SPARCclassic Engine OEM Technical Manual

PART TWO:
AppendicesK &L
microSPARC Reference Material

@ microsystems

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
US.A.

Part No:. 801-3137-10
Revision A, April, 1993

SPARCclassicEn gine OEM Technical Manual

PARTTWO:
AppendicesK& L
microSPARC Reference Material

§ microsystems

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
US.A.

Part No:. 801-3137-10
Revision A, April, 1993

microSPARC Reference Manual

Use the Texas Instruments microSPARC Reference Manual to define the
operating parameters for the microprocessor, and for any firmware/software
development that you require.

The TI documentation included here is accurate as of the date of release of the
SPARCengine EC OEM Technical Manual. Please call Texas Instruments to
ensure that you have the most current documentation. Please use caution in
developing plans on this information until you confirm it is the latest
information available.

K-1

K-2 SPARCclassic Engine OEM Technical Manual

™

TEXAS
TRUMENTS

INS

SPARC
ide
%3

Highly Integrated
SPARC
for Low-Cost
Desktop
Solutions

S
O
S

Reference Gu

Texas Instruments microSPARC Reference Guide

Table of Contents
OVEIVIEW ...ttt st sttt srt e st ss e et st e st et e e sesetesbeseessessessnesneens 3
INtEGET UNIE ..ottt e e 5
OVEIVIEWceviviiieieisteestereeetesteseeeseesesses e satesestas e ssesaaeseee e ensesenaseanes 5
Instruction PIpEline...........coceviiiiceneniineniecnicne et 7
MemoOory OPErations...........ccueeueeeeeesieeienentesreneeeeeeeeeeeseneesseesneessaens 8
ALU/Shift Operations...........cccceeeerierreeerseerseesreeessenssaesssessseesssanas 10
Integer MUltiply.......cocoviiiiiniiiiiiiiceccic e 10
Integer Divide.......ccceeeeeriieenieeeee ettt s e s 11
TS ettt ettt s et sae e st e asaaesree st e e ssaenan 12
Instruction Cache Interface............ccoeeveeevecervnerceninnenieneceecceeneae 13
Data Cache Interfacecccceveeeeveniecrvenieieeseeiee e 13
INEETLOCKSvovineieeieiee ettt et se e st sr e sa e 14
Traps and INtEITUPLS.........cocveverirreeireiiecectece et 14
Floating Point Interfaceccceceveevierieniinnecceeeeeesreeceneeeee e senns 16
Special FEatures.........c.cocieveviiieineniienctercniece et e seeesenes 17
Divergence from SPARC Version 8...........ccceceeevveveeneennecieeneenns 17
Floating Point Unit...........ccceereieiieiiieeiiiieeesissteeceeee et ceaesresseeeeneaeenessneennns 19
OVEIVIEW ...ttt sttt s sa b st aesat s s et esesseeeen 19
Deltas from SPARC Version 8............cccocrivrvencnenenrenenreneneneenne 21
Implementation Specific Featurescccvvevueeeeveecenceesceereecennnene 22
Software Considerations..........c..ceevuereeeeruerereresreeeeresessesressesassesees 23
FPU Instruction Timingscccceccevuerirveerenereenneseessesvasseeseessesnens 25
Memory Management Unitcooeeieiiecnenciinencccneseneceenecseseecsseeseseennes 27
OVEIVIEW ...oneiiiieieireie sttt et esesteste st e sessnese et essaessaseasssanns 27
Translation Lookaside Buffer...........cccccoceviineececciieniinenecceene. 29
CPU TLB LOOKUDuccvrvireririerieienerierinirsesesreseaeseseessesessassessssesesens 35
CPU TLB Flush and Probe Operationscccceeeecvereeresrecuennene. 35
Processor MMU RegiSters.........cceeerereneeeceniieeseseeeseeee e e caessenena 37
JO MMU REGISLETSocverueeeneriieieerentieeneieeenireessesseesaeesasseessesseeseas 46
IO MMU Bypass Mode.........coceevveereiceeeienrieeeeeeeeeeesreeese e eveenneas 54
Physical Address REZIStETc.everuriervereerriesrerreeseeeesensensesesenens 54
TLB Table Walk........ccccooiieiiniineniineeerteieneeeseeseesseeseessseseeesaesaens 55
Instruction Translation Buffer Register..........ccccceveevenvienvinneeccnnnnnne 57
ATDITAtION ...oviiiiiiiiieeteeeecee et sr s 58
Translation Modesccocuevirerenieninieneerinieneeiestsee et eaeee e 59
Page Mode Detection...........cceeeeierereerurrereresenieseneenesseessesesaeneenens 59
Errors and EXCEPLIONS........cccecereeircceninneenenieneeee e esieesreseeesaenaens 59
Diagnostic FEaturesccocevevrcrinnnenenirineese e sseeseesessessenes 60

Revision 02 of 15 December 1992 TMS390S10 iii

microSPARC Reference Guide Texas Instruments

Data CaChEccveeiiiieieeccereterree ettt te e st e s e e st e e e seasnens 67
OVEIVIEW ..ottt ettt sttt ste sttt se et e st se e s e nanas 67
Data Cache Data AITay.........ccccceerierneenrierienneeierieeseeceeseeeseenens 69
Data Cache Tags.......cecervereitierierieeeneeie et e e s 69
WIite BUFTETSooviiieieiieeeeecct et 70
Data Cache Fill.........ccoiieoieiiececieeeeeeee e 70
Internal Memory Bus Interface..........occecvviveeenineveevenneecesesenirenen, 71
TU Data Bus Interfacecccovevecrinenenscnennnenineseceeseee e 71
RENU REZIStETcoovieeeeeieeeiiieneietetrcrieie st secse st e seeesvesaeenanns 71
Data Cache FIushing.........cccceeueeverrienienenieeceniceeee et 71
Cacheability of MemOry ACCESSEScccceeriricrmnnineenrineenesseseseneenns 71
DiagnostiC Strategyc..coeereiivenreeerniinicniinientesnennrestesnessaessessessenae 72

Instruction CaChe.........cccveeeriereerteeeritrece ettt ssee e st 73
OVEIVIEW ...c.veeeeiieieeeceestesteessesieseeessesessasseereessessessssssanssenseseessnanes 73
Instruction Cache Data AITaYc.cccoveererceerirnrenreniuenesieereenessenaens 75
Instruction Cache Tagsc.ceeeeirvenerrerrrerienienesteeseeieseeeeresrenaens 75
Instruction Cache Fillc.cccoivirieeeininrceeenecceeecce e 76
Internal Memory Bus Interface..........ccccovueeevenieneicinceenceerieneennen. 77
IU Instruction Bus Interfacecccccocueveeneenenneevnineenieseesieneen, 77
Instruction Cache Flushing...........cccceeveviinernienienneneecie e, 77
Cacheability of MemoOry ACCESSESccerueererreernrseerseereesessenarenanns 77
DiagnostiC SrateZY.......ccovveevtierrirnerreerrereriereeeseessesssressreessessssssesssses 77

MemOTY INLEITACEcovereieeeieeeiect ettt ereae e e e e ebessestes e ssas e snensesaens 79
OVEIVIEWoveiirieeininieseeie st et ees e sresse st ssessesses e e e sessasassaessasessnons 79
MemOory SUDSYSIEMcocurveeieieireerenenteeee e sres e sessessesaeasesaes 79
Memory Control Block (MCB)cccocenieeeerneeeereneneeesieseenens 81
Data aligner and Parity Check/generate logic (DPC)...................... 93
RAM Refresh Control (RFR)ccoovievieevveeiereiieecceeeceeecieeenaneen 96
SBUS CONTOLIETcurevreeerriieeiereeeereie ettt esesassese e sesessesasansasesens 99
OVEIVIEWeevviireiiieetiree et eeete st st eses et stesee e st asassessssessesssaenssessases 99
CPU INErfacecc.cceeeerueeierereeieireenentn et seesee e seesasaesesaesnenans 104
Address StEEring.........ccevueveiriereerireieieieeiieesteteseece e seeseenereeaees 107
SBUS AIDItETc..eoviuiieriiieienteie sttt srertee e saeses e sreses e ssesasseseenas 107
Main COntrolcceeveriririierenirenieniesteeeresres e sees e seesaessessesaessens 110
Data Transferccoccoverirnirnieereriertere sttt eesne s esaneaens 113
Slave Control CyCle.........ucoveireeeiereeeeiireeeeneereesreeeeesesesneesnnens 114
Slave Target Control...........ccecerreerrecenreieecenreeecesreeree e sreeeeesseaens 116
Data Path.........ccoocoviiiiviiiiiicerrceeceectee e 117
Data Controlccoveeeveerreruenrirnrinenieseeseseessessesaessessasssesseesssennas 119
Error Handling...........ccceeeriinieneniesiinseinenreeseenaesreesseeceessesvnesseennes 119
Diagnostic TEStING.........ccceveruerrrerreirrrenreirieseseestsesaeseeseesaseseesas 119

iv TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Additional Work......cooeveiiiiireicrer e 120

Reset, Clock Control, JTAGcoccviieeveriinieneneniesieneeseeeseeeeseeseessesnnesnens 121
Reset CONtroller........couiiiiiieiieiiinieeeeeetereseeseessreeseaessee e sevesnsens 121

Reset Controller State Machine Operation........cc.cocceeveeeerreneennens 124

ClLOCk CONMTOHEToeveieienrieciieeie sttt ettt e seeaee 125

Clock SigNAIS.......ocereriieereiieerceereete ettt s 127

Stopping CLOCKS......cocoviririiiiiirciieetereeesee st 127

Starting CLOCKScoceeueeererireinecieerenreeee ettt s 127
SINGIE-SLEP .vveereeeiieerteceeiecre ettt st 127

Stop Clocks on Internal Event............ccoccevveencrenenencrceveneenennnn. 128

External Cycle Counterccovveeveveeeenensseeireneesneeeeseeeeenne 128
Counting CLOCKScocceureeeireneeririenreecnerere e nteneeseeses st enaeesees 129

IsSuing N CIOCKS......coveertererieiiirietirteie ettt 129

Count Clocks After Internal Event...........cccocceeeeveniecnecenienenennnne 133

Stop Clocks After N Internal Events.........cccocooeeeeuinnccrcnenccnienennnn. 139

CCR BitS....oiiieeeiieeeeee sttt ettt et sre e st e ae st essesa et e enes 140

TTAG ...ttt sttt eaee st ss e st e e s e st e s sesneene 141

Board Level ArChiteCturecooceevceerceeeveenernreenseeeceseenssneensneens 141

TAP ...ttt ettt et sttt sr e e b e e aaes 141

Data REGISLETS........ccoevererieieeeerenesie e steesesseeeeeeseseseeeesaesanenns 142

JTAG INSIUCLIONS.......ceceenreerineesiereenteseeteseesesteseseaesaessesasessasssenes 143

JTAG Interface to0 MISCcovovrieienirieienniesesteniesneeesneaesneneene 144

JTAG OPEIationccceeuevurcereerrererieereenensesessessessensessesessessesserene 146

Error Handling..........cceeeeveiinverinieiecceentcce et estcs e st eae st e sesseseesaensanes 151
ASTMAD ...ttt et eas e st e s st e sae s e ss e sa st asae st ansesaensans 153
OVEIVIEW ...ttt ettt st esesaes e st e sseesae e st e e esaass e se s 153
REfETENCES ...ttt sa s st neas 159

Revision 02 of 15 December 1992 TMS390S10 v

microSPARC Reference Guide Texas Instruments

vi TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

List of Figures
microSPARC Block DIagramcccceeeveniieversinesieneasseeseesseeseessessessnans 3
microSPARC IU Block Diagramc.ccceceveeveeineceenvreneeseesresseessessensenns 6
Meiko FPU Block Diagram............ccccoueeeeriininieicineneeneenenreenscssesnnseennen 20
Untrapped FP Result in Same Format as Operands 21
Untrapped FP Result in Different Formatc..ccccoeveiinienennnen. 22
FPU Operation MOdEescocevureererreeninreeereneeeeneeneeseereseeneeeseenns 23
MMU Address and Data Path Block Diagram...........ccccccecveviivirvenrienennnns 28
TLB Replacement...........cccouecereeuieriinneiinenieicesesieenessienessesseeenes 29
TLB ENUTY ...ttt st eee e enee e s essese e sesaenes e snas 29
Page Table Entry in Page Tableccccocvvervirvieennnencnseeneninnen, 31
Page Table Entry in TLB......cccooviviiiiiinirniereenreieceee e sees e seeenes 32
Page Table Pointer in Page Table...........cccccevvrevrenirneenciinnennnnnee. 32
Page Table Pointer in TLBccccecenincnnincnnncnececincencnenee. 33
IO Page Table Entry in Page Table...........cccccveevenevnnervnnencnnennn. 34
IO Page Table Entry in TLB.........ccoevevirineerenerrenrenneneeeeneeeeeneas 34
CPU TLB Flush or Probe Address Format...........cccccocvvevereennen. 36
Processor Control RegiStercocvcuerueeeneeeierenienreereesrensesnenens 38
Context Table Pointer Register...........cocuvvuvvervieneeneeneneenenesneeas 41
Context REGISTETc.ccovuririiriireiiciiccntecttne et ... 41
Synchronous Fault Status Register.........ccocoeveevireveevenievenceneennen. 42
Synchronous Fault Address Register...........cccceecueveeererveecreerennenns 46
TLB Replacement Control Registerccveeeveeveercrvencncnuennene 46
IO Control REGISLETccceereeereeeneerieeneeniereeneeessessessesseseesseseenes 47
IO MMU Base Address Register..........cccoeevievennneccinincncnenenn 48
IOPTE Address Based Flush Format............cccccoeeveeverirnenccennene. 49
Asynchronous Fault Status Register..........cccooeevnvinirvnnenienenne. 50
Asynchronous Fault Address Registercoccevuvveveevenerienennene 51
SBUS Slot Configuration Register.........cccevueeereveeeierceeneercesnnnne 51
Memory Fault Status Registerccccoererenervencnreveeneneereeerenes 52
Memory Fault Address RegiSter..........ccoeeuiuenreeceesieesnenneseseenenens 53
MID REGISLEToeeiriirieeeeeeeeritesaeestsernesreesseeessessaeessessesssesnseen 54
Physical Address RegiStercccovvuevererieneeinienrinenieseeeresennens 55
CPU Address Translation Using Table Walk..............c..c.coeue..... 56
ITBR Page Table Entryccccoevireincineeccncesenee e 57
CPU Diagnostic TLB and ITLB Tag Access Format................... 60
Data Cache Block Diagram...........ccceceeeeeeineceenuenineesienieseneesueseesueseeneens 68
Data Cache Tag Entry........cccoevevereniecerinieneeieneeieseesieseenesessenens 69
Instruction Cache Block Diagram............cccevveeveeieneecceniiecnecrieceeeeseenen, 74
Instruction Cache Tag Entry........cccocecveeeveveeieiesvieneeiecesneceereenens 75
MCB block diagram.coouecuevieerierrinreseeisiessesseseseesasesessessesessssessesseses 82
MMU I-fetch beginning in page-modecccccvvverrerverneierrecnnnns 86

Revision 02 of 15 December 1992 TMS390S10 vii

microSPARC Reference Guide Texas Instruments

MMU page-mode write after aread..........cooceeeveverecreecnicncnennenn 87
Non-paged write cycle, shown following aread............cccceune.e. 88
Non-paged read cycle, shown following areadcccoeeueuneneee 89
Paged Byte/Halfword (8/16 bit) write cycle.........ccoecevervevuennennnne 90
Non-paged Byte/Halfword (8/16 bit) write cycle......................... 91
Datapath and Parity Control (DPC) block diagram...................... 95
RAM Refresh Control block diagram.cccecvveveeeverrcreenvennnen. 96
Data Get and Data Put.........ccoeeieeiininiiicceniiec e, 101
SBus Controller Block Diagram...........cccccvvevvevinvenreecenerenennenne 103
CPU State Machineccccceveeireeerieninnerneenieneneeeeeseseeeseessesnnens 106
Arbitor State Machineccccoeeveenineenninnennienecereeneceeseeeene 109
Main State Machine.........ccocceevererneenereereniereene e seesesseseeeeenne 112
D_ctl State Machineccococevveevveiiiieeenereeeeeecreeeenrereeeessenees 113
S_ctl State MACRINE.......c.ceeveierereeevreecereceree e eeeereeeecanreeeenens 115
t_ctl State MAChINEccoevvvieiieeiceeeceee et e e 116
SBC Data Path.........cccoeeuevererineerineecneeenese st seseeee e seenenne 118
microSPARC Reset State Machine.........c.cocceevevennninvnnenecnecncnnnnnnen. 123
Clock Controller State Machineccccoveeevrvenrenvencnenenennenn. 126
Single Step with sbus_1st_half = 1.cccocvivininiiiene 128
Single Step with sbus_1st_half = 0.ccccocervrvrneninninninnne. 128
With Stop_on_ext_eVent.........cccceeverereeenrennrenerereseeneeeesesnenens 130
With stop_even_on_ext_evVentccceceeeververeerreneenenseeseneennens 130
N=2, stopped with sbus_1st_half=1.c.ccccevurrerverrrrcurreernenne. 132
N=7, stopped with sbus_1st_half=0.cc.cccecerrevnrnvnrnnennnne 132
N=7, stopped with sbus_1st_half=1.c.cccorrrirrinvrrervencnnnn. 133
Event in First half of bus cycle, N=8..........ccccoovvrvnvnnincencnne 135
Event in First half of bus cycle, N=8............ccccoucuee.. e 136
Event in First half of bus cycle, N=9.........ccccooovrvvnrvnviivnnnnne 137
Event in Second half of bus cycle, N=9.cccocevervirivinnnnnne 138
Event in first half of bus cycle, N=2. Latency=6 cycles. 139
Event in second half of bus cycle, N=2. Latency=5 cycles........ 140
JTAG ID Reg Contents..........cecueeueerueseennenersreesseesseesseesnesrneenns 142
JTAG LOGIC BLOCK DIAGRAM..........ccccevurrenrrrerenerrcerensanenne 148
microSPARC JTAG Data & Instruction Registers..................... 149
TLB Flush or Probe Address Format...........cccccoveeveneneevnrneecenencenienene. 154
Instruction Cache Tag Entry.........ccooceevevenevrieneinieneeieceneennns 156
Data Cache Tag Entry.........ccccovievererererienenrenieieneereseseeseeseseesenaens 157

viii TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

List of Tables
Cycles per INSIUCHIONcceveiiecicieetcieneieentestet et csese s 7
FSR SUMMATYcooiiiiiiniininitineeit st steste s e ssseae et s essessaesaessassesssennens 24
FPU Instruction Timingsccccceverererereneneneneeseneneseeneesennens 25
Virtual Tag Match Criteria.........ccoeeeruereenienreeeriiereereeseereeseeseeeeseessessessnenne 30
Page Table Access Permissionscceceeevienenenecnenesincennnnenne 31
Page Table Enfry TYPEScccevevirirvcerenieenreecteeneseeeeseeneseeneeenne 32
Sizes of Page Tablescccoeeveviivierenenienceiiirceceece e 33
Page Table Entry TYPEScccccevvvimiviniiiniiiiicncciececeieecee 33
Virtual Tag Match Criteriacccooevivveniiineniineeneneereneeneneeieene 35
TLB Entry FIUuShingcccocoviniivenininciiiicntceentneeneceeeeceeeeene 36
CPU TLB Entry Probingcccceceevererrenvienenenersecvieseesesnessnnes 37
Address Map for MMU RegiSterscccoeveveeneincercnenneneennne. 38
Memory Refresher Control Definitionccceceverervenennnnennnne. 39
Parity Control Definitioncccecceeeeenenenerieneneerenreneneenunneens 40
SFESR Level Field ...t snee e seeaeas 43
SFSR Access Type Fieldcccccoivenivinininniiinicnteircccneeeanes 43
SESR Fault Type Fieldccccccevieiiiinnieienieseneeceeee e 43
Setting of SFSR Fault Type Codecccovveveevirviininceiieerceeen, 44
OVerwrite OPErationscoceeeeveeereeruerereeveseeieressesessesnesseseessens 45
Priority of Fault Types on Single AcCesscccceeverrrerreriennnnnas 45
SBUS and IO MMU Control Spaceccceevveeveereeecvensreesresssnnnns 47
IO MMU Page Table Address Generationccceeeeeveruennnnnns 48
Memory Request TYPe ...t 53
TLB Reference Prioritycccecevencevenvinneenieceennenne [T 59
Translation Modesccccoeeviiinnininesnineererene e seeseen 59
TLB Entry Address Mapping rereeee ettt ase e s e e s 61
Virtual Address Match Conditionsccceceeeerecerensesereeseneerennns 62
Virtual Address Field Enable Decodecocccuevereeienenrennennennens 63
Memory Request TYPEcoccoeivevieniniiincieineceeeeece e 64
Data Cache Fill Ordering..........ccccceeeeeueeveeeresveeieceeeresseesseesssessvessseesnennns 70
Address Map for Data Cache Registerscccoecveveereenueecvenennen. 72
Instruction Cache Fill Orderingcccoceeeeverveerirnirvenvienieeceesressensressennens 76
Memory operations performed by MCB..........cccocoevivevnirnccceninceececnenn 84
Physical Address decode for System Memoryccc.covneeeeee. 93
Parity Control Definitionc.ccceeceveeveeeceenenreseeeeeereereeeeeeenes 94
Refresh Rate Control bits.cccoceeveevereeieisveneeriseceereee e 96
Clock Control and SCAmcccccvveueveveninieririenerete et ereeee e 131
JTAG INSTRUCTIONScocociriiieenteiiieneereese e evernnes 143
EITOT SUMMATY.......civiiiiiiiieneciiee ettt e sa s 151
AST’s Supported by microSPARCcccocevireienieneiennerenrenseeesreaenens 153
TLB Entry FIushingcccccocvenvennnnrnnenserenineseene e, 154

Revision 02 of 15 December 1992 TMS390S10 ix

microSPARC Reference Guide Texas Instruments

CPU TLB Entry Probingcccccoceveveinevcnencnnescneeniescseeeeene 155
Address Map for MMU RegiStersocceeruevercrenuerenerenneennes 155
Address Map for Data Cache Registersccccecevvvennennnnn. 158

X TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

Preface

S ",-i\“-‘?"‘"“““? ”‘““‘\
o %ﬁxﬁk v.-'-m

<~5§2

This guide contains application information for the highly integrated
SPARC processor, named the TMS390S10. Throughout this guide the
term microSPARC is used to describe the TMS390S10 chip.

This User’s Guide should be used in conjunction with the TMS390S 10
data sheet. Where conflicts between these documents exist, particularly
in reference to exact timings and frequency information, the
TMS390S10 data sheet has precedence.

TMS390S10 1

microSPARC Reference Guide Texas Instruments

2 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

. The microSPARC CPU is a highly integrated, low-cost implementation

1.0 Overview of the SPARC RISC architecture. High performance is achieved by the
high level of integration including on chip instruction and data caches
and the close coupling of the CPU with main memory. A full custom
implementation allows for a target frequency of 50 MHz providing
sustained performance of 26.4 SPECint92 with SunPro SC 3.0
compilers. The design is highly testable with the use of the full JTAG
scan support. The microSPARC chip will support up to 128MB of
DRAM and 4 SBus slots.

Integrated within microSPARC are a SPARC V8 Integer Unit core, a
SPARC Reference Memory Management Unit, a Floating Point Unit,
Instruction and Data Caches, DRAM controller, and an SBus Controller.

A simple block diagram follows.
Figure 1.0 - microSPARC Block Diagram

A

«T |
¥

- Address ** . SunPro SC 3.0 compilers

Revision 02 of 15 December 1992 TMS390S10 3

microSPARC Reference Guide Texas Instruments

4 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

2.0 Integer Unit

2.0.1 Overview

Revision 02 of 15 December 1992

The microSPARC integer unit is a SPARC integer unit as defined in the
SPARC Architecture Manual (Version 8). The IU design goal is to
maximize performance, given a constrained die size, using a predefined
software architecture. The emphasis is on software compatibility, since
the greatest cost impact would be on any software (i.e. kernel,
compilers) that would need rewriting.

/4/////////////////_/

The microSPARC integer unit is a CMOS implementation of the
SPARC 32-bit (Version 8) RISC architecture. Some important features
of this design are:

Single issue, 5 stage pipeline

Harvard architecture

Instruction and Data cache streaming support
IMUL and IDIV implemented as integer operations
0 cycle branch penalty

120-register register file (7 register windows)

TMS390S10 5

microSPARC Reference Guide

'I‘exas Instruments

Figure 2.0 - microSPARC IU Block Diagram

From D Cache
Data

Bypass 3

Bypass 2

Bypass 1

D_PC 0
[Erc I i
To D Cache To D Cache
ata Address
- [w_rc
To I Cache
Address TPC
TMS390S10

Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

2.0.2 Instruction
Pipeline

Revision 02 of 15 December 1992

The microSPARC IU uses a single instruction issue pipeline with 5
stages.

F (Instruction Fetch): Instruction cache access occurs in this cycle
based on the address generated in the previous cycle. The
instruction is valid on the pins of the IU at the end of this cycle
and are registered inside of the IU.

D (Decode): The decode stage is used to decode the instruction and
to read the necessary operands. Operands may come from the
register file or from internal data bypasses. The register file has
2 independent read ports. For situations where the necessary
operand is in the pipeline and has not yet been written to the
register file, internal bypasses are supplied to prevent pipeline
interlocks. In addition, addresses are computed for CALL and
Branch in this cycle in the address adder.

E (Execute): The execute stage is used to perform ALU, logical, and
shift operations. For memory operations (e.g.: LD) and for
JMPL/RETT the address is computed in this cycle.

W (Write): This stage is used to access the data cache. For cache
reads, the data will be valid by the end of this cycle, at which
point it is aligned as appropriate. For cache writes, the data is
presented to the data cache in this cycle.

R (Result): This stage writes the result of any ALU, logical, shift, or
cache read operation into the register file.

Table 2.0 - Cycles per Instruction

Instruction Cycles Words
Call 1 1
Single Loads 1 1
Jump/Rett 2 1
Double Loads 2 1
Single Stores 2 1
Double Stores 3 1
Taken Trap 3 1
Atomic Load/Store 2 1
SWAP 2 1
All Others 1 1

TMS390S10 7

microSPARC Reference Guide Texas Instruments

2.0.3 Memory
Operations
2.0.3.1 Loads All load operations take 1 cycle in the microSPARC IU except for LDD
which takes 2. For LD, LDB, and LDH the pipeline does the following:

D - Register operands are read from the register file or are bypassed
from instructions still in the pipe. An immediate operand is sign
extended.

E - Address operands are added to yield the memory address. This
address is passed to the cache in this cycle.

W - Address is registered in the cache and access is started. Data is
expected at the end of this cycle. Any necessary alignment and
sign extension is done in the IU prior to being registered.

R - Data is registered in the IU and is written into the register file.

In the event of a cache miss, the miss indication is given to the IU in the
R cycle. It is flagged early enough to prevent writing bad data to the
register file. The pipe is held and the miss address is resent to the cache
to service the miss. The cache indicates when the miss data is available
- the IU can then register it into the appropriate R cycle register and write
it into the register file.

An LDD takes 2 cycles to complete because of the 32 bit datapaths. The
pipeline does the following:

D - Register operands are read from the register file or are bypassed
from instructions still in the pipe. An immediate operand is sign
extended.

E - Address operands are added to yield the even memory address.
This address is passed to the data cache in this cycle.

W (E2) - Even memory address is registered in the cache and access
is started. This data is sent to the IU. At the same time, the odd
address is generated by the IU and sent to the cache.

R (W2) - Even word is registered in the IU and written to the register
file. The odd word address is registered in the cache and its
access is started. This data gets sent to the IU.

R2 - Odd word is registered in the IU and written to the register file.

In the event of a cache miss, the miss indication is in the R cycle of the
LDD (the same as the W cycle of the LDD’s help cycle). The miss is
indicated early enough to prevent writing bad data into the even register.
The pipe is held and the even address is resent to the cache. When the
cache sends the correct data, the R register is written with the correct
data and the odd address is resent to get the odd word. ‘

8 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

2.0.3.2 Stores The microSPARC IU register file has only two independent read ports.
As a result, store operations take 2 cycles, except STD which takes 3.
For ST, STB, and STH the pipeline does the following:

D - Register operands are read from the register file or are bypassed
from instructions still in the pipe. An immediate operand is sign
extended.

E (D2) - The address operands are added to compute the memory
address. This address will be registered within the IU to provide
the data cache with the address in the correct cycle. At the same
time, the store data is read from the register file or bypassed from
instructions still in the pipe.

W (E2) - The store address is sent to the data cache.

R (W2) - The store data is sent to the data cache in this cycle along
with the appropriate byte marks.

R2 - Store is complete.
For STD the pipeline does the following:

D - Register operands are read from the register file or are bypassed
from instructions still in the pipe. An immediate operand is sign
extended.

E (D2) - The address operands are added to compute the even
memory address. This address will be registered within the IU to
provide the data cache with the address in the correct cycle. At
the same time, the even store data is read from the register file or
bypassed from instructions still in the pipe.

W (E2/D3) - Even address is sent to the data cache. Odd word is read
from register file.

R (W2/E3) - Even store data is sent to the data cache. Odd address
is sent to the data cache.

R2 (W3) - Odd data is sent to the data cache.
R3 - STD complete.
2.0.3.3 Atomics SWAP and LDSTUB each take two cycles to complete. The pipeline
does the following on the SWAP instruction:

D - Register operands are read from the register file or are bypassed
from instructions still in the pipe. An immediate operand is sign
extended.

E (D2) - The address operands are added to compute the swap
address. This address is sent to the data cache to start the cache
read portion of the operation. The address is also registered
inside of the IU to provide the data cache with the same address

Revision 02 of 15 December 1992 TMS390S10 9

microSPARC Reference Guide Texas Instruments

for the store in the next cycle. The register to be swapped is read
out in this cycle.

W (E2) - The data cache returns the memory location accessed. The
store address is sent to the data cache.

R (W2) - The IU registers the read data and writes it to the register
file. Also the store data is sent to the data cache.

R2 - SWAP complete.
The pipeline does the following on the LDSTUB instruction:

D - Register operands are read from the register file or are bypassed
from instructions still in the pipe. An immediate operand is sign
extended.

E (D2) - The address operands are added to compute the ldst address.
This address is sent to the data cache to start the cache read
portion of the operation. The address is also registered inside of
the IU to provide the data cache with the same address for the
store in the next cycle.

W (E2) - The data cache returns the memory location accessed and
it is shifted appropriately inside the IU. The store address is sent
to the data cache.

R (W2) - The IU registers the read data and writes it to the register
file. Also Oxffffffff is sent to the data cache along with the
appropriate byte marks to complete the store.

R2 - LDSTUB complete.

2.0.4 ALU/Shift Most ALU and shift operations take a single cycle to complete. The
Operations exceptions are Integer Multiply and Integer Divide. On Add, Subtract,
Boolean, and Shift operations the pipeline does the following:

D - Read operands from register file or bypass from instructions still
in the pipe.

E - Do appropriate operation in ALU or shifter. There is a selective
inverter on the B input of the ALU to allow for subtracts and
certain Boolean operation (e.g. ANDN).

W - Pipe result into R.
R - Write register file with result.

2.0.5 Integer Multiply Integer multiply takes 19 cycles to complete. The algorithm
implemented in the microSPARC IU is a modified Booth’s (2-bit)
multiply. The multiply process can be broken up into 4 distinct steps:

Initialization 1 cycle
Booth’s iteration 16 cycles

10 TMS390S510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

2.0.6 Integer Divide

Revision 02 of 15 December 1992

Correction (ala Booth) 1 cycle
Writeback 1 cycle

The first cycle is used to set up the registers used in the multiply. The
rs1 and rs2 registers initialize to the operands of the multiply. The W
stage result register and the rs2 register are used as accumulators. At the
completion of the multiply, the W register contains the most significant
32 bits of the result and the rs2 register contains the least significant 32
bits of the result. The W register contents are then written to the Y
register and the rs2 contents to the destination register in the register file.

Integer divide takes 39 cycles to complete. If an overflow is detected,
the instruction completes in 6 cycles. The algorithm implemented in the
microSPARC IU is non-restoring binary division (add and shift). The
divide process can be broken into 5 distinct steps:

Divide by zero detection 1 cycle

Initialization/Ovf detection 3 cycles

Non-restoring division iteration 33 cycles

Correction (for non-restoring) 1 cycle

Writeback 1 cycle
Because the microSPARC IU does not allow traps to be taken by help
instructions, the first step is to determine if we have a divide by 0
condition.
The high order bits of the dividend are in the Y register. The low order
bits are in the rs1 operand. The divisor is in the rs2 operand. In the
initialization step, the Y register is read out and put into the rs1 register
in the datapath. The rs1 operand is passed through to the W register. The
rs2 operand is passed to the rs2 register (surprise!). The W and rs1

registers are used as accumulators. At the completion of the divide, the
W register contains the final quotient.

There are two overflow options for signed divide with a negative result
defined in the SPARC Version 8 manual. The microSPARC TU
implements:

result < 231 with remainder = 0.

If an overflow condition is detected, the divide terminates early with the
appropriate result being written to the destination register.

If no overflow is detected, the non-restoring (add then shift) divide stage
is started. A correction step is provided to correct the quotient
(necessary for this algorithm). After the correction step, the quotient is
written to the correct destination register.

TMS390S10 11

microSPARC Reference Guide

Texas Instruments

2.0.7 CTI’s
2.0.7.1 Branches

2.0.7.2 JMPL

2.0.7.3 RETT

2.0.7.4 CALL

12

All branches take a single cycle to execute. There is no penalty for taken
vs. untaken branches, even in the event that the instruction previous to
the branch sets the condition codes.

In the Decode stage, the IU evaluates the condition codes and branch
condition to determine taken or untaken. The TU outputs the correct
instruction address for either the target or fall through paths in time to
be registered by the instruction cache for the fetch occurring in the next
cycle.

JMPL is a two cycle instruction in the microSPARC IU. This is done
somewhat uniquely in that there are no help cycles for the JMPL.
Instead, there is an interlock that always occurs following the JMPL.
This is done to force the IU to fetch the JMPL’s delay instruction. In this
way, the IU can evaluate whether an RETT is in the JMPL’s delay slot
and evaluate user/supervisor accesses correctly.

D - Read operands from register file or bypass from instructions still
in the pipe. Sign extend immediate operands. The delay slot
instruction is fetched in this cycle.

E - Compute target address and send this to the instruction cache.
W - Not much happens.

R - Write the PC of the JMPL instruction into the destination
register.

RETT is a two cycle instruction in the microSPARC IU. Unlike JMPL,
the RETT utilizes a help cycle. However, since it must follow an JMPL,
the first cycle is always interlocked. This cycle allows the IU to
determine that the RETT enters the pipe and can force the correct user/
supervisor mode (contained in the PSR.PS bit) for subsequent
instruction fetches.

D - Read operands from register file or bypass from instruction still
in the pipe. Sign extend immediate operands.

E - Compute target address and send this to the instruction cache.

W - Not much happens. ,

R - Set PSR.ET to 1, move PSR.PS to PSR.S, and PSR.CWP++.
CALL is a single cycle instruction in the microSPARC IU.

D - Add PC and disp30 to form target address. Send this address to
instruction cache. The delay slot fetch starts this cycle.

E - The CALL target is fetched.
W - Not much happens.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

2.0.8 Instruction
Cache Interface

2.0.9 Data Cache
Interface

Revision 02 of 15 December 1992

R - The PC of the CALL is written to r[15].

In the event of an instruction cache miss, the IU will recirculate the
missed address to the address bus to the instruction cache and hold the
pipeline. Since the miss indication cannot be generated in time to
prevent the missed instruction from moving from F to D, the missed
instruction is physically in the Decode stage of the pipe.

The instruction cache is implemented so that the missed word of the
cache line is returned first. This instruction word is strobed into the
Decode stage. The IU is now free to stream instructions from the
instruction cache as the cache is doing its line fill. This means that the
IU is not held for the entire duration of the cache fill, but can use the
instructions as soon as the instruction cache receives it. To do this, the
IU is told when the instruction addressed by the IU is available to be
strobed in. The IU can then selectively hold and release the pipe. One
caveat is that the IU must correctly select the address to be sent to the
instruction cache (determined by hold).

If one of the instructions encountered during the instruction streaming is
a taken CTI whose target is outside of the cache line being filled, the IU
can detect this condition (the instruction cache cannot) and hold the

pipe.

The data cache interface is roughly similar to the instruction cache
interface. In the event of a data cache miss, the IU will recirculate the
missed address to the data cache address bus and hold the pipeline. Since
the data miss indication is not generated in time to prevent the
instruction from moving from W to R, the instruction that caused the
miss is in its R cycle. Any expected load data must then be directly
strobed into the R stage and if the instruction in the E stage expects to
get load data (via the load bypass), the load data must also be strobed
into the correct E stage register(s).

The data cache is also implemented to return the missed word first.
When the data cache indicates that the data is available, the data is
passed through the load aligner (for any necessary alignment) and then
strobed into the R cycle (and appropriate E cycle) register prior to being
written to the register file.

The IU is then free to continue. To limit the complexity of the MMU,

however, while the data cache is filling the line, no additional memory
operations may be started until the line fill is complete. The exception to
this is LDD, as the second word is allowed to be strobed in after the first.

TMS390S10 13

microSPARC Reference Guide

Texas Instruments

14

2.0.10 Interlocks

2.0.10.1 Load
Interlock

2.0.10.2 Floating Point
Interlocks

2.0.10.3 Special Register
Interlocks

2.0.11 Traps and
Interrupts

2.0.11.1 Traps

There is a single cycle load usage interlock in the microSPARC IU when
a load instruction is followed by an instruction that uses the destination
register of the load as a source operand.

There are two types. The first is when the FPU is busy and a new floating
point instruction is read into Decode. If the FPU detects a conflict, it will
assert the FHOLD signal to prevent dispatch of that instruction until
such time that the conflict is resolved.

The second is when a floating point branch enters decode and the FCCV
bit from the FPU is deasserted. The interlock persists until the FPU
asserts the FCCV bit.

Because of the execute datapath design, the microSPARC IU is unable
to bypass special register read data to the instruction immediately
following it in the pipeline. A single cycle interlock occurs.

The microSPARC IU implements all Version 8 traps except the
following optional traps:

data store error

r register access error
unimplemented FLUSH
watchpoint detected
coprocessor exception

Trap priorities are as defined in SPARC Version 8. If multiple traps
occur during one instruction, only the highest priority trap is taken.
Lower priority traps are ignored since it is assumed that lower priority
traps will persist, recur, or are meaningless due to the presence of the
higher priority trap.

In the pipeline, the trap indication usually occurs when the trapping
instruction reaches the W stage of the pipeline. The exception to this are
the exceptions detected by the MMU (e.g.: a LD which causes a data
access exception trap) which occur in the MEMOP’s R cycle. The
reason for this difference is to allow the MMU an additional cycle to
determine memory exceptions. Note that traps may be detected as early
as the D cycle of the instruction. The trap indication is then piped to the
W stage of that instruction.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

After the assertion of the TRAP signal, instructions following the
trapped instruction in the pipeline are flushed out. The PSR.ET <- 0,
PSR.PS <- PSR.S, PSR.S <- 1, and PSR.CWP--. TBR.TT <- trapcode.
The PC and nPC are written to r17 and r18. Instruction fetches then
transfer operation to the trap vector as defined in the TBR.

The microSPARC IU does not allow help instructions to take a trap.

There are no deferred integer traps. The IU will detect and act on
deferred floating point traps.

2.0.11.2 Interrupts The microSPARC IU is interrupted via the Interrupt Request Level bus.
The IU depends on external logic to select the highest priority
interrupting device and provide the appropriate IRL level. To discard
glitches on the IRL lines, the IU must see at least two cycles where the
level on the IRL are the same. Only then does it initiate an interrupt
request to the processor. This request is pipelined by one cycle. The
interrupt will be taken by the instruction currently in the W cycle of the
pipeline (or, if that instruction is a help instruction, by the next non-help
W cycle) if the IRL level is greater than the current PIL and there are no
higher priority traps that take precedence.
Because there is a one cycle delay between when the IRL and PIL are
compared and when the trap priorities are checked, this could cause a
problem where back to back PSR writes could cause an interrupt to
occur when the existing value in PSR.PIL is greater than the IRL. The
microSPARC IU can prevent this from happening in hardware, so we
avoid the difficulties encountered with previous designs.

2.0.11.3 Reset Trap On reset, the following things occur:
*Traps are disabled (PSR.ET <- 0).

*If power-up reset, PSR.PS is undefined, else PSR.PS is
unchanged.

* Enter supervisor mode (PSR.S <- 1).

*If power-up reset, PSR.CWP is undefined, else PSR,CWP is
unchanged.

* If power-up reset, r[17] and r[18] are undefined, else are
unchanged.

* If power-up reset, TBR.TT is undefined, else is unchanged.
* Execution begins at location PC=0 and nPC=4.
2.0.11.4 Error Mode Error mode is entered when a trap occurs and PSR.ET = 0. Entry into
error mode causes the following to happen:
*PSR.S <- 1.
*PSR.PS is unchanged.

Revision 02 of 15 December 1992 TMS390S10 15

microSPARC Reference Guide Texas Instruments

*PSR.CWP --

*PC and nPC written to r[17] and r[18].
*PC <- 0, nPC <- 4.

*Assertion of the IU_ERROR signal.

In addition, the TBR.TT may be changed if the trapping instruction is an
RETT. The TBR.TT will hold:

*With PSR.S =0, TBR.TT will reflect privileged instruction
*With a window underflow, TBR.TT will reflect the underflow
*With a misaligned target address, TBR.TT will reflect the

misaligned trap.
The IU will remain in error mode until it is reset.
2.0.12Floating Point The microSPARC IU controls the addresses for all instructions and for
Interface floating point memory operations. Within the SingleSparc chip, the

floating point unit has its own bus to the instruction cache. The IU
provides the necessary strobe to load the FP’s instruction register. This
includes handling around instruction misses and instruction exceptions.
In addition, the IU informs the FPU if the instruction just loaded is valid
and should be continued down the pipe.

For floating point loads, the IU starts the cache access and the FPU reads
the data. If the FPload causes a data cache miss, the IU will strobe the
FPU’s data register to pick up the data when it is available. For floating
point stores, the IU starts the cache access and picks up the store data
from the FPU. The IU then registers it and provides it to the data cache
in the correct cycle(s). '

When the FPU detects a usage conflict with the instruction just fetched
in Decode, it asserts the FHOLD signal, which causes the IU to interlock
the pipeline. The interlock is released when the FPU’s internal status
allows for the new FP instruction to start in the FPU.

FCC and FCCV are used by the IU to determine taken and untaken cases
for floating point branches. If a floating point branch is detected in
Decode and FCCYV is not asserted, the IU will interlock until FCCV is
asserted.

The FPU asserts the FEXC line when it detects a floating point
exception. The IU will acknowledge the floating point exception
(FXACK) when a floating point instruction is in the W stage of the pipe
and the IU takes a floating point exception trap.

FPops take one cycle in the IU, plus additional cycles in the FPU. For
the number of cycles in the FPU, please refer to the FPU section in this
document.

16 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

2.0.13 Special Features

2.0.14 Divergence from
SPARC Version 8

Revision 02 of 15 December 1992

The microSPARC IU has some build in features to make debug and
bringup easier.

The IU is fully scanned, with all registers connected into the
microSPARC IU scan chain (JTAG).

Certain registers of the scan chain are accessible only through the scan
chain. These enable certain features useful for bringup and debug.

RF bypass - each read port has a bypass enable that causes the write data
to be bypassed to the read port. Two registers in the scan chain can be
set to enable this. These registers will be zeroed immediately on the next
clock (when scan mode is off), disabling this feature.

Illegal opcode event - when this feature is enabled through the scan
chain, the IU will assert the iu_event signal when a certain illegal
opcode is decoded in the pipeline and the instruction causes an illegal
instruction trap. The opcode in question is op=10 binary and
op3=111111 binary. Once enabled, this feature can only be cleared
through the scan chain.

IU error event - when this feature is enabled through the scan chain, the
IU will assert the iu_event signal when the IU enters error mode. Once
enabled, this feature can only be cleared through the scan chain.

The microSPARC IU has been designed to SPARC Version 8
compatible (as currently defined in the SPARC Architecture Manual,
Version 8, Review-2) including hardware integer multiply and divide.
microSPARC IU does deviate from full support of Version 8 features
due to system design criteria. The deviations are as follows.

The microSPARC IU PSR is as implemented in the SPARC Version 8
manual. In early specifications of the microSPARC IU, it was stated that
the EC bit of the PSR is not writeable. To maintain compatibility with

Version 8 and IEEE 1754, the PSR.EC bit is writeable. Version 8 states
that Coprocessor disabled traps occur when a coprocessor instruction is
decoded and PSR.EC=0 or a coprocessor is not present.

Alternate space memory operations proceed normally, however with a
single caveat. Rather than the 8 bits of ASI, the microSPARC MMU
only decodes 6 bits. The IU was directed to drop these bits, so out of
bound ASI encodings are not detected.

The microSPARC IU does not implement STBAR since there is no need
to force store ordering in this system. It will pass through the pipe as a
Read Y Register operation with destination being the bit bucket (%g0).

The microSPARC IU also does not support reads and writes to the any
Modes or Ancillary State Registers. We have no need for these. All read

TMS390S10 17

microSPARC Reference Guide Texas Instruments

cases will act like a Read Y Register operation. All write cases will act
like a NOP.

The value read from the implementation field (IMPL) of the PSR for
Tsunami will be (hexadecimal) 4. The value read from the version field
of the PSR will be (hexadecimal) 1.

18 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

3.0 Floating
Point Unit

3.0.1 Overview

Revision 02 of 15 December 1992

The microSPARC Floating Point Unit is based on the Meiko FPU
design. The Meiko FPU has been tailored for low-cost, and matched to
the SPARC IU to balance performance. The FPU performance is more
a result of the data cache hit rate, than the peak performance provided
by the FPU design. The performance is therefore based on system level
modeling, including the appropriate cache hit rates.

N
N
N
N
N
N
2 BN
2 N
AN
:\\
N
% BN
1\
.\\
W

The Meiko FPU design is based on matching performance with the
SPARC integer unit. The match is achieved by examining the maximum
bandwidth of the integer unit in starting floating point operations and
executing FPU LOADs and STORE: .

The Meiko FPU fully executes all single and double precision FP
instructions as defined in the SPARC Architecture Manual (Version 8),
except fsmuld. All other FP instructions (including fsmuld) trap to
unimplemented. All implemented instructions will complete in
hardware, therefore this FPU will never generate an unfinished
exception. A block diagram follows:

TMS390S10 19

microSPARC Reference Guide Texas Instruments

Figure 3.0 - Meiko FPU Block Diagram

Ivi

Floating point Register File

2x16x 32 Control

Operand A Frac_Result Exp_Result Operand B

T

R R SRR R R A LR e SRR

Tac

SL SL SR|
b B , ¢é
L A 4:1 , 4:1
8:1 I Treg I 5:1
Areg Br
Areg B normalizer constant
constan|
-
Todd dbd
2:1 \4:1/\4:1/

VX
xp_add

Exponent Datapath [13-bits]

R

Sign Datapath

Fractional Datapath [58-bits]

The bandwidth of the caches and main memory, and the integer unit’s
ability to fetch operands and schedule floating point instructions is the
bottom line in performance. Through simulation, it has been determined

20 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

that the IU cannot provide data and schedule FP instructions at a rate
faster than about 6 cycles per flop. The Meiko FPU can sustain floating
operation times of about 5 cycles (as seen in LINPACK traces), and
therefore will hardly impact overall operation time compared to an
infinitely fast FPU.

The above conclusions allow a FPU implementation using multiple
cycles to complete complex operations. The following algorithms were
chosen for their positive trade-off in contributing to the final size and
speed of the FPU.

* 8-bit multiply step

* 2-bit division step

* 1-bit square root step

e short distance (0-15 bits) shifter/normalizer
* separate single cycle round step

* microcode state machine to control FPU and decode operation

3.0.2 Deltas from The microSPARC FPU deviates from SPARC Version 8 by not

SPARC Version8 supporting the fsmuld instruction or quad-precision floating-point
operations, and traps to unimplemented when these instructions are
encountered. The microSPARC FPU also differs from the Appendix N,
“SPARC IEEE 754 Implementation Recommendations” NaN format.
The following figure shows the value returned for an untrapped floating-
point result in the same format as the operands:

Figure 3.1 - Untrapped FP Result in Same Format as Operands
rs2 operand

number QNaN2 SNaN2

none | IEEE754 QNaN2 ME_NaN
rsl | ONaN1 | QNaN1 ~ QNaN1 ME_NaN
operand| ¢noni | ME_NaN ME_NaN ME_NaN

In the figure above, all QNaN results will have their sign bit set to 0.
ME_NaN is 0x7fff0000 (single-precision) or 0x7fffe00000000000
(double-precision).

Revision 02 of 15 December 1992 TMS390S10 21

microSPARC Reference Guide

Texas Instruments

22

3.0.3 Implementation
Specific Features

Figure 3.2 - Untrapped FP Result in Different Format
operand (rs2)

operation| +QNaN -QNaN +SNaN -SNaN

fstoi ME_NaN -imax +imax -imax
fstod (QNaN2) (QNaN2) ME_NaN ME_NaN
fdtos ME_NaN ME_NaN ME_NaN ME_NaN
fdtoi ME_NaN -imax +imax -imax

In the figure above, +imax = Ox7f{ffffff, and -imax = 0x80000000.
(QNaN2) is a copy of the mantissa bits of the operand, with the extra low
order bits zeroed, and the sign bit zeroed.

The microSPARC FPU implements a 1-entry floating-point deferred
trap queue. When a floating-point instruction generates an fp_exception,
microSPARC will delay the taking of an fp_exception trap until the next
floating-point instruction is encountered in the instruction stream. The
microSPARC FPU implementation can be modeled as having 3 states:
fp_execute, fp_exception_pending, and fp_exception. These are shown
in the figure below.

Normally the FPU is in fp_execute state. It moves from fp_execute to

fp_exception_pending when an FPop generates a floating-point

exception.

The FPU moves from fp_exception_pending to fp_exception, when the
IU attempts to execute any floating-point instruction (including fbcc’s).
This transition (FXACK) generates an fp_exception trap. At this time
the FQ contains the instruction and address of the FPop which originally
caused the fp_exception.)

An fp_exception trap can only be caused while the FPU is moving from
the fp_exception_pending state to the fp_exception state (or by
executing a STDFQ instruction when FSR.qne == 0, as described
below). While in fp_exception state, only floating-point store
instructions may be executed (particularly STDFQ and STFSR) and
they can not cause an fp_exception trap.

The FPU remains in the fp_exception state until a STDFQ instruction is
executed and the FQ becomes empty. At that time, the FPU returns to
the fp_execute state.

If an FPop, or a floating-point load instruction (excluding fbcc’s and all
store instructions) is executed while the FPU is in fp_exception state, the
FPU returns to fp_exception_pending state and also sets the FSR ftt

TMS390S510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

3.0.4 Software
Considerations

Revision 02 of 15 December 1992

field to sequence_error (0x4). The instruction that caused the
sequence_error is not entered into the FQ.

If a STDFQ instruction is executed when the FQ is empty (FSR.qne ==
0, FPU is in fp_execute state), the FPU will generate an immediate
fp_exception trap (not deferred) and set the FSR .ftt field to
sequence_error (0x4), but the FPU will remain in fp_execute state.

RESET

@ FP EXCEPTION
EMPTY
Fp
QUEUE

SEQUENCE ERROR
EXCEPI'IOEXCEP’II}\T'(I}ON

Figure 3.3- FPU Operation Modes

The STDFQ instruction will store the address from the FQ to the
effective address, and the instruction from the FQ to the effective
address + 4.

This section describes the software visible features of the microSPARC
FPU/FPC.

The FSRftt field is set whenever an FPop completes or causes an
exception. This field will remain unchanged until another FPop
completes (or causes a sequence error). The FSR ftt field may be cleared
by executing a non-trapping FPop, such as fmovs%f0,%f0.

TMS390510 23

microSPARC Reference Guide

Texas Instruments

The following table describes the bits in the Floating-Point Status

Register (FSR):
Table 3.0 - FSR Summary
FSR Bits| field values Description writeable by
LDFSR
31:30 RD 0 - Round to nearest (tie-even) | Rounding Direction Yes
1 - Round to zero
2 - Round to +infinity
3 - Round to -infinity
29:28 res always 0 reserved No
27:23 TEM | O - disables corresponding trap | Trap Enable Mask Yes
1 - enables corresponding trap
22 NS always 0 Nonstandard FP No
21:20 res always 0 reserved No
19:17 ver always 4 FPU version number No
16:14 FIT 0 - None FP trap type No
1 - IEEE Exception
2 - Unfinished FPop
3 - Unimplemented FPop
4 - sequence error
13 QNE | 0 - queue empty Queue Not Empty No
1 - queue not empty
12 res always 0 reserved No
11:10 FCC | 0-== FP Condition Codes Yes
1-<
2->
3 - ? (unordered)
9:5 AEXC| 0 -no corresponding exception| Accrued Exception Bits| yeg
1 - corresponding exception
4:0 CEXC| 0 - no corresponding exception| Current Exception Bits | veg
1 - corresponding exception

TMS390S10

Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

3.0.5 FPU Instruction The instruction timings, as quoted by Meiko, are provided in the
Timings following table. The timings are in CPU cycles.

Table 3.1 - FPU Instruction Timings

Instruction Min Typ Max
fadds 4 4 17
faddd 4 4 17
fsubs 4 4 17
fsubd 4 4 17
fmuls 5 5 25
fmuld 7 9 32
fdivs 6 20 38
fdivd 6 35 56
fsqrts 6 37 51
fsqrtd 6 65 80
fnegs 2 2 2
fmovs 2 2 2
fabss 2 2 2
fstod 2 2 14
fdtos 3 3 16
fitos 5 6 13
fitod 4 6 13
fstoi 6 6 13
fdtoi 7 7 14
fcmps 4 4 15
fempd 4 4 15
fcmpes 4 4 15
fcmped 4 4 15
unimplemented 3 3 3

These cycle counts assume that the operands are available in the register
file. A load-use interlock (fp load followed by an FPop which uses the
destination register of the load as an operand) may add up to 2 cycles to
the typical cycle count.

Revision 02 of 15 December 1992 TMS390S10 25

microSPARC Reference Guide

Texas Instruments

Because of the limited shifter size (0-15 bits was chosen to save
hardware), the fpu instruction cycle counts are data dependent. There

are 5 ways in which operations may take longer than the typical cycle
count:

1. Exceptional operands (such as NaN, etc.) may add several cycles
to the typical cycle count. In a normal environment, these are
rare events probably caused by ill-conditioned data and will be
trapped (if traps are enabled).

2. Possible exceptional results (results which are very close to
underflow or overflow) may add up to 5 cycles to the typical
cycle count. In a normal environment these are rare events,
probably caused by ill-conditioned data.

3. Denormalized operands will add 1 extra cycle for each 15 bit shift
required to normalize before the operation, and 1 extra cycle for
each 15 bit shift required to denormalize the result after the
operation (if necessary). Because operations on denormalized
numbers will always complete in hardware (this fpu will never
generate an unfinished exception), the overall performance will
be greater than for an fpu which traps on denormalized operands.

4. Add or Subtract which require an initial alignment of more than
15 bits will add 1 extra cycle for each 15 bit shift. Also, a
Subtract result which requires a shift of more than 15 bits to
normalize will add 1 extra cycle for each 15 bit shift.

5. Non-standard rounding modes (RZ and RN are the typical

operating modes) may require up to 3 additional cycles for some
corner cases and exceptions.

Statistical analysis shows that, on average, 90% of fpu instructions will
complete with the typical cycle count.

For a more detailed description of the Meiko floating point unit, please
refer to the Meiko FPU specification, provided by Meiko Limited of
Bristol, England.

TMS390510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

4.0 Memory
Management
Unit

4.0.1 Overview

Revision 02 of 15 December 1992

The microSPARC MMU provides the functionality of both a reference
MMLU as specified by the SPARC Reference MMU Architecture and a
Sun 4M IO MMU. Additionally, much of the memory arbitration logic
is contained within the MMU block.

/',///////////////////

W

N\ \

This MMU provides four primary functions. First, the MMU translates
virtual addresses of each running process to physical addresses in
memory. More specifically, the MMU provides translation from a 32 bit
virtual address to a 31 bit physical address by using a translation
lookaside buffer (TLB). The 3 high order bits of Physical Address are
maintained to support memory mapping into 8 different address spaces.
The MMU supports the use of 64 contexts. Second, the MMU provides
memory protection so that a process can be prohibited from reading or
writing the address space of another process. Page protection and usage
information is fully supported. Third, the MMU implements virtual
memory. The page tables are maintained in main memory. When a miss
occurs in the TLB the table walk is handled in hardware and a new
virtual to physical address translation is loaded into the TLB. Finally,
the MMU performs the arbitration function between IO, Data Cache,
Instruction Cache, and TLB references to memory.

The reference MMU contains a 32 entry fully associative TLB and uses
a pseudo random algorithm for the replacement of TLB entries. An
address and data path block diagram follows.

TMS390S10 27

microSPARC Reference Guide

Texas Instruments

Figure 4.0 - MMU Address and Data Path Block Diagram

sb_ioa[31:00] mdata_in[31:00]
iu_iva[31:02] [16,02:00]
iu_dva[31:00] -_-E
na mm_pa[27:08] mm_pa[07:02]
@ EESE mdata_out[16,02:00] P
[31:12] [11:06] [05:00]
[05:00]
31:12 E_-_D 05:03
[[3{:12] CXR [05:03]
[31:12; [02:00]
» R e O
[06:05] ¢ ¢ . A 4
O . y s
(LSEAR Vigtual | Context| LEVEL |§ lpri} 10
ag ag 3
[26:07] 104:021 (590134 C(%f'l L1,(L2?13 (D[(1)1
- Li=Vid)
Page Table Field (RAM) ¢
mdata_in
PTE| Physical Page Number 19] c[M| 1] Acce) 131:00]
TOPTE] Physical Page Number (19 0{0 | 0| O [O| W
mdata_in[22:04]
mdata_in[26:10] tb_out(26:02] (22:07.04:02]
v e
[Bax] (26:04] (J__merprE |l oxr(5:0]
iu_iva[26:12]
sscr0:3[16] mdata_in[30:00] i ; . 4
| Comparator l
— -
MFAR([30:12] mm_caddr(11:00] par_in . v
PAR[30:12] 126241 /\ 123:181 /\ [17:12] O
par_in[30:12] mm_pa[30:00] mdata_in[30:00]]
l PAR
mm_dpa[26:12
‘mm_page mm_pa[30:00] mm_ipa[26:12]
KEY:

28

CXR - Context Register

CTPR - Context Table Pointer Register

PAR - Physical Address Register

ITBR - Instruction Translation Buffer Register
SSCR - SBus Slot Configuration Register
SFAR - Synchronous Fault Address Register
AFAR - Asynchronous Fault Address Register
MFAR - Memory Fault Address Register
IBAR - IOMMU Base Address Register
TRCR - TLB Replacement Control Register

iu_iva - Instruction Virtual Address

iu_dva - Data Virtual Address

sb_ioa - IO Address

bd_mdata - 32 Bit Internal Memory Bus
mm_pa - Physical Address (to SBC, MCB)

O - From/To State Machine or Control Logic

e = Diagnostic use

mm_ipa - Instruction Physical Address (to ICache)

mm_dpa - Data Physical Address (to DCache)
mm_caddr - CAS address bits to MCB

tb_out - output from TLB RAM (note that the verilog implements these as 24:00 not 26:02)

TMS390510

Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

4.0.2 Translation The TLB is a 32 entry, fully associative cache of page descriptors. It
Lookaside Buffer caches virtual to physical address translations and the associated page
protection and usage information. The pseudo random replacement
algorithm determines which of the 32 entries should be replaced when
needed. In the descriptions that follow the terms VA and PA are used to
generically describe any virtual address (sb_ioa, iu_iva or iu_dva) or
physical address (mm_pa, mm_dpa or mm_ipa) respectively.

4.0.2.1 TLB The TLB uses a pseudo random replacement scheme. There is a 5 bit
Replacement counter in the TLB Replacement Control Register (TRCR) which is
incremented by one during each CPU clock cycle to address one of the
TLB entries. When a TLB miss occurs, the counter value is used to
address the TLB entry to be replaced. On reset the counter is initialized
to zero. There is also a bit in the TRCR which is used to disable the
counting function. A simple diagram follows.

Figure 4.1 - TLB Replacement

TLB | || 31

Replacement |

Counter
TLB Entries
@ 0
4.0.2.2 TLB Entry An entry in the TLB has the following fields: a virtual address tag, a

context tag, a PTE level field, and a page table field.
Figure 4.2 - TLB Entry

Virtual Address Tag| Context Tag |Level| S |IO [PTHPage Table Field
20 6 3 25

Tag Data

Revision 02 of 15 December 1992 TMS390510 29

microSPARC Reference Guide Texas Instruments

Field Definitions:

Virtual Address Tag - The 20 bit virtual address tag represents the
most significant 20 bits (VA[31:12] the page address) of the
virtual address being used when referencing PTEs and IOPTEs.
VA[11:00] is the byte within a page. The address in this field is
physical when referencing PTPs with the least significant 19 bits
containing PA[26:08].

Context Tag - The 6 bit context tag comes from the value in the
context register as written by memory management software
when referencing PTEs. Both it and the virtual address tag must
match the CXR and VA[31:12] in order to have a TLB hit. This
field contains a physical address (PA[07:02]) when referencing
PTPs. This field is not used when referencing IOPTEs.

Level - The 3 bit level field is used to enable the proper virtual tag
match of region, and segment PTE’s. IOPTE’s and PTP’s will
have this field set to use Index 1,2 and 3 (b‘111’). The most
significant bit also serves as the TLB Valid bit because it is set
for any valid PTE, IOPTE, or PTP. The following table defines

the level field:
Table 4.1 - Virtual Tag Match Criteria
Level Match Criteria
000 | None

100 | Index 1 (VA[31:24])
110 | Index 1,2 (VA[31:18])
111 | Index 1, 2,3 (VA[31:12])

Supervisor (S) - This bit is used to disable the matching of the
context field indicating that a page is a supervisor level (ACC=6
or 7).

IO Page Table Entry (IO) - This bit indicates that an IOPTE resides
in this entry of the TLB.

Page Table Pointer (PTP) - This bit indicates that a PTP resides in
this entry of the TLB. Note that all SRMMU flush types (except
page) will flush all PTPs from the TLB.

Page Table Field - The page table field can either be a Page Table
Entry (PTE), a Page Table Pointer (PTP), or an IO Page Table
Entry (IOPTE). This field can be read and written using ASI
0x06.

30 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments

microSPARC Reference Guide

4.0.2.3 Page Table
Entry

Revision 02 of 15 December 1992

A Page Table Entry (PTE) defines both the physical address of a page
and its access permissions. A PTE is defined for SPARC reference

MMUs as follows.
Figure 4.3 - Page Table Entry in Page Table
Rsvd PPN C|M| R| ACC ET
31 27 26 08 07 06 05 04 0201 00
Field definitions:

Reserved (Rsvd) - Bits [31:27] should be written as zero, and will be
read as zero.

Physical Page Number (PPN) - This field is the high order 19 bits
([30:12]) of the 31 bit physical address of the page. The PPN
appears on PA[30:12] when a translation completes.

Cacheable (C) - When this bit is set to a one the page is cacheable by
an instruction and/or data cache.

Modified (M) - This bit is set to a one when the page is written to.

Referenced (R) - This bit is set to a one when the page is accessed.
All PTEs in the TLB have this bit set when the entry is loaded.

Access Permissions (ACC) - These bits indicate whether access to
this page is allowed for the transaction being attempted. The
Address Space Identifier (ASI) determines whether a given
access is a data access or an instruction access, and whether the
access is being done by the user or supervisor. The field is
defined as follows.

Table 4.2 - Page Table Access Permissions

ACC User Permissions Supervisor
0 | Read only Read only
1 | Read/Write Read/Write
2 | Read/Execute Read/Execute
3 Rd/Wrt/Exec Rd/Wrt/Exec
4 | Execute only Execute only
5 | Read only Read/Write
6 | Noaccess Read/Execute
7 | No access Rd/Wrt/Exec

TMS390S10 31

microSPARC Reference Guide Texas Instruments

Entry Type (ET) - This field differentiates the entry types in the
TLB. Note that the entry type is not kept in the TLB RAM. On a
‘probe operation the ET field is derived from a combination of
other bits. The bit definitions of the ET field follows:

Table 4.3 - Page Table Entry Types
ET Entry Type

0 Invalid

1 Page Table Pointer
2 Page Table Entry
3 Reserved

“Invalid” means that the corresponding range of virtual addresses is not
currently mapped to a physical address.

In the TLB RAM the PTE has the following format:
Figure 4.4 - Page Table Entry in TLB

Rsvd PPN CIM| 1| ACC 10
31 27 26 08 07 06 05 04 02 0100

Bits [31:27] are not implemented, should be written as zero, and will
be read as zero.

Bit [05] is set to one by hardware indicating that every PTE in the
TLB has been referenced.

Bits [01:00] are set to one:zero by hardware indicating the entry type
(ET) of a PTE. These bits are not actually stored in the TLB
rather are derived as a function of the PTP bit of the tag.

4.0.2.4 Page Table A Page Table Pointer (PTP) contains the physical address of a page table
Pointer and may be found in the Context Table, in a Level 1 Page Table, orin a
Level 2 Page Table. Page Table Pointers are put into the TLB during
tablewalks and removed from the TLB either by natural replacement
(also during tablewalks) or by flushing the entire TLB. Note that the
Level field in a PTP tag is always set to 0x7. A PTP is defined as

follows:
Figure 4.5 - Page Table Pointer in Page Table
Rsvd PTP Rsvd ET
31 2726 0403 0201 00

32 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

Field definitions:

Reserved (Rsvd) - Bits[31:27,03:02] should be written as zero, and
will be read as zero.

Page Table Pointer (PTP) - The physical address of the base of a
next level page table. The PTP appears on PA[30:08] during
miss processing. The page table pointed to by a PTP must be
aligned on a boundary equal to the size of the page table. Note
that this is true of the context table at the root level also. The
sizes of the tables are summarized as follows.

Table 4.4 - Sizes of Page Tables

Level Size (Bytes)
Root 256

1 1024

2 256

3 256

Entry Type (ET) - This field differentiates the entry types in the
TLB. Note that the entry type is not kept in the TLB RAM. On a
probe operation the ET field is derived from a combination of
other bits. The bit definitions of the ET field follows:

Table 4.5 - Page Table Entry Types
ET Entry Type

0 Invalid

1 Page Table Pointer
2 Page Table Entry
3 Reserved

“Invalid” means that the corresponding range of virtual addresses is not
currently mapped to a physical address.

In the TLB a PTP has the following format:
Figure 4.6 - Page Table Pointer in TLB

Rsvd PTP 00 01
31 27126 0403 02 01 00

Bits [31:27] are not implemented, should be written as zero, and will
be read as zero.

Bits [03:02] are set to zero by hardware and are unused.

TMS390S10 33

microSPARC Reference Guide Texas Instruments

Bits [01:00] are set to zero:one by hardware indicating the entry type
(ET) of a PTP. These bits are not actually stored in the TLB
rather are derived as a function of the PTP bit of the tag.

4.0.2.5 10 MMU Page

Table Entry An IO Page Table Entry (IOPTE) defines both the physical address of a

page and its access permissions. Note that the Level field in a IOPTE tag
is always set to Ox7 and the Supervisor bit is set to 0x0. An IOPTE is
defined as follows.

Figure 4.7 - 10 Page Table Entry in Page Table

Rsvd : PPN Rsvd | W | V |[WAZ
31 27 26 0807 03 02 01 OO0
Field definitions:

Reserved (Rsvd) - Bits [31:27] are not implemented, should be
written as zero, and will be read as zero. Bits [07:03] should also
be written as zero, and will be read as zero.

Physical Page Number (PPN) - This field is the high order 19 bits of
the 31 bit physical address of the page. The PPN appears on
PA[30:12] when a translation completes. This address is
concatenated with VA[11:00] to provide the entire translated
address.

Writeable (W) - When this bit is set to a one both reads and writes to
the page are allowed. When this bit is zero only reads are
allowed.

Valid (V) - This bit is set to a one when the IOPTE is valid.

Write As Zero (WAZ) - This bit is to be written as zero in the
memory io pagetable by software.

In the TLB an IOPTE has the following format:
Figure 4.8 - 10 Page Table Entry in TLB

Rsvd PPN 0 \' 10
31 27 26 0807 03 02 01 00

Bits [31:27] are not implemented, should be written as zero, and will
be read as zero.

34 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Bits [07:03] are set to zero by hardware. Bit[05] is used to
distinguish between PTEs (set to 1) and IOPTE:s (set to 0).
Bits[07:06,04:03] are unused.

Bits [01:00] are set to one:zero by hardware indicating a valid
IOPTE. These bits are not actually stored in the TLB.

4.0.3 CPU TLB Lookup A virtual address to be translated by the MMU is compared to each entry
in the TLB. During the TLB lookup the value of the Level field specifies
which index fields are required to match the TLB virtual tag as follows:

Table 4.6 - Virtual Tag Match Criteria
Level Match Criteria

000 | None

100 | Index 1 (VA[31:24])

110 | Index 1,2 (VA[31:18])
111 | Index 1, 2,3 (VA[31:12)])

In addition to the virtual tag match, context matching of a PTE is
required for all user page references (ACC is 0 to 5) when made by
either user or supervisor (ASI = 0x8-0xB). Context matching is not
required for a supervisor page reference (ACC is 6 or 7) when made by
a supervisor (ASI = 0x9 or 0xB). This case takes advantage of the
Supervisor bit in the TLB tag. Note that user references (ASI = 0x8 or
0xA) to supervisor pages (ACC is 6 or 7) result in address exceptions.

Note that the TLB ignores access level checking during probe
operations. The most significant Level field bit is used as a Valid bit for
the TLB. This means that root level PTEs are not supported.

4.04 CPU TLB Flush The flush operation allows software invalidation of TLB entries. TLB
and Probe entries are flushed by using a store alternate instruction. The probe
Operations operation allows testing the TLB and page tables for a PTE

corresponding to a virtual address. TLB entries are probed by using a
load alternate instruction. The ASI value 0x3 is used to invalidate or
probe entries in the TLB. In an alternate address space used for probing
and flushing the address is composed as follows:

Revision 02 of 15 December 1992 TMS390S10 35

microSPARC Reference Guide

Texas Instruments

4.04.1 CPUTLB
Flush

4.04.2 CPUTLB
Probe

36

Figure 4.9 - CPU TLB Flush or Probe Address Format

VFPA Type Reserved

31 12 11 08 07 00

Field Definitions:

Virtual Flush or Probe Address (VFPA) - This field is the address
that is used to index into TLB. Depending on the type of flush or
probe not all 20 bits are significant.

Type - This field specifies the extent of the flush or the level of the
entry probed.

Reserved - These bits are ignored. They should be set to zero.

The flush operation must remove the PTEs and PTPs from the TLB that
match the type criteria as follows:

Table 4.7 - TLB Entry Flushing
Type Flush PTE Match Criteria

0 Page (Level 3) AND (Context match OR
ACC=6-7) AND VA[31:12] match

1tod Entire |None (Entire TLB Flush)

S5toF Reserved

The probe operation returns either a PTE from a page table in main
memory or the TLB or it returns a zero if there is an invalid address or
translation error while searching for the entry implied by the probe. If
there is an error, a zero is returned for data. The reserved probe types
(0x5-0xF) return an undefined value. A type 4 probe (entire) brings the
accessed PTE and any PTPs that were needed into the TLB. If the PTE
was not already there the referenced bit is updated. Probe type O affects

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

one entry of the TLB which is invalidated at the end of the probe

operation.
Probe types 1-3 should be preceded by a TLB Flush Entire to ensure
correct operation.
Table 4.8 - CPU TLB Entry Probing
Type Probe Returned Data
0 Page Level 3PTE or O
*1 Segment Level 2PTE or O
*2 Region Level IPTEor O
*3 Context Level 0PTE or 0
4 Entire PTE from Table Walk
StoF Reserved or

* - Must be Preceded by TLB Flush Entire

4.0.5 Processor MMU The Processor Control Register (CR) contains general CPU control and
Registers status flags. The current context identifier is stored in the Context

Register (CXR), and a pointer to the base of the context table in memory
is stored in the Context Table Pointer Register (CTPR). If an MMU fault
occurs on a CPU initiated transaction the address causing the fault is
placed in the Synchronous Fault Address Register (SFAR) and the cause
of the fault can be determined from the contents of the Synchronous
Fault Status Register (SFSR). The TLB Replacement Control Register
is used to control which TLB and Entries are to be replaced next. All of
these internal MMU registers can be accessed directly by the processor

Revision 02 of 15 December 1992 TMS390S10 37

microSPARC Reference Guide Texas Instruments

through alternate address space word accesses with an ASI value 0x4.
The address map for these registers follows.

Table 4.9 - Address Map for MMU Registers

VA[12:08] Register

00 Processor Control Register

01 Context Table Pointer Register

02 Context Register

03 Synchronous Fault Status Register

04 | Synchronous Fault Address Register
05-OF | Reserved

10 TLB Replacement Control Register
11-12 | Reserved

13 Synchronous Fault Status Register**

14 Synchronous Fault Address Register**
15-1F | Reserved

**Writeable for diagnostic purposes

VA bits [31:13] are zero. VA bits [07:00] are ignored and should be
set to zero by software. The use of a second access mode for the
Synchronous Fault registers is provided as a diagnostic function
(VA[12:08] = 0x13, 0x14). See register description for details.

4.0.5.1 Processor The Processor Control Register contains control and status bits for the
Control Register microSPARC processor. The BM, IE, DE, and EN bits receive both the
' sbus reset (normal reset) and watchdog resets (BM is set, IE, DE, and
EN are reset). It is highly recommended that sta’s to the PCR are
immediately followed by a SPARC FLUSH instruction to keep the
machine in a very consistent state. The PCR is defined as follows:

Figure 4.10 - Processor Control Register

IMPL| VER[STWAV|DV| Rsvd [PC| ID|A BN]iRSV PE| RC |IE|DE Rsvd NF|EN|

31 28272423 22 21 20 1918 17 16 15 14 13 12 11 1009 08 07 02 01 00

Field Definitions:

Reserved (Rsvd) - Bits [19:18,13,07:02] are unimplemented, should
be written as zero and will be read as zero.

38 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Implementation (IMPL) - The implementation number of this
SPARC Reference MMU. This field is hardwired to 0x4 and
read only.

Version (VER) - The version number of this SPARC Reference
MMU. This field is hardwired to Ox1 read only.

Software Tablewalk enable (STW) - This bit enables the
instruction_access_ MMU_miss and data_access_ MMU_miss
traps for instruction and data tablewalking respectively for
tablewalks to be done by software.

Address View (AV) - This bit is used for diagnostic purposes. Any
address from the MMU Physical Address Register (PAR) is
displayed on the SBus Address pins (SBADDR[27:00 =
mm_pa[27:00]). This is a debug and test feature. During debug
this can be monitored while running non io diagnostics. You
cannot use the sbus while this bit is set.

Data View (DV) - This bit is used for diagnostic purposes. Any Data
on the internal memory data bus will appear on the external SBus
Data pins (SBDATA[31:00]). This is a debug and test feature.
During debug this can be monitored while running non io
diagnostics. You cannot use the sbus while this bit is set.

Memory Data View (MV) - This bit is used for diagnostic purposes.
Any Data on the internal memory data bus (mdata[31:00]) will
appear on the external memory data pins. This is useful for
monitoring ASI and control space accesses (from/to both the IU
and SBus). You cannot get to memory when this bit is set for
either load or store operations.

Refresh Control (RC) - These 2 bits control the DRAM refresh rate
of the system. Normal 40MHz operation would require a 0x2
value. The RC field is defined as follows:

Table 4.10 - Memory Refresher Control Definition

RFR_CNTL Refresh Interval
0 very 128 clocks (to 8.6 MHz]
1 o Refresh
2 very 512 clocks (to 35 MHz)
3 very 768 clocks (to 52 MHz)

Revision 02 of 15 December 1992 TMS390S10 39

microSPARC Reference Guide

Texas Instruments

4.0.5.2 Context Table
Pointer Register

Parity Control (PC) - This bit controls the generation of parity (and
checking on memory reads) in the memory interface as follows:

Table 4.11 - Parity Control Definition

PC Meaning

0 Even Parity
1 Odd Parity

ITBR Disable bit (ID) - This bit disables the use of the Instruction
Translation Buffer Register when set.

Alternate Cacheability (AC) - This bit specifies that the caches are
enabled by the IE and DE bits even with the mmu disabled when
set. When not set, the caches are disabled when the mmu is
disabled. This should not be used during boot mode accesses (or
other instruction accesses to an sbus device).

Boot Mode (BM) - This bit is set by both sbus reset and watchdog
reset and must be cleared for normal operation.

Parity Enable (PE) - When set to one this bit enables word parity
checking for all non video data entering the processor over the
memory bus.

Instruction Cache Enable (IE) - The instruction cache is enabled
when this bit is set to a one. When zero, all references miss the
cache. This bit is reset by both sbus reset and watchdog reset.

Data Cache Enable (DE) - The data cache is enabled when this bit is -
set to a one. When zero, all references miss the cache. This bit is
reset by both sbus reset and watchdog reset.

No Fault bit (NF) - When set the supervisor accesses which cause
exceptions will not be signaled to the processor (will be captured
in the SFSR). Normal operation occurs while this bit is cleared.

MMU Enable (EN) - When this bit is set to a one the MMU is
enabled and translation occurs normally. When this bit is not set
the physical address is forced to the 31 least significant bits of
the virtual address. This bit is reset by both sbus reset and
watchdog reset.

The Context Table Pointer Register (CTPR) contains the base of the
Context table. It is defined as follows.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

4.0.5.3 Context
Register

4.0.5.4 Synchronous
Fault Status
Register

Revision 02 of 15 December 1992

Figure 4.11 - Context Table Pointer Register

Reserved Context Table Pointer [26:08] Reserved

31 23 22 04 03 00

The Context Table Pointer is 19 bits wide. The reserved fields are
unimplemented, should be written as zero, and read as a zero.

The Context Register (CXR) is used as an index into the Context table.
It is defined as follows.

Figure 4.12 - Context Register

Reserved Context Number

31 06 05 00

The Context Register defines which virtual address space is considered
the “current” address space. Subsequent accesses to memory through
the MMU are translated for the current address space. This continues
until the CXR is changed. The physical address of the root pointer is
obtained by taking bits [22:04] from the CTPR to form mm_pa[26:08]
and bits [05:00] from the CXR to form mm_pa[07:02].
mm_pa[30:27,01:00] are zero. Bits [31:06] of the CXR are
unimplemented, should be written as zero, and read as a zero.

The Synchronous Fault Status Register (SFSR) provides information on
exceptions (faults) issued by the MMU during CPU type transactions.
There are three types of faults: instruction access faults, data access
faults, and translation table access faults. If another instruction access
fault occurs before the fault status of a previous instruction access fault
has been read by the IU, the latest fault status is written into the SFSR
and the OW bit is set. If multiple data access faults occur only the status
of the one taken by the IU is latched into the SFSR (and address in the
SFAR). If data fault status overwrites previous instruction fault status
the OW bit is cleared since the fault status is represented correctly. An
instruction access fault does not overwrite a data access fault. If a
translation table access fault overwrites a previous instruction or data
access fault the OW bit is cleared. An instruction access or data fault
does not overwrite a translation table access fault. Reading the SFSR

TMS390S10 41

microSPARC Reference Guide Texas Instruments

42

using ASI 0x4 and type 0x03 clears it. Using type 0x13 to read the SFSR
does not clear it. Writes to the SFSR using ASI 0x4 and
VA[12:08]=0x03 have no effect while writes using VA[12:08]=0x13
update the register. The SFSR is only guaranteed to be valid after an
exception is actually signalled. In other words, it may not be valid if
there is no exception.

Figure 4.13 - Synchronous Fault Status Register

Rsvd |CS|Rsy PERR |Rsv| TO| BE| L AT FT |[FAVOW

31 17 1615 14 1312 11 10 09 08 07 05 04 02 01 00
Field Definitions:

Reserved (Rsvd) - Bits [31:17,15,12] are not implemented, should
be written as zero, and read as zero.

Control Space Error (CS) - This bit is asserted on the following
conditions: [1] invalid ASI space, [2] invalid ASI size, [3]
invalid VA field in valid ASI space and [4] invalid ASI operation
(for example a swap instruction to an asi other than 0x8-
0xB,0x20). Note that the AT field is not valid on Control Space
Errors.

Parity Error (PERR) - The Parity Error[1:0] bits are set for external
memory bus parity errors on the even and odd words
respectively from memory.

Sbus Time Out (TO) - An Sbus Time Out resulted from a CPU
initiated read transaction. No Sbus slave responded with an
acknowledge within 256 Sbus cycles (12.8 us).

Sbus Bus Error (BE) - An error indication was returned from an
Sbus slave on a CPU initiated read transaction. This may have
been either an error acknowledgment or a late error.

Level (L) - The Level field is set to the page table level of the entry
which caused the fault. If an error occurs while fetching a page
table (either a PTP or PTE) this field records the page table level
for the entry. The level field is defined as follows.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

Table 4.12 - SFSR Level Field

L Level

0 Entry in Context Table

1 Entry in Level 1 Page Table
2 Entry in Level 2 Page Table
3 Entry in Level 3 Page Table

Access Type (AT) - The Access Type field defines the type of access
which caused the fault. Loads and Stores to user/supervisor
instruction space can be caused by load/store alternate
instructions with ASI = 0x8-0xB. The AT field is defined as
follows. Note that this field is not valid on Control Space Errors.

Table 4.13 - SFSR Access Type Field

2

Access Type

Load from User Data Space

Load from Supervisor Data Space

Load/Execute from User Instruction Space
Load/Execute from Supervisor Instruction Space
Store to User Data Space

Store to Supervisor Data Space

Store to User Instruction Space
Store to Supervisor Instruction Space

NoOANUMhAhWND-O

Fault Type (FT) - The Fault Type field defines the type of the current
fault. The FT field is defined as follows.

Table 4.14 - SFSR Fault Type Field

FT Fault Type
0 None
1 Invalid Address Error
2 Protection Error
3 Privilege Violation Error
4 Translation Error
5 Access Bus Error
6 Internal Error
7 Reserved
TMS390S10 43

microSPARC Reference Guide

Texas Instruments

Invalid address errors, protection errors, and privilege violation errors
depend on the AT field of the SFSR and the ACC field of the
corresponding PTE. The errors are set as follows.

Table 4.15 - Setting of SFSR Fault Type Code

FT Code
PTE[V]=0 PTE[V]=1
AT 0O 1 2 3 4 5 6 17
0 1 - - - - 2 - 3 3
1 1 - - - - 2 - - -
2 1 2 2 - - - 2 3 3
3 1 2 2 - - - 2 - -
4 1 2 - 2 - 2 2 3 3
5 1 2 - 2 - 2 - 2 -
6 1 2 2 2 - 2 2 3 3
7 1 2 2 2 - 2 2 2 -

An invalid address error code (FT=1) is set when an invalid PTE or PTP
is found while fetching an entry from the page table for a regular table
walk or a probe entire operation. A translation error code (FT=4) is set
when a SFSR PE type error occurs while the MMU is fetching an entry
from a page table, a PTP is found in a level 3 page table, or a PTE has
ET=3. The L field records the page table level at which the error
occurred. The PE field records the word(s) having a parity error, if any.
The protection error code (FT=2) is set if an access is attempted that is
inconsistent with the protection attributes of the corresponding PTE.
The privilege error code (FT=3) is set when a user program attempts to
access a supervisor only page. An access bus error code (FT=5) is set
when the SFSR PE field gets set on a memory operation that was not a
table walk, or on a synchronously generated SBus error acknowledge or
time out. Additionally, this error code is also set on an alternate space
access to an unimplemented or reserved ASI or the memory access is
using a size prohibited by the particular type of ASI. If multiple errors
occur on a single access the highest priority fault is recorded in the FT
field (see below).

Fault Address Valid (FAV) - The Fault Address Valid bit is set if the
contents of the Synchronous Fault Address Register (SFAR) are
valid. The SFAR is valid for data faults and data translation
€ITors.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments

microSPARC Reference Guide

Overwrite (OW) - The Overwrite bit is set if the SFSR has been
written more than once to indicate that previous status has been
lost since the last time it was read.

Table 4.16 - Overwrite Operations

4.0.5.5 Synchronous
Fault Address
Register

Revision 02 of 15 December 1992

Pending Error New Error OW Status Action Signalled

Translation Error Translation Error Set Translation Error

Translation Error Data Access Exception ’Enchanged Data Access Exception
Translation Error Instruction Access ExceptionUnchanged|Instruction Access Exception
Data Access Exception Translation Error Clear Translation Error

Data Access Exception Data Access Exception et Data Access Exception

Data Access Exception Instruction Access ExceptionflUnchanged|Instruction Access Exception
Instruction Access Exception|Translation Error lear Translation Error

Instruction Access ExceptionjData Access Exception lear Data Access Exception
Instruction Access Exception|Instruction Access ExceptionSet Instruction Access Exception

If a single access causes multiple errors, the fault type is recognized in

the following priority.

Table 4.17 - Priority of Fault Types on Single Access

Priority Fault Type
1 Internal Error
2 Translation Error
3 Invalid Address Error
4 Privilege Violation Error
5 Protection Error

The Synchronous Fault Address Register (SFAR) records the 32 bit
virtual address of any data fault reported in the SFSR. The SFAR is
overwritten according to the same policy as the SFSR on data faults.

Reading the SFAR using ASI 0x4 and VA[12:08] 0x04 clears it. Using
VA[12:08] 0x14 to read the SFSR does not clear it. Writes to the SFAR
using ASI 0x4 and VA[12:08] 0x04 have no effect while writes using
VA[12:08] 0x14 update the register. Note that the SFAR should
always be read before the SFSR to insure that a valid address is
returned. The structure of this register is as follows.

TMS390510 45

microSPARC Reference Guide Texas Instruments

Figure 4.14 - Synchronous Fault Address Register

Faulting Virtual Address
31 00
4.0.5.6 TLB The TLB Replacement Control Register (TRCR) contains the TLB
Replacement Replacement Counter and counter disable bit. The TRCR can be read
Control and written using alternate load/store (LDA and STA) at ASI 0x4 with
Register VA[12:08]=0x10. It is defined as follows.
Figure 4.15 - TLB Replacement Control Register
Reserved TCD TLBRC
31 06 05 04 00
Field Definitions:

Reserved - Bits [31:06] are unimplemented, should be written as
zero and will be read as zero.

TLB Replacement Counter Disable (TCD) - The TLBRC will not
increment when this bit is set.

TLB Replacement Counter (TRC) - This is a 5 bit modulo 32
counter which is incremented by one during each CPU clock
cycle to point to one of the TLB entries unless the TCD bit is set.
When a TLB miss occurs, the counter value is used to address
the entry to be replaced.

4.0.6 10 MMU The IO MMU Control Register (IOCR) contains IO MMU control and
Registers status flags. The IO MMU Base Address Register IOBAR) defines the

base address of the IO PTE Table in memory. The SBus Slot
Configuration Registers (SSCR[0:3]) provides information about the
slave device in the spare SBus slots. If a parity error occurs on an IO
initiated transaction the physical address causing the fault is placed in
the Asynchronous Fault Address Register (AFAR) and the cause of the
fault can be determined from the contents of the Asynchronous Fault
Status Register (AFSR). A DMA parity error will result in asserting the
level 15 interrupt output (to be fed back to the IU externally as an
interrupt) and the assertion of an error acknowledge to the SBC so it can
return an SBus error acknowledge to the device that initiated the

46 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

4.0.6.1 10 MMU
Control
Register

Revision 02 of 15 December 1992

transaction. IOPTE entries may be flushed from the TLB by doing
writes to the Address Flush Register (AFR). This register is write only.
All of these internal MMU registers can be accessed directly by software
using SBus and IO MMU Control Space accesses with
PA[30:24]=0x10. Also, the Entire TLB can be flushed using a control
space access. The SBus and IOMMU Control Space address map
follows.

Table 4.18 - SBUS and I0 MMU Control Space

PA<30:00> Device R/W
1000 0000 10 MMU Control Register R/W
1000 0004 IO MMU Base Address Register R/W
1000 0014 Flush All TLB Entries A\

1000 0018 Address Flush Register w

1000 1000 Asynchronous Fault Status Reg. R/W
1000 1004 Asynchronous Fault Address Reg. R/W
1000 1010 SBUS Slot Configuration Register0 [R/W
1000 1014 SBUS Slot Configuration Register] [R/W
1000 1018 SBUS Slot Configuration Register2 [R/W
1000 101C SBUS Slot Configuration Register3 |R/W
1000 1020 Memory Fault Status Register R/W
1000 1024 Memory Fault Address Register R/W
1000 2000 MID Register R/W

The I0 MMU Control Register (IOCR) contains control and status bits
for the IO MMU. This register can be accessed using Sbus and 10 MMU

- Control Space (0x10000000).

NOTE: Control space loads should not be executed while DMA is
enabled (see MID register). A possible deadlock condition may occur
if a DMA atomic or quad-word write coincides with the control space
load.

The IOCR is defined as follows:
Figure 4.16 - 10 Control Register

IMPL | VER Rsvd RANGE [Rsvd| ME
31 28 27 24 23 05 04 02 01 00
Field definitions:

Implementation (IMPL) - The implementation number of this IO
MMU. This field is hardwired to 0x4 and read only.

TMS390510 47

microSPARC Reference Guide Texas Instruments

Version (VER) - The version number of this IO MMU. This field is
hardwired to Ox1 and read only.

Reserved (Rsvd) - Bits [23:05,01] are not implemented, should be
written as zero, and will be read as zero.

RANGE - This field defines the virtual address range for DVMA.
Specifically, the translatable limit is defined to be
16MB*2**<RANGE>. All VA bits above this limit must be set
to one for an address to be valid. For example, if RANGE=2 then
64MB of virtual address are supported, and valid DVMA virtual
addresses range from 0xFC000000 to OxFFFFFFFF. Any access
using a DVMA virtual address that is out of that range will
receive an SBus error acknowledge. The only exception
involves slots that have Bypass Enabled. The following table
shows how the physical address of an IO MMU page table entry

is generated:
Table 4.19 - 10 MMU Page Table Address Generation
Range Limit Physical Address[30:00]

16MB IBAR[26:10], IOVA[23:12],b00’
32MB IBAR[26:11], IOVA[24:12],b00’
64MB IBAR[26:12], IOVA[25:12],b00°
128MB | IBAR[26:13], IOVA[26:12],b°00’
256MB | IBAR[26:14], IOVA[27:12],b00°
512MB | IBAR[26:15], IOVA[28:12],b°00
1GB IBAR[26:16], IOVA[29:12],b°00°
2GB IBAR[26:17], IOVA[30:12],b00

NSO WD - O

IO MMU Enable (ME) - IO MMU translation is enabled when this

bit is set.
4.0.6.2 10 MMU Base The I0 MMU Base Address Register (IBAR) defines base address of the
Address IO Reference Table. This register can be accessed using Sbus and IO
Register MMU Control Space (0x10000004). The IBAR is defined as follows.
Figure 4.17 - 10 MMU Base Address Register
Rsvd IBA[30:14] Rsvd
31 2726 1009 00
Field definitions:

48 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

4.0.6.3 IOMMU Flush
All TLB
Entries

4.0.6.4 IOMMU
Address Flush
Register

4.0.6.5 Asynchronous
Fault Status
Register

Revision 02 of 15 December 1992

Reserved (Rsvd) - Bits [31:27,09:00] are not implemented, should
be written‘as zero, and will be read as zero.

10 MMU Base Address (IBA) - When the IO MMU is enabled and
the access translation misses the TLB, IBA is used as the base
address for the (KRANGE/1024>)byte-aligned I0 MMU
Reference Table.

All TLB entries are flushed by writing to control space address
PA=0x10000014. This address should not be read since the output of the
TLB is unknown during a flash clear operation.

The IOPTE entries may be flushed from the TLB by doing writes to the
Address Flush Register at PA=0x10000018 with the following format.
The Address Flush Register is defined as follows.

Figure 4.18 - IOPTE Address Based Flush Format

FA[31:12] Rsv
31 12 11 00

Field definitions:

Reserved (Rsv) - Bits [11:00] are not implemented and should be
written as zero.

Flush Address (FA) - The virtual page address of the IOPTE entry
to be flushed.

Note that a register is not actually implemented to perform this function.
Also note that to flush all IOMMU entries all TLB entries must be
flushed (see section on CPU TLB Flush for details).

The Asynchronous Fault Status Register (AFSR) provides information
on asynchronous faults during IO initiated transactions and CPU write
operations. This register is used only for PIO operations, and is
accessed using Sbus and IO MMU Control Space (0x10001000). A
hardware lock is used to ensure that this register does not change while
being read. Reading this register clears it. Multiple errors set the ME bit,
but do not change any other states. The AFSR always reflects the status
of the first error. Refer to the Sun 4M specification.

Note: The AFSR .size field is invalid when a late error (AFSR.le) is
detected.

TMS390S10 49

microSPARC Reference Guide

Texas Instruments

50

4.0.6.6 Asynchronous
Fault Address
Register

Note: Due to the pipelined nature of Processor I/O space writes, it is
possible to receive a late error (AFSR .1le) and no longer have the correct
address stored in the AFAR. When this occurs, the AFSR .fav bit will
not be asserted, indicating that the AFAR contains an invalid address.

Figure 4.19 - Asynchronous Fault Status Register

ERN LE|TO| BE| SIZE | s 1000 | ME RDFAVL Rsvd
31 30 29 2827 25 24 23 20 19 18 17 16 00
Field Definitions;

Reserved (Rsvd) - Bits [23:20,16:00]. Bits [23:20] are forced to
‘1000’. Bits [16:00] are not implemented, should be written as
zero, and read as zero.

Summary Error Bit (ERR) - One or more of LE, TO, or BE is
asserted.

Late Error (LE) - The SBus reported an error after the transaction
was done.

Time Out (TO) - An SBus write access timed out.

Bus Error (BE) - An SBus write access received an error
acknowledge.

Size (SIZE) - SBus size of error transaction.
Supervisor (S) - CPU was in Supervisor mode when error occurred.

Multiple Error (ME) - At least one other error was detected after the
one shown.

Read Operation (RD) - The error occurred during a read operation.

Fault Address Valid (FAV) - The address contained in the AFAR is
accurate and can be used in conjunction with the status in AFSR.
The only time the AFAR will be invalid is on an SBus late error
in which the second processor IO operation has already been
requested and is queued up in the SBC.

The Asynchronous Fault Address Register (AFAR) records the 31 bit
physical address that caused the fault. This register is accessed using
Sbus and I0 MMU Control Space (0x10001004). Bit [31] should be
written as zero and will be read as zero. A hardware lock is used to

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

insure that this register does not change while being read. Writing the
AFSR unlocks the AFAR. The structure of this register is as follows.

Figure 4.20 - Asynchronous Fault Address Register

0 Faulting Physical Address

31 30 00

Note that bit 31 is unimplemented, should be written as zero, and will be
read as zero. Also, this register is only held when an error is reflected in

the AFSR.
4.0.6.7 SBUS Slot The SBus Slot Configuration Registers (SSCR[0:3]) provide
Configuration information about the slave device in sbus slots, and is also used for IO
Registers MMU bypass management for that slot. These registers can be accessed

using Sbus and I0 MMU Control Space (0x10001010, 0x10001014,
0x10001018 and 0x1000101C respectively).The SSCR is defined as
follows:

Figure 4.21 - SBUS Slot Configuration Register

Reserved SA3(Reserved BA16| BA8| BY
31 17 16 15 03 02 01 00

Field definitions:

Reserved - Bits [31:17,15:03] are not iinplementcd, should be
written as zero, and will be read as zero.

Segment Address Bit 30 (SA30) - This bit provides PA[30] when IO
MMU bypass is used.

BAL16 - Slave supports 16 byte bursts.
BAS - Slave supports 8 byte bursts.

IO MMU Bypass (BY) - When this bit is set the MMU is bypassed
and the virtual addresses from this slave are treated as physical
when sb_ioa[31:30]=00. mm_pa[30] is given by the SA30 field
and mm_pa[29:00] is defined as sb_ioa[29:00].

4.0.6.8 Memory Fault The Memory Fault Status Register (MFSR) provides information on
Status Register parity faults. This register is accessed using Sbus and MMU Control
Space (0x10001020). This register is loaded on every request to memory

Revision 02 of 15 December 1992 TMS390S10 51

microSPARC Reference Guide

Texas Instruments

52

unless it is locked. A hardware lock is used to ensure that this register
does not change while being read if there was an error condition.
Reading this register allows it to begin loading once again.

When multiple memory errors occur, the MFSR will hold the status
reflecting the operation in which the first error occurred, and also set the
multiple error bir (MFSR.me). The MFSR will maintain the error status
until cleared, which can be done by reading the MFSR.

Figure 4.22 - Memory Fault Status Register

ERR

Rsvd | S|CP Rsvd|MH Rsvd | PERR BM| C| Rsvd | Type | Rsvd

31 30 25242322 201918 151413 12 11 10 08 07 04 03 00

Field Definitions:

Reserved (Rsvd) - Bits [30:25,22:20,18:15,10:08,03:00] are not
implemented, should be written as zero, and read as zero.

Summary Error Bit (ERR) - One or more of PERR[1] or PERR[0] is
asserted.

Supervisor (S) - CPU was in Supervisor mode when error occurred.

CPU Transaction(CP) - CPU initiate the transaction that resulted in
the parity error.

Multiple Error (ME) - At least one other error was detected after the
one shown.

Parity Error[1:0] (PERR) - These bits are set on external memory
parity errors for the even and odd words (respectively) from
memory. Parity errors can result from CPU or IO initiated
memory reads and byte or halfword (8 or 16 bit) write operations
(which result in read-modify-writes).

Boot Mode (BM) - This bit indicates that the error occurred while
the PCR was indicating that we were in Boot Mode.

Cacheable (C) - Address of error was mapped cacheable. On a CPU
initiated transaction this bit is from the C bit of the PTE,
otherwise it is set to zero.

Memory Request Type (Type[3:0]) - This field records the type of
request that generated the parity error as follows:

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

4.0.6.9 Memory Fault

Address Register

4.0.6.10 MID Register

Revision 02 of 15 December 1992

Table 4.20 - Memory Request Type

Value (Hex) | Name Meaning
0 NOP No memory operation
1 RD64 Read of 64 bits (2 words)
2 RD128 Read of 128 bits (4 words)
3 Reserved
4 RD256 Read of 256 bits (8 words)
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 WRS8 Write of 8 bits (1 byte)
A WR16 Write of 16 bits (2 bytes)
B WR32 Write of 32 bits (1 word)
C WR64 Write of 64 bits (2 words)
D Reserved
E Reserved
F Reserved

The Memory Fault Address Register (MFAR) records the 31 bit
physical address that caused the fault. This register is accessed using
Sbus and IO MMU Control Space (0x10001024). This register is loaded
on every request to memory unless it is locked. A hardware lock is used
to ensure that this register does not change while being read if there was
an error condition. Reading this register allows it to begin loading once
again. Bit [31] should be written as zero and will be read as zero. The
structure of this register is as follows.

Figure 4.23 - Memory Fault Address Register

0 Faulting Physical Address

31 30 00

Note that bit 31 is unimplemented, should be written as zero, and will be

read as zero. Also, this register is only held when an error is reflected in
the MFSR.

The MID Register contains two fields. The MID field (Bits[3:0] contain
a constant value of 0x8) and the SBAE field which controls the ability

TMS390S10 53

microSPARC Reference Guide

Texas Instruments

4.0.7 10 MMU Bypass
Mode

4.0.8 Physical Address
Register

54

of SBus devices to arbitrate for the bus. This register can be accessed
using Sbus and IO MMU Control Space (0x10002000).The SBAE bits
are both readable and writeable while the MID field is read only. The
MID is defined as follows:

Figure 4.24 - MID Register
Reserved SBAE[4:0] Reserved ‘0x8’
31 21 20 16 15 0403 00

Field definitions:

Reserved - Bits [31:21,15:04] are not implemented, should be
written as zero, and will be read as zero.

SBus Arbitration Enable[4:0] (SBAE) - These bits control the ability
for devices on the SBus to arbitrate for the bus. The most
significant bit (SBAE[4]) controls arbitration for the SCSY/
Ethernet master. The other bits (SBAE[3:0]) control arbitration
for SBus devices 3:0 corresponding to SSCR[3:0]. These bits are
R/W.

MID - This field is a constant 0x8 and is read only (writes to these
bits are ignored).

Bypass mode is provided to allow intelligent SBus masters to do their
own memory management with assistance from the kernel. This facility
is enabled by having the Bypass Enable bit set in that device’s slot
configuration register. It is assumed that such a master will have its own
MMU. In order to bypass the IO MMU the DVMA master must issue a
virtual address with sb_ioa[31:30]=0. In this case the Physical Address
bus will have the Virtual Address bus put on it. The PA is checked to
verify that it is in the valid main memory range and an error is issued to
the master if it is not.

The Physical Address Register (PAR) is used to hold translated physical
addresses before they are used for either memory requests or for Sbus

TMS390510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

operations. This register cannot directly be read or written. The structure
of this register is as follows.

Figure 4.25 - Physical Address Register

Physical Address

30 00

4.0.9 TLB Table Walk On a translation miss the table walk hardware translates the virtual
address to a physical address by “walking” through a context table and
from 1 to 3 levels of page tables. The first and second levels of these
tables typically (not necessarily) contain page table pointers (PTP) to the
next level tables when accesses are due to CPU instruction or data
addresses. IO accesses only the first level page table. A third level table
entry should always be a page table entry (PTE) pointing to a physical
page or else a translation fault occurs.

The table walk for a CPU generated virtual address uses the context
table pointer register (CTPR) as a base register and the context number
contained in the context register (CXR) as an offset to point to an entry
in the context table. The context table entry is then used as a PTP into
the first level page table. At any address the table walk hardware finds
either a PTE which terminates its search or a PTP. A PTP is used in
conjunction with a field in the virtual address to select an entry in the
next level of tables. The table walk continues searching through levels
of tables as long as PTPs are found pointing to the next table. The table
walk terminates when either a PTE is found or an exception is generated
if a PTE is not found after accessing the 3rd level page table (or if an
invalid or reserved entry is found). Note that PTPs and PTEs
encountered during a table walk are not cached in the data cache. A full
table walk is shown in the following figure.

Revision 02 of 15 December 1992 TMS390S10 55

microSPARC Reference Guide

Texas Instruments

CTPR

Figure 4.26 - CPU Address Translation Using Table Walk

Virtual Address

Index 1 Index 2 Index 3 Page Offset

31
Context Table

CXR

24 23 18 17 12 11 00

Level 1 Table

56

Physical Address l

Level 2 Table

Level 3 Table

-
Physical Page Number - Page Offset

30

12 11 00

When the PTE is found it is stored in an available TLB entry and used
to complete the original virtual to physical address translation. A table
walk which was forced by a store operation to an unmodified region of
memory causes the M bit in the PTE to be set. Any “entire” probe or
normal tablewalk operation causes the R bit of the PTE to be set if it had
not been already. '

The table walk for an IO generated virtual address uses the IO Base
Address Register (IOBAR) as a base register and part of the DVMA
virtual address as an index into an IOPTE table in memory. Specifically
the IO MMU page table size and corresponding DVMA virtual address
range are configured in the IOCR RANGE field. The table consists of 4
byte entries. The virtual address used for this mapping is VA[X:0]
where “X” is the highest VA bit in the translatable range. VA[31:X+1]
must be all “1”’s in order for translation to take place; otherwise an error
is signalled to the DVMA master. The bits VA[X:12] provide a virtual

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

4.0.10 Instruction
Translation
Buffer Register

4.0.10.1 ITBR Page
Table Entry

Revision 02 of 15 December 1992

page number which is used as an index into the IOMMU table in
memory. These bits are placed on mm_pa[X-10:2]. The rest of the
physical address is mm_pa[1:0] = 00, and mm_pa[30:X-9] =IBA[30:X-
9]. This is the PA used for the one level IO walk.

Since instruction fetches occur every time the pipeline moves and there
is only one TLB for translating instruction references, data references
and DVMA requests, a method for dealing with conflicts between
instruction references and data or IO references to the TLB was needed.
A registered version of the last instruction translated TLB line is kept in
the Instruction Translation Buffer Register (ITBR). When the TLB
arbiter determines there is a conflict the iu_iva goes to the ITBR and the
two translations occur simultaneously. When the iu_iva misses in the
ITBR the translation is done in the TLB the next available cycle. Note
that the default is to translate instruction addresses in the TLB and the
ITBR is used only for conflict cases. This maximizes the hit rate of
instruction address lookups. Each time an iu_iva is successfully
translated in the TLB the ITBR is updated. The ITBR is logically split
into a PTE and Tag section. Both the PTE and tag portions of the ITBR
are read and written like other TLB PTE and tags using ASI 0x6. See
diagnostic section for details.

An I-cache miss will require a translation using the TLB, as there is no
datapath from the ITBR to PAR. Therefore, the ITBR is only useful for
cached pages.

Any access error detected by the ITBR is seen as an ITBR miss, without
updating any Fault Status logic. Normal execution will retry the
translation using the TLB, and set the Fault Status logic accordingly.

The ITBR is invalidated whenever the TLB is written or flushed to
maintain consistency. The ITBR is always a copy of the TLB entry, not
an additional entry.

An ITBR Page Table Entry ITBR/PTE) defines both the physical
address of a page and its access permissions. A ITBR/PTE is defined as
follows.

Figure 4.27 - ITBR Page Table Entry

Rsvd PPN C [Rsvd™¥q acc | "pPF
31 23 22 08 07 06 05 04 0201 00
Field definitions:

TMS390S10 57

microSPARC Reference Guide

Texas Instruments

58

4.0.10.2 ITBR Tag

4.0.11 Arbitration

4.0.11.1 TLB
Arbitration

Reserved (Rsvd) - Bits [31:23,06:05,01:00] are not implemented,
should be written as zero, and will be read as zero except for bits
[05 and 01] which are read as one. This was done to make the
ITBR appear as a valid PTE when read. Bit [06] is the M bit (=0),
bit [05] is the R bit (=1) and bits [01:00] is the ET field (=10 for
PTE).

PPN, C, ACC - these fields are defined the same as they for TLB
PTEs. Note that the 4 most significant PPN bits are not kept in
the ITBR since instruction references must be made to main
memory (limit 128MB in address space 0).

An ITBR Tag is defined in the section on MMU diagnostic strategy.
Briefly, the tag consists of the Level field, the Instruction Virtual
Address Tag, and the Context Tag.

The MMU block performs the primary memory arbitration function on
the CPU. This is due to the central nature of the MMU in the address
flow of the machine. The different sources of memory activity are the
instruction cache block (for instruction fetches), the data cache block
(for loads and stores), the TLB (during tablewalks and to keep the
referenced and modified bits in the main memory page tables up to
date), and IO DMA activity.

The other entity needing main memory is the DRAM refresh logic . This
function is folded into the arbitration scheme by the Memory Controller
which must arbitrate between it and a request out of the MMU.

The arbitrating requirements can be broken down into several different
resource arbiters. The TLB (and ITLB) arbitration and the internal
memory bus arbitration.

The current priority scheme places TLB references as highest priority,
followed by IO references, data references, and finally instruction
references. Note that the TLB is referenced during every CPU clock in
normal operation. Tablewalks and updates to the memory PTEs due to
changes to the Referenced and Modified bits are the highest priority.
They imply that some other operation is in progress.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments

microSPARC Reference Guide

Table 4.21 - TLB Reference Priority

Operation Pending
IO DMA |IU Data Ref.| Instr, Fetch Result
YES X X Xlate for IO, Tablewalk if miss, use ITBR for IFetch Xlate
NO YES X Xlate for IU Data Reference, Tablewalk if miss, use ITBR for IFetch Xlate
NO NO YES Xlate for Instruction Fetch, Tablewalk if miss, load ITBR with Xlate output

Note: X=Don’t Care, Xlate=Translate

4.0.12 Translation Translation of virtual addresses to physical addresses is done in the
Modes following modes:
Table 4.22 - Translation Modes
Name ASI Boot Mode | MMU En. PA[30:00]
Boot IFetch 0x8, 0x9 Yes Off PA[30:28]=0x7, PA[27:00]=VA[27:00]
Pass Through | 0x8, 0x9 No Off PA[30:00]=VA[30:00]
Translate 0x8, 0x9 No On PA[30:12]=PTE[26:08], PA[11:00]=VA[11:00]
Pass Through | OxA, OxB X Off PA[30:00]=VA[30:00]
Translate 0xA, 0xB X On PA[30:12]=PTE[26:08], PA[11:00]=VA[11:00]
Bypass 0x20 X X PA[30:00]=VA[30:00]
4.0.13 Page Mode The MMU is responsible for generating a signal to the memory
Detection controller indicating whether or not the current memory request can use
page mode of the DRAMs or not. This is done by comparing the
contents of the MFAR (at the time of the last request) with the current
physical address (mm_pa) the cycle before a request is ready.
Specifically, bits [26:12] have to match between MFAR and the PA. If
these bits match then the MMU will assert PAGE. The memory
controller then has the option of using a page mode DRAM access or
not. If mm_page is not asserted then a page mode access cannot be used
to fulfill the request.
4.0.14 Errors and The MMU generates: instruction access error, instruction access
Exceptions exception, data access error, and data access exception for the SPARC
IU. Also, an external interrupt is driven for asynchronous faults. In a
Sun4M system, this would indicate a level 15 interrupt.
Revision 02 of 15 December 1992 TMS390S10 59

microSPARC Reference Guide Texas Instruments

4.0.15 Diagnostic All registers and RAM (and CAM) are accessible directly through
Features alternate virtual address space loads and stores. In addition to this
control is provided for putting the internal memory data bus onto the
external memory data or SBus data pins. Also, any generated physical
address can be seen at the SBus address pins.

There is also the ability to breakpoint on certain conditions. This is set
up through use of the scan chain. More details follow.

4.0.15.1 Diagnostic Diagnostic reads and writes to the 32 TLB entries and the ITBR are
Access of performed by using load and store alternate instructions in ASI 0x6 and
TLB, ITBR the virtual address to explicitly select a particular TLB entry. The access

must be a word access, all other data sizes will result in an internal error.
Depending on the virtual address specified either the TLB Tag, TLB
PTE, ITLB Tag or ITLB PTE will be referenced. The format for the
TLB PTE is as described earlier. The format of the Tag is shown below:
(Note that bits [02:00] are not valid for an itbr tag and are read as zero)

Figure 4.28 - CPU Diagnostic TLB and ITLB Tag Access Format

Virtual Address Tag | Context Tag | V | Level | S | IO|PTP
31 12 11 06 05 04 03 02 01 00

~ Field Definitions:

Virtual Address Tag - The 20 bit virtual address tag represents the
most significant 20 bits (VA[31:12] the page address) of the
virtual address being used. VA[11:00] is the byte within a page.
The address in this field is physical when referencing PTPs with
the least significant 19 bits containing PA[26:08].

Context Tag - The 6 bit context tag comes from the value in the
context register as written by memory management software.
Both it and the virtual address tag must match the CXR and
VA[31:12] in order to have a TLB hit. This field contains a
physical address (PA[07:02]) when referencing PTPs.

Valid bit, Level bits - These 3 bits are used to enable the proper
virtual tag match of root, region, and segment PTE’s. The Valid
bit indicates a valid entry.

Supervisor (S) - This bit is used to disable the matching of the
context field indicating that a page is a supervisor level (ACC=6

or 7). This bit is non meaningful for an ITLB Tag and is read as
0.

60 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

IO Page Table Entry (IO) - This bit indicates that an IOPTE resides
in this entry of the TLB. This bit is non meaningful for an ITLB
Tag and is read as 0.

Page Table Pointer (PTP) - This bit indicates that a PTP resides in
this entry of the TLB. Note that all SRMMU flush types (except
page) will flush all PTPs from the TLB. This bit is non
meaningful for an ITLB Tag and is read as 0.

Note that when loading TLB entries under software control (using
alternate space accesses) care should be taken to ensure that multiple
TLB entries cannot map to the same virtual address. This may
inadvertently occur when combining TLB entries that map different
sizes of addressing regions. A level 3 PTE could be included in a TLB
region for a level 1 or 2 PTE for example. The TLB output is not valid
when this occurs.

Note: Any sta to the TLB tag or data must be followed by 3 nops. This
is to allow the pipelined TLB write sufficient time to complete.

The virtual address is used to select the TLB entries as follows:
Table 4.23 - TLB Entry Address Mapping

Virtual Address TLB Entry
0x0 Entry 0 PTE
0x4 Entry O Tag
0x8 Entry 1 PTE
0xC Entry 1 Tag
0x10 Entry 2 PTE
0x14 Entry 2 Tag
0x18 Entry 3 PTE
0x1C Entry 3 Tag
0x20 Entry 4 PTE
0x24 Entry 4 Tag
0x28 Entry 5 PTE
0xF0 Entry 30 PTE
OxF4 Entry 30 Tag
OxF8 Entry 31 PTE
OxFC Entry 31 Tag

0x100-0x7FC Reserved
0x800 ITBR PTE
0x804 ITBR Tag

|0x808-FFFFFFFC] Reserved

TMS390510 61

microSPARC Reference Guide

Texas Instruments

62

4.0.15.2 MMU
Breakpoint
Debug Logic

The MMU breakpoint debug logic is intended for use in lab debug only
since it requires setup through a scan facility. The basic idea is to stop
the clocks when certain conditions occur. This facility is general
purpose in that there is a large matrixed selection of conditions to choose
from. The breakpoints which can be enabled are virtual address
matching, virtual address source matching, virtual address type
matching, memory request matching, tablewalk detection (includes
type), and tablewalk level matching. A more detailed description and
suggested pairings of these conditions follows.

We have the ability to breakpoint on portions of the virtual address (the
output of the virtual address muxing logic). The ITBR must be turned
off to guarantee matches on instruction addresses. These portions of the
virtual address can be combined with other conditions to make their
match conditions more case specific as follows:

Table 4.24 - Virtual Address Match Conditions

Virtual Address Conditions|Conditions to be Paired With

VA[31:00] Any address translation:

VA[31:01] io_tlb (DMA read, write or translate)
VA[31:02] dc_tlb (iu load, store, or atomic op)
VA[31:03] ic_tlb (instruction translation)
VA[31:12] or

VA[31:18] The following cycle types:

VA[31:24] read_w (iu load in w stage)
VA[10:02] write_w (iu store in w stage)
VA[11:02] ldsto_w (iu atomic in w stage)

IVA[31:12] & VA[11:02] | iu_fetch_f (instr. fetch in f stage)
'VA[31:11] & VA[10:02] | sb_read (DMA read op)
sb_write (DMA write op)

sb_translate (DMA translate -
before DMA write op)

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

The virtual address breakpoint control register enables specific address
bits for comparison. The details of the register are listed below:

Table 4.25 - Virtual Address Field Enable Decode

10 9 8 7 6 5 4 3 2 1 0

I H G F E D C B A N11 N
31:24 | 23:18 { 17:12 | 11 | 10:04 | 03 02 01 00 | NiI | NOT

Enables A-I enable their respective fields for comparison. The N11 and
N bits are used to decode the ’compare not’ function. The N11 bit only
affects the F field (VA [11]), and the N bit affects the range of VA
[31:12].

When N=1, normal comparisons are made. When N=0, the compare
result is inverted; so, a "hit’ occurs when the addresses mismatch. The
same control applies to N11. As an example, to enable the address bits
VA [31:00}, as listed in table 2.4.24, a value of Ox7FF is reqmred in the
virtual address breakpoint control register.

We also have the ability to breakpoint on the particular type of memory
request being sent from the MMU to the MEMIF. This is sampled when
a memory request is actually being issued (mm_issue_req = 1). This can
be paired with two other fields indicating the type of tablewalk

Revision 02 of 15 December 1992 TMS390S510 63

microSPARC Reference Guide

Texas Instruments

4.0.15.3 Additional
Features

occurring and the tablewalk level to match (if memory request indicates
a tablewalk) as follows:

Table 4.26 - Memory Request Type

Memory Request

NOP No memory operation
RD64 Read of 64 bits (2 words)
RD128 Read of 128 bits (4 words)
RD256 Read of 256 bits (8 words)
WRS Write of 8 bits (1 byte)
WR16 Write of 16 bits (2 bytes)
WR32 Write of 32 bits (1 word)
WR64 Write of 64 bits (2 words)
Tablewalk Type

None No tablewalk in progress

ic_tlb_tw Tablewalk from instruction fetch
dc_tlb_tw Tablewalk from data reference
io_tlb_tw Tablewalk from DVMA

Tablewalk Level
Root Level

Level 1

Level 2

Level 3

There are other features which can be used for microSPARC debug.

Some of these features are enabled using Processor Control Register
bits. Software tablewalks can be enabled by asserting PCR[23], the
STW bit. When in this mode the mmu will cause the
instruction_access_MMU_miss and data_access_ MMU_miss traps for
instruction and data tablewalking respectively for tablewalks to be done
by software.

The view modes are also very useful features for both debug and vector
generation. There are three view modes: Address View, Data View, and
Memory Data View which are enabled by PCR[22:20] respectively.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

Address View mode is useful for non io testing allowing the Physical
Address Register (PAR) to be viewed (1 cpu cycle later) on the SBus
Address lines (bits [27:00] only).

Data View mode is useful for non io testing allowing the internal
mc_mdata tristate bus to be viewed (1 cpu cycle later) on the SBus Data
lines (bits [31:00]).

Memory Data View is useful for non memory sequences allowing the
internal mc_mdata tristate bus to be viewed (1 cpu cycle later) on the
Memory Data lines (bits [31:00]).

Alternate Cacheability is a diagnostic feature that allows the caches to
be enabled by the IE and DE bits even with the mmu disabled. When not
set, the caches are disabled when the mmu is disabled. This should not
be used during boot mode accesses (or other instruction accesses to an
sbus device). Specifically, having the mmu off, instruction cache on,
alternate cacheability on and an sbus instruction access can cause
indeterminate data to be put into the instruction cache. Instruction
accesses work fine with alternate cacheability when the accesses are to
main memory space.

TMS390510 65

microSPARC Reference Guide Texas Instruments

66 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

5.0 Data
Cache
N N
5.0.1 Overview The microSPARC Data Cache is a 2K-Byte, direct mapped cache, used

on load or store accesses from the CPU to cacheable pages of main
memory. It is virtually addressed but physically tagged. Stores are write-
through with no write allocate. The data cache is addressed by
iu_dva[10:0]. The data cache is organized as 128 lines of 16 bytes of
data. Each line has a cache tag store entry associated with it. On a data
cache miss to a cacheable location, 16 bytes of data are written into the
cache from main memory.

Revision 02 of 15 December 1992 TMS390S10 67

microSPARC Reference Guide Texas Instruments

Within the data cache block there are also cache bypass paths. These
paths are used for noncached load references, and for streaming data
into the IU or FPU on cache miss. A simple block diagram follows.

Figure 5.1 - Data Cache Block Diagram

iu_dva[11:00] mm_dpa[26:11] iu_dbus[31:00] dc_dbus[31:00]
A
[10:04]] |[03:02] [01:0014 2 [11]
ENABLE
[CONTROL [wxen
3 \7\ ‘2 4
A /2T \
3 \2 ! DATA | ‘
Counter : CACHE
: DATA ARRAY Ct
I : (512432 bitsy ‘ . @4‘
\/ :
» : : : 4
\7 : : :
DC | DATA R
> yaLID| CACHE N
(128x1) TAG ARRAY AR
(128x15 bits)
A
|-|_|_=‘?_|
KEY:
dc_dbus - Data Bus to IU/FPU
mc_mdata - Internal Memory Bus \ A
WRB - Write Buffer AND
m_dm - Physi‘cal Address
e e oo Address mc_mdata[31:00]
DATA
CACHE HIT

68 TMS390810 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

5.0.2 Data Cache Data All TU write operations to cached locations write the data through to
Array main memory, i.e. on a write hit, both the data cache and main memory
are updated. There is, however, no write allocate, i.e. no cache fill is
done on a write miss.

System software may read and write the data cache directly by executing
load or store alternate space instructions, of any size, in ASI OxF. Virtual
address bits [10:0] will be used to address the data cache in this mode;
all other virtual address bits are ignored during these operations.

There are three input sources to the data cache data array. The TU
data_out bus (iu_dbus) is used when the data cache is updated on an
integer or floating-point store operation. The internal memory data bus
(mc_mdata) is used as input for fills on data cache misses. The RENU
register is used in cancelling writes on stores which miss the cache.

5.0.3 Data Cache A data cache tag entry consists of several fields as follows.
Tags
& Figure 5.2 - Data Cache Tag Entry
Reserved PA Tag[26:11] Reserved Valid
31 27 26 1110 01 00
Field Definitions:

Reserved (Rsvd) - Bits [31:27,10:01] are not implemented, should
be written as 0 and will be read as 0.

Physical Address Tag - This field contains the physical address of
the data held in the cache line. The Data Cache Controller writes
this field from bits [26:11] of the physical address (mm_dpa) of
the line.

Valid - This bit indicates that the line contains data. This bit is set
when a cache line is filled due to a successful cache miss; a cache
fill which results in a memory parity error will leave the Valid
bit unset. An alternate address space data cache flash clear
operation will clear the valid bits of all of the data cache tag
entries.

There are two input sources to the data cache tag array. The Physical
Address bits needed for the tag are used for cache updates due to data
cache misses. The internal memory data bus (mc_mdata) is used as input
for alternate store operations.

Revision 02 of 15 December 1992 TMS390S10 69

microSPARC Reference Guide

Texas Instruments

5.0.4 Write Buffers

5.0.5 Data Cache Fill

70

System software can read and write the data cache tags by executing
word-length LDA and STA (Load and Store Alternate) instructions in
ASI OxE. The Virtual address bits [10:4] will select one of the 128 tags;
all other address bits are ignored.

The Write Buffers (WRBO,WRB1) are 32-bit registers in the data cache
block used to hold data being stored from the IU or FPU to memory or
other physical devices. On a store operation of a word or less, WRBO
holds the store data until it has been sent over the mc_mdata bus to the
destination device. For halfword or byte stores, this data is left-shifted
(with zero-fill) into proper byte alignment for writing to a word-
addressed device before being loaded into WRBO0. On a doubleword
store the even word is first placed into WRBO. The next cycle the data
from WRBO is moved to WRB1 and WRBO is loaded with the odd word.
These registers can be read using a word-length LdA in ASI 0x39; for
this operation, bit 8 of the Virtual address selects between the two
registers (0 for WRBO, 1 for WRB1).

The memory block size of data fetched from memory on data cache
misses is 16 bytes. Memory will always return 16 bytes of data starting
with the requested word first followed by the other word of the first
doubleword and continuing with another doubleword (even word, then
odd) which will wrap around a 16 byte boundary until the entire 16-byte
block has been returned. The transfer rate is two words every three
cycles from memory (two words of a doubleword, then a dead cycle).
The Cache array is loaded the cycle that each word appears on the
mc_mdata bus. The following table illustrates the fill operation showing
the order that words are written into the cache:

Table 5.1 - Data Cache Fill Ordering

Requested Word | Order of fill (modulo 16B)
0 0, 1, dead cycle, 2,3
1 1, 0, dead cycle, 2, 3
2 2,3, dead cycle, 0, 1
3 3,2, dead cycle, 0, 1

During cache fill, data is bypassed (or “streamed”) into the IU or FPU
as it is written into the cache data array. For misses on word, halfword,
or byte loads, the requested word is bypassed to the IU or FPU in the

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

same cycle that it appears on the mc_mdata bus; for LdD misses, each
of the two requested words is bypassed to the IU or FPU in the same
cycle that it appears on the mc_mdata bus.

5.0.6 Internal The data cache block interfaces to the internal memory bus (mc_mdata).
Memory Bus Data from the data cache block to mc_mdata comes from either WRBO
Interface or WRB1. WRB1 is used only for StD and ASIreads of WRB1. There

are control signals from the MMU and Memory Controller to indicate
when data is on mc_mdata to be loaded into the Data Cache and when
data from WRBO or WRB is to be put onto mc_mdata.

5.0.7 IU Data Bus The data cache block interfaces to an input and output IU data bus
Interface (iu_dbus and dc_dbus). Data to the TU or FPU is sourced from either the
mc_mdata bus (for streamed data on data cache misses, and for non-
cached loads) or the data cache (for data cache hits). Data from the IU
or FPU on store operations is always loaded into WRBO.

5.0.8 RENU Register In the event of a data cache miss on a Store instruction, the cache miss
indication is not available until sometime into the cycle in which the
store data is being written into the data array. This is too late to inhibit
the write operation, so, to prevent the cache line from being corrupted
by this write, we use the miss indication to MUX onto the cache array
data-in bus a copy of the previous contents of the cache data array
location being written. The previous contents of each stored-to location
is captured in a special 32-bit register during the tag check access cycle
which immediately precedes the write cycle of each store instruction.
This register is known as the “REstore if Not Updated” (RENU)

Register.
5.0.9 Data Qache The data cache is implemented with a flash clear mechanism that is
Flushing activated by any type of alternate store instruction to ASI 0x37. All data

cache valid bits are reset (to zero) by this operation. Note that the data
cache is not flushed by the FLUSH instruction (the instruction cache is).

5.0.10 Cacheability Pages that are declared as non-cacheable (C=0 in the PTE) are not
of Memory cached in the data cache. For data consistency and implementation
Accesses reasons, the following operations are not cached.

Accesses when the MMU is disabled and alternate cacheability is
disabled (EN, AC bits of the MMU CR=0).

Accesses while the data cache is disabled (DE bit of the MMU
CR=0).

Revision 02 of 15 December 1992 TMS390S10 71

microSPARC Reference Guide Texas Instruments

Accesses while using the MMU bypass ASI (ASI=0x20) and
alternate cacheability is disabled (AC bits of the MMU CR=0).

Accesses while in Boot Mode.
Accesses to sources in physical address spaces 1-7.

Accesses by the MMU during tablewalks.

5.0.11 Diagnostic Sublines and cache tags may be both read and written using ASI OxF and
Strategy OxE respectively as previously discussed. The data cache will be
structurally tested via the JTAG controller test ports. All register bits
within the data cache and data cache tag are accessible via scan; on the
chip level, all locations of these RAMs may be read or written by
appropriate sequences of scan operations.

The internal Data Cache Registers may be read using ASI 0x39 and the
Virtual Address to reference them. Single word accesses only should be
used, others result in an internal error. The Virtual Address map to these
registers:

Table 5.2 - Address Map for Data Cache Registers

VAJ[08] Register
0 Write Buffer O
1 Write Buffer 1

iu_dva bits [31:09,07:00] are ignored ahd should be set to zero by
software.

72 TMS390S510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

6.0 Instruction
Cache

6.0.1 Overview

Revision 02 of 15 December 1992

The microSPARC Instruction Cache is a 4K-Byte, direct mapped cache,
used on instruction fetch accesses from the CPU to cacheable pages of
main memory. It is virtually addressed but physically tagged. The
instruction cache is normally addressed by iu_iva[11:0]. The instruction
cache is organized as 128 lines of 32 bytes of data. Each line has a cache
tag store entry associated with it. On a instruction cache miss to a
cacheable location, 32 bytes of data are written into the cache from main
memory.

Within the instruction cache block there are also cache bypass paths.
These paths are used for noncached instruction fetches, and for

TMS390S10 73

microSPARC Reference Guide

Texas Instruments

Figure 6.1 -

streaming instructions into the IU on cache miss. A simple block

diagram follows.

Instruction Cache Block Diagram

iu_iva[11:02] iu_dva[11:02]

[11:05] [04:02]
3 \7 N '3
N ‘3
T
2:1

mm_ipa[26:12] ic_ibus[31:00]

INSTRUCTION
CACHE
DATA ARRAY

(1Kx32 bits)

2:1

N \7
Ic | INSTRUCTION
. vALID| CACHE
M Pla2sx| TAG ARRAY i
(128x15 bits) \ 21/
A 4 k4
L= |
4
KEY:
i e BT AND ._
i Instruction Virtual Address bd_mdata[31:00]
e - Diagnostiouse INSTRUCTION
CACHE HIT
74 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

6.0.2 Instruction
Cache Data
Array

6.0.3 Instruction
Cache Tags

Revision 02 of 15 December 1992

System software may read and write the instruction cache directly by
executing load or store word alternate space instructions in ASI 0xD.
Virtual address bits iu_dva[11:2] will be used to address the instruction
cache in this mode; all other virtual address bits are ignored during these
operations.

The internal memory data bus (mc_mdata) is used as input for fills on
instruction cache misses, and as input for StA to ASI 0x0d.

A instruction cache tag entry consists of several fields as follows.

Figure 6.2 - Instruction Cache Tag Entry

Rsvd IPA Tag[26:12] Rsvd Vali
31 27126 1211 01 00
Field Definitions:
Reserved (Rsvd) - Bits [31:27,11:01] are not implemented, should
be written as 0 and will be read as 0.

Physical Address Tag - This field contains the physical address of
the data held in the cache line. The Instruction Cache Controller
writes this field from bits [26:12] of the physical address
(mm_ipa) of the line.

Valid - This bit indicates that the line contains data. This bit is set
when a cache line is filled due to a successful cache miss; a cache
fill which results in a memory parity error will leave the Valid
bit unset. An alternate address space instruction cache flash clear
operation will clear the valid bits of all of the instruction cache
tag entries. A Flush instruction will clear the valid bit of the
single line which is addressed by iu_dva[11:05] (regardless of
the contents of that line).

There are two input sources to the instruction cache tag array. The
Physical Address bits needed for the tag are used for cache updates due
to instruction cache misses. The internal memory instruction bus
(mc_mdata) is used as input for alternate store operations.

System software can read and write the instruction cache tags by
executing word-length LDA and STA (Load and Store Alternate)

TMS390S10 75

microSPARC Reference Guide

Texas Instruments

6.0.4 Instruction
Cache Fill

76

instructions in AST 0xC.; dva bits [11:5] will select one of the 128 tags;
all other address bits are ignored.

The memory block size of data fetched from memory on instruction
cache misses is 32 bytes. Memory will always return 32 bytes of data,
starting with the requested word first followed by the other word of the
first doubleword and continuing with the three remaining doublewords
(even word, then odd) which will wrap around a 32 byte boundary until
the entire 32-byte block has been returned. The transfer rate is two
words every three cycles from memory (two words of a doubleword,
then a dead cycle). The Cache array is written during the cycle that each
word appears on the mc_mdata bus. The following table illustrates the
fill operation showing the order that words are written into the cache;
’D’ represents a dead cycle in which no word is written:

Table 6.1 - Instruction Cache Fill Ordering

Requested Word | Order of fill
0 0,1,D,2,3,D,4,5,D, 6,7
1 1,0,D,2,3,D,4,5,D,6,7
2 2,3,D,4,5,D,6,7,D,0, 1
3 3,2,D,4,5,D,6,7,D,0, 1
4 4,5,D,6,7,D,0,1,D,2,3
5 5,4,D,6,7,D,0,1,D, 2,3
6 6,7,D0,0,1,D,2,3,D,4,5
7 7,6,D,0,1,D,2,3,D,4,5

During an instruction cache fill, instructions from the missing line can
be supplied to the IU or FPU by two separate mechanisms; these
mechanisms are collectively called “streaming”. In the first type of
streaming (“bypass streaming”), instructions are bypassed around the
cache data array to the IU/FPU in the same cycle that the array is being
written - this can occur in all cycles of the fill sequence except the three
dead cycles. The second form of streaming (“dead-cycle streaming”)
occurs only during the three dead cycles; any instruction word which has
already been written into the RAM array can be accessed by reading the
array. In a given cycle, the IU is only able to accept the instruction word
which it is requesting; in some cycles, the IU may not be requesting any
instruction at all, due to interlocks, multi-cycle instructions, or pipeline
holds. If, in a given cycle, the IU is requesting a word which is available
via streaming, then that word is supplied to the IU and the pipeline can
advance.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

6.0.5 Internal
Memory Bus
Interface

6.0.6 IU Instruction
Bus Interface

6.0.7 Instruction
Cache
Flushing

6.0.8 Cacheability of
Memory
Accesses

6.0.9 Diagnostic
Strategy

Revision 02 of 15 December 1992

The instruction cache block interfaces to the internal memory bus
(mc_mdata). Data for LdA from ASI 0x0d is driven onto mc_mdata by
the Instruction Cache, under control of an enable signal from the MMU.

The instruction cache block drives the IU instruction bus (ic_ibus).
Instructions to the IU or FPU are sourced from either the mc_mdata bus
(for bypass-streamed instructions on instruction cache misses, and for
non-cached instruction fetches) or the instruction cache data array (for
instruction cache hits, and for dead-cycle streamed instructions on
instruction cache misses).

The instruction cache is implemented with a flash clear mechanism that
is activated by any type of alternate store instruction to ASI 0x36. All
instruction cache valid bits are reset (to zero) by this operation. Also, the
FLUSH instruction always clears the single valid bit that is addressed by
iu_dva[11:05], regardless of the contents of this tag entry.

Pages that are declared as non-cacheable (C=0 in the PTE) are not
cached in the instruction cache. For data consistency and
implementation reasons, the following instruction fetch operations are
not cached.

Accesses when the MMU is disabled ahd alternate cacheability is
disabled (EN, AC bits of the MMU CR=0).

Accesses while the instruction cache is disabled (IE bit of the MMU
CR=0).

Accesses while in Boot Mode.

Accesses to sources in physical address spaces 1-7.

Sublines and cache tags may be both read and written using ASI 0xD
and OxC respectively as previously discussed. The instruction cache will
be structurally tested via the JTAG controller test ports. All register bits
within the instruction cache and instruction cache tag are accessible via
scan; on the chip level, all locations of these RAMs may be read or
written by appropriate sequences of scan operations.

TMS390S10 77

microSPARC Reference Guide Texas Instruments

78 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

7.0Memory
Interface

7.0.1 Overview

7.0.2 Memory
Subsystem

Revision 02 of 15 December 1992

The microSPARC architecture allocates 256MB of space for the system
memory (Physical address space’0’, defined by mm_pa[30:28]), while
the actual memory interface and the memory management unit can only
support up to 128MB.

The following sections describe the general memory layout for a
microSPARC-based system and then explains each of the logical blocks
within the Memory Interface block.

The microSPARC Memory Interface block is logically divided into
three subsections, the Memory Control Block (MCB), The Data aligner
and Parity check/generation logic (DPC) and the Ram Refresh control
(RFR).

microSPARCMemory Interface is designed to primarily satisfy the
basic system requirements, while providing sufficient capabilities to
support future expansion.

The interface is designed with the following criteria in mind:

TMS390S10 79

microSPARC Reference Guide

Texas Instruments

80

7.0.2.1

Memory
Organization

* 64 bit Data bus to increase memory bandwidth.
* 1 bit parity per word (32 bits) for reduced cost.

» Memory divided into blocks which can support different density
devices. This will allow relatively small memory increments with
a small number of blocks.

* Allow for future higher memory requirements by supporting next
generation of DRAM devices.

Typically a carefully laid out system board using the microSPARC chip
would require 60ns DRAMs at SOMHz and 80ns DRAMs at 40MHz
clock speeds. The designer however, should use the memory interface
AC specifications in the microSPARC datasheet, to select the
appropriate DRAM speed for a specific system and clock speed.

microSPARCarchitecture defines a 28-bit physical address space for
memory (PAS 0). This means a 256MB block for system DRAM.
Electrically however, microSPARC uses only 27 bits of this address

space, limiting the maximum memory for a microSPARC-based system
to 128MB.

This 128MB is divided into 4 banks, each capable of addressing up to
32MB. The banks are defined as follows:

* Each bank is selected by a separate RAS line. There are a total of
4 RASes for DRAM banks (c_mc_ras_1[3:0]).

* The banks have a 64bit data path to microSPARC.

« All the banks use the same 2-bit CAS lines (c_mc_cas_1[1:0]), to
select the upper or lower 32 bits (high or low word).

 All the banks use the same write signal (c_mc_mwe_l).

* All the banks use the same 22-bit multiplexed Row/Column
address bus. At the time of finalizing the microSPARC memory
interface, DRAM manufacturers were proposing 2 addressing ,
schemes for 4Mx4 devices, an 11-row/11-column and a 12-row/
10-column. MicroSPARC’s memory interface will support
DRAMs with an 11x11 matrix and DRAMs with a 12x10 matrix.

The memory interface is designed with the 4bit wide DRAM devices in
mind. Using 16 such devices (or 2 SIMMs with eight devices on each)
will provide the required 64bit wide data bus. In addition, each bank will
require two 1bit wide devices of the same depth (If using SIMMs, one
on each SIMM) to store the 2 parity bits.

Hence, each bank can be populated using one of the following
configurations:

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

7.0.2.2 Access to
Unused or
Unpopulated
Memory
regions

7.0.3 Memory
Control Block
MCB)

Revision 02 of 15 December 1992

* 2MB (256Kx64) of data, using 16 of 256Kx4 devices for data and
2 of 256Kx1 for parity, or using 2 of 256Kx33 SIMMs.

* 8MB (1Mx64) of data, using 16 of 1Mx4 devices for data and 2 of
1MKXx1 for parity, or using 2 of 1Mx33 SIMMs.

* 32MB (4Mx64) of data, using 16 of 4Mx4 devices for data and 2
of 4Mx1 for parity, or using 2 of 4Mx33 SIMM:s.

Note that a pair of double-density (e.g. 512Kx33 or 16Mx33) SIMMs
will occupy 2 banks (Need 2 RASes).

Any access to a location in the upper 128MB will be mirrored to its
corresponding location in the lower 128MB and no errors will be
generated.

Similarly, if a bank contains less than the defined maximum of 32MB,
the real memory will be mirrored on the higher unused portions and an
access from any of the unused sections will be mirrored to the
corresponding location in the lowest block and no errors will be
generated. For example, if a bank contains 2MB of real memory, this
will be mirrored on the remaining 15 empty portions.

However, an access from a fully unused (empty) bank will complete, but
it’s result will be unknown and may cause a parity error.

The operations that occur on the memory bus are data reads, writes, and
read-modified-writes required for cpu execution, instruction fetches and
prefetches, translation buffer accesses during table walks, reads and
writes by IO devices, and all RAM refresh. The Memory Control Block
(MCB) keeps track of the priorities of memory operations and
completely controls the DRAM based main memory.

As shown in the following diagram, MCB contains 2 major logic blocks,
labeled “ASM” and “ADEL” which perform the memory arbitration and
address mapping functions respectively. This blocks will be described
in the following subsections. MCB also includes some input and output
register blocks, which provide the synchronization among input and
output signals.

TMS390S10 81

microSPARC Reference Guide Texas Instruments

Figure 7.1 - MCB block diagram.

o

\v
- .
2]
= HAENH %
=7 SIEIHEE g
§I§L gl % S El & &
| E|E|E| E|E|E
. 3 P mc_mbsy
b me_rack 1

Arbitration | mc_mstb_1

State
>) me_dpet[6:0] :
MCBPG Machine mc_cyc[4:0] a@é
ASM mc_state[9:0] =§
v me_odat_hid tgg
1, ROW §
P Address __RAMCTL[4:0] :
> gme AMWEL g
Evaluate AMDTL §
Logic ADSF :
ARASL[4:0] :
ADEL ACASLI1:0] ¥
ARCA[10:0]
A A A
RAM address/control :
registers _ %
- g :
=8 %
55| g & ’=
MCB FEEE
1 s g
E|E| 8| E| & -
g| g(gI gl g| %-"
-:E ol o 5y %Y Y g
: ; R

82 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

ASM is responsible for detecting the requests from MMU and Refresh

7.0.3.1 Arbitration blocks, arbitrate between them if necessary and grant the appropriate
State request. Once arequest is granted, the MCB will carry out the requested
Machine memory operation which will consist of one or more memory cycles.
(ASM) The following table lists all the types of memory operations performed

by the MCB, the possible request sources and the type and number of
cycles involved.

Revision 02 of 15 December 1992 TMS390S10 83

microSPARC Reference Guide

Texas Instruments

Table 7.1 - Memory operations performed by MCB

D-cache or do an SBus burst
read of 16bytes.

Operation Source Memory Cycles produced
drd32b |MMU. Used to fill one line of | 32 bytes are read from DRAM in a single operation, using 4 longword
I-cache (Inst-Fetch). (64bit) read cycles. The first read is paged or non-paged, from the address
given on PA. The following 3 reads are paged. ADEL will supply the
address for the next 3 reads, incrementing or wrapping it as necessary, in
order to read a 32 byte aligned block and fill a whole I-cache line.
d.rd.16b MMU. Used to fill one line of | 16 bytes are read from DRAM in a single operation, using 2 longword

(64bit) read cycles. First read is a paged or non-paged cycle, using the
address supplied on PA. The next cycle is a paged read, where ADEL will
increment or wrap the address in order to read a 16byte aligned block from
memory.

cycle on all DRAM/VRAM.

d.rd.8b MMU. Used for IU and SBus | 8 bytes are read from DRAM, using a paged or non-paged longword read
longword reads. from the address supplied by PA.
d.wr.8h MMU. Used for IU and SBus | 8 bytes are written to DRAM, using a paged or non-paged longword write
longword writes. to the address supplied by PA.
d.wr4b MMU. Used for IU and SBus |4 bytes are written to DRAM, using a paged or non-paged word write to the
word writes. address supplied by PA.
drmw.2b |MMU. Used for IU and SBus | a halfword (16bit) write to DRAM in a single operation, using a paged or
halfword writes. non-paged word read followed by a paged word write, using the same
address supplied by PA. MCB will perform the read and write cycles and
will instruct DPC to latch the 16bit write-data from the source, insert it in
the appropriate halfword of the word read from memory and then gate it
back on memory data-bus as the write data.
d.rmw.b MMU. Used for IU and SBus |a byte (8bit) write to DRAM in a single opéraﬁon, using a paged or non-
byte writes. paged word read followed by a paged word write, using the same address
supplied by PA. MCB will perform the read and write cycles and will
instruct DPC to latch the 8bit write-data from the source, insert it in the
appropriate byte of the word read from memory and then gate it back on
memory data-bus as the write data.
chr.ref RFR. Used to do a refresh Will force a Cas-before-Ras refresh cycle to be performed on all DRAM

and VRAM banks.

7.0.3.2 Arbitration for

Memory

Access and

ASM Priority
Scheme

ASM arbitration scheme is based on the following rules:

* All requests are checked at the end of each operation (for multi
cycle operations, this means the end of last memory cycle) and:

TMS390S10

Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

7.0.3.3 Memory
Operation
Timing

Revision 02 of 15 December 1992

If: norequests are pending, ASM will enter the idle state and
will remain there until a request is detected.

If: only one request is pending, it will be granted and the
operation will begin.

If: More than one request is pending, the one with the highest
priority will be granted and the operation will begin. The
priorities are as follows:

g) MMU is the highest priority, except when the current
cycle is also an MMU request, in which case it will be
considered the lowest priority. This is to prevent bus
locking as a result of back to back MMU requests.

h) RFR has the lowest priority, except when the current
cycle is an MMU request, in which case it will have
higher priority.

If: While in idle, an RFR request is detected, the state machine
will advance to a “Check” state, where it’1l look to see if an
MMU request occurred just as RFR request was accepted. If
there are no MMU requests, ASM will continue to
acknowledge the RFR request and do the cycle, else, it will
do the MMU cycle.

Following pages contain the waveform diagrams for some of the
memory operations requested by MMU and carried out by the memory
interface. Each operation-type is defined using the operation-name
given in table-1 of this section.

The diagrams are functional and do not represent actual delays.
Synchronous signals are clocked with the positive edge of the MCLK
(derived from system clock, running at same frequency and assumed to
have negligible skew) and are shown to be valid about half a clock
period later. In case of the falling edge of the RAS signals only, the
transition occurs after the negative-edge of the system-clock.

In addition, the mm_mreq[3:0] is shown valid for 1 clock periods. This
indicates the clock-cycle during which MMU asserts the mm_issue_req
signal.

The waveforms are provided only as a general reference and do not
reflect details such as the word/hword/byte order relative to the address
or the MMU request type etc.

TMS390S10 8

microSPARC Reference Guide Texas Instruments

Figure 7.2 - MMU I-fetch beginning in page-mode

Gl
By

possaeand

e

e

e

= =
= 8k
] g !
S, g gl

L)

[

MCIK (50MHz)

MMU I-fetch beginning in page-mode, followed by another MMU read
request from same DRAM-page.

TMS390S10 Revision 02 of 15 December 1992

86

microSPARC Reference Guide

Texas Instruments

Figure 7.3 - MMU page-mode write after a read

{

N,

P

LA 8 BU)IEI8 AU0JOq TR P
uo paoe]d oq 0) spiom-pesl 7 9y urmopre

“CLATAL 4Q PoIoRTL I10AD PBO,, BIXD O 910N \rcﬂ//

N

~.

| oMW ow o

| sss om o

[o:1€Te8pw pq

[0:€9lespmaq

[0:1](580 0w >

[0:011sppemowow ">

ofed wm

[0-¢]boumu uru

(ZHWOS) ITOW

MMU page-mode write after a read, followed by another write,

followed by another read, all from same page.

87

TMS390S10

Revision 02 of 15 December 1992

88

O0TSO06ESILL

TO6T 1=2qUISd3(ST JO 7 UOISIASTY

MCLK (50MHz)

mm_mreq[3:0]

mm_page

¢_mc_memaddr{10:0]

c_mc_cas_I[1:0]

b_memdata[63:0]

bd_mdata[31:0]

c_mc_ras_l

c_mc_mwe_1

%&%J%% i

reerevrerre

pea.l € SUIMO[[0] UMOYS A4 NLim paged-uoN - L dIn31yg

9pry) BUARIFY DYV JSowT

SJUSWNIST] SBXI].

Texas Instruments microSPARC Reference Guide

Figure 7.5 - Non-paged read cycle, shown following a read

) 2 & S g o 3 g 3) I
£ 3 f 3178 §:fo:oq
e I ¢ L O g
m m | m_ M_ N_ ol
m £
Revision 02 of 15 December 1992 TMS390S10

89

microSPARC Reference Guide Texas Instruments

Figure 7.6 - Paged Byte/Halfword (8/16 bit) write cycle.

MCLK (50MHz)

mm_mreq[3:0]

mc_mstb_l

¢_mc_memaddr[10:0]

¢_mc_cas_1[{1:0]

b_memdata[63:0]

bd_mdata[31:0]

¢_mc_ras_]

c_mc_mwe_|

Paged Byte/Halfword (8/16 bit) write cycle, generating a hardware
controlled Read-Modify-Write sequence.

90 TMS390S10 Revision 02 of 15 December 1992

0SPARC Reference Guide

miCr

Texas Instruments
Figure 7.7 - Non-paged Byte/Halfword (8/16 bit) write cycle.

| omw ow o

1 swom o

[o:1€l88p™ Pq

[0:9lmwpmonr q

[o:1]1 580 0t 0

[0:01 Pppemowr o2

ODIION

I qswom

[0:¢Tbarw wur

(ZHWO0S) XTON

91

generating a hardware

.

write cycle,
y-Write sequence

Modi
TMS390S10

Non-paged Byte/Halfword (8/16 bit)

controlled Read-

Revision 02 of 15 December 1992

microSPARC Reference Guide

Texas Instruments

7.0.3.4 Address
Decode &
Evaluate
Logic
(ADEL)

7.0.3.5 Address
Mapping For
System DRAM

This block primarily monitors the address and function-select signals
coming from MMU and RFR and performs the necessary decode and re-
mapping of the memory address and control lines. Based on commands
received from ASM, ADEL gates the row/column address and memory
control signals required for the current operation out to memory.

The mapping of system memory is discussed in the following section.

From the 31 bits of the physical address bus driven by MMU block
(mm_pa[30:0]), the three MSBs (mm_pa[30:28]) represent 1 of the 8
physical address spaces (PAS) as defined in microSPARC architecture.
From these, only PASO is of concern to MCB, since an MMU request
from MCB will only be made if an access to system memory is required.
Hence ADEL ignores the mm_pa[30:28] bits.

When a memory cycle request is detected, ADEL uses the
mm_pa[26:02] address bits to complete its decode. The following table
describes the decode scheme used for system memory.

A maximum of 512 memory cycles can be made from a contiguous
block, while remaining within a DRAM page. This gives a maximum of
4K (512x64) block size which can theoretically be accessed using page
mode cycles only.

A point to note from the table below, are the staggered decoding of
mm_pa[24:21] for c_mc_memaddr[10:9]. This was necessary in order
to allow different size devices (256Kx4, 1Mx4 and 4Mx4) to be used
while maintaining the largest common contiguous block, which is
dictated by the least dense device.

Also, as shown in the table, mm_pa[23] is used as both
c¢_mc_memaddr[10] for column address and c_mc_memaddr[11] for

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

row address. This is to cater for the 2 different 4Mx4 DRAM
architectures, 11x11 matrix and 12x10 matrix.

Table 7.2 - Physical Address decode for System Memory

PA Decode

30-27 | Not Used. System memory limit is 1228MB

26-25 | Decode to select 1 of 4 RASes:
00 RASLO 1st 32MB bank.
01 RASL1 2nd 32MB bank.
10 RASL2 3rd 32MB bank.
11 RASL3 4th 32MB bank.

24 Decoded as row address bit 10 (c_mc_memaddr10). Required for 16MBit DRAM:s.

23 Decoded as column address bit 10 (c_mc_memaddr10) and row address bit 11 (c_mc_memaddr11).
Required for 16MBit DRAMs. See text for more information.

22 Decoded as row address bit 9 (c_mc_memaddr9). Required for 4MBit DRAMs.

21 Decoded as column address bit 9 (c_mc_memaddr9). Required for 4MBit DRAM:s and up.

20-12 | Decoded as row address bits 8 to 0 (c_mc_memaddr{8:0]). Required for IMBit DRAMs and up.
11-3 Decoded as column address bits 8 to 0 (c_mc_memaddr[8:0]). Required for IMBit DRAM:s and up.
2 Decoded to select one of 2 CASes:

0 CASLO Lower data word (bd_mdata[31:0])

1 CASL1 Higher data word (bd_mdata[63:32])

1-0 Not used for external decode. Byte and halfword writes are achieved by MCB and DPC doing a
read, update, write sequence. This bits are used then, to select the appropriate data fields.

7.0.4 Data aligner and
Parity Check/
generate logic
(DPC)

Revision 02 of 15 December 1992

DPC is responsible for transferring data between external memory data
bus and the internal data path as well as generating and checking of
parity for system main memory (DRAM).

During any read, write or hardware controlled read-modify-write cycle,
DPC will perform the necessary data alignment and byte/halfword
placement. It will also provide temporary storage for hardware
controlled read-modify-write cycles, resulting from byte/halfword write
cycles to memory.

DPC also contains the parity generation and checking logic. The parity
is composed of 1 bit per word (32 bits) and is used for system DRAM
only.

TMS390510 93

microSPARC Reference Guide

Texas Instruments

Type of parity operation for the system DRAM is determined by the
state of the Parity Control bit (PC) in the Processor Control Register as
described in the following table:

Table 7.3 - Parity Control Definition

BC Description
0 Check/Generate even Parity.
1 Check/Generate odd Parity.

Since system parity is 1-bit per word, any byte or halfword store
operation, will result in a hardware controlled read-modify-write cycle.
During the read part of such operation, the word parity will be checked
and if an error is detected, a parity error will be generated. After the
word has been updated to contain the new byte/halfword, a write
operation will be performed, which will also update the parity.

The flow of data and type of operations performed by DPC are governed
by the Memory Control Block and the commands it receives from MCB.

DPC block diagram, given below, shows the basic data paths connecting
the 64bit external memory bus (b_memdata[63:00]) to the 32bit internal
one (bd_mdata[31:00]). The parity check/generation logic is shown to
be on the output path, but for input data, parity is checked after it is
clocked into the registers and gated through the alignment mux.

The alignment mux is also used to combine and produce the output data
during a read modify write sequence. The complexity of this mux is
reduced by having the byte or forward data which is to be written to
memory, already in the correct position. This is done by the block
sourcing the data on c_dp_mdata (D or I cache, IU, SBus controller).

TMS390S510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

igure 7.8 - Datapath and Parity Control (DPC) block diagram

outd
‘ bd_mdata[31:00]
¢

ROD[31:00]

>L outl

CTRL[19:00]

RID[63:32]

ROD[31:00]
0D[63:32]

RID[31:00]

ROD[63:00] /
N\

Y A
Byte-wide2:1
mux

CTRL[19:00]

POD[63:00]

CTRL[19:00]
1 m

mm_oddmpar

Parity Generate/
dp_perr{1:0] Check Logic

PID[63:00]

}:m_mdam_view

mm_mden

P

PARI[1:0]
in0

mc_dpcet[6:0]

mc_cyc{4:0] :

’AR_IN[1:0]

AN

mc_state[9:0]
mc_odat_hld

b_memdata[63:00]

Revision 02 of 15 December 1992 TMS390S10 95

microSPARC Reference Guide Texas Instruments

7.0.5 RAM Refresh The refresh control logic (RFR) is a simple request generator, asserting
Control (RFR) arequest to MCB at fixed intervals. MCB will service this low priority
request by performing a Cas-before-Ras type refresh cycle on all system

RAM.

[

N 4-bit sync’d
down cntr

| &misc.Cil |

RFR refresh rate can be selected by programming 2 bits of the Processor
Control Register according to the following table. These bits are then
passed to RFR as mm_rf_cntl[1:0] input bits, which controls the
rf_rreq_lrate.

Table 7.4 - Refresh Rate Control bits.

mm_rf_cntl Refresh interval
[1:0]

00 Assert a refresh request once every 128 MCLK periods.
With this setting, adequate refresh is guaranteed for
MCLK values of down to 8. 6MHz. This is the default after
power up.

01 No Refresh!

10 Assert a refresh request once every 512 MCLK periods.
With this setting, adequate refresh is guaranteed for
MCLK values of down to 35MHz.

11 Assert a refresh request once every 768 MCLK periods.
With this setting, adequate refresh is guaranteed for
MCLK values of down to 52MHz.

The RFR is also responsible for initializing the DRAMs on power-up.

96 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

After power-up and before they can be reliably used, DRAMs require a
200us “Wait” period followed by 8 Cas-before-Ras refresh cycles.

For systems built around microSPARC, the reset must remain active for
at least 200us after power-up, to satisfy the “Wait” period. In systems
using the NCR 89C105 chip, the reset is supplied by the NCR 89C105
chip. On power-up the NCR 89C105 chip guarantees an active reset
duration of ~200ms and for subsequent software initiated resets it will
force reset active for ~1024 SBus clocks (~50us).

After an active reset, the “mm_rf_cntl” bits which reside in the MMU’s
PCR register are set to “00” (See table 2.7.4), setting RFR to generate a
refresh request every 128 clocks. In addition, RFR itself, asserts its
“rf_cbr” and “rf_rreq_l” signals, forcing MCB to enter a “cbr” state,
where it will perform 8 CbR refresh cycles, completing the DRAM
initialization cycle. After that, RFR will negate both “rf_cbr” and
“rf_rreq_1” signals, allowing MCB to proceed to it’s normal operation
state.

TMS390S10 97

microSPARC Reference Guide Texas Instruments

98 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

8.0 SBus
Controller

8.0.1 Overview

Revision 02 of 15 December 1992

/4///////////////////

The SBus Controller (SBC) refers to the I/O subsystem that handles
input and output between local resources, including the CPU, system
memory, and control space, and all external system resources. The SBC
is implemented as an SBus in accordance with the SBus Specification
Rev. A.2. The SBC supports:

* Programmed Input/Output (PIO) transactions between the CPU and
SBus slave devices :

» Direct Virtual Memory Access (DVMA) transactions between SBus
masters and local resources. (referred to as local DVMA)

* Direct Virtual Memory Access (DVMA) transactions between SBus
masters and other SBus slave devices. (referred to as bypass
DVMA)

Standard SBus features, such as dynamic bus sizing, reruns, atomic

transactions, bus arbitration, burst transfers (up to 16 bytes), watchdog
timer, and error reporting are fully supported. Interrupts and SBus Reset
are not implemented in the SBC; these functions are handled elsewhere.

The SBC plays many SBus roles. It serves as an SBus controller by
arbitrating bus requests, translating virtual addresses, enabling slave
cycles, etc. In addition, the SBC may act as either an SBus master or an

TMS390S10 99

microSPARC Reference Guide

Texas Instruments

100

SBus slave. For PIO transactions, the SBC acts as an SBus master. For
DVMA transactions, the SBC can act as either a slave or have norole at
all, depending on the target of the DVMA transaction as indicated by the
physical address. For local DVMA, the SBC has a role as both a bus
controller and a slave device. For bypass DVMA, the SBC has arole as
a bus controller only, not as a slave.

PIO transactions consist of an SBus slave cycle only; the address
translation is done in advance of the bus acquisition.

PIO transactions occur when the CPU executes loads or stores to /O
(SBus) space. In the case of a PIO write transaction, the write is posted.
Processing in the CPU continues while the SBus transaction completes
in the SBC. A stall will occur only if another PIO transaction is
attempted before the previous PIO write transaction completes. In the
case of a PIO read transaction, processing is always stalled until the data
becomes valid at the end of the SBus transaction.

DVMA transactions occur when an SBus master has acquired the bus in
order to execute a transaction to a slave. A DVMA transaction consists
of an address translation cycle and a slave cycle. The target of the slave
cycle is determined once the translation cycle completes. The slave
target can be either a local resource, defined as locations in either system
memory or system control space, or another SBus device.

During the address translation cycle, the SBC obtains a virtual address
from the DVMA master and is submitted to the MMU for translation.
The MMU returns a physical address. The type of DVMA slave cycle,
either local or bypass, is determined from the physical address.

A significant distinction concerning memory data transfers is that since
system memory is a local resource, it is necessary for memory data to
pass through the SBC; “fly-by” memory data transfers are inappropriate.
Local DVMA slave cycles have two distinct, sequential operations in
the SBC: a data get followed by a data put operation. A data get
operation loads up to 16 bytes of data into an internal data store. A data
put operation transfers the data from the internal data store to a
destination. The data get operation can either be an internal data transfer

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

or an SBus cycle, depending on the read/write direction; the data put
operation will be the other.

Figure 8.1 - Data Get and Data Put

Data Get Data Put
Read Internal Data Transfer Sbus Cycle
Write Sbus Cycle Internal Data Transfer

For local DVMA slave read cycles, an internal data transfer occurs
during the data get stage, and an SBus slave cycle occurs during the data
put stage. In this case, the data get operation shows up as a pause
between the SBus translation cycle and the SBus slave cycle.

For local DVMA slave write cycles, an SBus slave cycle is during the
the data get stage, and an internal data transfer is during the data put
stage. In this case, the DVMA transaction is finished after the slave
cycle completes in the data get stage. The current cycle is not held up
during the internal data transfer, but data put stage may show up as bus
latency before the next translation cycle occurs.

Bypass DVMA slave cycles do not involve the SBC as a slave target.
The data transfer is between an SBus master and another SBus slave.
There is no data get and data put operations in this case.

As a bus controller, the SBC has to handle bus errors and watchdog
timeouts. Bus errors that occur during PIO cycles are handled by making
the current state of the bus cycle available to the MMU. Bus errors that
occur during DVMA cause the SBC to intercept the slave cycle from the
intended slave target and, itself become the slave target in order to
terminate the cycle with an error. Watchdog timeouts occur when an
internal timer expires and the SBC terminates the slave cycle with an
error.

The subcomponents of the SBC are the CPU Interface, Address
Steering, SBus Arbiter, Main Control, Data Transfer Control, SBus
Slave and Target Control, Data Path and Control, and Error Control
blocks. These subcomponents are schematically shown in the following
block diagram. A further description of these blocks is given in the
following sections.

If it is appropriate, a state diagram is provided, along with a narrative

walk-through. The state diagrams are provided for heuristic purposes.
The intent is to purposely omit descriptions of some logic that tends to

TMS390S10 101

microSPARC Reference Guide Texas Instruments

cloud the understanding of the general functionality. This logic, used for
such implementation-specific purposes as logic synthesis and timing
aids, would detract from the overall comprehensibility of the SBC
block.

102 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Figure 8.2 - SBus Controller

Block Diagram

R T T T

ORIRIRR

MC_MDATA

Revision 02 of 15 December 1992 TMS390S10 103

microSPARC Reference Guide Texas Instruments

8.0.2 CPU Interface The CPU interface block handles the MMU/SBC handshake protocol,
arbitrates for the SBus, catabolizes double word PIO into single word
PIO, if appropriate, and supports dynamic bus sizing and bus cycle
reruns. The data sizes supported for PIO cycles are byte, half byte, word
and double word. There is also a high-performance feature that allows
for very fast PIO writes to occur, which is especially important for
certain operations that require fast output, such as graphics.

The CPU interface is double buffered, meaning that a copy of the entire
state of the current cycle is retained for both PIO reads and PIO writes.
The double buffering is necessary in the event of dynamic bus sizing,
catabolic double word transactions or bus cycle reruns. The buffering
also permits a DMA address translation to occur concurrent with a PIO
transaction. This is important in deadlock avoidance.

The deadlock could occur when simultaneous PIO and DVMA
transactions occur. The deadlock is avoided by buffering the entire state
of the PIO transaction, and allow the DVMA transaction to proceed.
Upon completion of the DVMA transaction, the PIO transaction, which
had been retained in the SBC, would proceed.

The PIO buffers effectively provide a single element of a write buffer,
since the CPU continues to execute instructions without waiting for a
PIO write to complete.

A walk-through of the CPU State Machine (CSM) is given below: A set
of signals, CSTB_L, CPEND, and IOREQ form a handshake between
the MMU and the SBC. A PIO transaction is issued from the CPU
through the MMU to the SBC by the assertion of CSTB_L. This occurs
only if the SBC is not busy, as indicated by CPEND. De-assertion of
CPEND indicates that the SBC is not busy and free to receive a PIO
cycle. In the case of PIO reads, IOREQ is used to signal that data is
ready. (IOREQ is also used for other various MMU/SBC
communications).

The CSM remains in idle until CSTB_L is received. For a simple PIO
transaction, control transitions into a bus request state where it remains
until the bus is acquired. Once the bus is acquired, the state changes, and
holds until the bus is relinquished. Next, in the case of PIO reads, control
passes to a housekeeping state before returning to idle; in the case of PIO
writes, control returns directly to idle.

Special states in CSM support catabolic double word transactions.
Whenever a double word PIO transaction is attempted to an SBus device
that does not support bursts, the SBC automatically catabolizes the
double word burst transaction into single word transactions. (Status bits

104 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

from the MMU Slot Configuration Registers indicate SBus device
burst-handling capabilities) The MMU is held off during this time by
CPEND. This operation is transparent to the MMU. Dynamic bus sizing
and bus cycle reruns can occur in either portion of the catabolized
transaction.

While a PIO cycle is in progress, as indicated by the CSM grant state, a
dynamic bus sizing operation may occur which would cause control to
branch to a special holding state. Simultaneously, the dynamic bus
sizing state machine transitions from idle to handle this operation. When
finished the CSM is signaled and control continues as if a simple PIO
transaction had occurred. To improve latency during dynamic bus
sizing, an attempt is made to keep the follow-on cycles atomic. If arerun
occurs, however, other DVMA masters are given a higher bus
arbitration priority and the atomicity of the follow-on cycles will be
broken. Reruns are supported whenever they occur.

Reruns can occur during any phase of a PIO transaction; during simple
PIO transactions, dynamic bus sizing, atomic cycles, or catabolized
transactions. When a rerun occurs, the transaction is ended, the bus is
relinquished, and the cycle begins anew. Provisions are made the bus
arbitor to allow any requesting DVMA masters onto the bus, before the
PIO cycle is retried. For this reason atomic transfers may not work
properly when the SBus slave recipient is capable of reruns.

A special speed path is built into the CSM to allow fast PIO writes. A
prerequisite for this operation is that the data size must be a word (or
double word) and must not be atomic. Another necessary condition is
that the SBus slave device must respond with word acknowledge. If this
criteria is met, then PIO word writes can sustain a bandwidth of 33
Mbytes/sec at 25 MHz. (PIO double word writes can sustain 50 MBytes/
sec.).

Revision 02 of 15 December 1992 TMS390S10 105

microSPARC Reference Guide Texas Instruments

Figure 8.3 - CPU State Machine

106 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

8.0.3 Address Steering

8.0.4 SBus Arbiter

Revision 02 of 15 December 1992

The Address Steering Block handles the address generation function for
SBus transactions and local resources data transfers. The block insures
that the proper SBus physical address is valid and stable whenever
address strobe is asserted. In addition, this block generates the address
used during a request for local resources.

There are two sources for an SBus physical address; the CPU generates
a virtual address during PIO transactions and the SBus master generates
a virtual address during DVMA transactions. In both cases the MMU
translates the virtual address to a physical address. Since PIO and
DVMA transactions can overlap, both physical addresses must be
retained by the Address Steering Block. The only time the CAD block
manipulates the SBus physical address is during double word
catabolism and dynamic bus sizing.

In order to deal with such implementation-specific processes as memory
burst order and local resource transfer sizes, the CAD block manipulates
some low-order address bits to simplify data transfer control. In either
case, data is transferred properly and control logic is simplified.

The SBus Arbiter handles bus requests from the CPU and as many as
five DVMA masters. The SBus Arbitor employs all fairness, and
arbitration protocol as outlined in the SBus Specification A.2.

The fairness algorithm utilizes a token, which is passed round robin
style. All six masters are given tokens which are prioritized based on the
last master to have owned the bus. The requesting master with the
highest priority is granted the bus. Once that master is finished with the
bus, new tokens are assigned. The last owner is given the lowest priority.

The CPU is treated as one of the six masters. In this regard, the CPU
master is indistinguishable from any other DVMA master. In addition to
this, there are two ways in which the CPU is given special treatment. If
the bus is free and is not about to be granted, the CPU has the ability to
anticipate that its request will be granted. In this fast-bus-access case,
the CPU will forego waiting for the bus grant in order to begin the bus
cycle.

Another special case is made during times when a PIO transaction is
dynamic bus sized. An attempt is made to keep the follow-on cycles
atomic with the first cycle (although a rerun will cause the atomicity to
be broken) in order to help the latency of that cycle.

A walk-through of the Arbitor State Machine (ASM) is given below:
Control begins in Idle where it remains until a sampled version of at

TMS390S10 107

microSPARC Reference Guide

Texas Instruments

108

least one bus request is detected. Control transitions into the Bus_Grant
state at the same time that the requesting master with the highest priority
token is granted the bus.

On the proper phase of SBus clock, control moves into the
Atomicity_Check state, where the current bus owner’s request line is
sampled for atomicity. For DVMA masters, the virtual address is
latched during Atomicity_Check and a translation request is issued. If
the request is still active, control branches to a special atomicity loop;
otherwise control passes into a Bus_Busy state. Here it remains until the
bus cycle is finished and then returns to Idle.

If the atomicity loop was taken, a different Bus_Busy state is entered.
This Bus_Busy state is very similar to the first, except instead of
entering Idle upon completion a Bus_Precharge state is entered. On the
proper phase of SBus clock, control transitions into the Bus_Grant state.
Other masters, however are not given an opportunity to compete for the
bus and another bus cycle is granted to the previous master.

Once in the Bus_Grant state, control cannot distinguish how it arrived
in that state (from either the Idle or the Bus_Precharge state). This
means that each cycle is separate onto itself, and the atomicity check is
made once during each bus cycle. It is possible for a master to retain the
bus by constantly requesting it. (although good SBus citizens would
never do this).

TMS390510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Figure 8.4 - Arbitor State Machine

Revision 02 of 15 December 1992 TMS390510

109

microSPARC Reference Guide

Texas Instruments

110

8.0.5 Main Control

The Main State Machine (MSM) controls the internal data store, issues
data transfer and translation requests to the MMU, and generally acts to
coordinate the other state machines in the SBC. One of the major
functions of the SBC is to move data between local resources and SBus
devices. The SBC has to fill the internal data store by a get operation and
then to empty the data store with a put operation. The MSM controls the
above-mentioned get and put operations.

A walk-through of the MSM is given below: When in the Idle state,
MSM monitors the state of ASM through two signals, CG, which
indicates that the CPU has been granted the bus and XLAT, which
indicates that a valid virtual address has been received and is ready to be
translated. Control remains in the Idle state until one of these two signals
is detected.

If CG is detected and it is a PIO write, then control transitions to the
SputW state. In the case of PIO writes, the data store was filled
concurrently with the issuance of the PIO cycle. All that remains to be
done is to put the data to SBus space. An SBus cycle is issued. Control
remains in SputW for the duration of the SBus cycle and then returns to
Idle upon completion.

If CG is detected and it is a PIO read, then control transitions to the
SgetR state. In the case of PIO reads, the data store must be first filled
by a get operation from SBus space. An SBus cycle is issued from
SgetR. Control remains in SgetR for the duration of the SBus cycle.
Under certain conditions, such as reruns, dynamic bus sizing and
catabolic double word cycles, control returns to Idle in anticipation of
another CG. Upon completion, control passes to DputR. In DputR valid
data is indicated by assertion of IOREQ. The data is then put to the CPU.

If XLAT is detected, a DVMA transaction is in progress and control
passes to the Xlate state. A translation cycle is requested from the MMU
through IOREQ. PA_VAL, from the MMU, indicates that the
translation cycle has completed and the physical address is available.
Upon receipt of PA_VAL, a 3-way branch occurs. The target of the
DVMA cycle is determined from the physical address; it is not possible
to know the target of the DVMA transaction until the transaction is
complete. If the target is not system memory or control space, then Sbyp
state is entered. If the target is memory or control space, then control
branches to DgetR for DVMA reads; SgetW for DVMA wrrites. If any
error had occurred at any time during the translation cycle, a special 4th
branch, the Pet state, is entered.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

From the Sbyp state, the only function of the SBC is to act as an SBus
controller; the SBC has neither a master or a slave role. An SBus cycle
is simply issued and upon completion of the cycle control returns to Idle.

From the DgetR state, a get from memory or control space is required in
accordance with a DVMA read transaction. Implicit to the read
translation request is a data request if the target is determined to be
system memory or control space; a separate request for data is not
required. Once the data store is filled, control moves to Sputr. If a parity
error occurs, the Pet state is entered.

From the SputR state, the DVMA read transaction is completed by
issuing an SBus cycle. Control remains in SputR state until completion
and then transitions back to Idle.

From the SgetW state, a get from SBus space is required in accordance
with a DVMA write transaction. An SBus cycle is issued, the data store
is filled, and control moves to DputW upon completion.

From the DputW state, the DVMA write transaction is completed by a
put of the data to system memory or control space. IOREQ is asserted to
request a write cycle. After the put operation is complete control returns
back to Idle.

From the Pet state, an SBus cycle is issued, but the SBus controller must
intervene since an error has occurred. The slave select must be
suppressed in order for the SBC to become the target. A special signal
is sent to the Target State Machine which has the responsibility of
driving SB_ACK]2:0] to indicate an error in this case. Control remains
in Pet until completion of the SBus cycle and then returns to Idle.

TMS390510 111

microSPARC Reference Guide Texas Instruments

Figure 8.5 - Main State Machine

112 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

8.0.6 Data Transfer The data control state machine (DSM) controls the movement of data
between system memory or control space and the internal data store.
The DSM monitors transaction size information and data transfer
signals from the MMU. The data is counted and a signal, CFIN, is
asserted upon completion.

Figure 8.6 - D_ctl State Machine

Revision 02 of 15 December 1992 TMS390S10 113

microSPARC Reference Guide

Texas Instruments

114

8.0.7 Slave Control
Cycle

The SBus control state machine (SSM) is charged with tracking the
progress of the current SBus cycle by monitoring the Transfer
Acknowledgment (ACK) and terminating the cycle once completed or
upon an error detection. The SSM does not differentiate between the
ACKs from the TSM and other external ACKs; it treats the TSM as any
other slave capable of responding with an ACK.

A walk-through of the SSM begins in Idle, where the SBus request line
is sampled. Once a request is detected, control transitions to the
appropriate state as a function of the bus size and the error signal; WO if
the size is a word or smaller, DO if the size is a double word, QO if the
size is a quad word, or Er0 if the size is unsupported or an error was
detected. Once in either WO or Er0, the ACK lines are monitored and
any ACK code other than Idle/Wait will cause a transition to Sfin.

Once in DO, the ACK lines are monitored and the SSM is effectively

enabled to count Word ACKs. Word ACK will cause a transition to D1.
Idle/Wait ACK will keep control in the DO state. D1 is similar to ErQ and
WO. Any ACK code other than Idle/Wait will cause a transition to Sfin.

Once in QO, (or Q1, or Q2) the ACK lines are monitored Word ACK will
cause a transition to D1. Word ACK will bump control to the next higher
word count stage until Q3 is reached. Idle/Wait ACK will retain state
in QO (or Q1, or Q2). Q3 is similar to D1, Er0 and W0. Any ACK code
other than Idle/Wait will cause a transition to Sfin.

Once in Sfin, the SBus cycle is nearly complete, except for some amount
of housekeeping. Control transitions to Send and then returns to Idle.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Figure 8.7 - S_ctl State Machine

Revision 02 of 15 December 1992 TMS390S10 115

microSPARC Reference Guide Texas Instruments

8.0.8 Slave Target The Target control State Machine (TSM) controls the Transfer
Control Acknowledgment (ACK) during local DVMA transactions or error
conditions, when it is appropriate for the SBC to drive these signals.

A walk-through of the TSM begins in Idle, where control remains until
itrecognizes itself as the target of the current slave cycle. Since the TSM
is clocked at twice the frequency as the SBus, the phase of SB_CLK is
important. If the TSM is the target and either the memory_select or the
error signal is detected, then control moves out of Idle to either the Error
or Slave state. ACK is enabled and the proper code is asserted. When
finished control transitions to the Precharge state where ACK is
precharged and then control returns to Idle.

Figure 8.8 - t_ctl State Machine

116 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

8.0.9 Data Path

Revision 02 of 15 December 1992

The SBC data path consists of a series of multiplexers and registers
necessary to transfer data between the SBus devices and local resources.
There are two sources of data: the internal data bus, MC_MDATA,
which connects local resources to the SBC and the SBus data bus. Data
from the SBus is buffered, then passes through a byte swapper, which is
necessary to align SBus byte or half-word ports, passes through a source
select mux on its way to the internal data store. Data from the internal
data bus passes through the source select mux to the internal data store.

The heart of the data path is the internal data store, which provides
temporary storage for up to 24 bytes of data. DVMA has exclusive use
of 16 bytes of internal storage and 8 bytes are exclusively used for PIO.
Each byte-sized register corresponds to an address location. This means
that data from a given address location will always be loaded into the
same internal data store location, regardless of the order in which the
data arrives. Data from either the internal data bus or SBus can to either
the DVMA register bank or the PIO register bank.

Data destined for the internal data bus goes from the internal data store,
passes through destination select muxes, into an output buffer and is
enabled onto the internal data bus by a tristate driver. Data destined for
the SBus passes through destination select muxes, through an output
byte swapper, necessary to support dynamic bus sizing and is enabled
onto the SBus by a tristate driver.

TMS390S10 117

microSPARC Reference Guide Texas Instruments

Figure 8.9 - SBC Data Path

MC_MDATA IMD[31:0]

SB_DATA

\VaY

BDIN[31:0]

SB_DATA

SB_DATA_EN

MC_MDATA

V=Y

MC_MDATA_EN|

118 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

8.0.10 Data Control

8.0.11 Error Handling

8.0.12 Diagnostic
Testing

Revision 02 of 15 December 1992

The SBC data path control logic steers the data through the source and
destination multiplexers and loads the data into the internal data store.
The source and destination multiplexers are straightforward to control.
Since the get and put operations are serial, the data steering is almost
static. The main state machine controls the get and put operations.

The internal data store load control works by the application of a mask
to the load enables of each byte-sized register. Data can arrive in sizes
of as small as a byte. As each piece of data arrives the load enable of its
register is masked, thereby preserving the data until the put operation.

The Error Control Block handles errors that occur during both PIO and
DVMA transactions. There are three possible sources of error for PIO
transactions. There are PIO transactions terminated by timeouts, error
acknowledge, and late error. A two-bit error status field, ERR_TYPE, is
used to indicate to the CPU the source of error during PIO transactions.
This bus is sampled and any code other than that indicating no error
signifies that an error has occurred. During this time, the entire state of
the current PIO transaction is made available to the CPU for error
reporting.

The sources of error for DVMA transactions are translation, parity,
timeout and SBus protocol errors. Parity can occur either during address
translation or a get operation from local resources. In all cases the SBC
becomes the slave target and drives ACK to indicate an error to the
DVMA master. Errors during DVMA are transparent to the CPU. The
SBC does not use the SBus late error signal to indicate errors.

The SBC employs JTAG and therefore allows all registers to be scanned
during JTAG scan mode. Tristate enables for SBus signals that are
bidirectional are disabled during scan mode.

A testing feature allows the internal data bus and address bus to be
observed when the system is placed in a special diagnostic view mode.
When placed in view mode, the SBC steers the internal data bus onto the
SBus data bus and the internal address bus onto the SBus address bus.
In both cases the address and the data bus information is delayed by one
system clock. Of course, the proper SBus address and data is not
available during view mode; the SBus is used exclusively for testing at
this time.

TMS390S10 119

microSPARC Reference Guide

Texas Instruments

120

8.0.13 Additional
Work

This section is included for future work. There are two architectural
aspects that can potentially yield a better SBus controller design: use a
separate, non-unified I/O MMU and a complete handshake protocol
between the memory controller and the SBus controller.

PIO and DVMA transactions are distinctly orthogonal operations and as
such they can potentially occur in parallel at any time. Future designs
should look carefully at the costs and benefits of sharing the resources
involved (such as unified MMU/IOMMU which precludes some
parallelism).

Another optimization that could be made on a future implementation is
a full handshake for data transfer between system memory and SBus.
This could reduce the amount of internal data storage in the SBC and at
the same time increase the transfer sizes that can be supported. If the
SBC could request a memory cycle and then signal when data is ready,
then the internal data store need only be as big as the data bus size. This
is particularly important during DVMA write transactions. With a better
handshake mechanism, the SBC could request a memory transfer while
the first data word is available. Latency could be avoided and storage
elements larger than the size of one data word saved.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

9.0 Reset, Clock
Control,
JTAG

9.0.1 Reset Controller

Revision 02 of 15 December 1992

This section will describe the Reset logic, Clock Control logic and the
JTAG architecture. The JTAG, reset control and clock start/stop control
logic are part of the Misc block, while the clock controller is a design
block by itself.

All registers in the microSPARC CPU reset to zero except where
otherwise noted. All RAMs including the IU and FPU register files, the
data and instruction cache rams, the and TLB remain unchanged by the
assertion of Reset.

State and pipeline registers internal to the IU are established on reset via
reset logic in the IU, not via explicit reset to the flip-flop. This is to
support clearing and setting certain bits (e.g.: S bit of the PSR).

The JTAG logic controls all the scan operation within the chip and in
conjunction with the clock start/stop logic, enables the single step
operation of the chip for debug purposes. All of the registers in the chip
are scannable and are configured as one single internal scan chain for
testing as well as debugging the chip.

The microSPARC Reset Controller performs the simple task of driving
microSPARC’s internal reset lines, and inhibiting clocks during
transitions on those lines to avoid timing violations on the flip-flops
being reset.

microSPARC has two reset operations: General Reset (sometimes
called SBus Reset) and Watchdog Reset. General Reset is done in
response to assertion of the input_reset_l microSPARC input pin; this
happens on powerup and on any externally-triggered reset. Watchdog
Reset is performed when the IU enters error state due to a taking a trap
while the PSR ET bit is deasserted. General Reset will cause assertion
of both Reset Controller output signals: reset_any and reset_nonwd;
Watchdog Reset will cause only reset_any to be asserted. Reset_any
resets the IU and any other logic which must be reset only on Watchdog
Reset; reset_nonwd resets everything else except the clock and reset
logic and the TAP controller.

In addition to reset_any and reset_nonwd, the reset controller has
another output, rs_dsbl_clocks, which is used to disable the outputs of
the clock controller during transitions on the reset lines. This allows the
heavily-loaded reset signals time to propagate throughout the chip
completely between clocks, to avoid setup and hold time violations. All
three of these outputs are controlled by the reset state machine.

TMS390510 121

microSPARC Reference Guide

Texas Instruments

122

However, input_reset_l is combinatorially ORed into both reset_any

-and reset_nonwd, and rcc_rst forces clocks to be running; taken

together, these assure that any circuitry which must (for physical
reasons) see reset asserted immediately on powerup will see it
(assuming that input_reset_l is asserted, and input_clock is oscillating,
immediately on powerup). As a consequence, timing violations may
occur on the first clock after assertion of input_reset_l; presumable, the
ensuing General Reset will eventually clean up any illegal states caused
by these violations.

Inputs which affect operation of the reset state machine are: rcc_rst, a
20-MHz! - synchronized version of microSPARC’s input_reset_l pin;
iu_error, the error state indication from the IU which initiates a
Watchdog Reset; and mm_hold_rst, a signal from the MMU which
delays the start of a Watchdog Reset sequence until there are no loads,
stores, or instruction fetches in progress. Rcc_rst is inhibited during scan
shift operations, to prevent loss of non-resettable state if input_reset_l
should happen to be asserted during a scan shift.

1. Throughout this section of the document, waveform frequencies and periods will be given as if the frequency of
input_clock were 80 MHz, even though this logic will run correctly at any speed from the design frequency (100 MHz)

down to DC.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Figure 9.1 - microSPARC Reset State Machine

iu_error This state machine runs
po) at 20 MHz.
mm_hold_rst

err2

onl

/

on2

dsbl clocks /

=]
=]
w

\

A rcc_rst
rstl

Stop clocks on 9
this transition if &
trst is not asserted =
rst2 a
<

rst3

™

/

off2

off3

off4

\ dsbl clocks

Revision 02 of 15 December 1992 TMS390S510) 123

microSPARC Reference Guide

Texas Instruments

124

9.0.2 Reset Controller
State Machine
Operation

The reset state machine is clocked at 20 MHz. Assertion of rcc_rst
synchronously resets the state machine into the rst1 state from any other
state. The state machine will thus stay in state rst1 for as long as rcc_rst
is asserted. After completing a reset sequence, the state machine hangs
in the idle state until either iu_error or rcc_rst is asserted. If iu_error is
asserted while in the idle state, the state machine goes to state err1, waits
there until mm_hold_rst is deasserted, and then completes the reset
sequence and returns to idle. Reset_any and/or reset_nonwd are asserted
in states on2, on3, on4, rstl, rst2, rst3, rst4, and off1: if the reset
sequence was initiated by iu_error, only reset_any is asserted; if initiated
by rcc_rst, both reset_any and reset_nonwd are asserted. Clocks are
disabled in states onl, on2, on3, and on4 as the reset signal is turned on;
they are disabled again in states offl, off2, off3, and off4 as reset is
turned off again. This clock disabling does not put the clock state
machine into the stopped state; it merely gates off the clock outputs.
Note that the reset lines transition from 1 to O only during a clocks-
disabled period, and, for Watchdog Reset, they transition from 0 to 1
only during a clocks-disabled period.

To facilitate scan-based debugging, the reset state machine will assert
rs_stop_even upon exiting the rstl state during a General Reset
sequence. If microSPARC’s jtag_trst_l input is deasserted at that time,
this will cause the clock control state machine to enter the stopped state.
The reset sequence will continue as clocks are issued under scan control.
It is thus possible to single-step through the remaining states of the reset
state machine, and, more importantly, to reset the machine to a known,
deterministic state during scan-based debug.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

9.0.3 Clock Controller The microSPARC Clock Controller generates the clock signals used by
all of microSPARC (except the TAP controller), as well as the sbclk
used by external SBus interface devices. Its operation is controlled by
the Clock Control Register (CCR), a collection of internal register bits
which are writable only by scan. On Reset, the CCR is cleared. Subse-
quent scan shift operations can be used to set bits of the CCR in order to
alter the operation of clock state machine, as described below. However,
the CCR has no effect on the operation of the clock state machine if the
jtag_trst_l microSPARC input pin is asserted (low).

At the heart of the clock controller is a 4-bit state machine, clocked by
the 80-MHz input_clock. The low-order two bits of this state machine
are a free-running two-bit down counter (free_clks[1:0]). The MSB
(stopped) indicates whether clocks are stopped or running. The
remaining bit (sbus_1st_half) indicates which half of the 20-MHz cycle
the state machine is in, even when clocks are stopped The two main
clock outputs, ss_clock (40-MHz) and sbclk (20-MHz), are effectively
equal to (free_clks[0] | stopped) and (free_clks[1] | stopped),
respectively, although in the actual implementation these and all other
clock outputs are driven by the Q outputs of 80-MHz-clocked flip-flops.
There are three inputs to the clock state machine: start, stop, and
stop_even, these are generated in the clk_stop submodule of the misc
module. When stop is asserted while the stopped state bit is 0, the clock
state machine will take one of these two transitions: 0000->1111 or
0110->1001, whichever comes first. When stop_even is asserted while
the stopped state bit is 0, the clock state machine will take the
0000->1111 transition. When start is asserted while the stopped state bit
is 1, the clock state machine will take one of these two transitions:
1100->0111 or 1010->0001, whichever comes first. The start input is
actually a bit of the CCR, and it will reset itself on the first ss_clock
positive edge, to facilitate the single-step operation.

The stopped and sbus_1st_half state bits are readable, but not writable,
via scan. Synchronized copies of these two bits form a special two-bit
scan chain which may be accessed via the sel_ccr TAP operation. This
TAP operation, unlike sel_dbg_scan, does not interfere with the
operation of the clock state machine, so the states of these bits may be
polled at any time without affecting clocking. Note that 'sel_ccr' is a
misnomer, since these two bits are not part of the CCR.

Revision 02 of 15 December 1992 TMS390S10 125

microSPARC Reference Guide Texas Instruments

Figure 9.2 - Clock Controller State Machine

stop | stop_even

start

(Stopped. State Bits:

mid_sbus_cycle) stopped
sbus_1st_half
free_clks[1]
free_clks[0]

126 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

9.0.4 Clock Signals

9.0.5 Stopping Clocks

9.0.6 Starting Clocks

9.0.7 Single-Step

Revision 02 of 15 December 1992

Four distinct clock signals are generated by the clock controller. These
are: ss_clock, the 40-MHz signal which clocks most of microSPARC;
sbclk, the 20-MHz signal which is driven off-chip to clock the SBus
interface logic and the external clock counter; di_val, a half-period-
delayed version of ss_clock, used by the cache RAM megacells and
other logic which requires a delayed clock; and rcc_clock, a 40-MHz
signal which clocks the reset state machine and the CCR logic. All four
of these signals will cleanly transition to the high state when the stopped
bit of the clock state machine is high. During scan data shift and capture
operations, all four clocks are disabled (i.e. forced high) by a
synchronized version of the testclken signal sourced by the TAP
controller; the clock state machine does not need to be in the stopped
state for this to occur. All except sbclk are combinatorially ANDed with
testclk (an active-low pulse train generated in the TAP controller by
gating jtag_ck) during these disabled periods, so that flip-flops driven by
all three of these clocks can be connected together in a single scan chain.
All except rcc_clk are disabled by the rs_dsbl_clocks signal sourced by
state decodes of the reset state machine, so that slow transitions on the
internal reset lines will not cause setup violations. As with the testclken
disable, the clock state machine need not be stopped when rs_dsbl_clks
is asserted.

To stop clocks, set the stop_clocks CCR bit. This will assert the stop
input to the clock state machine, stopping clocks on the next 40-MHz
rising edge.

To start clocks from a stopped=1 state, set the start bit of the CCR.

From a stopped=1 state, set both the stop_clocks and start bits of the
CCR. A single 12.5-ns active-low sys_clk pulse will be issued; if
sbus_1st_half was 0, a single 25-ns active-low sbclk pulse will also be
issued (its rising edge will coincide with the rising edge of sys_clk

TMS390S10 127

microSPARC Reference Guide Texas Instruments

Figure 9.3 - Single Step with sbus_1st_half = 1.

sbclk (20 MHz) —————————————
ss_clock (40 MHz) ———————————————————= —————————
clocks_stopped ————m————oo——moo—o— ——mo—————

sbus_1st_half = —-————————————————————

clock_state edcfedcfedcfedcfedc7698ba98bad

Figure 9.4 - Single Step with sbus_1st_half = 0.
sbclk (20 MHz) —=—=———————————m———— e

ss_clock (40 MHz) ———————————————————— —————————
clocks_stopped = ——————————————————— —————————

sbus_1st _half _ ——m—————-

clock_state 8ba98ba98ba98ba98ballfedcfedct

9.0.8 Stop Clocks on To stop clocks on detection of an internal event, set the
Internal Event stop_on_int_event bit of the CCR and enable the desired internal event
detection logic. Clocks will stop at the end of the sys_clk cycle in which
the input to the int_event flip-flop is asserted. Internal events are
detected by special logic in the IU and the MMU - see documentation on
those units for more details.

9.0.9 External Cycle The microSPARC clock controller is designed to interface to a simple
Counter external cycle counter (XCC) for precise, at-speed control of system
clocking. The interface consists of three microSPARC I/O pins:

* sbclk (output) - the 20-MHz SBus clock output, which is gated
off when system clocks are turned off. This output is used to
clock the external SBus logic as well as the XCC.

* ext_event (input) - this input is immediately registered in a 20-
MHz-clocked flip-flop. Under control of some Clock Control
Register (CCR) bits (which are writable only by scan), a logic 1

128 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

9.0.10 Counting
Clocks

9.0.11 Issuing N Clocks

Revision 02 of 15 December 1992

in this flip-flop will cause clocks to stop either at the next
ss_clock rising edge or the next sbclk rising edge. This input
should be driven by the terminal_count output of the XCC,
perhaps ORed with other externally-detected clock stop signals.
In a standard up-counter, the terminal count output is asserted
when the counter contains all 1's (i.e. -1).

* int_event (output) - this is the output of a 20-MHz-clocked flip-
flop. It is asserted whenever an internally-detected 'event' occurs
(e.g. virtual address match). These events can, under control of
some CCR bits, stop clocks; however, whether or not they stop
clocks, they always cause assertion of the int_event output. This
output can be used to trigger a logic analyzer; in addition, it can
be used in conjunction with the XCC as described below to
implement the 'stop N cycles after internal event' function.

Note that this interface runs at the 20-MHz SBus clock rate, and the
signal I/O connect directly to inputs or outputs of flip-flops within
microSPARC; thus, the XCC logic has nearly a full 50-ns cycle in which
to set up its output to the ext_event input.

When the XCC is enabled, it increments on every sbclk positive edge.
Since the states of the XCC and the CCR are accessible via scan, we can
calculate how many 40-MHz system clocks have been issued between
any two points in time by scanning out this state information before
clocks are started and again after they have been stopped. The following
formula can be used. XCC.before and XCC.after are the respective
values of the clock counter before and after clocks have been issued,;
sblh.before and sblh.after are the corresponding values of the
sbus_1st_half bit of the CCR.

N = 2*(XCC.after-XCC.before) - ~sb1lh.before + ~sblh.after

This formula of course assumes that XCC has not wrapped around; the
XCC control logic should contain a wraparound detector that can be
read by scan.

The XCC can be used to issue exactly N 40-MHz system clocks, at full
speed. N can be any number from 1 to approximately 2**(X+1), where
X is the number of bits in XCC; for example, a 32-bit XCC lets us

control clocks over a 200-second range at 40-MHz operation. This

function does not require the use of the int_event output.

TMS390S10 129

microSPARC Reference Guide

Texas Instruments

130

Several CCR bits are used for this function. When, while clocks are
stopped, a 1 is scanned into stop_on_ext_event and 1 is scanned into
start_clocks, clocks will start up and then stop on the next ss_clock
rising edge after the ext_event FF goes active; stop_even_on_ext_event
is similar to stop_on_ext_event, but it causes clocks to stop on the next
sbclk rising edge after the ext_event FF goes active. Thus, clocks will
stop either one or two 40-MHz cycles, respectively, after a logic 1 is
clocked in on the ext_event input. Scan software can scan out the
clocks_stopped and sbus_1st_half CCR bits to determine whether
clocks are stopped, and if they are stopped in the first or second half of
the 20-MHz sbclk cycle.

Figure 9.5- With stop_on_ext_event

ext_event

ext _event ff

sbclk (20 MHz) e e e e e
ss_clock (40 MHz) - — T m e m m m mmmmmmmmm——— e

clocks_stopped e

sbus_1st_half

Figure 9.6 - With stop_even_on_ext_event

ext event

ext event ff

sbclk (20 MHz) e T
ss_clock (40 MHz) _— e e e e e

clocks _stopped e

sbus_1lst_half

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Scan software can, by scanning appropriate values into the CCR,
XCC, and ext_event_ff while clocks are stopped, cause any number
of clock pulses to be issued when clocks are restarted, from 1 on up
to the maximum. In the table below, 'tc' is the terminal count value
of XCC, and M is any integer greater than 1

Table 9.1 - Clock Control and Scan

N | sbus_1lst half | stop stop_even ext_event ff XCC
-———|—-—--(scanout) ——— | —————————————— (scanin) ——————————————————— -
1 1 1 0 1 tc+l
1 0 0 1 1 tc+l
2 1 0 1 1 tc+l
2 0 1 0 0 tc
3 1 1 0 0 tc
3 0 0 1 0 tc
2*M 1 0 1 0 tct+2-M
2*M 0 1 0 0 tc+l-M
2*M+1 1 1 0 0 tc+l-M
2*M+1 0 0 1 0 tc+l-M

Revision 02 of 15 December 1992 TMS390S10 131

microSPARC Reference Guide Texas Instruments

Examples:

N=2, stopped with sbus_1st_half=1: the table tells us toload (tc+1)
into the counter, load 1 into ext_event_ff, and to assert
stop_even_on_ext_event. Note that (tc+1)=0.

Figure 9.7 - N=2, stopped with sbus_1st_half=1.

XCC 0o0o000O0O1II1I1111111

ext_event

ext _event ff -—==

sbclk (20 MHz) -—=————————— —mmmmm e
ss_clock (40 MHz) ——————————_ — —————————————————

clocks_stopped = W -——==—m——= 0 0 —ommmmomm————o————

sbus_1st _half = - -———m—————m —mmmmmmmmmme—e—e—

N=7, stopped with sbus_1st_half=0: 7=2*3+1, so M=3. The table
tells us to load (tc+1-3)=-3 into the counter, load O into ext_event_f£f,
and to assert stop_even_on_ext_event. I'll show -3 as 'd’, which is
the last hex digit of its 2's-complement representation.

Figure 9.8 - N=7, stopped with sbus_1st_half=0.
XCC ddddddeef £f00111

ext_event —-——=

ext _event ff ———=

sbclk (20 MHz) ——————————v e —

ss_clock (40 MHz) e py——

clocks_stopped = ———mm———mm——

sbus_1lst_half — e e

132 TMS390510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

N=7, stopped with sbus_1st_half=1: 7=2*3+1, so M=3. The table tells
us to load (tc+1-3)=-3 into the counter, load O into ext_event_ff, and to
assert stop_on_ext_event. I'll show -3 as 'd', which is the last hex digit
of its 2's-complement representation.

Figure 9.9 - N=7, stopped with sbus_1st_half=1.

XCC ddddddeef £f00111

ext_event -

ext_event ff i

sbclk (20 MHz) = ——————————- —— mm e

ss_clock (40 MHz) m———m————— - = = = T = mmme———

clocks_stopped = o———=mm——— e

sbus_1lst_half = -————————- - = ==

Note that the last two examples, taken together in sequence, cause 14
positive edges on sys_clk and 7 positive edges on sbclk.

9.0.12 Count Clocks In this mode, the XCC is held until an internal event occurs. The internal
After Internal event does not stop clocks, but does cause assertion of the int_event
Event output; the int_event output will remain asserted until it is cleared by

scan. The XCC is enabled to count whenever int_event is asserted, so
clocks will continue to run until ext_event is asserted, either by XCC or
by another external event detector. The intent of this mode is to issue
exactly N clocks after the internal event has occurred. Logic in the clock
controller records whether the internal event occurred in the first or
second half of the bus cycle, and this information is factored into the
subsequent clock stop on external event, so that N can be any even or
odd integer. Due to latencies in the logic, N must be greater than or equal
to 4.

To support this mode, the XCC must have logic which, under scan
control, holds the count when int_event is not asserted.

The CCR also needs some logic. The signal int_event_1st_half records
whether the internal event which caused the assertion of the int_event

Revision 02 of 15 December 1992 TMS390S10 133

microSPARC Reference Guide

Texas Instruments

134

output happened in the first or second half of the SBus cycle. The CCR
bit stop_int_to_ext will cause an even or odd number of sys_clk positive
edges to occur after the internal event is detected, depending on whether
int_to_ext_odd is 0 or 1, respectively. The actual number of clocks
issued is (2*(tc-XCC.before) + 4) with int_to_ext_odd=0, and (2*(tc-
XCC.before) + 5) with int_to_ext_odd=1. Logic in the clock controller
works as follows when stop_int_to_ext is set:

* if int_to_ext_odd=0 and int_event_1st_half=0, then stop clocks
at the end of the SBus cycle in which ext_event_£f is asserted (as
described above for stop_even_on_ext_event);

* if int_to_ext_odd=0 and int_event_1st_half=1, then stop clocks
midway through the SBus cycle in which ext_event_ff is
asserted (as described above for stop_on_ext_event);

* if int_to_ext_odd=1 and int_event_1st_half=1, then stop clocks
at the end of the SBus cycle in which ext_event_f£f is asserted;

* if int_to_ext_odd=1 and int_event_1st_half=0, then stop clocks
midway through the *next* SBus cycle *after* ext_event_ff is
asserted.

If, in addtion to setting stop_int_to_ext, we also set stop_on_int_event,
then a special mode is enabled. In this mode, as with the simple
stop_int_to_ext mode described above, the XCC starts counting clocks
after the first internal event, and stops clocks when the count is
exhausted. In addition, clocks will stop on an internal event as described
in section 2.9.2.5, but only if the internal event occurs while the
int_event microSPARC ouput pin is asserted. In other words, while in
this mode, clocks will stop on the first internal event which occurs while
the XCC is counting; if no such internal event occurs, clocks will stop
when the count is exhausted.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Here are some examples:

N=8, event occurs in second half of bus cycle. stop_int_to_ext must be
set, int_to_ext_odd must be cleared, and XCC.before must be set to
(tc-2), here represented by 'd'. Clocks are stopped at the end of the
sbelk cycle in which ext_event_ff is active. We get eight more sys_clk
rising edges than we would have gotten if clocks had been stopped
immediately on the internal event.

Figure 9.10 - Event in First half of bus cycle, N=8.
XCC ddddddeef £f00111

event (int) -

int_event_lst _half ?27222722727

int_ event @000 —mmmmmmemmeme——————————

ext_event ==

ext _event ff ———=

sbclk (20 MHz) — —— = —— e e e

ss_clock (40 MHz) e e e e e e e - o o

clocks_ stopped .

sbus_1st_half e

Revision 02 of 15 December 1992 TMS390S10 135

microSPARC Reference Guide Texas Instruments

N=8, event occurs in first half of bus cycle. stop_int_to_ext must be
set, int_to_ext_odd must be cleared, and XCC.before must be set to
(tc-2), here represented by 'd'. Clocks are stopped in the middle of
the sbclk cycle in which ext_event_ff is active. We get eight more
ss_clock rising edges than we would have gotten if clocks had been
stopped immediately on the internal event.

Figure 9.11 - Event in First half of bus cycle, N=8.
XCC ddddddeef £00111

event (int) -

int_event 1st _half ?2?2?222?2?-————————————————
int event = e

ext_event —

ext event £ff

sbclk (20 MHz) e e dm el

ss_clock (40 MHz) — e — — — — o — — m

clocks stopped .

sbus_1st _half ——_— e e e -

136 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

N=9, event occurs in first half of bus cycle. stop_int_to_ext must be
set, int_to_ext_odd must be set, and XCC.before must be set to (tc-2),
here represented by 'd'. Clocks are stopped at the end of the sbclk cycle
in which ext_event_ff is active. We get nine more sys_clkrising edges
than we would have gotten if clocks had been stopped immediately on
the internal event.

Figure 9.12 - Event in First half of bus cycle, N=9.

XCC

int_event
ext event
ext event
ext_event
sbclk (

ss_clock(

event (int) -

clocks_stopped ' ——

sbus 1st _half —— e = -

ddddddeef £00111

_ff —

ffdy - ===—=

20 MHz) e el el

40 MHz) - = — — — = = = = = — — — ——

Revision 02 of 15 December 1992

TMS390S10 137

microSPARC Reference Guide

Texas Instruments

138

N=9, event occurs in second half of bus cycle. stop_int_to_ext must be
set, int_to_ext_odd must be set, and XCC.before must be set to (tc-2),
here represented by 'd'. Clocks are stopped in the middle of the next
sbclk cycle after ext_event_ff is active. We get nine more sys_clk
rising edges than we would have gotten if clocks had been stopped
immediately on the internal event.

Figure 9.13 - Event in Second half of bus cycle, N=9.

XCC

event (int) —_

int_event =000 e
ext_event _——
ext event ff _—

ext_event_ ff dly e

sbclk

ss_clock (40 MHz) - = — — — = — = = = — — — ——o
clocks_stopped ' _—

sbus_1lst_half — e —— = = =

ddddddeef £f00111

(20 MHz) —_— = = e e e e

TMS390510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

9.0.13 Stop Clocks In this mode clocks are stopped after the Nth sbclk cycle in which the
After N Internal int_event output is asserted. It is controlled by the stop_on_ext_event
Events CCR bit, and XCC needs a scannable control bit which enables it to

count only while int_event is active. To use this mode, we must load
XCC with (tc-N) and turn on stop_on_ext_event. Latency will be six 40-
MHz cycles if the final internal event occurs in the first half of the sbclk
cycle, and five cycles if it occurs in the second half. Note that we are not
able to handle more than one event per sbclk cycle.

Figure 9.14 - Event in first half of bus cycle, N=2. Latency=6 cycles.
XCC ddddddeeffffff £

event (int) _ -

int event @@ ———————=

ext event _ mmmm—————————

ext event ff ————————

sbclk (20 MHz) e e el

ss_clock (40 MHz) P

clocks stopped _~ ——————=

sbus_1lst_half e el el -

Revision 02 of 15 December 1992 TMS390S510 139

microSPARC Reference Guide Texas Instruments

Figure 9.15 - Event in second half of bus cycle, N=2. Latency=5 cycles.
XCC ddddddeef ff fff £

event (int) _ _

int_event @@ ———————

ext event _ ——me——————

ext event £ _ —m—m—————

sbclk (20 MHz) —_— —— —m e

ss_clock (40 MHz) T

clocks_stopped _ ~ —=————=

sbus_1lst_half — e — e -

9.0.14 CCR Bits Here is a list of the Clock Control Register bits. These are accessible by
scan only, and their functionality is described above.

*stop_on_ext_event (Issue N Clocks, Stop Clocks after N Internal
Events) -

*stop_even_on_ext_event (Issue N Clocks)
*stop_int_to_ext (Count Clocks after Internal Event)
*int_to_ext_odd (Count Clocks after Internal Event)
*stop_on_int_event (Stop Clocks on Internal Event)
*stop_clocks (Stopping Clocks, Single-Step)

*start (Starting Clocks, Single-Step)

140 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

9.0.15 JTAG

9.0.16 Board Level
Architecture

9.0.17 TAP

Revision 02 of 15 December 1992

A variety of microSPARC test and diagnostic functions, including
internal scan, boundary scan and clock control, are controlled through
an IEEE 1149.1 JTAG) Standard Test Access Port (TAP).
Commands and data are sent as serial data between the JTAG master
and the microSPARC chip (a JTAG slave), via a 4 wire serial testability
bus (JTAG bus). The TAP interfaces to the JTAG bus via 5 dedicated
pins on the microSPARC chip. These pins are:

TCK - input - test clock

TMS - input - test mode select

TDI - input - test data input

TRST_L - input - JTAG TAP reset (asynchronous)
TDO - output - test data output

For more details on the IEEE protocol, please refer to the IEEE
document “IEEE Standard Test Access Port and Boundary-Scan
Architecture”, published by IEEE.

Typical microSPARC systems will contain several JTAG-compatible
chips. These are connected using the minimum (single TMS signal)
configuration as described in the 1149.1 specification (Figure 3-1, IEEE
1149.1 standards manual). This configuration contains three broadcast
signals (TMS, TCK, and TRST,) which are fed from the JTAG master
to all JTAG slaves in parallel, and a serial path formed by a daisy-chain
connection of the serial test data pins (TDI and TDO) of all slaves.

The TAP supports a BYPASS instruction which places a minimum shift
path (1 bit) between the chip’s TDI and TDO pins. This allows efficient
access to any single chip in the daisy-chain without board-level muxing.

The TAP consists of a TAP controller, plus a number of shift registers
including an instruction register (IR) and multiple “data” registers.

The TAP controller is a synchronous FSM which controls the sequence
of operations of the JTAG test circuitry, in response to changes at the

JTAG bus. (Specifically, in response to changes at the TMS input with
respect to the TCK input.). Note that the TAP controller is asynchronous
with respect to the system clock(s), and can therefore be used to control

TMS390510 141

microSPARC Reference Guide

Texas Instruments

142

9.0.18 Data Registers

the clock control logic. The TAP FSM implements the state (16 states)
diagram as detailed in the 1149.1 protocol.

The IR is a 6-bit register which allows a test instruction to be shifted
into microSPARC. The instruction is used to select the test to be
performed and/or the test data register to be accessed. The supported
instructions are listed in a later section.

Although any number of loops may be supported by the TAP, the FSM
in the TAP controller only distinguishes between the IR and a data
register. The specific data register is decoded from the instruction in
the IR.

The following data registers are supported in the microSPARC TAP:

* Bypass Register - a single bit shift register for efficient board-level
scan.
* Device L.D. Register - a 32-bit register with the following field.

Figure 9.16 - JTAG ID Reg Contents

Ver Part ID Manufacturer’s ID Const
31 28 27 1211 01 00
Field Definitions:

Version - Bits[31:28} represent the version number which is 0x0 for
this version

Part ID - Bits[27:12] represent part number as assigned by TI, which
is 0x0004

Miff ID - Bits[11:01] represent manufacturer’s ID as per JEDEC,
which is 0x17

Const - Bit[00] is tied to a constant logic’1’
Value in ID Register: 32’h0000202f

* Data registers - A two bit clock control register to sample outputs
from the clock controller(CCR)

* Boundary Scan Register - a single scan chain consisting of all of the
boundary scan cells (input, output and inout cells).

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

* Internal Scan Registers - a single scan chain of all the internal scan
f/fs

9.0.19 JTAG . The following instruction are supported by the microSPARC TAP. The
Instructions table contains the bit-value and mnemonic, as well as which data
registeris selected by that instruction. The encodings followed by an
“*” are fixed by the IEEE JTAG protocol.
Table 9.2 - JTAG INSTRUCTIONS
value Name of Instrn Data register(s) Scan Chains Accessed
000000* EXTEST Boundary Scan Register Boundary Scan Chain
000001 * SAMPLE Boundary Scan Register Boundary Scan Chain
000010 INTEST Boundary Scan Register Boundary Scan Chain
000011 ATEINTEST Boundary Scan Register Boundary Scan Chain
100000 IDCODE JTAG ID Register ID Register Scan Chain
111111 * BYPASS Bypass Register Bypass Register
011110 SEL_CCR Clock Control Register Clock Control Register Chain
010000 SEL_INT_SCAN Internal Scan Register Internal Scan Chain
011111 SEL_DBG_SCAN Internal Scan Register Internal Scan Chain

Revision 02 of 15 December 1992

Note: 1. Thetwointernal scan chain instructions differ withrespect to

the scan chain clocking during CAPTURE_DR state of the tap fsm.
Sel_int_scan will be used for ATPG tests, where a clock pulse is needed
to capture the next state when scan_mode signal is in the inactive state
between shift cycles. The other scan instruction, Sel_dbg_scan is used
during debug to read and write the scan chain. No pulse is generated
during the transition from “shift --> capture ---> shift” states. In other
words, the scan state is preserved during the shift, capture, shift cycle.

2. The TDO output becomes valid at the falling edge of TCK, per the
1149.1 protocol. This is so, that the TDI input (which is connected TDO

TMS390S10 143

microSPARC Reference Guide

Texas Instruments

144

9.0.20JTAG Interface
to MISC

of the preceding component) of the component is stable to be clocked in
during the rising edge of TCK.

3. The ATEINTEST operation is used to load the boundary scan f/fs
after which, if it enters the 'run_test_idle’ state, the JTAG controller will
generate a single TCK pulse.

Although, we have the capability to single step the chip thru another
mechanism (using sys_clock itself), ATEINTEST option provides the
capability to perform ICT on the ATE, perhaps at slow speed.

4. The INTEST operation has been added so that it can be used in
conjunction with the SEL._INT_SCAN instruction to perform the ATPG
test using scan tool. This instruction will not generate any extra clock
pulse in run_test_idle state. This is used primarily to load the boundary
scan chain.

5. The Sel_CCR is used to sample two bits (stopped, sbus_1st_half)
from the clock controller block. These two bits are synchronized (2
stage synchronizer using TCK) before being sampled during the shift-
DR state.

The JTAG block provides two key signals to the clock controller
section, two signals directly to the microSPARC core and a five wire
control signal to the boundary scan f/fs.

Clock Controller Interface:

Testclk and Testclken are the two signal that are generated in the JTAG
block and sent to the clock controller.

Testclken is an active high signal that switches the ss_clock (the
40MHz) to the core from the normal 40MHz clock to the Testclk.This
happens only for certain JTAG instructions. They are:

sel_int_scan, sel_dbg_scan, intest, ateintest

For all other instructions (extest, sample, bypass, idcode, sel_ccr)
testclken remains inactive thus enabling the normal 40 MHz clock to
microSPARC core. The Testclken signal is synchronized inside the
clock controller using the free_20MHz clock. By design Testclken is
generated to be active at least three TCK cycles before the Testclk signal
becomes active. Testclken signal changes state only after transition

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

from update_IR of the instruction scan cycle, on the positive edge of
TCK. Testclken signal becomes inactive after transition to
tap_logic_reset state on the falling edge of TCK.

Testclk is a gated version of TCK and the gating signals are
sel_instruction and shift (function of shift_DR) and capture (capture-
DR) states. Testclk toggles only during sel_int_scan and sel_dbg_scan
instructions.

microSPARC Core Interface:

Sys_sen (ss_scan_mode) and tg_strobe are two signals that go directly
to the core of microSPARC. Scan_mode signal is active high whenever
the Tap enters any of the four DR states, shift,exitl,pause and exit2.
During the last three state, Testclk will not toggle and the state of the
f/f remains the same as the last bit scanned in during the shift state. It is
necessary to activate the scan_mode signal during these three states, so
that tri-states would remain disabled during repeat scan after going thru
exitl, pause, exit2 states. Sys_sen is a registered signal that is clocked
on the falling TCK. This has been done to avoid race conditions between
the scan_mode signal and the shift clock(testclk) during the shortest tap
state traversal from select-DR to shift-DR.

Since the Sys_sen is a heavily loaded (goes to all f/fs in the chip) signal,
it may have a longer rise time and not meet the setup time requirement
for the shortest tap state traversal from select-DR to shift-DR. In such a
case, the TCK should not be run at greater than 5 MHZ.

The tg_strobe signal is low going pulse that is used as a self-timing
trigger for the megacells. It is generated during the update-DR state and
adheres to the timing specified in the megacell document.

Boundary Control Interface:

The five wire boundary control signal corresponds to: bin_cap,
bout_cap, b_sen, b_uen, b_mode.

bin_cap and bout_cap are generated during the capture-DR state and are
used to load the value on the pins or the output of the core to the
boundary scan f/f. b_sen is generated on the falling edge of the tck

(to avoid race conditions) and is used as a scan_en signal for the
boundary scan f/f. b_uen is an update signal for the boundary scan
update latch and it happens at the falling edge of tck.

b_mode is a mux control signal that selects between the direct pin
input and the value in the update latch. This signal will change

TMS390S10 145

microSPARC Reference Guide

Texas Instruments

146

9.0.21JTAG Operation

during the update-IR state and when the tap goes back to test-logic-reset
state on the falling edge of TCK.

RESET Mechanism:

We also have a independent TRST_L signal which when active low
would set the TAP into the tap_logic_reset state. This signal will
asynchronously set the tap state machine to the tap_logic_reset state. It

_adheres to the 1149.1 IEEE protocol with respect to the initialization

thru reset mechanism. There is no minimum active time requirement
on this reset signal. If the board is not going to have an extra oscillator
for TCK, then the JTAG reset pin (TRST_L) can be tied to an active low
signal thus disabling JTAG operations in the chip.

The TDI and TMS inputs have pullups on the pad and when left
unconnected will be equivalent to a signal value ’1’ on these pins. With
a free running TCK, it would guarantee that the TAP would get into the
tap_logic_reset state at the end of five TCKs.

The following are some of the basic operations which, when combined
together will enable the user to run any of the JTAG instructions
specified above. They are provided here just for understanding the TAP
state transitions during various JTAG operations.

We will only be concerned with JTAG I/O, i.e. TCK, TMS, TDI, TRST
and TDO. The first four are inputs and the last one is the output. All five
are chip I/O. The other inputs to the chip are either in a don’t care state
or in a predetermined state. They shouldn’t affect the operation of the
JTAG controller. It should be noted, that, for a more robust operation of
the chip, we should foilow a proper procedure with regard to getting in
and out and back to JTAG operations.(for instance resetting the system
before and after JTAG operations. Once we are in the tap_logic_reset
state, all outputs from JTAG become inactive and the chip should be
back to normal functional mode.)

The tap state encodings (in hex) are as follows:

f-test-logic-reset, c-run-test-idle, 7-select-DR, 6-capture-DR, 2-shift-
DR, 1-exitl-DR, 3-pause-DR, 0-exit2-DR, 5-update-DR, 4-select-IR, e-
capture-IR, a-shift-IR, 9-exitl-IR, b-pause-IR, 8-exit2-DR, d-update-IR.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Revision 02 of 15 December 1992

In order to run the JTAG instructions, we do the following tap state
traversal for the various sub tasks:

Instruction Scan:

f -->¢c -->7 -->4 --> ¢ -->9 -->b -->8 -->a (for 6 clocks) --> 9
(the opcode is shifted thru tdi while in the shift-IR state)
Data Scan:
9-->b-->8-->d-->¢c-->7 -->6 -->1 --> 3 -->0 -->2(# of
shifts equal to length of scan chain) --> 1

(At state ’d’ the decode instruction is latched on the falling edge of tck.
Data is shifted into appropriate data register during shift cycle and at the
end of shift exit to exit1-DR(1) state.

Return to new instruction:
2->1->3->0-->5->¢

(we will wait in state ¢ (run-test-idle) and go back to instruction scan as
shown above.)

TMS390S10 147

microSPARC Reference Guide Texas Instruments

Figure 9.17 - JTAG LOGIC BLOCK DIAGRAM

Control Signals(shift,capture,sel_instr)

TCK -
TDI IDCODE IR_TDO
from clk controller |
CCR |— CCR_TDO
|
BYP — BYP TDO
TCK __
E:I;T L TAPFSM DI ' INSTRUCTION|___ IR_TDO
i TCK REG ¢(6 BITS)
l DECODER
DECODER l
REGISTER | Update_IR —G) REGISTER
(shift,capture,etc) (select instruction controls)
Y v
TCK —{ CONTROL LOGIC

v

(JTAG outputs -- testclk, testclken, scan_mode, tg_strobe, bctl, shift)

148 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Figure 9.18 - microSPARC JTAG DATA & INSTRUCTION REGISTERS

BOUNDARY SCAN CHAIN | BoR=1DO
(BSR)
SCAN_MODE microSPARC INTERNAL SCAN CHAIN— | ISR_TDO
(ISR)
.
TESTCLK
JTAG INSTRUCTION REGISTER | R-['HO
(IR)
TCK —p > gzmx TDO

___.>
-

TDI — FF _| >
JTAG IDCODE REGISTER || —»

(DR) ID_TDO I—c
‘ TCK

CCR_TDQ

— CLOCK CONTROL REGISTER
(CCR)

BYPASS REGISTER BY_TDO

MUX CONTROL

SHIFT

Revision 02 of 15 December 1992 TMS390510 149

microSPARC Reference Guide Texas Instruments

150 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments

microSPARC Reference Guide

10.0 Error The microSPARC CPU must detect and handle many kinds of errors and
Handlin exceptions. The SPARC IU is interrupted by some type of trap in all
andiing CPU error cases. DMA masters other than the CPU should cause their
own IU trap via the SBus interrupt mechanism. Physical address
references to nonexistent addresses in any address space will either
return garbage or cause timeouts. The following preliminary list
attempts to describe what happens under various circumstances.
Table 10.1 - Error Summary
Error Initiator Result Summary
Memory Parity Error Instruction Memory Access set PE, FT=5,L, AT in SFSR
cause Instruction Access Error trap (D stage + 1)
IU, FPU Read set PE, ERR, CP, TYPE in MFSR
Memory Access save PA in MFAR
cause L15 interrupt
IU, FPU Write Byte, Half- set PE, ERR, CP, TYPE in MFSR
word Memory Access save PA in MFAR
(Read-modify-write) cause L15 interrupt
(Translation Error) Tablewalk on set PE, FT=4, L, AT in SFSR
Instruction Memory Access cause Instruction Access Error trap (D stage)
(Translation Error) Tablewalk on IU, FPU set PE, FT=4,L, AT, FAV in SFSR
Data Memory Access save iu_dva in SFAR
cause Data Access Error trap (R stage)
IO DMA Read return SBus Error Acknowledge
Memory Access set PE, ERR in MFSR
save PA in MFAR, cause L15 interrupt
I0 DMA Write Byte, Half- return SBus Error Acknowledge
word Memory Access set PE, ERR in MFSR
(Read-modify-write) save PA in MFAR, cause L15 interrupt
Tablewalk on I0 DMA mtul% SBus Error Agcknowledge
Memory Acces set PE, ERR in MFSR
ory Access save PA in MFAR, cause L15 interrupt
SBus Controller Time Out CPU SBus Read Access set TO, FT=5, FAV in SFSR
save iu_dva in SFAR
cause Data Access Error trap (R stage)
CPU SBus Write Access
set TO, ERR, SIZE, ~RD, FAV in AFSR
save PA in AFAR
cause L15 interrupt
IO DMA Access return SBus Error Acknowledge
SBus Late Error (Ack) CPU SBus Read Access set LE, ERR, SIZE, RD, FAV in AFSR
CPU SBus Write Access set LE, ERR, SIZE, FAV(sometimes) in AFSR
Revision 02 of 15 December 1992 TMS390S10 151

microSPARC Reference Guide Texas Instruments
Error Initiator Result Summary
SBus Error Acknowledge CPU Read Access set BE, FT=5, FAV in SFSR
save iu_dva in SFAR
cause Data Access Error trap (R stage)
CPU Write Access set BE, ERR, SIZE, ~RD, FAV in
AFSR, save PA in AFAR
cause L15 interrupt using CP_STAT
Invalid Address Error I0 DMA PTE Access return SBus Error Acknowledge
(IOPTE Vbit=0)
ET=0 during Tablewalk on set FT=1,L, AT in SFSR
Instruction Memory Access cause Instruction Access Exception trap
(D stage)
ET=0 during Tablewalk on set FT=1,L, AT, FAV in SFSR
IU, FPU Data Memory Access | save iu_dva in SFAR
cause Data Access Exception trap (R stage)
Translation Error =3 during Tablewalk on set FT=4, L, AT in SFSR
Instruction Memory Access cause Instruction Access Error trap (D stage)
ET=3 during Tablewalk on set FT=4, L, AT, FAV in SFSR
IU, FPU Data Memory Access | save iu_dva in SFAR
cause Data Access Error trap (R stage)
Control Space Error CPU Invalid ASI Access set FT=5,L, FAV, CS in SFSR
save iu_dva in SFAR
cause Data Access Exception trap (R stage)
CPU Invalid Size of Access set FT=5, L, FAV, CS in SFSR
save iu_dva in SFAR
cause Data Access Exception trap (R stage)
CPU Invalid Virtual Address set FT=5, L, FAV, CS in SFSR
during ASI requiring VA save iu_dva in SFAR
cause Data Access Exception trap (R stage)
Privilege Violation Error IU Instruction set FT=3, L, AT in SFSR
(S bit and not ACC 6,7) Memory Access cau(ss Instru)ction Access Exception trap
stage
Privilege Violation Error IU, FPU Data set FT=3, AT, FAV in SFSR
(ACC and ASI checked) Memory Access save iu_dva in SFAR
cause Data Access Exception trap (R stage)
Protection Error IU, FPU Data set FT=2, L, AT, FAV in SFSR
(Memory page ACC and Memory Access save iu_dva in SFAR
the ASI are checked) cause Data Access Exception trap (R stage)
Protection Error IU, FPU Data set FT=2, L, AT, FAV in SFSR
(Memory page ACC is checked) Memory Access cause Instruction Access Exception trap
(D stage)
Protection Error 10 DMA Write return SBus Error Acknowledge
(Write to read only page)
152 TMS390S10 Revision 02 of 15 December 1992

Texas Instruments

microSPARC Reference Guide

11.0 ASI Map

11.0.1 Overview

Table 11.1 - ASI’s Supported by microSPARC

Revision 02 of 15 December 1992

This chapter describes the microSPARC ASI map.The Address Space

Identifier (ASI) is appended to the virtual address by the SPARC IU

when it accesses memory. The ASI encodes whether the processor is in

supervisor or user mode, whether an access is to instruction or data
memory, and is used to perform other internal cpu functions.

The table below lists all of the ASI values supported in a microSPARC
system. Only the least significant 6 bits of the ASI are decoded.

ASI Function Access Size
00 Reserved - -
01-02 | Unassigned - -
03 Ref MMU Flush/Probe Read/Write Single
04 MMU Registers Read/Write Single
05 Unassigned - -
06 Ref MMU Diagnostics Read/Write Single
07 | Unassigned - -
08 User Instruction Read/Write All
09 Supervisor Instruction Read/Write All
0A | User Data Read/Write All
0B Supervisor Data Read/Write All
0oC Instruction Cache Tag Read/Write Single
0D | Imstruction Cache Data Read/Write Single
OE Data Cache Tag Read/Write Single
OF Data Cache Data Read/Write Single
10-14 | Unassigned - -
15-16 | Reserved - -
17-1C | Unassigned - -
1D-1E | Reserved - -
1F Unassigned - -
20 Ref MMU Bypass Read/Write All
21-2F | Reserved - -
30-35 | Unassigned - -
36 Instruction Cache Flash Clear Write Single
37 Data Cache Flash Clear Write Single
38 Unassigned - -
39 Data Cache Diagnostic Register Access Read/Write Single
3A-3F | Unassigned - -
40-FF | Reserved - -
TMS390S10 153

microSPARC Reference Guide Texas Instruments

154

ASI Descriptions:
ASI=0x00 Reserved - This space is architecturally reserved.
ASI=0x01-0x02 Unassigned - This space is unassigned and may be used in the future.
ASI=0x03 Ref MMU Flush/Probe - This space is used for a flush or probe

operation. The Virtual Address is decodes as follows.
Figure 11.1 - TLB Flush or Probe Address Format

VFPA Type Reserved
31 - 12 11 08 07 00

Field Definitions:

Virtual Flush or Probe Address (VFPA) - This field is the address
that is used to index into TLB. Depending on the type of flush or
probe not all 20 bits are significant.

Type - This field specifies the extent of the flush or the level of the
entry probed.

Reserved - These bits are ignored. They should be set to zero.

A flush is caused by a single STA instruction and a probe by a single
LDA instruction. '

Flushes are used to maintain TLB consistency by conditionally
removing one or more page descriptors. These conditions vary as
shown. Note that any TLB flush also flushes the ITBR automatically.

Table 11.2 - TLB Entry Flushing
VAJ11:081! Flush PTE Match Criteria ‘

0 Page (Level 3) AND (Context match OR
ACC=6-7) AND VA[31:12] match

1to4 Entire None (Entire TLB Flush)

5toF Reserved

TMS390510 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

Probes cause the MMU to perform a table walk stopping when a PTE
has been reached as shown.

Table 11.3 - CPU TLB Entry Probing

VA[11:08] Probe Returned Data
0 Page Level 3PTE or 0
1 Segment Level 2 PTE or 0
2 Region Level 1 PTEor 0
3 Context Level OPTE or 0
4 Entire (P,’;Ig from Table Walk
StoF Reserved
ASI=0x04 MMU Registers - This space is used to read and write internal MMU

registers using the Virtual Address to reference them. Single word
accesses only should be used, others result in an error.

Table 11.4 - Address Map for MMU Registers

VA[12:08] Register

00 Control Register

01 Context Table Pointer Register

02 Context Register

03 Synchronous Fault Status Register

04 Synchronous Fault Address Register
05-OF |Reserved

10 TLB Replacement Control Register

11-12 | Reserved
13 Synchronous Fault Status Register**
14 Synchronous Fault Address Register**

15-1F | Reserved
**Writeable for diagnostic purposes

VA bits [31:13] are zero. VA bits [07:00] are ignored and should be
set to zero by software.

ASI=0x05 Unassigned - This space is unassigned and may be used in the future.

Revision 02 of 15 December 1992 TMS390S10 155

microSPARC Reference Guide

Texas Instruments

ASI=0x06

ASI=0x07

ASI=0x08

ASI=0x09

ASI=0x0A

ASI=0x0B

ASI=0x0C

ASI=0x0D

156

Ref MMU Diagnostics - Diagnostic reads and writes can be made to the
32 TLB entries and the Instruction Translation Buffer Register using the
virtual address to specify which entry and whether the PTE or Tag
section is to be referenced.

Unassigned - This space is unassigned and may be used in the future.

User Instruction - This space is defined and reserved by SPARC for
user instructions.

Supervisor Instruction - This space is defined and reserved by SPARC
for supervisor instructions.

User Data - This space is defined and reserved by SPARC for user data.

Supervisor Data - This space is defined and reserved by SPARC for
supervisor data.

Instruction Cache Tag - This space is used for reading and writing
instruction cache tags by using the LDA and STA instructions at virtual
addresses in the range of 0x0 to OxOFFF on modulo-32 boundaries.

Figure 11.2 - Instruction Cache Tag Entry

Rsvd IPA Tag[26:12] Rsvd Valid

31 27126 1211 01 00

Bits [31:27,11:01] are not implemented, should be written as 0 and will
be read as 0.

Instruction Cache Data - This space is used for reading and writing
instruction cache data by using the LDA and STA instructions at virtual
addresses in the range of 0x0 to OxOFFF.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

ASI=0x0E

ASI=0x0F

ASI=0x10-0x14

ASI=0x15-0x16

ASI=0x17-0x1C

ASI=0x1D-0x1E

ASI=0x1F

ASI=0x20

ASI=0x21-0x2F

Revision 02 of 15 December 1992

Data Cache Tag - This space is used for reading and writing data cache
tags by using the LDA and STA instructions at virtual addresses in the
range of 0x0 to 0x03FF on modulo-16 boundaries.

Figure 11.3 - Data Cache Tag Entry

Reserved PA Tag[26:11] Reserved Valid

31 27 26 1110 01 00
Bits [31:27,10:01] are not implemented, should be written as 0 and will
be read as 0.

Data Cache Data - This space is used for reading and writing data cache
data by using the LDA and STA instructions in ASI OxF at virtual
addresses in the range of 0x0 to Ox03FF.

Unassigned - This space is unassigned and may be used in the future.

Reserved - This space is architecturally reserved.

Unassigned - This space is unassigned and may be used in the future.

Reserved - This space is architecturally reserved.

Unassigned - This space is unassigned and may be used in the future.

Ref MMU Bypass - This space can be used to access an arbitrary
physical address. It is particularly useful before the MMU or main
memory have been initialized. The MMU does not perform an address
translation rather a physical address is formed from the least significant
31 bits of the Virtual Address (PA[30:00] := VA[30:00]). Accesses in
bypass mode are not cacheable.

Reserved - This space is architecturally reserved.

TMS390S10 157

microSPARC Reference Guide

Texas Instruments

ASI=0x30-0x35

ASI=0x36

ASI=0x37

ASI=0x38

ASI=0x39

ASI=0x3A-0x3F

ASI=0x40-0xFF

158

Unassigned - This space is unassigned and may be used in the future.

Instruction Cache Flash Clear - The instruction cache is completely
flushed by any type of alternate store instruction to this ASI. All
instruction cache valid bits are reset (to zero) by this operation. Note that
the pipeline is NOT flushed by this sta as it would be on a SPARC
FLUSH instruction.

Data Cache Flash Clear - The data cache is completely flushed by any
type of alternate store instruction to this ASI. All data cache valid bits
are reset (to zero) by this operation.

Unassigned - This space is unassigned and may be used in the future.

Data Cache Diagnostic Register Access - This space is used to read
and write the internal Data Cache Registers. iu_dva[08] is also used to
select from between WRBO and WRB1. Single word accesses only
should be used, others result in an internal error. The Virtual Address
map to these registers:

Table 11.5 - Address Map for Data Cache Registers

VA[08] Register

0 Write Buffer O
1 Write Buffer 1

VA bits [31:09] are zero. VA bits [07:00] are ignored and should be
set to zero by software.

Unassigned - This space is unassigned and may be used in the future.

Reserved - Since the 2 high order bits are not decoded these encodings
should not be used.

TMS390S10 Revision 02 of 15 December 1992

Texas Instruments microSPARC Reference Guide

2.16 References 1. The SPARC Architecture Manual, Version 8, of December 11, 1990
2. SBus Specification, Rev. B.0, 1990

3. Texas Instruments TMS390Z50 SuperSPARC Datasheet. SPKS011
Version, August, 1992.

4., Texas Instruments TMS390Z50 SuperSPARC User Guide.

5. Texas Instruments TMS390S10 microSPARC Datasheet. Version
August 21, 1992.

Revision 02 of 15 December 1992 TMS390S10 159

TEXAS INSTRUMENTS

ERRATA FOR TMS390S10 DATASHEET
(VERSION 21 AUG 92)

CREATED : 8th Dec 1992

LAST UPDATED : 6th Jan 1993

TEXAS INSTRUMENTS

(8th Dec 1992)
Page 8 should read :-

"MPARQO is for MDATAO - MDATA31"
"MPARI is for MDATA32 - MDATA64"

(8th Dec 1992)

Page 11 The Text describing the N/C signals on pins 227,229,230 & 238 should be deleted. These pins
should not be tied low. They are correctly described on page 8 as no connects.

(6 Jan 93)

Page 31 The description of the CAS lines in TABLE 13 should read :-

"CASO data word[63:32]"
"CAS1 data word [31:0]"

(8th Dec 1992)

Page 34 A block diagram showing the SBus address mapping should be added to this part of the

datasheet. The diagram should contain the following data :-

TMS390S10 Physical Memory Map.

0x70000000
0x60000000
0x50000000
0x40000000
0x30000000
0x20000000
0x10000000
0x08000000
0x00000000

SLOT4

SLOT3

SLOT2

SLOT1

SLOTO

UNUSED
CONTROL SPACE
UNUSED

SYSTEM MEMORY

(8th Dec 1992)

Page 91 Add a line the Recommended Operating Conditions Table.

"VIH_IN_CLK High Level Input Voltage on IN_CLK 2.4V(MIN)

TEXAS INSTRUMENTS

(8th Dec 1992)

Page 92 Replace the description of Parameter 1 which currently says :-
"tac(MDATA) Access Time from ~MCAS(going low)" with "*tsu(MDATA) Setup time to
REF_CLK(going high)"
Replace the min value for parameter 1 which is "30.0" with "8.0"

Replace the description of Parameter 2 which currently says :-

"tac(MPAR) Access Time from ~MCAS(going low)" with "*tsu(MPAR) Setup time to
REF_CLK(going high)"

Replace the min value for parameter 2 which is "30.0" with "8.0"

Parameters 3 and 4 have "~MCAS(going low)" in the description, replace this with
"~MCAS(going high)".

Change the minimum value for parameters 3 and 4 from "0.0" to "2.0"
Add the following text under the box containing parameters 1-4:-

"(*) These parameters imply (i) tac(MDATA), Access time from ~MCAS(falling edge) is a
minimum of 30.0nS and (ii) tac(MPAR), Access time from ~MCAS(falling edge) is a minimum
of 30.0nS, but this is not explicitly tested."

(6th Jan 1993)

Page 94 Change the min value of parameter 49 from 3.5 to 2.0 nS.
Change the min value of parameter 50 from 3.5 to 0.5 nS.
Change the min value of parameter 51 from 3.5 to 0.5 nS.

Add a "*" in the parameter description column of parameters 49, 50 & 51.

Under the "SBus interface switching table” add the lines :-
"(*) The SBus specification calls for a minimum hold time of 2.5nS for these parameters. Test
equipment constraints result in a guaranteed minimum hold time which is less than 2.5nS"

(8th Dec 1992)
Page 97 In both parts of figure 23 replace all occurrences of "0.4V" with "0.2V". Replace all occurrences
of "2.4V" with "4.0V".

microSPARC Data Sheet

Use the Texas Instruments microSPARC Data Sheet to define the operating
parameters for the microprocessor, and for any firmware/software
development that you require.

The TI documentation included here is accurate as of the date of release of the
SPARCengine EC OEM Technical Manual. Please call Texas Instruments to
ensure that you have the most current documentation. Please use caution in
developing plans on this information until you confirm it is the latest
information available.

L1

L-2 SPARCclassic Engine OEM Technical Manual

TMS390 TMS390S10
INTEGRATED SPARC PROCESSOR

VERSION 8/21/92

® High Performance SPARC Processor 288 217
- 50 MHz Operating Frequency ; MLAHHERAH L s RHSREAHSAERHREH 51
- High Speed Floating Operation
(>10 MFLOPS peak at 50MHz)
- High Speed Integer Operation
(>36 MIPS at 50MHz)

® High Integration

- SPARC Integer Unit

- SPARC Reference Memory Management
Unit

- MEIKO Floating Point Unit

- Instruction Cache (4 KBytes)

- Data Cache (2 KBytes)

-~ SBus Controller supports up to five
external SBus devices = . 145

(SBus specification A.2) i
- Memory Controller up to 128MBytes of 73 144
DRAM

® Full JTAG Testability (IEEE 1149.1)
® SPARC Version 8 Compatible

® TAB packaging for Low Cost and High
Density Board Assembly

® Single 5-V Supply
® 0.8um CMOS Technology
® Operating Temterature Range ...0°C to 70°C

TMS390S10 '
Memory

T

[YSTETTIITITITITIRTINITY

L
nll|n1num||||||n||uu||||munm|nmimummuuuul

AR RN RN R AR R IR RN RER R RRRRIELS

SBus
/
| | [/
/o /0 /0
Figure 1. Typical System Configurations
PRODUCT PREVIEW on products In the Copyright © 1990, Texas Instruments Incorporated
formative or deslgr:’&lru of t:v;lopmom. Characteristic data and other T Revision Information
e e oo e produce it notee o= merontte [EXAS

INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 b]

PRODUCT PREVIEW

M3INTHd 109NA0Hd

TMS390S10 TMS390
INTEGRATED SPARC PROCESSOR
VERSION 8/21/92
Table 1. Pin Assignments
TAB | SIGNAL |TAB | SIGNAL |TAB | SIGNAL |TAB | SIGNAL |TAB | SIGNAL | TAB | SIGNAL
1 VCCC 49 | MDATA[33] | 97 | MDATA[05] | 145 | GNDC 190 GNDP 241 JTDI
2 MPAR[1] | 50 GNDP | 98 | MDATA[04] | 146 | SBDATA[16] | 194 | SBACK[] | 242 | GNDP
3 MDATA[63] | 51 | MDATA[32] | 99 | MDATA[03] | 147 | SBADDR[16] | 195 | SBACK[0] | 243 JTDO
4 MDATA[62] | 52 VCCP 100 VCCP 148 | SBDATA[15] | 196 | SBRO[4] | 244 | MADDR[11]
5 VCCP 53 VCCC 101 | MDATA[02] | 149 | SBADDRI[15] | 197 | SBRQ[3] | 245 | Reserved
6 MDATA[61] | 54 MPAR[O] | 102 | GNDP 150 | SBDATA[14] | 198 | GNDC 246 JTMS
7 GNDP 55 GNDC 103 | MDATA[01] | 151 | SBADDR[14] | 199 | SBRQ[2 | 247 | JTRST |
8 MDATA[60] | 56 | MDATA[31] | 104 | MDATA[00] | 152 GNDP 200 VCCC 248 | RESET |
9 MDATA[59] | 57 | MDATA[30] | 105 | SBDATA31] | 153 | SBDATA[13] | 201 | SBRO[1] | 249 JTCK
MDATA[58] | 58 GNDP 106 VCCC 154 | SBADDR[13] | 202 | SBRQ[0] | 250 VCCC
MDATA[57] | 59 | MDATA[29] | 107 | SBDATA[30] | 155 | SBDATA[12] | 203 251 | IN_CLK
GNDP 60 | MDATA[28] | 108 GNDC 156 | SBADDR[12] | 204 | SBSEL[M] | 252 | GNDC
MDATA[56] | 61 | MDATA[27] | 109 GNDP 157 | SBDATA[11] | 205 | SBOELP] | 253 GNDP |
VCCP 62 VCCP 110 | SBDATA[29] | 158 | SBADDRI11] | 206 GNDP 254 | SBCLK
MDATA[55] | 63 | MDATA[26] | 111 VCCP 159 VCCP 207 | SBSEL[2] | 255 VCCP
MDATA[54] | 64 GNDP 112 | SBDATA[28] | 160 | SBDATA[10] | 208 VCCP 256 IRQP3]
VCCC 65 | MDATA[25] | 113 | SBDATA27] | 161 VCCC 209 | SBSEL[] [257 IRQ[2]
MDATA[53] | 66 | MDATA[24] | 114 VCCC 162 | SBADDR[10] | 210 | SBSEL[0] | 258 IRQ[]
GNDC 67 | MDATA[23] | 115 | SBADDR[27] | 163 GNDC 211 | SBSIZE[2] | 259 IRQI0]
GNDP 68 | MDATA22] | 116 GNDC 164 GNDP 212 GNDP 260 | MADDR[10]
MDATA[52] | 69 GNDP 117 | SBDATA[26] | 165 | SBDATA[09] | 213 | SBSIZE[1] | 261 | MADDRI09]
MDATA[51] | 70 | MDATA[21] | 118 | SBADDR[26] | 166 | SBADDR[09] | 214 | SBSIZE[0] | 262 GNDP
23 | MDATA[50] | 71 VCCP 119 GNDP 167 | SBDATA[08] | 215 | SBREAD | 263 | MADDR[08]
24 VCCP 72 VCCC 120 | SBDATA[25] | 168 | SBADDR[08] | 216 GNDC 264 VCCP
25 | MDATA[49] | 73 GNDC 121 | SBADDR[25] | 169 | SBDATA[07] | 217 VCCC 265 | MADDRI[07]
26 GNDP 74 | MDATA[20] | 122 VCCC 170 | SBADDR[07] | 218 VCCP 266 | MADDRI06]
27 | MDATA[48] | 75 | MDATA[19] | 123 | SBDATA[24] | 171 | SBDATA[06] | 219 | SBGR[4] | 267 | MADDR[05]
28 | MDATA[47] | 76 | MDATA[18] | 124 GNDC 172 | SBADDRI06] | 220 GNDP 268 GNDP |
29 | MDATA[48] | 77 GNDP 125 | SBADDR[24] | 173 GNDP 221 | SBGR[3] | 269 | MADDR[04]
30 VCCC 78 | MDATA[17] | 126 | SBDATA[23] | 174 GNDC 222 | SBGR[2] | 270 | MADDR[03]
31 | MDATA[45] | 79 | MDATA[16] | 127 | SBADDR[23] | 175 | SBDATA[05] | 223 | SBGR[1] | 271 | MADDR[02]
32 GNDC 80 | MDATA[15] | 128 VCCP 176 VCCC 224 | SBGR[0] | 272 VCCP
33 GNDP 81 VCCP 129 | SBDATA[22] | 177 | SBADDR[05] | 225 GNDP 273 VCCC
34 | MDATA[44] | 82 | MDATA[14] | 130 |SBADDR[22] | 178 VCCP 226 | EXT_EVENT | 274 | MADDRIO1]
35 VCCP 83 GNDP 131 GNDP 179 | SBDATA[04] | 227 N/C 275 GNDC
36 | MDATA[43] | 84 | MDATA[13] | 132 | SBDATA[21] | 180 | SBADDRI[04] | 228 VCCP 276 | GNDP
37 | MDATA[42] | 85 | MDATA[12] | 133 | SBADDR[21] | 181 | SBDATA[03] | 229 N/C 277 | MADDRI00]
38 | MDATA[41] | 86 GNDC 134 | SBDATA[20] | 182 | SBADDRI[03] | 230 N/IC 278 | MRASQ)
39 GNDP 87 | MDATA[11] | 135 | SBADDR[20] | 183 | SBDATA[02] | 231 N/C 279 | MRAS[2] |
40 | MDATA[40] | 88 VCCC 136 | SBDATA[19] | 184 | SBADDR[02] | 232 | CP_STAT(1] | 280 | MRAS[]
41 | MDATA[39] | 89 | MDATA[10] | 137 | SBADDR[19] | 185 GNDP 233 GNDP 281 GNDP
42 | MDATA[BS] | 90 GNDP 138 | SBDATA[18] | 186 | SBDATA[01] | 234 | CP.STAT[0] | 282 | MRAS[0]
43 VCCP 91 | MDATA[09] | 139 | SBADDR[18] | 187 | SBADDRI01] | 235 | INT_EVENT | 283 VCCP
44 | MDATAR7] | 92 VCCP 140 GNDP 188 | SBDATA[00] | 236 | REF_CLK | 284 | MCAS[]
45 GNDP 93 | MDATA[08] | 141 | SBDATA[17] | 189 | SBADDRI00] | 237 GNDC 285 | MCASI0]
46 | MDATA[36] | 94 | MDATA[07] | 142 | SBADDR[17] | 190 SBAS | 238 N/C 286 MWE
47 | MDATA[35] | 95 | MDATA[O6] | 143 VCCP 191 VCCP 239 VCCC 287 GNDP
48 | MDATA[34] | 96 GNDP 144 VCCC 192 | SBACKI2] | 240 VCCP 288 | GNDC

PRODUCT PREVIEW documents contain information on products In the :
formative or design phase of development. Characteristic data and other
mclﬁeatlons are design goals. Texas Instruments reserves the right to EXAS

nge or discontinue these products without notice. l UME

2 POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

8|
c

TMS390 TMS390S10
INTEGRATED SPARC PROCESSOR

VERSION 8/21/92

description

The TMS390S10is a highly integrated SPARC RISC single chip processor. This high performance and low cost
processor consists of Integer Unit (IU), MEIKO Floating Point Unit (FPU), Instruction and Data Caches, Memory
Management Unit (MMU), and interface circuits. The TMS390S10 has a performance of over 36 Million
Instructions Per Second (MIPS) and 10+ MFLOPS peak. The TMS390S10 IU contains 120 general purpose
registers(r registers) (7-window register file and 8-global registers) and 32 32-bit floating point registers (f
registers). The TMS390S10 employs Harvard-architecture style of individual bus access to each cache,
implemented using a five-stage pipeline to support a single cycle access of the data cache (single-word LOAD).

The TMS390S10 MMU provides a SPARC reference MMU, as specified by the SPARC Reference MMU
Architecture and an YO MMU. Additionally, internal arbitration logic controls access by the processor, and by
I/O DMA to memory and 1/O devices.

The TMS390S10 has two internal cache systems: 4-KBytes of Instruction Cache and 2-KBytes of Data Cache.
The 2-KByte Data Cache is a direct-mapped, physically-addressed, write-through cache with no write allocate.
This data store is organized as 128 lines of 16 bytes of data. The 4KByte instruction Cache is a
physically-addressed cache. This Instruction store is organized as 128 lines of 32 bytes of data.

The system interfaces include an SBus interface and a Memory interface. The TMS390S10 SBus controller
can support up to five SBus devices. The TMS390S10 memory interface can support amaximum of 128 MBytes
in four banks for the system memory with using 16-Mbit DRAMs. When using 4-Mbit DRAMs, the TMS390S10
can support up to 32 MBytes of system memory. The TMS390S10 memory interface provides complete
control/data signals for memory system with 64-bit data bus. Each 32-bit data word has a corresponding parity
bit.

The TMS390S10 implements full JTAG (IEEE 1149.1) boundary scan using a JTAG test interface.

PRODUCT PREVIEW documents contain Information on products in

the formative or desigh phase of development. Characteristic dataand

other specifications are design goals. Texas Instruments reserves the TEXAS

right to change or discontinue these products without notice. l N UMEN_rS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 3

PRODUCT PREVIEW

M3IA3Hd 109NAdO0Hd

TMS390S10 TMS390
INTEGRATED SPARC PROCESSOR |

VERSION 8/21/92

Block Diagram
FPU ™7
5
IU 1 | JTAG [«
% 32 I | 132
Y
Instruction je—» <> Data
Cache MMU Cache
%w } t% %m
Memory Interface SBus Interface
RFR |e>
MCB DPC SBC
64+2 4 12 32 128

Figure 2. TMS390S10 Block Diagram

PRODUCT PREVIEW documents contain information on products In the
formative or design phase of development. Characteristic data and other
a ifications are design goals. Texas Instruments reserves the right to Tm

nge or discontinue these products without notice. lN UME

4 POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

TMS390 TMS390S10
INTEGRATED SPARC PROCESSOR

VERSION 8/21/92

Overall description

Integer Unit (1U)

The TMS390S10 Integer Unit executes SPARC integer instructions as defined in the SPARC Architecture
Manual (Version 8). The U contains 120 rregisters (7-window registers and 8-global registers) and operates
on instructions using a five-stage pipeline.

MEIKO Floating Point Unit (FPU)
The FPU fully executes all single and double precision FP instructions as defined in the SPARC Architecture
Manual (Version 8). Quad-precision instructions and £ smu1d instruction are notimplemented. They are trapped

to unimplemented_FPop. Since all implemented instructions are executed within hardware, this FPU never
generates unfinished_FPop exception. The FPU contains 2x16x32 fregisters.

Memory Management Unit (MMU)

The MMU is compatible with the SPARC Reference MMU, as defined by the SPARC Architecture Manual
Version 8 appendix.H "SPARC Reference MMU Architecture”. The TMS390S10 MMU also serves as an /O
MMU. This MMU translates 32-bit virtual addresses of each running process to 31-bit physical addresses in
memory. The 3-high order bits of Physical address are maintained to support memory mapping into 8 different
address spaces. The MMU supports 64 contexts.

The MMU also protects memory so that a process can be prohibited from reading or writing to the address space
of another process.

The MMU controls arbitration between /O, Data Cache, instruction Cache, and TLB references to memory,

The MMU contains a 32-entry fully associative TLB and uses a pseudo random algorithm for the replacement
of TLB entries.

Instruction Cache

The Instruction Cache is a 4-KByte, physically tagged cache. The Instruction Cache data is organized as 128
lines of 32 bytes.

Data Cache

The Data Cache is a2-KByte, direct mapped, physically tagged, write through cache with no write allocate. The
data store is organized as 128 lines of 16 bytes.

Data cache read and write hits take no extra pipe cycle except doubleword operations.
LDD takes 2 cycles to complete (1 extra cycle) and STD takes 3 cycles to complete (2 extra cycles).

There are two Store Buffers to hold data being stored from the IU or FPU to memory or other physical devices.
The Store Buffers are 32-bit registers.

PRODUCT PREVIEW documents contain information on products in the
formative or design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice. l EXAS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 5

PRODUCT PREVIEW

M3IA3Hd 10Naodd

TMS390S10 TMS390
INTEGRATED SPARC PROCESSOR |

VERSION 8/21/92

Memory Interface

The TMS390S10 provides a complete DRAM controller which generates all the signals necessary to support
up to 128 MBytes of system memory.

The DRAM bus is 64 bits wide with two parity bits, one covering each 32 bits of data.

The system DRAM is organized as four banks, each of which may be 2 MBytes, 8 MBytes, or 32 MBytes
depending upon the size of DRAM used.

Memory Control Block (MCB)

The Memory Control Block keeps track of the priorities of memory operations and completely provide all signals
necessary to interface to DRAM based main memory. Memory operation can be:

® data read, data write, and read-modify-write for CPU execution
® instruction fetches

® translation buffer accesses during table walks

® reads and writes by I/O devices

® DRAM refresh.

Data aligner and Parity Check/generate logic (DPC)

Due to the minimum size of read/write to DRAM being 32 bits wide, 8 and 16-bit access requires
read-modify-write operation and correct alignment to 32-bit boundary. The DPC aligns data and generates
parity data for writing 32-bit data.

RAM Refresh Control (RFR)

The TMS390S10 RAM Refresh Control logic provides complete DRAM Refresh control. This Refresh Controller
performs CAS-before-RAS refresh. Refresh interval is programmable.

SBus Interface

The SBC Interface performs all functions necessary to interface the TMS390S10 to the SBus, including dynamic
bus sizing, cycle re-run control, burst cycle re-ordering, arbitration, and general SBus control. The SBC works
with the MMU to arbitrate the system and memory resources and for I/O address translations.

SBus Controller (SBC)

The TMS390S10 SBC (SBus Controller) controls direct connected SBus devices. The SBC Control logic
operates as the system SBus Controller. It supports following:

® Programmed Input/Output (PIO) transactions between the CPU and SBus devices

® Direct Virtual Memory Access (DVMA) transactions between SBus masters and local resources.
(referred to as Local DVMA)

® Direct Virtual Memory Access (DVMA) transactions between SBus masters and other SBus slave
devices. (referred to as Bypass DVMA)

For further details on SBus specification, please refer to the SBus Specification Rev A.2. available from Sun
Microsystems. The TMS390S10 does not comply with SBus Rev B.0.

PRODUCT PREVIEW documents contain information on products in the
formative or design phase of development. Characteristic data and other

specifications are design goals. Texas instruments reserves the right to T w
change or dscominuo%hau products without notice. EXAS

INSTRUMENTS

6 POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

TMS390 TMS390S10
INTEGRATED SPARC PROCESSOR
VERSION 8/21/92
Table 2. Pin Function
SIGNAL Vo PIN NO DESCRIPTION
CPSTATT (o) 232 11 — normal
CPSTATO 234 10 — Level 15 interrupt
01 — Trap occurred, when trap disabled
00 — reserved
Lﬁ_ﬁ | 226 External Event. To stop clocks during debug on an externally triggered event.
IN_CLK 1 251 CPU clock input
INT_EVENT o} 235 Intemnal Event. This is an internal counter overflow bit. For debug.
IRQ3 | 256 Interrupt request lines
IRQ2 257
IRQ1 258
IRQO 259
JTCK] 249 JTAG test clock input.
JTDI I 241 JTAG test data input.
JTDO [e] 243 JTAG test data output.
JTMS | 246 JTAG test mode select input.
JTRST [247 JTAG test reset input.
MADDR11 (0] 244 Physical Address Bus. These signals are multiplexed address output.
MADDR10 260 These pins need external buffer to provide the necessary drive for the DRAMs.
MADDR9 261
MADDRS 263
MADDR?7 265
MADDR6 266
MADDRS 267
MADDR4 269
MADDR3 270
MADDR2 271
MADDR1 274
MADDRO 277
MCAST [e) 284 DRAM Column Address Strobe signals.These pins need external buffer to provide the
MCAS0 285 necessary drive for the DRAMs.
MDATA63 110 3 Memory Data Bus
MDATA62 4
MDATA61 6
MDATA60 8
MDATA59 9
MDATA58 10
MDATA57 1
MDATA56 13
MDATAS5 15
MDATAS54 16
MDATAS3 18
MDATAS52 21
MDATA51 22
MDATAS0 23
MDATA49 25
MDATA48 27
MDATA47 28
MDATA46 29
MDATA45 31
MDATA44 34
MDATA43 36
MDATA42 37
MDATA41 38
MDATA40 40
MDATA39 41
MDATA38 42
MDATA37 44
MDATA36 46
MDATA35 47

PRODUCT PREVIEW documents contain Information on products in the

har

formative or design phase of d

opment. C|

data and other
Ifications are design goals. Texas instruments reserves the right to
change or discontinue these products without notice.

TEXas {?
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

PRODUCT PREVIEW

M3IA3dd 10NAOodd

TMS390S10

TMS390

INTEGRATED SPARC PROCESSOR

VERSION 8/21/92
Table 2.Pin Function (continued)
SIGNAL Vo PIN NO DESCRIPTION
MDATA34 110 48 Memory Data Bus
MDATA33 49
MDATA32 51
MDATA31 56
MDATA30 57
MDATA29 59
MDATA28 60
MDATA27 61
MDATA26 63
MDATA25 65
MDATA24 66
MDATA23 67
MDATA22 68
MDATA21 70
MDATA20 74
MDATA19 75
MDATA18 76
MDATA17 78
MDATA16 79
MDATA15 80
MDATA14 82
MDATA13 84
MDATA12 85
MDATA11 87
MDATA10 89
MDATA9 91
MDATAS8 a3
MDATA7 94
MDATA6 95
MDATAS 97
MDATA4 98
MDATA3 99
MDATA2 101
MDATA1 103
MDATAO 104
MPART1 10 2 Memory parity bits.
MPARO 54 MPAR1 is for MDATAQ - MDATA31
MPARO is for MDATA32 - MDATA63
MRAS3 o) 278 DRAM Row Address Strobe signals.
MRAS2 279 These pins need external buffer to provide the necessary drive for the DRAMs.
MRAST 280 MRAS3 : 1st 32MB bank
MRAS0 282 MRAS2 : 2nd 32MB bank
MPAR?1 : 3rd 32MB bank
MPARO : 4th 32MB bank
MWE o) 286 DRAM Wirite Enable. This pin needs external buffer to provide the necessary drive for the
DRAMSs.
NO CONNECTION 238 This line must be open
NO CONNECTION 230 This line must be open
NO CONNECTION 229 This line must be open
NO CONNECTION 227 This line must be open
REF_CLK (0] 236 Reference Clock output at 1/2 input clock (IN_CLK).
RESET [248 Power-up reset
RI_REQ (0] 231 This output signal indicates that the MMU is doing either an operation to memory, to an ASI,
contorl space, or an SBus device. This signal can be used to validate the physical address
observation on the SBus address pins using view mode during debug.

PRODUCT PREVIEW documents contaln Information on products in the
formative or design phase of dev