
Host CPU SDK Programmer's Guide
For Brooklyn II Firmware v3.10.x | Ultimo Application
Software v3.10.x | Host CPU SDK v2.0.x

Document version: 1.0

Document name: AUD-MAN-Host_CPU_SDK_Programmers_Guide-v1.0.pdf

Published: 6th July 2016
Please see Audinate OEMHome for change history.

Feedback: if you would like to suggest improvements to this information, please feel free to email
us at documentation@audinate.com.

mailto:documentation@audinate.com

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -1-

Copyright
© 2016 Audinate Pty Ltd. All Rights Reserved.

Audinate®, the Audinate logo and Dante are trademarks of Audinate Pty Ltd.

All other trademarks are the property of their respective owners.

Audinate products are protected by one or more of US Patents 7747725, 8005939, 7978696, 8171152, and
other patents pending or issued. See www.audinate.com/patents.

Legal Notice and Disclaimer
Audinate retains ownership of all intellectual property in this document.

The information andmaterials presented in this document are provided as an information source only.
While effort has beenmade to ensure the accuracy and completeness of the information, no guarantee is
given nor responsibility taken by Audinate for errors or omissions in the data.

Audinate is not liable for any loss or damage that may be suffered or incurred in any way as a result of
acting on information in this document. The information is provided solely on the basis that readers will be
responsible for making their own assessment, and are advised to verify all relevant representation,
statements and information with their own professional advisers.

Software Licensing Notice
Audinate distributes products which are covered by Audinate license agreements and third-party license
agreements.

For further information and to access copies of each of these licenses, please visit our website:

www.audinate.com/software-licensing-notice

http://www.audinate.com/patents
http://www.audinate.com/software-licensing-notice

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -2-

Contacts

Audinate Pty Ltd
Level 1, 458Wattle Street

Ultimo NSW 2007

Australia

Tel. +61 2 8090 1000

Postal address
Audinate Pty Ltd

POBox 855

Broadway NSW 2007

Australia

Audinate Inc
1732 NW Quimby Street

Suite 215

Portland, OR 97209

USA

Tel: +1.503.224.2998

Fax. +1.503.360.1155

info@audinate.com

www.audinate.com

European Office
Audinate Ltd

Suite 303

BrightonMedia Centre

Friese-Greene House

15-17Middle St

Brighton, BN1 1AL

United Kingdom

Tel. +44 (0) 1273 921695

Asia Pacific Office
Audinate Limited

Suite 1106-08, 11/F Tai Yau Building

No 181 Johnston Road

Wanchai, Hong Kong

澳迪耐特有限公司

香港灣仔莊士敦道181號

大有大廈11樓1106-8室

Tel. +(852)-3588 0030

+(852)-3588 0031

Fax. +(852)-2975 8042

mailto:info@audinate.com
http://www.audinate.com/

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -3-

Contents
Copyright 1

European Office 2

Asia Pacific Office 2

About Audinate 8

About Dante 8

Introduction 9

Hardware Requirements of a Host CPU 10

Communicating with a Brooklyn II 10

SPI 10

UART 11

Communicating with an Ultimo 11

SPI 12

UART 13

Host CPU Architecture 15

Key Features and Specifications 15

Host CPU and Brooklyn II 15

Framing and PaddingMechanisms 16

Flow Control Mechanisms 16

Interaction Diagrams 16

ResynchronizationMechanisms 17

Host CPU and Ultimo 17

Framing and PaddingMechanisms 17

Flow Control Mechanisms 18

Interaction Diagrams 18

Normal Acknowledgement 18

Error Timeout (No Response from Host CPU) 19

Error Timeout (No Response from Ultimo) 20

Timing and ResynchronizationMechanisms 21

Packet Bridge 22

Key Features and Specifications 22

Overall Architecture 22

ConMon Packet Bridge 23

UDP Sockets Packet Bridge 24

Comparison of ConMon and UDP Sockets Packet Bridge 24

Communication with a Dante Device Packet Bridge Endpoint from PC / Brooklyn II
Devices 24

Message Format 24

ConMonMode 24

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -4-

UDP Mode 25

Discovering Packet Bridge Endpoints 25

ConMonMode 25

UDP Mode 25

ConMonControl Channel Usage 26

ConMon Status Channel Usage 26

ConMon Vendor Broadcast Channel Usage 26

Example Use Cases and Recommended ConMonConfigurations 27

Host CPU Firmware Update by a PC Controller 27

Control of Host CPU by a Brooklyn II Based Controller 27

Status Reporting by Host CPU to PC Controllers 28

Host CPU to Host CPU Communications 28

Recommendations for OEM Protocol Design 29

Managing Device State 29

Self-Description 29

Bulk State Summary 29

Small State Changes 29

Groups of Changes 29

Stateless Protocol Design 30

Avoiding Synchronization 30

Byte Ordering 30

Byte Alignment 30

DetectingMessage Loss 30

Power-On Events 31

Interaction Diagrams 31

Transmit a Packet from aHost CPU to the Network [Successful] 31

Brooklyn II 31

Ultimo 32

Transmit a Packet from aHost CPU to the Network [Failure – No Network Connection] 32

Brooklyn II 32

Ultimo 33

Transmit a Packet from aHost CPU to the Network [Failure – MessageMalformed] 33

Brooklyn II 33

Ultimo 34

Receive a Packet from the Network and Forward to Host CPU [Successful] 34

Brooklyn II 34

Ultimo 35

Dante Device Configuration 35

Dante Events 36

Interaction Diagrams 36

Ultimo Configuration 36

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -5-

Dante Device Protocol 37

Message Classes 37

Protocol Functionality 37

Basic Information 37

Manufacturer Information 37

Upgrade 38

Erase Configuration 38

Device Reboot 38

Identity 38

Device Lock Information 38

AES67 (Brooklyn II Only) 39

VLANs 39

Metering (Brooklyn II Only) 39

UART Configuration (Brooklyn II Only) 39

Network 39

Clocking / PTP 40

Audio 40

Routing 40

Interaction Diagrams 41

Sending a DDP Command/Query Message and Receiving a DDP ResponseMessage 41

Brooklyn II 42

Ultimo 43

Receiving a DDP Event Message 44

Brooklyn II 44

Ultimo 44

Sending a Command to a Locked Dante Device 45

Brooklyn II 45

Ultimo 46

Protocol Messages 46

Device Basic Information 46

DeviceManufacturer Information 47

Device Upgrade 47

Device Erase Configuration 47

Device Reboot 48

Device Identity 48

Device Identify 48

Device GPIO 49

Device Switch LED 49

Device Lock/Unlock 49

Device Switch Redundancy 49

Device UART Configuration 50

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -6-

Device AES67 50

Device VLAN Configuration 50

DeviceMeter Configuration 51

Network Basic 51

Network Configuration 51

Clock Basic Legacy 52

Clock Basic 2 52

Clock Configuration 52

Clock Pull-up 53

Audio Basic 53

Audio Sample Rate Configuration 53

Audio Encoding Configuration 54

Audio Interface 54

Audio Signal Presence Configuration 54

Audio Signal Presence Data 55

Routing Basic 55

Routing Ready 55

Routing Performance Configuration 56

Routing Rx Channel Configuration State 56

Routing Tx Channel Configuration State 56

Routing Rx Channel Status 57

Routing Rx Flow Configuration State 57

Routing Tx Flow Configuration State 57

Routing Rx Flow Status 58

Routing Rx Channel Label Set 58

Routing Tx Channel Label Set 59

Routing RX Subscribe 59

Routing RX Unsubscribe 59

RoutingMulticast TX Flow Configuration 59

Routing Flow Delete 60

Host CPU SDK Package 61

Data Types 61

Provided Functionality 61

Porting the Host CPU SDK Package 63

Project Setup 63

Implement the RX Timer interface 63

Implement the TX Timer interface 64

Implement the Host CPU Transport Interface 64

BHIP Host CPU SPI Interface 64

UHIP Host CPU SPI Interface 64

Add required RX message handling 64

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -7-

Add required TX message handling 64

Modify aud_platform.h 65

Modify or Implement aMain Loop 65

Host CPU SDK Library API Functions 65

UHIP ConMon Packet Bridge Functions 65

BHIP ConMon Packet Bridge Functions 65

UHIP UDP Packet Bridge Functions 65

BHIP UDP Packet Bridge Functions 65

Dante Events Functions 66

Dante Device Protocol (DDP) Functions 66

Getting Started 72

Index 74

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -8-

About Audinate
Founded in 2006, Audinate revolutionizes how AV systems are connected so customers can thrive in a
networked world. Audinate's Dante audio networking technology has been adopted by the professional
audio industry's leadingmanufacturers. Dante is used extensively for live performance events,
commercial installations, broadcast, recording and production, and communications systems. Audinate
offices are located in US, United Kingdom, Hong Kong and Australia.

About Dante
Dante audio networking utilizes standard IP networks to transmit high-quality, uncompressed audio with
near-zero latency. It's themost economical, versatile, and easy-to-use audio networking solution, and is
scalable from simple installations to large-capacity networks running thousands of audio channels. Dante
can replacemultiple analog or multicore cables with a single affordable Ethernet cable to transmit high-
quality multi-channel audio safely and reliably. With Dante software, the network can be easily expanded
and reconfigured with just a few mouse clicks. Dante is the audio networking choice of nearly all
professional audiomanufacturers, with hundreds of Dante-enabled audio products now available.

For more information, please visit the Audinate website at www.audinate.com.

http://www.audinate.com/

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -9-

Introduction
This document is intended for OEMs that wish to interface an external processor to a Dante devicemodule
via a serial peripheral. The external processor can configure andmonitor Dante over the serial interface as
well as utilise the network interface of the Dantemodule to bridge network traffic to the external processor.
The supported Dante devices are the Brooklyn II and Ultimo, and the supported serial interfaces are SPI
and UART. This document refers only to the built in functionality that can be enabled on themodules via
the capability file - on the Brooklyn II it is also possible to communicate with a host CPU by implementing a
custom OEM application running from the user partition.

The external processor which communicates with a Dante device over a serial link is referred to as the
Host CPU throughout this document.

High level physical information about interfacing a Dante device to a Host CPU is provided in Hardware
Requirements of a Host CPU. Additional information about physical I/O interfaces on the Dante device
should be obtained from the Brooklyn II Technical Datasheet and Ultimo Technical Datasheet. An overall
description about the software features of the Brooklyn II is available in the Brooklyn II Programmer’s
Guide, and the software features of the Ultimo are available in the Ultimo Programmer’s Guide.

The Host CPU SDK package provides amessaging API for communication between the Dante device and
the Host CPU. The SDK implements functionality to process and preparemessages that are received or
sent from the Dante device. Information on the Host CPU SDK package is described in Host CPU SDK
Package.

The Brooklyn II Host Interface Protocol (BHIP) is used to carry the following types of messages:

n Packet Bridge (PB)messages

n Dante Device Protocol (DDP)messages

The Ultimo Host Interface Protocol (UHIP) is used to carry the following types of messages:

n Packet Bridge (PB)messages

n Dante Device Protocol (DDP)messages

n Dante Event messages

The Packet Bridge, Dante Event and DDP protocols are described in Packet Bridge, Dante Events and
Dante Device Protocol.

http://dev.audinate.com/documentation/brooklyn-ii/tds/webhelp/
http://dev.audinate.com/documentation/ultimo/tds/webhelp/
http://dev.audinate.com/development/documentation/hardware-module-programmers-guide/webhelp/
http://dev.audinate.com/development/documentation/hardware-module-programmers-guide/webhelp/
http://dev.audinate.com/documentation/ultimo/programmers-guide/webhelp/

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -10-

Hardware Requirements of a Host CPU
This section describes the hardware requirements of a host CPU that communicates with a Brooklyn II or
Ultimo Dante device.

Communicating with a Brooklyn II
Regardless of the communicationmethod, 3.3V I/O signalling levels must be used. For in-depth
information about the Brooklyn II I/O pins, signal timing, signal characteristics and pinmuxes please refer
to the relevant sections of the Brooklyn II Technical Datasheet.

SPI
Communication using SPI requires one SPI master peripheral on the Host CPU. This SPI peripheral will
connect to the SPI slave on the Brooklyn II SPI slave interface. Data over SPI is transferred as full duplex.
Please refer to the Brooklyn II Programmer’s Guidefor more information about the SPI slave protocol.

Figure 1 shows the hardware connection to realize communication over SPI between the Brooklyn II and
the Host CPU. There is a pin called DATA_AVAILABLE on the Brooklyn II which the SPI slavemodule
uses to signal the availability of data to be transmitted to an external SPI master. A Host CPU must utilise
the DATA_AVAILABLE line to as an interrupt source or poll it on a periodic basis.

The Host CPU must have 3x 1508 bytes of RAM to send onemaximum sized frame and receive up to two
maximum sized frames.

Figure 1 - Host CPU and Brooklyn II SPI communication

Table 1 shows the pinmapping between the Brooklyn II SPI slave and Host CPU SPI master.

Table 1 - Brooklyn II SPI slave and host CPU SPI master pins

Brooklyn II Pin (SPI
Slave)

Host CPU Pin (SPI
Master)

Usage

SPI_CLK_A /

SPI_CLK_B

SPI CLK SPI Clock

http://dev.audinate.com/documentation/brooklyn-ii/tds/webhelp/
http://dev.audinate.com/development/documentation/hardware-module-programmers-guide/webhelp/

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -11-

Brooklyn II Pin (SPI
Slave)

Host CPU Pin (SPI
Master)

Usage

SPI_MOSI_A / SPI_
MOSI_B

SPI MOSI SPI Master Out / Slave In

SPI_MISO_A / SPI_
MISO_B

SPI MISO SPI Master In / Slave Out

DATA_AVAILABLE
(GPIO)

GPIO Data is available to be read from Brooklyn
II SPI slave

UART
A single UART peripheral is required to communicate with the Brooklyn II over a UART serial link. Data
transferred over UART is full duplex. Figure 2 illustrates the hardware connections required to support
communication over UART between the Brooklyn II and the host CPU.

The Host CPU must have 2x 1500 bytes of RAM to send and receive onemax sized frame.

Figure 2 - Host CPU and Brooklyn II UART communication

Table 2 shows the pinmapping between the Brooklyn II UART and Host CPU UART.

Table 2 - Brooklyn II and host CPU UART pins

Brooklyn II Pin (UART) Host CPU Pin
(UART)

Usage

CMOS_RS_232_RX_A / CMOS_RS_
232_RX_B

UART TX Brooklyn-II receive, host
transmit

CMOS_RS_232_TX_A / CMOS_RS_
232_TX_B

UART RX Brooklyn-II transmit, host
receive

Communicating with an Ultimo
Regardless of the serial peripheral used for the communication the following requirements should be
satisfied:

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -12-

n 3.3V I/O signalling levels

n 2x 576 bytes RAM to send and receive amax sized packet over the serial link

SPI
Communication using SPI requires two SPI peripherals. One peripheral is a SPI master and the other
peripheral is the SPI slave.

The SPI master on Ultimomust be connected to the SPI slave port on the host CPU. This unidirectional /
simplex interface is used to send UHIP packets to / from the host CPU. The SPI slave on Ultimomust be
connected to the SPI master port on the Host CPU. This unidirectional / simplex interface is used to send
UHIP packets to / from the host CPU.

Figure 3 illustrates the hardware connections needed to support the SPI interface between Ultimo and a
host CPU.

Figure 3 - Host CPU and Ultimo SPI communication

Table 3 - Ultimo SPI master and host CPU SPI slave pins

Ultimo Pin (SPI
Master)

Host CPU Pin (SPI
Slave)

Usage

SPI_CLK_A SPI CLK SPI Clock

SPI_MOSI_A SPI MOSI SPI Master Out /
Slave In

SPI_MISO_A SPI MISO SPI Master In / Slave
Out

nSPI_SEL0_A or
nSPI_SEL1_A or
nSPI_SEL2_A or
nSPI_SEL3_A

SPI SELECT SPI chip select

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -13-

Table 4 - Ultimo SPI slave and host CPU SPI master pins

Ultimo Pin (SPI
Slave)

Host CPU Pin (SPI
Master)

Usage

SPI_CLK_B SPI CLK SPI Clock

SPI_MOSI_B SPI MOSI SPI Master Out /
Slave In

SPI_MISO_B SPI MISO SPI Master In / Slave
Out

nSPI_SEL_B SPI SELECT SPI chip select

For more details about the I/O pins, I/O characteristics, SPI master timing characteristics, SPI slave
timing characteristics and supported SPI modes, please see the relevant sections of the Ultimo Technical
Datasheet.

UART
Serial communication between an Ultimo and the host CPU requires one UART port.

The UART onUltimo is a bi-directional full duplex interface used for sending UHIP datagrams to / from the
host CPU.

Figure 4 illustrates the hardware connections needed to support the UART interface between Ultimo and
the host CPU.

Figure 4 - Host CPU and Ultimo UART communication

Table 5 - Ultimo and host CPU UART pins

Ultimo Pin (UART) Host CPU Pin
(UART)

Usage

UART_RX_B UART TX Ultimo receive, host transmit

UART_TX_B UART RX Ultimo transmit, host receive

http://dev.audinate.com/documentation/ultimo/tds/webhelp/
http://dev.audinate.com/documentation/ultimo/tds/webhelp/

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -14-

Ultimo Pin (UART) Host CPU Pin
(UART)

Usage

UART_CTS_B
[optional]

UART RTS Ultimo input / host output
H = disable transmission from
Ultimo
L = enable transmission from
Ultimo

UART_RTS_B
[optional]

UART CTS Ultimo output / host input
H = disable transmission on host
L = enable transmission on host

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -15-

Host CPU Architecture
This section describes the architecture of the Host CPU and Dante device communication using a serial
peripheral.

All functionality described in this section is fully implemented in the provided Host CPU SDK. The
information contained in this section is for informational purposes only, and does not need to be
implemented by the OEM.

The data transferred over the serial link is encoded using Consistent Overhead Byte stuffing (COBS)
which provides packet framing. Framing ensures reliable resynchronisation after transmission or reception
errors.

For more details about COBS see Cheshire, S; Baker, M, Sept 1997, “Consistent Overhead Byte Stuffing”,
ACM

All multi-byte values used for the protocols between the Host CPU and Brooklyn II or Ultimo are
represented in network byte order. For example a 32-bit integer containing the value 305,419,896 (decimal)
or 0x12345678 (hex) is sent as [0x12] followed by [0x34] followed by [0x56] followed by [0x78].

KeyFeatures and Specifications
A very high level overview of the key features and specifications for serial communication between a Host
CPU and a Brooklyn II or Ultimo is provided in Table 6. The protocols mentioned in Table 6 are discussed
in the remaining sections of this document.

Table 6 - Host CPU to Dante device communication key features and specifications

Feature Brooklyn II Ultimo

Supported serial peripherals SPI slave, UART SPI master + SPI
slave, UART

Supported high level
protocols

DDP, Packet Bridge DDP, Dante Events,
Packet Bridge

Transport protocol BHIP UHIP

Maximum serial frame size 1508 bytes (SPI), 1500 bytes
(UART)

576 bytes

Maximum transport protocol
payload size

1484 bytes (for DDP), 1448 (for
Packet Bridge)

500 bytes

Host CPU and Brooklyn II
Brooklyn II Host Interface Protocol (BHIP) is the protocol used to transport Dante Device Protocol (DDP)
and Packet Bridge. The BHIP protocol does not have acknowledgements. Therefore, it will be up to clients
of the DDP and/or Packet Bridge on the Host CPU retry if a responsemessage was not received.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -16-

In typical deployments both DDP and Packet bridge will operate over the same serial peripheral. However
it is also possible to configure the Brooklyn II to use one peripheral (e.g. SPI) for DDP and the other
peripheral (e.g. UART) for the packet bridge. The intended use case for this is to connect two Host CPUs.

Framing and Padding Mechanisms
The framing of data differs when using SPI or UART. Figure 5 shows a single frame transferred on a SPI
serial link and Figure 6 shows a single frame transferred on a UART serial link. The pipe number in the SPI
header used for BHIP data is 0. Pipes 0-7 are reserved for Audinate use. If you wish tomultiplex non-BHIP
data over the SPI interface at the same time youmay use any of pipes 8-15.

Figure 5 - Serial frame transferred between a host CPU and Brooklyn II over SPI

The frame transferred over a UART serial link does not use any padding so a Host CPU must not make
any assumptions on the size of the frame.

Figure 6 - Serial frame transferred between a host CPU and Brooklyn II over UART

Flow Control Mechanisms
Flow control is not provided by the BHIP protocol. However, the SPI slave on the Brooklyn II can be
configured to provide flow control at the hardware level. The SPI slave on the Brooklyn II provides a flow
control GPIO pin. This GPIO pin can be enabled via themodule configuration tool. The flow control pin is
asserted when the SPI slave buffer reaches the high water mark. For more information about the flow
control pin please refer to the Brooklyn II Programmer’s Guide. For UARTmode there is no hardware level
flow control from the Brooklyn II device.

Interaction Diagrams
Figure 7 shows a normal flow for BHIP regardless of the protocol that is being transported and the serial
peripheral used for the communication. This interaction also applies when the Host CPU transmits a BHIP
packet to the Brooklyn II.

http://dev.audinate.com/development/documentation/api-programmers-guide/webhelp/

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -17-

Figure 7 - Normal flow behaviour for BHIP

Resynchronization Mechanisms
In rare situations where synchronization is lost on the receive path, themethod to regain synchronization is
based on the serial peripheral used for communication.

In SPI mode, data is transferred in data blocks which are amultiple of 4 bytes (minimum is 4 bytes). In
addition, the SPI slave protocol has 4 sentinel bytes which always occur at the start of a 4 byte data block.
Therefore, these sentinel bytes are used to re-acquire synchronisation.

If UART is used as the serial peripheral, data reception does not assume a data block size. Therefore, the
COBS delimiters [0x00] are sufficient to regain synchronization.

Host CPU and Ultimo
Ultimo Host Interface Protocol (UHIP) is the protocol that is used to transport Dante Device Protocol
(DDP), Dante Events and Packet Bridge packets. Each UHIP packet is encoded using Consistent
Overhead Byte Stuffing (COBS). The UHIP protocol uses acknowledgements for flow control.

When the Ultimo is configured to communicate with a Host CPU all protocols transported by UHIP can
only be transferred over a single serial peripheral. The Ultimo does not have the capability to transfer
different UHIP protocols over different serial peripherals.

Framing and Padding Mechanisms
COBS is used to frame packets transferred over a serial link. A single frame sent over the serial link is
shown in Figure 8.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -18-

Figure 8 - Serial frame transferred between a host CPU and an Ultimo over SPI or UART

All packets transferred over the serial link are padded with [0xFF] bytes so that the packet size is a
multiple of 32 bytes. This simplifies DMA driver implementations on the Ultimo and the host CPUs.

Flow Control Mechanisms
UHIP utilises a Stop-and-Wait mechanism for flow control on a per message basis. After amessage has
been sent, the sender must wait until either of the following occurs before sending another message:

1. A PROTOCOL_CONTROL acknowledgment has been received

2. No response is received for 1 second

Important: Due to limited RAM on the Ultimo, if a host CPU does not process UHIP messages
quickly enough, UHIP messages will be dropped. As such it is important that received UHIP
messages are processed in a timely manner.

Interaction Diagrams

Normal Acknowledgement
The interaction diagram shown in Figure 9 depicts a normal flow control behaviour when packets are
acknowledged.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -19-

Figure 9 - UHIP normal acknowledgement

Error Timeout (No Response from Host CPU)
The interaction diagram shown in Figure 10 depicts what occurs if a packet is transmitted from the Ultimo
to the host CPU, but no acknowledgment is received.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -20-

Figure 10 - UHIP timeout error due to no response from host CPU

Error Timeout (No Response from Ultimo)
The interaction diagram shown in Figure 11 depicts what occurs if a packet is transmitted from the host
CPU to the Ultimo, but no acknowledgment is received.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -21-

Figure 11 - UHIP timeout error due to no response from the Ultimo

Timing and Resynchronization Mechanisms
UHIP uses the following strategies to regain synchronisation after communication errors.

n Receive Path for COBS encoded, 32 byte padded packets:

1. Start/reset a 1 second timer every time a 32 byte chunk is received

2. If a full COBS encodedmessage is received, stop the timer

3. If the timer expires (1 second without receiving the end of a COBS packet), reset the receive buffer
and/or DMA controller

n Transmit Path for COBS encoded, 32 byte padded packets:

1. When transmitting a UHIP message to the Host CPU.

2. Start a 1 second timer when themessage is transmitted.

3. If the timer expires without a response (i.e. PROTOCOL_CONTROL) packet being received.

4. Wait another 1 second before sending another UHIP message to the Host CPU.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -22-

Packet Bridge
The Packet Bridge protocol allows a Host CPU to send and receive UDP/ IP network datagrams via the IP
stack on a Brooklyn II or Ultimo device. This functionality will allow OEMs to quickly and easily implement
custom network control, status andmonitoring functionality on their Brooklyn II or Ultimo reference design
product and PC software. The Packet Bridge should only be used for applications that have a low
throughput and packet rate.

KeyFeatures and Specifications
Table 7 summarizes themain features related to Packet Bridge for the Brooklyn II and the Ultimo.

Table 7 - Packet Bridge key features for Brooklyn II and Ultimo

Feature Brooklyn II Ultimo

Supported
modes

Dante Control andMonitoring
(ConMon: control and status) or
standard UDP sockets

Dante Control andMonitoring (ConMon:
control, status, and vendor broadcast)
or standard UDP sockets

Maximum
message
payload

1448 bytes 500 bytes

ConMon
Unicast
subscriptions
limit

16 5

Overall Architecture
The Packet Bridge uses UDP/IP messages to communicate across the network. The Packet Bridge can
be configured in one of twomodes – ConMon or UDP sockets; and can be enabled on the Dante device
using themodule configuration tool.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -23-

Figure 12 - Packet Bridge architecture applicable for a Brooklyn II or an Ultimo

ConMon Packet Bridge
When the Packet Bridge is configured in ConMonmode, packets are forwarded to devices as vendor
specific ConMonmessages. ConMon includes infrastructure that enables discovery of Brooklyn II or
Ultimo Packet Bridge endpoints. Please refer to the Dante API Programmer’s Guide for further details on
ConMon.

The Packet Bridge endpoint forwards receivedmessages to the Host CPU. Responses from the Host
CPU forward back to the sending device. The Ultimo or Brooklyn II running the Packet Bridge cannot
initiate messages. The Ultimo supports a limitedmethod for transmittingmessage from the Packet Bridge
endpoint usingmulticast.

Equivalent functionality is not implemented Brooklyn II, however it is possible to build a custom user
application that is able to communicate using unicast messages with up to 16 devices. Please refer to the
Brooklyn II Programmer’s Guide on information how to build a custom user application.

The ConMon vendor ID in the ConMon header is themanufacturer-specific ID assigned to eachOEM by
Audinate. The ConMon packet bridge filters incoming packets based on this vendor ID to ensure that only
themessages tagged with the specific vendor ID are sent over the packet bridge. If more precise filtering is
required it is the responsibility of the vendor to implement this on the host processor.

The Brooklyn II Packet Bridge supports the control channel and status channel. The Ultimo Packet Bridge
supports the control channel, status channel and vendor broadcast channel.

n Control Channel – unicast receive channel. This channel is used to send control or query packets
from a PC or Brooklyn-II based controller to a Brooklyn II or Ultimo packet bridge endpoint.

n Status Channel – multicast and unicast transmit channel. This channel is used to send status mes-
sages or query responses from a Brooklyn II or Ultimo packet bridge endpoint to PC or Brooklyn II
based controllers. Remote devices subscribed to the Ultimomay receivemessages via unicast. The
maximum number of active unicast subscriptions supported by Brooklyn II is 16 whereas Ultimo is 5.

n Vendor Broadcast Channel – multicast transmit channel from the Ultimo, optional multicast receive
channel from a remote device. This channel is typically used for Ultimo-to-Ultimo communication in
small networks that don’t have a larger “controller” device such as a Brooklyn-II or PC.

Note: Unicast Ultimo to Ultimo ConMon Packet Bridgemessages are not supported.

http://dev.audinate.com/development/documentation/api-programmers-guide/webhelp/
http://dev.audinate.com/development/documentation/hardware-module-programmers-guide/webhelp/

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -24-

UDP Sockets Packet Bridge
When the Packet Bridge is configured in UDP mode, the Dante device allows for UDP datagrams to be
sent/received by the Host CPU via the Packet Bridge.

Note: If the Brooklyn II is configured in redundant mode, Packet Bridge in UDP sockets mode only
operates over the primary interface.

The following types of channels are supported in UDP socket Packet Bridgemode:

n Unicast Channel – unicast receive and transmit channel. This channel is typically used to send con-
trol or query packets from a PC or Brooklyn-II based controller to Brooklyn II or Ultimo Packet Bridge
endpoints. It is also used to send status messages or query responses from a Brooklyn II or Ultimo
packet bridge endpoint to PC or Brooklyn-II based controllers.

n Multicast Channel - multicast transmit channel from the Brooklyn II or Ultimo Packet Bridge endpoint
and optional multicast receive channel from a remote device. This channel should only be used in
small networks. It is preferable to use a Brooklyn II or PC running a custom application as a con-
troller.

Comparison of ConMon and UDP Sockets Packet Bridge

Table 8 - Comparing Features of ConMon and UDP Sockets Packet Bridge Modes

Feature ConMon Packet Bridge UDP Sockets Packet
Bridge

Device Discovery Automatic Manual (OEM
implemented)

Handling IP address
change

Automatic Manual (OEM
implemented)

Packet Filtering Automatic Manual (OEM
implemented)

Unicast Subscriptions Yes (up to 16 for Brooklyn II and up to 5 for
Ultimo)

Manual (OEM
implemented)

Redundancy (Brooklyn II
only)

Yes No

Communication with a Dante Device Packet Bridge
Endpoint fromPC / Brooklyn II Devices

Message Format

ConMon Mode
All themessages to and from the Brooklyn II or Ultimo Packet Bridge endpoint are encapsulated in a
ConMonmessage header. The ConMon vendor ID will be set to themanufacturer specific vendor ID

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -25-

assigned by Audinate. The Dante device Packet Bridge endpoint compares this ID to themanufacturer ID
set in the capability and forwards the packets over the packet bridge if they match.

UDP Mode
When configured in UDP Packet Bridgemode, it is the responsibility of the OEM to add any necessary
OEMmessage headers to the UDP payload. In UDP mode, the Brooklyn II or Ultimo Packet Bridge
endpoint forwards the received UDP payload over the serial interface to the Host CPU. Messages
received from the Host CPU are sent onto the network as UDP packets.

Discovering Packet Bridge Endpoints

ConMon Mode
A ConMon “controller” application on a Brooklyn II or PC can use the ConMonManufacturer Versions
message to identify devices matching a particular vendor ID. The Dante browsing API provides the
following additional device information:

n Vendor ID - vid, allows the controlling application to select a devicematching a particular vendor

n Vendor broadcast address – vba, Themulticast address used by the device for the Vendor Broadcast
Channel. The vendor broadcast address is only applicable for Ultimo Packet Bridge endpoints

Any ConMonmessages with amatching Vendor ID will be forwarded over the Brooklyn II or Ultimo Packet
Bridge. Audinate Vendor ID taggedmessages will be handled by Dante application threads inside Brooklyn
II or Ultimo as usual.

UDP Mode
When the Packet Bridge is configured in UDP mode, mDNS is used to discover the UDP Packet Bridge
endpoints. The Brooklyn II and Ultimo provides configurable SRV, TXT and PTR mDNS records for use by
the OEM and it is configurable via themodule configuration tool.

A mDNS advert consists of a PTR, SRV, and TXT record. It allows for a “named service” on a particular
port to be advertised and discovered. It consists of:

n PTR or Pointer Record - to enables the discovery of the “named” service on a particular device

n SRV or Service Record - to provide information about the “host” and “port” for the service

n TXT or Text Record - to provide additional information about the service

In themodule configuration tool the OEM can set the “service name” and “port” as well as multiple keys in
the Text Record.

n The “service name” is the OEM assigned name for the UDP packet bridge service

n The “port” is the OEM assigned listening UDP port for the unicast channel

n The “text keys” are extra information that the OEMwants to provide about the UDP packet bridge ser-
vice on the Ultimo. For example it may be useful to provide protocol versions, multicast IP
addresses or multicast port information in the Text Record

For example:

n UDP Packet Bridge service is called “oem-pb”

n The Unicast receive socket is bound to port “39030”

n TheMulticast receive socket is bound to 239.254.50.123 / port 9000

n The protocol version is 1.2.3.4

n AnUltimo device is used and it is called Ultimo-0712b3

This will result in the followingmDNS records:

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -26-

n Ultimo-0712b3._oempb._udp.local. 120 IN SRV 0 0 39030 Ultimo-0712b3.-
local.

n _oempb._udp.local. 4500 IN PTR Ultimo-0712b3._oempb._udp.local.

n Ultimo-0712b3._oembp._udp.local. 4500 IN TXT ver=1.2.3.4 mc_
ip=239.254.50.123 mc_port=9000

Please refer to Dante API Programmer’s Guide – DNS Service Discovery API section for information on
how to discover the packet bridge endpoint via mDNS.

For further information about mDNS please refer to http://www.multicastdns.org/

For an Apple implementation of mDNS that is commonly used on both OS X andWindows please refer to
http://www.apple.com/au/support/bonjour/

ConMon Control Channel Usage
The Control Channel carries control and query messages inbound to the Host CPU . The controller
application on a PC or Brooklyn- II can use this channel to send control or query messages to the host
CPU via the Packet Bridge. The Brooklyn II or Ultimo packet bridge endpoint cannot sendmessages using
this channel.

ConMon Status Channel Usage
The Status Channel is designed for one-to-many communication. This channel type is always amulticast
channel, with support for unicast transmission to a limited list of subscribed devices. Any message
received from the Packet Bridge tagged as a ConMon status message is multicast on the Status Channel.

A PC can use a ‘global’ subscription to receivemulticast status messages. A Brooklyn II controller can
use unicast to subscribe to up to 32 devices. A Brooklyn II packet bridge endpoint can support up to 16
remote “controllers” subscribed via unicast. An Ultimo endpoint can support 5 remote subscribers.

ConMon Vendor Broadcast Channel Usage
The Vendor Broadcast channel is typically used for Ultimo-to-Ultimo communication. It is designed for
one-to-many communication. This channel type is enabled/configured locally on each device that
transmits or receives on this channel.

The ConMon advertisement can be used to discover devices with a specified vendor ID and Vendor
Broadcast Channel multicast address. This channel can be used to both transmit and receivemessages.
Caremust be taken by the vendor to select multicast IP addresses that are not currently assigned. The
range recommended by Audinate is 239.254.0.0/16.

For more information about multicast IP address assignment see RFC5771 & RFC2365.

Important: When opening amulticast receive channel on an Ultimo, all packets sent by other
devices will be received andmust be processed by both the Ultimo and the host processor. Care
must be taken in designing the transmission side of the vendor protocol (specifically the number of
devices and how often they transmit) not to overwhelm or overburden the Ultimo and host processor
with receive packets!

Note: Becausemulticast is a one-to-many communicationmedium, it is the responsibility of the
vendor to add information identifying the sender to the transmitted packets. A MAC address or other
unique device identifier may be appropriate.

http://dev.audinate.com/development/documentation/api-programmers-guide/webhelp/home.htm#dns_service_discovery_api.htm
http://www.multicastdns.org/
http://www.apple.com/au/support/bonjour/

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -27-

Example Use Cases and Recommended ConMon
Configurations
This section describes Packet Bridge use cases and appropriate ConMon channel type selection.

Host CPU Firmware Update by a PC Controller
Figure 13 shows a PC controller being used to update the firmware on the host processor via the Packet
Bridge.

Figure 13 - Host CPU firmware upgrade by a PC controller

In this example, the PC controller sends vendor defined firmware update packets via the unicast ConMon
Control Channel to the Brooklyn II or Ultimo which are forwarded to the host CPU according to the packet
bridge configuration. The host CPU (via the Brooklyn II or Ultimo) then sends back status update and
responsemessages via themulticast ConMon Status Channel to the PC.

Control of Host CPU by a Brooklyn II Based Controller
Figure 14 shows a Brooklyn II based controller sending commands and/or queries to the host processor via
Packet Bridge.

Figure 14 - Host CPU controlled by Brooklyn II controller

In this example, the Brooklyn II based controller sends control packets via the unicast Control Channel to
the Ultimo, which is configured as a Packet Bridge to the host CPU. The Brooklyn II based controller also

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -28-

opens a remote subscription to the Status Channel on the Ultimo, which causes Ultimo to transmit unicast
ConMon Status Channel messages from the host CPU to the Brooklyn II controller. The host CPU sends
status messages and responses to the Brooklyn II controller via the Ultimo Packet Bridge and the unicast
subscription to the Status Channel.

Status Reporting by Host CPU to PC Controllers
Figure 15 shows multiple host CPUs reporting status information to one or more PC controllers via Packet
Bridge.

Figure 15 - Host CPU status reporting to PC controllers

In this example, all Ultimo and host CPUs transmit status information packets via themulticast Status
Channel to one or more PC based controller applications. The host CPU on each Ultimo device sends
periodic and/or event driven status messages via Packet Bridge to themulticast ConMon Status Channel.
The PC controller listens to these status messages using themulticast ConMon Status Channel.

Host CPU to Host CPU Communications

Note: This use case can only be realized with Ultimo packet bridge endpoints.

Figure 16 shows inter-device communication between host processors connected via Packet Bridge.

Figure 16 - Host CPU to host CPU communications

In this example, each Ultimo has been configured with the same Vendor Broadcast Channel using the
samemulticast IP address, which is used to transmit messages from the host CPU to the network.

Each Ultimo has also been configured to receivemessages for the Packet Bridge from the Vendor
Broadcast Channel. This allows the Vendor Broadcast Channel to be bridged from the network to the host
CPU.

Hosts CPUs can transmit messages to other host CPUs via the Ultimo Packet Bridge and themulticast
ConMon Vendor Broadcast Channel. Ultimo devices configured with the same vendor allocatedmulticast
address will receivemessages.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -29-

Important: When opening amulticast receive channel on an Ultimo, all packets sent by other
devices will be received andmust be processed by both the Ultimo and the host CPU. Caremust be
taken in designing the transmission side of the vendor protocol (specifically the number of devices
and how often they transmit) not to overwhelm or overburden the Ultimo and host CPU with receive
packets!

Important: Becausemulticast is a one-to-many communicationmedium, it is the responsibility of
the vendor to add information identifying the sender to the transmitted packets. A MAC address or
other unique device identifier may be appropriate.

Recommendations forOEMProtocol Design

Managing Device State
A device designed to control other devices typically needs to track the state of the devices it manages. To
track device state, a controller subscribes to Status Channels and receives messages as parameters
change or events occur. Theremay also bemultiple controllers for a given device.

How should device state and control messages be structured? The paragraphs below discuss various
possibilities open to the designer.

Self-Description
Devices that can describe their own features and capabilities can greatly simplify the task of writing
general-purpose control software. The simplest approach is to define a single message type supported by
all devices that describes the capabilities of the device. Controllers can use this information to determine
which behaviours and features are applicable for the device.

For example, the ConMon VERSIONS_STATUS message provides a range of information about the types
of ConMonmessages available for a given Dante device.

Bulk State Summary
When a controller starts up, it does not know the state of the devices it is controlling. In combination with a
control channel message to trigger it, a bulk state summary message provides an efficient means of
bootstrapping the controller. When sent on the Status Channel, all other controllers will receive this
message.

The bulk state summary may also be used as a control message for restoring a device to a particular
configuration.

Small State Changes
Generally, a human can adjust one or only a small number of parameters at once. Therefore, support for
small, single parameter state changemessages appears sensible.

Groups of Changes
Metering information is a classic example of status information that ought to be collected together for
transmission. Meter values change periodically and grouping several meter values together will result in
more efficient network transmission.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -30-

If several configuration or status parameters always change together, they should be transmitted together.
If parameters are transmitted in different messages, there is the chance that one of themessages will not
be successfully received. Grouping parameters together results in a set of parameter changes to be
received or lost as a group.

Stateless Protocol Design
In general, control or monitoringmessages should be understandable on their own. If message can be
interpreted properly without additional state, there is no burden on the receiver to track any extra state.

As an example, a control or status message that indicates:

PhantomPower = On or PreampGain = -17.1dB

Is better than amessage like:

PhantomPower = Toggle or PreampGain += 5.6dB

If the second style of message is retransmitted, or receivedmore than once because of redundancy, there
is potential confusion about the final device state, which can only be resolved by accurately tracking every
change.

Stateless messages have a well-definedmeaning or result. With care, a stateless protocol design can be
robust against retransmission and loss without requiring complex state tracking.

Avoiding Synchronization
A network containing devices that periodically sendmessages can self-synchronise, resulting in large
periodic bursts of network traffic. Consider randomly jittering the time at which periodic messages are sent
using the techniques described in Sally Floyd, Van Jacobson, “The synchronization of periodic routing
messages in Computer Networks”, 1994, IEEE/ACM Transactions on Networking.

Byte Ordering
Processors can arrange bytes in memory in different ways and this must be considered when copying data
(e.g. a 32 bit integer) into a buffer for transmission. A control protocol should clearly define the transmission
order of bytes to avoid confusion. It is strongly recommended that you use “network byte order” or “big
endian” transmission, as it is commonly used for protocols.

Byte Alignment
Processingmisaligned data is inefficient on some processors and not supported on others. Ensuring that
all 16 and 32 bit message fields are correctly aligned with the start of themessagemakes it easier to
process amessage once it has been copied into applicationmemory.

Detecting Message Loss
Incrementing sequence numbers on status andmeteringmessages allow the receiver to tell if it has
missed amessage. In the case of metering, missing the oddmessagemay be unimportant. For Status
Channels, recovery may involve provoking the transmission of a full or partial state summary.

A periodic, low rate, keepalive status message can be used to bound the time taken to detect that an
infrequent status messages is missing. A keepalivemay also be useful if a controller is required to detect
device disappearance in a timely manner - however, but note that the regular transmission of keepalives
consumes network bandwidth.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.9058

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -31-

Control messages may be acknowledged using a status message. Again, stateless protocol design pays
off, as an acknowledgement may be lost even when the original message has been successfully received.

Power-On Events
Protocol designers must carefully consider the behaviour of many devices powering on at the same (or
nearly the same) time. If several control devices start up at the same time and all want to acquire the
current state for the devices on the network, this can result in a flood of network traffic.

Tomitigate the effects of power-on events, consider the following strategies. Note: It is assumed there are
vendor defined control messages describing the “device state summary” and for triggering its transmission
on the Status Channel.

Status channel receiver behaviour:

1. Subscribe to Status Channel for the device.

2. Randomly wait (e.g. uniformly distributed between 0 and 3 seconds) whilst receiving Status Channel
messages.

If a full “device state summary” is received before timeout, another device requested the same information,
and there is no need to request it again.

If a full “device state summary” is not received before timeout, send a control message to trigger the
“device state summary” transmission on the Status Channel.

Status channel sender behaviour:

n Rate limit “status summary” messages. Is sendingmore than one per second worthwhile?

Interaction Diagrams

Transmit a Packet from a Host CPU to the Network [Successful]

Brooklyn II

Figure 17 - BHIP ConMon/UDP packet bridge transmit success

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -32-

Ultimo

Figure 18 - UHIP ConMon/UDP packet bridge transmit success

Transmit a Packet from a Host CPU to the Network [Failure – No
Network Connection]

Brooklyn II

Figure 19 - BHIP ConMon/UDP packet bridge transmit failure due to no network connection

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -33-

Ultimo

Figure 20 - UHIP ConMon/UDP packet bridge no network connection transmit failure

Transmit a Packet from a Host CPU to the Network [Failure –
Message Malformed]

Brooklyn II

Figure 21 - BHIP ConMon/UDP packet bridge transmit failure due to malformed message

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -34-

Ultimo

Figure 22 - UHIP ConMon/UDP packet bridge transmit failure due to malformed message

Receive a Packet from the Network and Forward to Host CPU
[Successful]

Brooklyn II

Figure 23 - BHIP ConMon/UDP packet bridge receive success

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -35-

Ultimo

Figure 24 - UHIP ConMon/UDP packet bridge receive success

Dante Device Configuration
SPI and UART port parameters including baud rates, clock polarity, etc. for Brooklyn II and Ultimo are
configured using themodule configuration tool. Configuration and selection of the ConMon channels used
with Packet Bridge or UDP sockets is also specified using themodule configuration tool.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -36-

Dante Events
The Dante Event messages are sent by the Ultimo processor when the sample rate or pull up is changed.
The Brooklyn II does not support Dante Events. These events are used to inform the Host CPU that the
codec(s) need to be reconfigured for the new sample rate / pull-up. For more information see Sample Rate
Changes and Pull-Up / DownChanges sections in the Ultimo Programmer’s Guide.

Interaction Diagrams

Figure 25 - Dante Events sent as a result of sample rate or pullup changes

Ultimo Configuration
To enable Dante Events on the Ultimo the following options should be configured inmodule config web
Host CPU section:

1. Host CPU checkbox should be ticked

2. Mode should be selected as either set to SPI or UART. Based on the selection the serial peripheral
should be configured as appropriate

http://dev.audinate.com/documentation/ultimo/programmers-guide/webhelp/

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -37-

Dante Device Protocol
The Dante Device Protocol (DDP) allows a Host CPU to control andmonitor the Dante functionality on a
Dante device. This functionality will allow OEMs to provide Dante status information or control the Dante
device via a user interface locally on the device.

Message Classes
There are several classes of messages used by the Dante Device Protocol:

1. Request messages - Request messages are sent to a Dante device and are used to either query for
information from a device or to control or change parameters on a device. Every request message has:

n A message opcode

n A sequence number used to identify the request. This must be a non-zero value. The reply to this
request will always use the sequence number from the request. This allows for a request/response
pair to be linked.

2. Responsemessages - Responsemessages are sent from aDante device in response to a request.
Every responsemessage has:

n An opcode that is the same as the corresponding request opcode

n A non-zero sequence numbermatching the request sequence number

n A status that indicates whether the request was successful or an error occurred

3. Event messages - Event messages are pushed or sent gratuitously from aDante device when there is a
change in status. Event messages are identical in format and opcode to a response event with the
following key differences:

n A zero sequence number

Protocol Functionality
This section provides a summary of the functionality provided by Dante Device Protocol.

Basic Information
Mechanisms: Query/Response & Asynchronous Notification (on power on)

n Model ID

n Model ID string

n Software Version & Build

n Firmware Version & Build

n Bootloader Version & Build

n Configuration & Memory Error flags (capability partition error / user partition error / configuration store
error)

Manufacturer Information
Mechanisms: Query/Response & Asynchronous Notification (on power on)

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -38-

n Manufacturer ID

n Manufacturer Name

n Model ID

n Model Name

n Model Version

n Software Version & Build

n Firmware Version & Build

n Bootloader Version & Build

n Configuration & Memory Error flags (capability partition error / user partition error / configuration store
error)

Upgrade
Mechanisms: Command/Response & Asynchronous Notification (after an upgrade)

n Start an upgrade via TFTP

n Start an upgrade via XMODEM via SPI/UART (Ultimo only)

n Receive progress notifications after the upgrade has completed

Erase Configuration
Mechanisms: Command/Response & Asynchronous Notification (during an erase)

n Erase to factory defaults

n Erase to factory defaults but keep static IP information

n Receive a notification when a erase is externally triggered

Device Reboot
Mechanisms: Command/Response & Asynchronous Notification (before reboot)

n Trigger a software reset

n Receive a notification when a reboot is externally triggered

Identity
Mechanisms: Command/Query/Response & Asynchronous Notification (on name changes)

n Device ID & Process ID (uniquely identify a device)

n Default name

n Friendly name

n Advertised name

n Change the friendly name of the device

n Receive a notification on a name change

Device Lock Information
Mechanisms: Query/Response & Asynchronous Notification (on lock/unlock state changes)

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -39-

n Device lock/unlock state

n Receive a notification on lock/unlock state change

AES67 (Brooklyn II Only)
Mechanisms: Command/Query/Response & Asynchronous Notification (on AES67 enable/disable
changes)

n Current AES67 enable/disable state

n Enable/disable AES67

n Receive a notification on enable/disable changes

VLANs
Mechanisms: Command/Query/Response & Asynchronous Notification (on VLAN configuration selection
changes)

n Simplemode: Change between switched and redundant modes (Brooklyn II Only)

n Custom VLANs: Change between different custom VLAN configurations set in the device capability

n Receive a notification on selecting a different VLAN configuration

Metering (Brooklyn II Only)
Mechanisms: Command/Query/Response & Asynchronous Notification (onmetering update rate
changes)

n Current metering update rate

n Set themetering update rate to 10Hz or 30Hz

n Receive a notification on changes to themetering rate

UART Configuration (Brooklyn II Only)
Mechanisms: Command/Query/Response & Asynchronous Notification (on changes to configuration
changes to a UART port)

n Current configuration parameters of a UART port: number of bits, stop bits, parity, baud rate, mode
of the port, and whether the port can be configured

n Configure parameters (number of bits, stop bits, parity, and baud rate) of a UART port only if the port
is marked as configurable in the capability

n Receive a notification on configuration changes to a UART port

Network
Mechanisms: Command/Query/Response & Asynchronous Notification (on network changes)

n MAC address

n Current Interface state (Link up or down)

n Current Link Speed

n Current IP Address / Netmask / Gateway

n Set Static IP Address / Netmask / Gateway

n Receive a notification if the network state changes

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -40-

Clocking / PTP
Mechanisms: Command/Query/Response & Asynchronous Notification (on clock changes)

n Current clock state (master / slave / etc)

n Current mute state

n Current preferred state

n Current frequency offset

n PTP logging state

n Current pullup

n Current subdomain

n Set preferred state

n Enable / disable PTP logging

n Set clock pullupmode & subdomain

n Enable / disable unicast delay requests for PTP v1 and/or v2 protocols

n Enable / disable multicast

n Enable / disable slave only

n Enable / disable PTP ports

n Enable / disable PTP v1 and v2 protocols

n Receive a notification on any clock state changes

Audio
Mechanisms: Command/Query/Response & Asynchronous Notification (on audio changes)

n Default sample rate

n Current & Reboot sample rate

n Supported sample rates

n Default encoding

n Current & Reboot encoding

n Supported encodings

n Number of RX channels

n Number of TX channels

n Change audio sample rate

n Change audio encoding

n TDM interface information (Brooklyn II only)

n Receive a notification on any audio sample rate change

n Receive a notification on any audio encoding change

n Receive signal presence over DDP (Ultimo only)

Routing
Mechanisms: Command/Query/Response & Asynchronous Notification (on changes)

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -41-

n Routing ready state

n Max Rx & Tx flows

n Max Rx & Tx slots per flow

n Min & max latency

n Min & max FPP

n Rx port range

n Channel Labels

n Set latency & FPP

n RX & TX Flow state and status

n RX & TX Channel state and status

n RX & TX channel labels

n Subscribe & unsubscribe RX channels

n Create and deletemulticast TX flows

n Set channel labels

n Receive a notification on any flow state or status change

n Receive a notification on any channel state or status change

n Receive a notification on any channel label change

Interaction Diagrams

Sending a DDP Command/Query Message and Receiving a DDP
Response Message
Interaction diagrams shown in Figure 26 and Figure 27 depict a Host CPU sending a DDP control message
either to change (i.e. control) parameters on the Brooklyn II and Ultimo or to send a query for the current
state of the Brooklyn II and Ultimo respectively.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -42-

Brooklyn II

Figure 26 - BHIP DDP command/query response

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -43-

Ultimo

Figure 27 - UHIP DDP command/query response message

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -44-

Receiving a DDP Event Message

Brooklyn II

Figure 28 - BHIP DDP event message

Ultimo

Figure 29 - UHIP DDP event message

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -45-

Sending a Command to a Locked Dante Device

Brooklyn II

Figure 30 - BHIP DDP command send to a locked Brooklyn II

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -46-

Ultimo

Figure 31 - UHIP DDP command send to a locked Ultimo

Protocol Messages

Device Basic Information
Summary: Provides basic device information such as model, software version and device errors.

Mechanisms: Query →Response; Asynchronous Notification (on power on)

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -47-

MessageOPCODE / Type: DDP_DEVICE_GENERAL

API Functions: Device General

Provided Functionality / Information:

n Model ID

n Model ID string

n Software Version & Build

n Firmware Version & Build

n Bootloader Version & Build

n Configuration & Memory Error flags (capability partition error / user partition error / configuration store
error)

Device Manufacturer Information
Summary: Provides manufacturer specified device information such as name, model, model versions, etc.

Mechanisms: Query →Response; Asynchronous Notification (on power on)

MessageOPCODE / Type: DDP_DEVICE_MANUFACTURER

API Functions: DeviceManufacturer

Provided Functionality / Information:

n Manufacturer ID

n Manufacturer Name

n Model ID & Model ID string

n Model Name

n Model Version

n Software Version & Build

n Firmware Version & Build

n Model Version & Model Version string

Device Upgrade
Summary: Start a TFTP or XMODEM upgrade, and receive notifications when an upgrade is externally
started

Note: XMODEM via SPI/UART is only supported by the Ultimo

Mechanisms: Query/Command→Response; Asynchronous Notification (after an upgrade)

MessageOPCODE / Type: DDP_DEVICE_UPRGADE

API Functions: Device Upgrade

Provided Functionality / Information:

n Start an upgrade via TFTP or XMODEM via SPI/UART

n Receive progress notifications after the upgrade has started

Device Erase Configuration
Summary: Erase all Dante configuration data from the device; receive a notification if an erase occurs

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -48-

Mechanisms: Command→Response; Asynchronous Notification (during an erase)

MessageOPCODE / Type: DDP_DEVICE_ERASE_CONFIG

API Functions: Device Erase Configuration

Provided Functionality / Information:

n Erase to factory defaults

n Erase to factory defaults but keep static IP information

n Receive a notification when a erase is externally triggered

Device Reboot
Summary: Reboot the device; receive a notification if a reboot is triggered

Mechanisms: Command→Response; Asynchronous Notification (before reboot)

MessageOPCODE / Type: DDP_DEVICE_REBOOT

API Functions: Device Reboot

Provided Functionality / Information:

n Trigger a software reset

n Receive a notification when a reboot is externally triggered before the reboot occurs

Device Identity
Summary: Provide friendly / default name and unique ID information; notify on name changes

Mechanisms: Query/Command→Response; Asynchronous Notification (on name changes)

MessageOPCODE / Type: DDP_DEVICE_IDENTITY

API Functions: Device Identity

Provided Functionality / Information:

n Device ID & Process ID (uniquely identify a device)

n Default name

n Friendly name

n Advertised name

n Change the friendly name of the device

n Receive a notification on a name change

Device Identify
Summary: Notify when a ConMon identify message is received

Mechanisms: Asynchronous Notification (on ConMon identify messages)

MessageOPCODE / Type: DDP_DEVICE_IDENTIFY

API Functions: Device Identify

Provided Functionality / Information:

n Receive a notification when the device receives a valid ConMon identify message

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -49-

Device GPIO

Note: This message is only supported on Ultimo

Summary: Control andQuery for GPIO state; notify on GPIO state changes

Mechanisms: Query/Command→Response; Asynchronous Notification (onGPIO state changes)

MessageOPCODE / Type: DDP_DEVICE_GPIO

API Functions: Device GPIO

Provided Functionality / Information:

n Control GPIO output state

n Query for current GPIO input or output state

n Receive a notification when theGPIO input or output value changes

Device Switch LED

Note: This message is only supported on Ultimo

Summary: Control the external RJ45 LEDs on a switch

Mechanisms: Command→Response

MessageOPCODE / Type: DDP_DEVICE_SWITCH_LED

API Functions: Device Switch LED

Provided Functionality / Information:

n Control LEDs on the switch

Device Lock/Unlock
Summary: Provide the current lock/unlock state of the device; notify on device lock state changes

Mechanisms: Query →Response; Asynchronous Notification (on device lock state changes)

MessageOPCODE / Type: DDP_DEVICE_TYPE_LOCK_UNLOCK

API Functions: Device Lock/Unlock

Provided Functionality / Information:

n Query current lock/unlock state

n Receive a notification when the lock/unlock state changes

Device Switch Redundancy

Note: This message is only supported on Brooklyn II

Summary: Change the device VLAN configuration between switched and redundant; notify on switch
redundancy changes

Mechanisms: Query/Command→Response; Asynchronous Notification (on switch redundancy changes)

MessageOPCODE / Type: DDP_DEVICE_TYPE_SWITCH_REDUNDANCY

API Functions: Device Switch Redundancy

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -50-

Provided Functionality / Information:

n Change between switched and redundant VLAN configurations

n Receive a notification when the current VLAN configuration has been changed to a different state

Device UART Configuration

Note: This message is only supported on Brooklyn II

Summary: Change UART port parameters for UART ports designated as being configurable in the
capability

Mechanisms: Query/Command→Response; Asynchronous Notification (on UART port parameter
changes)

MessageOPCODE / Type: DDP_DEVICE_TYPE_UART_CONFIG

API Functions: Device UART Configuration

Provided Functionality / Information:

n Change the number of bits, stop bits, baud rate, parity of a UART which can be configured

n Receive a notification when the configuration of a configurable UART port changes

Device AES67

Note: This message is only supported on Brooklyn II

Summary: Enable / disable AES67

Mechanisms: Query/Command→Response; Asynchronous Notification (on AES67 enable/disable state
changes)

MessageOPCODE / Type: DDP_DEVICE_TYPE_AES67

API Functions: Device AES67

Provided Functionality / Information:

n Change the AES67 enable/disable state

n Receive a notification when the AES67 enable/disable state changes

Device VLAN Configuration
Summary: Change between one of the custom VLAN configurations set in the capability

Mechanisms: Query/Command→Response; Asynchronous Notification (on changing to a different VLAN
configuration)

MessageOPCODE / Type: DDP_DEVICE_TYPE_VLAN_CONFIG

API Functions: Device VLAN Configuration

Provided Functionality / Information:

n Switch between up to four different custom VLAN configurations set in the capability

n Receive a notification when changing to a different VLAN configuration

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -51-

Device Meter Configuration

Note: This message is only supported on Brooklyn II

Summary: Change themetering update rate

Mechanisms: Query/Command→Response; Asynchronous Notification (onmetering update rate
changes)

MessageOPCODE / Type: DDP_DEVICE_TYPE_METER_CONFIG

API Functions: DeviceMeter Configuration

Provided Functionality / Information:

n Change themetering update rate between 10Hz and 30Hz

n Receive a notification when themeter update rate has changed

Network Basic
Summary: Provides basic network information such as MAC address, IP address, link state, etc. Notify on
network state changes

Mechanisms: Query →Response; Asynchronous Notification (on network state changes)

MessageOPCODE / Type: DDP_DEVICE_NETWORK_BASIC

API Functions: Network Basic

Provided Functionality / Information:

n MAC address

n Current Interface state (Link up or down)

n Current Link Speed

n Current IP Address / Netmask / Gateway

n Receive a notification if the network state changes

Network Configuration
Summary: Change between DHCP+LinkLocal and static IP address configurations. Notify on network
configuration changes

Mechanisms: Command/Query →Response; Asynchronous Notification (on network configuration
changes)

MessageOPCODE / Type: DDP_DEVICE_NETWORK_CONFIG

API Functions: Network Configuration

Provided Functionality / Information:

n Change between static IP address and DHCP / LinkLocal network configurations

n Set a static IP Address / Netmask / Gateway address configuration

n Receive a notification if the network configuration changes

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -52-

Clock Basic Legacy

Note: This message was formerly known as Clock Basic and it is now deprecated. It is only
supported on Ultimo. Pleasemigrate to Clock Basic 2.

Summary: Provides legacy basic clock information; notify on clock state changes

Mechanisms: Query →Response; Asynchronous Notification (on clock changes)

MessageOPCODE / Type: DDP_CLOCK_BASIC

API Functions: Clock Basic Legacy

Provided Functionality / Information:

n Current clock state (master / slave / etc)

n Current mute state

n Current preferred state

n Current frequency offset

n Receive a notification on any clock state changes

Clock Basic 2
Summary: Provides basic clock information; notify on clock state changes

Mechanisms: Query →Response; Asynchronous Notification (on clocking related changes)

MessageOPCODE / Type: DDP_CLOCK_TYPE_BASIC2

API Functions: Clock Basic 2

Provided Functionality / Information:

n Current clock source

n Current clock state (master / slave / etc)

n Current mute state

n Current preferred state

n Current frequency offset

n Current external word clock state

n Current clock stratum

n Current UUID, master UUID, and grandmaster UUID

n PTP port parameters such as ID, protocol supported, state, unicast/multicast, interface index

n Receive a notification on any clock state changes

Clock Configuration
Summary: Change clock configuration parameters; notify on clock configuration changes

Mechanisms: Command/Query →Response; Asynchronous Notification (on clock configuration changes)

MessageOPCODE / Type: DDP_CLOCK_CONFIG

API Functions: Clock Configuration

Provided Functionality / Information:

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -53-

n PTP logging state

n Set preferred state

n Enable / disable PTP logging

n Enable / disable unicast delay requests for PTP v1 and/or v2 protocols

n Enable / disable multicast

n Enable / disable slave only

n Enable / disable PTP V1 and V2 protocols

n Enable / disable PTP ports

n Receive a notification on any clock configuration changes

Clock Pull-up
Summary: Change clock pull-up or clock subdomain configurations; notify on clock pull-up or subdomain
changes

Mechanisms: Command/Query →Response; Asynchronous Notification (on clock pullup changes)

MessageOPCODE / Type: DDP_CLOCK_PULLUP

API Functions: Clock Pullup

Provided Functionality / Information:

n Current pullup

n Current subdomain

n List of supported pullups

n Set clock pullupmode & subdomain

n Receive a notification on any clock pullup / subdomain changes

Audio Basic
Summary: Provides basic audio information such as number of RX and TX channels, default sample rate
and default encoding

Mechanisms: Query →Response; Asynchronous Notification (on Rx and Tx channel count changes due
to setting a sample rate which causes this condition)

MessageOPCODE / Type: DDP_AUDIO_BASIC

API Functions: Audio Basic

Provided Functionality / Information:

n Default sample rate

n Default encoding

n Number of RX channels

n Number of TX channels

Audio Sample Rate Configuration
Summary: Change audio sample rate configuration and query for supported sample rates. Notify on audio
sample rate changes.

Mechanisms: Command/Query →Response; Asynchronous Notification (on audio sample rate changes)

MessageOPCODE / Type: DDP_SRATE_CONFIG

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -54-

API Functions: Audio Sample Rate Configuration

Provided Functionality / Information:

n Current & Reboot sample rate

n Supported sample rates

n Change audio sample rate

n Receive a notification on any audio sample rate change

Audio Encoding Configuration
Summary: Change audio encoding configuration and query for supported encodings. Notify on audio
encoding changes.

Mechanisms: Command/Query →Response; Asynchronous Notification (on audio encoding changes)

MessageOPCODE / Type: DDP_AUDIO_ENC_CONFIG

API Functions: Audio Encoding Configuration

Provided Functionality / Information:

n Current & Reboot encoding

n Supported encoding

n Change audio encoding

n Receive a notification on any audio encoding change

Audio Interface

Note: This message is only supported on Brooklyn II

Summary: Provides information about the audio TDM interface of the Dante device

Mechanisms: Query →Response; Asynchronous Notification (on boot up)

MessageOPCODE / Type: DDP_AUDIO_TYPE_INTERFACE

API Functions: Audio Interface

Provided Functionality / Information:

n Audio channels per TDM interface

n TDM clock framing type

n TDM sample alignment type

n Alignment of first channel on a TDM line with respect to the LRCLK

n A notification is sent during boot up of the Dante device

Audio Signal Presence Configuration

Note: This message is only supported on Ultimo

Summary: Enable/disable the Ultimo from pushing signal presence data over DDP periodically

Mechanisms: Command→Response

MessageOPCODE / Type: DDP_AUDIO_TYPE_SIGNAL_PRESENCE_CONFIG

API Functions: Audio Signal Presence Configuration

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -55-

Provided Functionality / Information:

n Enable/disable the Ultimo from sending signal presence over DDP

Audio Signal Presence Data

Note: This message is only supported on Ultimo

Summary: Signal presence information both Rx and Tx channels

Mechanisms: Asynchronous Notification (on availability of new signal presence data)

MessageOPCODE / Type: DDP_AUDIO_TYPE_SIGNAL_PRESENCE_DATA

API Functions: Audio Signal Presence Data

Provided Functionality / Information:

n Number of Rx and Tx channels that have signal presence information

n The signal presence which indicates audio clip, audio signal, and no audio signal

Routing Basic
Summary: Provides basic routing information

Mechanisms: Query →Response

MessageOPCODE / Type: DDP_ROUTING_BASIC

API Functions: Routing Basic

Provided Functionality / Information:

n Max Rx & Tx flows

n Max Rx & Tx slots per flow

n Min & max latency

n Min & max FPP

n Rx port range

n Number of Rx/Tx channels contained in a single Rx/Tx channel config state DDP message

n Number of Rx/Tx flows contained in a single Rx/Tx flow config state DDP message

n Number of Rx channels/flows contained in a single Rx channel/flow status DDP message

Routing Ready
Summary: Provides status information on whether the Dante device is ready to support routing
commands.

Mechanisms: Query →Response; Asynchronous Notification (on routing ready state changes)

MessageOPCODE / Type: DDP_ROUTING_READY_STATE

API Functions: Routing Ready State

Provided Functionality / Information:

n Routing ready state

n Receive a notification when the routing ready state changes

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -56-

Routing Performance Configuration
Summary: Provides current latency/FPP configuration, change current latency/FPP settings, notification
on latency/FPP changes.

Mechanisms: Command/Query →Response; Asynchronous Notification (on changes)

MessageOPCODE / Type: DDP_ROUTING_PERFORMANCE_CONFIG

API Functions: Routing Performance Config

Provided Functionality / Information:

n Set latency & FPP

n Receive a notification on routing performance configuration changes

Routing Rx Channel Configuration State
Summary: Provides RX channel configuration information such as labels, encodings, current
subscriptions; Notification on RX channel configuration changes.

Note: The number of Rx channels contained in a single message is limited, and this number can be
obtained from the Routing Basic DDP message

Mechanisms: Query →Response; Asynchronous Notification (on changes)

MessageOPCODE / Type: DDP_ROUTING_RX_CHAN_CONFIG_STATE

API Functions: Routing RX Channel Configuration State

Provided Functionality / Information:

n Default Channel Label

n Current Channel Label

n Channel Encoding

n Channel Sample Rate

n Channel Supported PCM encodings

n Channel Supported custom encodings

n Subscriptions (subscribed device channel) and Subscription status

n Receive a notification on any channel state change

n Receive a notification on any channel label change

Routing Tx Channel Configuration State
Summary: Provides TX channel configuration information such as labels, encodings, etc; Notification on
TX channel configuration changes.

Note: The number of Tx channels contained in a single message is limited, and this number can be
obtained from the Routing Basic DDP message

Mechanisms: Query →Response; Asynchronous Notification (on changes)

MessageOPCODE / Type: DDP_ROUTING_TX_CHAN_CONFIG_STATE

API Functions: Routing TX Channel Configuration State

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -57-

Provided Functionality / Information:

n Default Channel Label

n Current Channel Label

n Channel Encoding

n Channel Sample Rate

n Channel Supported PCM encodings

n Channel Supported custom encodings

n Receive a notification on any channel state change

n Receive a notification on any channel label change

Routing Rx Channel Status
Summary: Provides a query mechanism for the current RX channel status (i.e. unresolved / dynamic)

Note: The number of Rx channels contained in a single message is limited, and this number can be
obtained from the Routing Basic DDP message

Mechanisms: Query →Response

MessageOPCODE / Type: DDP_ROUTING_RX_CHAN_STATUS

API Functions: Routing RX Channel Status

Provided Functionality / Information:

n Channel Status – this is the audio subscription status of this channel, for example DDP_RX_CHAN_
STATUS_UNRESOLVED or DDP_RX_CHAN_STATUS_DYNAMIC

Routing Rx Flow Configuration State
Summary: Provides RX flow configuration information such as status, slots, channels, etc; Notification on
RX flow configuration changes.

Note: The number of Rx flows contained in a single message is limited, and this number can be
obtained from the Routing Basic DDP message

Mechanisms: Query →Response; Asynchronous Notification (on changes)

MessageOPCODE / Type: DDP_ROUTING_RX_FLOW_CONFIG_STATE

API Functions: Routing RX Flow Configuration State

Provided Functionality / Information:

n Flow status – for example FLOW_STATUS_ACTIVE or FLOW_STATUS_BAD_ADDRESS

n Flow configuration – e.g. number of slots, flow IP address and port, RX channels, encoding, sample
rate, latency, FPP

n Receive a notification on any flow configuration change (except flow status changes for flow status
changes the “Rx Flow Status” notification will occur)

Routing Tx Flow Configuration State
Summary: Provides TX flow configuration information such as status, slots, channels, etc; Notification on
TX flow configuration changes.

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -58-

Note: The number of Tx flows contained in a single message is limited, and this number can be
obtained from the Routing Basic DDP message

Mechanisms: Query →Response; Asynchronous Notification (on changes)

MessageOPCODE / Type: DDP_ROUTING_TX_FLOW_CONFIG_STATE

API Functions: Routing TX Flow Configuration State

Provided Functionality / Information:

n Flow status – for example FLOW_STATUS_ACTIVE or FLOW_STATUS_BAD_ADDRESS

n Flow configuration – e.g. number of slots, flow IP address and port, TX channels, encoding, sample
rate, latency, FPP

n Receive a notification on any flow configuration change

Routing Rx Flow Status
Summary: Provides a query mechanism for the current RX flow status (i.e. active)

Note: The number of Rx flows contained in a single message is limited, and this number can be
obtained from the Routing Basic DDP message

Mechanisms: Query →Response

MessageOPCODE / Type: DDP_ROUTING_RX_FLOW_STATUS

API Functions: Routing RX Flow Status

Provided Functionality / Information:

n Flow available – whether the flow is available on any interface

n Flow active – whether the flow is actively receiving audio

n Receive a notification on any flow status change

Routing Rx Channel Label Set
Summary: Set / change an RX channel label

Note: The number of Rx channels that can have their labels updated by a single message is limited,
and this number can be obtained from the Rx channel config state per DDP message field in the
Routing Basic DDP message

Mechanisms: Command→Response

MessageOPCODE / Type: DDP_ROUTING_RX_CHAN_LABEL_SET

API Functions: Routing RX Channel Label Set

Provided Functionality / Information:

n Change / Set the RX Channel Label on 1 or more channels

n Note: The response to a RX Channel Label Set message contains the same payload as a Rx Rout-
ing Channel Configuration Statemessage

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -59-

Routing Tx Channel Label Set
Summary: Set / change a TX channel label

Note: The number of Tx channels that can have their labels updated by a single message is limited,
and this number can be obtained from the Tx channel config state per DDP message field in the
Routing Basic DDP message

Mechanisms: Command→Response;

MessageOPCODE / Type: DDP_ROUTING_TX_CHAN_LABEL_SET

API Functions: Routing TX Channel Label Set

Provided Functionality / Information:

n Change / Set the TX Channel Label on 1 or more channels

n Note: The response to a TX Channel Label Set message contains the same payload as a Tx Routing
Channel Configuration Statemessage

Routing RX Subscribe
Summary: Create a label based RX subscription on the Dante device

Note: The number of Rx channels subscribed using a single message is limited, and this number can
be obtained from the Rx channel config state per DDP message field in the Routing Basic DDP
message

Mechanisms: Command→Response;

MessageOPCODE / Type: DDP_ROUTING_RX_SUBSCRIBE_SET

API Functions: Routing RX Subscribe

Provided Functionality / Information:

n Create RX subscriptions

n Note: The response to a RX Subscribe Set message contains the same payload as a RX Channel
Configuration Statemessage

Routing RX Unsubscribe
Summary: Remove RX subscriptions on the Dante device

Mechanisms: Command→Response;

MessageOPCODE / Type: DDP_ROUTING_RX_UNSUB_CHAN

API Functions: Routing RX Unsubscribe

Provided Functionality / Information:

n Delete RX subscriptions

Routing Multicast TX Flow Configuration
Summary: Create amulticast TX flow

Mechanisms: Command→Response;

MessageOPCODE / Type: DDP_ROUTING_MCAST_TX_FLOW_CONFIG_SET

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -60-

API Functions: Routing TX Multicast Flow Configuration

Provided Functionality / Information:

n CreateMulticast TX flows

Routing Flow Delete
Summary: Remove flows on the Ultimo

Mechanisms: Command→Response;

MessageOPCODE / Type: DDP_ROUTING_FLOW_DELETE

API Functions: Routing Flow Delete

Provided Functionality / Information:

n Delete an existing flow, this command can be used to delete a Tx multicast flow

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -61-

Host CPU SDK Package
The Host CPU SDK package can be integrated into an existing software project which enables
communication between a Host CPU and a Dante device. It provides the core functionality required to
implement the software for a Host CPU to communicate with a Brooklyn II or Ultimo. The core
functionality is exposed via an API.

The package also includes an example application forWindows that uses the UART and SPI transport.
The SPI transport in exampleWindows application uses the API from Total Phase Inc. and will work with
their Aardvark Host Adapters. The implementer should add platform-specific code as required to port the
functionality to their platform of choice.

Data Types
The data types used throughout the Host CPU SDK is specified in Table 9. These data type definitions are
specified in the stdint.h C header file.

Table 9 - Host CPU SDK data types

Data
Type

Description

uint8_t Unsigned 8-bit integer

int8_t Signed 8-bit integer

uint16_t Unsigned 16-bit short
integer

int16_t Signed 16-bit short
integer

uint32_t Unsigned 32-bit long
integer

int32_t Signed 32-bit long integer

Provided Functionality
The Host CPU SDK package contains the following (organised by folder):

n docs - Doxygen documentation for the core functionality API. Open the docs.html to access the
Doxygen documentation

n src/common - Dante types & helpers

n src/libs - Host CPU core functionality library

o src/libs/lib_cobs – COBS encoding / decoding library used for BHIP and UHIP packet
framing

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -62-

o src/libs/lib_bhip – Brooklyn II Host Interface Protocol packet read / write library to cre-
ate and parse BHIP messages

o src/libs/lib_uhip – Ultimo Host Interface Protocol packet read / write library to create
and parse UHIP messages

o src/libs/lib_ddp – Dante Device Protocol packet read /write library to create and parse
DDP messages

o src/libs/interface – Interface to UHIP API library
n src/libs/interface/uhip_hostcpu_rx_timer.h – UHIP RX timer interface

n src/libs/interface/uhip_hostcpu_tx_timer.h – UHIP TX timer interface

n src/libs/interface/hostcpu_transport.h – Raw data (SPI / UART) trans-
port layer interface

o src/libs/lib_serial – Utility functions to prepare and extract COBS encoded serial
frames for Brooklyn II and Ultimo

n src/app – Example implementation of a Host CPU to Brooklyn II or Ultimo interface application

o src/app/example_bhip:
n src/app/example_bhip/example_bhip_main.[c|h] – “Core” state machine

implementing BHIP protocol

n src/app/example_bhip/example_bhip_common.[c|h] – Common func-
tionality used across the BHIP HostCPU examples

n src/app/example_bhip/example_rx_bhip_[spi|uart].[c|h] – BHIP
Receive functionality specific to a serial peripheral

n src/app/example_bhip/example_tx_bhip.[c|h] – Examples to handle trans-
mitting BHIP packets

n src/app/example_bhip/example_tx_bhip_pb.[c|h] – Examples to create
and send ConMon and UDP mode BHIP packet bridge packets

o src/app/example_uhip:
n src/app/example_uhip/example_uhip_main.[c|h] – “Core” state machine

implementing UHIP protocol

n src/app/example_uhip/example_uhip_common.[c|h] – Common func-
tionality used across the UHIP HostCPU examples

n src/app/example_uhip/example_rx_uhip.[c|h] – UHIP Receive func-
tionality

n src/app/example_uhip/example_tx_uhip.[c|h] – Examples to handle trans-
mitting UHIP packets

n src/app/example_uhip/example_tx_pb.[c|h] – Examples to create and
send ConMon and UDP modeUHIP packet bridge packets

o src/app/example_ddp:
n src/app/example_ddp/example_rx_ddp.[c|h] – Examples to handle

received DDP and Dante Event messages

n src/app/example_ddp/example_tx_ddp.[c|h] – Examples to create and
send DDP messages

n src/app/win – A sampleWindows implementation of the interface in src/libs/lib_inter-
face

o src/app/win/bhip/aud_platform.h – Global header file for BHIP Host CPU API

o src/app/win/uhip/aud_platform.h – Global header file for UHIP Host CPU API

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -63-

o src/app/win/uhip/rx_timer.c, src/app/win/uhip/tx_timer.c, src/ap-
p/win/uhip/timer_common.c – Implementation of timers conforming to timer interface for
UHIP

o src/app/win/bhip_uart_transport.c – Implementation of UART transport conforming
to transport interface for BHIP communication. In this file the user must specify the COM port
number by changing the PC_COM_PORTmanifest constant. The UART baud rate used for the
communication is 115200.

o src/app/win/bhip_spi_transport.c – Implementation of SPI transport conforming to
transport interface for BHIP communication. The SPI clock speed used for the communication
is 4MHz.

o src/app/win/uhip_spi_transport.c – Implementation of SPI transport conforming to
transport interface for UHIP communication. In this file the user must specify the TotalPhase
Inc. Aardvark SPI host adapter SPI master and SPI slave serial numbers by changing the
AARDVARK_SPI_MASTER_SERIAL and AARDVARK_SPI_SLAVE_SERIALmanifest con-
stants. The SPI clock speed used for the communication is 4MHz.

o src/app/win/uart_transport.c – Implementation of UART transport conforming to trans-
port interface for UHIP communication. In this file the user must specify the COM port number
by changing PC_COM_PORT manifest constant. The UART baud rate used for the com-
munication is 115200.

n vs_project – Windows Visual Studio project files for each serial peripheral for BHIP and UHIP and
a solution file which groups the project files. Minimum supported version of Visual Studio is 2013.

Porting the Host CPUSDKPackage
This section details how to port the Host CPU SDK package to your host CPU. Doing a trial build and run
on the existing example platforms before starting implementation is strongly recommended.

Project Setup
The package will compile as-is as aWindows application. The first step in porting to a different platform
will be to execute the create_ultimo_hostcpu.bat or create_brooklyn-ii_hostcpu.bat to
get the source files to communicate with a specific Dante device. The next step is to create platform
specific build files (i.e. Makefiles) or add the source code to an existing build project.

The implementer will also need to add folders for platform-specific code similar to src/win

The following header search paths should be included for the C compiler:

n (lib includes)

n Platform specific header file location

Implement the RX Timer interface
The RX timer interface specified in uhip_hostcpu_rx_timer.h needs to be implemented and this is
only required for host CPUs interfacing with an Ultimo. This is a polled one-shot timer that is used for the
UHIP protocol RX timeouts.

The implementation requirements are:

n A timer with a resolution and accuracy of approximately 100ms

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -64-

Implement the TX Timer interface
The TX timer interface specified in uhip_hostcpu_tx_timer.h needs to be implemented and this is
only required for host CPUs interfacing with an Ultimo. This is a polled one-shot timer that is used for the
UHIP protocol TX timeouts.

The implementation requirements are:

n A timer with a resolution and accuracy of approximately 100ms

Implement the Host CPU Transport Interface
The Host CPU Transport interface specified in hostcpu_transport.h needs to be implemented. This
is the platform specific SPI or UART driver for the Host CPU. This is used by the API to send / receive
data to the Brooklyn II or Ultimo. The following sub-sections specify the requirements for each interface for
each type of host CPU protocol.

BHIP Host CPU SPI Interface
n The SPI master is used to send data and while sending data, the Host CPU SPI master must

receive data from the Brooklyn II SPI slave. The send data functionality should be implemented by
the hostcpu_transport_write() function

n Receiving data can be performed while sending data, but if there is no data to be sent the SPI master
should sent dummy data. The receive data functionality should be implemented by the hostcpu_
transport_read() function. The host CPU shouldmake use of the DATA_AVAILABLE line from
the Brooklyn II which signals the availability of data to be read by the host CPU. See Communicating
with a Brooklyn II for information about the DATA_AVAILABLE line.

UHIP Host CPU SPI Interface
n A SPI master peripheral driver used for sending data only (any RX data from the SPI master should

be dropped). This should be implemented by the hostcpu_transport_write() function

n A SPI slave peripheral driver used for receiving data only (TX dummy bytes may need to be sent at
the peripheral driver layer). This should be implemented by the hostcpu_transport_read()
function. This implementationmust use either DMA or interrupt driven I/O as the driver must be able
to buffer up to 576 bytes of received data

Implementation requirements for a UART Host CPU interface:

n A UART TX driver used for sending data only. This should be implemented by the hostcpu_trans-
port_write() function.

n A UART RX driver used for receiving data only. This should be implemented by the hostcpu_
transport_read() function. This implementationmust use either DMA or interrupt driven I/O as
the driver must be able to buffer up to 576 bytes of received data.

Add required RX message handling
Some example stub functions for receiving different message types are implemented in the example_
rx_bhip.c/h, example_rx_uhip.c/h, example_rx_ddp.c/h files. The customer will need to
modify these stub functions and add additional receive functions as required for their application.

Add required TX message handling
Some example stub functions for building and transmitting different message types are implemented in the
example_tx_bhip.c/h, example_tx_uhip.c/h, example_tx_ddp.c/h files. The customer

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -65-

will need tomodify these stub functions and add additional transmit functions as required for their
application.

Modify aud_platform.h
uhip/aud_platform.h and bhip/aud_platform.h include platform specific defines and includes,
modify these to suit your platform.

Modify or Implement a Main Loop
example_uhip_main.c and example_bhip_main.c contain a simple implementation of amain loop
that does not assume any special platform functionality. It is assumed that the sending of Tx messages
from this application needs to be driven off a timer or via integration of an external trigger such as a push
button press. Alternatively amore sophisticatedmain loop using select() and callbacks may be used.

Host CPUSDKLibraryAPI Functions

UHIP ConMon Packet Bridge Functions

Message Type Build Function (for TX) Parse Function (for RX)

UHIP ConMon
Packet Bridge

uhip_packet_write_cmc_
packet_bridge()

uhip_packet_read_cmc_
packet_bridge()

BHIP ConMon Packet Bridge Functions

Message Type Build Function (for TX) Parse Function (for RX)

BHIP ConMon
Packet Bridge

bhip_packet_write_cmc_
packet_bridge()

bhip_packet_read_cmc_
packet_bridge()

UHIP UDP Packet Bridge Functions

Message Type Build Function (for TX) Parse Function (for RX)

UHIP UDP
Packet Bridge

uhip_packet_write_udp_
packet_bridge()

uhip_packet_read_udp_
packet_bridge()

BHIP UDP Packet Bridge Functions

Message
Type

Build Function (for TX) Parse Function (for RX)

BHIP UDP
Packet Bridge

bhip_packet_write_udp_
packet_bridge()

bhip_packet_read_udp_
packet_bridge()

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -66-

Dante Events Functions

Message Type Build Function
(for TX)

Parse Function (for RX)

Audio Format Change (sample
rate)

N/A ddp_read_local_audio_
format()

Clock Pullup Change N/A ddp_read_local_clock_
pullup()

Dante Device Protocol (DDP) Functions

Message
Type

Build Function

(for TX query/command)

Parse Function

(for RX response/event)

Device
General

ddp_read_device_
general_request()

ddp_read_device_general_
response()

Device
Manufacturer

ddp_add_device_
manufacturer_
request()

ddp_read_device_manufacturer_
response()

Device
Upgrade

ddp_add_device_
upgrade_xmodem_
request()

ddp_add_device_
upgrade_tftp_
request()

ddp_read_device_upgrade_
response()

Device Erase
Configuration

ddp_add_device_
erase_request()

ddp_read_device_erase_response
()

Device
Reboot

ddp_add_device_
reboot_request()

ddp_read_device_reboot_response
()

Device
Identity

ddp_add_device_
identity_request()

ddp_read_device_identity_
response()

Device
Identify

ddp_read_device_identify_

response() [event only]

Device GPIO ddp_add_device_
gpio_request()

ddp_read_device_gpio_response()

Device
Switch LED

ddp_add_device_
switch_led_request
()

ddp_read_device_switch_led_
response()

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -67-

Message
Type

Build Function

(for TX query/command)

Parse Function

(for RX response/event)

Device
Lock/Unlock

ddp_add_device_
lock_unlock_request
()

ddp_read_device_lock_unlock_
response()

Device
Switch
Redundancy

ddp_add_device_
switch_redundancy_
request()

ddp_read_device_switch_
redundancy_response()

Device
UART
Configuration

ddp_add_device_
uart_config_request
()

ddp_read_uart_config_response_
header()

ddp_read_uart_config_response_
uart_st_array()

Device
AES67

ddp_add_device_
aes67_request()

ddp_read_device_aes67_response
()

Device VLAN
Configuration

ddp_add_device_
vlan_config_request
()

ddp_read_device_vlan_config_
response_header()

ddp_read_device_vlan_config_
response_vlan_st_array()

ddp_read_device_vlan_config_
response_name_string()

DeviceMeter
Configuration

ddp_add_device_
meter_config_
request()

ddp_read_device_meter_config_
response()

Network
Basic

ddp_add_network_
basic_request()

ddp_read_network_basic_
response_header()

ddp_read_network_basic_
response_interface()

ddp_read_network_basic_
response_interface_address()

ddp_read_network_basic_
response_dns()

ddp_read_network_basic_
response_domain()

Network
Configuration

ddp_add_network_
config_request()

ddp_read_network_config_
response()

Clock Basic
Legacy

ddp_add_clock_
basic_legacy_
request()

ddp_read_clock_basic_legacy_
response()

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -68-

Message
Type

Build Function

(for TX query/command)

Parse Function

(for RX response/event)

Clock
Configuration

ddp_add_clock_
config_request()

ddp_read_clock_config_response
()

ddp_read_clock_config_response_
port()

Clock Pullup ddp_add_clock_
pullup_request()

ddp_read_clock_pullup_response
()

Clock Basic
2

ddp_add_clock_
basic2_request()

ddp_read_clock_basic2_response_
header()

ddp_read_clock_basic2_response_
port()

Audio Basic ddp_add_audio_
basic_request()

ddp_read_audio_basic_response()

Audio
Sample Rate
Configuration

ddp_add_audio_
sample_rate_config_
request()

ddp_read_audio_sample_rate_
config_response()

ddp_read_audio_sample_rate_
config_supported_srate()

Audio
Encoding
Configuration

ddp_add_audio_
encoding_config_
request()

ddp_read_audio_encoding_config_
response()

ddp_read_audio_encoding_config_
supported_encoding()

Audio
Interface

ddp_add_audio_
interface_request()

ddp_read_audio_interface_
response()

Audio Signal
Presence
Configuration

ddp_add_audio_
signal_presence_
config_request()

ddp_read_audio_signal_presence_
config_response()

Audio Signal
Presence
Data

ddp_read_audio_signal_presence_
data_response()

ddp_read_audio_signal_presence_
data_tx_chan_value()

ddp_read_audio_signal_presence_
data_rx_chan_value()

Routing
Basic

ddp_add_routing_
basic_request()

ddp_read_routing_basic_response
()

Routing
Ready State

ddp_add_routing_
ready_state_request
()

ddp_read_routing_ready_state_
response()

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -69-

Message
Type

Build Function

(for TX query/command)

Parse Function

(for RX response/event)

Routing
Performance
Configuration

ddp_add_routing_
performance_config_
request()

ddp_read_routing_performance_
config_response()

Routing RX
Channel
Configuration
State

ddp_add_routing_rx_
chan_config_state_
request()

ddp_read_routing_rx_chan_
config_state_response_header()

ddp_read_routing_rx_chan_
config_state_response_chan_
params()

ddp_read_routing_rx_chan_
config_state_response_custom_
encoding()

Routing TX
Channel
Configuration
State

ddp_add_routing_tx_
chan_config_state_
request()

ddp_read_routing_tx_chan_
config_state_response_header()

ddp_read_routing_tx_chan_
config_state_response_chan_
params()

ddp_read_routing_tx_chan_
config_state_response_custom_
encoding()

Routing RX
Flow
Configuration
State

ddp_add_routing_rx_
flow_config_state_
request()

ddp_read_routing_rx_flow_
config_state_response_header()

ddp_read_routing_rx_flow_
config_state_response_flow_
params()

ddp_read_routing_rx_flow_
config_state_response_flow_slot
()

ddp_read_routing_rx_flow_
config_state_response_flow_
slot_chans()

ddp_read_routing_rx_flow_
config_state_response_flow_
address_nw_ip()

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -70-

Message
Type

Build Function

(for TX query/command)

Parse Function

(for RX response/event)

Routing TX
Flow
Configuration
State

ddp_add_routing_tx_
flow_config_state_
request()

ddp_read_routing_tx_flow_
config_state_response_header()

ddp_read_routing_tx_flow_
config_state_response_flow_
params()

ddp_read_routing_tx_flow_
config_state_response_flow_
slots()

ddp_read_routing_tx_flow_
config_state_response_flow_
address_nw_ip()

Routing RX
Channel
Status

ddp_add_routing_rx_
chan_status_request
()

ddp_read_routing_rx_chan_
status_response_header()

ddp_read_routing_rx_chan_
status_response_chan_params()

Routing RX
Flow Status

ddp_add_routing_rx_
flow_status_request
()

ddp_read_routing_rx_flow_
status_response_header()

ddp_read_routing_rx_flow_
status_response_flow_params()

Routing RX
Subscribe

ddp_add_routing_rx_
sub_set_request()

ddp_read_routing_rx_sub_set_
response_header()

ddp_read_routing_rx_sub_set_
response_chan_params()

ddp_read_routing_rx_sub_set_
response_custom_encoding()

Routing RX
Unsubscribe

ddp_add_routing_rx_
unsub_chan_request
()

ddp_read_routing_rx_unsub_chan_
response()

Routing RX
Channel
Label Set

ddp_add_routing_rx_
chan_label_set_
request()

ddp_read_routing_rx_chan_label_
set_response_header()

ddp_read_routing_rx_chan_label_
set_response_chan_params()

ddp_read_routing_rx_chan_label_
set_response_custom_encoding()

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -71-

Message
Type

Build Function

(for TX query/command)

Parse Function

(for RX response/event)

Routing TX
Channel
Label Set

ddp_add_routing_tx_
chan_label_set_
request()

ddp_read_routing_tx_chan_label_
set_response_header()

ddp_read_routing_tx_chan_label_
set_response_chan_params()

ddp_read_routing_tx_chan_label_
set_response_custom_encoding()

Routing
Multicast TX
Flow
Configuration

ddp_add_routing_
multicast_tx_flow_
config_request()

ddp_read_routing_multicast_tx_
flow_config_response_header()

ddp_read_routing_multicast_tx_
flow_config_response_flow_
params()

ddp_read_routing_multicast_tx_
flow_config_response_flow_slots
()

ddp_read_routing_multicast_tx_
flow_config_state_response_
flow_address_nw_ip()

ddp_routing_multicast_tx_flow_
config_add_slot_params()

Routing Flow
Delete

ddp_add_routing_
flow_delete_request
()

ddp_read_routing_flow_delete_
response()

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -72-

Getting Started
The purpose of this section is to provide information on how to get stared with the Host CPU SDK
package.

1. Configure the Dante device: The initial step should be to configure the Brooklyn II or the Ultimo for
communication with a host CPU. Refer to Packet Bridge, Dante Events (Ultimo only), and Dante
Device Protocol.

2. Connect the Dante device to the computer:

o If a Brooklyn II PDK is available then connect a UART cable (e.g. FTDI serial to USB cable) to
the UART port configured for host CPU communication.

o If an Ultimo PDK is available then connect a UART cable to UARTB. Alternatively, if
TotalPhase Inc. Aardvark host adapters are available then connect them as appropriate.

o Use Table 10 when connecting an Aardvark SPI master to a Brooklyn II SPI slave on port B.
Use Table 11 and Table 12 when connecting an Aardvark SPI slave and Aardvark SPI master
respectively to an Ultimo SPI master + SPI slave.

Table 10 - Brooklyn II PDK SPI slave to Aardvark SPI master pin mapping

SPI Function Aardvark SPI Master
Header

Brooklyn II PDK SPI Port B
Header

Clock SCK – Pin 7 CLK – Pin 3

Slave Select SS – Pin 9 SEL – Pin 1

Ground GND – Pin 2 GND – Pin 8

Master in Slave
out

MISO – Pin 5 MISO – Pin 7

Master out
Slave in

MOSI – Pin 8 MOSI – Pin 5

Data Available GPIO – Pin 1 Data Available – Pin 2

Table 11 - Ultimo PDK SPI master to Aardvark SPI slave pin mapping

SPI Function Aardvark SPI Slave
Header

Ultimo PDK SPI Master
Header

Clock SCK – Pin 7 CKA – Pin 3

Slave Select SS – Pin 9 S0A – Pin 1

Ground GND – Pin 2 GND – Pin 8

Master in Slave
out

MISO – Pin 5 DIA – Pin 7

Host CPU SDK Programmer's Guide

CONFIDENTIAL. Copyright © 2016 Audinate Pty Ltd. AllRightsReserved. -73-

SPI Function Aardvark SPI Slave
Header

Ultimo PDK SPI Master
Header

Master out
Slave in

MOSI – Pin 8 DOA – Pin 5

Table 12 - Ultimo PDK SPI slave to Aardvark SPI master pin mapping

SPI Function Aardvark SPI Master
Header

Ultimo PDK SPI Slave
Header

Clock SCK – Pin 7 CKB – Pin 18

Slave Select SS – Pin 9 SLB – Pin 20

Ground GND – Pin 2 GND – Pin 13

Master in Slave
out

MISO – Pin 5 DOB – Pin 14

Master out
Slave in

MOSI – Pin 8 DIB – Pin 16

3. Open the Visual solution file: UseMicrosoft Visual Studio (currently 2015 known as Visual Studio
Community, it can be obtained fromMicrosoft’s website - minimum supported version is 2013) to
open the vs_project/hostcpu_api.sln solution file. Build the example project of interest
which is based on the transport protocol (BHIP or UHIP) and the serial peripheral.

4. Run the examples: Open a command line window and simply execute the executable built by
Visual Studio. There are no command line options. Alternatively, the example can be run by Visual
Studio.

5. Test receiving DDP events: If the Brooklyn II or Ultimo is configured for DDP, the reboot the Dante
device to view boot up events. Otherwise, use Dante Controller, to change sample rate, encoding,
etc. and view the corresponding DDP event.

6. Test sending DDP messages: Uncomment one of the hostcpu_bhip_set_tx_flag() func-
tion calls of interest in src/app/example/example_bhip/example_bhip_main.c, or host-
cpu_uhip_set_tx_flag() in src/app/example/example_bhip/example_uhip_
main.c, re-build the Visual Studio project and run the executable. After running the executable the
DDP response can be viewed.

7. Port the examples projects to a target platform: The steps involved in porting the example code
and library code contained in the Host CPU SDK package are discussed in detail in Porting the Host
CPU SDK Package. To get started execute the create_brooklyn-ii_hostcpu.bat for a host
CPU targeting communication with a Brooklyn II or execute create_ultimo_hostcpu.bat for a
host CPU targeting communication with an Ultimo. These batch files will group the relevant source
files without Visual Studio project files into a separate directory.

8. Read the API documentation: Doxygen-styled documentation is provided for low level func-
tionality to process and build packets for the various serial protocols covered in this document.
These docs can be accessed by opening the docs/docs.html file.

Host CPU SDK Programmer's Guide

Copyright © 2016 Audinate Pty Ltd. All rights reserved. -74-

Index
A

AES67 39, 50

API Functions 65

Architecture 22

Audio 40

Audio Basic 53

Audio Encoding Configuration 54

Audio Interface 54

Audio Sample Rate Configuration 53

Audio Signal Presence Configuration 54

Audio Signal Presence Data 55

B

Basic Information 37, 46

BHIP 15

BHIP ConMon Packet Bridge Functions 65

BHIP Host CPU SPI Interface 64

BHIP UDP Packet Bridge Functions 65

Brooklyn II Host Interface Protocol 15

Bulk State Summary 29

Byte Alignment 30

Byte Ordering 30

C

Clock 52

Clock Basic 2 52

Clock Basic Legacy 52

Clock Configuration 52

Clock Pull-up 53

Clocking / PTP 40

Communicating with a Brooklyn II 10

Communicating with an Ultimo 11

Communication with a Dante Device Packet
Bridge Endpoint 24

Comparison of ConMon and UDP Sockets
Packet Bridge 24

ConMonConfigurations 27

ConMonControl Channel Usage 26

ConMonMode 25

ConMon Packet Bridge 23

ConMon Status Channel Usage 26

ConMon Vendor Broadcast Channel
Usage 26

Control Channel 23, 26

Control of Host CPU 27

D

Dante Device Configuration 35

Dante Device Protocol 37

Dante Device Protocol (DDP) Functions 66

Dante Events 36

Dante Events Functions 66

Data Types 61

Device Basic Information 46

Device Discovery 24

Device Erase Configuration 47

Device Identify 48

Device Identity 48

Device Lock Information 38

DeviceManufacturer Information 47

Device Reboot 38, 48

Device State 29

Device Upgrade 47

Discovering Packet Bridge Endpoints 25

E

Encoding 54

Erase Configuration 38, 47

Error Timeout 19-20

Event messages 37

Example Use Cases 27

F

Firmware Update 27

Flow Control 16, 18

Flow Delete 60

Framing and PaddingMechanisms 16-17

Functionality 61

G

GPIO 49

Groups of Changes 29

Host CPU SDK Programmer's Guide

Copyright © 2016 Audinate Pty Ltd. All rights reserved. -75-

H

Handling IP address change 24

Hardware Requirements 10

Host CPU and Brooklyn II 15

Host CPU and Ultimo 17

Host CPU Architecture 15

Host CPU Firmware Update 27

Host CPU SDK Package 61

Host CPU to Host CPU Communications 28

Host CPU Transport Interface 64

I

I/O signalling levels 10

Identify 48

Identity 38, 48

Interface 54

K

Key Features 15, 22

L

LED 49

Lock/Unlock 49

M

Main Loop 65

Manufacturer Information 37, 47

Message Classes 37

Message Format 24

Message Loss 30

Meter Configuration 51

Metering 39

Multicast 59

Multicast TX Flow Configuration 59

N

Network 39

Network Basic 51

Network Configuration 51

Normal Acknowledgement 18

P

Packet Bridge 22-23

Packet Filtering 24

Porting 63

Porting the Host CPU SDK Package 63

Power-On Events 31

Project Setup 63

Protocol Design 29

Protocol Functionality 37

Protocol Messages 46

Pull-up 53

R

Reboot 48

Receive a Packet from the Network and
Forward 34

Receiving a DDP Event Message 44

Redundancy 24, 49

Request messages 37

Responsemessages 37

Resynchronization 17, 21

Routing 40, 55

Routing Performance 56

Routing Ready 55

Routing Rx Channel Configuration State 56

Routing Tx Channel Configuration State 56

Rx Channel Configuration State 56

Rx Channel Label Set 58

Rx Channel Status 57

Rx Flow Configuration State 57

Rx Flow Status 58

RX message handling 64

RX Subscribe 59

RX Timer interface 63

RX Unsubscribe 59

S

Sample Rate 53

Self-Description 29

Sending a Command to a Locked Dante
Device 45

Sending a DDP Command/Query
Message 41

Signal Presence 54-55

Host CPU SDK Programmer's Guide

Copyright © 2016 Audinate Pty Ltd. All rights reserved. -76-

Small State Changes 29

Specifications 15, 22

SPI 10, 12, 35

Stateless Protocol Design 30

Status Channel 23, 26

Status Reporting 28

Subscribe 59

Switch LED 49

Synchronization 30

T

Timing 21

Transmit a Packet from aHost CPU 31-33

Tx Channel Configuration State 56

Tx Channel Label Set 59

Tx Flow Configuration State 57

TX message handling 64

TX Timer interface 64

U

UART 11, 13, 35

UART Configuration 39, 50

UDP Mode 25

UDP Sockets Packet Bridge 24

UHIP 17

UHIP ConMon Packet Bridge Functions 65

UHIP Host CPU SPI Interface 64

UHIP UDP Packet Bridge Functions 65

Ultimo Configuration 36

Ultimo Host Interface Protocol 17

Unicast Subscriptions 24

Unsubscribe 59

Upgrade 38, 47

V

Vendor Broadcast channel 26

Vendor Broadcast Channel 23

VLAN Configuration 50

VLANs 39

	Copyright
	European Office
	Asia Pacific Office
	About Audinate
	About Dante

	Introduction
	Hardware Requirements of a Host CPU
	Communicating with a Brooklyn II
	SPI
	UART

	Communicating with an Ultimo
	SPI
	UART

	Host CPU Architecture
	Key Features and Specifications
	Host CPU and Brooklyn II
	Framing and Padding Mechanisms
	Flow Control Mechanisms
	Interaction Diagrams
	Resynchronization Mechanisms

	Host CPU and Ultimo
	Framing and Padding Mechanisms
	Flow Control Mechanisms
	Interaction Diagrams
	Normal Acknowledgement
	Error Timeout (No Response from Host CPU)
	Error Timeout (No Response from Ultimo)

	Timing and Resynchronization Mechanisms

	Packet Bridge
	Key Features and Specifications
	Overall Architecture
	ConMon Packet Bridge
	UDP Sockets Packet Bridge
	Comparison of ConMon and UDP Sockets Packet Bridge

	Communication with a Dante Device Packet Bridge Endpoint from PC / Brooklyn I...
	Message Format
	ConMon Mode
	UDP Mode

	Discovering Packet Bridge Endpoints
	ConMon Mode
	UDP Mode

	ConMon Control Channel Usage
	ConMon Status Channel Usage
	ConMon Vendor Broadcast Channel Usage

	Example Use Cases and Recommended ConMon Configurations
	Host CPU Firmware Update by a PC Controller
	Control of Host CPU by a Brooklyn II Based Controller
	Status Reporting by Host CPU to PC Controllers
	Host CPU to Host CPU Communications

	Recommendations for OEM Protocol Design
	Managing Device State
	Self-Description
	Bulk State Summary
	Small State Changes
	Groups of Changes

	Stateless Protocol Design
	Avoiding Synchronization
	Byte Ordering
	Byte Alignment
	Detecting Message Loss
	Power-On Events

	Interaction Diagrams
	Transmit a Packet from a Host CPU to the Network [Successful]
	Brooklyn II
	Ultimo

	Transmit a Packet from a Host CPU to the Network [Failure – No Network Connec...
	Brooklyn II
	Ultimo

	Transmit a Packet from a Host CPU to the Network [Failure – Message Malformed]
	Brooklyn II
	Ultimo

	Receive a Packet from the Network and Forward to Host CPU [Successful]
	Brooklyn II
	Ultimo

	Dante Device Configuration

	Dante Events
	Interaction Diagrams
	Ultimo Configuration

	Dante Device Protocol
	Message Classes
	Protocol Functionality
	Basic Information
	Manufacturer Information
	Upgrade
	Erase Configuration
	Device Reboot
	Identity
	Device Lock Information
	AES67 (Brooklyn II Only)
	VLANs
	Metering (Brooklyn II Only)
	UART Configuration (Brooklyn II Only)
	Network
	Clocking / PTP
	Audio
	Routing

	Interaction Diagrams
	Sending a DDP Command/Query Message and Receiving a DDP Response Message
	Brooklyn II
	Ultimo

	Receiving a DDP Event Message
	Brooklyn II
	Ultimo

	Sending a Command to a Locked Dante Device
	Brooklyn II
	Ultimo

	Protocol Messages
	Device Basic Information
	Device Manufacturer Information
	Device Upgrade
	Device Erase Configuration
	Device Reboot
	Device Identity
	Device Identify
	Device GPIO
	Device Switch LED
	Device Lock/Unlock
	Device Switch Redundancy
	Device UART Configuration
	Device AES67
	Device VLAN Configuration
	Device Meter Configuration
	Network Basic
	Network Configuration
	Clock Basic Legacy
	Clock Basic 2
	Clock Configuration
	Clock Pull-up
	Audio Basic
	Audio Sample Rate Configuration
	Audio Encoding Configuration
	Audio Interface
	Audio Signal Presence Configuration
	Audio Signal Presence Data
	Routing Basic
	Routing Ready
	Routing Performance Configuration
	Routing Rx Channel Configuration State
	Routing Tx Channel Configuration State
	Routing Rx Channel Status
	Routing Rx Flow Configuration State
	Routing Tx Flow Configuration State
	Routing Rx Flow Status
	Routing Rx Channel Label Set
	Routing Tx Channel Label Set
	Routing RX Subscribe
	Routing RX Unsubscribe
	Routing Multicast TX Flow Configuration
	Routing Flow Delete

	Host CPU SDK Package
	Data Types
	Provided Functionality
	Porting the Host CPU SDK Package
	Project Setup
	Implement the RX Timer interface
	Implement the TX Timer interface
	Implement the Host CPU Transport Interface
	BHIP Host CPU SPI Interface
	UHIP Host CPU SPI Interface

	Add required RX message handling
	Add required TX message handling
	Modify aud_platform.h
	Modify or Implement a Main Loop

	Host CPU SDK Library API Functions
	UHIP ConMon Packet Bridge Functions
	BHIP ConMon Packet Bridge Functions
	UHIP UDP Packet Bridge Functions
	BHIP UDP Packet Bridge Functions
	Dante Events Functions
	Dante Device Protocol (DDP) Functions

	Getting Started
	Index

