
A Practical Guide to Tree Based Learning Algorithms

By Sadanand Singh — on 2017-07-22 in Machine Learning — 8 Comments

Tree based learning algorithms are quite common in data science competitions

(http://www.datasciencecentral.com/profiles/blogs/want-to-win-at-kaggle-pay-attention-to-your-

ensembles). These algorithms empower predictive models with high accuracy, stability and ease of

interpretation. Unlike linear models, they map non-linear relationships quite well. Common examples of

tree based models are: decision trees (https://en.wikipedia.org/wiki/Decision_tree), random forest

(https://en.wikipedia.org/wiki/Random_forest), and boosted trees

(http://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/).

Table of Contents

Decision Trees

CART Model

Regression Trees

Classification Trees

Common Parameters/Concepts

Example of Classification Tree

EDA

Tree Classifier

Limitations of Decision Trees

Bootstrap Aggregating (Bagging)

Out-of-Bag (OOB) Error

Feature Importance Measures

Random Forest Models

Example of Random Forest Model

Limitations of Random Forests

In this post, we will look at the mathematical details (along with various python examples) of decision trees,

its advantages and drawbacks. We will find that they are simple and very useful for interpretation. However,

they typically are not competitive with the best supervised learning approaches. In order to overcome

various drawbacks of decision trees, we will look at various concepts (along with real-world examples in

Python) like Bootstrap Aggregating or Bagging (https://en.wikipedia.org/wiki/Bootstrap_aggregating), and

Like 65 people like this. Sign Up to see what your friends like.

SHARES

https://sadanand-singh.github.io/authors/sadanand-singh
https://sadanand-singh.github.io/posts/treebasedmodels/
https://sadanand-singh.github.io/categories/machine-learning
http://www.datasciencecentral.com/profiles/blogs/want-to-win-at-kaggle-pay-attention-to-your-ensembles
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Random_forest
http://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://www.facebook.com/ad_campaign/landing.php?campaign_id=137675572948107&partner_id=sadanand-singh.github.io&placement=like_plugin&extra_1=https%3A%2F%2Fsadanand-singh.github.io%2Fposts%2Ftreebasedmodels%2F&extra_2=CN

Random Forests (https://en.wikipedia.org/wiki/Random_forest). Another very widely used topic -

Boosting (https://en.wikipedia.org/wiki/Boosting_(machine_learning)) will be discussed separately in a

future post. Each of these approaches involves producing multiple trees that are combined to yield a single

consensus prediction and often resulting in dramatic improvements in prediction accuracy.

Decision Trees

Decision tree is a supervised learning algorithm. It works for both categorical and continuous input

(features) and output (predicted) variables. Tree-based methods partition the feature space into a set of

rectangles, and then fit a simple model (like a constant) in each one. They are conceptually simple yet

powerful.

Let us first understand decision trees by an example. We will then analyze the process of building decision

trees in a formal way. Consider a simple dataset of a loan lending company’s customers. We are given

Checking Account Balance, Credit History, Length of Employment and Status of Previous Loan for

all customers. The task is to predict the risk level of customers - creditable or not creditable. One sample

solution for this problem can be depicted using the following decision tree:

Classification and Regression Trees or CART

(https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees_.28CART.29) for

short is a term introduced by Leo Breiman (https://en.wikipedia.org/wiki/Leo_Breiman) to refer to

Decision Tree algorithms that can used for classification or regression predictive modeling problems.

CART is one of the most common algorithms used for generating decision trees. It is used in the scikit-

learn implementation of decision trees - sklearn.tree.DecisionTreeClassifier (http://scikit-
SHARES

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Boosting_(machine_learning)
https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees_.28CART.29
https://en.wikipedia.org/wiki/Leo_Breiman
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html) and

sklearn.tree.DecisionTreeRegressor (http://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) for classification and

regression, respectively.

CART Model

CART model involves selecting input variables and split points on those variables until a suitable tree is

constructed. The selection of which input variable to use and the specific split or cut-point is chosen using a

greedy algorithm to minimize a cost function. Tree construction ends using a predefined stopping criterion,

such as a minimum number of training instances assigned to each leaf node of the tree.

Other Decision Tree Algorithms

ID3 (https://en.wikipedia.org/wiki/ID3_algorithm) Iterative Dichotomiser 3

C4.5 (https://en.wikipedia.org/wiki/C4.5_algorithm) successor of ID3

CHAID (https://en.wikipedia.org/wiki/CHAID) Chi-squared Automatic Interaction Detector

MARS (https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines): extends

decision trees to handle numerical data better.

Conditional Inference Trees (https://en.wikipedia.org/w/index.php?

title=Conditional_Inference_Trees&action=edit&redlink=1)

Regression Trees

Let us look at the CART algorithm for regression trees in more detail. Briefly, building a decision tree

involves two steps:

1. Divide the predictor space - that is, the set of possible values for X , X , … , X - into J distinct

and non-overlapping regions, R , R , … , R .

2. For every observation that falls into the region R , make the same prediction, which is simply the

mean of the response values for the training observations in R

In order to construct J regions, R , R , … , R , the predictor space is divided into high-dimensional

rectangles or boxes. The goal is to find boxes R , R , … , R that minimize the RSS, given by

1 2 p

1 2 J

j

j

1 2 J

1 2 J

SHARES

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://en.wikipedia.org/wiki/ID3_algorithm
https://en.wikipedia.org/wiki/C4.5_algorithm
https://en.wikipedia.org/wiki/CHAID
https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
https://en.wikipedia.org/w/index.php?title=Conditional_Inference_Trees&action=edit&redlink=1

y −

where, is the mean response for the training observations within the j box.

Since considering every possible such partition of space is computationally infeasible, a greedy approach is

used to divide the space, called recursive binary splitting (https://en.wikipedia.org/wiki/Binary_splitting). It

is greedy because at each step of the tree building process, the best split is made at that particular step, rather

than looking ahead and picking a split that will lead to a better tree in some future step. Note that all

divided regions R ∀j ∈ [1, J] would be rectangular.

In order to perform recursive binary splitting, first select the predictor X and the cut point s such that

splitting the predictor space into the regions (half planes) R (j, s) = X∣Xj < s and

R (j, s) = X∣Xj ≥ s leads to the greatest possible reduction in RSS. Mathematically, we seek j

and s that minimizes,

y − + y −

where is the mean response for the training observations in R (j, s), and is the mean response

for the training observations in R (j, s). This process is repeated, looking for the best predictor and best

cut point in order to split the data further so as to minimize the RSS within each of the resulting regions.

However, this time, instead of splitting the entire predictor space, only one of the two previously identified

regions is split. The process continues until a stopping criterion is reached; for instance, we may continue

until no region contains more than m observations. Once the regions R , R , … , R have been created,

the response for a given test observation is predicted using the mean of the training observations in the

region to which that test observation belongs.

Classi�cation Trees

A classification tree is very similar to a regression tree, except that it is used to predict a qualitative response

rather than a quantitative one. Recall that for a regression tree, the predicted response for an observation is

given by the mean response of the training observations that belong to the same terminal node. In contrast,

for a classification tree, we predict that each observation belongs to the most commonly occurring class of

training observations in the region to which it belongs (i.e. the mode response

(/posts/descriptivestats/#mode) of the training observations). For the purpose of classification, many a

times one is not only interested in predicting the class, rather also in probabilities of being in a given class.

j=1

∑
J

i∈Rj

∑ (i ŷRj)
2

ŷRj
th

j

j

1 { }

2 { }

i:x ∈R (j ,s)i 1

∑ (i ŷR1)
2

i:x ∈R (j ,s)i 2

∑ (i ŷR2)
2

ŷR1 1 ŷR2

2

1 2 J

SHARES

https://en.wikipedia.org/wiki/Binary_splitting
https://sadanand-singh.github.io/posts/descriptivestats/#mode

The task of growing a classification tree is quite similar to the task of growing a regression tree. Just as in

the regression setting, recursive binary splitting is used to grow a classification tree. However, in the

classification setting, RSS cannot be used as a criterion for making the binary splits. We can replace RSS by

a generic definition of node impurity measure Q , a measure of the homogeneity of the target variable

within the subset regions R , R , … , R . In a node m, representing a region R with N

observations, the proportion of training observations in the m region that are from the k class can be

given by,

= I y = k

where, I y = k is the indicator function that is 1 if y = k, and 0 otherwise.

A natural definition of the impurity measure Q is the classification error rate. The classification error rate is

the fraction of the training observations in that region that do not belong to the most common class:

E = 1 −

Given this is not differentiable, and hence less amenable to numerical optimization. Furthermore, this is

quite insensitive to changes in the node probabilities, making classification error rate quite ineffective for

growing trees. Two alternative definitions of node impurity measure that are more commonly used are gini

index (https://en.wikipedia.org/wiki/Gini_coefficient) and cross entropy

(https://en.wikipedia.org/wiki/Cross_entropy).

Gini index is a measure of total variance across the K classes, defined as,

G = 1 −

A small value of G indicates that a node contains predominantly observations from a single class.

In information theory, Cross Entropy is a measure of degree of disorganization in a system. For a binary

system, it is 0 if system contains all from the same class , and 1 if system contains equal numbers from the

two classes. Hence, similar to Gini Index, Cross Entropy too can be used as a measure of node impurity,

given by,

S = − log

m

1 2 J m m

th th

p̂mk
Nm

1

x ∈Ri m

∑ (i)

(i) i

m

k
max p̂mk

k=1

∑
K

p̂mk(p̂mk)

k=1

∑
K

p̂mk (p̂mk)

SHARES

https://en.wikipedia.org/wiki/Gini_coefficient
https://en.wikipedia.org/wiki/Cross_entropy

Similar to G, a small value of S indicates that a node contains predominantly observations from a single

class.

Common Parameters/Concepts

Now, that we understand decision tree mathematically, let us summarize some of the most common terms

used in decision trees and tree-based learning algorithms. Understanding these terms should also be helpful

in tuning models based on these methods.

Root Node Represents entire population and further gets divided into two or more sets.

Splitting Process of dividing a node into two or more sub-nodes.

Decision Node When a sub-node splits into further sub-nodes, then it is called decision node.

Leaf/ Terminal Node: Nodes that do not get split.

Branch / Sub-Tree A subsection of a tree.

Parent and Child Node A node, which is divided into sub-nodes is called parent node of sub-nodes

where as sub-nodes are the child of parent node.

Minimum samples for a node split Minimum number of samples (or observations) which are

required in a node to be considered for splitting. It is used to control over-fitting, higher values

prevent a model from learning relations which might be highly specific to the particular sample. It

should be tuned using cross validation.

Minimum samples for a terminal node (leaf) The minimum number of samples (or observations)

required in a terminal node or leaf. Similar to the minimum samples for a node split, this is also used to

control over-fitting. For imbalanced class problems, a lower value should be used since regions

dominant with samples belonging to minority class will be much smaller in number.

Maximum depth of tree (vertical depth) The maximum depth of trees. It is used to control over-

fitting, lower values prevent a model from learning relations which might be highly specific to the

particular sample. It should be tuned using cross validation.

Maximum number of terminal nodes Also referred as number of leaves. Can be defined in place of

max_depth. Since binary trees are created, a depth of n would produce a maximum of 2 leaves.

Maximum features to consider for split The number of features to consider (selected randomly)

while searching for a best split. A typical value is the square root of total number of available features.

A higher typically leads to over-fitting but is dependent on the problem as well.

Example of Classi�cation Tree

n

SHARES

For demonstrating different tree based models, I will be using the US Income dataset available at Kaggle

(https://www.kaggle.com/johnolafenwa/us-census-data). You should be able to download the data from

Kaggle.com (https://www.kaggle.com/johnolafenwa/us-census-data). Let us first look at all the different

features available in this data set.

In the above code, we imported all needed modules, loaded both test and training data as data-frames. We

also got rid of the fnlgwt column that is of no importance in our modeling exercise.

Let us look at the first 5 rows of the training data:

df_train_set.head()

Age Workclass Education EdNum MaritalStatus Occupation Relationship Ra

0
39 State-gov Bachelors 13

Never-

married
Adm-clerical Not-in-family Wh

import pandas as pd
import numpy as np
from plotnine import *
import matplotlib.pyplot as plt

from sklearn.preprocessing import LabelEncoder
from sklearn_pandas import DataFrameMapper
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

training_data = './adult-training.csv'
test_data = './adult-test.csv'

columns = ['Age','Workclass','fnlgwt','Education','EdNum','MaritalStatus',
 'Occupation','Relationship','Race','Sex','CapitalGain','CapitalLoss',
 'HoursPerWeek','Country','Income']

df_train_set = pd.read_csv(training_data, names=columns)
df_test_set = pd.read_csv(test_data, names=columns, skiprows=1)
df_train_set.drop('fnlgwt', axis=1, inplace=True)
df_test_set.drop('fnlgwt', axis=1, inplace=True)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

SHARES

https://www.kaggle.com/johnolafenwa/us-census-data
https://www.kaggle.com/johnolafenwa/us-census-data

We also need to do some data cleanup. First, I will be removing any special characters from all columns.

Furthermore, any space or “.” characters too will be removed from any str data.

As you can see, there are two columns that describe education of individuals - Education and EdNum. I

would assume both of these to be highly correlated and hence remove the Education column. The

Country column too should not play a role in prediction of Income and hence we would remove that as

well.

df_train_set.drop(["Country", "Education"], axis=1, inplace=True)
df_test_set.drop(["Country", "Education"], axis=1, inplace=True)

Although the Age and EdNum columns are numeric, they can be easily binned and be more effective. We

will bin age in bins of 10 and no. of years of education into bins of 5.

Age Workclass Education EdNum MaritalStatus Occupation Relationship Ra

1
50

Self-emp-

not-inc
Bachelors 13

Married-civ-

spouse

Exec-

managerial
Husband Wh

2
38 Private HS-grad 9 Divorced

Handlers-

cleaners
Not-in-family Wh

3
53 Private 11th 7

Married-civ-

spouse

Handlers-

cleaners
Husband Bla

4
28 Private Bachelors 13

Married-civ-

spouse

Prof-

specialty
Wife Bla

#replace the special character to "Unknown"
for i in df_train_set.columns:
 df_train_set[i].replace(' ?', 'Unknown', inplace=True)
 df_test_set[i].replace(' ?', 'Unknown', inplace=True)

for col in df_train_set.columns:
 if df_train_set[col].dtype != 'int64':
 df_train_set[col] = df_train_set[col].apply(lambda val: val.replace(" ", ""
 df_train_set[col] = df_train_set[col].apply(lambda val: val.replace(".", ""
 df_test_set[col] = df_test_set[col].apply(lambda val: val.replace(" ", ""))
 df_test_set[col] = df_test_set[col].apply(lambda val: val.replace(".", ""))

1
2
3
4
5
6
7
8
9

10
11

SHARES

Now that we have cleaned the data, let us look how balanced out data set is:

df_train_set.Income.value_counts()

<=50K 24720

>50K 7841

Name: Income, dtype: int64

df_test_set.Income.value_counts()

<=50K 12435

>50K 3846

Name: Income, dtype: int64

In both training and the test data sets, we find <=50K class to be about 3 times larger than the >50K class.

This is begging us to treat this problem differently as this is a problem of quite imbalanced data. However,

for simplicity we will be treating this exercise as a regular problem.

EDA

colnames = list(df_train_set.columns)
colnames.remove('Age')
colnames.remove('EdNum')
colnames = ['AgeGroup', 'Education'] + colnames

labels = ["{0}-{1}".format(i, i + 9) for i in range(0, 100, 10)]
df_train_set['AgeGroup'] = pd.cut(df_train_set.Age, range(0, 101, 10), right=False, l
df_test_set['AgeGroup'] = pd.cut(df_test_set.Age, range(0, 101, 10), right=False, lab

labels = ["{0}-{1}".format(i, i + 4) for i in range(0, 20, 5)]
df_train_set['Education'] = pd.cut(df_train_set.EdNum, range(0, 21, 5), right=False, l
df_test_set['Education'] = pd.cut(df_test_set.EdNum, range(0, 21, 5), right=False, lab

df_train_set = df_train_set[colnames]
df_test_set = df_test_set[colnames]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

SHARES

Now, let us look at distribution and inter-dependence of different features in the training data graphically.

Let us first see how Relationships and MaritalStatus features are interrelated.

(ggplot(df_train_set, aes(x = "Relationship", fill = "MaritalStatus"))
 + geom_bar(position="fill")
 + theme(axis_text_x = element_text(angle = 60, hjust = 1))
)

Let us look at effect of Education (measured in terms of bins of no. of years of education) on Income for

different Age groups.

(ggplot(df_train_set, aes(x = "Education", fill = "Income"))
 + geom_bar(position="fill")
 + theme(axis_text_x = element_text(angle = 60, hjust = 1))
 + facet_wrap('~AgeGroup')
)

SHARES

Recently, there has been a lot of talk about effect of gender based bias/gap in the income. We can look at

the effect of Education and Race for males and females separately.

(ggplot(df_train_set, aes(x = "Education", fill = "Income"))
 + geom_bar(position="fill")
 + theme(axis_text_x = element_text(angle = -90, hjust = 1))
 + facet_wrap('~Sex')
)

SHARES

(ggplot(df_train_set, aes(x = "Race", fill = "Income"))
 + geom_bar(position="fill")
 + theme(axis_text_x = element_text(angle = -90, hjust = 1))
 + facet_wrap('~Sex')
)

SHARES

Until now, we have only looked at the inter-dependence of non-numeric features. Let us now look at the

effect of CapitalGain and CapitalLoss on income.

(ggplot(df_train_set, aes(x="Income", y="CapitalGain"))
 + geom_jitter(position=position_jitter(0.1))
)

SHARES

(ggplot(df_train_set, aes(x="Income", y="CapitalLoss"))
 + geom_jitter(position=position_jitter(0.1))
)

SHARES

Tree Classi�er

Now that we understand some relationship in our data, let us build a simple tree classifier model using

sklearn.tree.DecisionTreeClassifier (http://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html). However, in order to use

this module, we need to convert all of our non-numeric data to numeric ones. This can be quite easily

achieved using the sklearn.preprocessing.LabelEncoder (http://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html) module along with the

sklearn_pandas (https://github.com/pandas-dev/sklearn-pandas) module to apply this on pandas data-

frames directly.

Now we have training as well testing data in correct format to build our first model!

mapper = DataFrameMapper([
 ('AgeGroup', LabelEncoder()),
 ('Education', LabelEncoder()),
 ('Workclass', LabelEncoder()),
 ('MaritalStatus', LabelEncoder()),
 ('Occupation', LabelEncoder()),
 ('Relationship', LabelEncoder()),
 ('Race', LabelEncoder()),
 ('Sex', LabelEncoder()),
 ('Income', LabelEncoder())
], df_out=True, default=None)

cols = list(df_train_set.columns)
cols.remove("Income")
cols = cols[:-3] + ["Income"] + cols[-3:]

df_train = mapper.fit_transform(df_train_set.copy())
df_train.columns = cols

df_test = mapper.transform(df_test_set.copy())
df_test.columns = cols

cols.remove("Income")
x_train, y_train = df_train[cols].values, df_train["Income"].values
x_test, y_test = df_test[cols].values, df_test["Income"].values

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

SHARES

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://github.com/pandas-dev/sklearn-pandas

The simplest possible tree classifier model with no optimization gave us an accuracy of 83.5%. In the case

of classification problems, confusion matrix (https://en.wikipedia.org/wiki/Confusion_matrix) is a good

way to judge the accuracy of models. Using the following code we can plot the confusion matrix for any of

the tree-based models.

Now, we can take a look at the confusion matrix of out first model:

treeClassifier = DecisionTreeClassifier()
treeClassifier.fit(x_train, y_train)
treeClassifier.score(x_test, y_test)

1
2
3

import itertools
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(cm, classes, normalize=False):
 """
 This function prints and plots the confusion matrix.
 Normalization can be applied by setting `normalize=True`.
 """
 cmap = plt.cm.Blues
 title = "Confusion Matrix"
 if normalize:
 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
 cm = np.around(cm, decimals=3)

 plt.imshow(cm, interpolation='nearest', cmap=cmap)
 plt.title(title)
 plt.colorbar()
 tick_marks = np.arange(len(classes))
 plt.xticks(tick_marks, classes, rotation=45)
 plt.yticks(tick_marks, classes)

 thresh = cm.max() / 2.
 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
 plt.text(j, i, cm[i, j],
 horizontalalignment="center",
 color="white" if cm[i, j] > thresh else "black")

 plt.tight_layout()
 plt.ylabel('True label')
 plt.xlabel('Predicted label')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

SHARES

https://en.wikipedia.org/wiki/Confusion_matrix

We find that the majority class (<=50K Income) has an accuracy of 90.5%, while the minority class (>50K

Income) has an accuracy of only 60.8%.

Let us look at ways of tuning this simple classifier. We can use GridSearchCV() (http://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html) with 5-fold cross-

validation to tune various important parameters of tree classifiers.

y_pred = treeClassifier.predict(x_test)
cfm = confusion_matrix(y_test, y_pred, labels=[0, 1])
plt.figure(figsize=(10,6))
plot_confusion_matrix(cfm, classes=["<=50K", ">50K"], normalize=True)

1
2
3
4

SHARES

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

(0.85934092933263717,

 0.85897672133161351,

 {'max_depth': 16,

 'max_features': 9,

 'min_samples_leaf': 16,

 'min_samples_split': 8})

With the optimization, we find the accuracy to increase to 85.9%. In the above, we can also look at the

parameters of the best model. Now, let us have a look at the confusion matrix of the optimized model.

from sklearn.model_selection import GridSearchCV
parameters = {
 'max_features':(None, 9, 6),
 'max_depth':(None, 24, 16),
 'min_samples_split': (2, 4, 8),
 'min_samples_leaf': (16, 4, 12)
}

clf = GridSearchCV(treeClassifier, parameters, cv=5, n_jobs=4)
clf.fit(x_train, y_train)
clf.best_score_, clf.score(x_test, y_test), clf.best_params_

1
2
3
4
5
6
7
8
9

10
11

y_pred = clf.predict(x_test)
cfm = confusion_matrix(y_test, y_pred, labels=[0, 1])
plt.figure(figsize=(10,6))
plot_confusion_matrix(cfm, classes=["<=50K", ">50K"], normalize=True)

1
2
3
4

SHARES

With optimization, we find an increase in the prediction accuracy of both classes.

Limitations of Decision Trees

Even though decision tree models have numerous advantages,

Very simple to understand and easy to interpret

Can be visualized

Requires little data preparation. Note however that sklearn.tree (http://scikit-

learn.org/stable/modules/classes.html#module-sklearn.tree) module does not support missing

values.

The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to

train the tree.

These models are NOT common in use directly. Some common drawbacks of decision tree are:

Can create over-complex trees that do not generalize the data well.

Can be unstable because small variations in the data might result in a completely different tree being

generated.

Practical decision-tree learning algorithms are based on heuristic algorithms such as the greedy

algorithm where locally optimal decisions are made at each node. Such algorithms cannot guarantee

to return the globally optimal decision tree.SHARES

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree

Decision tree learners create biased trees if some classes dominate. It is therefore recommended to

balance the dataset prior to fitting with the decision tree.

Certain class of functions are difficult to model using tree models, such as XOR, parity or

multiplexer.

Most of these limitations can be easily overcome by using several improvements over decision trees. In the

following sections, we will be looking some of these concepts, mainly bagging, and random forests.

Tree Pruning

Since decision trees have a very high tendency to over-fit the data, a smaller tree with fewer splits (that

is, fewer regions R , … , R) might lead to lower variance and better interpretation at the cost of a

little bias. One possible alternative to the process described above is to build the tree only so long as

the decrease in the node impurity measure, Q due to each split exceeds some (high) threshold.

However, due to greedy nature of the splitting algorithm, it is too short-sighted since a seemingly

worthless split early on in the tree might be followed by a very good split i.e., a split that leads to a

large reduction in Q later on.

Therefore, a better strategy is to grow a very large tree T , and then prune it back in order to obtain a

subtree. There can be several strategies to pruning, Cost complexity pruning, also known as weakest

link pruning in one way to do this effectively. Rather than considering every possible subtree, a

sequence of trees indexed by a nonnegative tuning parameter α is considered. For each value of α

there corresponds a subtree T ⊂ T such that

y − + α∣T∣

is as small as possible. Here ∣T∣ indicates the number of terminal nodes of the tree T , R is the

rectangle (i.e. the subset of predictor space) corresponding to the m terminal node, and is the

predicted response associated with R , i.e., the mean (or mode in the case of classification trees) of

the training observations in R . The tuning parameter α controls a trade-off between the subtree’s

complexity and its fit to the training data. When α = 0, then the subtree T will simply equal T . As α

increases, there is a price to pay for having a tree with many terminal nodes, and so the above equation

will tend to be minimized for a smaller subtree. The pruning parameter α can be selected using some

kind of cross validation.

Note that sklearn.tree (http://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree)

decision tree classifier (and regressor) does not currently support pruning.

1 J

m

m

0

0

m=1

∑
∣T∣

i:x ∈Ri m

∑ (i ŷRm)
2

m

th ŷRm

m

m

0

SHARES

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree

Bootstrap Aggregating (Bagging)

In statistics, bootstrapping (https://en.wikipedia.org/wiki/Bootstrapping_(statistics)) is any test or metric

that relies on random sampling with replacement

(https://en.wikipedia.org/wiki/Random_sampling_with_replacement). We saw above that decision trees

suffer from high variance. This means that if we split the training data into two parts at random, and fit a

decision tree to both halves, the results that we get could be quite different. Bootstrap aggregation, or

bagging, is a general-purpose procedure for reducing the variance of a statistical learning method.

Given a set of n independent observations Z , Z , … , Z , each with variance σ , the variance of the

mean of the observations is given by σ /n. In other words, averaging a set of observations reduces

variance. Hence a natural way to reduce the variance and hence increase the prediction accuracy of a

statistical learning method is to take many training sets from the population, build a separate prediction

model using each training set, and average the resulting predictions. Of there is only one problem here - we

do not have access to multiple training data sets. Instead, we can bootstrap, by taking repeated samples

from the (single) training data set. In this approach we generate B different bootstrapped training data sets.

We then train our method on the b bootstrapped training set to get a prediction (x) to obtain one

aggregate prediction,

=

This is called bagging. Note that aggregating can have different meaning in regression and classification

problems. While mean prediction works well in the case of regression problems, we will need to use majority

vote: the overall prediction is the most commonly occurring majority class among the B predictions, as

aggregation mechanism for classification problems.

Out-of-Bag (OOB) Error

One big advantage of bagging is that we can get testing error without any cross validation!! Recall that

the key to bagging is that trees are repeatedly fit to bootstrapped subsets of the observations. One can show

that on average, each bagged tree makes use of around ⁄ of the observations. The remaining ⁄ of the

observations not used to fit a given bagged tree are referred to as the out-of-bag (OOB) observations. We can

predict the response for the i observation using each of the trees in which that observation was OOB.

1 2 n
2

Z̄ 2

th f̂ ∗b

f̂ bag

⎩⎪⎪⎪
⎪⎪
⎨
⎪⎪⎪
⎪⎪⎧ (x)

B

1

b=1

∑
B

f̂ ∗b

(x)
b=1…B

arg max f̂ ∗b

 for Regression Problems

 for Classification Problems

2
3
rd 1

3
rd

thSHARES

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Random_sampling_with_replacement

This will yield around B/3 predictions for the i observation. Now using the same aggregating

techniques as bagging (average for regression and majority vote for classification), we can obtain a single

prediction for the i observation. An OOB prediction can be obtained in this way for each of the n

observations, from which the overall OOB MSE (for a regression problem) or classification error (for a

classification problem) can be computed. The resulting OOB error is a valid estimate of the test error for

the bagged model, since the response for each observation is predicted using only the trees that were not fit

using that observation.

Feature Importance Measures

Bagging typically results in improved accuracy over prediction using a single tree. However, it can be

difficult to interpret the resulting model. When we bag a large number of trees, it is no longer possible to

represent the resulting statistical learning procedure using a single tree, and it is no longer clear which

variables are most important to the procedure. Thus, bagging improves prediction accuracy at the expense

of interpret-ability.

Interestingly, one can obtain an overall summary of the importance of each predictor using the RSS (for

bagging regression trees) or the Gini index ((https://en.wikipedia.org/wiki/Gini_coefficient)) (for bagging

classification trees). In the case of bagging regression trees, we can record the total amount that the RSS is

decreased due to splits over a given predictor, averaged over all B trees. A large value indicates an

important predictor. Similarly, in the context of bagging classification trees, we can add up the total amount

that the Gini index is decreased by splits over a given predictor, averaged over all B trees.

sklearn (http://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html) module’s

different bagged tree-based learning methods provide direct access to feature importance data as properties

once the training has finished.

Random Forest Models

Even though bagging provides improvement over regular decision tress in terms of reduction in variance

and hence improved prediction, it suffers from subtle drawbacks: Bagging requires us to make fully

grown trees on bootstrapped samples, thus increasing the computational complexity by B times.

Furthermore, since trees in the base of bagging are correlated, the prediction accuracy will get saturated as a

function of B .

th

th

SHARES

https://sadanand-singh.github.io/posts/treebasedmodels/(https://en.wikipedia.org/wiki/Gini_coefficient)
http://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html

Random forests provide an improvement over bagged trees by way of a random small tweak that decorrelates the

trees. Unlike bagging, in the case of random forests, as each tree is constructed, only a random sample of

predictors is taken before each node is split. Since at the core, random forests too are bagged trees, they

lead to reduction in variance. Additionally, random forests also leads to bias reduction since a very large

number of predictors can be considered, and local feature predictors can play a role in the tree construction.

Random forests (https://en.wikipedia.org/wiki/Random_forest) are able to work with a very large number

of predictors, even more predictors than there are observations. An obvious gain with random forests is

that more information may be brought to reduce bias of fitted values and estimated splits.

There are often a few predictors that dominate the decision tree fitting process because on the average they

consistently perform just a bit better than their competitors. Consequently, many other predictors, which

could be useful for very local features of the data, are rarely selected as splitting variables. With random

forests computed for a large enough number of trees, each predictor will have at least several opportunities

to be the predictor defining a split. In those opportunities, it will have very few competitors. Much of the

time a dominant predictor will not be included. Therefore, local feature predictors will have the opportunity

to define a split.

There are three main tuning parameters of random forests:

Node Size: Unlike in decision trees, the number of observations in the terminal nodes of each tree

of the forest can be very small. The goal is to grow trees with as little bias as possible.

Number of Trees: In practice, few hundreds trees is often a good choice.

Number of Predictors Sampled: Typically, if there are a total of D predictors, D/3 predictors in

the case of regression and predictors in the case of classification make a good choice.

Example of Random Forest Model

Using the same income data as above, let us make a simple RandomForest classifier model with 500 trees.

Even without any optimization, we find the model to be quite close to the optimized tree classifier with a

test score of 85.1%. In terms of the confusion matrix, we again find this to be quite comparable to the

optimized tree classifier with a prediction accuracy of 92.1% for the majority class (<=50K Income) and a

prediction accuracy of 62.6% for the minority class (>50K Income).

√D

rclf = RandomForestClassifier(n_estimators=500)
rclf.fit(x_train, y_train)
rclf.score(x_test, y_test)

1
2
3

SHARES

https://en.wikipedia.org/wiki/Random_forest

As discussed before, random forest models also provide us with a metric of feature importances. We can

see importance of different features in our current model as below:

y_pred = rclf.predict(x_test)
cfm = confusion_matrix(y_test, y_pred, labels=[0, 1])
plt.figure(figsize=(10,6))
plot_confusion_matrix(cfm, classes=["<=50K", ">50K"], normalize=True)

1
2
3
4

importances = rclf.feature_importances_
indices = np.argsort(importances)
cols = [cols[x] for x in indices]
plt.figure(figsize=(10,6))
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), cols)
plt.xlabel('Relative Importance')

1
2
3
4
5
6
7
8

SHARES

Now, let us try to optimize our random forest model. Again, this can be done using the GridSearchCV() apt

with 5-fold cross-validation as below:

0.86606676699118579

{'max_depth': 24,

 'min_samples_leaf': 4,

 'min_samples_split': 4,

 'n_estimators': 1000}

We can see this model to be significantly better than our all previous models, with a prediction rate of

86.6%. In terms of confusion matrix though, we see a significant increase in the prediction accuracy of the

majority class (<= 50K Income) with slight decrease in the accuracy for the minority class (>50K Income).

parameters = {
 'n_estimators':(100, 500, 1000),
 'max_depth':(None, 24, 16),
 'min_samples_split': (2, 4, 8),
 'min_samples_leaf': (16, 4, 12)
}

clf = GridSearchCV(RandomForestClassifier(), parameters, cv=5, n_jobs=8)
clf.fit(x_train, y_train)
clf.best_score_, clf.best_params_

1
2
3
4
5
6
7
8
9

10

SHARES

This is a common problem with classification problems with imbalanced data.

Finally, let us also look at the feature importance from the best model.

rclf2 = RandomForestClassifier(n_estimators=1000,max_depth=24,min_samples_leaf
rclf2.fit(x_train, y_train)

y_pred = rclf2.predict(x_test)
cfm = confusion_matrix(y_test, y_pred, labels=[0, 1])
plt.figure(figsize=(10,6))
plot_confusion_matrix(cfm, classes=["<=50K", ">50K"], normalize=True)

1
2
3
4
5
6
7

importances = rclf2.feature_importances_
indices = np.argsort(importances)
cols = [cols[x] for x in indices]
plt.figure(figsize=(10,6))
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), cols)
plt.xlabel('Relative Importance')

1
2
3
4
5
6
7
8

SHARES

We can see the answer to be significantly different than the previous random forest model. This is a

common issue with this class of models! In the next post, I will be talking about boosted tree that provide a

significant improvement in terms of model consistency.

Limitations of Random Forests

Apart from generic limitations of bagged trees, some of limitations of random forests are:

Random forests don’t do well at all when you require extrapolation outside of the range of the

dependent (or independent) variables - better to use other algorithms like e.g., MARS

(https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines)

They are quite slow at both training and prediction.

They don’t deal well with a large number of categories in categorical variables.

Overall, Random Forest is usually less accurate than Boosting on a wide range of tasks, and usually slower

in the runtime. In the next post, we will look at the details of boosting. I hope this post has helped you

understand tree based methods in more detail now. Please let me know what topics I missed or should have

been more clear about. You can also let me know in the comments below if there is any particular

algorithm/topic that you want me to write about!

TAGGED IN

Machine Learning (https://sadanand-singh.github.io//tags/machine-learning/) Algorithms (https://sadanand-

singh.github.io//tags/algorithms/) Python (https://sadanand-singh.github.io//tags/python/)
SHARES

https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
https://sadanand-singh.github.io//tags/machine-learning/
https://sadanand-singh.github.io//tags/algorithms/
https://sadanand-singh.github.io//tags/python/
https://disqus.com/home/forums/sadanandsblog/

8 Comments Sadanand's Blog Login1

 Share⤤ Sort by Newest

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Join the discussion…

?

 • Reply •

F Costa • 5 months ago

This moves the "Income" column? Why?

cols = list(df_train_set.columns)
cols.remove("Income")
cols = cols[:-3] + ["Income"] + cols[-3:]
△ ▽

 • Reply •

sadanandsingh • 5 months agoAdmin > F Costa

This is just re-arranginmg the list cols. Then the following code actually sets this
modified list as new arrangement of columns: df_train.columns = cols
△ ▽

 • Reply •

Yonglin • 7 months ago

Nice explanation! It is quite logic and clear tutorial for the Tree Methods.
△ ▽

 • Reply •

sadanandsingh • 7 months agoAdmin > Yonglin

Thanks!
△ ▽

 • Reply •

Tom Fawcett • 7 months ago

Very nice blog post!

One comment: sklearn's DecisionTree implementation is poor, and it gives decision trees a
bad reputation. As you point out, it doesn't do pruning, it doesn't handle missing values, its
default values (which no one seems to change, including you) are inappropriate: split criterion
of 1 or 2 examples, and its introspection methods aren't very good. (One of the reasons for
using a decision tree classifier is that it's usually intelligible, while most other classifiers aren't.)
It's guaranteed to overfit. The trees it produces are fine for use in an ensemble but don't
perform well alone.
△ ▽

sadanandsingh • 7 months agoAdmin > Tom Fawcett

Thanks. I agree with your comment on oversight of default parameters for decision
trees. However, I do feel that theoretically regular decision trees can do only so much
(so no matter what the implementation, they will be quite limited in practical usage).

O th i l t ti t d k f th /b tt i l t ti i

 Recommend  5

Share ›

Share ›

Share ›

Share ›

Share ›

SHARES

https://disqus.com/home/forums/sadanandsblog/
https://disqus.com/home/inbox/
https://disqus.com/by/disqus_fWC8YIYjax/
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3542427478
https://disqus.com/by/sadanandsingh/
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3570662151
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3542427478
https://disqus.com/by/disqus_aHExnKPnFi/
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3444437071
https://disqus.com/by/sadanandsingh/
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3445069135
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3444437071
https://disqus.com/by/disqus_bTtGolAWHI/
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3440156622
https://disqus.com/by/sadanandsingh/
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3445075299
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3440156622
https://disqus.com/by/disqus_fWC8YIYjax/
https://disqus.com/by/sadanandsingh/
https://disqus.com/by/disqus_aHExnKPnFi/
https://disqus.com/by/sadanandsingh/
https://disqus.com/by/disqus_bTtGolAWHI/
https://disqus.com/by/sadanandsingh/

 • Reply •

On the implementation note, do you know of any other/better implementation in
Python?
△ ▽

 • Reply •

becomingguru • 7 months ago

Very nicely done!

Just wondering, how different it would be, if done using TensorFlow?
△ ▽

sadanandsingh • 7 months agoAdmin > becomingguru

Thanks. I have never tried using Tensorflow for random forests. I have only briefly
looked at the tf.learn module. It will be interesting to look at a comparison between
scikit-learn and tensorflow implementations. Do you know how flexible tf.learn is for

Share ›

Share ›

Contents © 2017 Sadanand Singh (mailto:sadanand.singh@aol.com) - Powered by Hugo 0.26

(https://gohugo.io/) (http://creativecommons.org/licenses/by/4.0/)

This work is licensed under a Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/).

SHARES

https://disqus.com/by/becomingguru/
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3434084630
https://disqus.com/by/sadanandsingh/
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3435911436
https://sadanand-singh.github.io/posts/treebasedmodels/#comment-3434084630
https://disqus.com/by/becomingguru/
https://disqus.com/by/sadanandsingh/
mailto:sadanand.singh@aol.com
https://gohugo.io/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

