
ADiGator
A Source Transformation via Operator Overloading

Toolbox for the Automatic Differentiation of
Mathematical Functions in MATLAB

Matthew J. Weinstein and Anil V. Rao

Contents
1 Introduction 2

2 Installation 2

3 Using ADiGator 2
3.1 Generating Derivative Files . 2

3.1.1 The User Function File . 3
3.1.2 Identifying the User Function Inputs . 3
3.1.3 Calling the Derivative File Generation . 4

3.2 Evaluating the Generated Derivative File . 4
3.2.1 Derivative File Input . 4
3.2.2 Derivative File Output . 5

3.3 Illustrative Example . 5

4 ADiGator Options 6

5 User Function File Coding Restrictions 7
5.1 Known Numeric Values . 7
5.2 Flow Control . 7

5.2.1 Conditional if Statements . 7
5.2.2 for Loop Statements . 8
5.2.3 while Loop Statements . 8
5.2.4 switch Statements . 8
5.2.5 Short Circuit AND/OR . 8

5.3 Functions and Sub-Functions . 9
5.4 Non-Input Auxiliary Data: Global Variables and the Load Command 9
5.5 Unknown Logical Referencing/Assignment . 9

6 Higher Order Derivatives 9

7 Differentiating Vectorized Code 10
7.1 Illustrative Example of Vectorized Differentiation . 11
7.2 Projecting Vectorized Derivatives into an Unrolled Jacobian 11
7.3 Vectorized Coding Restrictions . 12

8 Generating Files for GPOPS II 12

9 Debugging 12
9.1 Error in User Code or Inputs to ADiGator . 12
9.2 Non-Overloaded Functions . 12
9.3 Errors Regarding “Strictly Symbolic” Inputs . 13
9.4 Errors in the Derivative and/or Derivative Code . 13

10 List of Included Examples 13
10.1 Basic First Derivatives . 13

10.1.1 Arrowhead . 13
10.1.2 Polynomial Data Fitting . 14

10.2 Stiff Ordinary Differential Equations . 14
10.2.1 Brusselator . 14
10.2.2 DCAL Control of Two-Link Robot Manipulator . 14

10.3 Constrained Optimization . 15
10.3.1 Simple Example . 15
10.3.2 Brachistochrone . 16
10.3.3 Minimum Time to Climb of Hypersonic Aircraft . 18

1

1 Introduction
ADiGator is a MATLAB automatic differentiation package which transforms user function files into deriva-
tive function files. These derivative function files are written completely in terms of the native MATLAB
commands and thus may be evaluated on numeric input values to calculate the numeric derivative of the
output with respect to a defined variable of differentiation. These numeric evaluations may be performed
as many times as desired without generating a new derivative file, as long as the input sizes and derivative
sparsity patterns are not to change. In the event that a user wishes to obtain derivatives of the same func-
tion file, but evaluated on different input sizes and/or derivative sparsity patterns, then a new derivative
file must be generated. The package is particularly appealing for applications where the same derivative
must be found at multiple different points, i.e. non-linear root finding/optimization, stiff ode integration,
etc. For details on the methodology behind the algorithm and the overloaded class which is used, the user
is referred to [1], and [2], which can be seen here and here, respectively. In the following user’s guide we will
explain how to use the ADiGator package. For more information on Automatic Differentiation in general,
please refer to [3]. For an explanation on the mathematical notations used within this guide, please see the
Appendix.

2 Installation
The ADiGator package is written entirely in MATLAB and thus should be usable on any operating system
as long as MATLAB is installed. The code has been tested in MATLAB versions 7.11 through 8.2. To install
the package, one needs to unpack the zip file and add two directories to the MATLAB path. This may be
done as follows:

1. Unpack the zip file into a convenient location.

2. Within MATLAB, change the current directory to the location which the zip file was unpacked.

3. Run the file startupadigator, you can do this by typing startupadigator in the MATLAB command
window.

4. (optional) If you wish to not do this each time you restart MATLAB, then type savepath in the
MATLAB command window.

3 Using ADiGator
In order to obtain a numeric derivative the user must first generate a derivative file using the ADiGator
package and may then evaluate the generated file numerically to obtain a derivative. It is stressed that after
the file is generated, the software is no longer being used. Furthermore, it is noted that the derivative files
are generated for a fixed input size to the user’s function file. Thus, as long as the input sizes do not change,
the same derivative file may be used to evaluate the derivative at multiple points. We will now explain in
detail the commands required to transform a user function file into a derivative function file and then explain
how to evaluate the generated derivative file. We will then demonstrate both the generation and evaluation
of a derivative file using a simple example.

3.1 Generating Derivative Files
The derivative files may be generated in a three step process, where first the user must write the function
file to be differentiated, second the user must define the inputs to the function file and identify which inputs
contain derivative information, and then finally the transformation is initialized by using the adigator
command. In this section we present these three steps.

2

http://vdol.mae.ufl.edu/SubmittedJournalPublications/TOMS-2013-0067-Revision-April-2014.pdf
http://vdol.mae.ufl.edu/JournalPublications/TOMS-2011-0055.pdf

3.1.1 The User Function File

In order to generate derivative files, we first need a function file of which we are to differentiate. This
user written function file should be written such that one or more of the inputs is to have derivatives with
respect to some variable of differentiation (VOD), where it is desired to determine the derivatives of the
outputs of the file with respect to the same variable of differentiation. The primary restrictions placed on
the input/output scheme of these functions is that 1. there is at least one input/output and 2. one of the
inputs (or a field of an input structure or an element of an input cell array) has derivatives with respect to
the VOD. For more user function file coding restrictions please refer to Section 5.

3.1.2 Identifying the User Function Inputs

Prior to calling the main transformation routine, adigator, the user must define the inputs to the function
which they just created. Here we define three different types of inputs and explain how they are to be
identified:

• Derivative Inputs: This refers to any input arrays which are to have derivatives with respect to the
VOD - the user must use the adigatorCreateDerivInput command to generate these inputs. The
syntax of the adigatorCreateDerivInput is as follows:

x = adigatorCreateDerivInput(xsize,derivinfo)
where

– xsize = [m,n] is the size of the input array
– derivinfo gives information on the derivatives, this may be defined in one of two ways:

1. If the input being created is the variable of differentiation (and thus has a derivative equal
to the mn×mn identity matrix) then derivinfo can simply be set to a string name which
you wish to call the VOD.

2. Otherwise, derivinfo must be a structure array defining the VOD to which the input has
derivatives with respect to, as well as the possible non-zero locations of the unrolled Jacobian
of the input with respect to the VOD. These fields must be:

∗ derivinfo.vodname = string name which uniquely defines the VOD
∗ derivinfo.vodsize = [p, q], the size of the VOD
∗ derivinfo.nzlocs = [i, j], where i, j ∈ Znz+ define the row and column locations of the

non-zero elements of the mn× pq Jacobian of the input with respect to the VOD. Note:
these should be in the natural MATLAB indexing order, that is, if the user has built the
unrolled Jacobian in MATLAB and called it Jac, then i and j could be found by [I,J]
= find(Jac).

Please see the Appendix for further clarification on the term “unrolled Jacobian”.

• Unknown Auxiliary Inputs: This refers to any input arrays to the user function which do not
contain derivatives with respect to the VOD, but are not a fixed, known, numeric value. That is,
they may change numeric values on any given call to the user function file. - the user must use the
adigatorCreateAuxInput command to generate these inputs. The syntax for this is as follows:

x = adigatorCreateAuxInput(xsize) ,
where xsize = [m,n] is the size of the input array.
NOTE: An alternative to defining Unknown Auxiliary Inputs is discussed in Section 4 by using the
auxdata option.

• Known Auxiliary Inputs: This refers to any input arrays to the user function which have a fixed,
known, numeric value. These inputs should simply be assigned their fixed value.

Here we note that the above three types of inputs only refer to numeric arrays, and that, if a user function
was written to take a structure input with numeric fields, then the structure should be built, and the
aforementioned inputs should be assigned to the proper fields. Likewise, if an input is to be a cell array,
then the cell array should be built and the aforementioned input types should be assigned to the appropriate
elements of the cell array.

3

3.1.3 Calling the Derivative File Generation

After having created the function file to be differentiated and creating all derivative/unknown auxiliary/-
known auxiliary inputs, the user may now use the adigator command to generate the derivative file. The
syntax for this call is as follows:

Outputs = adigator(UserFunFileName,Inputs,DerivFileName)
or

Outputs = adigator(UserFunFileName,Inputs,DerivFileName,options)
where

• UserFunFileName = string name of the user function to be differentiated

• Inputs = 1×N cell array, where N denotes the number of inputs to the user function and element i
contains input i to the user’s function file

• DerivFileName = string name which the derivative file is to be called

• Outputs = 1×M cell array, where M denotes the number of outputs of the user’s function file. Cell
i will contain the size and possible non-zero derivative locations of the ith output.

• options(optional) = option structure which can be generated using the adigatorOptions function as
defined in Section 4.

Using this command will then generate the derivative file, DerivFileName.m, as well as a MATLAB binary
file, DerivFileName.mat, where DerivFilename is as the user specified.

3.2 Evaluating the Generated Derivative File
As previously stated, after the derivative files have been generated, the ADiGator software is no longer
needed, but rather only the generated .m and .mat files are needed to compute the numeric derivative.1
While the input/output structure of the generated derivative function file is similar to the input/output
structure of the user defined function file, it is not exactly the same. We now look at how both the input
and output structures change.

3.2.1 Derivative File Input

The only difference between the user function file input scheme and the generated derivative file input scheme
is that, for any Derivative Inputs, these inputs must now be given as structures with a function field and
derivative field. Suppose that a Derivative Input was defined as a m× n array with nz possible non-zero
derivatives with respect to a VOD which was given the name ’vod’. Then the input to the derivative file
for this variable would have the following two fields:

• function field : this field will always be given the name .f and must be assigned the m × n numeric
array corresponding to the function values.

• derivative field : this field will be given a name corresponding to the defined VOD name, if the VOD
name was given as ’vod’, then the field would be .dvod, if the VOD name was given as ’x’, then
the field would be .dx, etc. Furthermore, this field must be assigned a column vector of length nz
corresponding to the possible non-zero derivatives of the input with respect to the VOD.

Any inputs defined as Unknown Auxiliary Inputs may be assigned any numeric values, as long as the
array is the same size as was given to the adigatorCreateAuxInput command, and any inputs defined as
Known Auxiliary Inputs should be assigned the values which were assigned prior to the call to adigator.

1The only exception to this is when differentiating a file which calls interp2. In this case, the file will also depend upon the
ADiGator function adigatorEvalInterp2pp.

4

3.2.2 Derivative File Output

Similar to any Derivative Inputs, all outputs of the derivative file which correspond to numeric array
outputs of the function file will now be structures with different fields. Each will contain a function field, .f
containing the values of the function, and if the output contains derivatives with respect to the VOD, then
it will also be assigned the following three fields:

• derivative value field : (for example .dx if the VOD name is ’x’) This will contain a column vector of
length nz corresponding to the possible non-zero elements of the output with respect to the VOD.

• derivative size field : (for example .dx_size if the VOD name is ’x’) This will contain the size of the
derivative matrix, for example, if the output variable is a vector of length m and the VOD is a vector
of length n, then this will be assigned the value [m,n].

• derivative location field : (for example .dx_location if the VOD name is ’x’) This will contain a
nz×d integer array of indices which map the values stored in the derivative value field into an array of
the size stored in the derivative size field. Here we note that d is equal to the length of the size stored
in the derivative size field, and that column i (i = 1, . . . , d) of the location field gives the locations for
the ith dimension of the derivative array.

3.3 Illustrative Example
For this example, assume we have written some function, y = myfun(x,k,N), where we wish to take the
derivative of y ∈ R4 with respect to the input x ∈ R3, and that the input k ∈ R3 is a vector of unknown
auxiliary values and the input N = 3 is a fixed value. Prior to generating the derivative file, we would
first need to identify our inputs. Supposing we wish to give our VOD the name ’x’, we could define our
Derivative Input in one of two ways. The first, simpler way would be:

x = adigatorCreateDerivInput([3 1],’x’);

or, to the same end, we could do

derivinfo.vodname = ’x’;
derivinfo.vodsize = [3 1];
derivinfo.nzlocs = [1 1; 2 2; 3 3];
x = adigatorCreateDerivInput([3 1],derivinfo);

Next, we need to define our inputs for k and N , so we would do this as

k = adigatorCreateAuxInput([3 1]);
N = 3;

We now have our inputs defined and may generate the derivative code. Supposing we wished to name the
derivative file ’myderiv’, we would call adigator as

adigator(’myfun’,{x,k,N},’myderiv’);

This would then generate the files myderiv.m and myderiv.mat. In order to now evaluate the derivative we
need to redefine our inputs for x and k. We would do this as follows:

x = struct(’f’,rand(3,1),’dx’,ones(3,1);
k = rand(3,1);

where we are assigning random values to x and k. Furthermore, we note that the derivative of x with respect
to x is the 3 × 3 identity matrix, and that the non-zero elements are given by a vector of ones (the value
assigned to x.dx). We could then evaluate the derivative file by

y = myderiv(x,k,N);

5

then y.f would be a vector of length 4. Supposing that the derivative of y has the sparsity pattern given by

struct(Jy(x)) =


x1 x2 x3

y1 • • •
y2 •
y3 •
y4 • •

 (1)

then y.dx would be a column vector of length 7, y.dx_size would be assigned [4, 3] and y.dx_location
would be [1 1;4 1;1 2;2 2;4 2;1 3;3 3]. Furthermore, if we wished to build a sparse MATLAB array
corresponding to the Jacobian, Jy(x), we could do so using the MATLAB sparse command as follows:

Jac = sparse(y.dx_location(:,1),y.dx_location(:,2),y.dx,y.dx_size(1),y.dx_size(2));

If we wished to build a non-sparse MATLAB array corresponding to the Jacobian, Jy(x), we could do so
using a linear index as follows:

Jac = zeros(y.dx_size);
index = sub2ind(y.dx_size,y.dx_location(:,1),y.dx_location(:,2));
Jac(index) = y.dx;

Here it is stressed that this file may be evaluated as many times as desired using different values assigned
to x.f and k, which will produce different values of y.f and y.dx, but y.dx_size and y.dx_location will
always be the same.

4 ADiGator Options
The ADiGator package currently has five different options which may given to the adigator command. In
order to build the options structure use the following command:

options = adigatorOption(field1,value1,field2,value2,...)
A list of all options, values, and descriptions is given in Table 1.

Table 1: Options for ADiGator

Option Field Value Description
AUXDATA 1 Known Auxiliary Inputs (as defined in Section 3.1.2) will always have the

same sparsity patterns as given to adigator, but their non-zero values may
change.

0 Known Auxiliary Inputs will always have the same numeric values (default)
ECHO 1 Echo to MATLAB command screen during the transformation process (default)

0 Do not echo to MATLAB command screen
UNROLL 1 When this is set, any loops and/or sub-functions encountered will be unrolled

in the generated derivative file
0 keep loops and sub-functions rolled in the derivative file (default)

COMMENTS 1 Print comments to the derivative file giving the lines of user code which corre-
spond to printed derivative statements (default)

0 Do not print the comments.
OVERWRITE 1 If a DerivFileName is given to adigator such that a file already exists with

the given name, setting this option will automatically overwrite the file.
0 If this option is set, adigator will error out rather than overwrite the derivative

file. (default)

6

5 User Function File Coding Restrictions
The ADiGator package generates derivative code by both reading the user’s code and evaluating sections of
the user’s code on overloaded cada objects. This allows it to generate stand-alone derivative files, but due
to the complexity of the process, certain coding restrictions are placed on the files which it can differentiate.
These are mostly in place for two reasons, 1. that the package can follow the flow of the user’s code and
track all variables from within it, and 2. that the code has enough information to print valid derivative
calculations. In this section we go over the various coding requirements which the user should follow to
ensure that their function files are differentiable using ADiGator.

5.1 Known Numeric Values
The overloaded class which the package uses to perform the actual derivative computations is based off of
having fixed, known sizes and sparsity patterns. For this reason the user’s code must be written such that,
given how the inputs are defined and given to the adigator command, all variables created within the user
program must have a fixed size. As an example, consider a user function y = myfun(x,N) which contains
the statement y = zeros(N,1). If one were to identify the input N as an Unknown Auxiliary Input,
then this would produce an error as this says that the variable y may take on any size. If, however, the input
N was defined as a Known Auxiliary Input with value 10, then the derivative code would be generated
as if the variable N was always 10. Similarly, all referencing/assignment indices must be known values, i.e.
if the user code contains a statement y(J) = x(I);, then adigator must know the values of both I and
J. Furthermore, these values must not change when evaluating the derivative file, or else the derivative
calculations will be invalid. The sole exception to this rule is the use of unknown logical referencing and
assignment, but this too has certain syntax requirements which are covered in Section 5.5.

5.2 Flow Control
A great deal of work has gone into the ability of the ADiGator package to be able to maintain the flow
of the user’s program within the derivative program. In this section we present the four different types of
MATLAB flow control and how the ADiGator package deals with them.

5.2.1 Conditional if Statements

The user should be able to write any conditional if statements within their program, and any possible
branches of the conditional block will be transcribed to the derivative program. For example, if a user
function y = myfun(x) is given to adigator, the input x is defined as a Derivative Input with size [10,
1], and the function contains the following:

if x(1) > 1
{calcs1}

elseif length(x) > 10
{calcs2}

else
{calcs3}

end

then adigator would see that x(1) may be any value, thus the first branch may or may not happen, that
length(x) = 10, and thus the second branch would never happen, so the derivative code would be produced
along the lines of:

if x(1) > 1
{deriv calcs1}

else
{deriv calcs3}

end

All outputs of conditional fragments should, however, be the same size no matter which branch is taken.

7

5.2.2 for Loop Statements

The user may write any for loop statements as long as the loop is set to run for a fixed, known, number
of iterations. The default way of handling loops is to keep them rolled in the derivative program (that is,
write out the loop), but the user may use the UNROLL option if they wish to unroll the loop. There are
tradeoffs which occur when either rolling or unrolling. Namely, if the user chooses to unroll a loop which
runs for many iterations, then the generated files can become extremely large as unrolling the loop will make
the package print out derivative calculations for each iteration of the loop. Unrolling the loop, however,
sometimes can result in a more efficient derivative file, especially if the variables within the loop change size
on each iteration of the loop. Here we also note that the use of break and continue statements is allowed
within loops only if the loops are to be rolled in the derivative file.

5.2.3 while Loop Statements

Currently while loops are not allowed in any user functions as it would be tough to see if the statements
within them are differentiable. If a user wishes to differentiate a code containing a while loop, they are
encouraged to replace the loop with a for/if/break sequence. That is, any while loop of the form:

count = 0;
while condition && count < 10

count = count+1;
{calcs}

end

may be replaced with a statement such as

for count = 1:10
{calcs}
if condition

break
end

end

where the ADiGator package can differentiate the second statement. It should be noted, however, ADiGator
will need to run the loop for all defined iterations, so one should be careful with over exaggerating the count.

5.2.4 switch Statements

Switch statements are not currently allowed, please use if statements instead.

5.2.5 Short Circuit AND/OR

Here we note that using the short-circuit and (&&) and short-circuit or (||) are allowed, but they will
be replaced with the non-short-circuit and (&) and non-short-circuit or (|) commands in the intermediate
program. Thus, if the user has a line of code such as

if {statement1} && {statement2}

this will be replaced by

if {statement1} & {statement2}

thus, if evaluating statement2 will produce an error given that statement1 is false, then the program will
not be able to be differentiated. Similarly, if the short-circuit or command is used such that evaluating the
second statement produces an error given that the first statement is true, then the program will not be able
to be differentiated.

8

5.3 Functions and Sub-Functions
The user’s main function file given to the adigator command is allowed to call as many other functions/sub-
functions as desired. Each called function will be opened, read, and treated as if it were a for loop, thus
if the UNROLL option is set 1 and a sub-function is called multiple times, then multiple sub-functions will
be printed to the derivative file. The restrictions on called functions and sub-functions are as follows. First,
the function must be in the MATLAB path. Second, called functions and sub-functions should not share
the same name, this will produce an error. Third, functions should not call themselves from within their
own methods, this can create an infinite loop within the ADiGator algorithm and cause an error. Fourth,
currently only one function call is allowed per line, if the user has multiple function calls on the same line
then an error will be produced. Finally, each function called must have at least one input and one output.
The use of the feval command is frowned upon here, but will work in some cases. Namely, if the function
being called by the feval command contains no flow control and is not called from within flow control
statements.

5.4 Non-Input Auxiliary Data: Global Variables and the Load Command
A user may wish to obtain auxiliary problem data using either global variables or the MATLAB load
command. Both of these are acceptable, with some stipulations. Namely, if either is used, they should only
be used to give auxiliary data to the user’s function file, they should not be used to pass variables between
called functions in the program being differentiated. The ADiGator package treats all global variables and
loaded in variables as if they are Known Numeric Inputs, and thus all global parameters should be set to
the values that they will be at the time of derivative evaluation. The last restriction is that, when using the
load command, it must be of the syntax var = load(.) and not simply load(.), as for the second case
the algorithm would be unable to track what data was brought into the program.

5.5 Unknown Logical Referencing/Assignment
As stated in Section 5.1, the ADiGator algorithm is based off of having fixed, known, variable sizes. This
presents an issue when dealing with unknown logical referencing and assignments, as the result of a logical
reference may take on a number of different sizes depending upon the reference index. To account for this,
we require that, if an unknown logical reference/assignment index is used, the same indexing variable must
be used for both a reference and assignment. That is, the logical reference/assignment must be of the form:

ind = x > 1;
y(ind) = x(ind);

Furthermore, if any binary mathematical array operations (+,-,etc.) are to be performed on a variable
resulting from a logical reference, then both inputs to the binary operation must be result from a logical
reference of the same index. For example,

ind = x > 1 & x <2;
zi = x(ind).*y(ind);
z(ind) = zi;

is valid,

z(x > 1 & x <2) = x(x > 1 & x <2).*y(x > 1 & x <2)

is not, even though they perform the same operations.

6 Higher Order Derivatives
A nice outcome from the fact that the ADiGator algorithm creates stand-alone derivative code (aside from
evaluation speed) is that the method is fully repeatable. Thus, the user may create nth order derivative files.
In order to do this, the process is repeated just as shown in Section 3, except now you are differentiating a

9

previously created derivative file. To illustrate, suppose we wished to take a second derivative of a function
y = myfun(x), with respect to the input x, where x ∈ R10, and we want to call our VOD ’x’. We would
first create the first derivative file as follows:

x = adigatorCreateDerivInput([10 1],’x’);
adigator(’myfun’,{x},’myderiv1’);

If we then wished to take a second derivative with respect to x, we would need to define a new input as the
input structure to myderiv1 is different from myfun. This would be done as:

x = struct(’f’,x,’dx’,ones(10,1));

which says that the input x.f has the same derivatives as we defined previously, and that the input x.dx is
a vector of ones which has no derivatives with respect to x (the second derivative of x with respect to itself
is zero). We can then generate the second derivative file using the command

adigator(’myderiv1’,{x},’myderiv2’);

In order to evaluate this function, myderiv2, we note that the input is exactly the same as the input to
myderiv1 since we have defined no new derivatives. So, we could evaluate it at a set of random points using
the commands:

x.f = rand(10,1);
y = myderiv2(x);

Now, assuming the output has second order derivatives, the output y would have the following fields:
.f, .dx, .dx_size, .dx_location, .dxdx, .dxdx_size, .dxdx_location corresponding to the func-
tion value, first derivative value, first derivative array size, first derivative mapping indices, second derivative
value, second derivative array size, and second derivative mapping indices, respectively. Assuming the output
y.f is a scalar, we could then build a sparse Gradient and Hessian using the commands:

Grad = sparse(ones(length(y.dx),1),y.dx_location,y.dx,1,y.dx_size);
Hes = sparse(y.dxdx_location(:,1),y.dxdx_location(:,2),y.dxdx,y.dxdx_size(1),y.dxdx_size(2));

This process may be repeated as many times as desired.
Here we note that the ADiGator algorithm is cognizant of when it is differentiating a function which

it created, thus a bunch of embedded structures are not required for the inputs/outputs of the higher
order derivative files. Furthermore, it knows what derivatives were taken on previous transformations and
identifies these using the string name given to the variable of differentiation. This allows the user to take
derivatives with respect to different variables if it is desired, but if the same VOD name is used as a previous
transformation, then the givenDerivative Inputs should reflect those given in the previous transformation.

Here we also note that the user can write functions which call previously created derivative files and then
differentiate the new file and that the algorithm will still recognize the previously created derivative files as
their own and differentiate accordingly.

7 Differentiating Vectorized Code
The use of the vectorized differentiation is for problems of the form f(x(s)), where s is a scalar, independent
variable. It is easiest to think of s as being a representation of time such that f at s = t is only a function
of x at s = t. If this is the case, and a user’s code is written such that it computes the values of f at a set of
time points, given the inputs of x at a set of time points, then the code may be differentiated in a vectorized
manner. More specifically, if the code is written to compute F(X(s)) : RN×n → RN×m, where

X(s) =


x1(s1) · · · xm(s1)
x1(s2) · · · xm(s2)

...
. . .

...
x1(sN) · · · xm(sN)

 , F(X(s)) =


f1(x(s1)) · · · fn(x(s1))
f1(x(s2)) · · · fn(x((s2))

...
. . .

...
f1(x(sN)) · · · fn(x((sN))

 , (2)

where it is important that the code be written such that N may be any positive integer. When this is the
case, we compute the Jacobian Jf(x(s)), but do so such that the non-zero elements of Jf(x(s)) are computed
for N values of s, where, again, N may take on any integer value.

10

7.1 Illustrative Example of Vectorized Differentiation
In order to differentiate in the vectorized mode the user must simply identify their vectorized inputs. To do
this, the vectorized dimension is just given the value Inf. So, if the user has a function, Y = myfun(X), of
the above form with n = 3, m = 4, then to generate the Derivative Input, the following command would
be used:

X = adigatorCreateDerivInput([Inf 3],’X’);

To then create a vectorized derivative file, myderiv, we would call

adigator(’myfun’,{X},’myderiv’);

In order to now evaluate the file myderiv we must define the function field of X.f and the derivative field
X.dX. Supposing we wish to evaluate at a set of random function inputs at N = 10 values of s, we would
define the function field as

x.f = rand(10,3);

Now, here we note that the derivative field needs to be of the dimension N × nz, where nz corresponds to
the number of non-zeros of the input Jacobian (in this case Jx((x(s))), and N corresponds to the vectorized
dimension. In this case, nz = 3, and

∂xi(s)

∂xj(s)
=

{
1, i = j
0, i 6= j

∀s (3)

thus the derivative field should be defined as

x.dX = ones(10,3);

We may then evaluate the derivative function using the command

y = myderiv(x);

Now, the output fields of y will have the same form as in the non-vectorized case, with a few exceptions. First,
the values assigned to y.dX_size and y.dX_location are the size and non-zero locations of the Jacobian
Jy(x(s)) evaluated at a single time point. Next, the derivative values stored in y.dX are stored in an array
of size N × nz, where nz is the number of possible non-zero derivatives in the Jacobian Jy(x(s)) evaluated
at a single point. So, to build the Jacobian Jy(x(s)) evaluated at s = s1, we could do so as

Jac1 = sparse(y.dX_location(:,1),y.dX_location(:,2),y.dX(1,:),y.dX_size(1),y.dX_size(2));

7.2 Projecting Vectorized Derivatives into an Unrolled Jacobian
Now, if we let xi(s) (i = 1, . . . , n) and fj(X(s)) (j = 1, . . . ,m) be column vectors of length N , where the kth
elements are xi(sk) and fj(x(sk)) (k = 1, . . . , N), respectively, we can then define

x†(s) =


x1(s)
x2(s)
...

xn(s)

 , f†(x†(s)) =


f1(X(s))
f2(X(s))

...
fm(X((s))

 . (4)

Now, supposing the user wished to build the unrolled Jacobian Jf†(x†(s)), we have supplied the function
adigatorProjectVectLocs, which takes the output locations of the non-zeros of the Jacobian Jf(x(s)),
together with the length of the vectorized dimension, N , to build the non-zero locations of the unrolled
Jacobian Jf†(x†(s)). For the above example, we could build the unrolled Jacobian follows:

[I,J] = adigatorProjectVectLocs(10,y.dX_location(:,1),y.dX_location(:,2));
Jacdag = sparse(I,J,y.dX,y.dX_size(1)*10,y.dX_size(2)*10);

Here we note that one should be careful when using this command as it will only be correct if the input’s
first dimension is vectorized and the output’s first dimension is vectorized. That is, x†(s) would correspond
to x.f(:) and f†(x†(s)) would correspond to y.f(:) in our example, due to how we have arranged the
data.

11

7.3 Vectorized Coding Restrictions
The first vectorized coding restriction is that, if the vectorized dimension of the input is N , then all vectorized
variables must be of size N × n, where n must be a known value (and not equal to N). Furthermore, one
may not sum over any vectorized dimension, as this results in derivatives of the output being dependent
upon all points in time. Similarly, referencing off of the vectorized dimension, but not taking the entire
row/column is not allowed, e.g. if X is of size N × 3, you cannot perform xi = X(1,:), but you can perform
xi = X(:,1). Finally, you are not allowed to loop on a vectorized dimension, e.g. if Y is of size 1×N , you
may not do for yi = 1:Y. It is noted here that unknown logical referencing/assignments are coded up for
vectorized dimensions and that these may be used (in accordance with the guidelines given in Section 5.5)
instead of a for loop if you need to search through the vectorized dimension.

8 Generating Files for GPOPS II
GPOPS II is a commercial MATLAB optimal control software which utilizes direct collocation methods to
solve optimal control problems. The creators of ADiGator have collaborated with those of GPOPS II in
order to allow for ADiGator to supply first- and second-order derivatives to GPOPS II. In order to generate
the derivative files using ADiGator please see the file adigatorGenFiles4gpops2. This function utilizes the
vectorized and non-vectorized modes in order to generate the derivative files required by GPOPS II given
the setup structure which is used by the gpops2 function. Like all ADiGator generated files, these generated
files will not need to be changed unless the user changes their continuous or endpoint functions.

9 Debugging
During the transformation from user code to derivative code, the ADiGator algorithm never actually eval-
uates the user’s code, but rather copies various parts of it, writes them to another file, and then evaluates
that file. This can sometimes make debugging difficult, particularly because the MATLAB error messages
do not point to the user’s file with the errors. Rather, they will usually point to a user’s line of code which
was copied to another file. We are working on a way to point to the user’s file, but for now the user will
need to deal with the inconvenience. In this section we will go over some of the common errors that may
occur when using the ADiGator software.

9.1 Error in User Code or Inputs to ADiGator
Prior to performing any transformation, the algorithm first attempts to evaluate the user’s function numer-
ically on what it believes to be the inputs. If you receive the error

Error in initial test evaluation of user file on given input info

then one of two things has occurred: either there is an error in the user’s file or the inputs to the user’s
file have not been properly given to adigator. To debug this, you should first ensure that your function
evaluates on numeric inputs without errors. If you are still receiving the error, then refer to Section 3.1.2
for the proper input scheme.

9.2 Non-Overloaded Functions
The algorithm evaluates the user’s statements on an overloaded cada class, so, if the user’s code contains
calls to functions which are not overloaded an error will be produced as

Undefined function ’somefunction’ for input arguments of type ’cada’.

In this case, the only way to use that function within the user’s code is to overload the function. If the
calculation in question may be performed prior to the user’s code (i.e. you do not need to take derivatives
of the function), then this is a simple solution. If however, the function in question is operating on objects
which have derivatives, then the user may either contact the author in order to see if the function can be

12

overloaded, or rewrite their code to use a different function. Here we note that, in order to overload an
operation, there must be a derivative rule defined for said operation, thus operations such as min and max
may not be overloaded as they do not have a defined derivative rule. A list of all the currently overloaded
operations may be seen in the adigator/@cada/ directory.

9.3 Errors Regarding “Strictly Symbolic” Inputs
As stated in Section 5.1, in order to create an array, the size of the array must be a known numeric value.
Similarly, in general, when performing a reference/assignment, the reference/assignment index must be a
known numeric value. When these types of operations are performed and the algorithm does not know the
value of the size and/or index, then an error will be produced. For example, if one were to perform the
operation y = ones(N,1), and the variable N does not have a known numeric value, then the error

Cannot pre-allocate a stricly symbolic size

would be produced. Similarly, if one were to perform the operation y = x(I) and the variable I does not
have a known numeric value, then the error

Cannot perform strictly symbolic referencing/assignment

would be produced. In order to fix this, ensure that, if these sizes/indices are inputs, that they are given
such that they are Known Auxiliary Inputs as shown in Section 3.1.2. If they are values calculated from
within the file, make sure that they are created by operating on known numeric objects. Also, note that the
sizing operations size,numel,length will always produce a known numeric value.

9.4 Errors in the Derivative and/or Derivative Code
If you receive an error in the evaluation of the derivative code (on proper numerical inputs), then you have
likely found a bug in the algorithm. Please report this. Similarly, if a derivative is computed incorrectly,
then you have more than likely found a bug in the algorithm. Please report this as well. If an element of
the derivative is being computed as NaN, then the derivative is likely undefined at the evaluation point. A
common occurrence of this is evaluating the derivative of the sqrt function at 0 when the derivative of the
sqrt argument is also zero. That is, if y = sqrt(x), the derivative rule is produced along the lines of dy =
(1/2)/sqrt(x)*dx; if this is then evaluated when x=0 and dx=0, then 1/sqrt(x) goes to infinity, and zero
times infinity is undefined. Thus, the derivative code isn’t wrong, the derivative is just undefined at that
point.

10 List of Included Examples
In this section we present an explanation of the examples included with the ADiGator package.

10.1 Basic First Derivatives
In this section we present two examples which take the first derivative of vector functions of vectors and
compare against MATLAB’s numjac finite differencing tool.

10.1.1 Arrowhead

This is an example taken from Section 7.4 of [3]. Here we take the derivative of a function f : Rn → Rn,
where

f1(x) = 2x2x +

n∑
i=1

x2i , fj(x) = x21 + x2j , (j = 2, . . . , n) (5)

This is coded up such that the Jacobian, Jf(x) is built using ADiGator, finite differencing, and compressed
finite differencing. Here the user is free to change the the parameter N within the main.m code in order to
see that the ADiGator algorithm becomes more useful as the problem size increases. Furthermore, you can
see that there is a certain amount of overhead inherent with generating the derivative code, but, if you wish
to evaluate the code many times, this overhead becomes less of an issue.

13

10.1.2 Polynomial Data Fitting

This example was taken from [4] which is to determine the coefficients of the m-degree polynomial p(x) =
p1+p2x+p3x

2+ · · ·+pmxm−1 that best fits the points (xi, di), (i = 1, . . . , n), (n > m), in the least squares
sense. This polynomial data fitting problem leads to an overdetermined linear system Vp = d, where V is
the Vandermonde matrix,

V =


1 x1 x21 · · · xm−11

1 x2 x22 · · · xm−12
...

...
...

1 xn x2n · · · xm−1n

 . (6)

As with the previous example, the user should note that the overhead associated with generating the deriva-
tive file becomes less as the problem size increases, as well as the number of required derivative evaluations.
Unlike the previous example, it is noted that the resulting Jacobian, Jp(x), is full (i.e. has no known non-
zero elements), thus, after the derivative file is evaluated, the Jacobian is simply built using the reshape
command:

dpdx = reshape(p.dx,p.dx_size);

10.2 Stiff Ordinary Differential Equations
In this section we supply derivatives to the MATLAB ODE integrator, ode15s, to integrate two different
ODEs.

10.2.1 Brusselator

In this example, we integrate the well known Brusselator system of [5]. The dynamics of the system are
given as

u̇i = 1 + u2i vi − 4ui + α(N + 1)2(ui−1 − 2ui + ui+1)
v̇i = 3ui − u2i vi + α(N + 1)2(vi−1 − 2vi + vi+1)

(i = 1, . . . , N) (7)

with initial conditions
ui(0) = 1 + sin

(
2π i

N+1

)
vi(0) = 3

(i = 1, . . . , N) (8)

The code contained in adigator/examples/stiffodes/brusselator/main.m will generate the derivative
file for the system using ADiGator. It then integrates the system with ode15s three different times. The first
time it does not supply derivatives, the second time it supplies the sparsity pattern (as calculated from the
outputs of the adigator transformation command), and finally it supplies derivatives using the ADiGator
generated file. Here we note that the ADiGator generated derivative file may not be given directly to ode15s
as the input/output scheme of the generated files is different from the required input/output scheme for use
with ode15s. Thus, a wrapper file is written such that the wrapper file has the input/output scheme required
of ode15s. The wrapper file then uses its inputs to call the generated derivative file, and then build the
Jacobian output using the outputs of the derivative file. The user is free to change the dimension N and the
time span over which to integrate. They should notice that supplying no derivative information is extremely
slow, while supplying just the sparsity pattern or the sparsity pattern plus derivatives yield similar solve
times.

10.2.2 DCAL Control of Two-Link Robot Manipulator

This example is a simulation of the experiment presented in [6]. The paper derives a control for the robotic
model:

τ = M(q)q̈+Vm(q, q̇)q+G(q) + Fd(q̇), (9)

where q(t) is a position vector. The control, τ , is computed as a function of q, Yd and Ẏd, where

Yd = Yd(qd, q̇d, q̈d) (10)

14

and the vector qd(t) is the desired trajectory. For this simulation, we have a two-link robot, thus q,qd, τ ∈ R2,
with the desired trajectory given as

qd1(t) = qd2(t) = 0.7 sin(2t)
(
1− e−.3t

3
)
. (11)

Prior to integrating the differential equation is is required that the time derivatives q̇d, q̈d, and Ẏd are
derived. Rather than doing this by hand, this is done using ADiGator as follows. First, we differentiate the
desired trajectory function qd = getqd(t) with respect to t. We then differentiate the resulting derivative
file to get a file for q̈d, and then once more differentiate the resulting derivative file to get a file which
calculates

...
qd. We then define the vector Q = [qTd , q̇d

T , q̈d
T]T , where Yd = Yd(Q). The calculations to get

Yd are given in the file Yd = getYd(Q). We then take the derivative of the file getYd with respect to time
in order to get a file which computes Ẏd(Q, Q̇). The control laws written in the file getDCALcontrol are
then written such that they call these generated derivative files.

Having generated these time derivative files, we then solve the ODE using ode15s. Here we note that we
are just integrating the robot positions and velocities, but also an internal filter variable and a variable used
in the parameter update law. Thus our states which we are integrating are defined as x = [qT , q̇T ,pT , zT]T ,
where q ∈ R2 is the robot link position, q̇ ∈ R2 is the robot link velocity, p ∈ R2 is the internal filter variable,
and z ∈ R5 is the variable used in the parameter update law. The dynamic equations associated with all
variables is calculated from within the xdot = TwoLinkSys(t,x) file (which calls getDCAlcontrol). We
then take the derivative of the file TwoLinkSys with respect to x and supply this to the ODE solver ode15s
in order to integrate the system.

As with the previous example, a wrapper is used since the input/output scheme required by ode15s is
different from that of ADiGator generated files. Within the main.m file (which runs the simulation), the
user is free to change the supplyderiv flag (to supply derivatives or not), the displayplots flag (to display
plots or not), the probinfo.noiseflag (to add noise or not), or the value of final time, tf. Increasing the
final time, not supplying derivatives, or adding noise will all increase the simulation run time.

10.3 Constrained Optimization
In this section we supply derivatives to the MATLAB constrained optimization solver fmincon to solve
three different problems. The first example is given as a simple demonstration on how to supply Objective
Gradients, Constraint Jacobians, and Lagrangian Hessians using ADiGator. In the second example we divide
our problem into a vectorized portion and a non-vectorized portion. Finally, in the last example, we take
full advantage of the vectorized nature of the problem.

10.3.1 Simple Example

The code for this example may be found in adigator/examples/optimization/simple_fmincon. For this
example, we use the problem taken from the MATLAB optimization toolbox help documentation. The
problem is as follows:

min
x∈R2

f(x) = ex1(4x21 + 2x22 + 4x1x2 + 2x2 + 1)

such that

c(x) =
x1x2 − x1 − x2 + 1.5
−x1x2 − 10

≤ 0
. (12)

We use this somewhat simple problem to demonstrate how to create an objective Gradient, constraint Jaco-
bian, and Lagrangian Hessian. Furthermore, we show how these may be used with MATLAB’s non-linear
programming solver, fmincon. If the user does not have the optimization package, then fmincon will not be
called, but they may still see how to generate the mentioned derivatives. We do this as follows. First, we
solve the problem without supplying derivatives using the active-set method of fmincon. Next, we generate
objective Gradient and constraint Jacobian files and supply these to fmincon to solve the problem again with
the active-set method. We then move onto generating Lagrangian Hessians and supplying them to fmincon.
This is done in two ways. The first is to write a file which computes the Lagrangian, and differentiate it twice
using ADiGator. In the second way, we take advantage of the fact that we previously created derivative
files to compute the objective Gradient and constraint Jacobian, thus we write a file which computes the

15

Lagrangian Gradient by calling these files. The Lagrangian Gradient file is then differentiated, achieving the
same thing as if we were to simply differentiate the Lagrangian twice. Here we stress that various wrapper
files must be made in order to use the ADiGator generated files with fmincon as the input/output scheme
required by fmincon is different from the input/output scheme of ADiGator generated files. These files are
included, but are not automatically generated.

10.3.2 Brachistochrone

In this example, we solve a discretized form of the continuous time optimal control problem:

min
x(t),u(t),tf

tf (13)

subject to the dynamic constraints

f(x(t),u(t)) =

 ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

 x3(t) sinu(t)
−x3(t) cosu(t)
g cosu(t)

 (14)

and boundary conditions
x1(0) = 0, x1(tf) = 2
x2(0) = 0, x2(tf) = −2
x3(0) = 0.

(15)

To solve this problem we use a Hermite-Simpson Separated collocation method. We do this using K equally
spaced intervals with a discrete point at the beginning and middle of each interval, as well as at a final point.
This results in N = 2K + 1 discrete time points, tj (j = 1, . . . , N). Here we introduce our discretized state,
X ∈ RN×3 where

Xi,j = xi(tj) (i = 1, 2, 3) (j = 1, . . . , N) (16)

and our discretized control, U ∈ RN , where

Uj = u(tj) (j = 1, . . . , N). (17)

We also introduce the matrix function F(X,U) ∈ RN×3, where,

Fi,j = fi(X
T
j , Uj), (i = 1, 2, 3) (j = 1, . . . , N), (18)

where Xj is the jth row of the matrix X. We now give the discretized problem as:

min
X,U,tN

tN (19)

subject to the equality constraints

Xi,2k+1 − 1
2 (Xi,2k+2 +Xi,2k)− tN

8K (Fi,2k − Fi,2k+2) = 0
Xi,2k+2 −Xi,2k − tN

6K (Fi,2k+2 + 4Fi,2k+2 + Fi,2k) = 0
(i = 1, 2, 3) (k = 1, . . . ,K)

(20)

and simple bounds
Xmin ≤ X ≤ Xmax

Umin ≤ U ≤ Umax

tNmin ≤ tN ≤ tNmax,
(21)

where we are using the notation that Xi is the ith row of the matrix X, and that the boundary condi-
tions of Equation 15 are included in the simple bounds of Equation 21. There are five different driver files
which will solve this problem in the adigator/examples/optimization/brachistochrone directory. The
file main_noderivs solves it without supplying derivative information. The files main_basic_1stderivs
and main_basic_2ndderivs solve the problem by supplying first and second derivative information, respec-
tively, without taking advantage of the vectorized nature of F(X,U). And the files main_vect_1stderivs

16

and main_vect_2ndderivs solve the problem by supplying first and second derivatives, respectively, while
taking advantage of the vectorized nature of F(X,U). Here we note that we do not use ADiGator to com-
pute the Objective Gradient as this is a simple calculation that does not require automatic differentiation.
Furthermore, all of these files solve the problem four different times using values of K = 5, K = 10, K = 20,
and K = 40, where, for the last three iterations the solution of the previous iteration is used as an initial
guess to the current iteration.

Supplying Derivatives without Vectorization

In order to supply a Constraint Jacobian in the most straightforward way, we write the function [C,Ceq]
= basic_cons(z,probinfo), where the input vector is z = [X†T ,UT , tN]T , where X† is the unrolled form
of X (as described in the Appendix). The file basic_cons calls the file F = dynamics(X,U) and uses the
output to build the constraints of Equation 20. So, in order to get the Constraint Jacobian, we simply apply
ADiGator to the basic_cons file using z as our variable of differentiation. To then supply the Constraint
Jacobian to fmincon using fmincon’s desired input/output scheme, we write the wrapper basic_conswrap
which calls our generated derivative file and builds the Constraint Jacobian.

In order to supply the Lagrangian Hessian, we first write a file, GL = basic_laggrad(z,lambda,probinfo),
which uses our constraint derivative file to build the Lagrangian Gradient:

5z L = 5ztf + λT 5z c(z), (22)

where 5zL, 5ztf , λ, and 5zc(z) represent the Lagrangian Gradient, Objective Gradient, Lagrange multi-
pliers, and Constraint Jacobian, respectively. We then apply ADiGator to the file basic_laggrad using z
as our variable of differentiation to create a file which is used to build the Lagrangian Hessian. In order to
supply the Lagrangian Hessian to fmincon, we again write a wrapper which will call the generated derivative
file basic_laggrad_z and build the Lagrangian Hessian using the required input/output scheme of fmincon.
Here we note that, since we solve the problem at four different values of K, that this changes our problem
size, and thus all derivative files must be generated prior to each call to fmincon.

Supplying Derivatives with Vectorization

Here we note that a part of our problem, namely, F(X,U), is of the vectorized nature in that Fi is only a
function of Xi and Ui (i = 1, . . . , N). As such, we may use ADiGator in the vectorized mode in order to
differentiate this sub-problem. In order to do so, we first define a variable y(t) = [xT (t), u(t)]T , we then apply
ADiGator in the vectorized mode to the file F = dynamics(X,U) with y(t) as our variable of differentiation.
This essentially gives us a file which will compute Jf(y(t)) at the time points t1, . . . , tN , given the inputs X
and U, where N may be any positive integer. In order to supply the Constraint Jacobian, we then write
a file Ceq = vect_cons(X,F,tf,probinfo), where, unlike in the non-vectorized case, this takes F as an
input rather than calling the dynamics file. We then use the sparsity pattern of Jf(y(t)) together with the
function adigatorProjectVectLocs to define the sparsity pattern of JF(z), given a fixed value of N , and
apply ADiGator in the non-vectorized mode to the file vect_cons with z as our variable of differentiation.
In order to supply the Constraint Jacobian to fmincon, we then write a wrapper file vect_conswrap which
calls our vectorized dynamics derivative file, and uses the derivative outputs as inputs to the constraint
derivative file and builds the Constraint Jacobian.

In order to supply the Lagrangian Hessian in this manner, we first must create a file which computes
the second derivatives of the dynamics file, that is, 52

y(t)f(t). This is done by applying ADiGator to our
previously created vectorized dynamics derivative file, dynamics_Y(X,U), again using y(t) as our variable
of differentiation. Now, in order to get the Lagrangian Hessian, we first write a file which computes the
Lagrangian Gradient, and take the derivative with respect to z. In this example, we wrote this file as
GL = vect_laggrad(X,dX,F,dF,tf,dtf,probinfo), where X,F, dF, and tf are all identified as derivative
inputs. Furthermore, the input dF is the non-zero derivatives of JF(z), and as such, identifying the non-zero
locations of the derivative of dF with respect to z can be tricky. After identifying the derivative inputs
properly, ADiGator is called in the non-vectorized mode on the file vect_laggrad using z as the variable
of differentiation. In order to supply the Lagrangian Hessian we write the file vect_laggradwrap which
first calls the second derivative of the dynamics file and then calls the derivative of the Lagrangian Gradient

17

file. Here we note that since the derivatives of the dynamics file are done in the vectorized mode, that they
only need to be generated once. Since the other derivative files are generated in the non-vectorized mode,
they must be generated each time the value of K is changed. We also note that, for this example, one does
not gain a lot of efficiency by taking advantage of the vectorized nature of the dynamics (primarily because
the dynamics are fairly simple), but hopefully it will give the user some insight on how a problem may be
separated into a vectorized part and a non-vectorized part.

10.3.3 Minimum Time to Climb of Hypersonic Aircraft

In this example, we solve a discretized form of the continuous time optimal control problem:

min
x(t),u(t),tf

tf (23)

subject to the dynamic constraints

f(x(t),u(t)) =

 ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

 x2(t) sinx3(t)
ζ(x(t))−θ(x(t))

c2
− c1 sinx3(t)

c1
x2(t)

(u(t)− cosx3(t)

 (24)

and boundary conditions
x1(0) = b1, x1(tf) = b2
x2(0) = b3, x2(tf) = b4
x3(0) = b5, x3(tf) = b5.

(25)

As with the previous example, we use the Hermite Simpson Separated collocation method and as such we
will be using the same notation. For this example, though, we rewrite the equality conditions of 20 into the
form:

C(X,U, tN) = AX+ tNBF(X,U), (26)

where C(X,U, tN) ∈ R(N−1)×3. We also use the unrolled form:

C†(X†,U, tN) = AX† + tNBF†(X†,U). (27)

As in the previous example, we define our NLP decision vector as z = [X†T ,UT , tN]T . Our discretized
problem is then

min
z
tN (28)

subject to the equality constraints
C†(z) = 0 (29)

and the simple bounds
zmin ≤ z ≤ zmax. (30)

Now, in this example, we are concerned with building the Constraint Jacobian and the Lagrangian Hessian,
which we will denote by 5zC

† and 52
zL, respectively. In building these, we take advantage of the fact that

F†(X†,U) is our only non-linear term, thus, ADiGator is only used to differentiate our dynamics file and
we then build the Constraint Jacobian and Lagrangian Hessian using the result.

In order to build the Constraint Jacobian we first note that

5z C
† =

[
5X†C† 5UC† 5tNC†

]
, (31)

where
5X† C† = A+ tNB⊗5X†F†. (32)

Here we note that we can take advantage of the way in which we write the unrolled Jacobian in order to
perform the matrix multiplication B⊗5X†F†. That is, B ∈ R((N−1)∗3)×(N∗3), and 5X†F† ∈ R(N∗3)×(N∗3),
thus we can perform the matrix multiplication by reshaping 5X†F† into a matrix of size N × (3 ∗N ∗ 3), do
the matrix multiplication, and then reshape the result into a matrix of size ((N−1)∗3)×(N ∗3). One should

18

note, though, that this only works if multiplying by a matrix on the left side. Similarly, we can compute
5UC† and 5tNC† as

5U C† = tnB⊗5UF† (33)

and
5tN C† = BF†. (34)

We can do similar calculations in order to build the Lagrangian Hessian. First we start with the La-
grangian

L = tN + λT
(
AX† + tNBF†

)
. (35)

For these calculations, we first define a new variable Y = [X,U], now, using some abusive notation, we may
write our Lagrangian Gradient as

5z L =
[
5Y†L 5tNL

]
(36)

where
5Y† L = λT

(
A⊗ [1,0] + tNB⊗5Y†F†

)
(37)

and
5tN L = λT

(
[0,1]T + BF†

)
. (38)

Now, we write our Lagrangian Hessian as

52
z L =

[
52

Y†L 5Y†tNL
5Y†tNL 52

tNL

]
, (39)

where,
52

Y† L = tNλTB⊗52
Y†F

†, (40)

5Y†tN L = λTB5Y† F†, (41)

and
52
tN L = 0. (42)

The code for this example may be found in the directory adigator/examples/optimization/minimumclimb.
In this directory there are four files which will solve the problem on three different meshes (K = 10, K = 20,
and K = 40), where the initial guess for the second two iterations is calculated from the solution of the
previous mesh. The files main_1stderivs_nonvect and main_2ndderivs_nonvect supply derivatives with-
out using the vectorizated mode, while the files main_1stderivs_vect and main_2ndderivs_vect supply
derivatives using the vectorizated mode. Furthermore, the function which computes the Constraint Jacobian
(and calls the first dynamics derivative file) is given in conswrap.m and the function which computes the
Lagrangian Hessian (and calls the second dynamics derivative file) is given in laghesswrap.m.

Here we see that, since we are only differentiating the dynamics file, that, when we use the vectorized
mode, we must only create the derivative files a single time and they may be used to solve on as many different
meshes as desired. If using the non-vectorized mode, however, the derivative files must be generated each
time the value of K is changed. As far as performance goes, the user should note a slight increase in
performance using the vectorized mode at the first derivative (the vectorized file should solve in 90-95% of
the time it takes the non-vectorized). At the second derivative level, though, we see a major increase in
performance as the vectorized file should solve in 5-10% of the time it takes the non-vectorized.

Appendix
In this user guide we employ the following notation. First, all scalars, vectors, and matrices are denoted by
lower or upper case non-boldface (e.g., y or Y), lower case boldface (e.g., y), and upper case boldface (e.g,
Y) symbols, respectively. Furthermore, if we are referring to a variable in MATLAB, we will generally use
the typewriter text (e.g., y, Y). Thus, if X ∈ Rm×n, then

X =


X1,1 · · · X1,n

X2,1 · · · X2,n

...
. . .

...
Xm,1 · · · Xm,n

 ∈ Rm×n, (43)

19

where Xi,j , (i = 1, . . . ,m), (j = 1, . . . , n) are the elements of the m× n matrix X. Similarly, the output of
any matrix function of a matrix is denoted by a upper case bold letter. Consequently, if F : Rm×n −→ Rp×q
is a matrix function of the matrix variable X, then F(X) has the form

F(X) =


F1,1(X) · · · F1,q(X)
F2,1(X) · · · F2,q(X)

...
. . .

...
Fp,1(X) · · · Fp,q(X)

 ∈ Rp×q, (44)

where Fk,l(X), (k = 1, . . . , p), (l = 1, . . . , q) are the elements of the p × q matrix function F(X). The
Jacobian of the matrix function F(X), denoted JF(X), is then a four-dimensional array of size p× q×m×n
that consists of pqmn elements. This multi-dimensional array will be referred to generically as the rolled
representation of the derivative of F(X) with respect to X (where the term “rolled” is similar to the term
“external” as used in [7]). In order to provide a more tractable form for the Jacobian of F(X), the matrix
variable X and matrix function F(X) are transformed into the following so called unrolled form (where,
again, the term “unrolled” is similar to the term “internal” [7]). First, X ∈ Rm×n, is mapped isomorphically
to a column vector x† ∈ Rmn, such that

x†k = Xi,j , where k = i+m(j − 1), ∀
i = 1, . . .m
j = 1, . . . n
k = 1, . . .mn

. (45)

Similarly, let f†(x†) ∈ Rpq be the one-dimensional transformation of the function F(X) ∈ Rp×q, such
that

f†k(x
†) = Fi,j(X), where k = i+ q(j − 1), ∀

i = 1, . . . q
j = 1, . . . p
k = 1, . . . qp

. (46)

Here we note that the transformation from X to x† can be performed in MATLAB using the command xdag
= X(:), where xdag and X correspond to x† and X, respectively. Furthermore, the MATLAB functions
sub2ind and ind2sub are useful when switching between rolled and unrolled representations.

Using the one-dimensional representations x† and f†(x†), the four-dimensional Jacobian, JF(X) can be
represented in two-dimensional form as

Jf†(x†) =



∂f†
1

∂x†
1

· · · ∂f†
1

∂x†
mn

∂f†
2

∂x†
1

· · · ∂f†
2

∂x†
mn

...
. . .

...
∂f†

pq

∂x†
1

· · · ∂f†
pq

∂x†
mn


∈ Rpq×mn. (47)

Equation (47) provides what we refer to as the “unrolled Jacobian”.

References
[1] M. J. Weinstein and A. V. Rao. A source transformation via operator overloading method for automatic

differentiation in matlab. ACM Transactions on Mathematical Software, Submitted November 2013.

[2] M. A. Patterson, M. J. Weinstein, and A. V. Rao. An efficient overloaded method for computing deriva-
tives of mathematical functions in matlab. ACM Transactions on Mathematical Software,, 39(3):17:1–
17:36, July 2013.

[3] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Frontiers
in Appl. Mathematics. SIAM Press, Philadelphia, Pennsylvania, 2008.

20

[4] C. Bischof, B. Lang, and A. Vehreschild. Automatic differentiation for MATLAB programs. Proceedings
in Applied Mathematics and Mechanics, 2(1 Joh Wiley):50–53, 2003.

[5] G Wanner and E Hairer. Solving Ordinary Differential Equations II, volume 1. Springer-Verlag, Berlin,
1991.

[6] T. Burg, D. Dawson, and P. Vedagarbha. A redesigned dcal controller without velocity measurements:
theory and demonstration. Robotica, 15:337–346, 5 1997.

[7] S. A. Forth. An efficient overloaded implementation of forward mode automatic differentiation in MAT-
LAB. ACM Transactions on Mathematical Software, 32(2):195–222, April–June 2006.

21

	Introduction
	Installation
	Using ADiGator
	Generating Derivative Files
	The User Function File
	Identifying the User Function Inputs
	Calling the Derivative File Generation

	Evaluating the Generated Derivative File
	Derivative File Input
	Derivative File Output

	Illustrative Example

	ADiGator Options
	User Function File Coding Restrictions
	Known Numeric Values
	Flow Control
	Conditional if Statements
	for Loop Statements
	while Loop Statements
	switch Statements
	Short Circuit AND/OR

	Functions and Sub-Functions
	Non-Input Auxiliary Data: Global Variables and the Load Command
	Unknown Logical Referencing/Assignment

	Higher Order Derivatives
	Differentiating Vectorized Code
	Illustrative Example of Vectorized Differentiation
	Projecting Vectorized Derivatives into an Unrolled Jacobian
	Vectorized Coding Restrictions

	Generating Files for GPOPS II
	Debugging
	Error in User Code or Inputs to ADiGator
	Non-Overloaded Functions
	Errors Regarding ``Strictly Symbolic'' Inputs
	Errors in the Derivative and/or Derivative Code

	List of Included Examples
	Basic First Derivatives
	Arrowhead
	Polynomial Data Fitting

	Stiff Ordinary Differential Equations
	Brusselator
	DCAL Control of Two-Link Robot Manipulator

	Constrained Optimization
	Simple Example
	Brachistochrone
	Minimum Time to Climb of Hypersonic Aircraft

