AVPro Video

for Android, iOS, tvOS, OS X,
Windows Desktop, Windows Phone™* and UWP*

Unity plugin for fast and flexible video playback

Version 1.3.9

Released 15 July 2016

Contents

Introduction
1. Features
2. Trial Version
3. Media Credits

System
1.

Requirements
Platforms not supported

Installation

1.

Platform Notes

2. Trial Version & Watermark Notes
3. Video File Locations
4. Streaming Notes
5. Virtual Reality Notes
6. Hap Codec Notes
7. Transparency Notes
Quick Start Examples
1. Quick Start Fastest Start for Unity Experts
2. Quick Start Fullscreen Video Player using Prefabs
3. Quick Start 3D Mesh Video Player Example using Components
Usage
1. Getting Started
2. Unsupported Platform Fallback
3. Components
i. Media Player Component
ii. Display IMGUI Component
iii. Display uGUI Component
iv. Apply To Mesh / Material Component
4. Scripting
i. Namespace
ii. Media Player Scripting
iii. Events
Asset Files
1. Demos
2. Prefabs
3. Scripts
Supported Media Formats
1. Android
2. i0S§, tvOS and OS X
3. Windows

Scripting Reference

Support

. About RenderHeads Ltd

Appendix A - FAQ
Appendix B - Version History
Appendix C - Roadmap

2/52

1. Introduction

AVPro Video is the newest video plugin from RenderHeads, who previously developed the
AVPro QuickTime and AVPro Windows Media plugins for Unity. In this new generation of
plugins we aim to create an easy to use, cross-platform video playback system that uses the
native features of each platform.

1.1 Features

Versions for iOS, tvOS, OS X, Android, Windows, Windows Phone and UWP
One API for video playback on all supported platforms
4K video support (on supported hardware)

VR support (equirectangular and cubemap)

Fast flexible video playback

Unity Pro 4.6.9 and 5.x supported

Free watermarked trial version available (download here)
Fast native Direct3D, OpenGL and Metal texture updates
Linear and Gamma colour spaces supported

Graceful fallback in editor

Unity 4.6 uGUI support

Easy to use, drag and drop components

Streaming video from URL (when supported by platform)

1.2 Trial Version

We offer an unlimited trial version of AVPro Video for download from our website at
http://renderheads.com/product/avpro-video/. The trial version has no missing features or
time restrictions but it does apply a watermark to the rendered output. The watermarking
does have a small performance impact which is only really noticeable on very high resolution
videos. In Windows if the GPU decoding path is used when the watermark isn’t displayed -
instead every few seconds the video size will scale down.

1.3 Media Credits

BigBuckBunny_360p30.mp4 - (c) copyright 2008, Blender Foundation /
www.bigbuckbunny.org

BigBuckBunny_720p30.mp4 - (c) copyright 2008, Blender Foundation /
www.bigbuckbunny.org

SampleSphere.mp4 - (¢) copyright Daniel Arnett, https://vimeo.com/97887646

3/52

http://renderheads.com/product/avpro-video/
http://renderheads.com/product/avpro-video/
http://www.bigbuckbunny.org/
http://www.bigbuckbunny.org/
https://vimeo.com/97887646

2. System Requirements

Unity 5.x or Unity Pro 4.6 and above

iOS 8.1 and above

tvOS 9.0 (Apple TV 4th Gen) and above

OS X 10.7 and above, 64-bit only

Android 4.1 (Jelly Bean, API level 16) and above (ARM7 and x86)
Windows XP and above (32-bit and 64-bit)

Windows 8.0 and above (32-bit and 64-bit)

Windows Phone UWP 8.1 (32-bit and ARM)

Windows Desktop UWP 8.1 (32-bit, 64-bit and ARM)

Universal Windows Platform 10 (32-bit, 64-bit and ARM)

2.1 Platforms not Supported

WebGL*

WebPlayer

Linux desktop

Game Consoles (XBox, PS4 etc)

* = coming soon

4/52

3. Installation

1. Open up a fresh Unity session (to clear any locked plugin files)
2. Import the unitypackage file into your Unity project. If prompted to upgrade some
scripts click Yes.

3.1 Platform Notes

3.1.1 Android

This plugin requires an API level minimum of 16

Under the hood we’re using the MediaPlayer API

If you want to support streaming don’t forget to set the “Internet Access” option in
Player Settings to “require”

For rendering we supports OpenGL ES 2.0 and OpenGL ES 3.0

Multi-threaded rendering is supported

3.1.2i0S /tvOS / Mac OS X

Under the hood we’re using the AVFoundation API
If you want to support streaming you need to enable HTTP downloads explicitly. For
iOS this is an option in newer versions of Unity, but for Mac OS X and older versions
of Unity you have to do this explicitly by editing the plist file. There are notes below
on how to do this.
For rendering on Mac OS X we support OpenGL Legacy and OpenGL Core
For rendering on iOS and tvOS we support OpenGL ES 2.0, OpenGL ES 3.0 and
Metal

e Multi-threaded rendering is supported

3.1.3 Windows

e Under the hood we’re using the Media Foundation and DirectShow API's. Media
Foundation is used for Windows 8 and beyond while DirectShow is used as a
fallback for Windows 7 and below.

For rendering we support Direct3D 9, Direct3D 11 and OpenGL Legacy
Multi-threaded rendering is supported

3.1.4 Windows Store / UWP / Hololens

e For GPU decoding add this line to App.cs:

5/52

m_AppCallbacks.AddCommandLineArg("-force-d3d11-no-singlethreaded");

3.2 Trial Version & Watermark Notes

3.2.1 Watermark

If you are using a trial version of the plugin then you will see a watermark displayed over the
video. The watermark is in the form of a “RenderHeads” logo that animates around the
screen, or a thick horizontal bar that move around the screen.

The full version of AVPro Video has no watermarks for any platforms. If you use one of the
platform specific packages (eg AVPro Video for iOS, or AVPro Video for Windows) then you
will not see the watermark on the platform you purchased for, but you will see the watermark
on the other platforms. For example if you purchased AVPro Video for iOS then you will still
see the watermark in the Unity editor as this is running on Windows/OS X, but the videos
played back when you deploy to your iOS device will be watermark-free.

3.2.2 Updating from Trial Version

If you are upgrading from the trial version, make sure you delete the old /Assets/Plugins
folder as this contains the trial plugin and could conflict. You may need to close Unity first,
delete the files manually and then restart Unity and re-import the package (because Unity
locks native plugin files once they are loaded).

You can check which version you have installed by adding an MediaPlayer component to
your scene and clicking on the ‘about’ button in the Inspector for that component. The
version number is displayed in this box.

3.2.3 Installing Multiple AVPro Platform Packages

If you have installed the iOS package then it will also contain plugins for all of the other
platforms but with the watermark enabled. This means that if you then try to install another
AVPro package it may not override the plugins correctly. Here is how to resolve this using
the iOS and Android package as examples:

1. Start Unity fresh
2. Import the iOS package
3. Delete the Plugins/Android folder
a. If you already have other Android plugins installed then you can'’t just delete
the whole folder and must specifically delete the AVPro files. Check the list
below for the AVPro native plugin files.
4. Import the Android package

6/52

Similar operation works for other package combinations.
List of native plugin files:

Plugins/Android/AVProVideo.jar
Plugins/Android/libs/armeabi-v7a/libAVProLocal.so
Plugins/Android/libs/x86/libAVProLocal.so
Plugins/AVProVideo.bundle
Plugins/iOS/libAVProVideoiOS.a
Plugins/tvOS/libAVProVideotvOS.a
Plugins/WSA/PhoneSDK81/ARM/AVProVideo.dll
Plugins/WSA/PhoneSDK81/x86/AVProVideo.dll
Plugins/WSA/SDK81/ARM/AVProVideo.dll
Plugins/WSA/SDK81/x86/AVProVideo.dll
Plugins/WSA/SDK81/x86_64/AVProVideo.dll
Plugins/WSA/UWP/ARM/AVProVideo.dll
Plugins/WSA/UWP/x86/AVProVideo.dll
Plugins/WSA/UWP/x86_64/AVProVideo.dll
Plugins/x86/AVProVideo.dll
Plugins/x86_64/AVProVideo.dll

3.3 Video File Location

Video files can be played in almost any location, however we recommend placing video files
in the /Assets/StreamingAssets/ folder in your Unity project as this is the easiest folder to
get started with. StreamingAssets is a special folder that Unity copies to the build without
processing. Files copied elsewhere will require manual copying to the build location.

The MediaPlayer component allows you to browse for video files and specify them relative to
a parent folder:

v Media Player (Script)

File

Video Location elative To Streaming Assets Folder
Absolute Path Or URL
Relative To Project Folder

Relative To Streaming Assets Folder
Relative To Data Folder

Relative To Peristent Data Folder

The Video Location field specifies the master location of the video file while the Video Path
field specifies where to locate the file relative to the Location.

7152

For example if your file is stored in “Assets/StreamingAssets/video.mp4” you would set the
Location to “Relative To Streaming Assets Folder” and set the Video Path to “video.mp4”.

Sub-folders are also supported so a video located at
“Assets/StreamingAssets/myfolder/video.mp4” would have it's Video Path set to
“myfolder/video.mp4”.

You can also specify absolute paths, URLs or paths relative to other locations:

3.3.1 Relative To StreamingAssets Folder

This is the best and most common location for video files. This folder is located at
“Assets/StreamingAssets/” and you must create it if it doesn’t exist. Files copied to this
folder will not be imported or processed by Unity but they will be copied with the build
automatically.

3.3.2 Absolute Path or URL

Here you can specify a full URL or absolute path to the video file. A URL could be in the
form “http://myserver.com/myvideo.mp4” or “rtsp://myserver.com:8080/mystream.rtsp”
depending on the platform support and streaming service used.

An absolute path would look like:

C./MyFolder/AnotherFolder/MyVideo.mp4 (Windows)
/Users/Mike/downloads/MyVideo.mp4 (Mac/Linux)
/Storage/SD/Videos/MyVideo.mp4 (Android external SDCARD)
/Storage/emulated/0/MyFolder/MyVideo.mp4 (Android local file system)

Using absolute paths can be useful for testing but isn’t useful when deploying to other
machines that don’t necessarily have the same file structure.

3.3.3 Relative To Project Folder

The project folder is the folder of your Unity project, so the folder containing the Assets,
Library and Project Settings sub-folders. Specifying files relative to the project folder can be
useful when you don’t want to include the video files in your Unity Assets folder but want to
keep them within the project folder structure. Often making a sub-folder called “Videos” is
useful. One possible problem of using this location is that when making a build your video
files will not be copied automatically to the build destination so they require manual copying.
For builds this folder should be located:

Windows - at the same level as your EXE

Mac - at the same level as the Contents folder in your app bundle

iOS - at the same level as the AppName.app/Data folder

Android - not accessible due to APK packaging unless you build the APK manually.

81/52

3.3.4 Relative To Data Folder

The data folder is specified by Unity here:
http://docs.unity3d.com/ScriptReference/Application-dataPath.html

It isn’t that useful to put video files into this folder directly as they would then be processed
by Unity into MovieTexture’s and will bloat your project size. If you want to stop Unity
processing the video files simply rename the extension to something Unity doesn’t
understand, so “myvideo.mp4” could be renamed to “myvideo.mp4.bin”. Files within the
data folder (Assets folder in the editor) are not copied automatically to builds so you would
have to manually copy them.

3.3.5 Relative to Persistent Data Folder

The persistent data folder is specified by Unity here:
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

9/52

http://docs.unity3d.com/ScriptReference/Application-dataPath.html
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

3.4 Streaming Notes

AVPro Video supports several streaming protocol depending on the platform:

HTTP Progressive HLS RTSP
Streaming
Windows Yes No Only with ASF
Desktop stream
Mac OS X Yes Yes No
iOS Yes Yes No
tvOS Yes Yes No
Android Yes Yes, but better on Yes
newer versions

HTTP Progressive Streaming

When encoding MP4 videos for streaming make sure they are encoded with the video
header data at the beginning of the file. You normally do this by selecting “Fast Start” in
QuickTime encoder, or use the “-movflags faststart” in FFMPEG, Other encoders will have a
similar option. To prepare an MP4 for streaming using FFMPEG you can use the following
command:

ffmpeg -i %1 -acodec copy -vcodec copy -movflags faststart %1-streaming.mp4

If you are streaming videos from VIMEO as MP4 then you should note that you can replace
the “.mp4” part in the URL with “.m3u8” to instead make it an HLS stream. This may be
particularly useful if you are developing apps for the Apple’s App Store as you would need to
use HLS streaming to pass certification (as for April 2016).

3.4.1 OS X, iOS and tvOS Streaming

This platform supports streaming of HLS streams which typically end with the m3u or m3u8
extension.

If you have an HTTPS URL it should work fine because Apple trusts the secure connection.

If you can only use HTTP then you app has to have a special flag set to let it use HTTP

10/52

connections (this is a security issue for Apple).

This setting is exposed in the Unity Player Settings here for iOS and tvOS:

The setting is also exposed in the scripting API here:
http://docs.unity3d.com/ScriptReference/PlayerSettings.iOS-allowHTTPDownload.html

If for some reason your version of Unity doesn’t expose this then you will have to add it
manually. In the Unity editor you need to edit "Unity.app/Contents/Info.plist" and in your built
application you would need to edit "your.app/Contents/Info.plist". These files need to have
these keys added:

<key>NSAppTransportSecurity</key>

<dict>

<key>NSAllowsArbitraryLoads</key>

<true/>

</dict>

You can find more information about this here:
http://ste.vn/2015/06/10/configuring-app-transport-security-ios-9-osx-10-11/

We’ve also included a post process build script called “PostProcessBuild.cs” in the project
which edits the plist and adds this attribute. Currently it's only set for iOS but you can edit
the #define at the top to allow Mac OS X too.

3.4.2 Android Streaming

Requires the Internet Access setting (in Player Settings) to be set to Required

Configuration

cripting Backend

11/52

http://docs.unity3d.com/ScriptReference/PlayerSettings.iOS-allowHTTPDownload.html
http://ste.vn/2015/06/10/configuring-app-transport-security-ios-9-osx-10-11/

3.4.3 Test Streams

We found these streams handy for testing (no guarantee that they’re still working):

e Streaming MP4
o http://downloads.renderheads.com/2016/BigBuckBunny_360p30_Streaming.
mp4
e HLS
o http://184.72.239.149/vod/mp4:BigBuckBunny_115k.mov/playlist. m3u8
o http://qthttp.apple.com.edgesuite.net/1010gwoeiuryfg/sl.m3u8
e RTSP
o rtsp://tmp.infomaniak.ch/livecast/latele

3.5 Augmented / Virtual Reality Notes

So far we have tested AVPro Video with:

e Oculus Rift

e Google Cardboard
e Gear VR

e HTC Vive

e Microsoft Hololens

VR is still very new and you should always check for the latest recommended installation
steps when creating your project. We found a lot of out of date setup instructions on the
net.

AVPro Video supports 4K MP4 playback for creating 360 degree experiences. Stereo 4K
videos in both top-bottom and side-by-side formats are also supported.

See the FAQ for tips to achieve high resolution video playback for VR.

Reducing the complexity of the encoded video will give the decoding engine a much easier
time and could result in higher frames rates and lower CPU/GPU usage. Possible encoding
tweaks include:

Use the lowest profile level possible
Don’t use too many reference frames
Don’t use too many b-frames

Disable CABAC

3.5.1 Stereo VR

AVPro Video supports stereoscopic videos in the top-bottom and left-right formats. You can

12/52

set the stereo packing format of your video in the Media Properties panel:

Mone
E None

Top Bottom

Left Right

Now when using the InsideSphere shader on a mesh it will automatically map the right part
of the video to each eye. See the “Demo_360SphereVideo” scene for an example of how
this works.

The included shader “InsideSphere.shader” allows you to easily set what format your video
is in via a drop-down in the material:

O Inspector

Shade: Unlit'InsideSphere

Texture

Tiling
Offset

Stereo Debug Tinting None

Top_Bottom

Left_Right

Select “Stereo Debug Tinting” to colour the left and right eyes different colours so you can be
sure the stereo is working.

NOTE: Be sure to add the "UpdateStereoMaterial” component script to your scene when
using this material when using Unity 5.3 or below or Unity 5.4 and above without the Single
Pass VR option enabled. Often stereo VR requires 2 cameras, each set to a different layer
mask and 2 spheres also set to a different mask. AVPro Video doesn’t require this and just
uses your normal single camera and single sphere.

3.5.2 VR Audio

Some VR systems such as the Oculus Rift have their own audio output device. AVPro
Video has an option “Force Audio Output Device” for Windows (current in DirectShow player
mode only) that allows you to specify the name of this audio device:

13752

The device name to use can be retrieved from the VR API or hard coded. For Oculus Rift
the name is usually “Rift Audio” and for HTC Vive it is “HTC VIVE USB Audio”.

3.6 Hap Codec Notes

The Hap codec is natively supported and gives extremely low CPU usage for extremely high
resolution videos. AVI and MOV containers can both be used. Hap is only supported on
Windows and Mac OS X platforms.

3.6.1 Windows Support

Currently only the Hap and Hap Alpha variants of Hap are supported for Windows with HapQ
and HapQ with Alpha coming in the future. Hap currently requires the “Force DirectShow”
option to be selected:

3.6.2 Mac OS X Support

Hap, Hap Alpha and Hap Q are supported.

3.7 Transparency Notes

Not many video codecs have native support for transparency / alpha channels. Formats
supported by some platforms of AVPro Video are:

e Hap Alpha
o Great support on Windows and Mac OS X. Fast and low overhead format,
though file size can get large depending on the content. Currently this is the
format we recommend for transparent video.
e Uncompressed RGBA
e Uncompressed YUVA
o Uncompressed isn’'t ideal for file size or disk bandwidth but can still be used
as a fallback
e ProRes 4444
o Best support is on Mac OS X. Files are huge.

14 /52

e VP6
o Legacy format. We support it only via 3rd party DirectShow plugins for
Windows (eg LAV Filters)

4. Quick Start Examples

4.1 Quick Start: Fastest Start for Unity Experts

1. Put video files in the StreamingAssets folder

2. Use the MediaPlayer script to play your video (set Video Path to the file name of your
video file).

3. Use one of the display scripts to display your video (eg DisplayIMGUI, DisplayUGUI,
ApplytoMaterial)

4.2 Quick Start: Fullscreen Video Player using Prefabs

AVPro Video includes a number of example prefabs you can use to easily add video
playback to your project. The following steps will create an application that plays back a
fullscreen video:

1. Create a new Unity project

2. Import the AVProVideo package

3. From the AVPro/Prefabs folder in the Project window, drag the FullscreenVideo
prefab to your Hierarchy window

15/52

Scale 1

v Media Player (Script)

I ® MediaPlay

B ¥ pisplay IMGUI (Script)

ript M DisplayIMGUI
Media Player M FullscreenVideo |
Scale Mode

lor
Alpha Blend
Full reen

Depth

id Component

4. Create a folder called StreamingAssets in your Project window and copy your video
file (say MP4 file) into that folder

5. Enter the file name (including extension) into the Video Path field in the MediaPlayer
component (eg myvideo.mp4)

6. Build and deploy your application, the video will be displayed fullscreen

The DisplaylIMGUI component script is just one of the components for displaying video. It
uses the legacy Unity IMGUI system which always renders on top of everything else. Try
using the DisplayBackground or DisplayUGUI components for more control if you don’t want
your video to be on top.

4.3 Quick Start: 3D Mesh Video Player using Components

AVPro Video includes a number of easy to use script components you can add to your
scene. In this example we show how to use the components to play a video onto a material
which is applied to a 3D model in the scene.

1. Create a new Unity project

2. Import the AVProVideo package

3. Create a new GameObiject from the “GameObject > AVPro Video > Media Player”
menu command

4. Click the “Add Component” button and add “AVPro Video > Apply To Mesh”

16/52

5. Drag the Media Player script to the “Media” field in the Apply To Mesh script, this tells
the Apply to Mesh script which media player to use

6. Create a sphere via the “GameObject > 3D Object > Sphere” menu command

7. Drag the Mesh Renderer component to the “Mesh” field in the Apply To Mesh script,
this tells the Apply to Mesh script which mesh to use

= Hierarch

Main AMmera
VideoPlayer Transform

Sphere
R F ition

Rotation
cale

v Media Player (Script)
cript m MediaPlaye

ideo Path myvideo.mp4

v Apply To Material (Script) W &,
t B ApplyToMaterial

® MyVideoMaterial

B VideoPlayer (Mec C

Default Texture None (Texture 2C

Add Component

8. Create a folder called StreamingAssets in your Project window and copy your video
file (say MP4 file) into that folder

9. Enter the file name (including extension) into the Video Path field in the MediaPlayer
component (eg myvideo.mp4)

10. Build and deploy your application, the video will be displayed on your 3D sphere

17152

5. Usage

5.1 Getting Started

The easiest way to get started is to look at the included demos and see what script
components have been used. For video playback you need 3 things in your scene:

1. The video file to play:

Create a “StreamingAssets” folder in your Project window
Copy your video file (usually MP4 file, but consult the list of supported formats for
your platform below) to the StreamingAssets folder

2. A MediaPlayer script to load and play the video:

Create a GameObject and add the MediaPlayer script to it
Set the Video Path field to the name of your video file (e.g. myvideo.mp4)

3. A script to display the video:

Decide how and where you want your video file to appear. There are a number of
different display component scripts included for different usage scenarios. If you
want to display the video on top of everything in your scene just add the
DisplaylIMGUI script to a GameObiject in your scene and set the Media Player field
your MediaPlayer component. Other display components work similarly.

5.2 Unsupported Platform Fallback

AVPro Video is designed to still function even on platforms that aren’t natively supported.
Instead of displaying the actual video though, a dummy 10 second long “AVPro” visual is
shown. All of the video controls should still work. For example if you are running your editor
in Linux the dummy video player will appear in the editor and the real video will appear when
you deploy to supported platforms. If you deploy to an unsupported platform such as
Samsung TV you will also see the dummy video player. The code is easily extendable to
add custom video players for any unsupported platform.

5.3. Components

Included are a number of components to make this asset easy to use. The components are
located in the AVProVideo/Scripts/Components folder or you can add them from the
Components menu:

18752

Assets GameObject | Component | AVPro Video Asset Store Tools Wir

Add... Ctrl+Shift+A

Mesh 3
Effects »
Physics >
Physics 2D 4
Navigation ’
Audio 4
Rendering 4

Layout 4
Miscellaneous b
AVPro Video ’

Scripts v

Apply To Material
Apply To Mesh
Cubemap Cube (VR)
Display Background
Display IMGUI
Display uGUI
Media Player

Event »
Network 3
ul 3

5.3.1 Media Player Component

Startup

tart

Playback

Windows

Other

This is the core component for playing media. This component only handles the loading and
playback of media and doesn’t handle how it is displayed. Use the display script
components to control how and where the video is displayed. Fields are:

19/52

e Video Location
o Where to look for the file specified in the Video Path below. This can be an
absolute path/URL, or relative to one of the Unity folders. The
StreamingAssets folder is the easiest to use. Options are:
m Absolute or URL
e This is an absolute path on your device, or an http URL
m Relative to Project Folder
e The root folder is the folder above your Assets folder
m Relative to Streaming Assets Folder
e The root folder is /Assets/StreamingAssets
m Relative to Data Folder
e The root folder is /Assets
e Unity manual has more information:
http://docs.unity3d.com/ScriptReference/Application-dataPath.
html
m Relative to Persistent Data Folder
e Unity manual has more information:
http://docs.unity3d.com/ScriptReference/Application-persistent
DataPath.html

e Video Path
o The file path to the video in the StreamingAssets folder (e.g. myvideo.mp4 or
AndroidVideos/myvideo.mp4 if you want to use a subfolder)
e Auto Open
o Whether to open the file when this component is enabled/starts
e Auto Start
o Whether to play the video once a video is opened
e Loop
o Whether to loop the video
e Playback Rate
o Sets a multiplier that affects video playback speed
o Not supported on Android

e Volume
o 0..1 range for audio volume
e Muted

o Whether the audio is muted
e Persistent
o Applies DontDestroyOnLoad to the object so that it survives scene/level loads
e Debug Gui
o Whether to display an overlay with statistics on the video playback - useful for
debugging
e Events
o This event can be hooked up to scripting functions which will get called when
a non-looping video completes playback. See the Events section below for
more details and a scripting example
e Platform overrides

20/52

http://docs.unity3d.com/ScriptReference/Application-dataPath.html
http://docs.unity3d.com/ScriptReference/Application-dataPath.html
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

o These allow you to set a different file per platform.

5.3.2 Display IMGUI Component

v Display IMGUI (Script)
- B DisplayIMGUI
None (Media Player)

v

Scale To Fit

This is the most basic component for displaying the video. It uses the legacy Unity IMGUI
system to display the video to the screen. IMGUI is always rendered on top of everything
else in the scene, so if you require your video to be rendered in 3D space or as part of the
uGUI system it’s better to use the other components. Fields are:

e Media Player

o The media player to display
e Display in Editor

o Whether to display the rectangle in the editor - useful for debugging
e Scale Mode

o How to fit the video to the screen

e Color
o The color to tint the video, including alpha transparency
e Alpha Blend

o Whether the video texture controls transparency. Leaving this off for opaque
videos is a minor optimisation
e Depth
o The IMGUI depth to display at. Use this to change the order of rendering with
other IMGUI scripts
e Full Screen
o Whether to ignore the X, Y, Width, Height values and just use the whole
screen

o The normalised (0..1) x position

211752

o Y
o The normalised (0..1) y position

e Width
o The normalised (0..1) width
e Height

o The normalised (0..1) height

5.3.3 Display uGUI Component

v Display UGUI (Script) W 2,
Media Playe B AVPro Media Player (MediaPlayver)
None (Texture)

I

None (Material)

Wil H1

This component is used to display a video using Unity’s uGUI system. Field are:

e Media Player
o The media player to display
e Default Texture (optional)
o A texture to display while the video isn’t playing (while it is buffering for
example).
e No Default Display
o Will not show anything until there are frames available

e Color

o The color to tint, including alpha transparency
e Material

o Standard uGUI field
e UV Rect

o Standard uGUI field
e Set Native Size
o When the video loads will resize the RectTransform to the pixel dimensions of
the video
e Keep Aspect Ratio
o Whether to keep the correct aspect ratio or stretch to fill

5.3.4 Apply To Mesh Component

22152

" v Apply To Mesh (Script) L -2

Mesh M Sphere (Mesh Rendere

AVPro Video Media Playe

This component takes the texture generated by the Media Player component and assigs it to
the texture slot of the material on a 3D Mesh. This is useful for playing videos on 3D
meshes. Field are:

e Mesh
o The mesh (renderer) to apply the texture to
e Media

o The media player
e Default Texture (optional)
o A texture to display while the video isn’t playing (while it is buffering for
example).

5.3.5 Apply To Material Component

!ﬂ v Apply To Material (Script)
script m~[|| ToMaterial

erial MNone (Matenial)

ure Property Name

MNone (Media Player)

None (Texture 2D

This component takes the texture generated by the Media Player component and assigns it
to a texture slot in a Material. This is useful for playing videos on 3D meshes. Fields are:

e Material
o The material to apply the texture to
e Texture Property Name (optional)
o By default this script assigns to the main texture (_MainTex) but if you want to
assign to another slot you can put the name in here
e Media
o The media player
e Default Texture (optional)
o A texture to display while the video isn’t playing (while it is buffering for
example).

23 /52

24152

AVPro Video © 2016 RenderHeads Ltd

5.4 Scripting

5.4.1 Namespace

All scripts use the namespace RenderHeads.Media.AVProVideo so be sure to add “using
RenderHeads.Media.AVProVideo” to the top of your source files.

5.4.2 Media Player Scripting

Most scripting is likely to center around the MediaPlayer.cs script. This script handles the
loading, playback and updating of videos. The script exposes a number of interfaces related
to different use cases and can be found in Interfaces.cs

MediaPlayer exposes 3 main interfaces:
e Info Interface
o The IMedialnfo interface is exposed by the Info property
o This interface is used to access information about the media, eg:

MediaPlayer mp;
mp.Info.GetVideoWidth();

e Control Interface
o The IMediaControl interface is exposed by the Control property
o This interface is used to control playback, eg:

MediaPlayer mp;
mp.Control.Pause();

e TextureProducer interface
o The IMediaProducer interface is exposed by the TextureProducer property
o This interface is used to get information about how to display the current
texture and is used by the Display components, eg:

MediaPlayer mp;
Texture videoTexture = mp.TextureProducer.GetTexture();

The MediaPlayer script also has a number of methods for controlling loading of media:

e OpenVideoFromFile()
o Loads the video specified. Useful if you need manual control over when the
video is loaded
e CloseVideo()
o Closes the video, freeing memory

25/52

5.4.3 Events

MediaPlayer currently has these events:

MetaDataReady - Called when the width, height, duration etc data is available
ReadyToPlay - Called when the video is loaded and ready to play

Started - Called when the playback starts

FirstFrameReady - Called when the first frame has been rendered
FinishedPlaying - Called when a non-looping video has finished playing

Scripting example:

// Add the event listener (can also do this via the editor GUI)
MediaPlayer mp;
mp.Events.AddListener(OnVideoEvent);

// Callback function to handle events
public void OnVideoEvent(MediaPlayer mp, MediaPlayerEvent.EventType et)

{
switch (et)
{
case MediaPlayerEvent.EventType.ReadyToPlay:
mp.Control.Play();
break;
case MediaPlayerEvent.EventType.FirstFrameReady:
Debug.Log("First frame ready");
break;
case MediaPlayerEvent.EventType.FinishedPlaying:
mp.Control.Rewind();
break;
}
Debug.Log("Event: " + et.ToString());
}

26 /52

6. Asset Files vl

6.1 Demos

Demo_360SphereVideo.unity

O

O

(@]

O

Demo_360CubeVideo.unity

O

™ Demo:
85 Material

&8s Prefabs

B Scripts

Demo contains a video player that plays a 360 -

degree video using equirectangular(lat-long) ;: E il :
mapping. & Demo_ Multiple
The video is applied to a sphere, inside of which 2 E —'”" .
is the main camera. Vaterials, |

If the target device has a gyroscope then moving

the device around with rotate the camera to view
the video from different angles. For platforms
without gyroscope the mouse/touch can be used
to look around.

A special shader and script are used to allow a
single camera to render in stereo on a VR
headset. Click on the material to set whether it MediaPlayer
should display the video as monoscopic, stereo Editor

top-bottom or stereo left-right. DisplayUGUIEditor

MediaPlayerEditol
iternal

Same as the sphere demo above, but using a AndroidMediaPlaye:

cubemap 3x2 layout source video. it A

Interfaces

Demo_BackgroundShader.unity NullMediaPlayer

O

Demo_FrameExtract.unity

o

Basic demo that plays a video using the 7 0SxXMediaPlaye!
background material which allows the video to =l
appear behind all content.

Shows go to read frames out of the video for
saving to disk (jpg/png) or accessing pixel data.

Demo_imGui.unity

O

O

O

O

Demo

O

O

Demo_

O

Demo

(@]

Basic demo that plays a video and uses the legacy IMGUI display component
to draw the video to the screen.

Also has an audio clip to show audio-only media playback.

Also has 3 different streaming URLs to demonstrate streaming.

IMGUI is drawn on top of all other visual components.

Mapping3D.unity

Demo containing a video player and a 3D scene

Some of the 3D models have the video mapped to them via the
ApplyToMaterial script

Multiple.unity

This demo allows you to programmatically multiple load videos and test
multiple videos playing at once. Display is via the AVPro Video uGUI
component

uGUl.unity

This demo shows how to display videos within the uGUI system. It uses the

27152

DisplayUGUI component in the canvas hierarchy.
o It also uses a custom shader to overlay text with a video texture.
e Demo_VideoControl.unity
o This demo shows how to query the video state and control playback

6.2 Prefabs

e 360SphereVideo.prefab
o Prefab containing a video player and mapping to a sphere. Useful for
playback of equirectangular 360 degree videos
e BackgroundVideo.prefab
o Prefab containing a video player and a quad model with a special background
material applied. This material makes the quad get drawn before everything
else so it appears in the background.
e FullscreenVideo.prefab
o Prefab controls a video player and the IMGUI display component for very
easy basic video playback creation

6.3 Scripts

e Components
o ApplyToMaterial.cs
m Applies the texture produced by the MediaPlayer component to a unity
material texture slot
o ApplyToMesh.cs
m Applies the texture produced by the MediaPlayer component to a
Untiy mesh (via MeshRenderer) by setting the mainTexture field of all
its materials
o DisplayBackground.cs
m Displays the texture produced by the MediaPlayer component behind
all other content (not compatible with SkyBox)
o DisplayIMGUl.cs
m Displays the texture produced by the MediaPlayer component using
Unity’s legacy IMGUI system
o DisplayUGUl.cs
m Displays the texture produced by the MediaPlayer component using
Unity’s new uGUI system
o MediaPlayer.cs
m The main script for loading and controlling an instance of video
playback
o UpdateStereoMaterial.cs
m A helper script for VR stereo rendering to update the camera position
variable in a spherical material to help work out which eye to render
o ApplyToTextureWidgetNGUI.cs
m Applies the texture produced by the MediaPlayer component to an
NGUI Texture widget texture slot

28 /52

e Editor
o DisplayUGUIEditor.cs
m The editor script that controls how the DisplayUGUI component is
rendered in the Inspector
o MediaPlayerEditor.cs
m The editor script that controls of the MediaPlayer component is
rendered in the Inspector
e Internal
o AndroidMediaPlayer.cs
m Android specific media player
o BaseMediaPlayer.cs
m Common base class for all platform media players
o Interfaces.cs
m Interfaces and events
o NullMediaPlayer.cs
m The fallback dummy media player for unsupported platforms
o (OSXMediaPlayer.cs
m iOS and OSX specific media player
o WindowsMediaPlayer.cs
m Windows specific media player

29/52

7. Scripting Reference

AVPro Video is designed to be used mainly with the supplied drag and drop component but
there are always times when a bit of scripting is needed. The asset includes sample scenes
which give some examples of how to use scripting to control video playback, apply video
textures to materials etc which are useful to learn from. The full class reference is available
online here:

http://downloads.renderheads.com/docs/AVProVideoClassReference/

In this document we have included a simplified version of the highlights.

MediaPlayer class

The MediaPlayer class is the main class for video playback and is where video files are
specified and controlled. This class is mainly controlled via the Unity Inspector Ul and for
scripting through the interface properties it exposes.

Properties
e Events
o returns the MediaPlayerEvent class
e Info
o returns the IMedialnfo interface
e Control

o returns the IMediaControl interface
e TextureProducer
o returns the IMediaProducer interface

Methods
All of these methods use the interfaces exposed above and are just handy shortcuts

e void OpenVideoFromFile(FileLocation location, string path, bool autoPlay)
o Opens the video specified
e void CloseVideo()
o Closes the current video and frees up allocated memory
e void Play()
o Starts playback of the video
e void Pause()
o Pauses the video
e void Stop()
o Pauses the video
e void Rewind(bool pause)
o Rewinds the video with an option to pause it as well
e Texture2D ExtractFrame(Texture2D target, float timeSeconds, int timeoutMs)

30/52

http://downloads.renderheads.com/docs/AVProVideoClassReference/

o Extracts a frame from the specified time of the current video as a readable
Texture2D. This can then be used to save out the pixel data. The texture
must be destroyed by the user. The texture can be passed in again via the
“target” parameter to reuse it.

IMedialnfo interface

This interface is used to query properties of the video
Methods

o float GetDurationMs();

o Returns the duration of the video in milliseconds
e int GetVideoWidth();

o Returns the width of the video in pixels
e int GetVideoHeight();

o Returns the height of the video in pixels

IMediaControl interface
This interface is used to control loading and playback of the video
Methods

e bool OpenVideoFromFile(string path);
o Starts loading the file from the specified path or URL. Returns false if any

error was encountered. This function is asynchronous so the video properties

will not be available immediately. This function shouldn’t be used, instead
use the MediaPlayer OpenVideoFromFile function.
e void CloseVideo();
o Closes the video and any resources allocated
e void SetLooping(bool looping);

o Sets whether the playback should loop or not. This can be changed while the

video is playing.
e bool CanPlay();

o Returns whether the video is in a playback state. Sometimes videos can take

a few frames before they are ready to play.

e void Play();

o Starts playback of the video
e void Pause();

o Pause the video
e void Stop();

o Stops the video (essentially the same as Pause)
e bool IsPlaying();

31/52

o Returns whether the video is currently playing
e bool IsPaused();

o Returns whether the video is currently paused
e bool IsFinished();

o Returns whether the video has completed playback
e bool IsBuffering();

o Returns whether a streaming video has stopped and is buffering. A buffering

video will resume after it has downloaded enough data.
e void Rewind();
o Sets the current time to the beginning of the video
e void Seek(float timeMs);
o Sets the current time to a specified value in milliseconds
e void SeekFast(float timeMs);

o Sets the current time to a specified value in milliseconds but sacrifices
accuracy for speed. This is useful if you just want to jump forward/back in a
video but you don’t care about the accuracy.

e bool IsSeeking();
o Returns whether the video is currently seeking. During seeking no new
frames are produced.
e float GetCurrentTimeMs();
o Returns the current time (playback position) in milliseconds
e void SetPlaybackRate(float rate);
o Sets the current playback rate. 1.0f is normal rate. Negative rates aren’t
supported on all platforms.
o float GetPlaybackRate()
o Returns the current playback rate
e void MuteAudio(bool mute)
o Sets the audio mute or not
e void SetVolume(float volume)
o Sets the volume between 0.0 and 1.0
o float GetVolume()
o Returns the volume level between 0.0 and 1.0

IMediaProducer interface

Methods

e Texture GetTexture();
o Returns a Unity Texture object if there is a texture available otherwise null is
returned.
e int GetTextureFrameCount();
o Returns the number of times the texture has been updated by the plugin.
This can be useful to know when the texture was updated as the value will
increment each time.
e bool RequiresVerticalFlip();

32/52

o Some textures are decoded up-side-down and need to be vertically flipped
when displayed. This method returns whether the texture needs to be flipped
during display.

33/52

8. Supported Media Formats

In general the most common format that is supported are MP4 files with H.264 encoding for
video and AAC encoding for audio. This format is supported across all platforms though not
necessarily all bit-rates and profiles.

Container support:

Windows Mac OS X | iOS, tvOS | Android
Desktop Desktop
MOV Yes Yes Yes Yes
MP4 Yes Yes Yes Yes
AVI Yes ? ? ?
MKV Yes in Windows | ? ? ?
10
Webm No No No Yes
ASF/IWMV Yes No No No
MP3 Yes Yes Yes Yes
WAV Yes ? ? ?
Audio Codec support:
Windows Mac OS X | iOS, tvOS | Android
Desktop Desktop
MP3 Yes Yes Yes Yes
FLAC Yes in Windows | No No Yes
10
AAC Yes Yes Yes Yes
AC3 Yes Yes ? ?
WMA Yes No No No
MIDI Yes ? ? ?
ALAC No Yes Yes No

34 /52

MLAW Yes Yes Yes No
ADPCM Yes Yes Yes No
Linear PCM Yes Yes Yes Yss
Video Codec support:
Windows Mac OS X | iOS, tvOS | Android
Desktop Desktop
HEVC / H.265 Yes in Windows | Not yet** Not yet** Yes
10
H.264 Yes Yes Yes Yes
H.263 Yes ? ? Yes
MJPEG Yes No No No
WMV Yes No No No
VP8 Yes with codec* | No No Yes
VP9 Yes with codec* | No No Yes
Hap Yes*** Yes No No
Hap Alpha Yes*** Yes No No
Hap Q Not yet Yes No No
ProRes 422 No Yes No No
ProRes 4444 No Yes No No
DV Yes Yes in No No
Yosemite
and above
Uncompressed RGBA Yes ? ? ?
Uncompressed R10K No Yes in No No
Yosemite
and above
Uncompressed V210 ? Yes in No No
Yosemite
and above

35/52

Uncompressed 2VUY ? Yes in No No
Yosemite
and above

* The VP8/VP9 Windows Media Foundation codec can be downloaded at
http://www.webmproject.org/ie/

** Apparently Apple will release support soon

*** Requires option “Force DirectShow” to be ticked

Cells with “?” are one’s we're not sure about. We will do more testing and continue to
update this table. For more details on which codecs and what type of encoding is best, see
the per-platform details below.

8.1 Android

Android supports many media formats. For a complete list check the Android documentation
here: http://developer.android.com/intl/ko/guide/appendix/media-formats.html

The following table shows the capabilities of some Android devices and can be used as a
guide to check for supported video formats.

Device Max Texture Size
Google Galaxy Nexus 2048

Google Nexus One 1024 / 2048 / 4096
Google Nexus S 2048

HTC One S 4096

LG P880 2048

Motorola Xoom 2048

Samsung Galaxy Note 4 8192 (GL 3.0) / 16384 (GL 3.1)
Samsung Galaxy Tab 2048

Samsung Omnia2 2048

Samsung OmniaHD 2048

Sony Ericsson Xperia Arc 4096

Sony Ericsson Xperia Play 4096

Sony Ericsson Xperia S 4096

36 /52

http://www.webmproject.org/ie/
http://developer.android.com/intl/ko/guide/appendix/media-formats.html

T-Mobile G1

1024

8.21i0S, tvOS and OS X

Many media formats are supported on iOS including H.264. For a complete list check the

iOS documentation here:

https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOS

TechOverview/MedialLayer/MedialLayer.html

The following table shows the capabilities of some iOS devices and can be used as a guide

to check for supported video formats.

Device Max Texture Size

Apple iPad 3 4096

Apple iPad 2 2048 / 4096 (newer model?)
Apple iPad 2048

Apple iPhone 5 4096

Apple iPhone 4S 4096

Apple iPhone 4 2048

Apple iPhone 3GS 2048

Apple iPhone 3G 1024

Apple iPhone 1024

In OS X, ProRes 422 and ProRes 4444 are supported.

OS X Yosemite and above, supports the following additional formats:

e DV

e Uncompressed R10k

e Uncompressed v210

e Uncompressed 2vuy
8.3 Windows

37152

https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html

A full list of supported formats can be found here:
https://msdn.microsoft.com/en-us/library/windows/desktop/dd757927(v=vs.85).aspx

https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

H.264 decoder supports up to profile L5.1:
https://msdn.microsoft.com/en-us/library/windows/desktop/dd797815(v=vs.85).aspx

Windows 10 adds the following formats:
e H.265/HEVC
e MKV
e FLAC

8.4 Windows Phone

This platform isn’t supported yet, but details on media supported by this platform can be
found here:

https://msdn.microsoft.com/library/windows/apps/ff462087(v=vs.105).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

38/52

https://msdn.microsoft.com/en-us/library/windows/desktop/dd757927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs
https://msdn.microsoft.com/en-us/library/windows/desktop/dd797815(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/apps/ff462087(v=vs.105).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

9. Support

If you are in need of support or have any comments/suggestions regarding this product
please contact us.

Email; unitysupport@renderheads.com

Website: http://renderheads.com/product/avpro-video/

Unity Forum:
http://forum.unity3d.com/threads/released-avpro-video-complete-video-playback-solution.38
5611/

9.1 Bug Reporting

If you are reporting a bug, please include any relevant files and details so that we may
remedy the problem as fast as possible.

Essential details:

e Error message
o The exact error message
o The console/output log if possible
o Ifit's an Android build then an “adb logcat” capture
e Hardware
o Phone / tablet / device type and OS version
e Development environment
o Unity version
o Development OS version
o AVPro Video plugin version
e Video details:
Resolution
Codec
Frame rate
Better still, include a link to the video file

o O O O

Better still, send us a full or reduced copy of your Unity project

39/52

mailto:unitysupport@renderheads.com
http://renderheads.com/product/avpro-video/
http://forum.unity3d.com/threads/released-avpro-video-complete-video-playback-solution.385611/
http://forum.unity3d.com/threads/released-avpro-video-complete-video-playback-solution.385611/

10. About RenderHeads Ltd

RenderHeads Ltd is an award winning creative and technical company that has been
designing and building cutting edge technology solutions since its formation in 2006. We
specialise in creating interactive audio-visual software for installations at auto shows,
museums, shows and expos.

10.1 Services

e Unity plugin development
e Unity game / interaction / virtual and augmented reality development
e Unity consulting

10.2 Our Unity Plugins

Many of the apps and projects we develop require features that Unity doesn’t yet provide, so
we have created several tools and plugins to extend Unity which are now available on the
Unity Asset Store. They all include a free trial or demo version that you can download
directly from the website here:

http://renderheads.com/product-category/for-developers/

10.2.1 AVPro Video

’ Powerful cross-platform video playback solution for Unity, featuring support for
Windows, OS X, iOS, Android and tvOS. This is our newest plugin.

10.2.2 AVPro Windows Media

Video player for Windows only, based on DirectShow. Features support for the
Hap video codec.

10.2.3 AVPro Movie Capture

40/52

http://renderheads.com/product-category/for-developers/

Video capture to AVI files direct from the GPU and encoded to files using DirectShow
codecs. Features include 4K captures, lat-long (equirectangular) 360 degree captures,
off-line rendering and more. Windows only.

10.2.4 AVPro Live Camera

Exposes high-end webcams, tv cards and video capture boards to Unity via DirectShow.
Windows only.

10.2.5 AVPro Broadcast

Currently unreleased product for input and output of broadcast signals using Blackmagic
Decklink hardware. Contact us for details.

10.2.6 Screenshot Annotator Pro

Highly productive tool allowing in-game and in-editor annotation of screenshots which can
then be shared with your team via FTP, Email, Slack or Teamwork.com with the click of the
mouse. Cross-platform.

10.2.7 AVPro QuickTime

Video playback for Windows and Mac using legacy QuickTime system. This
plugin is quite dated now but still useful at times. Features support for the Hap
video codec. This plugin is now deprecated and has been removed from the
Asset Store.

41152

Appendix A - Frequently Asked Questions

1.

Why won’t my high-resolution video file play on Windows?

The ability to play back high resolution videos depends on the version of Windows
operating system and which video codecs you have installed.

By default AVPro Video will try to use the standard Microsoft codecs that come with
Windows. These have limitations, for example:

Decoder Windows 7 and Windows 8+
below
h.264 1080p 2160p (4K)

If you want to use 3rd party codecs you can install them to improve the range of
resolution and format options available. These come in the form of Media
Foundation or DirectShow codecs. The LAV Filters are a great example of
DirectShow codecs that will allow for higher resolution video decoding.

Does Time.timeScale affect video playback speed?

Yes we have BETA support for time.timeScale and time.captureFramerate. Simply
enable the option on the Media Player component in the panel labelled “Global
Settings”.

Does AVPro Video support playing YouTube videos or live streams?

Yes and no. If you enter a YouTube URL into AVPro Video it will not be able to play
it because this is the URL to the website and not the video. It is possible to gain
access to the underlying MP4 file or HLS stream URL which will work with AVPro
Video. This may be against the terms and conditions of YouTube though.

How can | get smoother video playback for my Windows VR app?

This is usually caused by the video decoding taking too much CPU time. Some
videos (especially highly compressed ones) require a lot of CPU time to decode each
frame.

Try launching your app/Unity with the “force-d3d11-no-singlethreaded”
command-line switch. This will enable your application to use GPU decoding which
is much faster. This option is only supported on Windows 8.1 and above and when
D3D11 graphics APl is used.

42152

You could also try re-encoding your video using settings that are less demanding for
the decoder. Most H.264 encoders have a ‘fast decode’ preset, or you can manually
change settings such as disabling CABAC, reducing bitrate, disabling B-frames,
disabling the loop (deblocking) filter etc.

You could also try switching to another video codec that allows for less CPU
intensive decoding. Codecs such as H.264 / H.265 are generally very heavy on the
CPU. Hap is an extremely fast codec but will result in large files.

Is GPU hardware decoding available?

Yes it is on some platforms. Android, iOS, tvOS and macOS mostly use GPU
decoding - but it depends on the codec. For Windows software decoding is used by
default.

For Windows try launching your app/Unity with the “-force-d3d11-no-singlethreaded”
command-line switch. This will enable your application to use GPU decoding which
is much faster. This option is only supported on Windows 8.1 and above and when
D3D11 graphics APl is used.

Is multi-channel audio supported?

Audio with more than 2 channels should be supported on desktop platforms. On
Windows you will need to set your sound settings in the Control Panel for the number
of channels you want to output. If you leave your Windows sound settings as stereo
then the audio will get mixed to stereo.

. Why isn’t seeking accurate / responsive?

The way seeking works depends on the platform. Some platforms support frame
accurate seeking but most will only seek to the nearest key-frame in the video. In
general to improve seek accuracy and responsiveness you can re-encode your
videos with more frequent key-frames (smaller GOP). The downside of this is that
the size of the video file will increase (more key-frames = larger file). We have two
seek functions: Seek() and SeekFast(). SeekFast can be used when accuracy isn’t
important but whether it's faster or not depends on support from the platform and can
vary based on the video codec used.

Publishing for Mac App Store and get error “Invalid Signature”?

We’re not sure why this happens but we’ve had reports that simply deleting all of the
.meta files inside the AVProVideo.bundle will resolve this issue.

iOS - Can | playback a video from the Videos library?

43/52

10.

11.

12.

13.

14.

Yes if the video is not content protected and you have it's URL. URL's for items in
the video library take the following form:

ipod-library://item/item.m4v?id=1234567890123456789

You can get the URL of an item by using the MPMediaQuery class from the
MediaPlayer framework.

iOS - Can | playback a video from the Photo Library?

Yes. You need to use the UllmagePickerController to select the video. This will
result in the video being processed into your app's temp folder where you can access
it via the URL returned from the controller.

Android - Why doesn’t my huge video file play from StreamingAssets folder?

Files in the StreamingAssets folder for Android are packed into a JAR file and so
before we can play them we must extract them to the apps persistent data folder.
Huge files can take a long time to extract and copy and sometimes they could even
cause the device to run out of storage space or memory. For really large files we
recommend placing them the videos in other folders on the device and then
referencing the absolute path to that file. This also has the added benefit of not
having a copy huge files and wait ages when deploying builds to the Android device.

Android - Why does my build fail with a message about DEX and zip classes?

This can happen when there is a conflict in the Java code. We include a JAR called
zip_file.jar which contain classes for handling zip files. If you have another plugin in
your project that also contains these classes then Unity will fail the build. Read the
exact Unity error message and if it is related to zip classes then you can try deleting
zip_file.jar file.

Will you support MPEG-DASH or another adaptive streaming system?

We hope to support these sorts of streaming systems eventually. It's currently not
high on our list of priorities. The plugin already supports some basic streaming
protocols and for now we're focusing on basic features before we look at advanced
features such as these.

What'’s the difference between your different Unity video playback plugins?
We currently have 3 video playback plugins for Unity:
a. AVPro Video

b. AVPro Windows Media
c. AVPro QuickTime (deprecated)

4452

Here is a table giving a rough comparison of the plugin features:

AVPro Video | AVPro Windows Media

First Released 2016 2011

Windows XP Yes Yes

Windows Vista Yes*™* Yes

Windows 7 Yes*™* Yes

Windows 8 Yes Yes

OS X Yes No

Android Yes No

iOS Yes No

tvOS Yes No

64-bit Yes Yes

2K H.264 Yes Only with 3rd party
codec

4K H.264 Yes Only with 3rd party
codec

Streaming URL Yes Not really

Hap Codec Yes*** Yes

MP4 Container Yes Only with 3rd party
codec

Works with VR Yes Yes best with 3rd party
codecs

ASync Loads Yes No

Transparency Yes* Yes

Speed Fast Medium, fast with 3rd

party codecs

* Currently only using the Hap5 codec for Windows 7 and below. More support

coming soon.

** Currently only using DirectShow path, adding Media Foundation path soon.

45/52

*** Currently only Hap and Hap Alpha supported. HapQ and HapQ+Alpha coming
soon.

46/52

Appendix B - Release History

e Version 1.3.9 - 15 July 2016
o Android
m Fixed bug for Unity versions < 5.2.0 that caused videos not to display
m Fixed bug for Android versions < 6 that caused video pausing and
other operations to break playback
m Removed zip classes from plugin package to fix conflicts with other
plugins using the same zip classes
o General
m Better error handling via new GetLastError() function and a new Error
event type
NGUI support added via new component
m TimeScale support feature now disabled by default and exposed in
new Global Settings panel
m ApplyToMesh/Material script improved with new scale and offset
parameters
m Added platform overrides for Windows Phone and Windows UWP
m Improved documentation
o Workflow
m Added new Android warning for loading absolute path without external
permission set in PlayerSettings
o VR
m Fixed VR audio output device not working
m New high quality option for sphere shader to improve quality at the
poles and general optimisations
Fixed issue with left/right eyes becoming swapped sometimes
m Minor fixes to cube map script

e Version 1.3.8 - 30 June 2016

o Bug fixes
m Fixed stereo VR script broken in v1.3.6
m Fixed issues with UWP and Hololens support
m Fixed Windows DirectShow issue preventing Hap videos playing when

another source filter is installed

m Fixed Windows DirectShow bug in watermark for Hap videos

o Workflow
m Improved recent file list to be sorted by when the files were last used

e Version 1.3.6 - 27 June 2016
o General
m Added (BETA) support for Universal Windows Platform 10 and
Windows Phone 8.1
m Added (BETA) support for Time.timeScale and

47152

Time.captureFramerate allowing video playback to work properly with
video capture systems that alter Unity time

Added ExtractFrame function to MediaPlayer

Added Extract Frames demo scene

Added SeekFast function which will try to seek to keyframes only so
it's less accurate but faster. On unsupported platforms it will just do a
normal seek operation

Added functions to change the playback rate. Note that the behaviour
of this varies between platforms and is not available yet on Android
General APl improvements, platform overrides system improved
Fixed bug where disabled gameObject would cause rendering to stop
Fixed bug where destroying MediaPlayer while uGUI component is
using it could cause a crash

Fixed rare bug where uGUI component would become offset or hidden
Fixed rare bug where m_events would be null

o VR
m Fixed VR sphere shader coordinates on some platforms, especially
cardboard
m Added “Media Properties” section to MediaPlayer where you can
define the stereo packing of a video. This then automatically adjust
the sphere shader to render the video correctly per eye
m Fixed bug in InsideSphere shader where stereo rendering would flip
the eyes at some angles
m Added support for Unity 5.4 “Single-Pass Stereo Rendering” to 360
InsideSphere shader
m Added new VR sample with “cubemap 3x2” (facebook layout) support
o Workflow
m Added button in preview panel to save frame to PNG
m Added persistent option to preserve the media player between level
loads
m Added multi-object MediaPlayer component editing support
m Texture properties (wrap mode, filtering) can be set via Media
Properties panel
m Debug GUI now shows preview of video
o Android

Fixed bug where no visuals would appear when old devices
Switched from AAR to JAR/SO files to improve Unity 4 compatibility
Added x86 support

Fixed bug where Pausing a stopped video would lock it up

o OSX/iOS/tvOS

Large performance boost on iOS and tvOS (removed texture copy)
Streaming video buffering stalls now recover and IsBuffering function
added

Seek accuracy improved

Looping handled better to reduce seam time

Fixed texture memory leak in Metal rendering path

48152

m Fixed mute not working with autoStart
o Windows
m DirectShow video playback smoother
m Fixed DirectShow support for showing images or videos with zero
duration
m Added platform-override option to force DirectShow player
Added platform-override option to force audio output device. This is
useful for VR hardware that has its own audio device.
Fixed poster frame not displaying
Fixed videos not displaying due to empty RGB32 alpha channel
Fixed D3D9 lost device issue
Fixed D3D9 issue of texture not being released
Fixed DirectShow player time displaying NaN sometimes at the end of
video
Fixed crash bug if you closed Unity with video was playing
Fixed Windows N edition crash

Version 1.3.0 - 20 April 2016
o Android
m Added multi-threaded rendering support
m Fixed various rare bugs
o Windows
m Exposed GPU video player path (when using command-line argument
“-force-d3d11-no-singlethreaded”), this requires Win8.1 minimum and
D3D11
m Windows XP, Windows Vista and Windows 7 support added by adding
DirectShow playback path
= Hap1 and Hap5 codec support added for Windows 7 and below (via
DirectShow playback path)
m Fixed audio only media not being seekable
o iOS
m Fixed iOS 8.2 compatibility issue
o Workflow
m Editor pause button now pauses/resumes playing videos
m Added new ‘about’ section with handy links
m Improvements to editor Ul
m Ul fixes for standard Unity editor ‘light’ skin

m Fixed IsFinishedPlaying event not firing on some platforms

m Fixed player freezing when component is disabled. It now pauses
OnDisable() and resumes OnEnable().

m Fixed crash in VCR demo related to uGUI component when changing
videos

m Fixed bug closing application with many videos open

m Fixed seeking bug for audio-only media

o Documentation

49/52

m Updated FAQ
m Added stereo virtual reality notes

Version 1.2.0 - 1 April 2016

General
Improved support for audio-only media
Improved streaming support
Added HasVideo, HasAudio and HasMetaData functions
Added MetaDataReady event
First frame now displays without starting playback
Added new ApplyToMesh component
m Removed troubled #AVPRO defines
Android
m Fixed issue where Finished event wouldn't fire
m Minimum API level bumped from 15 to 16
Mac, iOS, tvOS
m improved performance of multiple video playback
Windows
m Improved performance (duplicate frame handling)
Added missing IsSeeking function
Fixed IsFinished function always returning false
Fixed URL parsing
Fixed OpenGL texture cleanup
Fixed minor D3D11 leak caused by views not being released
= Improved init/deinit
Workflow
m Resulting file name is now displayed clearly and is copyable
m More file extensions in inspector file browser
m Components now have AVPro icon
m Added warnings for incorrect Player Settings for streaming videos
m Editor platform override tab is restored
Debugging
= Improved logging
VR
m Improved 360 Sphere demo support for GearVR

m InsideSphere shader has color tint option for stereo debugging

m Added video streaming notes
m Added VR notes
m Improved notes on supported formats

Version 1.1.0 - 11 March 2016

Added Windows support

Added lat-long stereo top-bottom and left-right video support for VR
Added per-platform file path overrides

Absolute and relative path loading support added

Android loading from OBB support added

50/52

O O O O O

Workflow improvements
m Added browse button
m Added recent file list
m Added relative folder support
m Improved MediaPlayer Ul, including preview in editor
Created a scripting class reference
Improved documentation
Fixed Linear colour space support in Windows
Fixed shutdown and memory freeing
Various bugs fixed

e Version 1.0.0 - 25 February 2016

o

O

Initial release on the asset store
Added new events

e Version 0.9.0 - 17 February 2016

o

Initial beta release

Appendix C - Roadmap

e Version 1.4.0

O

O

o

e}

macOS Hap support

Fixes for iOS Metal rendering flickering issue
Support for macOS Metal rendering

webGL support

e Version 1.5.0

o

o O O

e}

Add global audio volume

Side-by-side and Top-bottom transparency support
Better streaming support for Windows + streaming demo
Audio balance

Add use cases to documentation

Glitch free multi video player with optional transitions

e Version X.X.X

o

o O O O O O

WebGL support

Split out media definitions from player

Playmaker support

Audio streaming back to Unity

Loading from memory/resources

Fallback to using MovieTexture on some platforms?
10-bit HEVC support?

e Version X

(¢]

< Your suggestions here, let us know :)

51/52

52 /52

AVPro Video © 2016 RenderHeads Ltd

