QUALCOMN\@

Qualcomm Technologies, Inc.

Qualcomm® FastRPC
User Guide

80-N7039-2 B
March 31, 2017

Confidential and Proprietary — Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to:
DocCtrlAgent@qualcomm.com.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its
affiliated companies without the express approval of Qualcomm Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the
express written permission of Qualcomm Technologies, Inc.

Qualcomm Hexagon and QXDM Professional are products of Qualcomm Technologies, Inc. Other Qualcomm products referenced
herein are products of Qualcomm Technologies, Inc. or its subsidiaries.>

Qualcomm, Hexagon, and QXDM Professional are trademarks of Qualcomm Incorporated, registered in the United States and other
countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.SA.

© 2016-2017 Qualcomm Technologies, Inc. All rights reserved.

mailto:%20DocCtrlAgent@qualcomm.com

Revision history

Revision Date Description
A December 2016 Initial release
B March 2017 Numerous changes to support the SDM660 chipset.
80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc.

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Contents

1 INtrodUCTION.....ceeiieie i ————————————— 5
L1 PUIPOSE...oee ettt ettt ettt e ettt e et e e taeesasesesesassRbae e tbeessseeessaeesssaasssaeesseesnseeanssens 5

1.2 CONVENTIONS ...ttt ettt ettt ebe e S o b et et e bt e sbeesbeesateeateembeebeenbeesaeesnees 5

1.3 Technical @SSISTANCE.eerteeriieriieeiie ettt sttt ettt et e sat e st e st et e b e b e saeesaeas 5

2 FaStRPC OVEIVIEWeeiiiiiiiiiieses e cvnss s ssnnnne s 6
2.1 FastRPC fTameWOTK.......c.cocieriiiriiiieieieeeesee ettt staessaeseaesnne e 6

2.2 FaStRPC arcChit@CULEcciveiiiiireeciiriieieerieesieeseesreeieeteesseeseeesnsesnseessaesseesseesssesssennns 7

2.2.1 DSP protection domain and DSP user protection domain............cecceeeeruereennene 8

2.2.2 Android ION alloCator........cccuevieeiieriieiee ettt 8

2.2.3 IDL COMPILET 1itiureriiariieiieieeieaii it sine ettt teesteeeveeeveesbeeve e vaessseseveesseenveesseans 9

2.3 HOW FaStRPC WOTKS..cc..iiieieieeiee e ettt 10

2.4 Memory buffer Management.cc...ciiieeerrierierieneesee e ereesteesieeseesresnseeseeseenseens 11

2.5 CaChE OPETATION .iiuuieerieeieeiiiitireesiieete et et e ebeesteessaesaaesssessseesseesseesseesssesnsesnseenseenseens 13
Threads and PIrOCESSEScviveiferiiiiienienieeeeereerteesseeseesaesseeseesseesseesseesssessseaseenseenseens 13

2.6 Call flOWS.....iiiiieiiiiie sttt ettt ettt e e tbe e tbeebe e beesteesabessbeeebeenbeebeeraens 14

2.7 TO CONCTOIMCY .. aea i ittt et et e et e sreeveesbeete e teesteeetbeesbessbeebeesssesssasssessseesseeseesseens 16

2.8 COAE OrZANIZATION ... ccviiiiiereeriestiesiteeteereereesteesteeetaeetseesseesbeesbeesseesssasssesssesssessseesseens 16

BTN - 153 1 24 2 O3 oY o =1 - 1 £ Lo o L= 17
T B U R 0103 1013 1 ST SRTRR 17

3.2 Call FastRPC fUNCLIONS.......cccviiriieiieriieiie e eie ettt sre e eseestaesaeeseeesnnesnneenns 18

3.3 Push user shared ODJECLSc.evviiirieriiiie et 18

I Fea W 4 1T B0) o] T £ RRR 19

3.5 Mark buffers as uncachedoccoeoeiiiieieiieee e 19

3.5.1 Mark buffers as NON-CONETENLcceereriirieiieieiee et 20

3.6 Allocate DSP local buffers on the DSPccooovivieiiiniiieeeeeee e 20

3.7 Other EXAMPIES ...cvviiiiieiieiiieieeteecie et reere e v e e te e teesta e s b e esbeeabeebeesteesaeesanesssessveenns 20

4 FastRPC debuggingccceeeeeiiiiiiiiiiiiieesssssssssssssssssssssss s s s s ssssssssssssssssssnnes 21
4.1 CommoOn deDUZZING SEPS....eecveervrerireriirieeiierieerieeseestesreereeteesseesseesssesssessseesseesseens 21

4.1.1 Collect logcat logs and kernel 10gs........c.cccvevveereerierieeniienieeieeeeeeee e 21

4.1.2 Collect messages in QXDM Professional™ tool...........ccccceveevenirieneneennene. 21

4.1.3 Collect messages if QXDM Pro is not availableccccoveeevieeiienieniennenen. 22

4.1.4 Enable crashes on the aDSPccccoooiiiiiiiiniiiieeeceece e 22

4.1.5 Collect a crash dumpc.coceeeiieiieniinie et 24

4.1.6 Load a DSP crash dumpcccoveiiiiiiiiiiiieeeeeee et 25

4.1.7 Measure latency in FastRPC callscccoeveeviiiviienieiieiiecie e 25

4.2 DebUZZING PIOCEAUIESecvierietieiiieiieereereeteesteeseestreereesreesbeesseesssesssessseesseesessseens 26
80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 3

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide Contents

4.2.1 FastRPC call fails but there are n0 crashes........ccccoovvvvviiviieiiiiiieeeeeeeeeee 26
4.2.2 Crashes in FastRPC fUNCLIONSeeviviiiiiiiiiiiieeeeeeeeeeeeeeeee e 29
4.2.3 No functional failures in FastRPC functions, but they are slow...................... 31
N =3 1= = e 33
AT Related AOCUMENLSooiiiiiiiiiiiieee ettt e e e e et e e e e e e e e eaaeeeeessesssneaaees 33
A.2 ACTONYMS AN TETINSvvieerieiieieeitreiteeteeteeteesteesteestreetveesbeebeesseesssesssessseesseeseesseens 33
80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc.

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

1 Introduction

1.1 Purpose

This document describes how to use the Qualcomm® FastRPC framework and debug certain
issues.

1.2 Conventions

Code variables appear in angle brackets, for example, <number>.

Shading indicates content that has been added or changed in this revision of the document.

1.3 Technical assistance

For assistance or clarification on information in this document, submit a case to Qualcomm
Technologies, Inc. (QTTI) at https://createpoint.qti.qualcomm.com/.

If you do not have access to the CDMATech Support website, register for access or send email to
support.cdmatech@qti.qualcomm.com:.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 5
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

https://createpoint.qti.qualcomm.com/
mailto:support.cdmatech@qti.qualcomm.com

2 FastRPC overview

A Remote Procedure Call (RPC) allows a computer program calling a procedure to execute in
another remote processor, while hiding the details of the remote interaction.

FastRPC is the Qualcomm-proprietary RPC mechanism used to enable remote function calls
between the CPU and aDSP. Hexagon Access customers using Hexagon Vector eXtension
(HVX) algorithms can use the FastRPC framework because the HVX functions are called in the
CPU, while the actual execution is on the aDSP.

2.1 FastRPC framework

Use the FastRPC framework for all programs involving customer-written modules that are to be
called by the CPU but are to be executed on the aDSP.

Specifically, all HVX use cases in camera streaming, and computer vision applications employ
the FastRPC framework. Therefore, use FastRPC when working on camera streaming or
computer vision use cases that involve HVX algorithms to be executed on the aDSP.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc.
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide

FastRPC overview

2.2 FastRPC architecture

The FastRPC framework exists in the User process domain in both the CPU and aDSP.

NOTE: The following graphic has been updated.

HLOS

aDSP

Application

aDSP Implementation

FastRPC Stub

FastRPC Skel

FastRPC User

FastRPC User

FastRPC Kernel Driver

FastRPC Kernel Driver

Kernel Space

Shared Memory
Driver

[] Generated by IDL compiler

Figure 2-1 FastRPC framework among other software components

[] FastRPC software

For information on the other components in the diagram, refer to the documents listed in
Section A.1.

80-N7039-2 B

Confidential and Proprietary — Qualcomm Technologies, Inc.
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC overview

2.2.1 DSP protection domain and DSP user protection domain

Because the aDSP is a real-time processor whose stability critically affects the overall user
experience, different protection domains (PDs) exist in the aDSP software architecture. These
PDs ensure the stability of the kernel software and the safety of Qualcomm proprietary hardware
information.

There are three protection domains in the aDSP.

m Kernel — Access to all memory of all PDs. The memory footprint of this PD must be the
smallest footprint of all PDs.

m Guest OS — Access to the memory of its own PD, the memory of the User PD, and some
system registers. Many Qualcomm drivers use this PD.

m User — Access only to the memory of its own PD.

The aDSP system firmware automatically makes system calls to the Guest OS or Kernel PD, if
necessary. Customer FastRPC programs run in the User PD.

2.2.2 Android ION allocator

The ION allocator is a contiguous memory allocator provided by the Android platform. It can
allocate a contiguous memory region that both the CPU and aDSP can share.

Use the ION allocator to configure the memory size, alignment, heap ID where memory will be
allocated, and special configuration flags.

For information on memory management, see Section 2.4. For more information on the ION
allocator, refer to the Hexagon SDK ! document page:

<HEXAGON SDK ROOT>/docs/Technologies FastRPC.html#Using%20the%20I0N%20al
locator

!'In this document, Hexagon SDK refers to versions 3.0 and later, unless indicated otherwise.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 8
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC overview

2.2.3 IDL compiler

Interfaces for the aDSP platform and all FastRPC programs are described in a language called
IDL. IDL allows interface authors to expose only what that object does, but not where it resides
or the programming language in which it is implemented. IDL provides flexibility of software
implementation while maintaining a consistent interface for the software module.

Following is a typical IDL header file.

#include "AEEStdDef.idl" f/ Meeded for 'AEEResult’

interface calculator
{
/f This structure iz specific to this interface, so we scope it within the
/f interface to avoid pollution of the global namespace.
struct Complex
float real; // Real part
float imag; // Imaginary part

I

/4 A Vector, consistingyof @ or more Numbers;

typedef sequence<Complex:> Wactor;

/f Compute a*b, where @ @amd b aresboth/complex

AEEResult Mult{im Complex a; in Complex b, rout Complex result);

// Add a and b.

AEEResult Add(in Complex a, in Complex b, rout Complex result);

// Compute the sum of all elements in a wvector

AEEResult Sum{in Vector vec, rout Complex result);

// Compute the product of all elements in a vector

AEEResult Product{in Vector wvec, rout Complex result);
1

When using the function parameters:
» Indicate input parameters as in.
m Indicated parameters to be modified as output as rout.

For more information on the concept and use of the IDL compiler, refer to the Hexagon SDK
document page:

<HEXAGON_ SDK_ROOT>/docs/Tools IDL%20Compiler.html

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 9
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC overview

2.3 How FastRPC works

The FastRPC framework is a typical proxy pattern. The interface object stub and the
implementation skeleton objects are on different processors. FastRPC clients are directly exposed
to the stub object, and the skeleton object is called internally to the FastRPC framework.

The FastRPC framework consists of the following components.

Component Description
Client User mode process that initiates the remote invocation, typically the customer
process.
Stub Autogenerated code linked with the User mode process that marshals
parameters
aDSP RPC kernel driver that receives the remote message invocations,
ADSPRPC driver queues the messages, and then waits for the response after signaling the
remote side.
ADSPRPC framework a!Z)SP RPC framework dequgues the messages from the queue and
dispatches them for processing.
Skel Autogenerated code that unmarshaling parameters
Object Method implementation.
Applications Praceb,]L N aDSP Processor]
user |1, A8 3| 4 5
L] Stub “| ADSPRPC | ADSPRPC &] Method
mode Skel code =
Process € code < Driver <+ Framework < Implementation
10 9 8 | 7 6

Figure 2-2 Interaction of the FastRPC components

1. The User mode process calls the stub version of the function.
The stub code converts the function call to an RPC message.

2. The stub code internally invokes the ADSPRPC driver on the applications processor to queue
the converted message.

3. The ADSPRPC driver on the applications processor sends the queued message to the
ADSPRPC framework on the aDSP.

4. The ADSPRPC framework on the aDSP dispatches the relevant skeleton code.

5. The skeleton code unmarshals the parameter and calls the method implementation.

6. The skeleton code waits for implementation to finish processing, and, in turn, marshals the
return value into the return message.

7. The skeleton code calls the ADSPRPC framework to queue the return message to be
transmitted to the applications processor.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 10

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC overview

8. The ADSPRPC framework on the aDSP sends the return message back to the ADSPRPC
driver on the applications processor.

9. ADSPRPC driver identifies the waiting stub code and dispatches the return value.

10. The stub code unmarshals the return message and sends it to the calling User mode process.

2.4 Memory buffer management

The aDSP is part of the SoC package. Therefore, various processor units (in this case, the aDSP
and CPU) have access to the same hardware memory unit (such as DDR3).

For better memory control, there are multiple logical divisions of the memory. Each processing
unit has exclusive and shared access to various memory areas. Memory protection units (MPUs)
implement the access control.

. N

Shared aDSP

DDR HLOS Memory Methory Memory

Memory Protection Units

Applications Hexagon
Processor Processor

Figure 2-3 Relationship of MPUs and memory buffers

The shared memory is used separately in the CPU and aDSP via different memory translation.
The same region or regions of physical memory are translated into different virtual addresses in
each processing unit via different translation lookahead buffers (TLBs).

As with all standard computers, there is a limited number of TLB entries. If the entries are all
filled, each new memory mapping causes eviction of an existing TLB entry. Adding and evicting
TLB entries eventually slows the entire program, especially when it is avoidable. Therefore, we
strongly recommend allocating large physically contiguous chunks of buffers to be mapped to the
corresponding large virtual address range. Do not map several physically non-contiguous chunks
to represent a virtual contiguous range.

In the latest high-end Qualcomm products, a System Memory Management Unit (SMMU)
introduces another translation layer:

= It optimizes the need to allocate small chunks of memory when larger chunks are not
available

m [t optimizes the need to allocate contiguous physical addresses to minimize the number of
TLB entries

With the SMMU layer, the actual non-contiguous memory chunks are presented in a contiguous
view to each processing unit. However, the SMMU records and gathers the scattered data in its
own records.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 11
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC overview

NoTe: Nothing is required from the software side to configure SMMU functionality.

To ensure contiguous physical memory, use the ION allocator (Section 2.2.2). Following is an
example of rpcmem usage.

int main{) {
void* buf = 8;
f/call this once at the start of your program

rpcmem_init();

// Pass RPCMEM_HEAP_DEFAULT for flags if unsure on what heapid
fFf and flags to pass. RPCMem internally te&kes care of picking
f/ the right heap id and flags wvalue.

buf = rpcmem_alloc(®, RPCMEM_HEAP DEFMULT, 4896);

assert(buf);

memset (buf, Bxff, 4896);
rpcmem_free(buf);

f/call this ence afhthe end

rpcmem_deinit();

return 8;

For more information on memory management in the FastRPC framework, refer to the Hexagon
SDK document:

<HEXAGON_ SDK_ROOT>/docs/Technologies FastRPC.html#RPCMem

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 12
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC overview

2.5 Cache operation

In all multiprocessor computer systems, cache coherency (or cache synchronization) means the
local cache of the shared resources must be up-to-date when accessed, thus ensuring the correct
functionality. The FastRPC framework provides the following methods to ensure cache
coherency, which is related to the IDL compiler (Section 2.2.3):

m If a parameter is designated as in in the IDL builder, the CPU flushes the cache for the buffer
corresponding to the parameter. Then it makes an RPC call, where the DSP invalidates the
cache for the buffer before reading it.

m If a parameter is designated as rout in the IDL builder, the CPU makes an RPC call. The DSP
flushes the cache after writing to the buffer that corresponds to the parameter. Then the CPU
invalidates the cache for the buffer after the RPC call returns and before reading the buffer.

m [f a parameter is designated as inrout in the IDL builder, the cache operations for both in and
rout are executed.

Threads and processes

Both the CPU and aDSP employ multithreaded operating systems, so it is important to understand
the thread and process operations related in each FastRPC call.

m A separate process is created on the DSP for each process on high-level operating system
(HLOS), which is the OS running on the CPU.

o Each process or thread on the HLOS has a corresponding process or thread on the DSP.

o This process is created when the device is opened on the HLOS, and it is destroyed when
the device is closed on the HLOS.

m The shell process called fastrpc_shell_0 is loaded on the DSP when a user process is
spawned. The object of this shell must be compiled together with the DSP build.

m When an RPC message is invoked and no corresponding thread exists on the DSP, the
required thread is created on the DSP.

m The threads are destroyed when the corresponding HLOS thread exits.
More details are provided with debugging examples in Chapter 4.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 13
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC overview

2.6 Call flows

Marking a parameter as in incurs a different call flow from rout.

Application and HLOS HLOS FastRPC DSP FastRPC Skel and
Stub FastRPC User Kernel Library Implementation
Invocation———»,

> Invoke

IOCTL———>

———SMD message—»,

> Invoke queue

Invoke skel and

implementation

[«—Return

D FLUSH cache

l«—Return SMD

> Invalidate cache

[«—Response

i «—Response

Figure 2-4 Call flow: a parameter is designated as in

NoTe: In the call flow diagrams, /OCTL is the same as the IOCTL in all Linux kernel drivers.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 14
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide

FastRPC overview

Appllcsalign and HLOS User Kernel DSP Library Implementation
Invocation————p
> Invoke
IOCTL———>
FLUSH cache <
——RPC call——»
> Invoke queue
) Invalidate cache
| Invoke skel and
method
[«—Return
[«————Response
[«—Response————
[«—Response

Figure 2-5 Call flow: a parameter is designated as rout

NoTE: A parameter designated as inrout will invoke cache coherency operations applied to both in and
rout. Thus, for inrout, add extra cache operations in both the in and rout call flows.

80-N7039-2 B

Confidential and Proprietary — Qualcomm Technologies, Inc.

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

15

Qualcomm® FastRPC User Guide FastRPC overview

2.7 10 coherency

NOTE: This section was added to this document revision.

For each FastRPC invocation (whether the call type is in, rout, or inrout), both the CPU and
aDSP must flush and invalidate the cache to maintain cache coherency in the system. Results
might be additional latency in the FastRPC call and additional overhead for the entire system
performance.

10 coherency eliminates the cache flush and cache invalidations. In Figure 2-5, for example, the
flush operation is implemented as fast forwarding (snooping) from the DSP cache to the CPU
cache. This implementation replaces the requirement for the cache to be flushed and then
reloaded from the DDR, thus avoiding the otherwise necessary memory read/write operations.
Similar steps are executed for bus invalidation.

IO coherency has the following advantages:
= It reduces the time spent on cache cleaning or invalidation.
m It is a hardware feature, allowing the aDSP to snoop into the CPU cache.

Section 4.2.3.1 has a table that lists IO coherency enabled for the MSM8998 chipset. This table
shows a significant improvement in FastRPC latency compared to other targets where 10
coherency is not enabled.

2.8 Code organization

NOTE: This section was added to this document revision.

= HLOS

m Kernel driver — kernel/drivers/char/adsprpc.c

m Built as part of the LA kernel image

m User space — vendor/qgcom/proprietary/adsprpc

m Shared object library: libadsprpc.so

» Daemon process: adsprpcd

= aDSP

®m adsp proc/platform/*

» ADSPRPC framework library that is linked with the aDSP image

The library acts as the transport that accepts remove invocations originating from applications
processor.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 16
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

3 FastRPC operations

The calculator example illustrates how to use FastRPC. Only those areas directly related to
FastRPC are highlighted. For more information about the calculator example, refer to the
Hexagon SDK document:

<SDK root>\docs\calculator_android.html

3.1 Use rpcmem

In the calculator example, calculator_ test.c is compiled on the CPU, and
calculator imp.c is compiled on the aDSP. They are the stub-skeleton pair necessary to form
the FastRPC components in the CPU and aDSP.

Following is the recommended usage of rpcmem.
I. Incalculator test.c::45
rpcmem init ();

o For convenience, when trying FastRPC examples, we recommend using rpcmem
functions instead of the ION functions that are provided in the Android source code.

o The HLOS code must take care of rpcmem operations, not the DSP code.
o Initialize rpcmem before doing anything.

2. Incalculator test.c::49:

printf (Y- allocate %d bytes from ION heap\n”, len);
if (0 == (test = (int*)rpcmem alloc (0, RPCMEM HEAP DEFAULT, len))) {
printf (“Error: alloc failed\n”);
nErr = 1;
goto bail;

}
3. Intest calculator.c::95

if (test) {
rpcmem_free (test) ;

}

rpcmem_deinit () ;
4. Inandroid.min:13 and android.min:22, the following code links the RPC library:

calculator test DLLS += libcalculator libadsprpc

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 17
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC operations

3.2 Call FastRPC functions

If the function is defined in calculator imp.c., calling a FastRPC function does not require
anything special.

For example, in calculator imp.c::10

int calculator sum(const int* vec, int vecLen, int64* res)

In calculator test.c::69:

if (0 != calculator sum(test, num, &result)) {
printf (“"Error: compute on aDSP failed\n”);
nErr = 1;
goto bail;

3.3 Push user shared objects

The calculator_walkthrough.py script provides a general understanding of what is required to
compile and run the calculator examples. The following locations show the built executables and
objects on the CPU and aDSP.

1.

In calculator walkthrough.py::58-61:

Push the Android executable for any standalone applications into /data/. Push the Android
libraries, or the stub shared objects, into /system/1ib.

os.system(‘adb push ‘t+calculator exe+’ /data’)
os.system(‘'adb shell chmod 777 /data/calculator’)
os.system(‘adb push ‘+libcalculator+’ /system/lib’)

Where in 1ibcalculator walkthrough.py::29-30:

calculator exe=HEXAGON_ SDK ROOT+’ /examples/common/calculator/android Deb
ug/ship/calculator’

libcalculator=HEXAGON SDK ROOT+’/examples/common/calculator/android Debu
g/ship/libcalculator.so’

In calculator walkthrough.py::65

Push the DSP libraries, or the skeleton shared objects, into /system/lib/rfsa/adsp:
os.system(‘adb push ‘+libcalculator skel+’ /system/lib/rfsa/adsp’)
Where in calculator walkthrough.py::31:

libcalculator skel=HEXAGON_ SDK ROOT+’/examples/common/calculator/hexagon
_Debug dynamic/ship/libcalculator skel.so’

80-N7039-2 B

Confidential and Proprietary — Qualcomm Technologies, Inc. 18
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC operations

3.4 Sign shared objects

To enhance the security of the shared objects, and to protect the data security of the entire
software system, digitally sign all shared objects that are built.

In calculator_ walkthrough.py::34:

android Debug = ‘make —C’ + HEXAGON SDK ROOT +
‘/examples/common/calculator tree V=android Debug || exit /b’

This example illustrates how to build the calculator Android objects.
1. Comment out calculator walkthrough.py::49:
os.system(call test sig),
2. Incalculator walkthrough.py::46:
call test sig=’python ‘+ HEXAGON_ SDK ROOT+’/scripts/testsig.py’
Given steps 1 and 2, the calculator example will run normally.
However, by changing calculator walkthrough.py::34 as follows:

android Debug = ‘make —C’/ + HEXAGON SDK ROOT +
‘/examples/common/calculator tree V=android Release || exit /b’

In this example, the calculator example will not run unless calculator walkthrough.py::46
is uncommented.

These examples show the importance of signing the user-generated shared objects. Chapter 4
provides more details on how to detect problems where a shared object is not signed.

3.5 Mark buffers as uncached

To minimize latency, mark the ION buffers to be allocated as uncached if the following condition
is true:

Other than DSP HVX processing, the HLOS does not access the allocated buffer (the HLOS
neither reads from nor writes to the allocated buffer).
Continuing with the calculator example, use the following function and parameters to allocate the
RPC memory buffer:
rpcmem alloc (0, RPCMEM HEAP DEFAULT, len);

The second parameter, RECMEM HEAP DEFAULT, means that the allocated memory will be cached.
To allocate an uncached buffer instead, use the RPCMEM HEAP UNCACHED parameter:

rpcmem _alloc (0, RPCMEM HEAP UNCACHED, len);

The reason for this optimization is that all cached buffers are shared across multiple processing
units, so the cache coherency mechanism must be in place. Therefore, if you are certain the
HLOS will not modify this allocated buffer other than during HVX processing, mark the memory
buffer as uncached so that all mechanisms and related latencies will be circumvented.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 19
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC operations

3.5.1 Mark buffers as non-coherent

NOTE: This section was added to this document revision.

For all chipsets where IO coherency is applied, an alternative to marking the ION buffers as
uncached is to register the buffers as non-coherent. The following example shows how to
implement non-coherency:

flags = ION FLAG CACHED | RPCMEM HEAP NONCOHERENT;
rpcmem_alloc (0, flags, len);

3.6 Allocate DSP local buffers on the DSP

A common pitfall when designing algorithms over the FastRPC framework is to allocate all
memory over rpcmem functions, and then send them all to the aDSP. Instead, allocate only what
must be shared with rpcmem functions, and allocate the rest of the memory locally.

In many aDSP algorithms, an intermediate buffer is required to store the data temporarily.
Typically, those buffers are local to the aDSP, and the HLOS is not required to access those
intermediate buffers. We strongly recommend allocating those data buffers inside the aDSP

implementation, instead of allocating them via the ION allocator and then passing them to the
aDSP.

For example, scratch_buf of size 1024 is accessed only on the aDSP.

Instead of calling rpcmem_alloc() in the HLOS (stub) program and then passing the buffer as
an argument:

scratch buf = rpcmem alloc (0, RPCMEM HEAP DEFAULT, 1024);
Call malloc in the aDSP (skel) program, and then use scratch_buf in the aDSP program:
scratch buf = malloc(1024);

Locally allocating the buffers on the aDSP prevents unnecessary FastRPC overhead.

3.7 Other examples
In addition to the calculator android.html example, the Hexagon SDK has other FastRPC
framework examples:

<SDK root>\docs\FastCV\Image Downscale.html
<SDK root>\docs\Camera Streaming\Examples.html

This document does not discuss these examples. Remember the following recommendations
when using these examples:

m . .\FastCV\Image Downscale.html — Be familiar with the concept and usage of the DSP
Computer Vision (CV) function.

m . .\Camera Streaming\Examples.html — Be familiar with the concept and usage of
camera streaming functionalities.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 20
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

4 FastRPC debugging

The following procedures assume that debugging is performed on Windows 7 setups. While most
steps in this section apply to Linux setup as well, some steps do not apply to Linux.

caution: Some Qualcomm utility applications do not yet work reliably on Windows 10 setups. This
document will be updated when support for Windows 10 is complete.

4.1 Common debugging steps

The following steps are common in many debugging procedures described in Section 4.2.

4.1.1 Collect logcat logs and kernel logs

To collect adb logcat logs:
adb logcat
To collect adb logeat while printing it to a file:
adb logcat |tee <filename>.txt
To collect Android kernel messages while printing them to a file:

adb shell cat /proc/kmsg/ (|tee kernel msg.txt)

4.1.2 Collect messages in QXDM Professional™ tool

If you have QXDM Professional (QXDM Pro)?, use the QXDM Pro help document for
information on collecting the messages. For your convenience, following are common keyboard

shortcuts:
Shortcut Description
F3: Message View Displays all collected messages
Alt+] Clear all messages and logs
Ctrl+l Save all messages and logs to a file
Alt+A Save all messages (but not logs) to a text file
Alt+S (When the slide bar is at the bottom of the screen)
Toggle automatic scrolling of messages

2 Obtained from CreatePoint

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 21
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

4.1.3 Collect messages if QXDM Pro is not available

The Hexagon SDK provides other options for collection messages:
= mini-dm
Refer to the documentation in:

<HEXAGON_ SDK ROOT>\docs\Debugging Message%20Logs.html#mini-dm

NoTE: mini-dm works reliably only on Qualcomm MTPs. It is not guaranteed to work on any
other customer devices.

s HLOS kernel
o To enable kernel driver error logs:
adb shell dmesg

o Inkernel/drivers/char/adsprpe shared.h:

ifndef VERI FY PRINT ERROR
#define VERIFY EPRINTF (format, args) pr_err(format, args)
#endif

m HLOS user space

To capture logcat messages:

adb logcat -s_adsprpc

4.1.4 Enable crashes on the aDSP
A common problem for many customer devices is being unable to trigger or induce crashes on the

aDSP. You must enable crashes if you want to trigger them.

The reason why crashes are sometimes not enabled is because Qualcomm enables crash-isolation
protection. Enabling crashes is equivalent to disabling crash-isolation.

4.1.4.1 Restart the aDSP subsystem
The first crash isolation is the aDSP subsystem restart (SSR). With this isolation, crashing in the
aDSP does not cause the crash in the entire system, but causes only the aDSP to restart locally.
1. Find out which subsystem is the aDSP by checking the name of each subsystem:
adb shell cat /sys/bus/msm subsys/devices/subsys<i>/name
Where 1150, 1, 2, ...
The number of i might be different for different customer devices:

/sys/bus/msm_subsys/devices/subsys2 # cat name
adsp

/sys/bus/msm_subsys/devices/subsys3 # cat name
slpi

In this example, subsys?2 is the aDSP.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 22
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

2. Disable SSR for the aDSP subsystem using the following command:

adb shell “echo SYSTEM >
/sys/bus/msm_subsys/devices/subsys2/restart level”

4.1.4.2 Set the debug mode for the aDSP User PD

The aDSP User PD has two modes:
m Default mode — A crash in the User PD does not trigger a crash in the aDSP.
m Debug mode — A crash in the User PD triggers a crash in the aDSP.

Set the Debug mode for the User PD by calling HAP set userpd mode () in the
algorithm/skeleton implementation on the aDSP. For example, use a function such as an
initialization routine.

1. To disable the aDSP SSR from the CPU (per Section 4.1.4.1), set the Debug mode:
adb shell setprop fastrpc.process
This property treats all User PDs as critical on the remote processor (aDSP).

2. Alternatively, treat only the User PD being debugged as critical by setting the
ADSP PROCESS ATTRS environment variable to the program that is running;:

adb shell ADSP_PROCESS ATTRS=1 /data/calculator 0 0 4

4.1.4.3 Induce crashes

Occasionally, you might want to induce a crash to gather logs and other system states at a certain
point. If you do not want to modify the code, the following method allows you to induce a crash
in adb:

>adb root
>adb wait-for-device
>adb shell “echo c¢ > /proc/sysrg-trigger”

NnoTte: There are many other ways to induce crashes. For simplicity, this document provides only this
method.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 23
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

4.1.5 Collect a crash dump
Ensure that the Qualcomm Product Support Tool (QPST) is enabled.

n Ifthe QPST is enabled, the device automatically goes into Download mode, loads the crash
dump onto the device, and reboots.

m Ifthe QPST is not enabled, the device is stuck in Download mode while seeking the
handshake signal to be sent from QPST. Loading will start as soon as QPST is enabled.

To enable the QPST, go to start menu and search for QPST Configuration.

Programs (1)
‘3 QPST Configuration

After the crash dump is loaded, check C:\Programbata\Qualcomm\QPST\Sahara\ for the
folders containing the loaded crash dumps.

o A Y 4 [N EI@
@Qv| . % ProgramData » Qualimm_r QPST » Sahara l) v|‘¢| Search Sahara Pl
Organize v Include in library : S—hare;th - Newfo-lc—ler > =~ [i@l
Y Favorites i Marme . 7 ; Date modified Type Size
B Desktop , Port_COMI1 10/18/2016 8:26 AM File folder

& Downloads . Port_COM33 11/3/2016 3:46 PM File folder
=l Recent Places ’

& OneDrive - Qualg

%7 Dropbox =

4 Libraries
3 Documents
J“- Music
| Pictures

E Videos

1M Computer
S YEFEIWL (C:)

== Removable Disk |

- | 4 I 3

F-_nur

2 items

As shown in this example, there might be more than one subfolder at that location. To determine
which dump was loaded, either search by the COM port number from the device manager or
determine the timestamps of the dumps. In this example, Port COM33 is the recently loaded
crash dump.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 24
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

4.1.6 Load a DSP crash dump

When a crash occurs in the aDSP, refer to Hexagon Multimedia: Android aDSP Crash Analysis
(80-NF768-29).

4.1.7 Measure latency in FastRPC calls

The major difficulty in measuring FastRPC latency is that the CPU and aDSP have different
clock domains: 00:00:01.234 in the CPU clock does not equal to 00:00:01.234 in the aDSP clock.

We recommend measuring the overall latency of FastRPC as:
<CPU execution time> minus the <DSP execution time>

The following sections use the calculator example in the Hexagon SDK. You can further enhance
the measurement by optimizing the functions to decrease the latency of the measurements
themselves. You can also repeatedly execute the same FastRPC call many times, and print only
the total timing values in the last iteration.

4.1.7.1 Profile the CPU execution time

On the CPU side, following these steps in calculator test.c:
1. Add the following line to the file inclusion list:

#include <sys/time.h>
2. Add the following utility function:

unsigned long long get time msec ()
{
struct timeval tv;
gettimeofday (&tv, NULL) ;
return ((tv.tv_sec * 1000) + (tv.tv_usec / 1000));
}
//Note: It’s easy to convert the above function to measure in
microseconds.

3. Use the utility function after the call to the FastRPC functions, and subtract the timestamps to
get the time elapsed:

uint64 timestamp = get time msec();
calculator sum(test, num, &result)

timestamp = get time msec() — timestamp;
printf (Y- sum = %$11d within %11d milliseconds\n”, result,timestamp);
80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 25

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

4.1.7.2 Profile the DSP execution time

On the aDSP side, use the HAP perf get time us () function to get the execution time. In
calculator imp.c, follow these steps:

1. Add the following lines to the file inclusion list:

// profile DSP execution time (without RPC overhead) via HAP perf api’s.
#include “HAP perf.h”

2. Inside the calculator sum() function, add the following lines:

Uint64 timestamp = HAP perf get time us();
FARF (HIGH, “execution time %11d”,HAP perf get time us() — timestamp);

Take the first timestamp as the first line inside the function, and take the second timestamp as
the last line before returning.

4.2 Debugging procedures

NOTE:

421

Following are debugging procedures for the common problems listed in Section 4.1. When new
problems are introduced, Qualcomm will expand or renew these sections as necessary.

Complete steps are provided for simpler problems. For more complicated problems, only the
steps for loading the crash dump or generating more information are provided. More steps are
required to find the root cause and resolve-the problem.

FastRPC call fails but there are no crashes

When a FastRPC call fails without any crashes, verify that crashes are enabled as described in
Section 4.1.4. If they are not enabled, perform the procedures in Section 4.1.4. to enable crashes,
and then check for a crash.

If a crash still does not occur, collect logcat, kernel, and QXDM Pro logs to see what failed in the
call. Following are typical failures.

4.2.1.1 Failures during FastRPC initialization

Kernel logs

Check whether the kernel logs have the following error, which indicates permission was denied
when trying to open an adsprpc-smd device node:

01-01 07:04:48.150 4289 4289 W FastCVTest : type=1400 audit(0.0:77): avc:
denied { read } for name="adsprpc-smd" dev="tmpfs" ino=16418
scontext=u:r:untrusted app:s0:c512,c768

tcontext=u:object r:adsprpcd device:s0 tclass=chr file permissive=0

Add the name of the customer application in the sepolicy file to use this device. The existing
content in the sepolicy file is a good example.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 26

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

logcat

Check whether the logcat has following error, which indicates that an operation was not permitted
and apps_dev _init failed:

01-01 00:06:56.645 2276 2315 E /system/vendor/bin/hbtp daemon:
vendor/gcom/proprietary/adsprpc/src/fastrpc apps user.c:802:Error 57:
apps_dev_init failed. domain 2, errno "Operation not permitted"

Typically, this error occurs because the GLINK/SMD channel was not opened for the channel
(aDSP/cDSP/mDSP). Check whether the DSP is up and running without any issues.

4.2.1.2 Signature failures

For signature failures, the QXDM Pro logs contain error messages that are like this example.

MSG [08500/03] QDSP6/Error 00:03:59.021
sigverify.c 00553 20%a::error: -1: -1 != (*num segments =

GetProp_uint32 (pHandle, “num_ segments”,-1))

MSG [08500/03] QODSP6/Error 00:03:59.022
sigverify.c 00623 20%a::error: -1: 0 == Read Hash From Devcfg(so name, (const
byte**) &p elf->pHashes, &p elf->cbHashes, &num segments)

MSG [08500/02] QDSP6/High 00:03:59.022
sigverify.c 00568 209%9a:0EM ID ——=——=———————=—=—==—— 0x0

MSG [08500/02] QODSP6/High 00:03:59.022
sigverify.c 00569 209a:Debug Fuse Enabled ----—-——-- Yes

MSG [08500/02] QDSP6/High 00:03:59.022
sigverify.c 00570 209a:Testsig Enabled —-—-——---————- No

MSG [08500/02] QDSP6/High 00:03:59.022
sigverify.c 00571 209%a:Testsig file found --------- No

MSG [08500/02] QDSP6/High 00:03:59.022
sigverify.c 00576 209a:module: Module is signed ----> No

MSG [08500/02] QODSP6/High 00:03:59.022
sigverify.c 00581 209a:module: Static hash found --- No

MSG [08500/03] QDSP6/Error 00:03:59.022

map object.c 00491 96:signature verify start failed for libcalculator skel.so
MSG [08500/03] QDSP6/Error 00:03:59.025
rtld.c 00727 3099:dlopen failed, libcalculator skel.so

Android has different versions, so there are two possible locations for the shared objects. If you
are not sure of your version, use the first command to see if your version is newer. Use the second
command to see if your version is older.

1. adb shell 1s /system/vendor/lib/rfsa/adsp
2. adb shell 1ls /system/lib/rfsa/adsp

For example, when using the second command to check for 1ibadsp hvx add constant.so,
you see the following results:

adb shell 1ls /system/vendor/lib/rfsa/adsp
1ibAMF hexagon_skel.so
libadsp hvx add constant.so
libadsp hvx skel.so

libadsp hvx stats.so

us-syncproximity.so

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 27

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugging

These results mean 1ibadsp hvx add constant.so was pushed into
/system/vendor/lib/rfsa/adsp.

Check whether the signatures are generated and whether they are pushed into the right location:

1. Check whether the timestamp is correct. In this example, it is correct.

adb shell 1s /system/vendor/lib/rfsa/adsp —al

-rw-r—r—root root 28256 2016-07-16 09:04

1ibAMF hexagon skel.so

-rw-r—r—root root 14736 2016-08-07 13:40
libadsp hvx add constant.so

-rw-r—r—root root 158136 2016-08-07 13:40 libadsp hvx skel.so
-rw-r—r—root root 78136 2016-07-16 09:04 us-syncproximity.so

2. To check whether the objects are built as debug, run the build command to build your shared
objects. This example shows that you are building the binaries as the debug version:

make tree V=hexagon debug dynamic toolv72 v60

In contrast, the following command builds the binaries as the release version, and you must
sign the shared objects:

make tree V=hexagon Release dynamic_ toolv72 v60

3. To verify whether the signatures are present in the build, use the following command and
search for the keyword, testsig.

adb shell 1ls /system/vendor/lib/rfsa/adsp |grep testsig
testsig-0x8fea24ce.so

note: With Hexagon SDK 3.0 installed, the test signature automatic loading script is located
at <sdk root>\scripts\testsig.py.

4. Edit the Python file to modify the location where test signatures are pushed:

cat ..\..\..\scripts\testsig.py |grep “/system”
os.system(‘adb shell mkdir /system/lib/rfsa’)
os.system(‘adb shell mkdir /system/lib/rfsa/adsp’)
os.system(‘adb push ‘+testsig+’ /system/lib/rfsa/adsp/’)

4.2.1.3 User PD crashes

If there are crashes from the User PD, the QXMD Pro log contains messages like this example:

MSG [08500/03] QDSP6/Error 00:02:26.278
fastrpc _port.c 00079 failed to enqueue msg 3840 3840 93104530 1020100 A800A8000
4096

MSG [08500/03] ODSP6/Error 00:02:26.280
fastrpc _port.c 00079 failed to enqueue msg 3840 3842 3 4020200 A80004000 8192

Because the User PD has already crashed, there is no skeleton function to which the call in the
stub function will map. Therefore, the immediate symptom of a crash in User PD is a failure to
enqueue FastRPC call messages.

The log messages are retrieved by removing the skeleton function implementation in the
calculator examples (calculator _sum function in calculator _imp.c). If a FastRPC function only
has a stub implementation but not a skel, User PD crashes occur.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 28
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

If User PD crash messages are in the log, the crash was not enabled; otherwise, the crash in User
PD brings down the entire system. To ensure that the crash is enabled, follow the steps in

Section 4.1.4. Then you will have more information about the actual point of crash from the crash
dump.

4.2.1.4 Calling functions on a crashed User PD

When calling functions and the User PD crashes, the QXDM Pro log lists the FastRPC error

code 39:
MSG [08500/03] QODSP6/Error 03:55:41.735
fastrpc thread queue.c 00771 O012b::error: 39: ! (nErr =
ftg_enqueue on group (procs, msg))
MSG [08500/03] QODSP6/Error 03:55:41.735

fastrpc _port.c 00088 0l2b:failed to enqueue msg 1029 12441 e69095e0 0 00000000
4096

This message indicates two things:

m The FastRPC session was previously established, and it has crashed by the time we call this
function.

This error typically occurs when the applications processor repeatedly calls the same
FastRPC function across many iterations, and User PD crashes occurred before the latest
iteration calling the same function.

m The User PD crash did not bring down the entire system.

Enable crashes (per Section 4.1.4) to find the actual point of the crash. Gather the logs and
crash dumps accordingly.

Important FastRPC error codes:

#define AEE ENOSUCH 39 // no such name/port/socket/service
exists or valid name/port/socket/service exists or valid

#define AEE EOUTOFHANDLES 45 // out of handles

#define AEE ECONNRESET 104 // Connection reset by peer

4.2.2 Crashes in FastRPC functions

Following are some common problems when crashes occurred in FastRPC functions. When
calling FastRPC functions, crashes can occur whether a User PD crash is enabled or not.

4.2.2.1 Crashes occur without enabling a User PD crash

When crashes are not enabled, but there are still crashes when calling FastRPC functions, load the
dump to check whether the FastRPC threads were running at the time of the crash. Then
determine whether the crash is immediately caused by FastRPC functions in the rootPD.

To determine if a thread is from rootPD, follow these steps:
1. Load the crash dump.
2. In the Trace32 window, click the QT button.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 29
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

3. Find the ASID number for the thread.
o If the ASID number is 0, the thread is from rootPD.
o Otherwise, the thread is from User PD.

As shown in this example, the mbserver thread is on rootPD, and the running mbclient

thread is on User PD.
A 5996 Dumps: Yhulkhwocoder_appdspSusersiminghsuc\M5SME396% 554 CN026114 2840927 drarm _0xE0000000--0xf FHFFFF.Ist - [QURT thread list]
@?. Eile Edit View Var Break BRun CPU Misc Trace Perf Cov HexagonVie0 QURT Window Help
(MLl v E 28 @l suimsaa | @ 22 T@TLT2T3 QT FT IN MM HP ST DL P
tchbptrr UGP threadID priority ASID THNUM state Task MName
F1OAG4ED FO35A850 ooo000140 58 1] WATTING kerneT_root
F10BQ4EQ 9292FCDO ODABOBE co 3 WAITING fevld
F1OBO620 9292EADD 0116F089 co 3 WATTING fewl
F1OBOCE0 FOZABZ268 0063108E co 2 WATTING Jfrpc/fo4clalon
F10BOEED 9292EDS0 QOFZB0S90 co 3 REALY fevi
F1O0B1020 EG91ES5S 0 011FBO0S1 co 2 WATTING EA_1
F10B1160 9292F050 0070EQS2 EF 3 WAITING fevs
9292EC30 00719093 co 3 READY fev2
E&G91EEL1D QOEC9094 c2 2 WATTING EA_S
929162F0 0001095 10 3 WAITING HAP_par_thread_
9292EEFD 00322096 1 3 WATTING feova
EG91EGFO oooDoes EF 2 WAITING EA_D
E&909440 O01F709B co 2 WATTING STrpc/f0d4clalin
E&916090 Qo0000sC 10 2 WATTING HAP_par_thread_
EG913EAD oooooosD 10 2 WAITING HAP_par_thread_
E&911CD0 Qo00009E 10 2 WATTING HAP_par_thread_
EGI0F9AD ooooo0aF Co 2 WAITING Jfrpc/fo4clalig
FO459580 QO00ADAD 10 4] WATTING HAP_par_thread_
E&G30EGED oo0010A1 10 ey 230
EG902ZFFO oooo00AZ BF | 0 BLNNTNG A
E&S00010 QO0000AS co 2 WATTING mem_gc_thread
004913E0 ooooo0Ad 20 S allu
FO4CE3ED Qo0000AS BF Lo BEALN.
FO4Ce010 Qo0000AG 10 o] WATTING HAP_par_thread_
9290B750 o0020A7 10 3 WAITING HAP_par_t hread_

4.2.2.2 Crashes occur after enabling a User PD Crash

To load the crash dump and-analyze the call stacks, internal states, and other information in the
crash dumps, follow the steps in Section 4.1.5.

Check and resolve the following questions:

1. Was the customer thread running when the crash happened?
o If yes, typically something is wrong inside the user algorithm.
o Ifnot, there might be system issues.

2. Is more than one User PD program running at the time of the crash, implying possible

concurrency problems?
3. Are there many threads in the READY state, implying possible deadlocks or thread
starvation?
80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 30

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

4.2.3 No functional failures in FastRPC functions, but they are slow

The following sections describe how to measure latency for FastRPC calls (FastRPC overhead)
accurately.

4.2.3.1 Confirm FastRPC function latency

Hexagon SDK 3.1 and later versions have a FastRPC test function called rpcperf. This utility
allows you to compare the latency vs. the following Qualcomm-measured table.

For more information on using the rpcperf tool, refer to Hexagon SDK documentation in:

<Hexagon DSK ROOT>\docs\Examples Performance.html

8998v2** B996v3 B996v2 B994y2
[noop 2K] 78 61 93 82
[inbuf 32K] 11e 9@ 113 114
[routbuf 32K] 111 a4 112 117
[inbuf 64K] 113 94 124 115
[routbuf 64K] 113 94 118 123
[inbuf 128K] 121 g4 127 138
[routbuf 128K] 119 14 13a 137
[inbuf M] 222 152 331 338
[routbuf mM] 221 130 217 269
[inbuf 4aM] 215 213 g64 853
[routbuf AM7T 213 229 398 7al
[inbuf 8M] 215 267 1559 1518
[routbuf 8M] 218 264 767 1365
[inbuf 16M] 223 488 2957 2872
[routbuf 1eM] 221 432 1483 27e4

Follow the steps in Section 4.1.7 to profile the total FastRPC latency, and then compare your
results with this table.

note: The values in the table are for ideal situations with minimum processing. We expect the actual
values expected to be slightly higher.

4.2.3.2 Analyze FastRPC latency

If the latency is higher than expected, analyze the FastRPC latency:
1. Identify the possible reasons for latency (see the list of reasons).
2. Make the changes for each reason.

3. Profile FastRPC latency again to see if performance improves. If not, start over from step 1.

Common reasons for higher FastRPC latency
m If rpcperf numbers do not agree with the table in Section 4.2.3.1:

o The boot image might not be in the performance kernel.

NoTE: For some Qualcomm builds, the default kernel is the debug kernel with extra code for
debugging.

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 31
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qualcomm® FastRPC User Guide FastRPC debugqging

To check for the image flavors, load boot . img and system. img from
android\out\target\product\msm8996\secondary-boot\.

o Clock voting might not be correct.
Refer to the rpcperf documentation for information on how to vote for maximum clocks.

m If rpcperf numbers agree with the table in Section 4.2.3.1, but the latency of the actual user
program is too high:

o The total number of buffers being allocated via rpcmem operations is too high (more than
dozens of MBs).

o The total amount of memory passed via the FastRPC call is too high.
o The user program unnecessarily uses cached buffers (Section 3.5).

o The user program unnecessary uses intermediate buffers (Section 3.6).

80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 32
MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

A References

A.1 Related documents

Title Number
Qualcomm Technologies, Inc.
Hexagon Multimedia: Fast RPC and Dynamic Loading User Guide for 80-NF769-32
ADSP.BF.2.2 and 2.4
Hexagon Access Elite CAPIv2 API Interface Specification 80-N8098-1
Hexagon Multimedia: aDSP Firmware Overview for ADSP.BF.2.x 80-NF768-21
Sectools: Elfsigner/Secimage Tool User Guide 80-NM248-4
Enabling Secure Boot in MSM8996 Chipsets 80-NV396-81
QACT v6.x.x User Guide 80-VM407-9
Shared Memory Driver API Reference Guide 80-N1924-1
Hexagon Multimedia: Android aDSP Crash Analysis 80-NF768-29

Hexagon SDK 3.0 or later
Hexagon600_SDK.WIN.3.0 Installer or the installer for a later version

A.2 Acronyms and terms

Acronym or term

aDSP Audio DSP

cDSP Compute DSP

cv Computer Vision

HLOS High-level operating system

mDSP Modem DSP

MPU Memory protection unit

PD Protection domain

QPST Qualcomm Product Support Tool

RPC Remote Procedure Call

sDSP Sensors DSP

SMD Shared Memory Driver

SMMU System Memory Management Unit

SoC System-on-chip

SSR Subsystem restart

TCB Task control block

TLB Translation lookahead buffer
80-N7039-2 B Confidential and Proprietary — Qualcomm Technologies, Inc. 33

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

https://createpoint.qti.qualcomm.com/tools/#suite/0b0100398173616c/0b010039817b0ad2

	1 Introduction
	1.1 Purpose
	1.2 Conventions
	1.3 Technical assistance

	2 FastRPC overview
	2.1 FastRPC framework
	2.2 FastRPC architecture
	2.2.1 DSP protection domain and DSP user protection domain
	2.2.2 Android ION allocator
	2.2.3 IDL compiler

	2.3 How FastRPC works
	2.4 Memory buffer management
	2.5 Cache operation
	Threads and processes
	2.6 Call flows
	2.7 IO coherency
	2.8 Code organization

	3 FastRPC operations
	3.1 Use rpcmem
	3.2 Call FastRPC functions
	3.3 Push user shared objects
	3.4 Sign shared objects
	3.5 Mark buffers as uncached
	3.5.1 Mark buffers as non-coherent

	3.6 Allocate DSP local buffers on the DSP
	3.7 Other examples

	4 FastRPC debugging
	4.1 Common debugging steps
	4.1.1 Collect logcat logs and kernel logs
	4.1.2 Collect messages in QXDM Professional™ tool
	4.1.3 Collect messages if QXDM Pro is not available
	4.1.4 Enable crashes on the aDSP
	4.1.4.1 Restart the aDSP subsystem
	4.1.4.2 Set the debug mode for the aDSP User PD
	4.1.4.3 Induce crashes

	4.1.5 Collect a crash dump
	4.1.6 Load a DSP crash dump
	4.1.7 Measure latency in FastRPC calls
	4.1.7.1 Profile the CPU execution time
	4.1.7.2 Profile the DSP execution time

	4.2 Debugging procedures
	4.2.1 FastRPC call fails but there are no crashes
	4.2.1.1 Failures during FastRPC initialization
	4.2.1.2 Signature failures
	4.2.1.3 User PD crashes
	4.2.1.4 Calling functions on a crashed User PD

	4.2.2 Crashes in FastRPC functions
	4.2.2.1 Crashes occur without enabling a User PD crash
	4.2.2.2 Crashes occur after enabling a User PD Crash

	4.2.3 No functional failures in FastRPC functions, but they are slow
	4.2.3.1 Confirm FastRPC function latency
	4.2.3.2 Analyze FastRPC latency

	A References
	A.1 Related documents
	A.2 Acronyms and terms

