

ASCOM - Standards for Astronomy

– Standards for Astronomy

2011

Users Guide

Rob Morgan

ASCOM

 2

Table of Contents
Why are Drivers Important? .. 4

Why Use COM? .. 5

How COM Works ... 5

What ASCOM is not ... 6

ASCOM Initiative Mission Statement .. 6

Who uses ASCOM .. 7

Choosing and Configuring the Driver ... 9

The Standards .. 9

Driver Guidelines .. 9

Installing Drivers ... 10

Scriptable Components and Programs Guidelines .. 11

Scripting Interface Requirements .. 13

Client Programs Guidelines .. 14

Logo Usage ... 14

The Standards Process ... 15

Core Components .. 16

Core Assemblies .. 17

Tools .. 19

What is ASCOM?

There are a number of items or entities associated to the acronym ASCOM. The
first is to know that it stands for Astronomy Common Object Model. It was
originally invented in late 1997 and early 1998 by Bob Denny, when he released
two commercial programs and several freeware utilities that showcased the
technology.

The ASCOM Initiative was formed as a small group of software developers from
around the world to give oversight and continue the development effort of the
ASCOM Platform. Their website can be found at ascom-standards.org.

The ASCOM Platform is a collection of programs to standardize the core
functionality for normal operations and observing in astronomy hardware and
bring these together in a common implementation for use in client software
applications. ASCOM is a many-to-many and language-independent architecture,
supported by most astronomy devices which connect to computers.

The first observatory to adopt ASCOM was Junk Bond Observatory, in early
1998. It was used at this facility to implement a robotic telescope dedicated to
observing asteroids. The successful use of ASCOM there was covered in an
article in Sky & Telescope magazine. This helped ASCOM to become more
widely adopted. As of today the ASCOM platform is on its 6th version of major
releases. Figure 1 shows the layer interactions with compliant astronomy
instruments and compliant software architectures.

Languages Programs Software

Device Drivers Device Drivers Device Drivers

ASCOM Drivers

Figure 1

An ASCOM driver acts as an abstraction layer between the client and hardware
thus removing any hardware dependency in the client, and making the client
automatically compatible with all devices that supports the minimum required
properties and methods. For example, this abstraction allows an ASCOM client to
use an imaging device without needing to know whether the device is attached via
a serial or network connection.

ASCOM

 4

Why are Drivers Important?

Well, step back from astronomy for a minute. When you go out and buy a new
printer, you can be virtually certain that it will work with all of the programs on
your computer. Likewise, when you install a new program on your computer, you
can be virtually certain that it can print to your existing printer, even if it's no
longer in production. We take this for granted. Printers come with a disk that
installs the driver for the printer. The driver takes care of all of the details for that
particular printer, leaving all of your Windows programs with a common printer-
agnostic way to send pages to paper.

OK, back to astronomy. Until ASCOM, each astronomy program that needed to
control telescopes, focusers, and so forth had to include its own code for all of the
different instrument types out there. Keeping up with new instruments, supporting
old ones, and dealing with firmware revisions is a tremendous burden. Every
astronomy software developer is faced with (re)writing code for every device he
intends to support. Furthermore, astronomy device manufacturers are faced with
having to beg an array of astronomy software vendors to support their device in
the future, delaying adoption of their new devices.

ASCOM eliminates these problems. Most programs that need to control
telescopes, focusers, etc., now expect a driver to be available for those
instruments. For example, you may have several programs that need to control
your telescope (planetarium, imaging software, alignment assistance tool). If there
is a driver for your mount, you can be virtually certain that all of these programs
can control it. To find out, you ask your mount maker "Does your mount have an
ASCOM driver?" If so, you're all set. No more asking a bunch of software
developers "Does your software support my mount?"

ASCOM defines a collection of required properties and methods that ASCOM
compliant software can use to communicate with an ASCOM compliant device.
ASCOM also defines a range of optional properties and methods to take
advantage of common features that may not be available for every manufacturer's
device. By testing various properties an ASCOM client application can determine
what features are available for use.

Properties and methods are accessible via scripting interfaces, allowing control of
devices by standard scripting applications such as VBScript and JavaScript. In

fact any language that supports access to Microsoft COM objects can interface
with ASCOM. Figure 2 shows a breakout of the typical layers used by the
Clients, ASCOM, Manufacturer Driver, and the hardware devices.

.Net ClientsCOM Clients

ASCOM Wrapper Interfaces

ASCOM/Manufacturer
 .Net Drivers

ASCOM/Manufacture
Com Language Driver

ASCOM Com Helpers

ASCOM COM and .Net INterfaces

Manufacturer Hardware

ASCOM Platform Functionality

Figure 2

The ASCOM initiate is dedicated in keeping as much compatibility with
Microsoft’s Component Object Model (COM) as possible. This allows a variety
of languages to be compatible with the ASCOM architecture. This book can’t
possibly show all examples for all the languages so we’ve select one compiled
language, C# and one scripting language, VBScript for the examples.

Why Use COM?

COM is built into Windows. Any language can use COM like it can display on
the screen or write to a disk file. COM isn't an I/O service though, it is a
Component Object service (hence the name which stands for Component Object
Model). Components are a special type of object. Within any Object Oriented
Programming language, one can define and create objects, then use their members
while treating the object as a black box. But Components are different. They exist
apart from the app's code, and are served by the operating system. Once loaded,
though, they can be used exactly like objects created in the native language. The
cool thing, though, is that one component can be used by any program in any
language. This makes Components a natural choice for drivers, which after all are
things that must be usable by any program in any language.

How COM Works

When an application asks the Operating System (OS) for a component, it uses the
ID of the component. IDs are system-wide. The location on disk of the component
is not important to the application. The OS has an object broker that uses the ID to
locate the component's code and activate it. Once the component is activated, its

ASCOM

 6

constructor is called. Thereafter it is ready for use by the app. Multiple instances
of a component can be used by different apps simultaneously. The OS call that
activates the component returns a reference to the activated component. The
component reference is kept in a variable and used just like a reference to an
object created in the app's native language. Thus the application’s code sees the
component as identical to one of its own objects and uses it identically. Perhaps
you can now see how powerful the component concept is, and why it was a
natural choice for ASCOM drivers.

What ASCOM is not

 ASCOM Platform is not meant to implement all the
features of any one particular manufacturer’s hardware
device or devices. It’s meant to standardize core
functionality for normal operations and observing. Some
manufacturers may implement a driver that implements
both the ASCOM standards and their own interfaces for

specific features. This is perfectly acceptable and encouraged since the ASCOM
Initiative cannot cover all possible variations of all the manufacturers.

ASCOM Initiative Mission Statement

1. Establish a set of vendor-independent and language-independent interface
standards for drivers that provide plug-and-play control of astronomical
instruments and related devices.

2. Provide general requirements and guidance for quality and behavior of
drivers.

3. Promote the use of these standard drivers from any astronomy-related
software.

4. Ensure that drivers are usable from the widest possible variety of
programs and languages, including Windows Active Script languages and
Automation based tools.

5. Promote (but not absolutely require) open-source implementations of the
drivers.

6. Promote script ability of astronomy software without standardizing
application level interfaces (which would inhibit innovation).

7. Provide general requirements for quality and behavior of application
scripting interfaces, aimed at making script writers' experiences consistent
and robust.

Who uses ASCOM

In general there are three types of actors, or groups of people playing as one role,
that use the ASCOM Platform:

1. Client Developers whom create user interfaces for users such as TheSky,
Starry Night, SkyMap, and Cartes du ciel.

2. Users that run the client software and load the ASCOM platform.
3. Driver Developers or manufactures that write the drivers for ASCOM and

manufacture their hardware devices like Mounts, Telescopes, Focusers,
etc...

A use case defines the interactions between external actors and the ASCOM
Platform under consideration to accomplish a goal. An actor specifies a role
played by a person or thing when interacting with the Platform. The same person
using the system may be represented as different actors because they are playing
different roles. Figure three depicts the most common of use cases for the
ASCOM Platform.

ASCOM

User

Run Client
Application

Consume
ASCOM Drivers

Driver Developer

Create ASCOM
Driver

Create Hardware
Driver

Client Develpers

Create Client
Application

Configure Driver

Use ASCOM
Functionallity

Figure 3

Activity diagrams are graphical representations of workflows of stepwise
activities and actions with support for choice, iteration and concurrency. The
activity diagram in Figure four depicts the flow of a typical use case. The client

ASCOM

 8

application can call the ASCOM Chooser at anytime to select the appropriate
device driver for configuration. Don’t worry about knowing what the Chooser is
right now. Just think of it as a way to select a device or driver. The client may at
anytime call the ASCOM interfaces and use the device interface or other ASCOM
functionality. This figure also shows that the Client application may optionally
use the Manufacturer Hardware Driver at any time without using the ASCOM
components. It would be up to the manufacturer to expose any additional
functionality not used in the ASCOM standards. It is also optional for the
manufacturer to implement their driver before the hardware and after the ASCOM
driver.

Client Application

ASCOM Chooser

ASCOM Interfaces

Manufacturer / ASCOM
Driver

ASCOM Functionallity

Uses

Hardware Device

Hardware Driver

Use ASCOM

Yes

Yes

No

Figure 4

Choosing and Configuring the Driver (one-time setup)

Since all focusers look the same to the application, it first has to give the user a
chance to select the MicroGlide as the type of focuser he's using. To do this, the
application uses a component that comes with the ASCOM Platform called the
Chooser. Omitting the details, the app displays the Chooser and the user selects
the type of focuser, MicroGlide, from a list. Once chosen, the user then clicks a
Properties button. This loads the MicroGlide driver into the Chooser and asks the
driver to show its configuration window. There, the user sets the COM port that
the focuser is connected to, as well as anything else the MicroGlide needs for one-
time configuration. The Chooser looks exactly the same regardless of which
language the app is written in or which type of driver is being chosen. When the
user finishes, he closes the config window and the Chooser. At this point, the
MicroGlide driver saves the settings entered by the user then disappears from the
system. Thus, the user's settings are remembered and need not be entered again
unless something changes.

The Standards

The ASCOM Initiative has published a number of standards and guidelines that
describe the ways in which the ASCOM Platform would interact with the Client
Software and the Drivers the manufacturers write or create.

In order to be called "ASCOM compliant", a driver, component, or application
scripting interface must meet all of the applicable guidelines and standards. Only
then drivers, interfaces, or a component’s packaging and user interface, carry the
ASCOM logo.

Driver Guidelines

1. The driver must install and run on Microsoft Windows 7, Vista, and XP
with the latest service packs at the time of driver release. It should work
on both 32- and 64-bit systems. Windows 2000 is not supported in
Platform 6.

2. The driver must implement the published standard interface for the device
type via a scriptable dispatch ("Automation") interface per the Microsoft
Component Object Model (COM). Drivers should also implement "dual"
interfaces which have both dispatch and early/VTBL binding (using the
appropriate abstract standard interface that is part of the ASCOM
Platform). See Driver Development Notes.

ASCOM

 10

3. The driver must never "extend" the standard interface (add private

members - properties and/or methods). If private members are desired,
they must be exposed through a separate non-standard interface.

4. The driver must never display a modal window which requires user
interaction to dismiss. All errors must be raised/thrown back to the client.

5. The driver must use the Helper component's Profile.Register() method for
ASCOM registration. It is recommended that drivers also use the Helper's
Profile object for storage of their persistent configuration, state data, etc.,
as well as the Helper's Serial object for serial port I/O. The Helper
components are part of the ASCOM Platform and serve to isolate drivers
from changes in Platform architecture. They also make development easier
by providing high level functionality commonly needed by drivers.

6. Prior to release, the driver must pass the Conform tests using the
current/latest version of the Conformance Checker test tool.

7. The driver must be delivered as a self-contained installer. It is
unacceptable to ask users to copy files, edit the registry, run BAT files,
etc. See Creating a Driver Installer.

There are a number of help files available on the ASCOM website for each type
of driver that is supported. Within each are the properties and methods that are
considered the standards.

Installing Drivers

Now that you have the platform installed you’ll need driver(s) for the various
equipment you have. These drivers will probably come the manufacturers and be
marked for ASCOM compatibility but if not, you might find them here:
http://ascom-standards.org/Downloads/Index.htm.

http://ascom-standards.org/Downloads/Index.htm�

Once you locate the drivers, go ahead and install each one that you need. Each
may come with specific instructions, so be sure to read any included files after
installing.

Scriptable Components and Programs Guidelines

1. The product must run (at a minimum) on Microsoft Windows 7, Vista, and
XP with the latest service packs at the time of driver release. It should
work on both 32- and 64-bit systems. Windows 2000 is not supported in
Platform 6.

2. The name ASCOM and/or the ASCOM logo must never be displayed for
products which are in experimental, beta, preview, or any other such state.
Only production products which are available and supported by the vendor
or author are eligible.

3. Property and method names should be user friendly (e.g.,
SlewToCurrentObject instead of slw_curob). Use of so-called
"Hungarian" notation is specifically discouraged. These interfaces may be
used by scripters and should be user-friendly.

4. Wherever practical, property and method names should be consistent with
existing ASCOM standard interfaces. For example, a property that
implements equatorial right ascension should be called RightAscension, as
used in the Telescope standard interface.

ASCOM

 12

5. The product must implement scriptable dispatch ("Automation")
interface(s) via the Microsoft Component Object Model (COM), and use
only automation-compatible data types (see the data type requirements
below).

6. Errors within your product must raise Automation exceptions (via
IErrorInfo). The error info must contain both an error number that is based
on FACILITY_ITF and an informative error message in English and
optionally other languages. Optionally, methods which do not return
values should return VARIANT_BOOL indicating success or failure. This
allows clients to determine status while ignoring exceptions (e.g. On Error
Resume Next and try/catch). IErrorInfo support is essential to providing
client writers with the behavior they rely on. Very few of these people
manually test return values for errors with 'if' logic. They depend on their
client environment to pop a meaningful alert box (or catch an exception
with try/catch) when things go wrong.

7. Components must be 100% usable from an automation client without user

interaction. For example, it is not permitted to require a user to dismiss an
error alert window when the program is being controlled through a
component automation interface. On the other hand, it is permitted to
require the user to use a program's configuration features to set
preferences. Another example of non-compliant behavior is a component
server whose behavior changes or stops depending on whether it is a
foreground or background window. The point of this requirement is to
assure that, when used from a script, the program will never hang awaiting
some user action such as a window shuffle, or clearing an error message
box or selector dialog. Raise an exception and return to the client for
handling the error or establishing the selection.

8. The product must be delivered as a self-contained installer. It is

unacceptable to ask users to copy files, edit the registry, etc. See Creating
a Driver Installer.

9. Executable components must self-register when first started, and must

support the command line options /REGSERVER and /UNREGSERVER
to manually register and unregister them. Invocation with either of these
options must immediately exit and must not start the program.

10. Any executable component must start automatically if one of the objects it
serves is created by a client. Furthermore, it must exit automatically when
the last reference to any object it is serving is deleted. Unless there is a
good reason to do otherwise, an executable component should start in a
minimized window. This is not a hard requirement as a component may
benefit from displaying information as it operates. Unless this is the case,
though, the component should remain out of sight (minimized) unless
manually made visible by the user.

Scripting Interface Requirements

Besides the compatibility requirements described above, ASCOM interfaces must
comply with the following. Remember that a major goal of ASCOM is to make
programming with scripts straightforward, consistent, and non-intimidating for
"ordinary people":

1. Property and method names must be user friendly (e.g.,
SlewToCurrentObject instead of slw_curob). Use of so-called
"Hungarian" notation is specifically discouraged. These interfaces are for
the use of ordinary people.

2. Wherever practical, property and method names should be consistent with

existing ASCOM standard interfaces. For example, a property that
implements equatorial right ascension should be called RightAscension, as
used in the Telescope standard interface.

3. Methods must not be used to implement what are really properties. For

example, a pair of methods called SetSpeed(newSpeed) and GetSpeed()
are really a property Speed.

4. Interfaces for drivers must contain at least a Connected property and a

SetupDialog() method. The Connected property establishes or breaks the
physical link between the object and the device under control. The
SetupDialog() method causes a modal dialog to appear which is used to
configure the object for use with the device. Any settings that must persist
must be the responsibility of the object itself, clients must not be required
to persist object state.

5. The interface must be a scriptable dispatch ("Automation") interface per

the Microsoft Component Object Model (COM), and use only automation-
compatible data types (see the data type requirements below). It is not
permitted to require the use of VTBL binding (via standard abstract
interfaces). While a "dual" interface is permitted, ASCOM core
functionality demands the use of IDispatch and "loose binding". It must be

ASCOM

 14

possible to use the interface from scripting languages which support only
dispatch binding, and it must be possible to implement the interface with a
Windows Script Component ("scriptlet"), which cannot expose a VTBL.

6. All properties, method parameters, and method return values must be

Automation-compatible types such as INT, LONG, DOUBLE, SINGLE,
BSTR, DATE, VARIANT_BOOL, and VARIANT/VT_DISPATCH. Any
arrays produced and consumed by your product must be SAFEARRAY of
VARIANT. In short, all data items must be 100% compatible with
Automation, and specifically with ActiveX Scripting engines including
both VBScript V5 and JScript V5 (or later) and with Visual Basic for
Applications V5 (or later).

7. Method parameters must be passed only by value, as required by some

ActiveX Scripting engines (notably JScript). Consider passing object
references (VT_DISPATCH) by value as a way to have methods work on
arbitrary (non-Automation) data owned by the client.

Client Programs Guidelines

1. The product must run (at a minimum) on Microsoft Windows 7, Vista, and
XP with the latest service packs at the time of driver release. It should
work on both 32- and 64-bit systems. Windows 2000 is not supported in
Platform 6.

2. The product must be capable of using scriptable dispatch ("automation")

interface(s) via the Microsoft Component Object Model (COM). The
client must be able to call via IDispatch. Beginning with Platform 2008,
drivers may choose to support early binding by implementing the standard
interface. In this case, clients may choose to reference the interface by
calling QueryInterface on the instance of the driver.

3. Error exceptions (raised in a component via IErrorInfo) must be caught

and handled by the program in a way that gives the user the error message
that came from the component. It is not permitted to display a "friendly",
"generic", or otherwise mangled version of an error message in the
exception.

Logo Usage

If you have a driver or an astronomy product that conforms to these requirements,
feel free to use the logo on your web site and product packaging, as long as you
do the following:

1. If you use the logo on a web site, please link it back to this site
http://ascom-standards.org/

2. Post a note to ASCOM-Talk indicating your product, company, and URL.

The moderator or other responsible person will add you to the partner’s
page and link to your web site.

Logo usage is on the honor system, there are no contracts or other covenants
required. Please don't undermine this effort by ASCOM-labeling software that
doesn't meet the above requirements. Make the effort and your software will be
better for it!

The Standards Process

This is informal since relatively few people are involved and the astronomy
community overall is relatively small. By avoiding the stilted and often political
"standards body" approach, standards can be proposed, discussed, implemented,
tested, refined, and accepted by vote more quickly and with a higher probability
of success. See Philosophical Issues below. Loosely stated, the process is:

1. A single author publishes a draft interface specification. Ideally, this will
be derived from an interface already in use and not designed in a vacuum.
See Philosophical Issues below.

2. Discuss the proposal on ASCOM-Talk until an interface agreement can be

reached. See Philosophical Issues below.

3. Implement a simulator which has all of the properties and methods of the
proposed interface (a reference implementation). Ideally this would be
done by someone other than the author. Make the simulator available to
anyone who wishes to play with it.

ASCOM

 16

4. Refine the specification and simulator as dictated by experience, again
reaching an interface agreement brokered by the author. Discussion is
closed at this point.

5. The author posts a poll on ASCOM-Talk, giving the community several

weeks to vote yes or no. Further suggestions and other feedback will be
rejected at this point.

6. If the majority votes yes, the specification is considered "adopted” and the

author is responsible for writing the final standard document. If not, go
back to step 4 or drop the spec entirely and possibly start over.

The most important goal of the standards process is to avoid the "design and
decree" process that has caused so many failures and financial damage in the
past. Typically employed by academics, design-and-decree just plain doesn't
work. Professional engineers know it's essential to prototype, refine, and plan
to throw the first one away or maybe start over.

Another important aspect of the standards process is that the author is
responsible for brokering the interface agreement, a difficult task requiring
sensitivity and above all the strength to reject "it would be nice if" suggestions
which have no clear use-case.

Core Components

Simulators

Simulators have been created for a number of devices that mimic the use of
drivers and the client applications that access them. These simulators test each of
the internal ASCOM drivers to insure integrity of the installed ASCOM platform.
These simulators provide a convenient tool for application software developers to
test their programs with known good drivers under controlled conditions. The
simulators also serve driver developers as reference implementations of the driver
standards. If there is a question about the behavior of a property or method, the
behavior of the appropriate simulator serves as the reference.

Diagnostics

The Diagnostics application will evaluate the current ASCOM platform installed
on the local computer to create a log file that can be used for troubleshooting
issues. This text file can then be sent to the ASCOM Initiative developers or
others for evaluation of the issues.

Profile Explorer

The Profile Explorer allows viewing of the ASCOM Profile. The ASCOM
profile, figure five, stores information about the devices and drivers installed.
Drivers are normally registered in the profile store during the setup process.
ASCOM specifically stores the COM ProgID of the driver. All drivers must
register with the ASCOM profile and may use the profile to store other
configuration or runtime information.

Driver

ASCOM Profile Store

ASCOM Chooser

Cilent Application

Hardware

Figure 5

Core Assemblies

All the listed assemblies are installed into the Global Assembly Cache (GAC) as
part of the platform installation process.

ASCOM.Astrometry- This encapsulates the Naval Observatory Vector
Astrometry Software (NOVAS) and Kepler’s Laws of Planetary Motion.

ASCOM.Attributes - Used by the ASCOM LocalServer and the SettingsProvider
to load settings. The LocalServer uses this to control which assemblies to load.

ASCOM.Controls - This contains a common set of user interface elements for use
by all developers.

ASCOM.DriverAccess - This is a .NET assembly that provides high-level
simplified access to ASCOM drivers for developers writing client applications.
This provides automatic switching between the preferred early-binding interfaces
and, for older drivers that don't support it, late-binding.
Support includes the following…

• Camera
• Dome

ASCOM

 18

• Filter Wheel
• Focuser
• Rotator
• Switch
• Telescope

ASCOM.Exceptions - This contains common exception classes used by the
ASCOM platform and for internal exceptions. Drivers are permitted to directly
throw this exception as well as any derived exceptions.

ASCOM.IConform - Driver interface to inform Conform of valid driver
commands and returned error codes.

ASCOM.Interfaces - Master interfaces are installed in a registered COM type
library and a .NET primary interop assembly (in the GAC). For .NET, a
registered master primary interop assembly (PIA) is provided. It appears in the
.NET References window, COM tab, as "ASCOM Master Interfaces for .NET and
COM (V1.0)" (the same friendly name as seen in COM from OLEView etc.).
Once referenced in a .NET project, it will show as ASCOM.Interfaces, the
namespace containing the interfaces (e.g. ASCOM.Interface.ITelescope).

ASCOM.SettingsProvider - SettingsProvider integrates the ASCOM Profile store
with the Visual Studio settings designer and the application settings architecture.
It is intended for use by driver developers and is incorporated into the VS
template projects.

ASCOM.Utilities - Contains things like the Serial, Profile, Chooser and other
items like date and time conversions,

Chooser - The Chooser object provides a way for users to select a device
to work with within an application. The Chooser can be configured to
choose any ASCOM device type. The default is "Telescope", but you can
change the Chooser.DeviceType property to something else (e.g.
"Focuser") and the Chooser will then work for that device type.

Profile – The profile is the store for Driver and Device information. Used
by the Chooser to locate the Windows registered ProgID of drivers. The
profile can be access directly by the drivers or by using the Profile
Explorer. ASCOM does not mandate that all drivers have to use the
Profile component to store their configuration information but it does
mandate that the Profile is used to register the device so that Chooser
always knows where device registration information is located.

Serial – used to assist in com ports and serial communications.

Tools

Driver Templates - Driver templates come in four basic formats for projects in
Visual Studio 2005 or later. Two formats are for the Driver projects in both C#
and VB and two are in the Local Server formats for both C# and VB. Those
individuals or companies wanting to write a driver for their hardware would use

ASCOM

 20

one of the Driver projects for a single hardware interface or the Local Server if
their hardware interface supports more than one driver on the same interface.

.NET Client Toolkit - The client toolkit is a Visual Studio 2005 C# project that
shows how to use the ASCOM .NET Client Toolkit. This console application
contains code that shows how to access each type of driver, using the chooser and
pre-selecting the simulator for each. Some info is printed out to the console
window. This is a separate download from the platform

Driver Conformance Checker - This tool performs a comprehensive set of tests
on a driver to determine its conformance with the relevant ASCOM interface
standard. It also tests some aspects of driver behavior against the reference
implementation. Use this tool to test your driver before each release (even pre-
production).

	Why are Drivers Important?
	Why Use COM?
	How COM Works
	What ASCOM is not
	ASCOM Initiative Mission Statement
	Who uses ASCOM
	The Standards
	Driver Guidelines
	Installing Drivers
	Scriptable Components and Programs Guidelines
	Scripting Interface Requirements
	Client Programs Guidelines
	Logo Usage
	The Standards Process
	Core Components
	Core Assemblies
	Tools

