

Immune Based Treatment Options in Lymphoma: CAR-t cells

Leo I. Gordon, MD, FACP

Summary

- · We are entering a new era in treatment for lymphomas
- CAR T-cell therapy may represent one of the more effective immunotherapeutic options
- Challenges
- Time to manufacture
- Patient selection and toxicity management
- integration with or replacement of existing modalities (chemotherapy, small molecule inhibitors, autologous vs allogeneic stem transplant)
- cost
- CAR T-cell therapy likely to alter how we treat DLBCL

Morthwestern Medicine

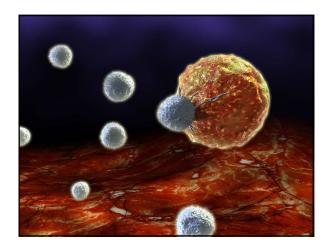
Coley's toxin

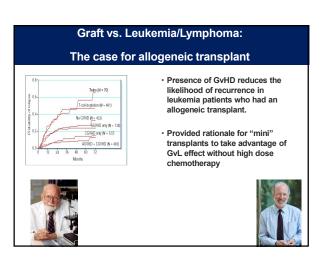
A STATE OF THE PROPERTY OF T

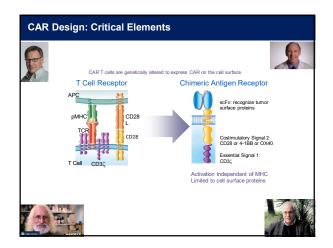
New York Times - July 29, 1908

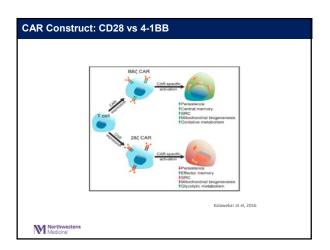
ERYSIPELAS GERMS AS CURE FOR CANCER

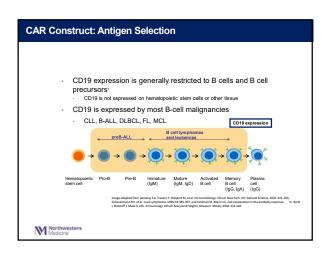
Dr. Coley's Remedy of Mixed Toxins Makes One Disease Cast Out the Other.

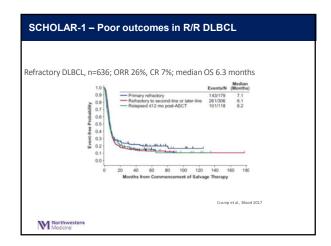

MANY CASES CURED HERE

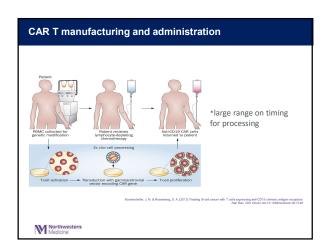

Physician Has Used the Cure for 15 Years and Treated 430 Cases— Probably 150 Sure Cures.

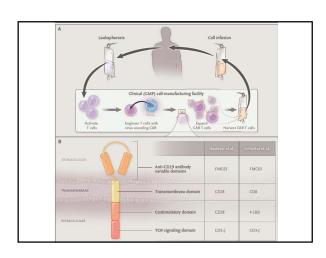

Following news from St. Louis the two men have been cured of cancer of the City Hospital there by the use of a fluid discovered by Dr. William is

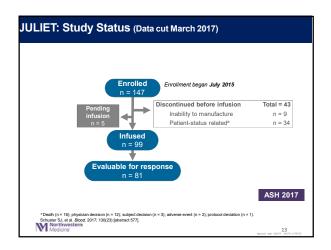

Morthwestern Medicine

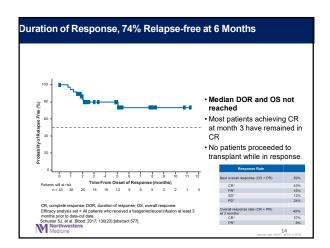

The Case for Cancer Cellular Therapy Immunotherapy is a "living drug" Immune system can evolve to treat the tumor Immunotherapy can cure some cancers TRADITIONAL DRUGS Target the tumor Traditional DRUGS Target the tumor Traditional DRUGS Target the tumor Northwestern Modiciner Presented By Carl June at 2016 ASCO Annual Meeting

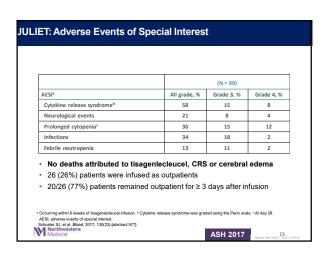


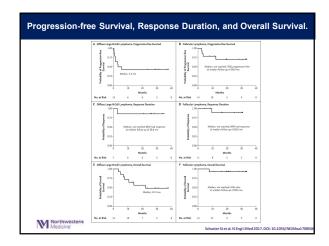


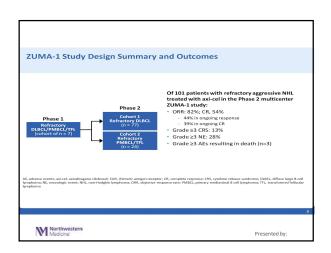


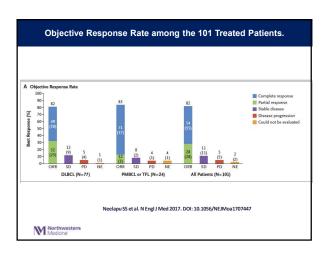


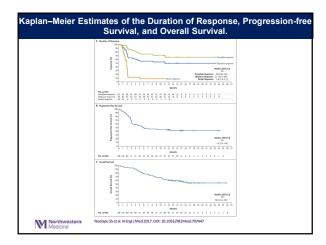


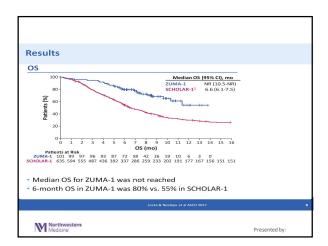


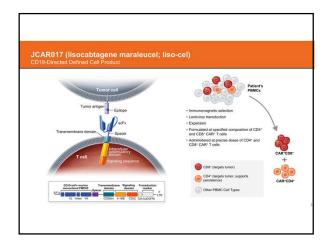


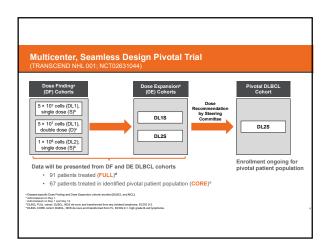


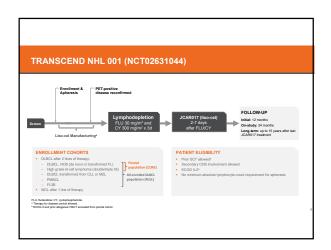


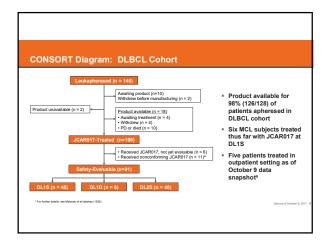


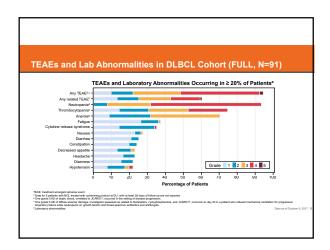


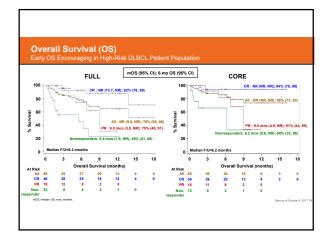



Conclusions - ZUMA-1 is the first pivotal trial of anti-CD19 CART cells in refractory aggressive NHL and has demonstrated significant clinical benefit for patients lacking curative options - Axi-cel significantly improved ORR (P < .0001) - CR rate of 54% is ~7-fold higher than the historic control rate of 8%¹ - 44% have an ongoing response with a median DOR of 8.2 months - Axi-cel showed durable and high ORR rates even in disease with poor prognostic indicators, such as ABC DLBCL and presence of bulky or extranodal disease - CRS and NEs were generally reversible and rates decreased over course of study - Clinical response rates were comparable across CD19 expression levels and between patients who did or did not receive tocilizumab and/or steroids


High Durable CR Rates in R/R Aggressive B-NHL Treated with JCAR017 (lisocabtagene maraleucel; liso-cel) (TRANSCEND NHL 001): Defined Composition CD19-Directed CAR T Cell Product Allows for Dose Finding and Definition of Pivotal Cohort


Jeremy S. Abramson, ¹ M. Lia Palomba, ² Leo I. Gordon, ³ Matthew Lunning, ⁴ Jon Arnason, ⁵ Michael Wang, ⁸ Andres Forero-Torres, ⁷ David Maloney, ⁸ Tina Albertson, ⁹ Jacob Garcia, ⁹ Daniel Li, ⁹ Benhuai Xie, ⁹ Tanya Siddiqi¹⁰

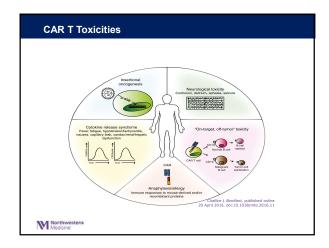

Visionations of General Height & Gorner Center, Boston, MA, "Memoral Stons Methods Center, New York, NY, "Northwestern University Robert H. Luist
Comprehensive Center Center, Chinga, N. "Liversity of Membrasis Medical Genera, Combas, NY, "Give Breat Bollowscere Medical Genera, Edwards, NY, "And "Interest Medical Genera, Edwards, NY, "And "Interest Medical Genera, Edwards, NY, "Westerly of All-Servan at Bit Interiguian, Birmsylam, AL, "Fred Huderbroon Cannor Research Center, Seattle, WA," Thompson, Gastle, WA, "O'd Hope Seattle, Washer Mempreham, Gastle, WA, "O'd Hope Seattle Medical General Center, Gastle, WA," O'd Hope Seattle Medical General Center, Gastle, WA, "O'd Hope Seattle, Market Mempreham, Gastle, WA, "O'd Hope Seattle, Market Mempreham, Gastle, WA, "O'd Hope Seattle, Market Mempreham, Gastle, Market Market, Market Market, Market Market, Market, Market Market, Market Market, Market Market, Marke

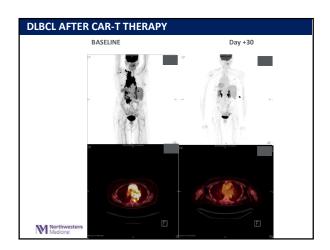


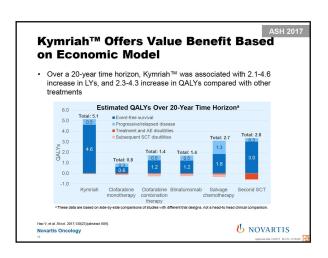
High Rates of Response in FULL DLBCL Population

E111.1	By B-NHL Subtype				
FULL	DLBCL, NOS	tFL	tCLL/MZL	FL3B/PMBCL	
88	57	19	10	2	
74 (63, 83)	74 (60, 85)	84 (60, 97)	50 (19, 81)	100 (16, 100)	
52 (41, 63)	51 (37, 64)	63 (38, 84)	30 (7, 65)	100 (16, 100)	
72	46	15	9	2	
53 (41, 65)	54 (39, 69)	67 (38, 88)	22 (3, 60)	50 (1, 99)	
44 (33, 57)	43 (29, 59)	60 (32, 84)	22 (3, 60)	50 (1, 99)	
54	37	10	6	2	
35 (23, 49)	35 (20, 53)	50 (19, 81)	0 (0, 46)	50 (1, 99)	
31 (20, 46)	32 (18, 50)	40 (12, 74)	0 (0, 46)	50 (1, 99)	
	74 (63, 83) 52 (41, 63) 72 53 (41, 65) 44 (33, 57) 54 35 (23, 49)	88 574 (63, 83) 74 (60, 85) 57 74 (60, 85) 52 (41, 83) 51 (37, 64) 72 46 53 (41, 65) 54 (33, 69) 44 (33, 57) 43 (29, 59) 54 37 35 (23, 49) 35 (20, 53)	88 7 19 74 (63, 83) 74 (60, 85) 84 (60, 97) 52 (41, 83) 51 (37, 64) 63 (38, 84) 72 (50, 85) 64 (33, 57) 64 (32, 59) 66 (32, 84) 74 (33, 57) 43 (29, 59) 66 (32, 84) 74 (33, 57) 43 (29, 59) 66 (32, 84) 74 (33, 57) 43 (29, 59) 67 (32, 84) 75 (10, 81) 75 (20, 84	88 57 19 10 10 10 10 10 10 10 10 10 10 10 10 10	

Homogeneous CORE patient population identified and will move forward in pivotal trial

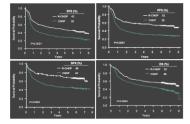



TRANSCEND NHL 001: Conclusions


- JCAR017 (lisocabtagene maraleucel; liso-cel), a CD19-directed CAR T cell product with defined composition, shows potent and durable responses in poor-prognosis patients with R/R aggressive NHL
 The pivotal cohort has begun enrollment in the CORE population based on encouraging durable response rate at dose level 2

- 74% ORR and 68% CR rate at 3 months and 50% CR at 6 months

 Across dose levels, 80% of patients in CR at 3 months remain in response at month 6 and 92% of patients in CR at 6 months remain in response
- Liso-cel toxicities have been manageable at all dose levels tested with a favorable safety profile that
 may enable outpatient administration
- Low rates of severe CRS (1%) and NT (12%)
 Evaluation of outpatient administration is ongoing in pivotal cohort (Maloney et al, abstract 1552)
- Optimized, commercial-ready liso-cel defined cell product being utilized for pivotal cohort with expected apheresis to product release < 21 days

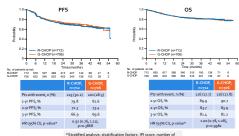

We are entering a new era in treatment for lymphomas CAR T-cell therapy may represent one of the more effective immunotherapeutic options Challenges Time to manufacture Patient selection and toxicity management integration with or replacement of existing modalities (chemotherapy, small molecule inhibitors, autologous vs allogeneic stem transplant) cost CAR T-cell therapy likely to alter how we treat DLBCL

Morthwestern Medicine

Treatment of Newly Dia	agnosed DLBCL in 2018	
,	. 9	
John Pagel	l, M.D., Ph.D. dogic Malignancies	
Director of Hematopoietic Ste	m Cell Transplantation Program	
	AND STEM CELL TRANSPLANTATION ICER INSTITUTE	
C	COI	
 Consultant for Pharmacyclics a 	ind Gilead Sciences	
,		
		-
WHO Classification of Aggressive E	3- Cell Lymphoid Neoplasms 2008 v	
2016		
2008	2016	
iiffuse large B-cell lymphoma (DLBCL), NOS OPTIONAL Germinal Center/Activated B cell	Diffuse large B-cell lymphoma (DLBCL), NOS REQUIRED Germinal Center DLBLC	
Tcell/histiocyte-rich large B-cell lymphoma Primary DLBCL of the CNS	REQUIRED ABCDLBCL Teel[histico;te-rich large B-cell lymphoma Primary DLBCL of the CNS	
Primary DLBCL of the CNS Primary cutaneous DLBCL, leg type EBV positive DLBCL, NOS	Primary DLBCL of the CNS Primary cutaneous DLBCL, leg type BBV positive DLBCL, NOS	
EBV Positive DLBCL, NOS EBV+ Mucocutaneous ulcer LBCL associated with chronic inflammation	EBV+ Mucocutaneous ulcer DLBCL associated with chronic inflammation	
ymphomatoid granulomatosis rimary mediastinal (thymic) large B-cell lymphoma	Lymphomatoid granulomatosis Primary mediastinal (thymic) large B-cell lymphoma	
ntravascular large B-cell lymphoma LK positive large B-cell lymphoma	Intravascular large B-cell lymphoma ALK positive large B-cell lymphoma	
flasmablastic lymphoma trimary effusion lymphoma	Plasmablastic lymphoma Primary effusion lymphoma	
arge B-cell lymphoma arising in HHV8-associated multicentric Castleman Dis ligh grade B-cell lymphoma, NOS	HHV8 positive DLBCL, NOS High grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements High grade B-cell lymphoma, NOS	
agri grave o-cer lymphonia, ivos	High grade B-cell lymphoma, NOS B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and classical Hodgkin lymphoma	

International Standard of Care: R-CHOP

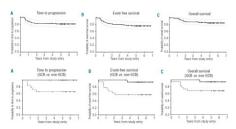
Rituximab 375 mg/m2 day 1 Cyclophosphamide 750 mg/m2 day 1 Doxorubicin 50 mg/m2 day 1 Vincristine 1.4 mg/m2 day 1 (2 mg max) Prednisone 40 mg/m2 (or 100 mg) daily x 5


Coiffier et al. ASCO 2007. Abstract 8009.

GOYA R-CHOP v G-CHOP for DLBCL: Study design

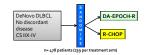
Vitolo U, et al. ASH 2016 Abstract 470

GOYA: Investigator-assessed PFS and OS


Vitolo U, et al. ASH 2016 Abstract 470 planned chemotherapy cycles. Median follow-up: 29 months

Dose-Adjusted (DA)-EPOCH-R

Drug	Dose
Rituximab	375 mg/m³ day 1 IVPB
Doxorubicin	10 mg/m²/day x 4 by Cl
Vincristine	o.4 mg/m²/day x 4 by CI
Etoposide	50 mg/m²/day x 4 by Cl
Cyclophosphamide	750 mg/m² day 5 IVBP
Prednisone	60 mg/m³ BID days 1-5 oral
Filgrastim*	Weight-adjusted dose starting day 5 until ANC > 5000/µL
*Data from MSKCC sh	owed identical rate of dose-adjustment with filgrastim or


- pegfilgrastim

CALGB 59910: Multi-Center DA-EPOCH-R, Outcomes

Wilson W H et al. Haematologica 2012; 97:758-765

CALGB 50303: DA-EPOCH-R vs RCHOP21

- OBJECTIVES:

 - OBJECTIVES:

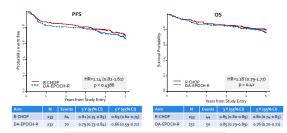
 Primary

 ETS-uttreated de novo DLBCL treated with RCHOP vs DA-R-EPOCH

 Determine molecular predictors of outcome (using mode/uit profiling) in patients treated with these regimens.

 Secondary

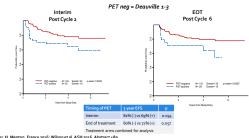
 Compare the toxicity of these regimens in these patients.


 Compare the finicial parameters (i.e., toxicity, response, survival outcomes, and laboratory results) with molecular profiling in patients treated with these regimens.

 Determine the use of molecular profiling for pathological diagnosis

 PET/CT parameters as potential biomarker, predictive value of interim PET, reproducibility and stand ardization of PET/CT.

Wilson et al. ASH 2016, Abstract 489

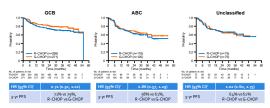

CALGB 50303: Event-Free and Overall Survival

Additional analyses pending including outcome by COO, DH and DE

Wilson et al. ASH 2016, Abstract 489

CALG 50303: PET Sub-study n=171

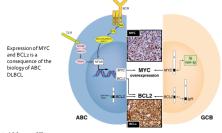
Schoder, H, Menton, France 2016; Wilson et al. ASH 2016, Abstract 489


Methods for determination of COO

- Gene Expression Profiling on fresh tissue
 - 'The gold standard'
 - Not practically applicable in clinical practice
- Immunohistochemistry
 - Widely available

 - Reproducibility may be difficult
 Many assays (Hans, Choi, Muris, Natkurman, Tally)
 Lack of correlation with GEP in many studies

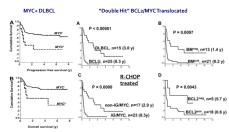
- GEP of formalin-fixed paraffin-embedded (FFPE) tissue
 Multiple platforms
 Hybrid capture/fluorescent reporter emerging as a widely validated assay


GOYA: COO is prognostic

*Exploratory analysis, COO classification available in 933 pts, missing COO classifications due to: restricted Chinese export Kense, n=232, CD2+ DLBCL not confirmed, n=202, missinglandequate tissue, n=331, PS H8-0.82 (a.64, 2.04) in pts with COO classification, PFS HR-2.18 (o.85, 1.64) in pts without COO classification Unstratified analysis.

Vitolo U, et al. ASH 2016 Abstract 470

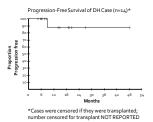
Double-Hit B-cell Lymphomas



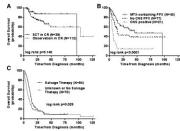
Translocation of BCL2 and/or BCL6 is seen in a subset of GC DLBCL; simultaneous translocation of MYC is seen in –6% of cases of GC DLBCL.

Reclassified in WHO as HGBCL with rearrangement of MYC and BCL2 and/or BCL6

Mottock & Gascoyne, CCR 2014


MYC Translocation in DLBCL Associated with Poor Outcomes with CHOP-based Therapy

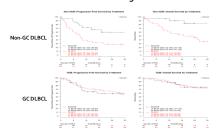
iavage KJ et al. Blood 2009; Johnson NA et al. Blood 2009


DA-EPOCH-R for DLBCL with translocation of MYC and BCL2 and/or BCL6

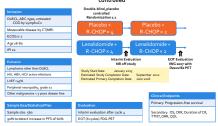
Characteristic	
Number	52
Median age	61 y (29-80)
IPI Score 0-2 3-5	35% 65%
Histology DLBCL BCL-U	86% 14%
BCL2 translocated by FISH	14/31*
*31 of 52 tested	

Dunleavy, ASH 2015

Impact of induction regimen and SCT on outcomes in DH lymphoma: a multicenter retrospective analysis


Adam M. Petrich et al. Blood 2014;124:2354-2361

Lenalidomide for DLBCL: Impact of Cell of Origin



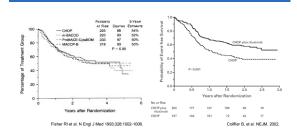
	~		Hon-GCD
Lenalidomide cycles			
Median (Range)	2 (1-35)	2 (1-21)	4 (1-35)
Response			
CR	6 (15.0)	1 (4.3)	5 (29.4)
PR	5 (12.5)	1 (4.3)	4 (23.5)
SD	7 (17.5)	7 (30.4)	0
PD	21(52.5)	14 (60.g)	7 (41.2)
Unknown	1 (2.5)	0	1 (5.9)
ORR (CR + PR)	11 (27.5)	2 (8.7)	9 (52.9)
PFS, mo			
Median	2.6	1.7	6.2
95% CI	0.9-4-2	0.3-3-1	2.9-9.6
08- 08- 08- 08-		- Nee-GCB	
-0.0			

Mayo Series: Outcomes for RL-CHOP v R-CHOP Case Match Control by Cell of Origin

ROBUST (NCT02285062): Lenalidomide Plus R-CHOP Chemotherapy (R2-CHOP) Versus Placebo Plus R-CHOP Chemotherapy in Subjects With Untreated ABC-DLBCL, Phase 3, double-blind, placebo-controlled

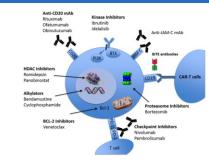
Conclusions

- DLBCL should always be approached with curative intent
 - The majority of patients will be cured with R-CHOP
 - R-CHOP remains the standard of care for de novo DLBCL in most situations
 DA-R-EPOCH is a reasonable alternative with OS ~80% at 5 years

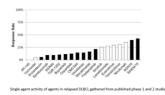

 - No difference in EFS and OS
 - G-CHOP does not appear to be better than R-CHOP for newly diagnosed DLBCL
- Not all DLBCL are created equally
 GCB versus non-GCB
 - - Data is limited for GCB versus non-GCB
- · MYC alteration and Double Hit DLBCL remain challenging
- Many novel agents and approaches are in development and warrant further investigation

the MIRACLE	SCIENCE	withSOUL
湫 Ci	tyofH	ope.

Jasmine Zain, M.D.
Director, T-Cell Lymphoma Program
City of Hope National Medical Center


NOVEL TREATMENTS OF DIFFUSE LARGE B-CELL LYMPHOMA

NO NEW FDA-APPROVED AGENTS SINCE RITUXIMAB!


MIRACLE SCIENCE SOUL MCCityofHope

POTENTIAL TARGETS FOR TREATING B-CELL MALIGNANCIES

BROAD CATEGORIES FOR TARGETED AGENTS FOR DLBCL

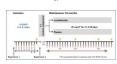
- · Immune modifiers -Lenalidomide
- Molecualar targets- Ibrutinib, Venetoclax, Idelalisib
- Antibodies and antibody drug conjugates anti CD37
- Blinotumumab and other bispecific antibodies
- Immune-check point inhibitors
- Microenvoirnment targets- Anti CD47
- Epigenetic agents

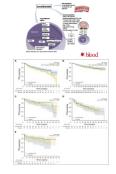
MIRACLE SCIENCE SOUL ME CityofHope.

IMPROVE ON R-CHOP?

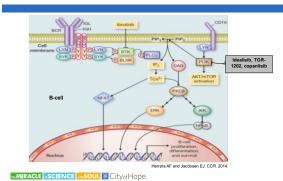
- HDAC inhibitors = no
- Bortezomib = no
- · Next up:
 - Lenalidomide (immunomodulator)
 - Polatuzumab vedotin (anti-CD79b ADC)
 - Venetoclax (BCL2 inhibitor)
 - SGN-CD19A (anti-CD19 ADC)

MIRACLE SCIENCE SOUL A CityofHope.


LENALIDOMIDE


Lenalidomide has an ORR of 19% and 28% in RR. Witzig, et al. Zinzani, et al. 2008.

More effective in non-GCB subtype- ORR 53% vs 9%. Hemandez, et al. Cancer. 2011.

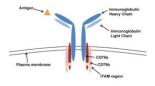

Tested in combination with Rituximab, RICE and as maintenance post transplant. Feldman, et al. 2014.

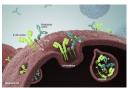
Lenalidomide maintenance vs placebo in elderly patients after RCHOP. PFS was not reached in the Len arm vs 58.9 months in the placebo arm. Diff was notable in the GCB subtype. Triettemort, et al. Blood. 2017.

TARGETED TERAPIES - PI3K INHIBITORS

IBRUTINIB

- · Selective and irreversible inhibitor of BTK
- Modest clinical activity in DLBCL as a single agent 23% seen mostly in the ABC-subtype.
- Phase 1b/2 study of Ibrutinib plus lenalidomide and Rituximab is underway. Preliminary results show a RR of 44%.
- RCHOP vs RCHOP+ibrutinib for non-GCB subtype of DLBCL.
- · Most common side effects are rash and diarrhea.


MIRACLE SCIENCE SOUL MCCityofHope.


BCL-2 INHIBITION - VENETOCLAX

Konopleva M, et al. Cancer Discovery. 2016.

POLATUZUMAB VEDOTIN- ADC TARGETS CD79B CONJUGATED TO MMAE

MIRACLE SCIENCE SOUL I CityofHope.

POLATUZUMAB VEDOTIN IN R/R DLBCL

Treatment Regimen	Best Overall Response
Pola 1.8-2.4 mg/kg	51% ¹
Pola 1.8-2.4 mg/kg + rituximab	56%2

R/R DLBCL from the ROMULUS trial: pola + rituximab:

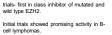
MIRACLE SCIENCE SOUL A CityofHope.

POLATUZUMAB VEDOTIN PLUS OBINUTUZUMAB

	FL (N=35)	DLBCL (N=43)
Objective response, n (%)	24 (69)	17 (40)
Complete Response	11 (31)	9 (21)
[90% CI]	[19-47]	[11-34]
Partial Response	13 (37)	8 (19)
[90% CI]	[24-52]	[10-31]
Stable disease, n (%)	4 (11)	0
Progressive disease, n (%)	1 (3)	18 (42)
Unable to evaluate, n (%)	6 (17) ^b	8 (19)°

*Patients with received 11 dose of study treatment; assessment per Lugano Citteria (Cheson 2014)
*We Pata dose due to IRP for Cit, libern off-study (n=27, no PET assessment (n=7), asked not subsych due to neutroperia before assessment (n=1), fatal presumonia
*Ded before assessment (n=1; PPO oble PET (n=1); ros assessd due to hostalization / taken off study (n=2);
**Total before assessment (n=1; PPO oble PET (n=1); ros assessed due to hostalization / taken off study (n=2);
**Total before assessment (n=1; PPO oble PET (n=1); ros assessed due to hostalization / taken off study (n=2);
**Total before assessment (n=1); ros assessment (n

Data Cut-Off: 26 JUL 2016 Download this presentation: http://lago.ca/TPHI

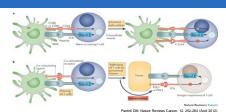

POLA + R/G-BENDAMUSTINE

	FL		DLBCL	
	Pola + BR	Pola + BG	Pola + BR	Pola + BG
	(n=6)	(n=26)	(n=6)	(n=27)
Best Objective Response				
ORR, n (%) CR PR SD PD UE	6 (100) 4 (67) 2 (33) 0 0	23 (89) 17 (65) 6 (23) 0 1 (4) 2 (8)	3 (50) 2 (33) 1 (17) 0 2(33) 1 (17)	16 (60) 11 (41) 5 (19) 2 (7) 6 (22) 3 (11)
Objective Response at End of Treatment				
ORR, n (%)	5 (83)	21 (81)	3 (50)	10 (37)
CR	4 (67)	17 (65)	2 (33)	9 (33)
PR	1 (17)	4 (15)	1 (17)	1 (4)
Median duration of response, mo (range) ^b	16.1	NR	NR	NR
	(3.8–16.3)	(15.2–20.6)	(0.03-14.5)	(0.03-15.7)
Median PFS, mo	18.4	NR	NR	5.4
(range) ^b	(7.2–18.9)	(1.4-17.1)	(1.5-22.7)	(0.03–17.6)

MIRACLE SCIENCE SOUL M CityofHope.

EZH2 - INHIBITORS

Enhancer of zeste homolog 2 (EZH2) results in methylation of the histone H3-associated with gene repression EZH2 activating mutations and overexpression is seen in cancers, GCB type of DLBCL not ABC subtype EZH2 hibitor Tazemostat is in clinical trials- first in class inhibitor of mutated and wild type EZH2.



	FL, £29/2-mut (n = 13)	FL, EZH2 WT (n = 54)	DLBCL, E2H2-mut (n = 17)	DLBCL, #2H2 WT (n = 119)
Objective response rate, n (%)	12 (92%)	14 (26%)	5 (29%)	18 (15%)
Complete response, n (%)	1 (8%)	3 (6%)	0	10 (8%)
Partial response, n (%)	11 (85%)	11 (20%)	5 (29%)	8 (7%)
Stable disease, n (%)	1 (8%)	23 (43%)	6 (35%)	22 (18%)
Time to first response, median (range)	11,9 weeks (6.9-35.9)	15.2 weeks (8.1-32.1)	8.3 ueeks (4.6-48.1)	8.5 weeks (5.3-24.7)

MIRACLE SCIENCE SOUL M CityofHope.

CHECKPOINT INHIBITION: PD-1 PATHWAY

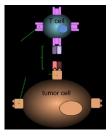
Effects of PD-L1 binding: Inhibits T-cell activation

Inhibits cytokine production

Decreased cytolytic activity of CD4+ and CD8+ cells

CHECK POINT INHIBITORS IN DLBCL

- CTLA-4 AND PD-1 are being targeted.
- CT-011 (pidilizumab) in post ASCT- 16 mo PFS 72% including high risk patients. Armand, et al. 2013.
- Nivolumab- ORR 36% Lesokin, et al. 2016.
- Pembrolizumab- in trials –
 encouraging rates in PMBCL and
 CNS CNS.
- Combinations with other therapies especially CAR-T.


MIRACLE SCIENCE SOUL ME CityofHope.

BISPECIFIC ANTIBODIES

Phase II study of single agent bispecific engager (BiTE®) antibody
Blinatumomab-ORR was 43% including 19% CRs. Viardot, et al. 2016.

Trials ongoing with lenalidmide and alternative strategies of administration (subcutaneous) using Blinatumomab, lenalidmide.

Other targets – CD 20 bispecific engager antibodies- encouraging RR and do not require CD19.

MIRACLE SCIENCE SOUL M CityofHope.

CONCLUSION

- · Many promising strategies to treat RR DLBCL
- · Combination therapies are likely to win
- Attempts to improve upon RCHOP continue especially for double hit and ABC subtypes