
3/30/2018 A Guide to the Java ExecutorService | Baeldung

http://www.baeldung.com/java-executor-service-tutorial 1/11

A Guide to the Java
ExecutorService
Last modi�ed: January 26, 2018

by baeldung (http://www.baeldung.com/author/baeldung/)

Java (http://www.baeldung.com/category/java/)

I just announced the new Spring 5 modules in REST With Spring:

>> CHECK OUT THE COURSE (/rest-with-spring-course#new-modules)

1. Overview

ExecutorService
(https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html) is a
framework provided by the JDK which simpli�es the execution of tasks in asynchronous mode.
Generally speaking, ExecutorService automatically provides a pool of threads and API for
assigning tasks to it. 

Further reading:

Guide to the Overview of the Guide to

+

 (http://baeldung.com)

http://www.baeldung.com/author/baeldung/
http://www.baeldung.com/category/java/
http://www.baeldung.com/rest-with-spring-course#new-modules
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
http://www.baeldung.com/java-fork-join
http://www.baeldung.com/java-util-concurrent
http://www.baeldung.com/java-concurrent-locks
http://baeldung.com/


3/30/2018 A Guide to the Java ExecutorService | Baeldung

http://www.baeldung.com/java-executor-service-tutorial 2/11

Fork/Join Framework
in Java
(http://www.baeldung.com/java-
fork-join)

An intro to the fork/join

framework presented in Java 7

and the tools to help speed up

parallel processing by

attempting to use all available

processor cores.

Read more

(http://www.baeldung.com/java-

fork-join) →

java.util.concurrent
(http://www.baeldung.com/java-
util-concurrent)

Discover the content of the

java.util.concurrent package.

Read more

(http://www.baeldung.com/java-

util-concurrent) →

java.util.concurrent.Locks
(http://www.baeldung.com/
concurrent-locks)

In this article, we explore

various implementations of

the Lock interface and the

newly introduced in Java 9

StampedLock class.

Read more

(http://www.baeldung.com/java-

concurrent-locks) →

2. Instantiating ExecutorService 

2.1. Factory Methods of the Executors Class

The easiest way to create ExecutorService is to use one of the factory methods of the Executors
class.

For example, the following line of code will create a thread-pool with 10 threads:

The are several other factory methods to create prede�ned ExecutorService that meet speci�c
use cases. To �nd the best method for your needs, consult Oracle’s o�cial documentation
(https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Executors.html).

2.2. Directly Create an ExecutorService

Because ExecutorService is an interface, an instance of any its implementations can be used.
There are several implementations to choose from in the java.util.concurrent
(https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html) package or
you can create your own.

For example, the ThreadPoolExecutor class has a few constructors which can be used
to con�gure an executor service and its internal pool.

1 ExecutorService executor = Executors.newFixedThreadPool(10);

http://www.baeldung.com/java-fork-join
http://www.baeldung.com/java-fork-join
http://www.baeldung.com/java-util-concurrent
http://www.baeldung.com/java-util-concurrent
http://www.baeldung.com/java-concurrent-locks
http://www.baeldung.com/java-concurrent-locks
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Executors.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html


3/30/2018 A Guide to the Java ExecutorService | Baeldung

http://www.baeldung.com/java-executor-service-tutorial 3/11

You may notice that the code above is very similar to the source code
(http://grepcode.com/�le/repository.grepcode.com/java/root/jdk/openjdk/6-
b14/java/util/concurrent/Executors.java#Executors.newSingleThreadExecutor%28%29) of the
factory method newSingleThreadExecutor(). For most cases, a detailed manual con�guration isn’t
necessary.

3. Assigning Tasks to the ExecutorService

ExecutorService can execute Runnable and Callable tasks. To keep things simple in this
article, two primitive tasks will be used. Notice that lambda expressions are used here instead of
anonymous inner classes:

Tasks can be assigned to the ExecutorService using several methods, including execute(), which
is inherited from the Executor interface, and also submit(), invokeAny(), invokeAll(). 

The execute() method is void, and it doesn’t give any possibility to get the result of task’s
execution or to check the task’s status (is it running or executed).

submit() submits a Callable or a Runnable task to an ExecutorService and returns a result of
type Future.

1
2
3

ExecutorService executorService = 
  new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS,   
  new LinkedBlockingQueue<Runnable>());

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Runnable runnableTask = () -> {
    try {
        TimeUnit.MILLISECONDS.sleep(300);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
};
 
Callable<String> callableTask = () -> {
    TimeUnit.MILLISECONDS.sleep(300);
    return "Task's execution";
};
 
List<Callable<String>> callableTasks = new ArrayList<>();
callableTasks.add(callableTask);
callableTasks.add(callableTask);
callableTasks.add(callableTask);

1 executorService.execute(runnableTask);

1
2

Future<String> future = 
  executorService.submit(callableTask);

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/util/concurrent/Executors.java#Executors.newSingleThreadExecutor%28%29


3/30/2018 A Guide to the Java ExecutorService | Baeldung

http://www.baeldung.com/java-executor-service-tutorial 4/11

invokeAny() assigns a collection of tasks to an ExecutorService, causing each to be executed, and
returns the result of a successful execution of one task (if there was a successful execution).

invokeAll() assigns a collection of tasks to an ExecutorService, causing each to be executed, and
returns the result of all task executions in the form of a list of objects of type Future.

Now, before going any further, two more things must be discussed: shutting down
an ExecutorService and dealing with Future return types.

4. Shutting Down an ExecutorService

In general, the ExecutorService will not be automatically destroyed when there is not task to
process. It will stay alive and wait for new work to do.

In some cases this is very helpful; for example, if an app needs to process tasks which appear on
an irregular basis or the quantity of these tasks is not known at compile time.

On the other hand, an app could reach its end, but it will not be stopped because a waiting
ExecutorService will cause the JVM to keep running.

To properly shut down an ExecutorService, we have the shutdown() and shutdownNow() APIs.

The shutdown() method doesn’t cause an immediate destruction of the ExecutorService. It will
make the ExecutorService stop accepting new tasks and shut down after all running threads
�nish their current work.

The shutdownNow() method tries to destroy the ExecutorService immediately, but it doesn’t
guarantee that all the running threads will be stopped at the same time. This method returns a list
of tasks which are waiting to be processed. It is up to the developer to decide what to do with
these tasks.

One good way to shut down the ExecutorService (which is also recommended by Oracle
(https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html)) is to
use both of these methods combined with the awaitTermination() method. With this approach,
the ExecutorService will �rst stop taking new tasks, the wait up to a speci�ed period of time for all
tasks to be completed. If that time expires, the execution is stopped immediately:

1 String result = executorService.invokeAny(callableTasks);

1 List<Future<String>> futures = executorService.invokeAll(callableTasks);

1 executorService.shutdown();

1 List<Runnable> notExecutedTasks = executorService.shutDownNow();

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html


3/30/2018 A Guide to the Java ExecutorService | Baeldung

http://www.baeldung.com/java-executor-service-tutorial 5/11

5. The Future Interface

The submit() and invokeAll() methods return an object or a collection of objects of
type Future, which allows us to get the result of a task’s execution or to check the task’s status (is
it running or executed).

The Future interface provides a special blocking method get() which returns an actual result of
the Callable task’s execution or null in the case of Runnable task. Calling the get() method while
the task is still running will cause execution to block until the task is properly executed and the
result is available.

With very long blocking caused by the get() method, an application’s performance can degrade. If
the resulting data is not crucial, it is possible to avoid such a problem by using timeouts:

If the execution period is longer than speci�ed (in this case 200 milliseconds), a TimeoutException
will be thrown.

The isDone() method can be used to check if the assigned task is already processed or not.

The Future interface also provides for the cancellation of task execution with the cancel() method,
and to check the cancellation with isCancelled() method:

6. The ScheduledExecutorService Interface

1
2
3
4
5
6
7
8

executorService.shutdown();
try {
    if (!executorService.awaitTermination(800, TimeUnit.MILLISECONDS)) {
        executorService.shutdownNow();
    } 
} catch (InterruptedException e) {
    executorService.shutdownNow();
}

1
2
3
4
5
6
7

Future<String> future = executorService.submit(callableTask);
String result = null;
try {
    result = future.get();
} catch (InterruptedException | ExecutionException e) {
    e.printStackTrace();
}

1 String result = future.get(200, TimeUnit.MILLISECONDS);

1
2

boolean canceled = future.cancel(true);
boolean isCancelled = future.isCancelled();



3/30/2018 A Guide to the Java ExecutorService | Baeldung

http://www.baeldung.com/java-executor-service-tutorial 6/11

The ScheduledExecutorService runs tasks after some prede�ned delay and/or periodically. Once
again, the best way to instantiate a ScheduledExecutorService is to use the factory methods of
the Executors class.

For this section, a ScheduledExecutorService with one thread will be used:

To schedule a single task’s execution after a �xed delay, us the scheduled() method of the
ScheduledExecutorService. There are two scheduled() methods that allow you to
execute Runnable or Callable tasks:

The scheduleAtFixedRate() method lets execute a task periodically after a �xed delay. The code
above delays for one second before executing callableTask.

The following block of code will execute a task after an initial delay of 100 milliseconds, and after
that, it will execute the same task every 450 milliseconds. If the processor needs more time to
execute an assigned task than the period parameter of the scheduleAtFixedRate() method,
the ScheduledExecutorService will wait until the current task is completed before starting the
next:

If it is necessary to have a �xed length delay between iterations of the task,
scheduleWithFixedDelay() should be used. For example, the following code will guarantee a 150-
millisecond pause between the end of the current execution and the start of another one.

According to the scheduleAtFixedRate() and scheduleWithFixedDelay() method contracts, period
execution of the task will end at the termination of the ExecutorService or if an exception is
thrown during task execution.

7. ExecutorService vs. Fork/Join 

After the release of Java 7, many developers decided that the ExecutorService framework should
be replaced by the fork/join framework. This is not always the right decision, however. Despite
the simplicity of usage and the frequent performance gains associated with fork/join, there is also
a reduction in the amount of developer control over concurrent execution.

1
2

ScheduledExecutorService executorService = Executors
  .newSingleThreadScheduledExecutor();

1
2

Future<String> resultFuture = 
  executorService.schedule(callableTask, 1, TimeUnit.SECONDS);

1
2

Future<String> resultFuture = service
  .scheduleAtFixedRate(runnableTask, 100, 450, TimeUnit.MILLISECONDS);

1 service.scheduleWithFixedDelay(task, 100, 150, TimeUnit.MILLISECONDS);

Download 
The E-book

Building a REST API with Spring



3/30/2018 A Guide to the Java ExecutorService | Baeldung

http://www.baeldung.com/java-executor-service-tutorial 7/11

ExecutorService gives the developer the ability to control the number of generated threads and
the granularity of tasks which should be executed by separate threads. The best use case for
ExecutorService is the processing of independent tasks, such as transactions or requests
according to the scheme “one thread for one task.”

In contrast, according to Oracle’s documentation
(https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html), fork/join was
designed to speed up work which can be broken into smaller pieces recursively.

8. Conclusion

Even despite the relative simplicity of ExecutorService, there are a few common pitfalls. Let’s
summarize them:

Keeping an unused ExecutorService alive: There is a detailed explanation in section 4 of this
article about how to shut down an ExecutorService; 

Wrong thread-pool capacity while using �xed length thread-pool: It is very important to
determine how many threads the application will need to execute tasks e�ciently. A thread-pool
that is too large will cause unnecessary overhead just to create threads which mostly will be in
the waiting mode. Too few can make an application seem unresponsive because of long waiting
periods for tasks in the queue;

Calling a Future‘s get() method after task cancellation: An attempt to get the result of an
already canceled task will trigger a CancellationException.

Unexpectedly-long blocking with Future‘s get() method: Timeouts should be used to avoid
unexpected waits.

The code for this article is available in a GitHub repository
(https://github.com/eugenp/tutorials/tree/master/core-java-concurrency).

I just announced the new Spring 5 modules in REST With Spring:

>> CHECK OUT THE LESSONS (/rest-with-spring-course#new-modules)

g p g
4?

Email Address

Download

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://github.com/eugenp/tutorials/tree/master/core-java-concurrency
http://www.baeldung.com/rest-with-spring-course#new-modules

