

AVPro Video

for Android, iOS, tvOS, macOS, WebGL
Windows Desktop, Windows Phone and UWP

Unity plugin for fast and flexible video playback

Version 1.7.5

Released 22 January 2018

Contents

1. Introduction
1. Features
2. Trial Version
3. Media Credits

2. System Requirements
1. Platforms not supported

3. Installation
1. Trial Version & Watermark Notes
2. Installing Multiple Platform Packages

4. Usage Notes
1. Platform Notes
2. Video File Locations
3. Streaming Notes
4. Audio Notes
5. Augmented / Virtual Reality Notes
6. Hap Codec Notes
7. Transparency Notes
8. Hardware Decoding
9. Multi-GPU SLI / CrossFire Notes
10. Subtitle Notes
11. DRM Notes
12. Video Capture Notes

5. Quick Start Examples
1. Quick Start Fastest Start for Unity Experts
2. Quick Start Fullscreen Video Player using Prefabs
3. Quick Start 3D Mesh Video Player Example using Components

6. Usage
1. Getting Started
2. Unsupported Platform Fallback
3. Components
4. Scripting
5. Platform Specific Scripting
6. Third-party Integration

7. Asset Files
1. Demos
2. Prefabs
3. Scripts

8. Scripting Reference
9. Supported Media Formats
10. Support
11. About RenderHeads Ltd

Appendix A - FAQ
Appendix B - Version History
Appendix C - Roadmap

2 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

1. Introduction

AVPro Video is the newest video playback plugin from RenderHeads. We previously
developed the AVPro QuickTime and AVPro Windows Media plugins for Unity. In this next
generation of plugins we aim to create an easy to use, cross-platform video playback system
that uses the native features of each platform.

1.1 Features

● Versions for iOS, tvOS, OS X, Android, WebGL, Windows, Windows Phone and
UWP

● One API for video playback on all supported platforms
● *NEW* Facebook Audio 360 and Android ExoPlayer support
● 8K video support (on supported hardware)
● VR support (mono, stereo, equirectangular and cubemap)
● Transparency support (native and packed)
● Unity Pro 4.6.x and above supported
● Unity Personal 5.x - 2017.x and above supported
● Free watermarked trial version available (download here)
● Fast native Direct3D, OpenGL and Metal texture updates
● Linear and Gamma colour spaces supported
● Graceful fallback in editor
● Components for IMGUI, uGUI and NGUI
● Extensive PlayMaker support
● Easy to use, drag and drop components
● Desktop support for Hap, Hap Alpha, Hap Q and Hap Q Alpha
● Streaming and adaptive video from URL

1.2 Trial Version

We offer an unlimited trial version of AVPro Video for download from our website at
http://renderheads.com/product/avpro-video/ . The trial version has no missing features or
time restrictions but it does apply a watermark to the rendered output. The watermarking
does have a small performance impact which is only really noticeable on very high resolution
videos.

1.3 Media Credits

BigBuckBunny_360p30.mp4 - (c) copyright 2008, Blender Foundation /
www.bigbuckbunny.org

BigBuckBunny_720p30.mp4 - (c) copyright 2008, Blender Foundation /
www.bigbuckbunny.org

SampleSphere.mp4 - (c) copyright Daniel Arnett, https://vimeo.com/97887646

3 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

http://renderheads.com/product/avpro-video/
http://renderheads.com/product/avpro-video/
http://www.bigbuckbunny.org/
http://www.bigbuckbunny.org/
https://vimeo.com/97887646

2. System Requirements

● Unity 5.x Personal Edition, or Unity Pro 4.6 and above
● iOS 8.1 and above
● tvOS 9.0 (Apple TV 4th Gen) and above
● OS X 10.7 and above, 64-bit only
● Android 4.0.4 (Ice Cream Sandwich, API level 15) and above (ARM7, ARM8 and

x86)
● Windows XP (SP 3) and above (32-bit and 64-bit)
● Windows 8.0 and above (32-bit and 64-bit)
● Windows Phone UWP 8.1 (32-bit and ARM)
● Windows Desktop UWP 8.1 (32-bit, 64-bit and ARM)
● Universal Windows Platform 10 (32-bit, 64-bit and ARM)
● WebGL compatible browser

2.1 VR Headsets Supported
● Microsoft Hololens
● HTC Vive
● Oculus Gear VR
● Oculus Rift
● Google Cardboard
● Google Daydream

2.2 Platforms not Supported

● WebPlayer
● Linux desktop
● Tizen
● Samsung TV
● Game Consoles (XBox*, PS4 etc)

* XBox One may be supported using UWP build option. We have not tested this though.

4 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

3. Installation

1. Open up a fresh Unity session (to clear any locked plugin files)
2. Import the unitypackage file into your Unity project. If prompted to upgrade some

scripts click Yes.

3.1 Trial Version & Watermark Notes

3.1.1 Watermark

If you are using a trial version of the plugin then you will see a watermark displayed over the
video. The watermark is in the form of a “RenderHeads” logo that animates around the
screen, or a thick horizontal bar that move around the screen. In Windows if the GPU
decoding path is used when the watermark isn’t displayed - instead every few seconds the
video size will scale down.

The full version of AVPro Video has no watermarks for any platforms. If you use one of the
platform specific packages (eg AVPro Video for iOS, or AVPro Video for Windows) then you
will not see the watermark on the platform you purchased for, but you will see the watermark
on the other platforms. For example if you purchased AVPro Video for iOS then you will still
see the watermark in the Unity editor as this is running on Windows/OS X, but the videos
played back when you deploy to your iOS device will be watermark-free.

3.1.2 Updating from Trial Version

If you are upgrading from the trial version, make sure you delete the old /Assets/Plugins
folder as this contains the trial plugin and could conflict. You may need to close Unity first,
delete the files manually and then restart Unity and re-import the package (because Unity
locks native plugin files once they are loaded).

You can check which version you have installed by adding an MediaPlayer component to
your scene and clicking on the ‘about’ button in the Inspector for that component. The
version number is displayed in this box.

3.2 Installing Multiple Platform Packages

If you are not using the full all-in-one AVPro Video package and instead have opted to
purchase multiple individual platform packages then the installation must be done carefully,
especially when upgrading to a new version.

If you have installed the iOS package then it will also contain plugins for all of the other
platforms but with the watermark enabled. This means that if you then try to install another
AVPro Video package it may not override the plugins correctly. Here is how to resolve this

5 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

using the iOS and Android package as examples:

1. Open a fresh Unity instance (this is important as otherwise Unity may have locked
the plugin files which prevents them from being upgraded)

2. Import the iOS package
3. Import the Android package, but make sure that you have the iOS native plugin file

unticked (so that it is not overwritten)

A similar process can be applied for other package combinations.

List of native plugin files:

● Android
○ Plugins/Android/AVProVideo.jar
○ Plugins/Android/libs/armeabi-v7a/libAVProLocal.so
○ Plugins/Android/libs/arm64-v8a/libAVProLocal.so
○ Plugins/Android/libs/x86/libAVProLocal.so

● macOS
○ Plugins/AVProVideo.bundle

● iOS
○ Plugins/iOS/libAVProVideoiOS.a

● tvOS
○ Plugins/tvOS/libAVProVideotvOS.a

● WebGL
○ Plugins/WebGL/AVProVideo.jslib

● Windows
○ Plugins/WSA/PhoneSDK81/ARM/AVProVideo.dll
○ Plugins/WSA/PhoneSDK81/x86/AVProVideo.dll
○ Plugins/WSA/SDK81/ARM/AVProVideo.dll
○ Plugins/WSA/SDK81/x86/AVProVideo.dll
○ Plugins/WSA/SDK81/x86_64/AVProVideo.dll
○ Plugins/WSA/UWP/ARM/AVProVideo.dll
○ Plugins/WSA/UWP/x86/AVProVideo.dll
○ Plugins/WSA/UWP/x86_64/AVProVideo.dll
○ Plugins/x86/AVProVideo.dll
○ Plugins/x86_64/AVProVideo.dll

6 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

4. Usage Notes

4.1 Platform Notes

Most graphics APIs are supported:

 D3D9 D3D11 OpenGL GLES2.0 GLES3.0 Metal Vulcan

Android N/A N/A N/A Yes Yes N/A No

iOS / tvOS N/A N/A Yes Yes Yes Yes No

macOS N/A N/A Yes N/A N/A Yes No

Windows Yes Yes Yes N/A N/A N/A No

UWP N/A Yes N/A N/A N/A N/A No

N/A = not applicable

4.1.1 Android

● Supported systems are arm-v7a, arm64-v8a and x86
● Under the hood we’re using the Android MediaPlayer API and ExoPlayer 2.5.4 API
● This plugin requires a minimum Android API level of 15 when using the MediaPlayer

API, and API level 16 when using ExoPlayer.
● If you want to support streaming don’t forget to set the “Internet Access” option in

Player Settings to “require”
● For rendering we supports OpenGL ES 2.0 and OpenGL ES 3.0
● Multi-threaded rendering is supported
● The only 3rd-party libraries used are:

○ ExoPlayer
https://github.com/google/ExoPlayer

○ Facebook Audio 360
https://facebook360.fb.com/spatial-workstation/

4.1.2 iOS / tvOS

● Supported systems are armv7, arm64
● The iOS simulator is supported on x86 and x86_64
● Under the hood we’re using the AVFoundation API
● If you want to support streaming you need to enable HTTP downloads explicitly. For

iOS this is an option in newer versions of Unity, but for Mac OS X and older versions
of Unity you have to do this explicitly by editing the plist file. There are notes below
on how to do this.

● For rendering we support OpenGL ES 2.0, OpenGL ES 3.0 and Metal
● Multi-threaded rendering is supported
● No 3rd-party libraries are used in the iOS / tvOS binaries

7 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://github.com/google/ExoPlayer
https://facebook360.fb.com/spatial-workstation/

4.1.3 macOS

● Only 64-bit (x86_64) builds are supported (Apple dropped 32-bit support back in
2012 when launching OS X 10.8).

● Under the hood we’re using the AVFoundation API
● If you want to support streaming you need to enable HTTP downloads explicitly. For

iOS this is an option in newer versions of Unity, but for Mac OS X and older versions
of Unity you have to do this explicitly by editing the plist file. There are notes below
on how to do this.

● For rendering on Mac OS X we support OpenGL Legacy and OpenGL Core and
Metal.

● Multi-threaded rendering is supported
● The only 3rd-party libraries used in the macOS binaries are:

○ Hap
https://github.com/Vidvox/hap

○ zlib
○ http://zlib.net/

4.1.4 Windows Desktop

● Under the hood we’re using the Media Foundation and DirectShow API’s. Media
Foundation is used for Windows 8 and above while DirectShow is used as a fallback
for Windows 7 and below.

● For rendering we support Direct3D 9, Direct3D 11 and OpenGL Legacy.
● Multi-threaded rendering is supported.
● Windows N / KN edition notes:

○ There are some editions of Windows (N and KN) that ship with greatly
reduced built-in media playback capabilities.

○ It seems like these editions don’t include MFPlat.DLL, but do include some
basic DirectShow components. This means the Media Foundation playback
path will not work.

○ These editions of Windows require either a 3rd party codec installed (such as
the LAV Filters for DirectShow), or the Microsoft Media Feature Pack:

■ Media Feature Pack for Windows 7 SP1
https://www.microsoft.com/en-gb/download/details.aspx?id=16546

■ Media Feature Pack for Windows 8.1
https://www.microsoft.com/en-gb/download/details.aspx?id=40744

■ Media Feature Pack for Windows 10
https://www.microsoft.com/en-gb/download/details.aspx?id=48231

○ We found that MJPEG DirectShow codec still works on these editions without
installing the Media Feature Pack

● The only 3rd-party libraries used in the Windows Desktop binaries are:
○ Hap

https://github.com/Vidvox/hap
○ Google Snappy

8 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://github.com/Vidvox/hap
http://zlib.net/
https://www.microsoft.com/en-gb/download/details.aspx?id=16546
https://www.microsoft.com/en-gb/download/details.aspx?id=40744
https://www.microsoft.com/en-gb/download/details.aspx?id=48231
https://github.com/Vidvox/hap

https://github.com/google/snappy
○ GDCL Mpeg-4

https://github.com/roman380/gdcl.co.uk-mpeg4
○ GLEW

http://glew.sourceforge.net/
○ Facebook Audio 360

https://facebook360.fb.com/spatial-workstation/

4.1.5 Windows Store / UWP / Hololens

● For best compatibility and performance add

 appCallbacks.AddCommandLineArg("-force-d3d11-no-singlethreaded");

To your MainPage.xaml.cs/cpp or MainPage.cs/cpp. You should call this before the
appCallbacks.Initialize() function.

● For streaming video don’t forget to enable to “InternetClient” capability option in
Unity’s Player Settings. If you’re streaming video from a local server / LAN then you
need to enable the “PrivateNetworkClientServer” option.

● No 3rd-party libraries are used in the WSA / UWP binaries

4.1.6 WebGL

● The supported formats and features is dependant on the web browser capabilities.
● We have tested successfully with the following browsers

○ macOS
■ Safari 9.1
■ Safari 10 (WebGL 1.0 seemed to work better than WebGL 2.0)
■ Safari 11.0.1

○ Windows
■ Microsoft Edge 38.14393.0.0
■ Mozilla Firefox 51.0
■ Google Chrome 56.0 - 62.0

● The following browsers are not supported:
○ Internet Explorer 11 (any version), instead use the Microsoft Edge browser

4.2 Video File Location

Video files can be played in almost any location, however we recommend placing video files
in the /Assets/StreamingAssets/ folder in your Unity project as this is the easiest folder to
get started with. StreamingAssets is a special folder that Unity copies to the build without
processing. Files copied elsewhere will require manual copying to the build location.

The MediaPlayer component allows you to browse for video files and specify them relative to
a parent folder:

9 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://github.com/google/snappy
https://github.com/roman380/gdcl.co.uk-mpeg4
http://glew.sourceforge.net/
https://facebook360.fb.com/spatial-workstation/

The Video Location field specifies the master location of the video file while the Video Path
field specifies where to locate the file relative to the Location.

For example if your file is stored in “Assets/StreamingAssets/video.mp4” you would set the
Location to “Relative To Streaming Assets Folder” and set the Video Path to “video.mp4”.

Sub-folders are also supported so a video located at
“Assets/StreamingAssets/myfolder/video.mp4” would have it’s Video Path set to
“myfolder/video.mp4”.

You can also specify absolute paths, URLs or paths relative to other locations:

4.2.1 Relative To StreamingAssets Folder

This is the best and most common location for video files. This folder is located at
“Assets/StreamingAssets/” and you must create it if it doesn’t exist. Files copied to this
folder will not be imported or processed by Unity but they will be copied with the build
automatically.

4.2.2 Absolute Path or URL

Here you can specify a full URL or absolute path to the video file. A URL could be in the
form “http://myserver.com/myvideo.mp4” or “rtsp://myserver.com:8080/mystream.rtsp”
depending on the platform support and streaming service used.

An absolute path would look like:

● C:/MyFolder/AnotherFolder/MyVideo.mp4 (Windows)
● /Users/Mike/downloads/MyVideo.mp4 (Mac/Linux)
● /Storage/SD/Videos/MyVideo.mp4 (Android external SDCARD)
● /Storage/emulated/0/MyFolder/MyVideo.mp4 (Android local file system)

Using absolute paths can be useful for testing but isn’t useful when deploying to other
machines that don’t necessarily have the same file structure.

4.2.3 Relative To Project Folder

10 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

The project folder is the folder of your Unity project, so the folder containing the Assets,
Library and Project Settings sub-folders. Specifying files relative to the project folder can be
useful when you don’t want to include the video files in your Unity Assets folder but want to
keep them within the project folder structure. Often making a sub-folder called “Videos” is
useful. One possible problem of using this location is that when making a build your video
files will not be copied automatically to the build destination so they require manual copying.
For builds this folder should be located:

● Windows - at the same level as your EXE
● Mac - at the same level as the Contents folder in your app bundle
● iOS - at the same level as the AppName.app/Data folder
● Android - not accessible due to APK packaging unless you build the APK manually.

4.2.4 Relative To Data Folder

The data folder is specified by Unity here:
http://docs.unity3d.com/ScriptReference/Application-dataPath.html

It isn’t that useful to put video files into this folder directly as they would then be processed
by Unity into MovieTexture’s and will bloat your project size. If you want to stop Unity
processing the video files simply rename the extension to something Unity doesn’t
understand, so “myvideo.mp4” could be renamed to “myvideo.mp4.bin”. Files within the
data folder (Assets folder in the editor) are not copied automatically to builds so you would
have to manually copy them.

4.2.5 Relative to Persistent Data Folder

The persistent data folder is specified by Unity here:
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

For UWP platforms this would resolve to “ms-appdata:///local/”

11 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

http://docs.unity3d.com/ScriptReference/Application-dataPath.html
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

4.3 Streaming Notes

AVPro Video supports several streaming protocol depending on the platform:

 HTTP
Progressive
Streaming

HLS MPEG-Dash RTSP

Windows
Desktop

Yes Yes
(Windows 10
only)

Yes
(Windows 10
only)

Only with ASF
stream, or with
DirectShow
using suitable
filter

UWP Yes Yes
(UWP 10 only)

Yes
(UWP 10 only)

No

Mac OS X Yes Yes No No

iOS Yes Yes No No

tvOS Yes Yes No No

Android Yes Yes, but better
on newer
versions

Yes, with
ExoPlayer API

Yes, with
MediaPlayer
API

WebGL Yes* Browser
specific*

Browser
specific*

No

* Remember for WebGL streaming you need to have proper CORS set up when accessing
other servers / ports. See our notes below on streaming with WebGL.

HTTP Progressive Streaming

When encoding MP4 videos for streaming make sure they are encoded with the video
header data at the beginning of the file. You normally do this by selecting “Fast Start” in
QuickTime encoder, or use the “-movflags faststart” in FFMPEG, Other encoders will have a
similar option. To prepare an MP4 for streaming using FFMPEG you can use the following
command:

ffmpeg -i %1 -acodec copy -vcodec copy -movflags faststart %1-streaming.mp4

12 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

Vimeo Note:

If you are streaming videos from VIMEO as MP4 then you should note that you can replace
the “.mp4” part in the URL with “.m3u8” to instead make it an HLS stream. This may be
particularly useful if you are developing apps for the Apple’s App Store as you would need to
use HLS streaming to pass certification (as for April 2016).

4.3.1 OS X, iOS and tvOS Streaming

This platform supports streaming of HLS streams which typically end with the m3u or m3u8
extension.

If you have an HTTPS URL it should work fine because Apple trusts the secure connection.

If you can only use HTTP then you app has to have a special flag set to let it use HTTP
connections (this is a security issue for Apple).

This setting is exposed in the Unity Player Settings here for iOS and tvOS:

The setting is also exposed in the scripting API here:
http://docs.unity3d.com/ScriptReference/PlayerSettings.iOS-allowHTTPDownload.html

If for some reason your version of Unity doesn’t expose this then you will have to add it
manually. In the Unity editor you need to edit "Unity.app/Contents/Info.plist" and in your built
application you would need to edit "your.app/Contents/Info.plist". These files need to have
these keys added:
<key>NSAppTransportSecurity</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
</dict>

You can find more information about this here:
http://ste.vn/2015/06/10/configuring-app-transport-security-ios-9-osx-10-11/

We’ve also included a post process build script called “PostProcessBuild.cs” in the project
which edits the plist and adds this attribute. Currently it’s only set for iOS but you can edit
the #define at the top to allow Mac OS X too.

4.3.2 Android Streaming

Using the ExoPlayer API is recommended for streaming video as it generally has wider

13 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

http://docs.unity3d.com/ScriptReference/PlayerSettings.iOS-allowHTTPDownload.html
http://ste.vn/2015/06/10/configuring-app-transport-security-ios-9-osx-10-11/

support for streaming protocols. Android streaming requires the Internet Access setting (in
Player Settings) to be set to “Require”:

4.3.3 UWP / Windows Phone / Hololens Streaming

Make sure to tick the “InternetClient” capabilities option in Player Settings. If you’re
streaming video from a local server / LAN then you need to enable the
“PrivateNetworkClientServer” option.

4.3.4 WebGL Streaming

If you are trying to access a URL on another server/port/domain then you need to have
CORS (cross-origin resource sharing) configured on that server to allow access. Websites
like https://enable-cors.org/ show you how to configure CORS on different web servers. If
you are hosting on a S3 bucket there are also ways to configure this. You can also test
whether CORS is the issue by installing a browser plugin to toggle CORS.

4.3.5 Test Streams

We found these streams handy for testing (no guarantee that they’re still working):

● Streaming MP4
○ HTTP

http://downloads.renderheads.com/2016/BigBuckBunny_360p30_Streaming.
mp4

○ HTTPS
https://drive.google.com/uc?export=download&id=0B0JMGMGgxp9WMEdWb
1hyQUhlOWs

● HLS
○ http://qthttp.apple.com.edgesuite.net/1010qwoeiuryfg/sl.m3u8
○ http://184.72.239.149/vod/mp4:BigBuckBunny_115k.mov/playlist.m3u8
○ Apple Test streams (from https://developer.apple.com/streaming/examples/)

■ Basic complexity
https://devimages.apple.com.edgekey.net/streaming/examples/bipbop
_4x3/bipbop_4x3_variant.m3u8

■ Medium complexity
https://devimages.apple.com.edgekey.net/streaming/examples/bipbop
_16x9/bipbop_16x9_variant.m3u8

■ Advanced TS
https://tungsten.aaplimg.com/VOD/bipbop_adv_example_v2/master.m

14 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://enable-cors.org/
https://developer.apple.com/streaming/examples/

3u8
■ Advanced fMP4

https://tungsten.aaplimg.com/VOD/bipbop_adv_fmp4_example/master
.m3u8

● MPEG-Dash
○ http://rdmedia.bbc.co.uk/dash/ondemand/bbb/2/client_manifest-high_profile-c

ommon_init.mpd
○ http://www.bok.net/dash/tears_of_steel/cleartext/stream.mpd

● RTSP
○ rtsp://rtmp.infomaniak.ch/livecast/latele

● RTMP
○ RTMP is not supported on any platform yet (unless 3rd party support is used)

4.4 Audio Notes

4.4.1 Facebook Audio 360

Spatial audio support is currently available using Facebook Audio 360 on Windows desktop
and Android. On Windows only Windows 10 and above is supported and the Media
Foundation video API must be selected. On Android the ExoPlayer video API must be
selected. The video files must be using a MKV file container and audio must be using the
Opus codec encoded with Facebook Audio 360.

The “Head Transform” field must be set to the transform that represents the player's head so
that rotation and positional changes affect the audio rendering. Usually this is the main
camera.

“Enable Focus” can be enabled when a specific region of audio in the 360 field needs to be
given focus. The rest of the audio has its volume reduced.

Next the Facebook Audio 360 support must be enabled for each platform that needs it via
the “Platform Specific” panel. Currently it is only available on Windows desktop and Android.

The “Channel Mode” must be set to the channel encoding mode used when creating the
video. Currently this can not be determined automatically. The default is “TBE_8_2” which
means 8 channels of hybrid ambisonics and 2 channels of head-locked stereo audio.

15 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

More information can be found on the Facebook Audio 360 website at:
https://facebook360.fb.com/spatial-workstation/

4.4.2 Audio Redirection

Currently only the Windows plugin has support for audio manipulation beyond the standard
volume and stereo panning.

Some VR systems such as the Oculus Rift and HTC Vive have their own audio output device
and one needs to redirect audio to these devices instead of the system default audio device.
Unity does this automatically for its internal audio, but AVPro Video renders to the system
default audio device.

This issue can be solved by either using the AudioOutput component (see below). This
component redirects the audio to be rendered by Unity and so it goes to the correct device.
AudioOutput requires that the Media Foundation video API be used, so if you need to use
the DirectShow API you can specify the name of the output device manually in the field
“Force Audio Output Device”:

The device name to use can be retrieved from the VR API or hard coded. For Oculus Rift
the name is usually “Rift Audio” and for HTC Vive it is “HTC VIVE USB Audio”.

4.4.3 Audio Spatialisation

Audio needs to rotate as the user moves their head in the virtual world. This can be achieve
by using the AudioOutput component which redirects the audio from the video into Unity (via
Unity’s AudioListener).

16 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://facebook360.fb.com/spatial-workstation/

This component should be stacked above its required AudioSource component.

AudioOutput requires that the video API is set to Media Foundation and that the “Use Unity
Audio” tickbox is selected.

For proper 3D audio placement you will also need to add a spatialiser plugin to the Unity
Audio Settings screen (in Unity 5.4 and above) and tick the “spatialize” tickbox on the Audio
Source. Multiple instances of AudioOutput component can be created, each one outputting
a different audio channel from a different world position.

If Unity Audio is enabled but the Stereo checkbox is not selected, AVProVideo will try to
detect how many channels the video has, and send to Unity as many channels as
requested. To get all audio channels, make sure that the default speaker mode in the Unity
Audio Settings supports enough channels, and ensure that the OS audio sound settings are
in the correct speaker mode (otherwise Unity will just default to the maximum number of
supported channels). If the Stereo box is checked, the audio will get resampled to 2
channels.

If you wish to only get specific channels from the video, you can choose to mask the
channels using the AudioOutput component.

17 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

4.4.4 Channel Remapping

The AudioOutput component has the ability to route different audio channels from the media
to different physical channels.

4.5 Augmented / Virtual Reality Notes

So far we have tested AVPro Video with:

● Gear VR
● Google Cardboard
● Google Daydream (currently in beta, we’ve seen some performance issues)
● Oculus Rift
● HTC Vive
● Microsoft Hololens

VR is still very new and you should always check for the latest recommended installation
steps when creating your project. We found a lot of out of date setup instructions on the
net.

AVPro Video supports 4K MP4 playback for creating 360 degree experiences. Stereo 4K
videos in both top-bottom and side-by-side formats are also supported. If you’re using
Windows 10 and have an Nvidia Geforce 1000 series (eg 1070) you can display 8K H.265
videos (requires 64-bit build).

See the FAQ for tips to achieve high resolution video playback for VR.

For software decoders reducing the complexity of the encoded video will give the decoding
engine a much easier time and could result in higher frames rates and lower CPU/GPU
usage. Possible encoding tweaks include:

● Use the lowest profile level possible
● Don’t use too many reference frames
● Don’t use too many b-frames
● Disable CABAC
● Use the slices option (eg -slices 4)

4.5.1 Stereo VR

AVPro Video supports stereoscopic videos in the top-bottom and left-right formats. You can

18 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

set the stereo packing format of your video in the Media Properties panel:

Now when using the InsideSphere shader on a mesh it will automatically map the right part
of the video to each eye. See the “Demo_360SphereVideo” scene for an example of how
this works.

Optionally you can manually set the material properties. The included shader
“InsideSphere.shader” allows you to easily set what format your video is in via a drop-down
in the material:

Select “Stereo Debug Tinting” to colour the left and right eyes different colours so you can be
sure the stereo is working.

NOTE : Be sure to add the "UpdateStereoMaterial” component script to your scene when
using this material and a stereo video. Often stereo VR requires 2 cameras, each set to a
different layer mask and 2 spheres also set to a different mask. AVPro Video doesn’t require
this and just uses your normal single camera and single sphere.

NOTE: If you’re playing stereo videos on Windows and the stereo isn’t appearing properly,
please read our FAQ #8.

19 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

4.5.2 Android OES playback path

For Android there is a special playback option called “Use Fast OES Path”. This option
caters especially for VR where users are trying to get the highest possible frame rate and
resolution out of the device (without it overheating at the same time). The option is
available in the Platform Specific section of the MediaPlayer component:

The OES path is not enabled by default because it requires some special care to be taken
and can be tricky for beginners. When this option is enabled the Android GPU returns
special OES textures (see EGL extension OES_EGL_image_external) that are hardware
specific. Unfortunately Unity isn’t able to use these textures directly, so you can’t just map
them to a material or UI. To use the texture a GLSL shader must be used. Unfortunately
Unity’s GLSL support isn’t as good as its CG shader support so again this makes things
more tricky. The GLSL compiler only happens on the device (not inside Unity) so errors in
the shader can be difficult to debug.

We have included a version of the VR sphere shader that supports stereo videos as an
example. Hopefully in the future we can improve the integration of these shaders so they
aren’t such special cases. This playback path is much faster though, so is definitely worth
exploring.

For the sphere demo scene, simply change the shader on the sphere mesh material to be
one of the “VR” “OES” ones and tick the “Use Fast OES Path” on the MediaPlayer
component.

4.5.3 iOS YCbCr playback path

For iOS and tvOS we have added support for YCbCr textures which results in memory
saving compared to standard RGBA32 textures. This option is enabled by default but can
be disabled on the MediaPlayer here:

20 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

This option is ideal for memory saving which is especially important when targeting low-end
devices (with 1GB RAM) and when playing back very high resolution video, such as 4K for
VR content. Improved performance may also be experienced using this option.

4.6 Hap Codec Notes

The Hap video codec is natively supported by AVPro Video on certain platforms and has the
following benefits:

● Very low CPU usage
● GPU decompression
● Low memory usage
● Supports very high resolutions
● Supports alpha channel transparency

The main down side is:

● Very large files

AVI and MOV containers can both be used however we recommend the MOV container.
Hap is only supported on Windows and Mac OS X platforms.

4.6.1 Windows Support

Hap, Hap Alpha, HapQ and HapQ Alpha are supported. Hap currently requires the
“DirectShow” video API to be selected:

21 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

4.6.2 Mac OS X Support

Hap, Hap Alpha, HapQ and HapQ Alpha are supported.

4.6.3 Encoding

You can download the QuickTime codec for Windows and macOS here:
https://github.com/Vidvox/hap-qt-codec/releases

This codec can be used with QuickTime Pro or any other software that supports QuickTime
codecs such as Adobe After Effects and Adobe Premiere.

Alternatively you can use a recent build of FFMPEG with the following command-lines:

● ffmpeg -i input.mov -vcodec hap -format hap output-hap.mov
● ffmpeg -i input.mov -vcodec hap -format hap_alpha output-hap.mov
● ffmpeg -i input.mov -vcodec hap -format hap_q output-hap.mov

Notes:

● You can also add the “-chunks 4” option which will encode each frame into 4 chunks
so the decoding work can be split across multiple threads, resulting in faster
decoding as long as the disk can keep up.

● Width and height must be multiple of a 4.
● Hap Alpha requires straight not pre-multipled alpha.
● The default ffmpeg doesn’t include the Snappy library (due to licensing we assume)

that Hap uses for compression - thus ffmpeg generated Hap files are often quite
large. You would need to build ffmpeg yourself with Snappy enabled, or use the
QuickTime encoder.

● Sadly ffmpeg doesn’t yet support the HapQ Alpha format.
● We don’t support Hap Q Alpha variant in Windows when using the legacy D3D9

graphics API

4.7 Transparency Notes

22 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://github.com/Vidvox/hap-qt-codec/releases

Not many video codecs have native support for transparency / alpha channels. Formats
supported by some platforms of AVPro Video are:

● Hap Alpha
○ Great support on Windows and Mac OS X. Fast and low overhead format,

though file size can get large depending on the content. Currently this is the
format we recommend for transparent video.

● Hap Q Alpha
○ Great support on Windows and Mac OS X. Slightly higher quality and file size

compared to Hap Alpha.
● Uncompressed RGBA
● Uncompressed YUVA

○ Uncompressed isn’t ideal for file size or disk bandwidth but can still be used
as a fallback

● ProRes 4444
○ Best support is on Mac OS X. Files are huge.

● VP6
○ Legacy format. We support it only via 3rd party DirectShow plugins for

Windows (eg LAV Filters)

4.7.1 Alpha Packing

Alternatively you can encode your videos in video formats that don’t support an alpha
channel by packing the alpha channel into the same frame. You can double the width for a
left-right packing layout, or double the height for a top-bottom packing layout. This packing
could be created in software such as AfterEffects, or the command-line ffmpeg tool can be
used. The packing format is set in the “Media Properties” panel of the AVPro Video
MediaPlayer component:

Here we show two examples using ffmpeg to convert to an alpha packed format:

Left-right alpha packing:

23 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

ffmpeg -i %1 -vf "split [a], pad=iw*2:ih [b], [a] alphaextract, [b]
overlay=w" -y %1.mp4

Top-bottom alpha packing:

ffmpeg -i %1 -vf "split [a], pad=iw:ih*2 [b], [a] alphaextract, [b]
overlay=0:h" -y %1-tb.mp4

24 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

4.8 Hardware Decoding

AVPro Video supports hardware decoding on most platforms for optimal performance.
WebGL, Windows 8.1, Windows 10, macOS, tvOS, iOS and Android all default to hardware
decoding when possible. When playing back multiple videos simultaneously one must be
careful not to exceed the number of videos that the hardware can play back smoothly. We
have tried to collect information about the limits of specific hardware.

4.8.1 NVidia

NVidia GPU’s use a technology called “Purevideo” or “NVDec” to off-load decoding from the
CPU. More information can be found here:
https://en.wikipedia.org/wiki/Nvidia_PureVideo#Nvidia_VDPAU_Feature_Sets

Some NVidia Purevideo capabilities:

KEPLER (GK107,
GK104)

MAXWELL 1
(GM107, GM204,
GM200)

MAXWELL 2
(GM206)

PASCAL (GP100)

MPEG-2, MPEG-4,
H.264

MPEG-2, MPEG-4,
H.264, HEVC with
CUDA acceleration

MPEG-2, MPEG-4,
H.264 HEVC/H.265
fully in hardware

MPEG-2, MPEG-4,
H.264 HEVC/H.265
fully in hardware

H.264: ~200 fps at
1080p; 1 stream of
4K@30

H.264: ~540 fps at
1080p 4 streams of
4K@30

H.264: ~540 fps at
1080p 4 streams of
4K@30

?

H.265: Not
supported

H.265: Not
supported

H.265: ~500 fps at
1080p 4 streams of
4K@30

?

(table adapted from presentation “HIGH PERFORMANCE VIDEO ENCODING WITH NVIDIA GPUS”)

GPU
Architect
ure

MPEG-2 VC-1 H.264/
AVCHD

H.265/
HEVC

VP8 VP9

Fermi (GF1xx) Maximum
Resolution:
4080x4080

Maximum
Resolution:
2048x1024
1024x2048

Maximum
Resolution:
4096x4096
Profile:
Baseline,
Main, High
profile up to
Level 4.1

Unsupported Unsupported Unsupported

Kepler
(GK1xx)

Maximum
Resolution:
4080x4080

Maximum
Resolution:
2048x1024
1024x2048

Maximum
Resolution:
4096x4096
Profile: Main,

Unsupported Unsupported Unsupported

25 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://en.wikipedia.org/wiki/Nvidia_PureVideo#Nvidia_VDPAU_Feature_Sets

High profile up
to Level 4.1

Maxwell Gen
1 (GM10x)

Maximum
Resolution:
4080x4080

Maximum
Resolution:
2048x1024
1024x2048

Maximum
Resolution:
4096x4096
Profile:
Baseline,
Main, High
profile up to
Level 5.1

Unsupported Unsupported Unsupported

Maxwell Gen
2 (GM20x)

Maximum
Resolution:
4080x4080

Maximum
Resolution:
2048x1024
1024x2048
Max bitrate:
60Mbps

Maximum
Resolution:
4096x4096
Profile:
Baseline,
Main, High
profile up to
Level 5.1

Unsupported Maximum
Resolution:
4096x4096

Unsupported

Maxwell Gen
2 (GM206)

Maximum
Resolution:
4080x4080

Maximum
Resolution:
2048x1024
1024x2048
Interlaced

Maximum
Resolution:
4096x4096
Profile:
Baseline,
Main, High
profile up to
Level 5.1

Maximum
Resolution:
4096x2304
Profile: Main
profile up to
Level 5.1

Maximum
Resolution:
4096x4096

Maximum
Resolution:
4096x2304
Profile: Profile
0

Pascal
(GP100)

Maximum
Resolution:
4080x4080

Maximum
Resolution:
2048x1024
1024x2048

Maximum
Resolution:
4096x4096
Profile:
Baseline,
Main, High
profile up to
Level 5.1

Maximum
Resolution:
4096x4096
Profile: Main
profile up to
Level 5.1

Maximum
Resolution:
4096x4096

Maximum
Resolution:
4096x4096
Profile: Profile
0

Pascal
(GP10x)

Maximum
Resolution:
4080x4080

Maximum
Resolution:
2048x1024
1024x2048

Maximum
Resolution:
4096x4096
Profile:
Baseline,
Main, High
profile up to
Level 5.1

Maximum
Resolution:
8192x8192
Profile: Main
profile up to
Level 5.1

Supported2
Maximum
Resolution:
4096x4096

Maximum
Resolution:
8192x8192
Profile: Profile
0

 (Table adapted from Nvidia Video Decoder Interface documentation:
https://developer.nvidia.com/nvdec-programming-guide)

4.8.2 AMD

AMD UVD
https://en.wikipedia.org/wiki/Unified_Video_Decoder

UVD Version Hardware Code Names

UVD 1.0 RV610, RV630, RV670, RV620, RV635

UVD 2.0 RS780, RS880, RV770

26 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://developer.nvidia.com/nvdec-programming-guide
https://en.wikipedia.org/wiki/Unified_Video_Decoder

UVD 2.2 RV710, RV730, RV740

UVD 2.3 CEDAR, REDWOOD, JUNIPER, CYPRESS

UVD 3.0 PALM (Wrestler/Ontario), SUMO (Llano), SUMO2 (Llano

UVD 3.1 BARTS, TURKS, CAICOS, CAYMAN

UVD 3.2 ARUBA (Trinity/Richland), TAHITI

UVD 4.0 CAPE VERDE, PITCAIRN, OLAND

UVD 4.2 KAVERI, KABINI, MULLINS, BONAIRE, HAWAII

UVD 5.0 TONGA

UVD 6.0 CARRIZO, FIJ

UVD 6.2 STONEY

UVD 6.3 POLARIS10, POLARIS11, POLARIS12

(table adapted from X.org RadeonFeature wiki:
https://www.x.org/wiki/RadeonFeature/#index8h2)

UVD
Version

MPEG 2 MPEG 4 MPEG-4
AVC/VC1

HEVC Max Size Notes

UVD 1.0 No No Yes No 2K

UVD 2.0 No No Yes No 2K

UVD 2.2 No No Yes No 2K

UVD 2.3 No No Yes No 2K

UVD 3.0 Yes Yes Yes No 2K

UVD 3.1 Yes Yes Yes No 2K

UVD 3.2 Yes Yes Yes No 2K

UVD 4.0 Yes Yes Yes No 2K

UVD 4.2 Yes Yes Yes No 2K

UVD 5.0 Yes Yes Yes No 4K

UVD 6.0 Yes Yes Yes Yes 4K

UVD 6.2 Yes Yes Yes Yes 4K Supports 10bit

UVD 6.3 Yes Yes Yes Yes 4K Supports 10bit

27 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://www.x.org/wiki/RadeonFeature/#index8h2

(table adapted from X.org RadeonFeature wiki:
https://www.x.org/wiki/RadeonFeature/#index8h2)

4.8.3 Intel

Intel’s Quick Sync technology is a dedicated video decoder hardware built into the CPU.

Intel Kaby Lake supports H.265 10-bit decoding!

4.9 Multi-GPU SLI / CrossFire Notes

Multiple GPU’s are often used to accelerate high-end rendering but it brings with it some
subtle challenges for video playback. Here we write some notes about our experience using
Nvidia SLI on Windows (specifically Windows 8.1 with dual Nvidia M6000 cards).

Using Alternate Frame Rendering SLI (AFR SLI) can cause stuttering when using the Media
Foundation hardware decoding because only one GPU is doing the decoding and then it
must pass the frames back to the other GPU which is a slow operation and defeats the
purpose of SLI. One option here is to disable GPU decoding in AVPro Video, which is fine
for lower resolution videos, but often the CPU just isn’t fast enough for very high resolution
content. AFR can also suffer from so called “micro stutters” caused by each GPU handling
the flip presentation independently which isn’t ideal for video playback on large video walls.

Another option is to use the cards in “SLI VR” mode … To be continued..

4.10 Subtitle Notes

AVPro Video supports external subtitles in the SRT format. Subtitles internal to media files
are not yet supported. See the subtitle demo scene to see how to use subtitles.

28 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://www.x.org/wiki/RadeonFeature/#index8h2

4.11 DRM Notes

DRM support is currently not a key feature of AVPro Video, but we aim to improve support in
the future. DRM that we know works with the plugin includes:

● Android
○ HLS with AES-128 (make sure your TS segments are 188 bytes aligned for

maximum Android compatibility)
○ We have a file offset feature which allows you to access files hidden within a

file at an offset. Not strictly DRM but it can be used as a quick way to hide
video files within other data

■ In Windows you can easily append your video to a dummy video file
with the following command:

copy /b DummyVideo.mp4 + %1 %~n1-hidden.mp4

○ Custom HTTP header fields can be specified which can help with server side
validation

● macOS
○ Custom HTTP header fields can be specified which can help with server side

validation
● iOS & tvOS

○ Custom HTTP header fields can be specified which can help with server side
validation

Fairplay, Widevine, PlayReady etc are not yet supported.

4.12 Video Capture Notes

To make a non-realtime video capture of your Unity scenes which include videos, requires
the video playback to slow down or speed up to match the video capture rate. AVPro Video
supports this through the “TimeScale Support” option which is found in the Global Settings
panel of the Media Player component. This means you can create high quality renders
running at 1fps to produce a smooth 60fps video, and any videos in your scene will play
back at the correct rate for the recording. Audio is not supported though when using this
option (as is the case in Unity itself).

29 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

5. Quick Start Examples

5.1 Quick Start: Fastest Start for Unity Experts

1. Put video files in the StreamingAssets folder
2. Use the MediaPlayer script to play your video (set Video Path to the file name of your

video file).
3. Use one of the display scripts to display your video (eg DisplayIMGUI, DisplayUGUI,

ApplytoMaterial)

5.2 Quick Start: Fullscreen Video Player using Prefabs

AVPro Video includes a number of example prefabs you can use to easily add video
playback to your project. The following steps will create an application that plays back a
fullscreen video:

1. Create a new Unity project
2. Import the AVProVideo package
3. From the AVPro/Prefabs folder in the Project window, drag the FullscreenVideo

prefab to your Hierarchy window

4. Create a folder called StreamingAssets in your Project window and copy your video

30 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

file (say MP4 file) into that folder
5. Enter the file name (including extension) into the Video Path field in the MediaPlayer

component (eg myvideo.mp4)
6. Build and deploy your application, the video will be displayed fullscreen

The DisplayIMGUI component script is just one of the components for displaying video. It
uses the legacy Unity IMGUI system which always renders on top of everything else. Try
using the DisplayBackground or DisplayUGUI components for more control if you don’t want
your video to be on top.

5.3 Quick Start: 3D Mesh Video Player using Components

AVPro Video includes a number of easy to use script components you can add to your
scene. In this example we show how to use the components to play a video onto a material
which is applied to a 3D model in the scene.

1. Create a new Unity project
2. Import the AVProVideo package
3. Create a new GameObject from the “GameObject > AVPro Video > Media Player”

menu command
4. Click the “Add Component” button and add “AVPro Video > Apply To Mesh”
5. Drag the Media Player script to the “Media” field in the Apply To Mesh script, this tells

the Apply to Mesh script which media player to use
6. Create a sphere via the “GameObject > 3D Object > Sphere” menu command
7. Drag the Mesh Renderer component to the “Mesh” field in the Apply To Mesh script,

this tells the Apply to Mesh script which mesh to use

8. Create a folder called StreamingAssets in your Project window and copy your video

31 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

file (say MP4 file) into that folder
9. Enter the file name (including extension) into the Video Path field in the MediaPlayer

component (eg myvideo.mp4)
10. Build and deploy your application, the video will be displayed on your 3D sphere

32 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

6. Usage

6.1 Getting Started

The easiest way to get started is to look at the included demos and see what script
components have been used. For video playback you need 3 things in your scene:

1. The video file to play:

Create a “StreamingAssets” folder in your Project window
Copy your video file (usually MP4 file, but consult the list of supported formats for
your platform below) to the StreamingAssets folder

2. A MediaPlayer script to load and play the video:

Create a GameObject and add the MediaPlayer script to it
Set the Video Path field to the name of your video file (e.g. myvideo.mp4)

3. A script to display the video:

Decide how and where you want your video file to appear. There are a number of
different display component scripts included for different usage scenarios. If you
want to display the video on top of everything in your scene just add the
DisplayIMGUI script to a GameObject in your scene and set the Media Player field
your MediaPlayer component. Other display components work similarly.

6.2 Unsupported Platform Fallback

AVPro Video is designed to still function even on platforms that aren’t natively supported.
Instead of displaying the actual video though, a dummy 10 second long “AVPro” visual is
shown. All of the video controls should still work. For example if you are running your editor
in Linux the dummy video player will appear in the editor and the real video will appear when
you deploy to supported platforms. If you deploy to an unsupported platform such as
Samsung TV you will also see the dummy video player. The code is easily extendable to
add custom video players for any unsupported platform.

6.3. Components

Included are a number of components to make this asset easy to use. The components are
located in the AVProVideo/Scripts/Components folder or you can add them from the
Components menu:

33 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

6.3.1 Media Player Component

This is the core component for playing media. This component only handles the loading and
playback of media and doesn’t handle how it is displayed. Use the display script
components to control how and where the video is displayed. Fields are:

34 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

● Video Location
○ Where to look for the file specified in the Video Path below. This can be an

absolute path/URL, or relative to one of the Unity folders. The
StreamingAssets folder is the easiest to use. Options are:

■ Absolute or URL
● This is an absolute path on your device, or an http URL

■ Relative to Project Folder
● The root folder is the folder above your Assets folder

■ Relative to Streaming Assets Folder
● The root folder is /Assets/StreamingAssets

■ Relative to Data Folder
● The root folder is /Assets
● Unity manual has more information:

http://docs.unity3d.com/ScriptReference/Application-dataPath.
html

■ Relative to Persistent Data Folder
● Unity manual has more information:

http://docs.unity3d.com/ScriptReference/Application-persistent
DataPath.html

● Video Path
○ The file path to the video in the StreamingAssets folder (e.g. myvideo.mp4 or

AndroidVideos/myvideo.mp4 if you want to use a subfolder)
● Auto Open

○ Whether to open the file when this component is enabled/starts
● Auto Start

○ Whether to play the video once a video is opened
● Loop

○ Whether to loop the video
● Playback Rate

○ Sets a multiplier that affects video playback speed
○ Not supported on Android

● Volume
○ 0..1 range for audio volume

● Muted
○ Whether the audio is muted

● Persistent
○ Applies DontDestroyOnLoad to the object so that it survives scene/level loads

● Debug Gui
○ Whether to display an overlay with statistics on the video playback - useful for

debugging
● Events

○ This event can be hooked up to scripting functions which will get called when
a non-looping video completes playback. See the Events section below for
more details and a scripting example

● Visual
○ Texture

Set the desired filtering and wrap mode for the final texture that the
frames are written to. Useful if you wish to tile your textures in a specific way.

35 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

http://docs.unity3d.com/ScriptReference/Application-dataPath.html
http://docs.unity3d.com/ScriptReference/Application-dataPath.html
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

○ Transparency
■ Set the pack mode used for transparency, where one half of the video

contains the colour data, and the other half contains the monochrome
alpha channel data

○ Stereo
■ Set the pack mode used for stereo, where one half of the video

contains the left eye data, and the other half contains the right eye
data

○ Resampler
■ The resampler helps smoothen out jitters in video playback caused by

unity and decoder vsync drift. The downsides to using it is that it uses
more processing power and GPU memory, and that it is out of sync for
videos with audio as it displays the video frames a couple of frames
later than the decoder.

■ There are two modes in the resampler:
● POINT picks the closest frame in the buffer and displays it
● LINEAR picks the two frames directly before and after the

current display time, and displays the interpolated version of
the two based on how far away the current time is from both of
them

■ Resample buffer size determines how many frames are stored in the
buffer. A larger buffer size uses more GPU memory as there are more
textures, but increases the chance that the desired frames will be
found in the buffer, which will allow for smoother playback. A larger
buffer size will also mean a larger delay between the video displayed
and the actual video on the decoder.

● Platform overrides
○ These allow you to set a different file per platform.

6.3.2 Display IMGUI Component

This is the most basic component for displaying the video. It uses the legacy Unity IMGUI
system to display the video to the screen. IMGUI is always rendered on top of everything

36 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

else in the scene, so if you require your video to be rendered in 3D space or as part of the
uGUI system it’s better to use the other components. Fields are:

● Media Player
○ The media player to display

● Display in Editor
○ Whether to display the rectangle in the editor - useful for debugging

● Scale Mode
○ How to fit the video to the screen

● Color
○ The color to tint the video, including alpha transparency

● Alpha Blend
○ Whether the video texture controls transparency. Leaving this off for opaque

videos is a minor optimisation
● Depth

○ The IMGUI depth to display at. Use this to change the order of rendering with
other IMGUI scripts

● Full Screen
○ Whether to ignore the X, Y, Width, Height values and just use the whole

screen
● X

○ The normalised (0..1) x position
● Y

○ The normalised (0..1) y position
● Width

○ The normalised (0..1) width
● Height

○ The normalised (0..1) height

6.3.3 Display uGUI Component

This component is used to display a video using Unity’s uGUI system. Field are:

● Media Player
○ The media player to display

37 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

● Default Texture (optional)
○ A texture to display while the video isn’t playing (while it is buffering for

example).
● No Default Display

○ Will not show anything until there are frames available
● Color

○ The color to tint, including alpha transparency
● Material

○ Standard uGUI field, change this to one of the included materials when using
packed alpha or stereo videos

● UV Rect
○ Standard uGUI field

● Set Native Size
○ When the video loads will resize the RectTransform to the pixel dimensions of

the video
● Keep Aspect Ratio

○ Whether to keep the correct aspect ratio or stretch to fill

6.3.4 Apply To Mesh Component

This component takes the texture generated by the Media Player component and assigs it to
the texture slot of the material on a 3D Mesh. This is useful for playing videos on 3D
meshes. Field are:

● Offset
○ The XY translation to apply to the texture

● Scale
○ The XY scale to apply to the texture

● Mesh
○ The mesh (renderer) to apply the texture to

● Media
○ The media player

● Default Texture (optional)
○ A texture to display while the video isn’t playing (while it is buffering for

example).

6.3.5 Apply To Material Component

38 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

This component takes the texture generated by the Media Player component and assigns it
to a texture slot in a Material. This is useful for playing videos on 3D meshes. Fields are:

● Offset
○ The XY translation to apply to the texture

● Scale
○ The XY scale to apply to the texture

● Material
○ The material to apply the video texture to

● Texture Property Name (optional)
○ By default this script assigns to the main texture (_MainTex) but if you want to

assign to another slot you can put the name in here
● Media

○ The media player
● Default Texture (optional)

○ A texture to display while the video isn’t playing (while it is buffering for
example).

6.3.6 Cubemap Cube Component

This component generates a cube mesh that is suitable for 3:2 cubemap 360 VR videos.
Fields are:

● Material
○ The material to apply to the cube. This is usually just a standard unlit

material.
● Media Player

○ The media player that will have its video texture displayed on the cube
● Expansion_coeff

○ The value used during enabling to pad the edges to the video to prevent
bilinear bleed artifacts. Default is 1.01.

39 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

6.3.7 Audio Output Component

This component currently only supports the Windows platforms (UWP, Windows 8 and
above) and is used to pass audio from the Media Player to Unity. This allows audio
effects,3D placement and 360 VR spatialisers to be used. Fields are:

● Media Player
○ The media player that will have its audio outputted via Unity

6.4 Scripting

6.4.1 Namespace

All scripts use the namespace RenderHeads.Media.AVProVideo so be sure to add “using
RenderHeads.Media.AVProVideo” to the top of your source files.

6.4.2 Media Player Scripting

Most scripting is likely to center around the MediaPlayer.cs script. This script handles the
loading, playback and updating of videos. The script exposes a number of interfaces related
to different use cases and can be found in Interfaces.cs

MediaPlayer exposes 3 main interfaces:

● Info Interface
○ The IMediaInfo interface is exposed by the Info property
○ This interface is used to access information about the media, eg:

MediaPlayer mp;
mp.Info.GetVideoWidth();

● Control Interface
○ The IMediaControl interface is exposed by the Control property
○ This interface is used to control playback, eg:

MediaPlayer mp;
mp.Control.Pause();

40 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

● TextureProducer interface

○ The IMediaProducer interface is exposed by the TextureProducer property
○ This interface is used to get information about how to display the current

texture and is used by the Display components, eg:

MediaPlayer mp;
Texture videoTexture = mp.TextureProducer.GetTexture();

The MediaPlayer script also has a number of methods for controlling loading of media:

● OpenVideoFromFile()
○ Loads the video specified. Useful if you need manual control over when the

video is loaded
● CloseVideo()

○ Closes the video, freeing memory

6.4.3 Events

MediaPlayer currently has these events:

● MetaDataReady - Called when the width, height, duration etc data is available
● ReadyToPlay - Called when the video is loaded and ready to play
● Started - Called when the playback starts
● FirstFrameReady - Called when the first frame has been rendered. (NB: This event

currently doesn’t get fired for certain browsers in the WebGL build. This includes all
non-mozilla non-webkit browsers)

● FinishedPlaying - Called when a non-looping video has finished playing
● Closing - Called when the the media is closing
● Error - Called when an error occurred, usually during loading
● SubtitleChanged - Called when the subtitles change
● Stalled - Called when media is stalled (eg. when lost connection to media stream)
● Unstalled - Called when media is resumed form a stalled state (eg. when lost

connection is re-established)

Scripting example:

// Add the event listener (can also do this via the editor GUI)
MediaPlayer mp;
mp.Events.AddListener(OnVideoEvent);

// Callback function to handle events
public void OnVideoEvent(MediaPlayer mp, MediaPlayerEvent.EventType et, ErrorCode
errorCode)
{

switch (et)
{

case MediaPlayerEvent.EventType.ReadyToPlay:
mp.Control.Play();
break;
case MediaPlayerEvent.EventType.FirstFrameReady:

41 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

Debug.Log("First frame ready");
break;
case MediaPlayerEvent.EventType.FinishedPlaying:
mp.Control.Rewind();
break;

}

Debug.Log("Event: " + et.ToString());

}

6.5 Platform Specific Scripting

6.5.1 Windows Store / UWP / Hololens

See the Demos/Scriptlets/NativeMediaOpen.cs script for details on how to load directly from
the native file system (eg from the Camera Roll)

6.6 Third-Party Integration

6.6.1 PlayMaker Support

AVPro Video includes over 64 components (actions) for PlayMaker, the popular visual
scripting system created by Hutong Games. This makes AVPro Video much easier to use
for PlayMaker users. The actions can be found in the /Scripts/Support/PlayMaker folder

6.6.2 NGUI Support

AVPro Video includes basic support for NGUI, the popular UI system from Tasharen
Entertainment. The ApplytoTextureWidgetNGUI component is used to set the AVPro Video
texture to an NGUI UITexture widget.

42 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

7. Asset Files

7.1 Demos
● Demo_360SphereVideo.unity

○ Demo contains a video player that plays a 360
degree video using equirectangular(lat-long)
mapping.

○ The video is applied to a sphere, inside of which
is the main camera.

○ If the target device has a gyroscope then moving
the device around with rotate the camera to view
the video from different angles. For platforms
without gyroscope the mouse/touch can be used
to look around.

○ A special shader and script are used to allow a
single camera to render in stereo on a VR
headset. Click on the material to set whether it
should display the video as monoscopic, stereo
top-bottom or stereo left-right.

● Demo_360CubeVideo.unity
○ Same as the sphere demo above, but using a

cubemap 3x2 layout source video.
● Demo_BackgroundShader.unity

○ Basic demo that plays a video using the
background material which allows the video to
appear behind all content.

● Demo_FrameExtract.unity
○ Shows go to read frames out of the video for

saving to disk (jpg/png) or accessing pixel data.
● Demo_imGui.unity

○ Basic demo that plays a video and uses the legacy IMGUI display component
to draw the video to the screen.

○ Also has an audio clip to show audio-only media playback.
○ Also has 3 different streaming URLs to demonstrate streaming.
○ IMGUI is drawn on top of all other visual components.

● Demo_Mapping3D.unity
○ Demo containing a video player and a 3D scene
○ Some of the 3D models have the video mapped to them via the

ApplyToMaterial script
● Demo_Multiple.unity

○ This demo allows you to programmatically multiple load videos and test
multiple videos playing at once. Display is via the AVPro Video uGUI
component

● Demo_uGUI.unity
○ This demo shows how to display videos within the uGUI system. It uses the

DisplayUGUI component in the canvas hierarchy.
○ It also uses a custom shader to overlay text with a video texture.

43 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

● Demo_VideoControl.unity
○ This demo shows how to query the video state and control playback

7.2 Prefabs

● 360SphereVideo.prefab
○ Prefab containing a video player and mapping to a sphere. Useful for

playback of equirectangular 360 degree videos
● BackgroundVideo.prefab

○ Prefab containing a video player and a quad model with a special background
material applied. This material makes the quad get drawn before everything
else so it appears in the background.

● FullscreenVideo.prefab
○ Prefab controls a video player and the IMGUI display component for very

easy basic video playback creation

7.3 Scripts

● Components
○ ApplyToMaterial.cs

■ Applies the texture produced by the MediaPlayer component to a unity
material texture slot

○ ApplyToMesh.cs
■ Applies the texture produced by the MediaPlayer component to a

Untiy mesh (via MeshRenderer) by setting the mainTexture field of all
its materials

○ CubemapCube.cs
■ Generates a cube mesh that can be used for displaying a 3:2

cubemap packed video
○ DisplayBackground.cs

■ Displays the texture produced by the MediaPlayer component behind
all other content (not compatible with SkyBox)

○ DisplayIMGUI.cs
■ Displays the texture produced by the MediaPlayer component using

Unity’s legacy IMGUI system
○ DisplayUGUI.cs

■ Displays the texture produced by the MediaPlayer component using
Unity’s new uGUI system

○ MediaPlayer.cs
■ The main script for loading and controlling an instance of video

playback
○ UpdateStereoMaterial.cs

■ A helper script for VR stereo rendering to update the camera position
variable in a spherical material to help work out which eye to render

○ AudioOutput.cs
■ Used to play audio from the media vis Unity’s sound system (currently

Windows only)
○ ApplyToTextureWidgetNGUI.cs

44 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

■ Applies the texture produced by the MediaPlayer component to an
NGUI Texture widget texture slot

● Editor
○ DisplayUGUIEditor.cs

■ The editor script that controls how the DisplayUGUI component is
rendered in the Inspector

○ MediaPlayerEditor.cs
■ The editor script that controls of the MediaPlayer component is

rendered in the Inspector
● Internal

○ AndroidMediaPlayer.cs
■ Android specific media player

○ BaseMediaPlayer.cs
■ Common base class for all platform media players

○ Interfaces.cs
■ Interfaces and events

○ NullMediaPlayer.cs
■ The fallback dummy media player for unsupported platforms

○ OSXMediaPlayer.cs
■ iOS and OSX specific media player

○ WebGLMediaPlayer.cs
■ WebGL specific media player

○ WindowsMediaPlayer.cs
■ Windows specific media player

45 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

8. Scripting Reference

AVPro Video is designed to be used mainly with the supplied drag and drop component but
there are always times when a bit of scripting is needed. The asset includes sample scenes
which give some examples of how to use scripting to control video playback, apply video
textures to materials etc which are useful to learn from. The full class reference is available
online here:
http://www.renderheads.com/content/docs/AVProVideoClassReference/

In this document we have included a simplified version of the highlights.

MediaPlayer class

The MediaPlayer class is the main class for video playback and is where video files are
specified and controlled. This class is mainly controlled via the Unity Inspector UI and for
scripting through the interface properties it exposes.

Properties

● Events
○ returns the MediaPlayerEvent class

● Info
○ returns the IMediaInfo interface

● Control
○ returns the IMediaControl interface

● TextureProducer
○ returns the IMediaProducer interface

Methods

All of these methods use the interfaces exposed above and are just handy shortcuts

● void OpenVideoFromFile(FileLocation location, string path, bool autoPlay)
○ Opens the video specified

● void CloseVideo()
○ Closes the current video and frees up allocated memory

● void Play()
○ Starts playback of the video

● void Pause()
○ Pauses the video

● void Stop()
○ Pauses the video

● void Rewind(bool pause)
○ Rewinds the video with an option to pause it as well

● Texture2D ExtractFrame(Texture2D target, float timeSeconds, int timeoutMs)
○ Extracts a frame from the specified time of the current video as a readable

Texture2D. This can then be used to save out the pixel data. The texture

46 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

http://www.renderheads.com/content/docs/AVProVideoClassReference/

must be destroyed by the user. The texture can be passed in again via the
“target” parameter to reuse it.

IMediaInfo interface

This interface is used to query properties of the video

Methods

● float GetDurationMs();
○ Returns the duration of the video in milliseconds

● int GetVideoWidth();
○ Returns the width of the video in pixels

● int GetVideoHeight();
○ Returns the height of the video in pixels

● float GetVideoFrameRate();
○ Returns the frame rate of the video in frames per second

● float GetVideoDisplayRate();
○ Returns the actual frame rate achieved by the video decoder

● bool HasVideo();
○ Returns whether the media has visual tracks

● bool HasAudio();
○ Returns whether the media has audio tracks

● int GetAudioTrackCount();
○ Returns the number of audio tracks

● string GetPlayerDescription();
○ Returns a string describing the internal playback mechanism

IMediaControl interface

This interface is used to control loading and playback of the video

Methods

● bool OpenVideoFromFile(string path);
○ Starts loading the file from the specified path or URL. Returns false if any

error was encountered. This function is asynchronous so the video properties
will not be available immediately. This function shouldn’t be used, instead use
the MediaPlayer OpenVideoFromFile function.

● void CloseVideo();
○ Closes the video and any resources allocated

● void SetLooping(bool looping);
○ Sets whether the playback should loop or not. This can be changed while the

video is playing.
● bool CanPlay();

○ Returns whether the video is in a playback state. Sometimes videos can take

47 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

a few frames before they are ready to play.
● void Play();

○ Starts playback of the video
● void Pause();

○ Pause the video
● void Stop();

○ Stops the video (essentially the same as Pause)
● bool IsPlaying();

○ Returns whether the video is currently playing
● bool IsPaused();

○ Returns whether the video is currently paused
● bool IsFinished();

○ Returns whether the video has completed playback
● bool IsLooping();

○ Returns whether the video has been set to loop
● bool IsBuffering();

○ Returns whether a streaming video has stopped and is buffering. A buffering
video will resume after it has downloaded enough data.

● void Rewind();
○ Sets the current time to the beginning of the video

● void Seek(float timeMs);
○ Sets the current time to a specified value in milliseconds

● void SeekFast(float timeMs);
○ Sets the current time to a specified value in milliseconds but sacrifices

accuracy for speed. This is useful if you just want to jump forward/back in a
video but you don’t care about the accuracy.

● bool IsSeeking();
○ Returns whether the video is currently seeking. During seeking no new

frames are produced.
● float GetCurrentTimeMs();

○ Returns the current time (playback position) in milliseconds
● void SetPlaybackRate(float rate);

○ Sets the current playback rate. 1.0f is normal rate. Negative rates aren’t
supported on all platforms.

● float GetPlaybackRate()
○ Returns the current playback rate

● void MuteAudio(bool mute)
○ Sets the audio mute or not

● void SetVolume(float volume)
○ Sets the volume between 0.0 and 1.0

● float GetVolume()
○ Returns the volume level between 0.0 and 1.0

● int GetCurrentAudioTrack()
○ Returns the index of the currently enabled audio track

● void SetAudioTrack(int index)
○ Sets the index to select the audio track to enable exclusively

● float GetBufferingProgress()
○ Returns a value between 0.0 and 1.0 representing network buffering

48 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

● ErrorCode GetLastError()
○ Returns an error code is an error occurred this frame

IMediaProducer interface

Methods

● Texture GetTexture();
○ Returns a Unity Texture object if there is a texture available otherwise null is

returned.
● int GetTextureFrameCount();

○ Returns the number of times the texture has been updated by the plugin.
This can be useful to know when the texture was updated as the value will
increment each time.

● long GetTextureTimeStamp();
○ Returns the presentation time stamp of the current texture in 100-

nanosecond units. This is useful for accurate frame syncing.
● bool RequiresVerticalFlip();

○ Some textures are decoded up-side-down and need to be vertically flipped
when displayed. This method returns whether the texture needs to be flipped
during display.

49 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

9. Supported Media Formats

In general the most common format that is supported are MP4 files with H.264 encoding for
video and AAC encoding for audio. This format is supported across all platforms though not
necessarily all bit-rates and profiles.

Container support:

 Windows
Desktop

Mac OS X
Desktop

iOS, tvOS Android

MP4 Yes Yes Yes Yes

MOV Yes Yes Yes No

AVI Yes No No No

MKV Yes in Windows
10

? ? Yes
Android
5.0+

Webm Yes in Windows
10 - 1607
Anniversary and
above

No No Yes

ASF/WMV Yes No No No

MP3 Yes Yes Yes Yes

WAV Yes ? ? ?

Audio Codec support:

 Windows
Desktop

Mac OS X
Desktop

iOS, tvOS Android

AAC Yes Yes Yes Yes

MP3 Yes Yes Maybe***** Yes

FLAC Yes in Windows
10

No No Yes

AC3 Yes Yes ? ?

WMA Yes No No No

MIDI Yes ? ? ?

50 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

Vorbis No ? ? Yes

Opus Yes in Windows
10 - 1607
Anniversary and
above

No No Yes,
Android
5.0+

ALAC (Apple Lossless) No Yes Yes No

µLAW Yes Yes Yes No

ADPCM Yes Yes Yes No

Linear PCM Yes Yes Yes Yss

Video Codec support:

 Windows
Desktop

Mac OS X
Desktop

iOS, tvOS Android

HEVC / H.265 Yes in Windows
10

Yes in High
Sierra and
above

Yes in iOS
11 and
above

Yes

H.264 Yes**** Yes Yes Yes

H.263 Yes ? ? Yes

MJPEG Yes No No No

WMV Yes No No No

VP8 Yes* No No Yes

VP9 Yes* No No Yes

Hap Yes*** Yes No No

Hap Alpha Yes*** Yes No No

Hap Q Yes*** Yes No No

Hap Q Alpha Yes*** Yes No No

ProRes 422 No Yes No No

ProRes 4444 No Yes No No

DV Yes Yes in
Yosemite
and above

No No

Lagarith Yes, with codec

51 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

Uncompressed RGBA Yes ? ? ?

Uncompressed YUV Yes ? ? ?

Uncompressed R10K No Yes in
Yosemite
and above

No No

Uncompressed V210 ? Yes in
Yosemite
and above

No No

Uncompressed 2VUY ? Yes in
Yosemite
and above

No No

For Windows, other codecs can be played if the DirectShow mode is used and 3rd party
codecs are installed. We recommend LAV filters for this purpose as this adds support for
almost all codecs.

● * Yes, only in Windows 10 and only 4:2:0. Native VP9 support only comes in Yes in
Windows 10 1607 Anniversary Update and above, but it may be available before that
via Intel GPU drivers. If you use DirectShow and 3rd party filter then 4:4:4 can be
supported. Using Media Foundation no audio codecs (Vorbis or Opus) are supported
and will cause the video to fail to load if included.

● *** Requires option “Force DirectShow” to be ticked
● **** Older versions of Windows (Vista and XP) do not have support for H.264

decoding
● ***** iOS seems to often have trouble with MP3 audio tracks in a video file, so best to

use AAC instead

Cells with “?” are one’s we’re not sure about. We will do more testing and continue to
update this table. For more details on which codecs and what type of encoding is best, see
the per-platform details below.

9.1 Android

Android supports many media formats. For a complete list check the Android MediaPlayer
documentation here: https://developer.android.com/guide/appendix/media-formats.html and
the ExoPlayer documentation here:
https://google.github.io/ExoPlayer/supported-formats.html

HEVC (H.265) support was officially added in Android 5.0 (Lollipop) but only as a software
decoding implementation on older devices.

We have found that using GearVR on Samsung Galaxy S6 and S7 that H.265 codec works
best, with a resolution of 3840x1920 at 30fps, or 2048x2048 at 60fps.

52 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://developer.android.com/guide/appendix/media-formats.html
https://google.github.io/ExoPlayer/supported-formats.html

A list of media-player related Android chipsets and which formats they support for hardware
decoding: http://kodi.wiki/view/Android_hardware

9.2 iOS, tvOS and OS X

9.2.1 iOS

Many media formats are supported by iOS including H.264. iOS 11 adds support for H.265
(HEVC).

The iPhone5C is a low-powered mobile device and has a limitation that the videos must be
less than 2 megapixels in resolution.

iOS seems to often have trouble with MP3 audio tracks in a video file, so best to use AAC
instead.

iOS also seems to allocate a lot of system memory when loading videos. Unfortunately
we’re not able to control this which means you have to be very careful when trying to load
large or multiple videos, especially with the 1GB iOS devices. To combat this we have
added the YCbCr video decoding option (See Platform Specific panel in MediaPlayer
component), which uses a lot less memory.

We recommend only using a single MediaPlayer instance and reusing it for all video loads.
The memory issue may be helped by encoding your videos with less reference frames but
we haven’t tested this for sure.

It has proven difficult getting the true video decoding capabilities of iOS devices. Apple’s
website has information, but we found it to be slightly inaccurate (for example we can
decode 4K video on iPhone5s, which apparently can only do 1080p). It seems that if your
device has a 64-bit processor then it will be able to decode 4K H.264, but older devices with
32-bit processors will not.

Device specs according to Apple:

Device MPEG-4 H.264 MJPEG AAC-LC Dolby
Audio

iPad 4th
generation
(Nov 2012)

Maximum
Resolution:
640x480 at
30fps, Simple
profile. Up to
1.5Mbps

In M4V, MP4
and MOV
containers

Maximum
Resolution:
1920x1080 at
30fps, High
profile up to
level 4.1

In M4V, MP4
and MOV
containers

Maximum
Resolution:
1280x720 at
30fps,
Up to 35 Mbps

In AVI
container with
PCM audio

160 Kbps
48kHz stereo

In M4V, MP4
and MOV
containers

Unsupported

iPhone 6
(Sept 2014)

Maximum
Resolution:
640x480 at
30fps, Simple
profile. Up to
1.5Mbps

In M4V, MP4
and MOV
containers

Maximum
Resolution:
1920x1080 at
60fps, High
profile up to
level 4.2

In M4V, MP4
and MOV
containers

Maximum
Resolution:
1280x720 at
30fps,
Up to 35 Mbps

In AVI
container with
PCM audio

160 Kbps
48kHz stereo

In M4V, MP4
and MOV
containers

Unsupported

53 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

http://kodi.wiki/view/Android_hardware

iPad 5th
generation
(March 2017

iPad 9.7inch

iPad Pro

iPhone 6S
(Sept 2016)

iPhone SE
(March 2016)
iPhone 7
(Sept 2016)

Maximum
Resolution:
640x480 at
30fps, Simple
profile. Up to
1.5Mbps

In M4V, MP4
and MOV
containers

Maximum
Resolution:
3840x2160 at
30fps, High
profile up to
level 4.2

In M4V, MP4
and MOV
containers

Maximum
Resolution:
1280x720 at
30fps,
Up to 35 Mbps

In AVI
container with
PCM or ulaw
stereo audio

160 Kbps
48kHz stereo

In M4V, MP4
and MOV
containers

Up to
1008Kbps,
48kHz, stereo
or
multi-channel

In M4V, MP4
and MOV
containers

iPod 6 Unsupported Maximum
Resolution:
1920x1080 at
30fps ,Main
Profile level
4.1

In M4V, MP4
and MOV
containers

Unsupported 160 Kbps
48kHz stereo

In M4V, MP4
and MOV
containers

Unsupported

iPad 4 supported formats according to Apple are from here:
https://support.apple.com/kb/sp662?locale=en_US
iPad 5 supported formats according to Apple are from here:
https://support.apple.com/kb/SP751?locale=en_US
iPad 9.7inch supported formats according to Apple are from here:
https://www.apple.com/ipad-9.7/specs/
iPad Pro supported formats according to Apple are from here:
https://www.apple.com/ipad-pro/specs/
iPod 6 supported formats according to Apple are here:
https://support.apple.com/kb/SP720?locale=en_US&viewlocale=en_US

9.2.2 macOS

Many media formats are supported by macOS including H.264, ProRes 422 and ProRes
4444.

macOS Yosemite adds support for

● DV
● Uncompressed R10k
● Uncompressed v210
● Uncompressed 2vuy

macOS High Sierra adds support for

● H.265 / HEVC

54 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://support.apple.com/kb/sp662?locale=en_US
https://support.apple.com/kb/SP751?locale=en_US
https://www.apple.com/ipad-9.7/specs/
https://www.apple.com/ipad-pro/specs/
https://support.apple.com/kb/SP720?locale=en_US&viewlocale=en_US

9.3 Windows

A full list of supported formats can be found here:
https://msdn.microsoft.com/en-us/library/windows/desktop/dd757927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

H.264 decoder supports up to profile L5.1, but Windows 10 supports above L5.1 profile:
https://msdn.microsoft.com/en-us/library/windows/desktop/dd797815(v=vs.85).aspx

H.265 decoder specs are here:
https://msdn.microsoft.com/en-us/library/windows/desktop/mt218785(v=vs.85).aspx

Windows 10 adds native support for the following formats:

● H.265 / HEVC
● MKV
● FLAC
● HLS Adaptive Streaming
● MPEG-DASH

Windows 10 Fall Update seems to remove native H.265 / HEVC support for some users and
requires them to download the (free) HEVC Video Extension . Before update KB4056892 (4
Jan 2018), users also had to open a H.265 video in the Films & TV app after a restart before
AVProVideo could play H.265 videos. This update seems to fix that however.

9.4 Windows Phone / UWP

Details on media supported by this platform can be found is platform are here:
https://msdn.microsoft.com/library/windows/apps/ff462087(v=vs.105).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

9.5 WebGL

Support for WebGL platform is still varied and depends on the platform and browser support.
Some formats such as AVI file container are not supported at all. As with all other platforms,
H.264 video in an MP4 container is the most widely supported format.

Adaptive streaming (such as HLS) is still not supported natively by most browsers, but we
have seen it working in the Microsoft Edge and Safari browsers.

On newer versions of Safari videos are not allows to auto-play unless given permission by
the user (in the preferences menu). This doesn’t affect videos that have no audio track so
this may be a workaround. More details can be found here:
https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/

Some resources about the supported formats:
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
https://en.wikipedia.org/wiki/HTML5_video#Browser_support

55 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://msdn.microsoft.com/en-us/library/windows/desktop/dd757927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs
https://msdn.microsoft.com/en-us/library/windows/desktop/dd797815(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt218785(v=vs.85).aspx
https://www.microsoft.com/en-us/store/p/hevc-video-extension/9n4wgh0z6vhq
https://msdn.microsoft.com/library/windows/apps/ff462087(v=vs.105).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs
https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
https://en.wikipedia.org/wiki/HTML5_video#Browser_support

http://www.encoding.com/html5/

10. Support

If you are in need of support or have any comments/suggestions regarding this product
please contact us.

Email: unitysupport@renderheads.com
Website: http://renderheads.com/product/avpro-video/
Unity Forum:
http://forum.unity3d.com/threads/released-avpro-video-complete-video-playback-solution.38
5611/

10.1 Bug Reporting

If you are reporting a bug, please include any relevant files and details so that we may
remedy the problem as fast as possible.

Essential details:

● Error message
○ The exact error message
○ The console/output log if possible
○ If it’s an Android build then an “adb logcat” capture

● Hardware
○ Phone / tablet / device type and OS version

● Development environment
○ Unity version
○ Development OS version
○ AVPro Video plugin version

● Video details:
○ Resolution
○ Codec
○ Frame rate
○ Better still, include a link to the video file

Better still, send us a full or reduced copy of your Unity project

56 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

http://www.encoding.com/html5/
mailto:unitysupport@renderheads.com
http://renderheads.com/product/avpro-video/
http://forum.unity3d.com/threads/released-avpro-video-complete-video-playback-solution.385611/
http://forum.unity3d.com/threads/released-avpro-video-complete-video-playback-solution.385611/

11. About RenderHeads Ltd

RenderHeads Ltd is an award winning creative and technical company that has been
designing and building cutting edge technology solutions since its formation in 2006. We
specialise in creating interactive audio-visual software for installations at auto shows,
museums, shows and expos.

11.1 Services

● Unity plugin development
● Unity game / interaction / virtual and augmented reality development
● Unity consulting

11.2 Our Unity Plugins

Many of the apps and projects we develop require features that Unity doesn’t yet provide, so
we have created several tools and plugins to extend Unity which are now available on the
Unity Asset Store. They all include a free trial or demo version that you can download
directly from the website here:
http://renderheads.com/product-category/for-developers/

11.2.1 AVPro Video

Powerful cross-platform video playback solution for Unity, featuring support for
Windows, OS X, iOS, Android and tvOS. This is our newest plugin.

11.2.2 AVPro Movie Capture

Video capture to AVI files direct from the GPU and encoded to files using DirectShow
codecs. Features include 4K captures, lat-long (equirectangular) 360 degree captures,
off-line rendering and more. Windows only.

11.2.3 AVPro Live Camera

Exposes high-end webcams, tv cards and video capture boards to Unity via DirectShow.

57 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

http://renderheads.com/product-category/for-developers/
http://renderheads.com/product/avpro-video/
http://renderheads.com/product/av-pro-movie-capture/
http://renderheads.com/product/av-pro-live-camera/

Windows only.

11.2.4 AVPro DeckLink

Integrates DeckLink capture card functionality into Unity, allowing users to send and receive
high-definition uncompressed video data to and from these capture cards.

11.2.5 Screenshot Annotator Pro

Highly productive tool allowing in-game and in-editor annotation of screenshots which can
then be shared with your team via FTP, Email, Slack or Teamwork.com with the click of the
mouse. Cross-platform.

58 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

http://renderheads.com/product/avpro-decklink/
http://renderheads.com/product/annotator-pro/

Appendix A - Frequently Asked Questions

1. Why won’t my high-resolution video file play on Windows?

The ability to play high resolution videos depends on the version of Windows
operating system and which video codecs you have installed.

By default AVPro Video will try to use the standard Microsoft codecs that come with
Windows. These have limitations, for example:

Decoder Windows 7 and
below

Windows 8+

h.264 1080p 2160p (4K)

h.265 (HEVC) unsupported 2160p (4K)
or 4320p (8K) if your
video driver supports

If you want to use 3rd party codecs you can install them to improve the range of
resolution and format options available. These come in the form of Media
Foundation or DirectShow codecs. The LAV Filters are a great example of
DirectShow codecs that will allow for higher resolution video decoding.

2. Does Time.timeScale affect video playback speed?

Yes we have BETA support for time.timeScale and time.captureFramerate. Simply
enable the option on the Media Player component in the panel labelled “Global
Settings”.

3. Does AVPro Video support playing YouTube videos or live streams?

Yes and no. If you enter a YouTube URL into AVPro Video it will not be able to play it
because this is the URL to the website and not the video. It is possible to gain
access to the underlying MP4 file or HLS stream URL which will work with AVPro
Video. This may be against the terms and conditions of YouTube though.

4. How can I get smoother video playback for my Windows VR app?

This is usually caused by the video decoding taking too much CPU time. Some
videos (especially highly compressed ones) require a lot of CPU time to decode each
frame.

Try enabling the hardware decoding option in “Platform Specific” panel. This will
enable your application to use GPU decoding which is much faster. This option is
only supported on Windows 8.1 and above and when D3D11 graphics API is used.

59 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

You could also try re-encoding your video using settings that are less demanding for
the decoder. Most H.264 encoders have a ‘fast decode’ preset, or you can manually
change settings such as disabling CABAC, reducing the number of reference frames,
reducing bitrate, disabling B-frames, disabling the loop (deblocking) filter etc.

You could also try switching to another video codec that allows for less CPU intensive
decoding. Codecs such as H.264 / H.265 are generally very heavy on the CPU. Hap
is an extremely fast codec but will result in large files.

5. Is GPU hardware decoding available?

Yes it is on most platforms. Android, iOS, tvOS and macOS mostly use GPU
decoding - but it depends on the codec. For Windows GPU decoding is enabled by
default but is only available for Windows 8.1 and above and when using D3D11
graphics API. You can toggle GPU decoding is enabled via the Platform Specific
panel:

6. Is multi-channel audio supported?

Audio with more than 2 channels should be supported on desktop platforms. On
Windows you will need to set your sound settings in the Control Panel for the number
of channels you want to output. If you leave your Windows sound settings as stereo
then the audio will get mixed to stereo.

7. Why isn’t seeking accurate / responsive?

The way seeking works depends on the platform. Some platforms support frame
accurate seeking but most will only seek to the nearest key-frame in the video. In
general to improve seek accuracy and responsiveness you can re-encode your
videos with more frequent key-frames (smaller GOP). The downside of this is that
the size of the video file will increase (more key-frames = larger file).

We have two seek functions: Seek() and SeekFast(). SeekFast can be used when

60 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

accuracy isn’t important but whether it’s faster or not depends on support from the
platform and can vary based on the video codec used.

Platform / API Accurate Seeking Supported

Windows Desktop / DirectShow Yes (but depends on codec used, native
Microsoft H.264 decoder doesn’t
support)

Windows Desktop / Media Foundation Yes

Windows Store / Phone / UWP Yes

Android / MediaPlayer No (but coming in Android “O”)

Android / ExoPlayer Yes

macOS Yes

iOS / tvOS Yes

WebGL Depends on browser

8. Windows - Why isn’t my stereo top-bottom or left-right video displaying

correctly?

If your stereo video is only decoding one of the views then this is because there is
stereo metadata encoded within the video which causes our Media Foundation
decoder to interpret incorrectly. The only way to currently solve this is to remove the
metadata from the video. One way to do this is using FFMPEG:

ffmpeg -i %1 %1-video.nut
ffmpeg -i %1-video.nut -crf 10 %1-stripped.mp4

9. Windows - Why do videos take a long time (1-2 seconds) to open when using
DirectShow?

We have seen this happen when the Nvidia Geforce Experience is installed and the
Share option is enabled (ShadowPlay). Disabling the share option or uninstalling this
software resolves this issue.

10. Windows - Why doesn’t my H.265 8K video play when I make a build?

61 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

This is probably because your build is 32-bit. Try making a 64-bit build.

11. Hap Codec - Why don’t my Hap encoded videos play?

If your platform is Windows desktop then this is usually because the DirectShow
video API has not been selected. See the notes above about how to use the Hap
codec.

12. macOS - Publishing for Mac App Store and get error “Invalid Signature”?

We’re not sure why this happens but we’ve had reports that simply deleting all of the
.meta files inside the AVProVideo.bundle will resolve this issue.

13. macOS - Why is the video playback very jumpy when I make a build, but fine in
the editor?

We have seen this happen when using the Metal graphics API. Try going to Player
Settings, unticking the option “Auto Graphics API for Mac” and make “OpenGLCore”
at the top of the list.

14. iOS - Why doesn’t my video file play properly?

Make sure that your video file doesn’t contain an MP3 audio track. In our experience
iOS doesn’t handle MP3 audio correctly and can often lead to the whole file not
loading/playing correctly. Use AAC for audio instead.

15. iOS - Can I playback a video from the Videos library?

Yes if the video is not content protected and you have it's URL. URL's for items in
the video library take the following form:

ipod-library://item/item.m4v?id=1234567890123456789

You can get the URL of an item by using the MPMediaQuery class from the
MediaPlayer framework.

16. iOS - Can I playback a video from the Photo Library?

Yes. You need to use the UIImagePickerController to select the video. This will
result in the video being processed into your app's temp folder where you can access
it via the URL returned from the controller.

17. iOS - How can I fix the error message: "Missing Push Notification Entitlement -
Your app includes an API for Apple's Push Notification service, but the
aps-environment entitlement is missing from the app's signature" ?

If you are not using Push notifications in your app, this Unity Asset does the job of

62 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

fixing this error: https://www.assetstore.unity3d.com/en/#!/content/59160 . Just import
it, and build the xcode files again.

18. iOS - How can I fix the error message: "This app attempts to access
privacy-sensitive data without a usage description. The app's Info.plist must
contain an NSCameraUsageDescription key with a string value explaining to
the user how the app uses this data." ?

Open the Info.plist file in xcode, and manually add "NSCameraUsageDescription"
(Privacy - Camera Usage Description), with a value explaining the reason why you
are using the webcam. In our case, this was caused by using the Google Cardboard
code and that needs the webcam to read the Cardboard device QR code, so we
added the following value "Requires camera for reading Cardboard QR code".

19. Android - Why doesn’t my huge video file play from StreamingAssets folder?

Files in the StreamingAssets folder for Android are packed into a JAR file and so
before we can play them we must extract them to the apps persistent data folder.
Huge files can take a long time to extract and copy and sometimes they could even
cause the device to run out of storage space or memory. For really large files we
recommend placing them the videos in other folders on the device and then
referencing the absolute path to that file. This also has the added benefit of not
having a copy huge files and wait ages when deploying builds to the Android device.

20. Android - Why does the adb logcat receive so many logs “getCurrentPosition”
from MediaPlayer-JNI?

Android’s MediaPlayer logs this to verbose channel, simply change your logging filter
to ignore verbose logs.

21. Android - Why doesn’t the video display when using Vuforia?

In our test Vuforia doesn’t play well with AVPro Video when multi-threaded rendering
is enabled. Simple disable this option in the Player Settings screen.

22. Android - Why does my build fail with a message about DEX and zip classes?

This can happen when there is a conflict in the Java code. We include a JAR called
zip_file.jar which contain classes for handling zip files. If you have another plugin in
your project that also contains these classes then Unity will fail the build. Read the
exact Unity error message and if it is related to zip classes then you can try deleting
zip_file.jar file.

Or you may need to upgrade from JDK 1.7.0 to 1.8.0

23. Cardboard/Google VR - Why is the image shaking?

We’ve had reports that this is caused by enabling the option “track position” in the

63 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://www.assetstore.unity3d.com/en/#!/content/59160

Gvr head.

24. iOS - Why do I get this message about privacy permission using camera?

Some users have reported getting this message:
“This app attempts to access privacy-sensitive data without a usage description. The
app's Info.plist must contain an NSCameraUsageDescription key with a string value
explaining to the user how the app uses this data.”

This seems to be a bug in Unity 5.4.1 and has been resolved in Unity 5.4.2.

25. Will you support MPEG-DASH or another adaptive streaming system?

MPEG-DASH is currently supported on Windows 10, Windows UWP 10 and Android
(when using ExoPlayer API) only. We hope to improve support for these sorts of
streaming systems eventually. The plugin already supports some basic streaming
protocols and for now we’re focusing on basic features before we look at advanced
features such as these. HLS adaptive streaming is supported on most platforms.

26. Android - Why is my video playback freezing?

We have found that H.264 videos with GOP = 1 (all I-Frames / Key-frames) freeze on
Android. GOP interval of 2 seems to be fine.

27. Windows - Why can’t I stream HLS at 4K in Windows 10?

Windows 10 (before Anniversary update) seems to limit the stream resolution based
on your screen resolution and the monitor DPI scaling setting. To get 4K using HLS
you need a 4K monitor and your DPI scaling set to 100%. This issue now seems to
be resolved in the latest version of Windows 10.

28. Windows - Why does the video control react correctly in Windows 7, but not in
Windows 8 or above?

If you try to call video control function (eg Seek, Mute, SetVolume etc) just after you
open the video file, this can cause problems. Video loading can be synchronous or
asynchronous, so you need to wait until the video has completed loading before
issuing any control commands. In Windows 7 and below the DirectShow API is used
by default. Currently the open function works synchronously, so control functions will
work immediately after loading. In Windows 8 and above the Media Foundation API
is used by default, and this is asynchronous. The best approach is to use the event
system to wait for the video to be ready (contain meta data), or to poll the
MediaPlayer (Control.HasMetaData()) before issuing control functions.

29. Why does my HLS / RTSP stream created with FFMPEG work so badly in AVPro
Video?

Some users have reported issues with creating a stream with FFMPEG where the

64 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

stream will take a long time to connect and will only send through frames
occasionally. We have found that you need to manually add the GOP size
parameters to be a multiple of your frame-rate. So for example if your frame-rate is
25 then you should add “-g 25” in your FFMPEG command-line.

30. Windows - Why is there a slight colour shift between software and hardware
decoding?

We’re not completely sure why this is. It appears that sometimes that hardware
decoder decodes the video slightly darker in places. On the whole the effect is very
small, so it only affects videos that contain data that must be reproduced exactly. We
have found that the following FFMPEG command does improve the colour matching.

ffmpeg -i video.mp4 -y -vf
"scale=in_range=tv:out_range=tv:in_color_matrix=bt601:out_color_matri
x=bt709" out.mp4

31. Windows Audio - Why does my HLS/DASH stream audio have gaps or play at
the wrong rate when using the AudioOutput component?

This currently can happen when using adaptive streams as we can’t determine the
sample rate, and thus cannot set up a resampler to convert to the sample rate Unity
is using internally. To solve this you need to set Unity’s sample rate in the Audio
Settings to match that of the stream (eg 44100).

32. Audio - Why does my multi-track audio file play all tracks at once?

This can happen when all of the audio tracks are set to default. You need to encode
the video with only one of the tracks set to default. Using FFMPEG you can do this:

ffmpeg -i video_noaudio.mp4 -i audio_esp.m4a -i audio_jap.m4a -i
audio_eng.m4a -map 0 -map 1 -map 2 -map 3 -disposition:a:1 none
-disposition:a:2 none -codec copy output.mp4

33. Which DRM content protection schemes does the plugin support?

See the DRM section in this documentation.

34. How do I flip my video horizontally?

a. In the MediaPlayer component, in the Media Properties section, set the wrap
mode to "Repeat".

b. If you're using the ApplyToMesh component, then you just need to set the
Scale X value to -1

c. If you're using the ApplyToMaterial component, then you just need to set the
Scale X value to -1

d. If you're using the DisplayIMGUI component, then this doesn't have any way
to flip video without editing the script.

e. If you're using the DisplayUGUI component, then just set the UVRect W value

65 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

to -1.

35. Windows - Why doesn’t the plugin support Windows XP SP2 and below?

Modern Visual Studio compilers require XP SP3 as a minimum. One of the reasons
for this is builds reference the function GetLogicalProcessorInformation() in
Kernel32.dll which isn’t present in XP SP 2. The lack of this function causes our DLL
to fail to load. More information here:
https://connect.microsoft.com/VisualStudio/feedback/details/811379/

36. What’s the difference between your different Unity video playback plugins?

We previously had 3 video playback plugins for Unity:

a. AVPro Video
b. AVPro Windows Media (deprecated August 2016)
c. AVPro QuickTime (deprecated May 2016)

Here is a table giving a rough comparison of the plugin features:

 AVPro Video AVPro Windows Media AVPro QuickTime

First Released 2016 2011 2011

Windows XP-7 Yes** Yes Yes (with QT
installed)

Windows 8-10 Yes Yes Yes (with QT
installed)

Windows UWP Yes No

Windows Phone Yes No

OS X Yes No Yes

Android Yes No No

iOS Yes No No

tvOS Yes No No

WebGL Yes No

64-bit Yes Yes No

2K H.264 Yes Only with 3rd party
codec

Yes

4K H.264 Yes Only with 3rd party
codec

Yes but very slow

8K H.265 Yes Only with 3rd party
codec

No

66 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://connect.microsoft.com/VisualStudio/feedback/details/811379/

Streaming URL Yes Not really Yes a bit

Hap Codec Yes Yes Yes

MP4 Container Yes Only with 3rd party
codec

Yes

Works with VR Yes Yes best with 3rd party
codecs

Not great

ASync Loads Yes No Yes

Transparency Yes Yes Yes

Speed Fast Medium, fast with 3rd
party codecs

Medium

** Currently only using DirectShow path, adding Media Foundation path soon.

Appendix B - Release History

● Version 1.7.5 - 22 January 2018
○ macOS

■ Fixed a build issue with Unity 2017.3 related to the post build
script

■ Fixed build issue with Unity 2017.3 related to universal/64-bit
plugin metadata

○ macOS, iOS and tvOS
■ Fixed a build issue with Unity 5.6.x related to a missing zlib

dependency
○ Android

■ Fixed stereo support in OES shader
■ Fixed support for IsBuffering state in ExoPlayer

○ Windows desktop
■ Fixed a rare bug when using DirectShow and Unity 2017.3 that

would cause the video texture to display as a single channel or
black

■ Fixed a performance bug in the DirectShow player that meant
a paused video would continue to upload frames to the GPU

● Version 1.7.4 - 28 December 2017
○ WebGL

■ Added support for URL’s that start with “chrome-extension://”
■ Fixed recent regression causing video to not render when not

rendering anything else
○ iOS

67 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

■ Plugin rebuilt with XCode 8.3.3 to work around linker missing
framework issue when building Unity apps using XCode 8 and
previous versions of the plugin that were compiled with XCode
9

■ Fix to the ApplyToMaterial component when using YCbCr
mode so the default texture gets displayed correctly when the
MediaPlayer is closed

○ General
■ Added support for Facebook’s “360-capture-sdk” cubemap

layout to the CubemapCube component

● Version 1.7.3 - 9 December 2017
○ Windows

■ Fixed a bug when using D3D9 that would cause the
DirectShow video to either render black or cropped. This was
a regression since version 1.7.0

■ Fixed DirectShow loading from buffer support for 32-bit builds
○ WebGL

■ Added support for error events
■ Fixed issue where resampler could be enabled when it is not

supported for WebGL
○ General

■ Optimised SRT subtitle file parse to be much faster

● Version 1.7.2 - 30 November 2017
○ Known Issues

■ There is a bug that causes video to appear black or cropped,
only when using Windows desktop with D3D9. This is fixed in
1.7.3

○ Android
■ Fixed two major GLES bugs which sometimes prevented the

video appearing. This mostly affected Galaxy S8 devices,
Lenovo tablets and anyone using the Vuforia plugin

■ Added support for accurate seeking when using MediaPlayer
API - requires Android 8.0 Oreo

■ Added support for HTTP/HTTPS redirects when using
ExoPlayer API

○ macOS, iOS and tvOS
■ Added support for switching between multiple audio and video

tracks
■ Added support for querying audio and video track bitrate

○ Windows Desktop
■ Added the ability to set a list of preferred decoders for

DirectShow. This makes it easier to predict which decoder
installed on the user's system will be used. For example they
could have many codec packs installed, but you prefer to use
the Microsoft decoders for stability

■ When using the Use Unity Audio option, the video will no

68 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

longer fail to load if the audio is not able to pass through to
Unity

■ Fixed a bug where Facebook Audio 360 channel mode
wouldn’t be passed through to the plugin

■ Fixed a shader bug causing Main10 videos in DirectShow to
display too dark

○ General
■ Added new HLSParser class to help parse HLS m3u8

manifests. This allows for the discovery of all of the streams
available, their resolutions and bitrates

■ Improved Facebook Audio channel mode enumeration UI

● Version 1.7.0 - 15 November 2017
○ Known Issues

■ There is a bug that causes video to appear black or cropped,
only when using Windows desktop with D3D9. This is fixed in
1.7.3

○ Facebook Audio 360
■ Added Facebook Audio 360 support for spatial audio in VR.

Currently we have support for Windows desktop (Rift, Vive etc)
and Android (Cardboard, GearVR, Daydream etc). Uses MKV
videos with Opus audio tracks encoded using Facebook Audio
360

○ Windows Desktop
■ Added Facebook Audio 360 support
■ Added “Alpha Channel Hint” option to DirectShow for cases

where alpha channel is needed - currently required by Lagarith
codec

■ Added native NV12 support for legacy D3D9 with DirectShow -
this a performance optimisation, but also fixes some issues
when using subtitle rendering DirectShow filters (such as
DirectVobSub) which would cause the image to become
flipped

■ Added Hap Q support for legacy D3D9 with DirectShow
■ Fixed a memory leak when an invalid Hap video (non multiple

of 4 resolution) was loaded
■ Fixed an issue where AudioOutput wouldn’t redirect audio to

another device (eg Rift Audio) for streaming media
■ Fixed “Low Latency” option so it is actually used

○ Windows UWP
■ Fixed “Low Latency” option so it is actually used

○ Android
■ Added Facebook Audio 360 support (requires ExoPlayer API)
■ Added ExoPlayer video API option which can offer improved

format support, including MPEG-DASH and in the future will
include more control over streaming video

○ iOS / tvOS
■ The YCbCr optimisation is now enabled by default

69 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

○ WebGL
■ Fixed issue with Safari on macOS calling Play() with default

auto-play permission disabled as outlined here:
https://webkit.org/blog/7734/auto-play-policy-changes-for-maco
s/

○ General
■ Added new frame resampler option which can be used to get

smoother playback by buffering frames and presenting them at
the right interval. This feature does use more memory and is
still in beta

■ Fixed a bug where the FinishedPlaying event didn’t fire when a
second stream was played on the same MediaPlayer

■ Fixed a bug where Instantiating ApplyToMaterial would cause
a null exception

■ Fixed compile error in Unity 2017.2 related to mobile
multi-threading

■ Fixed warnings in Unity 2017.2 related to API changes to
playModeStateChanged

■ Changed shader line endings to Unix to prevent mixed line
ending warnings

■ Inspector UI improvements
■ Documentation updates

● Version 1.6.15 - 5 October 2017

○ Windows
■ Fixed an issue mainly affecting Windows mixed reality and VR

headsets using “hybrid-gpu” mode where more than one GPU
is available to the system

■ Fixed the WSA 8.1 x86 DLL that didn’t get recompiled since
1.6.12

● Version 1.6.14 - 23 August 2017
○ macOS / iOS / tvOS

■ Fixed issue where audio-only media would not update current
time

■ Improved error reporting
○ iOS

■ Fixed texture error when using Unity 4.x
○ Android

■ Fixed file offset not working for videos in StreamingAssets
folder. Until now file offset only worked for files at other
locations in the file system

○ Windows
■ Fixed regression introduced in 1.6.12 that would cause

DirectShow videos to not play when using Direct3D9 or
OpenGL

■ AudioOutput component now handles different sample rates
and channel counts set in Unity’s audio settings and

70 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/
https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/

automatically detects number of audio channels in source
media

● Version 1.6.12 - 6 July 2017
○ Known Issues

■ On Windows when using DirectShow and Direct3D9 or
OpenGL, videos do not display and VRAM runs out. This is a
regression introduced in this version and is fixed in 1.6.14

○ Android
■ Fixed a rare crash bug that could happen during seeking

○ Windows Desktop / UWP
■ Added new low latency option for Media Foundation which

provides a hint to the decoder to do less buffering
○ Windows Desktop

■ Added support for 10-bit HDR video decoding (Main10) when
using DirectShow any suitable decoder such as LAV Filters.
The decoding still resolves to an 8-bit texture but we plan to
add 10-bit or floating point texture resolve soon

■ Fixed a crash bug when using DirectShow and
LoadFromBuffer to load a video from memory

○ General
■ ExtractFrame() method now faster and more accurate
■ Time Scale support (where a non-realtime video capture

solution changes Time.timeScale or time.captureFrameRate)
has been improved, making it faster and more accurate

■ Added new 180 degree sample video
■ Fixed a bug in AudioOutputManager when channel count <= 0

● Version 1.6.10 - 14 June 2017

○ iOS
■ Improved support for iOS 8.0 by fixing an issue with CoreVideo

○ Android
■ Fixed issue where loading over 255 videos would cause videos

to no longer load correctly
○ Windows Desktop / UWP

■ The AudioOutput component now supports routing audio to a
specific channel, or to multiple channels. It also now supports
multiple instances so you can more easily have audio coming
from different world positions.

■ Fixed a memory leak when using AudioOutput component
○ Windows Desktop

■ Added new function to load media from memory for
DirectShow API. This is demonstrated in the scriptlet
LoadFromBuffer.cs

○ General
■ Started adding a new 180 degree video playback demo, it just

lacks a media file which will come in the next release.
■ Videos with auto-start enabled no longer fire the ReadyToPlay

71 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

event.
■ Added new method ForceUpdate() to ApplyToMesh

component which refreshes the material when changing media
properties such as stereo packing.

● Version 1.6.8 - 31 May 2017
○ iOS / tvOS

■ No longer requires a separate plugin file for Unity 5.3 and
below. New bootstrap C code handles the change in Unity’s
plugin API.

■ Improved Metal compatibility with older versions of Unity
○ General

■ The AudioOutput component has some new experimental
changes, including the ability to have multiple AudioOutput
instances and to remap which channels the audio outputs to

● Version 1.6.6 - 25 May 2017
○ General

■ PlayMaker (the popular visual scripting system for Unity) is
now supported by AVPro Video. We have added over 64 new
PlayMaker actions for seamlessly integration into your
PlayMaker workflow

■ Added audio stereo balance support
■ Added new stereo packing mode that uses a pair of UV sets

for custom left and right mapping.
■ Added new Support & Help window to make reporting issues

easier and to include helpful diagnostic information
■ Added documentation about 3rd-party library usage
■ Added documentation about iOS video decoders

○ Windows Desktop
■ Added multi-threaded decoding for chunked Hap videos

○ Windows Store / UWP / Hololens
■ Added new function to load media from native file locations

using IRandomAccessStreamWithContentType. This means
you can now play media from the camera roll. See the
example script in
Demos/Scripts/Scriptlets/NativeMediaOpen.cs for details of
usage.

○ Android
■ Fixed lost GLES context issue that can happens at least when

switching Google Cardboard on/off
■ Fixed one of the OES shaders that was failing to compile on

Android due to undefined TRANSFORM_TEX macro
■ Refactored some of the low-level code

○ iOS
■ Added support for headphone connection changes.

Unplugging / connecting headphones will now correctly set
state of the video so that IsPaused() and IsPlaying() return the

72 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

correct value
■ Fixed a rare bug in the VCR demo script which caused the

FinishedPlaying event not to fire due to triggering a Seek() at
the end of an HLS stream

○ iOS / tvOS / macOS
■ Fixed frame flash issue due to FirstFrameReady event firing

too early due to frame count increment bug

● Version 1.6.4 - 5 May 2017
○ Windows Desktop

■ Fixed an intermittent bug introduced in version 1.6.2 which
caused videos to sometimes not appear or appear black

● Version 1.6.3 - 3 May 2017
○ Windows Desktop

■ Fixed mistake from 1.6.2 which included a Visual Studio 2015
dependency (the OpenMP vcomp140.dll)

■ Chunked Hap decoding is now no longer multi-threaded. We
will add this optimisation back in 1.6.6

■ Added some notes to documentation about Windows N / KN
editions

○ Known Issues
■ There is an intermittent bug in Windows desktop which causes

videos to not appear or to appear black sometimes - fixed in
1.6.4

● Version 1.6.2 - 25 April 2017

○ iOS / tvOS
■ Added support for Y'CbCr Biplanar textures which results in

less memory usage. This feature means older devices with
only 1GB of RAM (iPhone 5+, iPhone6+) will no longer
struggle with memory when playing back 4K video content.

■ Tweaks which hopefully fix a rare flickering issue for Metal
when using multi-threaded rendering

■ Fixed shader compile issue for legacy Unity 4.x
○ macOS

73 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

■ Fixed bug for high resolution Hap decoding due to apparent
bug in Apple OpenGL extension

■ Fixed an issue with transparent ProRes video
○ Android

■ Fixed bug that would cause video to not display when using
the Mask uGUI component

■ Fixed OES GLSL shader support for Unity 5.5.2
■ Fixed shader compile issue for legacy Unity 4.x
■ Reported bug in Unity 5.6.0f3 support for GLSL (OES) shaders

○ Windows
■ Performance improvement for Hap codec when using “chunks”

encoding option. Now decoding happens over multiple
threads.

■ Added support for the “-force-d3d11-no-singlethreaded”
command-line parameter which doesn’t require the use of a
new D3D context with a shared texture in the MF-Hardware
path

■ Media Foundation code refactored
○ General

■ Fixed bugs in NGUI script, previously it could crash when
changing videos

■ Fixed very specific bug related changing texture quality
settings while the MediaPlayer is disabled which would cause
texture to become black. Removed the global setting that
disabled the above texture quality fix as it no longer has a
performance benefit

■ Improved UI of ApplyToMesh component with custom editor
■ Some shaders now default to black textures instead of white
■ Added basic playback controls to the debug UI
■ Added documentation about AMD hardware decoding (UVD)

capabilities
■ Added support for Unity 2017 beta

○ Known Issues
■ Windows desktop - this release includes a Visual Studio 2015

OpenMP dependency by mistake (vcomp140.dll) which means
that the Visual Studio 2015 runtime must be installed. Fixed in
1.6.3

■ There is an intermittent bug in Windows desktop which causes
videos to not appear or to appear black sometimes. Fixed in
1.6.4

● Version 1.6.0 - 29 March 2017
○ iOS / tvOS

■ Added support for linear color-space (available in Unity 5.5 and
above)

■ Performance improvements, especially when reusing
MediaPlayer component to load videos

■ iOS simulator support added

74 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

○ macOS
■ Added support for Hap Q Alpha format (HapM)
■ Performance improvements, especially when reusing

MediaPlayer component to load videos
○ Android

■ Fixed OES rendering path support in Unity 5.6
■ Improved linear colour-space support (available in Unity 5.5

and above)
■ Performance improvement due to alternative way to get

around checking GetNativeTexturePtr() and instead checking
for when texture quality level changes

■ Removed unused AndroidManifest.xml file
○ Windows

■ Performance improvement due to alternative way to get
around checking GetNativeTexturePtr() and instead checking
for when texture quality level changes

○ General
■ Fixed DisplayIMGUI component depth value not working
■ Improved IMGUI linear color-space conversion function

● Version 1.5.28 - 24 March 2017

○ Windows
■ Added support for HapQ+Alpha format
■ Fixed Unstalled event not firing

○ macOS / iOS / tvOS
■ Added support to ExtractFrames demo to handle videos

containing rotation
■ Minor C# performance improvements

○ WebGL
■ Fixed support for Safari browser
■ Added documentation about supported browsers

○ General
■ Added some DRM notes to the documentation
■ Fixed PlayMaker example script

● Version 1.5.26 - 14 March 2017

○ Android
■ Added support for passing custom HTTP header fields
■ Fixed minor bug when calling SetPlaybackRate too soon
■ Android API 15 (4.0.4 Ice Cream Sandwich) is now supported,

previously API 16 (4.1 Jelly Bean) was required
■ Added plugin files for the arm64-v8a platform (currently

disabled in the inspector, but simply enable it once Unity has
added support for this architecture)

○ macOS / iOS / tvOS
■ Added support for passing custom HTTP header fields
■ Added support for videos containing orientation data. The

orientation transform is now retrievable and the uGUI display

75 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

component correctly displays the video
○ WebGL

■ Fixed bug in Internet Explorer and Firefox where video would
not display

■ Added support for displaying multiple ranges of buffered time
○ Windows / WSA / Hololens

■ Fixed FinishedPlaying rarely not firing on Media Foundation
○ General

■ DisplayUGUI component no longer generates any garbage
when vertices are dirtied. Also some minor optimisations

■ ApplyToMesh component no longer generates any per-frame
garbage

■ ApplyToMesh component has improved interface
■ Improved time display in the editor to be millisecond accurate,

and also fixed time rounding error bug
■ Changed EnableSubtitles() to return true while it is loading in a

coroutine
■ Added new example script VideoTrigger that shows how to

trigger videos when entering/exiting collider volumes, including
audio fading

■ Added more streaming video URLs to documentation

● Version 1.5.25 - 20 February 2017
○ Windows Desktop

■ Patch fix for regression in 1.5.24 which caused DirectShow
videos to display in green

● Version 1.5.24 - 19 February 2017
○ General

■ Shaders improved to also work on older hardware that only
support shader model 2.0

○ Windows Phone / WSA / UWP / Hololens
■ Added support for audio to be played through Unity’s audio

system
■ Fixed a serious bug which could cause video to not appear

and native plugin functions to return incorrect values
■ Fixed the hardware decoding option not being passed through

to the plugin correctly
■ Fixed support for older GPUs that only supported D3D11

feature set 9.x
■ Trial version watermarking optimised for speed and memory

○ Windows Desktop
■ Fixed support for older GPUs that only supported D3D11

feature set 9.x
■ Trial version watermarking optimised for speed and memory

○ Known Issues
■ Regression in this version causes Windows DirectShow

decoded videos to display green. Fixed in v1.5.25

76 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

● Version 1.5.22 - 14 February 2017

○ General
■ Improved performance of CubemapCube component. Due to

a typo it would previously regenerate the cube mesh each
frame.

■ Improved the fix for Unity 5.4.2 and above where changing
texture quality during runtime would cause the video texture to
turn black. The expensive fix now doesn’t apply to Unity 5.4.1
and 5.4.0, and can be disabled in the global options

■ Fixed bug in subtitles that would cause them to go blank for a
frame

○ Workflow
■ Android OES path now displays hint about using correct

shaders
■ Error message display is more detailed
■ Improved user feedback when selecting stereo packing to

warn about the need for the UpdateStereoMaterial component
■ Improved UI for UpdateStereoMaterial component to give more

feedback about its setup
○ Android

■ Better reports error when a video fails to decode due to
insufficient resources

■ Added option to not show the “poster” frame, leading to faster
start and less resource usage for loaded videos. A video that
is loaded but not played and not displaying the poster frame
will not engage the decoder hardware and use up resources

■ Saved some memory in OES mode by no longer allocating
unnecessary render texture

■ Improved playback rate timer
○ WebGL

■ Fixed issue where no video displays when using WebGL 2.0
(default in Unity 5.5.0 and above)

■ Cached texture pointer for improved performance
■ Fixed subtitle loading by changing to use a coroutine

○ Windows
■ Added new events for when a stream has stalled and resumed

- useful for detecting connection loss when live streaming
■ Added new option to generate texture mipmap levels

automatically - this reduces aliasing when the texture is scaled
down

■ Updated Snappy library (used in Hap codec) to latest 1.1.4
which has 20% decompression speedup

■ Fixed bug in DirectShow where calls to SetMuted() or setting
very low audio volume would be ignored

○ UWP / Windows Phone / Hololens
■ Added new option to generate texture mipmap levels

automatically - this reduces aliasing when the texture is scaled

77 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

down
○ Breaking Changes

■ For Android if you previously loaded videos in a paused state
to see the initial “poster” frame now you’ll need to tick the new
“Show Poster Frame” option in the Platform Specific settings.
In previous versions this was enabled by default, but now it is
disabled by default as it has performance implications.

● Version 1.5.20 - 25 January 2017
○ General

■ Added more notes to the Hap codec documentation
■ Added more notes to the Android OES documentation

○ Android
■ Fixed fast OES rendering path in Unity 5.4.x and 5.5.x
■ Fixed various stereo rendering issues
■ Fixed OES GLSL shaders failing to compile due to inline

keyword
■ Fixed OES path displaying debug GUI panel
■ Fixed OES shader compiling on Google Daydream platform
■ Fixed Unity 5.6beta GearVR stereo rendering issue
■ Disabled minor Daydream stereo eye shader optimisation as it

was causing too many problems with older versions of Unity
○ Windows

■ Fixed bug where changing playback rate when playback has
finished would result in an error

■ Fixed the DirectShow audio volume level so it matches that of
Media Foundation

● Version 1.5.18 - 18 January 2017
○ General

■ Added support to UpdateStereoMaterial for DisplayUI
component so that uGUI can render stereo videos correctly

○ WSA / UWP / Hololens
■ Fixed a script compile error introduced in 1.5.16

● Version 1.5.16 - 16 January 2017

○ General
■ Optimised stereo left-right shader for Google VR support
■ Improved shaders to use UnityObjectToClipPos() instead of

UNITY_MATRIX_MVP to give better support for Unity 5.6 and
above

■ Fixed bug in stereo left-right shader introduced in 1.5.14
■ Fixed various bugs in subtitle support

○ Android
■ Fixed subtitles not loading

○ Known Issues
■ Regression from 1.5.14

● WSA and UWP platforms will fail to compile due to new

78 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

Thread.Sleep() which isn’t defined on these platforms.

● Version 1.5.14 - 9 January 2017
○ General

■ Added subtitle support for external SRT files
■ Added a new demo showing the new subtitle support
■ Improved 03_Demo_VideoControls demo scene to use two

MediaPlayers for seamless playlisting
■ Fixed issue where initial playback fields (volume, mute,

playback rate, looping) could be reset to incorrect values in
certain cases such as such AutoOpen option was disabled

■ Shader improvements such as inlining for performance, sRGB
to Linear shader corrections and optimisations

○ iOS
■ Added documentation note about using AAC instead of MP3

for the audio tracks
○ WSA / UWP / Hololens

■ Fixed bug where video would often not appear, due to audio
track being loaded first and reporting metadata loaded. This
appears to be a bug/change in the new Anniversary UWP
Media Foundation version.

■ Plugin DLL file sizes are smaller
○ Windows Desktop

■ Plugin DLL file sizes are smaller
○ Known Issues

■ Regression from 1.5.12
● Bug in stereo shader causing only left eye to render

■ Subtitles
● New subtitle feature doesn’t load files from

StreamingAssets on Android and WebGL
● Bug in script don’t allow subtitles to be loaded via code

● Version 1.5.12 - 12 December 2016

○ WSA / UWP / Hololens
■ Fixed crash issue when using Unity 5.5

● Version 1.5.10 - 9 December 2016

○ macOS
■ Fixed issue where OpenVideoFromFile() called multiple times

quickly would cause a crash
■ Removed PLIST modification from the PostProcess build script

○ iOS
■ Fixed issue where OpenVideoFromFile() called multiple times

quickly would cause a crash
■ Fixed issue with Unity 5.5.x which caused XCode project not to

run due to missing Metal symbol (only affects watermarked trial
version)

○ tvOS
■ Fixed issue where OpenVideoFromFile() called multiple times

79 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

quickly would cause a crash
■ Fixed issue with Unity 5.5.x which caused XCode project not to

run due to missing Metal symbol (only affects watermarked trial
version)

○ Android
■ Fixed issue with Unity 5.4.2 and above where changing the

TextureQuality level in the QualitySettings would cause the
texture to go black

○ Windows
■ Fixed issue with Unity 5.4.2 and above where changing the

TextureQuality level in the QualitySettings would cause the
texture to go black

○ General
■ Added support to uGUI shaders for RectMask2D
■ ApplyToMesh component now works with other renderer

components (eg Skinned Mesh)
■ Updated documentation and FAQs

● Version 1.5.8 - 23 November 2016

○ macOS
■ Fixed issue with OpenGLCore where texture wouldn’t update

due to GL state not being restored correctly when using a
uGUI mask

■ Fixed issue where RelativeToProjectFolder was pointing to
inside the .app package instead of at the same level

○ Android
■ Streaming video no longer blocks while loading (but video

frame-rate may now not be available)
■ Removed duplicate function call, minor performance win
■ Fixed number of audio tracks reported for streams
■ Fixed potential case issue with URL detection

○ Windows
■ Platform specific settings exposed better in the editor

○ General
■ Fixed some shader build errors for older versions of Unity
■ Added some in-editor warnings for using unsupported file

extensions on various platforms
■ Fixed broken scripting reference link in ‘About’

● Version 1.5.7 - 16 November 2016

○ Android
■ Minor optimisation for non-OES rendering path by eliminating

blending during blit
■ Added frame timestamp support via

TextureProducer.GetTextureTimeStamp()
○ macOS, iOS and tvOS

■ Added support for OS X 10.8
■ Added frame timestamp support via

80 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

TextureProducer.GetTextureTimeStamp()
■ Fixed issue when Seek and Play were called before another

command had completed
■ Fixed issue of events not firing
■ Added support for custom URL schemes
■ Improved support for device simulator
■ Various small bug fixes

● Version 1.5.6 - 8 November 2016

○ General
■ Added “Scale and Crop” scaling mode to uGUI component

(replaces old “keep aspect ratio” option)
■ Added helper function for seeking to a specific frame
■ Improved MediaPlayer event handling code
■ Fixed null exception when unloading scene from the event

callback
○ Windows

■ Fixed major issue using hardware decoding which caused
videos to crash or not load

■ Improved DirectShow colour reproduction by using more
accurate linear colour-space and YUV conversion functions

■ Added ability to get the presentation timestamp of the current
video frame - useful for more accurate frame syncing:
TextureProducer.GetTextureTimeStamp()

■ Fixed issue with HLS streaming crashing when changing
stream quality and resizing texture

■ Fixed AudioOutput issue where playing back multi-channel
videos would cause the video not to load

■ Fixed AudioOutput issue where some videos would play back
at the wrong pitch

● Version 1.5.5 - 1 November 2016
○ Windows

■ Fixed issue on old Windows versions without D3D11 which
caused the plugin to not load

○ WebGL
■ Fixed width and height being zero when MetaDataReady event

fires

● Version 1.5.4b - 31 October 2016
○ Fixed broken iOS, tvOS and macOS release from v1.5.4
○ Fixed “null id” error in in multi-video demo in WebGL builds

● Version 1.5.4 - 28 October 2016

○ General
■ 02_Demo_imGui demo scene updated to show network

streaming progress
■ Improved how destroyed MediaPlayer components are shut

down

81 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

■ Fixed alpha packing in background transparent shader
■ Fixed some bugs in three of the sample scene scripts that

would cause a crash due to null values or invalid textures left
behind when destroying MediaPlayer

■ Added documentation about hardware GPU decoding
○ Android

■ Fixed bug where IsPlaying would return false during playback
■ Fixed a shader compiler error for newer Android phones with

Snapdragon chipset when using the OES shaders
■ Optimised code to generate less garbage
■ Some internal JNI caching for speed
■ Added new unlit OES shader

○ macOS
■ Added support for Linear colour space
■ Improved feedback when progressive and streamed movies

are buffering
■ Added support for macOS 10.12 streaming auto wait

behaviour
○ iOS and tvOS

■ Fixed a case where some HLS streams wouldn’t play
■ Improved feedback when progressive and streamed movies

are buffering
■ Added support for iOS/tvOS 10 streaming auto wait behaviour

○ Windows
■ Added new AudioOutput component so that audio can be

played directly through a Unity AudioSource node. This allows
Unity audio effects to be used, spatial 3D movement with falloff
and doppler, and most importantly allows sound to move with
the head in VR!

■ Fixed a visual glitch when using the hardware decoder path,
most noticeable at the end of videos

■ Streaming can now return multiple buffered ranges using
method GetBufferedTimeRange()

■ Windows watermark improved for GPU decoding path
■ Potential fix for DirectShow seeking issue causing hanging on

some systems
○ VR

■ Support for 3D audio via the new AudioOutput component
(Windows only, supports Oculus Rift and HTC Vive)

■ InsideSphere transparency shader now supports transparency
packing

● Version 1.5.2 - 11 October 2016
○ General

■ uGUI and IMGUI components now automatically displays
videos with stereo or alpha packing correctly without having to
assign material manually

■ Fixed shader build errors in Unity 5.4.1

82 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

■ Fixed shader build errors in Unity 4.x for D3D9 and OpenGL
■ Added stereo support to more shaders including uGUI

○ Workflow
■ Improved component menu layout by grouping components
■ Logging improved so some log messages can be clicked on to

highlight the logging MediaPlayer
○ Windows

■ Linear colour space now automatically rendered correctly
when using GPU decoder

■ Fixed memory leak in GPU decoder introduced in v1.5.0
■ Fixed old memory leak in Notify system
■ Fixed HLS adaptive resolution changing when using GPU

decoder and improved texture switch to remove 1 frame glitch
○ WebGL

■ Cubemap script fixed to not show texture seam
■ Texture filtering and wrapping modes applied correctly now
■ Added crossOrigin=”anonymous” to video element

● Version 1.5.1 - 30 September 2016
○ Windows

■ Fixed crash bug when playing audio files in DirectShow path
■ Fixed visual flicker bug in Unity editor in DirectShow path

● Version 1.5.0 - 29 September 2016

○ General
■ Added new shader for uGUI to support stereo videos
■ Added global option to disable logging
■ Added audio track selection to IMGUI demo
■ Fixed editor bug where “\” character could be used in file path
■ Updated documentation

○ Android
■ Added display of initial “poster” frame for videos set to not

auto-play
■ Fixed bug that prevented files with escape characters from

loading
■ Fixed bug causing audio files to not play
■ Fixed issue where GetCurrentTimeMs() could report values

greater than Duration
○ macOS

■ Fixed no error being returned for loading videos without correct
plist permissions set

○ Windows
■ Hardware decoding enabled by default
■ Hardware (GPU) decoding no longer require command-line

parameter
■ Better video API selection in editor
■ Added support for multiple audio tracks to DirectShow

playback path via IAMStreamSelect.

83 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

■ Added Media Foundation multiple audio track code back in
■ Fixed some minor resources leaks

○ Windows Phone / UWP
■ Added option for hardware decoding (enabled by default)

○ WebGL
■ Added support for multiple audio tracks
■ Fixed frame rate and count not displaying
■ Fixed issue where multiple videos wouldn’t unload cleanly
■ Cleaned up plugin code, removing unneeded code

● Version 1.4.8 - 12 September 2016

○ General
■ Less garbage generation

● Optimised ApplyToMesh component
● Optimised rendering coroutine of MediaPlayer

component
● Added global option to disable debug GUI

○ Workflow
■ Improved file path display and editing
■ Added watermark description to trial version

○ VR
■ Cubemap script (for 3:2 cubemap VR)

● Fixed vertical flip issue
● Improved performance

■ Added fog and transparency options to VR sphere shader
■ Android OES optimisation (see below)
■ Shaders support GLSL better

○ Android
■ New faster rendering path, less memory, faster, no overheating

- see OES playback path notes above
■ Added ability to load file from within another file by specifying

an offset
● Which lets you hide video files from prying eyes

○ macOS
■ Fixed occasional memory leak when destroying player
■ Fixed editor warning about absolute path

○ iOS / tvOS
■ Fixed occasional memory leak when destroying player

○ Windows
■ HLS streams now dynamically adjust texture size

● Resulting in support for higher quality streams
● Fixes issue where videos would become letterboxed

○ WebGL
■ Fixed broken build issue when using the “use pre-built” build

option

● Version 1.4.4 - 20 August 2016
○ General

84 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

■ Packed transparency support added
● Use top-bottom or left-right packed layout to encode

alpha channel
● Set the packing type in the “Media Properties panel”
● Supported by all display components automatically
● See “Transparency Notes” section of this document for

encoding tips
■ “Platform Specific” section now highlights platforms with

modified settings
■ Minor optimisations to the ApplyToMaterial and ApplyToMesh

components (used property ints instead of strings)
■ Minor optimisation to DisplayIMGUI (disables layout pass)
■ Fixed CubemapCube.cs to handle vertically flipped video

textures
■ Changed many components to use UpdateLate() instead of

Update() to fix some crash issues
■ Various minor improvements

○ macOS
■ Fixed compatibility issue with OS X 10.10 (Yosemite)

○ Windows
■ Huge performance improvements when using DirectShow

playback path due to usage of NV12 format (D3D11 only)
■ Added support for Hap Q format (D3D11 only)
■ Added performance warning message when using software

decoder instead of GPU decoder for large videos
■ Fixed bug in DirectShow audio mute not restoring volume

○ WebGL
■ Fixed issue where IMGUI text became flipped

○ Upgrade Notes
■ Some shader files have moved (and been renamed) from

/Materials and /Demos/Materials to /Resources/Shaders, so
make sure to delete duplicates that results from merging

● Version 1.4.0 - 10 August 2016
○ WebGL

■ WebGL platform support added
○ macOS

■ Now with Metal rendering support
■ The Hap codec is now supported on macOS

○ iOS / tvOS
■ Metal rendering path now supports multi-threaded rendering
■ Various fixes to rendering and memory resources

○ Android
■ Ability to adjust the playback rate (Android 6.0 and above only)

○ Windows
■ Fixed audio device override not working in builds
■ Fixed fast seeking function

○ General

85 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

■ Added support for video files containing multiple audio tracks
■ Video frame rate is now available via

Info.GetVideoFrameRate()
■ Fixed some issues with events firing at the wrong time
■ Streaming videos can now query IsBuffering() and

GetBufferingProgress()
■ Improved errors reporting
■ Renamed Info.GetVideoPlaybackRate() to

GetVideoDisplayRate() to avoid confusion
■ New “scriptlets” have been added to the /Demos/Scripts folder

which give mini examples of how to do simple scripting
○ VR

■ Fixed bug in stereo section of VR sphere shader which caused
eyes to flip on some platforms

■ Fixed a bug in Windows where the audio override wasn’t being
passed through for VR headphone device name

○ Workflow
■ Added new “SA” button for shortcut to StreamingAssets folder
■ Improved editor inspector performance

○ Upgrade notes
■ Demos scenes have been renamed so you should delete the

old .unity files in the /Demos folder otherwise you will have
duplicate files.

■ The sample video files in StreamingAssets have been moved
into a subfolder within StreamingAssets/AVProVideoDemos/ so
make sure to delete the old ones.

● Version 1.3.9 - 15 July 2016
○ Android

■ Fixed bug for Unity versions < 5.2.0 that caused videos not to
display

■ Fixed bug for Android versions < 6 that caused video pausing
and other operations to break playback

■ Removed zip classes from plugin package to fix conflicts with
other plugins using the same zip classes

○ General
■ Better error handling via new GetLastError() function and a

new Error event type
■ NGUI support added via new component
■ TimeScale support feature now disabled by default and

exposed in new Global Settings panel
■ ApplyToMesh/Material script improved with new scale and

offset parameters
■ Added platform overrides for Windows Phone and Windows

UWP
■ Improved documentation

○ Workflow
■ Added new Android warning for loading absolute path without

86 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

external permission set in PlayerSettings
○ VR

■ Fixed VR audio output device not working
■ New high quality option for sphere shader to improve quality at

the poles and general optimisations
■ Fixed issue with left/right eyes becoming swapped sometimes
■ Minor fixes to cube map script

● Version 1.3.8 - 30 June 2016

○ Bug fixes
■ Fixed stereo VR script broken in v1.3.6
■ Fixed issues with UWP and Hololens support
■ Fixed Windows DirectShow issue preventing Hap videos

playing when another source filter is installed
■ Fixed Windows DirectShow bug in watermark for Hap videos

○ Workflow
■ Improved recent file list to be sorted by when the files were last

used

● Version 1.3.6 - 27 June 2016
○ General

■ Added (BETA) support for Universal Windows Platform 10 and
Windows Phone 8.1

■ Added (BETA) support for Time.timeScale and
Time.captureFramerate allowing video playback to work
properly with video capture systems that alter Unity time

■ Added ExtractFrame function to MediaPlayer
■ Added Extract Frames demo scene
■ Added SeekFast function which will try to seek to keyframes

only so it’s less accurate but faster. On unsupported platforms
it will just do a normal seek operation

■ Added functions to change the playback rate. Note that the
behaviour of this varies between platforms and is not available
yet on Android

■ General API improvements, platform overrides system
improved

■ Fixed bug where disabled gameObject would cause rendering
to stop

■ Fixed bug where destroying MediaPlayer while uGUI
component is using it could cause a crash

■ Fixed rare bug where uGUI component would become offset or
hidden

■ Fixed rare bug where m_events would be null
○ VR

■ Fixed VR sphere shader coordinates on some platforms,
especially cardboard

■ Added “Media Properties” section to MediaPlayer where you
can define the stereo packing of a video. This then

87 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

automatically adjust the sphere shader to render the video
correctly per eye

■ Fixed bug in InsideSphere shader where stereo rendering
would flip the eyes at some angles

■ Added support for Unity 5.4 “Single-Pass Stereo Rendering” to
360 InsideSphere shader

■ Added new VR sample with “cubemap 3x2” (facebook layout)
support

○ Workflow
■ Added button in preview panel to save frame to PNG
■ Added persistent option to preserve the media player between

level loads
■ Added multi-object MediaPlayer component editing support
■ Texture properties (wrap mode, filtering) can be set via Media

Properties panel
■ Debug GUI now shows preview of video

○ Android
■ Fixed bug where no visuals would appear when old devices
■ Switched from AAR to JAR/SO files to improve Unity 4

compatibility
■ Added x86 support
■ Fixed bug where Pausing a stopped video would lock it up

○ OS X / iOS / tvOS
■ Large performance boost on iOS and tvOS (removed texture

copy)
■ Streaming video buffering stalls now recover and IsBuffering

function added
■ Seek accuracy improved
■ Looping handled better to reduce seam time
■ Fixed texture memory leak in Metal rendering path
■ Fixed mute not working with autoStart

○ Windows
■ DirectShow video playback smoother
■ Fixed DirectShow support for showing images or videos with

zero duration
■ Added platform-override option to force DirectShow player
■ Added platform-override option to force audio output device.

This is useful for VR hardware that has its own audio device.
■ Fixed poster frame not displaying
■ Fixed videos not displaying due to empty RGB32 alpha

channel
■ Fixed D3D9 lost device issue
■ Fixed D3D9 issue of texture not being released

■ Fixed DirectShow player time displaying NaN sometimes at the end of
video

■ Fixed crash bug if you closed Unity with video was playing
■ Fixed Windows N edition crash

88 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

● Version 1.3.0 - 20 April 2016
○ Android

■ Added multi-threaded rendering support
■ Fixed various rare bugs

○ Windows
■ Exposed GPU video player path (when using command-line

argument “-force-d3d11-no-singlethreaded”), this requires
Win8.1 minimum and D3D11

■ Windows XP, Windows Vista and Windows 7 support added by
adding DirectShow playback path

■ Hap1 and Hap5 codec support added for Windows 7 and
below (via DirectShow playback path)

■ Fixed audio only media not being seekable
○ iOS

■ Fixed iOS 8.2 compatibility issue
○ Workflow

■ Editor pause button now pauses/resumes playing videos
■ Added new ‘about’ section with handy links
■ Improvements to editor UI
■ UI fixes for standard Unity editor ‘light’ skin

○ Bugs
■ Fixed IsFinishedPlaying event not firing on some platforms
■ Fixed player freezing when component is disabled. It now

pauses OnDisable() and resumes OnEnable().
■ Fixed crash in VCR demo related to uGUI component when

changing videos
■ Fixed bug closing application with many videos open
■ Fixed seeking bug for audio-only media

○ Documentation
■ Updated FAQ
■ Added stereo virtual reality notes

● Version 1.2.0 - 1 April 2016

○ General
■ Improved support for audio-only media
■ Improved streaming support
■ Added HasVideo, HasAudio and HasMetaData functions
■ Added MetaDataReady event
■ First frame now displays without starting playback
■ Added new ApplyToMesh component
■ Removed troubled #AVPRO defines

○ Android
■ Fixed issue where Finished event wouldn’t fire
■ Minimum API level bumped from 15 to 16

○ Mac, iOS, tvOS
■ improved performance of multiple video playback

○ Windows
■ Improved performance (duplicate frame handling)

89 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

■ Added missing IsSeeking function
■ Fixed IsFinished function always returning false
■ Fixed URL parsing
■ Fixed OpenGL texture cleanup
■ Fixed minor D3D11 leak caused by views not being released
■ Improved init/deinit

○ Workflow
■ Resulting file name is now displayed clearly and is copyable
■ More file extensions in inspector file browser
■ Components now have AVPro icon
■ Added warnings for incorrect Player Settings for streaming videos
■ Editor platform override tab is restored

○ Debugging
■ Improved logging

○ VR
■ Improved 360 Sphere demo support for GearVR
■ InsideSphere shader has color tint option for stereo debugging

○ Docs
■ Added video streaming notes
■ Added VR notes
■ Improved notes on supported formats

● Version 1.1.0 - 11 March 2016

○ Added Windows support
○ Added lat-long stereo top-bottom and left-right video support for VR
○ Added per-platform file path overrides
○ Absolute and relative path loading support added
○ Android loading from OBB support added
○ Workflow improvements

■ Added browse button
■ Added recent file list
■ Added relative folder support
■ Improved MediaPlayer UI, including preview in editor

○ Created a scripting class reference
○ Improved documentation
○ Fixed Linear colour space support in Windows
○ Fixed shutdown and memory freeing
○ Various bugs fixed

● Version 1.0.0 - 25 February 2016

○ Initial release on the asset store
○ Added new events

● Version 0.9.0 - 17 February 2016

○ Initial beta release

Appendix C - Roadmap

90 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

● Version 1.8.0

○ High quality glitch free multi video player with optional transitions and
nice user interface

● Version X.X.X
○ Split out media definitions from player
○ Loading from memory/resources
○ Fallback to using MovieTexture on some platforms?
○ 10-bit HEVC support?

● Version X

○ ← Your suggestions here, let us know :)

Appendix D - Unity Bugs

Some versions of Unity have new bugs or regressions that prevent AVPro Video from
operating as expected.

In our experience it’s best to avoid using new major releases of Unity (eg version X.Y.0) and
wait for the follow-up releases where bugs introduced in the major update have had time to
be fixed.

Please vote and comment on these issues so they get high priority to be fixed.

● Unity 5.6.0f3 - Present
○ Has an Android bug that prevents GLSL shaders from compiling, which

prevents our OES rendering path to work.
https://issuetracker.unity3d.com/issues/android-ios-glsl-shader-compilation-fai
lure-on-some-mobile-devices
Latest version where it works it 5.5.4

○ Single-pass stereo mode on the Android GearVR introduces strange shader
bugs on some platforms. We added two bug reports here:
https://issuetracker.unity3d.com/issues/android-gearvr-left-eye-is-rendered-wit
h-green-distortions-when-using-single-pass-stereo-rendering-method-star-on-
mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-both-eyes-are-rendere
d-in-the-same-color-when-using-single-pass-stereo-rendering-method-star-on
-mali-gpu

● Unity 5.x - Present
○ Support for Android OBB (split application binary option) seems slightly

broken in many versions of Unity. It seems to try to load OBB content from
the APK file, so it’s as though it’s resolving Application.streamingAssetsPath
incorrectly. It appears that the first time you deploy to the Android device it
works but then subsequent builds will fail. Uninstalling the application from
the device and building to a new APK file seems to solve this.

91 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://issuetracker.unity3d.com/issues/android-ios-glsl-shader-compilation-failure-on-some-mobile-devices
https://issuetracker.unity3d.com/issues/android-ios-glsl-shader-compilation-failure-on-some-mobile-devices
https://issuetracker.unity3d.com/issues/android-gearvr-left-eye-is-rendered-with-green-distortions-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-left-eye-is-rendered-with-green-distortions-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-left-eye-is-rendered-with-green-distortions-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-both-eyes-are-rendered-in-the-same-color-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-both-eyes-are-rendered-in-the-same-color-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-both-eyes-are-rendered-in-the-same-color-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu

● Android OES Texture Support
○ OES Textures used to work reasonably well, but in some versions of Unity

they no longer work:
○ https://forum.unity3d.com/threads/android-oes-texture-support.436979/

92 / 92

AVPro Video © 2016-2018 RenderHeads Ltd

https://forum.unity3d.com/threads/android-oes-texture-support.436979/

