

CAUTION

If main logic board is removed, avoid shorting bottom of board to any metal. If this is not done, NVM standby power can be lost.

DIAGNOSTIC AND CORRECTIVE MAINTENANCE PROCEDURES

This remainder of this section contains the SAMs (6A) and corrective maintenance PROCEDURES (6B) for the terminal. The SAM listings provide information for isolating a malfunction and refer to the applicable corrective maintenance procedure for correcting it. The corrective maintenance procedures cover the available terminal adjustments and the replacement of field-replaceable components.

The next paragraphs describe the format and use of SAMs and explain the organization of the SAMs and procedures that follow in the section.

SAM FORMAT

An example SAM showing the basic SAM format appears in figure 6-2. A SAM is a formatted listing that presents troubleshooting information in a logical manner. Each SAM contains a sequential listing of questions that can be answered yes or no. The response made to a particular question either leads to the next question or to the specific action (or numerical sequence of actions) that is to be taken to correct the problem.

Each SAM listing is identified by a SAM number and a title that denotes the type of problems that it covers. A hyphen and number following the SAM number identifies the pages within the listing.

USE OF SAMs

The SAMs are to be used in conjunction with the diagnostics described earlier in this section. After diagnostics are run, or if they cannot be run, refer to the SAM that covers the existing problem. Verify that all assumed conditions stated at the beginning of the SAM are present and observe any preliminary instructions. Enter listing and answer yes (Y) or no (N) to the question asked or the condition being tested. Follow down the appropriate Y or N column and when column leads to action numbers, perform the corresponding actions in numerical order to correct the problem.

The organization of the following SAMs (subsection 6A) and corrective maintenance PROCEDURES (subsection 6B) is shown in figure 6-3.

Figure 6-3. Organization of SAMs and Corrective Maintenance Procedures

NOTE

This SAM should be used if you do not have a symptom defined. The steps in this SAM provide a quick visual method to locate a symptom. If you already have an initial. symptom use table 6A-1 to select your next action.

TABLE 6A-1. SYMPTOMS/SAMS CORRELATION

SYMPTOM	SAM
Power (AC or DC) Problems	2
No Raster	3
Power-Up (Test 1) Test Fails	4
Video Problem	5
Operator Verification (Test 3) Test Fails	6
Keyboard Problem Isolation	7
Internal Modem Problems	8

Prerequisite: To use this SAM, you must be able to:
A. Locate the following: (Refer to figure 6A-1).

- CB1
- Four power supply LED's (remove access lid, procedure 3)
- TEST switch
- G2 pot on monitor board (remove access lid, procedure 3)
B. Power on terminal.
C. Interpret results of power up test.

Assumptions: Terminal power cord is connected to line power outlet. The TEST switch has been pulled out. Power switch has been pressed to on or 1 .

001 N Y Building CB remain set?
002
N Y Terminal CB remain set?
222
A B C

Figure 6A-1. Location of Controls for Use in SAMs
$003 \underbrace{0 .}$

SAM 2 POWER (AC/DC) PROBLEM ISOLATION

Prerequisite: To use this SAM you must be able to:
A. LOCATE the following components

- CBI
- line filter
- plugs on power supply board (Pl, Pl, P3)
- power interlock switch
- voltage select switch
B. Operate power interlock switch

Assumptions: Voltage select switch set in correct position. Logic drawer has been removed (procedure 4) and extender cable has been connected between main logic board and BRIGHTNESS/ CONTRAST control assembly.
$001 \mathrm{~N} Y$ Did building circuit breaker for power outlet remain set when terminal was connected to outlet?

Did terminal circuit breaker CBl remain set when power interlock actuator is pulled out?

Y Did all four power supply LEDs light?
1 Your symptom is not covered in this SAM. Recheck terminal symptom or return to SAM 1 for additional checkout steps.

Are all four power supply LEDs out?
Isolate open in ac entry circuits as follows:
a. Place power interlock actuator to center position and disconnect power cord from ac outlet.
b. Check blue and brown ac entry wiring for a loose connection or damage. The wiring path is: brown wire from line filter to CBl, CBl to $S 2$ (power interlock) and S 2 to pin 2 of Pl (ac entry plug on power supply board); blue wire from line filter to pin 3 of Pl , and then to voltage select switch (ac entry plug on power supply board). Correct any fault and retest.
c. Replace power cord with a known good power cord and test.
. Power off (interlock to center position) disconnect power cord from ac entry panel receptacle at rear of terminal. Check continuity of entry components as follows:

e. Replace power supply board (procedure 8) and retest.

Measure power supply output (procedure 7) to ensure voltage is missing.

Is voltage missing?
Disconnect extender cable and power on the logic drawer. If all four LEDs light, go to step 011 of this SAM. If all four LEDs are not lit, go to step 008 of this SAM.

Replace power supply board (procedure 8).
Replace main logic board (procedure 10).

Disconnect power cord from ac outlet and check blue and brown ac entry wires for a possible short. The wiring path is: brown from line filter to $C B l$; and blue from line filter to pin 3 of plug l to voltage select switch on power supply board. Repair or place any damaged wire and/or components and retest.

Replace power cord with known good power cord and retest.
Replace line filter (procedure 17).
Replace power supply (procedure 8).
(1) Installation/removal of option boards in I/F-1 through I/F-3 slots is covered in the manuals listed in preface.

Preprequisite: To use this SAM you must be able to:
A. LOCATE the following components

- crt/yoke
- crt socket
- anode lead
- yoke inline connector
- monitor board and plug from control assembly
- BRIGHTNESS/CONTRAST control assembly
- J3 on power supply board
- J5 on main logic board
- monitor box shield assembly
- G2 pot on monitor board (remove access lid, procedure 3)

Assumptions: No raster observed after turning G2 pot and BRIGHTNESS control fully clockwise. (G2 must be readjusted per procedure 16 at completion of testing.) Remove option boards installed in I/F 1 through I/F 3. If raster can be obtained after I/F l through I/F 3 boards are removed, reinstall one at a time to determine which one causes the problem. All four power supply LED's are lit. If no 24 V LED go to step 001 of this SAM, if no +5 , +12 or -12 V LED is lit go to SAM 2, step 003.

NOTE

The corrective actions in this SAM assume that cables are good. Before replacing an item, check all associated cables for damage or shorts. Before starting this SAM, verify the following connections are properly seated: (check only after terminal has been disconnected from the outlet for 60 seconds).

- anode lead from crt to monitor board
- yoke inline connector
- socket at end of crt
- monitor cable from BRIGHTNESS/ CONTRAST control to monitor board connector
- DC power cable from J3 power supply board to $P 5$ main logic board
- jumper for alpha/graphics is installed correctly on main logic board

001 N Y Remove access lid (procedure 3) and turn on power (procedure l). Is 24 V LED lit?

Y
Crt filament lit?
Replace the BRIGHTNESS control (procedure 6).
004111 Replace monitor board (procedure 13).
005 | 23 Replace CRT Bezel adapter assembly (procedure 14).
Replace large graphic option board (procedure 9)
Replace main logic board (procedure 10)
1
Your symptom is not covered in this SAM. Recheck terminal symptom or return to SAM 1 for additional checkout steps.

009 2 Replace power supply board (procedure 8).

SAM 4 POWER UP (TEST 1 RESIDENT DIAGNOSTIC) PROBLEM ISOLATION

Prerequisite: None

Assumptions: All four power supply LEDs are lit. Raster appeared as BRIGHTNESS and G2 were turned fully clockwise. TEST switch was enabled (pulled out) before resident diagnostic test l was initiated.

001 Y N Is the screen blank (no message or cursor)?

- RAM FAIL
- ROM FAIL
- COMM FAIL
- KEYbOARD FAIL
- TIMER FAIL
- KBD Clock fail
- EXT KBD LOOPBACK FAIL

Did either a NVM ALTERED message or NVM FAIL message appear?

Y N Did BATTERY LOW message appear?
N Did GRAPHIC FAIL message appear?
Did SERIAL PORT A or B FAIL message appear?
Did SERIAL PORT TEST SWITCH ENABLED appear?
If terminal has internal modem installed, do any of the following messages appear? INTERNAL MODEM CHECKSUM FAIL, INTERNAL MODEM UART FAIL, or INTERNAL MODEM LOOPBACK FAIL

Does TEST SWITCH ENABLED appear along with RES REV $X . X$ and COPYRIGHT CONTROL DATA 198X (copyright message only applies if terminal has enhanced firmware); does alarm sound correctly and do two op panel LEDs light does (left = red, right = green)?
010 (

(1) Installation/removal of option boards in I/F-1 through I/F-3 slots is covered in the manuals listed in preface.

Prerequisite: To use this SAM you must be able to:
A. INITIATE resident diagnostic test 3 .
B. LOCATE the alignment notches in the bezel assembly.

Assumptions: Terminal passed resident diagnostic test 1 (power up). Resident diagnostic test 3 has been initiated and the screen is displaying the proper test 3 message (see procedure 2).

1	Y N Alignment pattern tilted or noticeably undersize?			
002	Y N Alignment pattern does not align with notches cut in bezel at all 4 corners? (See figure 6B-3)			
003	Y N Test 3 display jittering?			
004	Y N Test 3 display rolls vertically?			
	1			
005	Y N Test 3 display rolls horizontally.			
	\|			
006	\|			Y N Test 3 display characters are out of focus,
	\mid \| to dim, or to bright?			
	\|			
007	Y N Test 3 display has extra characters or video?			
008	\| Y N Did video problem appear when changing from			
	80/132 characters to opposite of what was selected or when selecting 24/30 lines opposite of what was selected.			
009	1 Problem not covered. Call for assistance.			
010	\|	11 R Replace main logic board (procedure 10).		
	111			
011	$\underline{1}$ \| $2 \underline{\text { Replace }}$ darge graphics option board (proce-			
012	1 Adjust FOCUS potentiometer (procedure 16). If			
	FOCUS and BRIGHTNESS have little affect, adjust VIDEO GAIN potentiometer per procedure 16 to ensure it is set correctly.			
	11111			
	22222			
	ABCDE			

A B C D ESAM 5-2
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$01332222 Replace monitor board (procedure 13).
$0144{ }^{4} 3^{4} \frac{4}{T} \underset{T}{ }-3$ Replace crt/bezel adapter assembly (procedure 14).01533 Replace main logic board (procedure 10).1 Adjust VERTICAL FREQ potentiometer (procedure 16).016
017211 Perform video adjustment (procedure 16).
018
1 Perform yoke adjustment (procedure 15).

SAM 6 OPERATION VERIFICATION (TEST 3 RESIDENT DIAGNOSTIC) PROBLEM ISOLATION

Prerequisite: To use this SAM you must be able to:
A. INITIATE resident diagnostic test 3 .
B. PERFORM the operator intervention steps required to execute test 3 .
C. INTERPRET the results from executing test 3. NOTE: Procedure 2 covers these items.

Assumptions: Resident diagnostic test 1 (power up) indicated no errors. Resident diagnostic test 3 execution (procedure 2) indicated an error.
$001 \mathrm{~N} Y$ If graphics option is present, is correct graphic | | pattern displayed?

N Y Does keyboard test work correctly?
Go to SAM 7.
Y Does indicator test work correctly?
N Y Does touchpanel test work correctly?
N Does external loopback test display one of the following?

- KBD CLOCK FAIL
- KEYBOARD FAIL
- COMM FAIL
(
(1) Terminal installation parameters are covered in the manuals listed in the preface. Be sure to refer to the manual that matches the terminal (enhanced model or original model).
(2) Installation/removal of option boards in I/F-1 through I/F-3 slots is covered in the manuals listed in the preface.

Prerequisite: None

Assumptions: TEST switch was pulled out before running Resident Diagnostic test 1 .
001 Y N Did test switch enabled message appear?

Prerequisites: SAM 4 (Test 1 Resident Diagnostic) runs okay. Terminal is connected to telephone line using a T connector and a telephone handset is connected to the second jack of the T connector.

Assumptions: Terminal is unable to connect or communicate with a remotely located terminal or computer system by using its internal modem. A second telephone handset with a different phone number is located nearby and is available for test purposes.

NOTE

Some terminal installations never use the auto-answer mode of operation. If the terminal under test is such a terminal, skip the first eight line items of this SAM and begin testing with line item 009.

Does the modem work properly in auto-answer mode? Answer to this question assumes dialogue with someone at a remote site who can call your terminal and verify proper or faulty answer function of your modem.

Y N Using the second telephone handset, call the modem. Does the modem's telephone ring?

Refer to line item 012 for appropriate action.
$Y \mathrm{~N}$ Does the modem answer the call (go off hook), and does it generate an answer tone?

Refer to line item 017 for appropriate action.
Y N Verify suspected auto-answer mode failure of your modem via a second (different than one used in line item 00l) remote terminal or computer system. Does auto-answer mode of your modem now work okay?

Refer to line item 017 for appropriate action.
Refer to line item 011 for appropriate action.

Use terminal associated handset (one connected to same phone line as terminal via T connector) to dial desired remote telephone number manually. Does telephone ring or is busy signal heard?

Possible problem with telephone system either at this end or remote end. Repeat line item 001 , but this time dial phone number of second proximate phone. Assuming second phone is properly on hook, does it start to ring after its number is dialed.

Problem appears to be with remote portion of telephone line or communications equipment. If possible, notify personnel at remote location of difficulty and have them verify that either phone line or communications equipment is at fault. They then can take the appropriate action (that is, notify phone company or communications equipment supplier).

Problem appears to be with proximate portion of telephone line or communications equipment. If possible, verify source of problem and take appropriate action (that is, notify either telephone company of communications equipment supplier).

013 Y N Use procedure 24 to set up terminal and mode installation parameters of the terminal for performing an external load using the phone number (or extension) of the proximate telephone handset (second handset). Then reset terminal using RESET pushbutton on its front panel. Monitor terminal display screen as it proceeds through the autodial sequence. Does second proximate telephone begin ringing after a time (about time that ringing condition is indicated as occurring on the display screen)?

Modem probably faulty. Verify setup of preceding step (procedure 24) and repeat that step one time. If proximate handset does not ring, replace modem (procedure 23).

A
2
1

Try establishing connection to a different remote terminal or computer system than one on which initial failure occurred. Or, as an alternative, use a different phone number for the same site. To do either, refer to procedure 24 to change auto-dial default phone number in F7 and F8 fields of Mode Installation Parameters to desired phone number. Is connection made?

019 Y N Is modem able to send/receive data to/from different remote terminal or computer system than one on which initial failure occurred? Refer to line items 015 and 016.

1 Replace modem assembly in your terminal (procedure 23).
Modem is functioning okay, but possible fault with communications line to or remote equipment at site that your terminal is unable to connect/communicate with.

PROCEDURES

0
 O

C

0

C

Apply power to all connected peripherals before powering on the terminal.

To apply power to terminal, proceed as follows:

1. Verify that power cord is plugged into site outlet and that opposite end is firmly seated in terminal receptacle (CC634-B/CC638-B terminals have an interlock latch that must be pushed down to access receptacle). Also verify that circuit breaker CBI and the TEST switch on rear of terminal are both pushed in. Check switches on any options. Verify that LINE VOLTAGE switch is set correctly.
2. Press $l(o n)$ side of POWER switch on lower-right front of terminal.
3. After warmup, adjust BRIGHTNESS control for desired viewing intensity.

To remove power from the terminal:

1. Press 0 (off) side of terminal POWER switch.
2. If making parts replacement, disconnect power cord from rear of terminal.

Procedure 2-Executing Resident Diagnostics

The resident diagnostics contain three tests, designated 1, 2, and 3. This procedure will present the following for each test:

- Initiate
- Execute
- Terminate

NOTE
This procedure regards the terminal as a standalone unit. The steps that follow may not be the same as those used by a customer. These steps allow the unit to be taken out of its normal operating environment and to perform only the resident diagnostics.

Test 1 - This test (also called quicklook or Power Up test) uses various subtests to check basic hardware and some options.

Initiate

Execute

Terminate

1. Pull TEST switch (rear panel) out. This will generate a false error, but it is the only positive method of ensuring that terminal firmware allows mode selection.
2. Actuate POWER on or RESET switch.

Test operates automatically and needs no operator intervention (terminal installation parameter F4P3 must be set to l to execute internal modem loopback test).

The audible alarm sounds soft, loud, then soft and two operator panel LEDs light (left = red, right $=$ green) when the test ends. One of the following displays will be seen on the screen:

Normal Message - With TEST switch out, the normal response to test 1 is shown in figure 6B-1. The X's in the figure indicate firmware revision levels and are not the same in all versions of the terminal.

Figure 6B-1. Power On Test with TEST Switch Enabled and Default Mode Names Displayed

Error Message - When a failure occurs, a failure message is displayed with the mode selection menu. Only the failure message for the test that failed is displayed. The possible failure messages are:

CHARACTER RAM FAIL
RAM FAIL XXXX XX XX
GRAPHIC FAIL XXXX XX XX
GRAPHIC FAIL
ROM FAIL XX XX XX
NVM ALTERED (applicable to terminals with
enhanced firmware) or
NVM FAIL (applicable to terminals without
enhanced firmware)
COMM FAIL
KEYBOARD FAIL
TIMER FAIL
BATTERY LOW
PORT A FAIL
PORT B FAIL
KBD CLOCK FAIL
EXT KBD LOOPBACK FAIL
INTERNAL MODEM CHECKSUM FAIL
INTERNAL MODEM UART FAIL
INTERNAL MODEM LOOPBACK FAIL
SERIAL PORT TEST SWITCH ENABLED
TEST SWITCH ENABLED
Test 2 - Either the host or the terminal operator can initiate test 2 while the terminal is in CYBER mode. If host initiated, the test, upon completion, returns a response (positive or error) to the host. This test is similar to test 1 , but it does not perform the internal modem UART or loopback checks if the terminal is online. When locally-initiated (keyboard), the test loops as long as no errors occur or the operator stops it; THIS PROVIDES AN EXCELLENT METHOD OF ISOLATING INTERMITTANT PROBLEMS. Locally-initiated testing is performed offline, and in this case, all internal modem tests are run (if modem present).

Initiate For local mode only. (Unit is powered on.)

1. Pull out TEST switch and press RESET.
2. When test 1 indicates a successful completion, push TEST switch in.
3. Press fl key (CYBER mode). (If access code is asked for, enter after pressing Fl.)
4. Press SETUP key.
5. Verify second box from left (F2) indicates terminal is OFF LINE. If terminal is ON LINE, press F2 key to place it OFF LINE.
6. Press and release fl key. Press and hold CTRL key while pressing the $=$ key and then V key.

Execute Test operates automatically and needs no operator intervention.

Terminate If no error is detected, test will loop and continue to run until RESET is pressed. If an error occurs, test will halt displaying the failure message (same as for test l) and RESET must be pressed to exit.

Test 3 - This test provides for checkout of raster alignment, touchpanel, indicators, and keyboard. For complete terminal checkout, operator or CE intervention is required. These instructions are presented in the execute steps that follow.

Initiate 1. Pull TEST switch out and actuate POWER or RESET switch.
2. After test 1 indicates a normal end-of-test message, push TEST switch in.
3. Press F 8 on keyboard. If terminal has graphics option, a pattern of every other dot will be displayed; this pattern will alternate between a 480 and 512 vertical line display. Pressing any key will show the display shown in figure 6B-2; verify that it is correct.

(1) THIS SPACE SHOULD BE EMPTY. IF THE WORD BLANK, OR ANY OTHER DATA APPEARS, AN ERROR HAS OCCURRED.
(2) THE CURSOR WILL INITIALLY APPEAR HERE.

Figure 6B-2. Operator Intervention Test Display

Execution All seven subtests of test 3 require operator or CE intervention. This includes subtest execution steps and/or subtest result evaluation. The steps that follow provide the intervention needed to successfully execute test 3. Use SAM 6 to isolate the failing component for any incorrect subtest result.

1. Alignment Raster - Verify the alignment pattern aligns with notches in the bezel assembly (all 4 corners) as shown in figure 6B-3.

Figure 6B-3. Alignment Raster
2. ROM Character Generator - Verify the seven lines of code and characters match display shown in figure 6B-2.
3. Attribute Test - Verify the following for each word in this line:

- BLINK is blinking.
- DIM is dim.
- UNDERSCORE is underscored.
- INVERSE appears in reverse video.
- BLANK does NOT appear.

4. Keyboard Test - As key is pressed, a hex code received from the key will be displayed after the words KEYBOARD TEST. Two codes will be displayed, one when the key is pressed (27 clear) and one when the key is released (27 set) - the codes are not ASCII. The following is an example for the upper left most (PRINT) key :

- When pressed - 10
- When released - 90

Terminate To exit test 3 press RESET switch. Remember, if test 3 indicated any errors, use SAM 6 for fault isolation. Return test switches to normal.

Procedure 3 - Removing and Replacing Access Lid

Remove and replace the access lid from the display terminal as follows. Refer to figure 6B-4.

1. Remove the two screws attaching the lid to the terminal.
2. If the terminal is a cC634-B/CC638-B unit, disconnect the power cord from rear of terminal and push up the powercord interlock latch.
3. Lift up slightly on the rear of the lid and then pull back to free it from the terminal.
4. To reinstall the access lid, reverse the procedure of the preceding steps.

Figure 6B-4. Cabinet Access

Procedure 4 - Removing and Replacing the Logic Drawer Assembly

The logic drawer assembly consists of a rear connector panel, mounting rack, and several printed circuit boards. It slides out of terminal housing (hood) as a unit. Steps l through 5 describe removal, and steps 6 through 13 describe replacement. Turn off power switch and proceed as follows.

1. Disconnect power cord from rear of terminal and unplug the keyboard cord from the bottom of the logic drawer assembly. Terminal may be gently placed on one side to facilitate removing/replacing keyboard cord.
2. If the terminal is a CC634-B/CC638-B unit, push up the power-cord interlock latch (figure 6B-4).
3. Remove the access lid (procedure 3). (Removing access lid is necessary if touchpanel is present.)

NOTE
If a graphics board and touchpanel are installed, disconnect the flat cable between the graphics board and touchpanel before proceeding to step 4. Use pull-tab to remove connector.

Figure 6B-5. Terminal Parts Identification
4. Remove the two 7 mm (9/32) screws from the rear connector panel as shown in figure 6B-4.
5. Grasp the flange at the top of the backpanel and pull it straight back, sliding the logic drawer assembly out of the display terminal housing, while holding it steady. Ensure that no cables interfere with removal.
6. To reinstall the logic drawer assembly, position the drawer track as shown in figure 6B-4.
7. Slide the drawer assembly partially into the terminal enclosure (hood) while pushing down on the back of the drawer. This will pull up the drawer track guide enabling it to be seated in the notch provided in the bezel adapter assembly (figure 6B-4).
8. When the drawer track guide is fully engaged, raise the back of drawer up to clear ground wire from hood to CRT chassis, and also to prevent catching the LEDs in base of option card holder.

NOTE
If a graphics board and touchpanel are installed, ensure that connection between them can be made when drawer is in place.
9. Continue sliding the logic drawer assembly until it is fully in place while ensuring that the RESET button aligns with its bezel assembly cutout. Ensure that no cables are stressed as drawer is inserted.
10. Replace screws removed in step 3. Ensure shorter screw is installed as shown in figure 6B-4. Connect touchpanel ribbon cable; press connector firmly in place to seat it properly. Plug in keyboard cord removed in step 1.
11. Replace access lid if removed (procedure 3).
12. If the terminal is a CC634-B/CC638-B unit, push down the power-cord interlock latch.
13. Reconnect power cord to rear of terminal.

Procedure 5-Removing and Replacing CRT/Bezel Adapter Assembly
Remove and replace the CRT/bezel adapter assembly as follows:

1. Remove the logic drawer assembly (procedure 4, steps 1 through 5). Remove ground wire at rear of monitor shield.

NOTE
Observe the positioning of the actuator bar in the terminal housing. Note the orientation of the dog leg with respect to the interlock switch mounted near the rear panel.
2. Remove the two Allen head screws attaching the bezel assembly to the bezel adapter assembly. Pull off the BRIGHTNESS and CONTRAST knobs as shown in figure 6B-6. Lift the bottom edge of the bezel assembly slightly, pull it down, and then lift it away from the terminal.
3. Remove touchpanel if installed (procedure 19).
4. Remove the POWER switch rocker from its socket as follows:
a. With right hand pull back and hold power actuator bar toward rear of cabinet enclosure.
b. Then, with left hand, pull rocker straight up while rotating it 180° while pulling.

Figure 6B-6. Removing the Bezel Assembly
5. Position the terminal so that it rests on the rear frame with the glass screen facing upward.
6. Remove the four screws securing the bezel adapter assembly to the hood (figure 6B-7). Early units were built with two short screws at the top and two longer screws at the bottom, discard the two shorter screws (if applicable) as two longer screws are provided with the replacement bezel adapter assembly.
7. Remove the assembly from the display terminal hood and set it face (screen side) down.

NOTE
The power actuator bar should fall loose inside hood. Remove the bar together with small return spring located at rear of bar. Set the bar and spring aside for reassembly later. The drawer track might now be loose inside the enclosure, or still in place on the bezel adapter assembly.

Figure 6B-7. Removing the Bezel Adapter Assembly

NOTE

When replacing bezel adapter assembly, check surface noted on figure 6B-7. If surface is recessed at corners where touchpanel or anti-glare panel attaches, look at detail on figure 6B-4 showing top of frame where power supply is attached. Compare this to terminal and remove cross hatched area with a file or clipper, if needed. This will prevent frame from wedging up against CRT when installing bezel adapter assembly.
8. To reinstall, after removing the plastic bag (taped to the bezel adapter assembly) containing the replacement screws fit the bezel adapter assembly in place. Install the two top screws (using the replacement screws) that secure the bezel assembly to the hood, but do not compress the washers.
9. Lift terminal up and place it on its pedestal.
10. Insert the power actuator bar from the rear of the terminal into the bezel adapter guide hole. Position the bar as observed in step 1.
ll. Place the return spring (removed in step 7) in the guide hole in the rear flange of the hood. Then slide bar into the guide hole. Once the bar is in guide hole, keep pressure on bar to ensure that spring does not fly free and proceed to step 13.
12. While holding back the actuator bar, replace the POWER switch rocker.
13. Replace the touchpanel (procedure 19).
14. If the drawer track is not in place, slide it toward the front of the terminal until it clears the back lip of the hood, and push it down. Then snap the drawer track in place by pulling it toward the rear.
15. Replace the remaining two screws in the bezel adapter assembly and tighten two top screws. Replace the bezel assembly on the terminal.
16. Replace the BRIGHTNESS and CONTRAST knobs. Replace the ground wire from monitor shield to stud.
17. Replace the logic drawer assembly (procedure 4, steps 6 through 13).
18. Perform video alignment procedure (procedure 16).

Procedure 6 - Removing and Replacing the BRIGHTNESS/CONTRAST Control Assembly

Remove and replace the BRIGHTNESS/CONTRAST control assembly as follows.

1. Remove the CRT/bezel adapter assembly (procedure 5, steps 1 through 6).
2. Loosen the three screws securing the monitor shield (figure 6B-8) and slide the monitor shield off.
3. Disconnect ribbon cable comming from BRIGHTNESS/CONTRAST control assembly at the CRT monitor board assembly.
4. Remove the two screws holding the BRIGHTNESS/CONTRAST control assembly and lift it out (figure 6B-8).
5. Install a new control assembly and replace the attaching screws.
6. Replace the assemblies removed in steps 1 through 5 (of this procedure) beginning with steps 7 through 17, procedure 5.

Figure 6B-8. BRIGHTNESS/CONTRAST Control Assembly Mounting

Procedure 7 - Checking Power Supply Voltages

Check the power supply voltages as follows:

1. Remove access lid (procedure 3).
2. Determine if the LEDS on the power supply are lighted.
3. Check for the presence of 5 -volt and 12 -volt power on the appropriate test points near the power supply LEDS (figure 6B-9). These voltages should be 5.10 ± 0.14 (4.96 to 5.24) volts dc, $12+0.2$ (11.8 to 12.2) volts dc, and -12 $+0.2(-12.2$ to $-11 . \overline{8})$ volts dc respectively. Measure $\overline{2} 4$-volt power on the video monitor board (see figure $6 \mathrm{~B}-16$). This voltage should be 24 ± 2.4 (21.6 to 26.4) volts dc.
4. Replace access lid (procedure 3).

04031-2
Figure 6B-9. Power Supply Board Test Points

Procedure 8 - Removing and Replacing the Power Supply Board

Remove and install a new power supply board as follows.

$\overline{\text { WARNING }}$

Line voltage may be present on the power supply board before step 1 is performed.

1. Remove logic drawer assembly (procedure 4, steps 1 through 5).
2. Remove cable between power supply and the main logic board. Set cable aside for later reconnection.
3. Disconnect AC power-input connector to power supply board. Disconnect green ground wire from two spade lugs on power supply.
4. Remove two screws which secure power supply to mounting rack.
5. Lift tab on end of mounting rack and slide out power supply board (figure 6B-10).
6. Install a new power supply board and reconnect connectors in the reverse order of disassembly.
7. Replace mounting screws holding power supply board to mounting rack.
8. Replace the logic drawer assembly (procedure 4, steps 6 through 13).

Procedure 9 - Removing and Replacing the Large Graphics Option Board

The large graphics option board is mounted internally on the logic drawer assembly (external connectors are exposed in the back).

Remove and replace the graphics option board as follows.

CAUTION

Make certain that battery is installed before removing power from terminal, and do not remove battery when power is off. If battery is not installed and power is removed, the terminal operating parameters will be forced to default values.

1. Remove logic drawer assembly (procedure 4, steps l through 5).
2. Disconnect input/output ribbon cable(s) to the graphics option board. Note placement of cable connections for reconnection later. The 20 -pin ribbon cable connecting the main-logic and graphics boards has its red stripe toward front of terminal when properly installed. pull up tab on upper card guide and slide out board to be replaced.
3. Install replacement board and reconnect the cables.
4. Reassemble the terminal as specified in procedure 4, steps 6 through 13.

Procedure 10 - Removing and Replacing the Main Logic Board

Remove the main logic board as described in steps 1 through 7.

NOTE
Ensure that parameter information is recorded or available from the user.

1. Remove logic drawer assembly (procedure 4, steps l through 5).
2. Remove the memory module (ROM pack) and battery from the rear of the logic drawer assembly, if applicable. Refer to figure 6B-5 for location.
3. Remove nuts that secure the data set connector to the rear panel.
4. Unplug the ribbon cable at the main logic board to the small option mother board and the cable from the power supply. Remove 20-pin ribbon cable to graphics option.
5. Place the logic drawer assembly so that it is resting on its rear panel.
6. Release the interlock tabs holding the main logic board to the logic drawer assembly as follows:
a. Pull bottom tabs toward each other and lift board approximately one-fourth inch (figure 6B-ll).
b. Grasp board and push up with hands. Then release top tabs.
c. Slide main logic board upward and pull it out.
7. Slide new main logic board into the two slots on each end of the logic drawer assembly, and observe the following:
a. Ensure that the data set connector is lined up with the mating rear panel screw holes.
b. The TEST switch on the rear panel should be lined up with its cutout.
c. Check the position of the graphics jumper in the area around the LEDs. Match the new board to the removed board.
8. Snap release interlock tabs back into the main logic board.
9. Replace screws on data set connector.
10. Reinsert the memory module ROM pack (if applicable), and also reinsert the battery.
11. Reconnect ribbon cables and power cable to main logic board. After installing each cable connector press it firmly in place to ensure proper seating.
12. Replace logic drawer assembly (procedure 4, steps 6 through 13).
13. Re-enter terminal and mode installation parameters into NVM (information on entering parameters is contained in the manuals listed in preface).

Figure 6B-11. Removing Main Logic Board

Procedure 11 - Removing and Replacing Power Actuator Bar

Remove and replace the power actuator bar as follows:

1. Remove the bezel adapter assembly (procedure 5, steps 1 through 4).
2. Remove the actuator bar and spring from its socket.
3. Install a replacement actuator bar in position.
4. Reassemble the terminal with instructions in procedure 5, steps 13 through 17.

Remove the power interlock switch assembly as follows:

WARNING

Line voltage may be present on power supply board before step 1 is performed. Unplug power cord from terminal.

1. Remove logic drawer assembly (procedure 4, steps 1 through 5).
2. Remove main logic assembly (procedure 10, steps 2 through 6).
3. Push detents on both sides of switch and partially remove it by prying.
4. Disconnect the two leadwire clips to the interlock switch and remove it entirely.
5. Partially insert a new switch as shown in figure 6B-12. Reattach the wire clips using No. 1 and No. 3 lugs on switch as shown and seat switch fully in place.
6. Reassemble the terminal according to instructions in procedure 10, steps 7 through 13.

Procedure 13 - Removing and Replacing the CRT Monitor Board Assembly

Replace the CRT monitor board assembly as follows.

1. Remove the logic drawer assembly (procedure 4).
2. Disconnect the CRT socket connector.
3. Disconnect the in-line connector to the yoke.
4. Remove ribbon cable connector on bottom inside corner of CRT monitor board.
5. Remove the high voltage lead from the side of the CRT.

NOTE
When doing the next step, note which grounding tab on the bezel adapter assembly the ground strap is removed from. The ground strap must be reconnected to the same tab during reassembly.
6. Remove the ground strap from bezel adapter assembly going to CRT socket connector.
7. Remove the two screws at the top of the CRT monitor board and lift it upwards to clear the shield (figure 6B-13).
8. Replace CRT monitor board by performing steps 1-8 in the reverse order.

CAUTION

Ensure that ribbon-cable connector (removed in step 4) is not misaligned. It should fit squarely in the receptacle after installation. After installing connector, check for correct alignment by looking down through top of terminal and in from rear of terminal before replacing access lid and logic drawer (procedures 3 and 4).

Figure 6B-13. Removing CRT Monitor Board Assembly

Procedure 14 - Adjustment/Touchup of Video Alignment with Touchpanel and Graphics Option

To determine if adjustment is necessary, do the following: (Allow 15 minutes of warmup before making any adjustments.)

1. Power on and press RESET to present mode menu on the screen.
2. Select CYBER mode by pressing Fl.
3. Press the SETUP key to obtain operator parameters selection near the bottom of the screen.
4. Select the following conditions on the operator parameters selection display:

- LINE (OFF) - use F2 of first operator display to select terminal offline.
- SCREEN (PAGE) - use F8 of first operator display to select page mode.
- MORE SELECT - use FlO of first operator display to select the second operator display.
- BACKGD (LIGHT) - use F2 of second operator display to select inverse video (dark characters on a light background).
- CURSOR (BLOCK) - use F3 of second operator display to select the block type of cursor.
- CURSOR (SOLID) - use F4 of second operator display to select the unblinking type of cursor.
- CHR/LN (80) - use F7 of the second operator display to select 80 characters per line.
- LINES (30) - use F8 of the second operator display to select 30 lines per screen.

5. Press Fl key to return to CYBER mode.
6. Enable touchpanel by pressing:

CTRL + Shift and +/= CTRL + Shift and R Shift and R
7. Turn the brightness and contrast controls to maximum and determine if the touchpanel has both vertical and horizontal grid lines visible. If only horizontal lines are visible, perform steps 16 through 22 of this procedure for aligning the screen. If both horizontal and vertical grid lines are visible, perform steps 8 through 15 of this procedure.
8. Press touchpanel in all 4 corners and center grids. The cursor should be inside the grid area. It does not have to be centered.
9. If the cursor touches any grid boundary, press the H key. If the dots on the H character are outside the grid area by more than 1 dot vertically or 1 dot horizontally, touchup/alignment is necessary. Do not proceed or make adjustments if they are not required.
10. Starting with the cursor in the upper left home position, advance the cursor to the top line position directly above the lst column of touchpanel grids, and enter a 1 (one).
11. Using the numeric-pad and cursor control keys, enter a column of sequential numbers under the 1 on the top line. The bottom line number will be 30 .
12. Reposition the cursor to the beginning of line 15 and enter sequential numbers starting with 1 across the screen (1234567890123 •• . etc.).
13. Compare the screen image to figure 6B-14.

- Line 1 is in top grid
- Line 30 is in bottom grid
- All other lines are 2 per grid
- 8 characters are to left of grid area
- 8 characters are to right of grid area
- 4 characters per grid

14. If adjustment is necessary, use the horizontal/vertical size, center, and linearity adjustments in Procedure 16 to position the video correctly.
15. Repeat steps 8 and 9 to check alignment. Repeat procedure if necessary.

When only the horizontal grid lines are visible after performing step 7:
16. Starting with the cursor in the upper left home position, enter sequential numbers starting with 1 (one) across the screen (12344567890123 . . . etc.). Repeat this step on lines 15 and 30.
17. Using the numeric-pad and cursor control keys, enter a column of sequential numbers from lines 1 through 30. The screen should now look like figure 6B-14
18. Move the cursor to the left or right margin. Refer to figure 6B-14. Use the eraser-end of a pencil or similar blunt instrument to touch the following areas on the touchpanel:

- Touch characters at random in columns designated "A" in the figure. The cursor should not move.
- Touch characters at random in columns designated "B" in the figure. The cursor should move to the number 1 (one) on the left side, or the number 0 (zero) on the right side, depending on which side you touch. After each cursor movement, touch an area away from the test area. Any of the four characters in the columns designated " B " in the figure should cause the cursor to move to the 1 or 0 .
- Touch characters at random in columns designated "C" in the figure. The cursor should move to the number 5 on the left side, or the number 6 on the right side, depending on which side you touch. After each cursor movement, touch an area away from the test area. Any of the four characters in the columns designated "C" in the figure should cause the cursor to move to the 5 or 6.
- Touch characters at random in columns designated "D" in the figure. The cursor should move to the number 9. After each cursor movement, touch an area away from the test area. Any of the four characters in the columns designated "D" in the figure should cause the cursor to move to the 9 .

19. Place a straight-edge from the top center to the bottom center alignment notches on the bezel. The straight-edge should fall between the 0 and 1 on the horizontal sequences of numbers, as shown in figure 6B-14. These numbers correspond to screen poritions 40 and 41.

Vertical Alignment Check

20. Compare the screen image to figure 6B-14.

- Top to bottom measures 8 inches
- Line 1 is in top grid
- Line 30 is in bottom grid
- All other lines are evenly spaced and 2 per grid

21. If adjustment is necessary, use the horizontal/vertical size, center and linearity adjustments in Procedure 16 to position the video correctly.
22. Repeat steps 18 and 19 to check alignment. Repeat procedure if necessary.

Figure 6B-14. Display Screen Touchpanel Video Alignment

Procedure 15 - Adjusting the Yoke Ring Tabs

After the bezel adapter assembly has been replaced, adjust the yoke ring magnets (figure 6B-15) only if necessary.

1. Apply power to the display terminal (procedure 1).
2. Remove access lid (procedure 3).
3. Allow a 15 minute warm up period and then adjust potentiometer G2 on the CRT monitor board (see figure 6B-16) for a brightly visible raster.
4. Check for a square appearing raster. If necessary, adjust the yoke ring tabs (figure 6B-15) to obtain a square raster with equal space on all four sides.
5. Readjust potentiometer G2 on the CRT monitor board for the proper setting (see table 6B-1).
6. Replace the access lid (procedure 3).

Procedure 16 - Adjusting the Video Display

This procedure consists of two parts. Part 1 contains normal operation or touch-up video alignment steps. Part 2 contains complete monitor board alignment steps to be used after the crt/yoke assembly or monitor board is replaced. Select the part that correctly matches your needs.

All video adjustment controls are accessible at the top of the CRT monitor board. Removing the access lid (procedure 3) will expose the monitor board (figure 6B-16). A TV alignment tool and ruler are required for completing this procedure.

Table 6B-l lists the video display controls and their functions. The table also describes optimum conditions indicating a correct adjustment. To perform the video adjustments, follow the steps listed in either Part 1 or 2. These steps give the correct adjustment sequence, and also provide additional setup information.

Figure 6B-16. Video Adjustment Controls Identification

CONTROL	PURPOSE	ADJUSTMENT				
	SYNC CONTROLS					
\|V FREQ (Vertical	\|Adjusts vertical	\|Adjust so screen				
\| frequency	\|synchronization or	linformation is not				
(potentiometer)	\|raster steadiness.	$\mid r o l l i n g$ or is stable \mid and locked in.				
\|H HOLD (Horizontal	hold potentiometer)	\|Adjust horizontal	Adjust so that screen			
	\|stability.	\|information is stable land locked in.				
	FOCUS CONTROLS					
$\begin{aligned} & \text { FOCUS (Potentio- } \\ & \text { meter) } \end{aligned}$	\|Adjust clarity or	Adjust for best				
	\|sharpness of center	screen area.	\|resolution or sharpIness of character in			
		\|center of display.				
\| DYN (Dynamic focus	potentiometer)	\|Adjusts clarity or	\|Adjust for best			
	\|sharpness of screen	Iresolution or sharp-				
	ledges.	lness of characters				
		lon screen edges.				
	justs scree	us				
\|G2 (Video gain	potentiometer)	\|brightness (both	is just dark enough			
	foreground and background).	to lose all background after turning BRIGHT-				
		\| NESS control on front lof terminal to maxi	mum brightness.			
$\begin{aligned} & \text { \| CONT (Contrast } \\ & \text { control } \\ & \text { \|potentiometer) } \end{aligned}$	\|Adjusts brightness	\|Adjust for desired				
	\|characters (fore-	\|brightness with front				
	\|ground) without	\|panel CONTRAST control				
	\|changing background	fully on.				
	Ibrightness.					
	VERTICAL CONTROLS					
\|V CTR (Vertical	centering poten	tiometer)	\|Controls vertical	centering of raster lon screen; or moves	both vertical lines lof alignment raster lup or down.	Adjust raster so that
		lit is centered verti-				
		lcally on screen or				
		\|vertical lines of				
		alignment raster align				
		with bezel notches.				

TABLE 6B-1. VIDEO ADJUSTMENT CONTROLS (CONTD)

CONTROL	PURPOSE	ADJUSTMENT		
\|V SIZE (Vertical	\|Adjusts height of	\|Adjust until vertical		
\|size potentiometer)	\|raster or moves top land bottom vertical	lines of alignment \|raster align with		
	```llines of alignment lraster closer ltogether or further lapart.```	\|bezel notches.		
\|V LIN (Vertical	linearity	potentiometer)	\|Adjusts size ratio	\|Adjust until both the
	\|between top and	ltop and bottom vert-		
	\|bottom halves of	ical lines of the		
	\|screen, or makes the	\|alignment raster are		
	\|bottom vertical line	lof equal height.		
	\|higher than the top			
	\|vertical line of the			
	\|alignment raster or	vice versa.		
	\|Affects overall	height.		
	HORIZONTAL CONTROLS			
H CTR (Horizontal centering coil)	\|Controls horizontal	\|Adjust raster so that		
	\|centering of raster lon screen, or moves	lit is centered hori\|zontally on screen, or		
	\|both horizontal lines		\|until horizontal lines	
	lof the alignment ras\|ter left or right	lof the alignment ras\|ter align with bezel		
		Inotches.		
$\begin{aligned} & \text { H SIZE (Horizontal } \\ & \text { size coil) } \end{aligned}$	\|Adjusts width of ras-		\|Adjust until hori-	
	lter, or moves the	\|zontal lines of the		
	\|left and right hori-	\|alignment raster align		
	zontal lines of the \|alignment raster	\|with bezel notches.		
	\|closer together or			
	\|further apart.			
\|H LIN (Horizontal	linearity coil)	\|Adjusts size ration	\|Adjust until both	
	lof left to right half lof screen, or makes	horizontal lines of \|alignment raster are		
	lthe left horizontal	lequal width.		
	\|line of the align-			
	\|ment raster wider			
	\|than the right line			
	lor vice versa.			
	Affects overall \| width.			

## Part 1 - Normal Operation or Touch-up Alignment

During normal operation, centering and focus are the only recommended adjustments. These adjustments can be quickly made by using the resident diagnostic alignment pattern. If addition adjustments are needed, (size and linearity), perform the steps given in Part 2.

NOTE
Allow a warm-up period of 15 to 20 minutes before performing these adjustments.

1. Display resident-diagnostic alignment pattern by referring to the initiation paragraph in test 3 of procedure 2. The display in figure $6 \mathrm{~B}-17$ should appear on the screen.

[^4]Figure 6B-17. Video Alignment and Test Pattern
2. Adjust FOCUS control (figure 6B-16) for best character resolution in center of screen.
3. Adjust DYN control (figure 6B-16) for best character resolution on screen edges.

NOTE
After steps 2 and 3, all test 3 characters should appear sharp, clear, and readable.
4. Adjust H CTR and V CTR (figure 6B-16) controls until alignment pattern lines and bezel notches align in all four corners (figure 6B-18). If this alignment cannot be obtained, go to full alignment steps given in after bezel adapter assembly or monitor board replacement alignment.


Figure 6B-18. Correct Pattern Alignment

Part 2 - Complete Monitor Board Alignment

This part contains the proper sequence and setup steps to adjust all monitor board controls. These adjustments should be checked if the bezel adapter assembly or monitor board is replaced.

Use figure $6 B-16$ to locate all controls referenced by the following paragraphs.

NOTE
Allow a warm-up period of 15 to 30 minutes before performing these adjustments.

Vertical and Horizontal Sync:

Set the V FREQ and H HOLD controls as follows.

1. Turn BRIGHTNESS (front panel) control maximum clockwise.
2. Turn V FREQ control clockwise until the display starts to roll. Note position of control.
3. Turn V FREQ control counterclockwise until the display starts to roll. Note position of control.
4. Place V FREQ control half way between position noted in step 3 and 4.
5. Adjust potentiometer G2 on CRT monitor board for a brightly visible raster.
6. Adjust $H$ HOLD until the alignment pattern is horizontal centered on the visible raster.
7. Push master reset and F8 key and verify that alignment pattern is both vertically and horizontally stable.

Focus and Brightness:

1. Execute the steps to display alignment pattern.
2. Turn BRIGHTNESS and CONTRAST (front panel) control knobs fully clockwise.
3. Adjust $G 2$ control until scan lines disappear.
4. Turn CONT control fully clockwise; then reduce (turn CONTcontrol counterclockwise) brightness until area betweendots (background) becomes dark.
5. Adjust BRIGHTNESS and CONTRAST (front panel) controls for most eye pleasing display.
6. Adjust FOCUS control for best resolution in center ofdisplay.
7. Adjust DYN control for best resolution on edges ofdisplay.
NOTE
After completing steps 6 and 7, alltest characters should appear sharpand clear.

## Vertical Alignment:

## 1. Fill the screen with H's as follows:

a. Pull out TEST switch.
b. Press RESET.
c. After test 1 complete, push TEST switch in.
d. Press Fl key. (If access code is asked for after pressing Fl, enter it.)
e. Press SETUP key.
f. Check second box from left.

If OFF LINE - go to next step. Otherwise, press F 2 key to obtain OFF LINE indication (F2 key may have to be pressed several times to step through HANGUP, ANSWER, DIAL, and ON if terminal has enhanced firmware and an internal modem).
g. Press FlO key (more parameters).
h. Check seventh box from left.

If 132 character/line - press F7 key. If 80 character/line - go to next step.
i. Check eighth box from left.

If 24 lines - press F8 key.
If 30 lines - press Fl key and go to next step.
j. Press Lock ( $\bigodot$ ) key.
k. Press and hold $H$ key until screen is full.
2. Adjust V LIN until H's at top of screen are the same height as those at the bottom.
3. Adjust $V$ SIZE until overall pattern height is 191 mm (7.5 inches).

## NOTE

SIZE and LIN controls interact with each other. It may be necessary to go back and forth between these controls to achieve best results (correct size and linearity of Hs at top and bottom of screen).
4. Adjust $V$ CTR until the alignment of the bezel notches and Hs is as shown in figure 6B-19 in all four corners of the bezel.

## Horizontal Alignment:

1. If screen is not full of H's, perform step 1 of vertical alignment steps.
2. Adjust $H$ LIN control until H's at right side of screen are the same width as those at the left side.
3. Adjust H SIZE control until overall pattern width is 254 mm (10 inches). ( 80 characters are 10 inches wide; 132 characters are 10.3 inches wide.)

NOTE
SIZE and LIN controls interact with each other. It may be necessary to go back and forth between these controls to achieve best results (correct size and linearity of H's at left and right of screen).
4. Adjust H CTR control so the alignment of the bezel notches and Hs is as shown in figure 6B-20 in all four bezel corners.


Figure 6B-19. Vertical Centering Alignment


Figure 6B-20. Horizontal Centering Alignment

Remove and replace the AC line filter as follows.

WARNING
Line voltage may be present on power supply board before step 1 is performed.

1. Remove the power supply board (procedure 8, steps 1 through 4). (Ensure that power cord is removed from the terminal.)
2. Disconnect the brown wire attached from the line filter to circuit breaker. CBl, and green wire to grounding stud.
3. Remove the four wires attached to the voltage select switch.
4. Remove main logic board (procedure 10 steps 3 through 6).
5. Remove brown wire from connector to power interlock switch.
6. Remove the green wire from connector to grounding stud.
7. Remove the two screws attaching the line filter to the backpanel. (Power cord retainer on CC634-A/CC638-A terminals will be loose when line filter is removed.)

NOTE
Refer to figure 5-1 for wiring diagram. Wires to the voltage select switch are marked.
8. Install a replacement filter and perform steps 1 through 7 in the reverse order of disassembly.

Remove and replace circuit breaker CBl as follows.

1. Remove the logic drawer assembly (procedure 4, steps 1 through 5).
2. Detach the two wires from the circuit breaker.
3. Remove the attaching nut from the circuit breaker and remove it from the backpanel.
4. Install a replacement circuit breaker in place and reassemble the remaining parts in the reverse order of disassembly.

Procedure 19-Removing and Replacing the Touchpanel Assembly

Remove and replace the touchpanel as follows. Refer to figure 3-2 for placement of hardware. Disassemble according to steps 1 through 4, and reassemble according to steps 5 through 9.

1. Remove logic drawer assembly (procedure 4, steps 1 through 5).
2. Remove bezel assembly according to step 2 of procedure 5 .
3. Remove the cable ground bracket (figure 3-3).
4. Remove the two bottom screws securing touchpanel to bezel adapter assembly. Carefully pull out the touchpanel from two upper clips.
5. Insert the new flat cable and ground wire between CRT and bezel adapter assembly.

NOTE
If a new touchpanel is being installed for the first time, attach the panel to the bezel adapter assembly with the four screws supplied with it.
6. Mount new touchpanel in place and replace the two screws removed in step 4, while observing the following substeps.
a. Ensure that the touchpanel is mounted snugly against the two top plastic holders (see installation drawing 66315803, sheet 3 ).
b. Observe that the dots on each of the four edges (dots are at the center of each edge) of the touchpanel appear in the center notches of the bezel (figure 6B-3).
7. If the dots cannot be seen in the notches, or if a new touchpanel is being installed on the terminal for the first time, perform the following:
a. Install the two bottom holders for the touchpanel, but do not fully tighten in place.
b. Place the touchpanel on the bottom holders and install one of the top holders, but do not fully tighten.
c. Snap the bezel in place, and carefully move the touch- panel (if required) so that the alignment in step 6b is obtained.
d. Then remove the bezel and tighten the mounting screws. Install the remaining top plastic holder.

NOTE
After the touchpanel is aligned, temporarily replace the bezel. Press at the two locations where the allen head screws fasten the bezel and inspect the touchpanel for depressions caused by the bezel pushing into the touchpanel. If the touchpanel has dimples, remove the bezel and touchpanel. Remove four triangular cork and neoprene spacers which are at the corners of the copper gasket on the back of the touchpanel. Reinstall the touchpanel starting at step 6.
8. Reconnect flat cable to graphics board and ground wire to bezel adapter assembly.
9. Replace access lid (procedure 3).
10. Replace bezel assembly and BRIGHTNESS and CONTRAST knobs.

Remove and replace the outer mylar on the touchpanel assembly as follows.

WARNING
This procedure uses a razor sharp knife. Handle knife with care to prevent accidental cuts and stab wounds.

CAUTION
Touchpanel assembly mylar and replacement mylar must be kept clean of any dust, lint, fingerprints, etc.

1. Remove power from terminal (procedure l).
2. Remove bezel assembly according to procedure 5 step 2. Use an M3 metric Allen Wrench to remove two Allen Screws attaching bezel.

CAUTION
In the following steps, do NOT cut into second, clear mylar surface beneath outer mylar.
3. Using a sharp knife (X-Acto type), start in upper right corner of touchpanel and begin cutting tape that holds outer mylar to touchpanel (See Callout A of figure 6B-20.1). Cut as close to the junction of the tape and mylar as possible.
4. While alternately cutting tape from right to left across top, and from top to bottom on right side, pull corner of just-freed mylar away from touchpanel and support mylar while performing next step.
5. Cut bottom tape from right to left. Do NOT cut tape holding left side of outer mylar. A different removal technique for left side is described in the following step.


Figure 6B-20.1 - Touchpanel Outer Mylar Replacement
6. Carefully pull outer mylar free from tape on left side of touchpanel. After mylar is removed, press down entire length of left mounting tape until it's back into position so as to protect the rivets.
7. Make sure outer surface of remaining clear mylar on touchpanel, and inner surface of new mylar is free of any dust, lint, and fingerprints.
8. Replacement mylar has double-back tape around it's edges. Remove protective cover from double-back tape. Use a scissors to cut a l/8 in. triangle from each corner of mylar. This allows a correct fit in corners of touchpanel.
9. Handle new mylar by top and bottom edges and proceed to position it as follows.

NOTE
Avoid touching inner surface of new mylar and outer surface of clear mylar on touchpanel.
a. Align left side of mylar with inside edge of rivets on touchpanel (Callout $B$ of figure 6B-20.1). Hold in this position while centering vertical position of mylar between corner mounting tabs on touchpanel (Callout $C$ of figure $6 \mathrm{~N}-20.1$ ).
b. Press left edge of mylar to hold that side down.
10. Press mylar top and bottom edges in place about $1 / 4$ of the way across touchpanel.
11. Starting in center of new mylar, and using backside of hands, gently brush simultaneously toward upper and lower right side corners of touchpanel. This assures that new mylar will not wrinkle.
12. When mylar is in its final position, press all edges to fasten it in place.
13. Replace bezel removed in step 2, and test unit using test 3 of procedure 2.

Some keyswitch modules have retaining screws. These keyswitches are shaded in figure 6B-2l. If a shaded keyswitch fails, replace the keyboard. If a keyswitch fails, replace the keyswitch module (part number 66312532) as follows.

To replace keyboard switch modules, refer to figure $6 B-22$ and perform the following:


Figure 6B-2l Keyboard Showing Non-Removable Keyswitch Modules


Figure 6B-22. Keyboard Switch Module Mounting Details

1. Remove power from terminal (procedure l).
2. Remove keycap by prying it up, or use keycaps removal tool, part number 71493510.
3. Lift spring out of switch housing.
4. Pry switch housing loose from keyboard by pressing detent on each side of switch housing. It may be necessary to remove keycaps and springs from adjacent switch modules to provide sufficient clearance. Also note that PC board of keyboard assembly has retaining screws attached to some switch modules, which are indicated by shaded keys in figure 6B-2l. If any of these switches are to be replaced, or if detents are not accessible from top, replace the camplete keyboard.
5. Install replacement switch module in the reverse order of preceding steps. Replacement switch module will have a blank keycap. Discard blank keycap and use existing one.

Procedure 21 - Removing and Replacing Line Voltage Switch

Remove line voltage switch as follows:

1. Remove the logic drawer assembly (procedure 4, steps 1 through 5).
2. Disconnect the yellow wires noting the position of each wire (see figure 5-1).
3. Remove the screw on the left of the switch.
4. Remove the metal backpanel from the logic drawer assembly and remove the switch.
5. Install a replacement line voltage switch in place (when positioning the switch, 115 V should be on the left as viewed from the rear) and reassemble the remaining parts in the reverse order of disassembly. (Make sure switch is set to proper voltage setting prior to installing the screw on the left of the switch.)

NOTE
The wires are marked as to switch position they connect to (refer to figure 6B-12).

## Procedure 22 - Check and Adjustment of the Tilt Tension

The terminal should be capable of holding any position within its tiltable range. To test, tilt the terminal to a variety of positions. If it does not hold its position, do the following:

NOTE
Consider that cable drag may affect the ability to hold a position. If so, relieve the cable strain before testing.
l. If the terminal has no cotter pins in its tilt mechanism, use a l/2-inch wrench to slightly tighten the hinge hex bolt. Do not overtighten.
2. If terminal does have cotter pins in its tilt mechanism, do the following:
a. Remove cotter pin from the hinge hex nut.
b. Use a 17 mm (ll/16th) wrench to hold the hex head and turn the hex nut $1 / 6$ th of a turn. Do not adjust more than $1 / 6$ th of a turn (one notch).
c. Realign the pin hole and hex nut for ease of cotter pin insertion.
d. Replace the cotter pin.
3. Repeat the process for the other hinge.

Procedure 23 - Removing and Replacing Internal 1200/1200 B/S Modem

This procedure is for removing and replacing the internal modem option in the field during troubleshooting and problem isolation procedures. It may also be used for the initial installation of the modem in CC634-A/CC638-A. For this latter purpose, refer also to the large option installation drawings in section 5 of this manual.

## NOTE

> The following paragraph contains some useful information for installing a modem board in the terminal. Read it through before replacing or installing a modem assembly to ensure the procedure is accomplished as efficiently as possible.

The cable harness that carries the terminal processor bus signals from J4 of the main logic board to the option boards is shielded and is therefore quite stiff. This makes the cable difficult to position properly for connecting it to the interface board (small board) of the modem assembly. To make this connection easier, an extension cable is provided with the modem for use on CC634-A/ CC638-A terminals and the cable harness on CC634-B/CC638-B terminals has been lengthened. If difficulty is still encountered in making this connection and the terminal has the dot graphic option board installed, remove the cable harness from the graphics board to provide more slack for connecting the harness to the modem board. Once the harness is connected to the modem assembly, reattach the harness to the graphic board whose connector is much easier to reach than that of the modem assembly.

To remove and replace the internal modem assembly, perform the following actions. Refer to figures $6 B-23$ and $6 B-24$ while performing this procedure.

## CAUTION

Before proceeding with the following step, be sure that the ac power cord is removed from the rear of the terminal and that all units connected to the terminal have had their input power turned off. It is not necessary to remove any of the data cable connectors from the rear panel of the terminal.
l. Remove replacement modem assembly from packing material (part number 90534500). Remove shipping bracket and save for the return of replacement modem to the service or repair center. Set assembly aside until ready to install it in terminal.
2. Remove phone cord from rear of modem assembly. A small flat-bladed screwdriver may be used to compress the clipped of $f$ release tab on the RJ-1l phone plug while the plug is withdrawn from the modem jack.
3. Remove access lid and logic-drawer assembly from terminal as described in procedures 3 and 4, respectively.


Figure 6B-23. Location of Internal Modem in Terminal
4. Remove two wing nuts securing modem assembly to rear panel of drawer assembly in I/F-4 slot position.
5. If the terminal is a CC634-B or CC638-B model, jump to step 12.
6. Grasp ribbon cable running to bottom of modem-assembly interface board and rock cable back and forth while applying light pressure until cable connector is free of board connector.
7. Pull slack in bus cable disconnected in step 6 toward center of logic drawer so cable will not interfere with removal of modem assembly through front of board rack.

## CAUTION

If step 7 is not done, modem assembly components may be damaged in the next step.
8. Lift retaining tab at front end of left board rack with one hand, while grasping front edge of modem assembly with the other hand and withdraw assembly straight out from front of rack. Place required modem assembly, with shipping bracket installed, into packaging material (CDC 90534500) of replacement assembly for transporting or shipping to the service or repair center.


Figure 6B-24. Removal/Replacement of Internal Modem Assembly
9. Check that jumper straps on replacement modem assembly (unpacked in step 1) are in factory-set positions (figure 6B-25).

## NOTE

If the terminal is to be placed in use before a replacement modem is available, be sure to remove the short 50 -pin extension before the logic drawer is replaced. The extension will be needed to complete the replacement of the modem.
10. Install replacement modem assembly by performing the preceding steps in reverse order and action, making sure that bus cable does not interfere when sliding assembly back in. Tuck bus and jumper cable under edge of small interface board after modem assembly is installed.
11. Spread cable retainers holding 26-pin jumper cable at modem board and disconnect cable from board (figure 6B-24) .
12. Starting with the upper-rear retainer, unsnap the three board retainers holding interface board to modem board.
13. Tip interface board away from modem board.

> The interface board must be kept away from the modem board in the next step. If this not done, modem board components may be damaged.
14. Lift retaining tab at front end of left board rack with one hand, while grasping front edge of modem board with the other hand and withdraw modem board straight out from front of rack.
15. Spread cable retainers holding ribbon cable to bottom of modem-assembly interface board and disconnect cable from board.
16. Remount interface board onto removed modem board (snap three board retainers and connect 26 -pin jumper cable). Place old modem assembly in packaging material (part number 90534500) of replacement assembly. This is the way the assembly is turned in to a service or repair center.
17. Check that jumper straps on replacement modem assembly (unpacked in step 1) are in factory-set positions (figure 6B-25).

## NOTE

If the terminal is to be placed in use before a replacement modem is available, be sure that the 50 -pin bus cable is out of way when replacing the logic drawer.
18. Install replacement modem assembly by performing steps 11 through 16 and 2 through 4 in reverse order and action.


Figure 6B-25. Factory-Set Positions of Modem Jumper Straps

## Procedure 24 - Internal Modem Function Check

The purpose of this procedure is to check the ability of the internal modem to connect a remote terminal or computer system. That is, it checks the proper operation of the modem on-line rather than in a self-test mode.

NOTE

> If starting this procedure from within a terminal operating mode, start with the first step. If starting from the Mode Selection Menu, skip the first three steps and start with step 4 .

1. Press SETUP key on terminal to obtain first part of operator parameter display.
2. Press flo key to move to second part of operator parameter display.
3. Press Flo key again to obtain mode-selection-menu display.
4. Hold CTRL key down and then press SETUP key to cause Terminal Installation Parameters (TIPs) display to appear on screen.
5. Record values in fields F 2 through F 9 of TIPs display.
6. Verify that TIP F3Pl (read as field 3, position 1 , with positions running from left to right) is set to 1 and TIP F4P4 is set to 0. If not, set it to a l. Keyboard space bar or fx keys may be used to move cursor to desired entry position. Numeric keys are used to make entries.
7. Press COPY key on keyboard.
8. Press flo key on keyboard. This causes ENTER MODE $n$ (l-6) display to appear on terminal screen.
9. Press 2 key to obtain Mode Installation Parameters (MIPs) display for Mode 2.
10. Record the values in F2 through F10 fields of MIPs display.
11. Set following MIP entries to values indicated below:

$$
\begin{aligned}
& \text { F2P3 }=0 \\
& \text { F2P4 }=1 \\
& \text { F2P5 }=0 \\
& \text { F2P6 }=1 \\
& \text { F3P2 }=1
\end{aligned}
$$

12. Enter the desired phone number for proximate handset (or remote terminal or system) in F7 and F8 fields of MIPs. Use numerics 0 to 9 for number entries; use D chararacter in the sequence to insert a pause until tone is heard; and use E character in sequence to insert 3 second pause with no tone detected. The last character entry for a phone number that does not entirely fill all 12 spaces of the F7 and F8 fields must be an F character.
13. Press the COPY key on the terminal keyboard, and then press the Fl key to return to the mode selection menu.
14. Press the F2 key to select an auto-dial function of terminal operating Mode 2. A proximate handset should start ringing in a short time or a remote terminal (or system) should be connected. Monitor the dialing sequence as it appears on the display screen of the terminal. Operating Mode 2 of the terminal was selected strictly for purposes of testing the modem. The important thing is whether the modem reaches the desired phone number or makes the desired connection; not whether an operating mode download actually occurs.
15. When checkout of the modem is completed, re-enter the correct Mode 2 terminal and mode installation parameters (those recorded during this procedure). Use terminal operator's guide or reference manual to ensure all parameters entered make sense for customer's application.

Procedure	Page	Procedure	Page	Procedure	Page
1	6B-1	9	6B-16	17	6B-35
2	6B-1	10	6B-16	18	6B-36
3	6B-6	11	6B-18	19	6B-36
4	6B-7	12	6B-19	20	6B-37
5	6B-9	13	6B-20	21	6B-39
6	6B-12	14	6B-21	22	6B-40
7	6B-14	15	6B-23	23	6B-40
8	6B-14	16	6B 24	24	6B-45
Figure	Page	Figure	Page	Figure	Page
6-1	6-6	6B-8	6B-13	6B-19	6B-33
6-2	6-13	6B-9	6B-14	6B-20	6B-34
6-3	6-14	6B-10	6B-15	6B-21	6B-38
6A-1	6A-2	6B-11	6B-18	6B-2 2	6B-38
6B-1	6B-2	6B-12	6B-19	6B-23	6B-42
6B-2	6B-4	6B-13	6B-21	6B-24	6B-42.1
6B-3	6B-5	6B-14	6B-23	6B-25	6B-44
6B-4	6B-7	6B-15	6B-24		
6B-5	6B-8	6B-16	6B-25		
6B-6	6B-10	6B-17	6B-28		
6B-7	6B-11	6B-18	6B-29		
Table	Page				
$6 A-1$ $6 B-1$	6A-1				
$6 \mathrm{~B}-1$	6B-26				

$\square$

This section contains spare parts lists, spare parts kit list, and a genealogy chart for the display terminal.






[^5] on the CC634A/638A Terminal.








GD control data ASSEMBLY PARTS LIST

C62くら384	$F$	A	A	SPARE	PARTS KIt	C	CCE34日	C7／29／85	017571	C9127185	111
asscmatr numas	nev	c	ow		asosmatr ostcamotion	Retam	Sunct	atitiofer	${ }^{\text {cmamar ona }}$	－moctrima	numagen



The basic keyboard consists of 106 keyswitches or keystations (figure A-1). Each keyswitch outputs a code when the switch is pressed and when it is released. The code is unique to the keyboard and is not an ASCII code. These codes can be displayed during the resident diagnostic TEST 3 keyboard test. Table A-l lists the codes for all keystations.


Figure A-1. Keystation Assignments

On some keyboards, a keycap will cover more than one switch. In this case the code for both is generated (figure A-2) when the keycap is pressed (the last received is shown).

THIS KEYCAP
COVERS SWITCHES 16 AND 32 OUTPUT CODE - DOWN-IA OR IB $U P=99 O R 9 B$

THIS KEYCAP
COVERS SWITCHES 62 AND 63 OUTPUT CODE - DOWN-IC OR 24

UPー9C OR A4


Figure A-2. Keycap, Keyswitch and Output Code Relationship


KEY STATION NUMBER	OUTPUT CODE	
	DOWN	UP
56	62	E2
57	6A	EA
58	72	F2
59	7A	FA
60	67	E7
61	14	94
62	1 C	9C
63	24	A4
64	2 C	AC
65	34	B4
66	3 C	BC
67	44	C4
68	4 C	CC
69	54	D4
70	5 C	DC
71	64	E4
72	6C	EC
73	74	F4
74	7 C	FC
75	66	E6
76	25	A5
77	2D	AD
78	35	B5
79	6E	EE
80	36	B6
81	77	F7
182	$6 F$	EF
183	5F	DF
84	55	D5
85	5D	DD
86	56	D6
187	45	C5
188	4D	CD
89	7D	FD
90	75	F5
91	6 D	ED
192	37	B7
193	1 D	9D
94	16	96
95	15	9E
96	26	A6
1 97	17	97
198	$1 F$	9F
199	27	A7
100	4F	CF
101	47	C7
\| 102	3F	BF
1103	4E	CE
1104	46	C6
105	3E	BE
106	3D	BD
1		
1		
I		

The CC63X display terminal has a terminal installation parameter that allows the installer or operator to move the raster left or right and/or up or down. This allows for correction of raster drift due to CRT aging. At the factory, the parameter values are set at zero (no displacement) before the vertical and horizontal centering alignments are made to the monitor board. As the CRT ages, the customer or operator can use this parameter to center a raster that has started to drift.

Before any monitor board adjustments are made in the field, the parameter values or displacement values must be set at zero. Proceed as follows to check the present parameter values and zero if necessary.

1. Power on the terminal (procedure l), if not already power on.
2. Pull out the TEST switch.
3. Press RESET switch (initiate TESTl).
4. When the MODE SELECTION MENU appears on the screen, push the TEST switch in.
5. Press CTRL and SETUP keys. This will display terminal installation parameters. (See figure B-l.)


Figure B-1. Terminal Installation Parameters
6. Locate the sixth block (F6) from the left. Note the entry directly under the letter $X$ and $Y$ and do the following as applicable.

- If entry in $\mathrm{X}=0$ or 4 AND $\mathrm{Y}=0$ or 8, press Fl key and return to alignment procedure.
- If entry in $X \neq 0$ or 4 OR $Y \neq 0$ or 8 , proceed with the next step.

7. Press F 6 key to advance cursor into block 6. Then use the space bar to advance cursor under $X$. If cursor is advanced too far, backspace cursor with Backspace key $(\leftarrow)$.
8. Press 0 (zero) key.
9. Use the space bar to advance cursor under Y. Then, press 0 (zero) key.

NOTE
At this point, both X and Y displacement value should be 0 (zero). If they are not, repeat steps 7-9.
10. Press COPY key. This writes the entry into a nonvolatile memory and changes alignment.
11. Press Fl key and return to alignment procedure.

## COMMENT SHEET

# CC63X Display Terminal Hardware Maintenance Manual (Service Center and On-Site Information) PUBLICATION NO.: 62940034 REVISION: M 

NAME: $\qquad$

COMPANY: $\qquad$

STREET ADDRESS $\qquad$

CITY: $\qquad$ STATE: $\qquad$ ZIP CODE: $\qquad$

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please include page number references).

Please Reply
D No Reply Necessary

## ©DCONTROL DATA

Technology and Publications Division ARH219

C

0

C


[^0]:    *The owner's manual is a replacement for the earlier Operator's Guide/Installation manual having the same publication number.

[^1]:    *The automatic answering feature of the internal modem is only available on enhanced model terminals.

[^2]:    Directly below the CRT are the operator controls. Refer to Section 2 for a description of these controls.

[^3]:    - Suggested Emergency Maintenance Procedure - describes the suggested approach to emergency maintenance.
    - Maintenance Aids - describes the diagnostics available to troubleshoot the terminal.
    - Customer Performed Maintenance - describes the follow-up tasks to be done when a terminal requires repair.
    - Special Tools - describes special tools required for terminal maintenance.

[^4]:    (1) THIS SPACE SHOULD BE EMPTY. IF THE WORD BLANK APPEARS HERE, OR ANY OTHER DATA, AN ERROR HAS OCCURRED.
    (2) THE CURSOR WILL INITIALLY BE IN THIS LOCATION.

[^5]:    * Customer installable on the CC634B/638B only. Customer Engineer installable

