
  

 
   

 

 
 

Atmel AVR2025: IEEE 802.15.4 MAC Software 
Package - User Guide 

Features 

• Portable and highly configurable MAC stack based on IEEE® 802.15.4 

• Atmel® MAC architecture and implementation introduction 

• Support of several microcontroller families includes ATxmega, AT32UC3A , SAM4L, 

SAM4S, SAMR21, SAMD20 and ATMEGARF 

• Support of Atmel IEEE 802.15.4 transceivers and single chips, includes Atmel’s 

AT86RF212, AT86RF212B, AT86RF231, AT86RF233 and ATmega256RFR2 SOC. 

• Example applications description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atmel 
MCU Wireless 
Solutions 

 

Application Note 
 
 
 

Rev. 8412A-AVR-02/13 

 



 

 
  2 

8412A-AVR-02/13 

Table of contents 

Atmel AVR2025: IEEE 802.15.4 MAC Software Package - User Guide ..................................... 1 

Features ........................................................................................................................................ 1 

Application Note ........................................................................................................................... 1 

Table of contents .......................................................................................................................... 2 

Table of figures............................................................................................................................. 6 

1 Introduction ............................................................................................................................ 7 

2 General architecture .............................................................................................................. 8 

2.1 Main stack layers .............................................................................................................................................. 8 
2.1.1 Platform abstraction layer (PAL) ................................................................................................................................ 9 
2.1.2 Transceiver abstraction layer (TAL) ........................................................................................................................... 9 
2.1.3 MAC core layer (MCL) ............................................................................................................................................... 9 
2.1.4 Usage of the stack ................................................................................................................................................... 12 

2.2 Other stack components ................................................................................................................................. 13 
2.2.1 Resource management ........................................................................................................................................... 13 
2.2.2 Security abstraction layer ........................................................................................................................................ 13 
2.2.3 Security toolbox ....................................................................................................................................................... 14 
2.2.4 Transceiver feature access ...................................................................................................................................... 14 

3 Understanding the software package ................................................................................. 15 

3.1 MAC package directory structure ................................................................................................................... 15 

3.2 Header file naming convention ....................................................................................................................... 19 

4 Brief about ASF .................................................................................................................... 21 

4.1 ASF directory structure ................................................................................................................................... 21 

5 Understanding the stack ..................................................................................................... 21 

5.1 Frame handling procedures ............................................................................................................................ 21 
5.1.1 Frame transmission procedure ................................................................................................................................ 21 
5.1.2 Frame reception procedure ..................................................................................................................................... 24 

5.2 Frame buffer handling ..................................................................................................................................... 25 
5.2.1 Application on top of MAC-API ................................................................................................................................ 25 
5.2.2 Application on top of TAL ......................................................................................................................................... 30 

5.3 Configuration files ........................................................................................................................................... 34 
5.3.1 Application resource configuration – app_config.h .................................................................................................. 35 
5.3.2 Stack resources configuration – stack_config.h ....................................................................................................... 36 
5.3.3 TAL resource configuration – tal_config.h ............................................................................................................... 36 
5.3.4 MAC resource configuration – mac_config.h ........................................................................................................... 36 
5.3.5 NWK resource configuration – nwk_config.h ........................................................................................................... 37 
5.3.6 Build configuration file – mac_build_config.h ........................................................................................................... 37 
5.3.7 User build configuration file – mac_user_build_config.h .......................................................................................... 37 

5.4 MAC components ........................................................................................................................................... 37 
5.4.1 MAC_INDIRECT_DATA_BASIC.............................................................................................................................. 38 
5.4.2 MAC_INDIRECT_DATA_FFD ................................................................................................................................. 38 
5.4.3 MAC_PURGE_REQUEST_CONFIRM .................................................................................................................... 39 
5.4.4 MAC_ASSOCIATION_INDICATION_RESPONSE .................................................................................................. 39 

file:///D:/Projects/AVR2025/Userguide/AVR2025_User_Guide.doc%23_Toc386036286


 

 
  3 

8412A-AVR-02/13 

5.4.5 MAC_ASSOCIATION_REQUEST_CONFIRM ........................................................................................................ 39 
5.4.6 MAC_DISASSOCIATION_BASIC_SUPPORT ........................................................................................................ 40 
5.4.7 MAC_DISASSOCIATION_FFD_SUPPORT ............................................................................................................ 40 
5.4.8 MAC scan components ............................................................................................................................................ 41 
5.4.9 MAC_ORPHAN_INDICATION_RESPONSE ........................................................................................................... 41 
5.4.10 MAC_START_REQUEST_CONFIRM ..................................................................................................................... 41 
5.4.11 MAC_RX_ENABLE_SUPPORT .............................................................................................................................. 42 
5.4.12 MAC_SYNC_REQUEST ......................................................................................................................................... 43 
5.4.13 MAC_SYNC_LOSS_INDICATION........................................................................................................................... 43 
5.4.14 MAC_BEACON_NOTIFY_INDICATION .................................................................................................................. 44 
5.4.15 MAC_GET_SUPPORT ............................................................................................................................................ 44 
5.4.16 MAC_PAN_ID_CONFLICT_AS_PC ........................................................................................................................ 44 
5.4.17 MAC_PAN_ID_CONFLICT_NON_PC ..................................................................................................................... 45 

5.5 High-density network configuration ................................................................................................................. 45 

5.6 High data rate support .................................................................................................................................... 45 

6 MAC power management .................................................................................................... 48 

6.1 Understanding MAC power management ...................................................................................................... 48 

6.2 Reception of data at nodes applying power management ............................................................................. 49 
6.2.1 Setting of macRxOnWhenIdle to true ...................................................................................................................... 49 
6.2.2 Enabling the receiver ............................................................................................................................................... 49 
6.2.3 Handshake between end device and coordinator .................................................................................................... 49 
6.2.4 Indirect transmission from coordinator to end device ............................................................................................... 49 

6.3 Application control of MAC power management ............................................................................................ 50 
6.3.1 MAC PIB attribute macRxOnWhenIdle .................................................................................................................... 50 
6.3.2 Handling the receiver with wpan_rx_enable_req() ................................................................................................... 50 
6.3.3 Handling Controller Sleep in Inactive Region .......................................................................................................... 51 
6.3.4 Mac_wakeup ........................................................................................................................................................... 52 
Void mac_wakeup (uint32_t res_time); ................................................................................................................................... 52 

6.4 TAL power management API .......................................................................................................................... 52 

7 Application and stack configuration .................................................................................. 53 

7.1 Build switches ................................................................................................................................................. 53 
7.1.1 Global stack switches .............................................................................................................................................. 54 
7.1.2 Standard and user build configuration switches ...................................................................................................... 58 
7.1.3 Platform switches..................................................................................................................................................... 58 
7.1.4 Transceiver specific switches .................................................................................................................................. 58 
7.1.5 Test and debug switches ......................................................................................................................................... 61 

7.2 Build configurations ......................................................................................................................................... 62 
7.2.1 Standard build configurations .................................................................................................................................. 62 
7.2.2 User build configurations – MAC_USER_BUILD_CONFIG ..................................................................................... 65 

8 Migration History .................................................................................................................. 68 

8.1 Guide from version 3.0.x to 3.1.x .................................................................................................................... 68 

8.2 Guide from version 2.8.x to 3.0.x .................................................................................................................... 68 

8.3 Guide from version 2.7.x to 2.8.x .................................................................................................................... 68 

8.4 Guide from version 2.6.x to 2.7.x .................................................................................................................... 68 

9 Toolchain .............................................................................................................................. 69 



 

 
  4 

8412A-AVR-02/13 

9.1 General prerequisites...................................................................................................................................... 69 

9.2 Building the applications ................................................................................................................................. 69 
9.2.1 Using GCC makefiles .............................................................................................................................................. 69 
9.2.2 Using IAR Embedded Workbench ........................................................................................................................... 69 
9.2.3 Using IAR AVR32 Embedded Workbench ............................................................................................................... 70 
9.2.4 Using IAR ARM Embedded Workbench .................................................................................................................. 70 

10 Example applications ........................................................................................................ 71 

10.1 Walking through a basic application............................................................................................................ 71 

10.2 Provided examples applications .................................................................................................................. 71 
10.2.1 MAC examples ........................................................................................................................................................ 71 
10.2.2 TAL examples .......................................................................................................................................................... 74 

10.3 Common SIO handler (Serial I/O Handler) ................................................................................................. 83 

10.4 Handling of callback stubs .......................................................................................................................... 83 
10.4.1 MAC callbacks ......................................................................................................................................................... 83 
10.4.2 TAL callbacks .......................................................................................................................................................... 84 
10.4.3 Example for MAC callbacks ..................................................................................................................................... 84 

10.5 Bootloader ................................................................................................................................................... 84 

11 Supported platforms ......................................................................................................... 85 

11.1 Supported MCU families ............................................................................................................................. 86 

11.2 Supported transceivers ............................................................................................................................... 86 

11.3 Supported boards ........................................................................................................................................ 86 

12 Platform porting ................................................................................................................ 86 

13 Protocol implementation conformance statement (PICS) ............................................. 86 

13.1 Major roles for devices compliant with IEEE Std 802.15.4-2006 ................................................................ 86 

13.2 Major capabilities for the PHY ..................................................................................................................... 87 

13.3 Major capabilities for the MAC sub-layer .................................................................................................... 87 
13.3.1 MAC sub-layer functions .......................................................................................................................................... 87 
13.3.2 MAC frames ............................................................................................................................................................. 88 

14 Abbreviations .................................................................................................................... 90 

15 References ......................................................................................................................... 91 

16 User guide revision history .............................................................................................. 91 

16.1 Rev. 2025M-MCU Wireless-04/14 .............................................................................................................. 91 

16.2 Rev. 2025M-MCU Wireless-03/13 .............................................................................................................. 91 

16.3 Rev. 2025M-MCU Wireless-06/12 .............................................................................................................. 91 

16.4 Rev. 2025M-MCU Wireless-10/11 .............................................................................................................. 92 

16.5 Rev. 2025L-MCU Wireless-07/11 ............................................................................................................... 92 

16.6 Rev. 2025K-MCU Wireless-08/11 ............................................................................................................... 92 

16.7 Rev. 2025J-MCU Wireless-03/11................................................................................................................ 92 

16.8 Rev. 2025I-MCU Wireless-10/10 ................................................................................................................ 92 



 

 
  5 

8412A-AVR-02/13 

16.9 Rev. 2025H-MCU Wireless-08/10 ............................................................................................................... 92 

16.10 Rev. 2025G-MCU Wireless-08/10 ............................................................................................................... 92 

16.11 Rev. 2025F-MCU Wireless-02/10 ............................................................................................................... 93 

16.12 Rev. 2025E-MCU Wireless-01/10 ............................................................................................................... 93 

16.13 Rev. 2025B-MCU Wireless-09/09 ............................................................................................................... 93 

16.14 Rev. 2025-AVR-04/09 ................................................................................................................................. 93 

 



 

 
  6 

8412A-AVR-02/13 

Table of figures 

Figure 2-1. MAC architecture. ......................................................................................................................................... 8 
Figure 2-2. Stack usage. ............................................................................................................................................... 13 
Figure 3-1. Avr2025_mac package directory Structure ................................................................................................ 15 
Figure 3-2. Host NCP approach .................................................................................................................................... 18 
Figure 5-1-. Data frame transmission procedure – Part 2. ............................................................................................ 23 
Figure 5-2. Data frame reception procedure. ................................................................................................................ 24 
Figure 5-3. Frame buffer handling during data frame transmission – part 1. ................................................................ 26 
Figure 5-4. Frame buffer handling during data frame transmission – part 2. ................................................................ 27 
Figure 5-5. Frame buffer handling during data frame reception. .................................................................................. 29 
Figure 5-6. Frame buffer handling during frame transmission using TAL-API. ............................................................. 31 
Figure 5-7. Frame buffer handling during frame reception using TAL-API. .................................................................. 33 
Figure 5-8. Configuration file #include-hierarchy. ......................................................................................................... 35 
Figure 5-9. Essential and supplementary MAC components. ....................................................................................... 38 
Figure 5-10. Example of provided functionality for MAC_INDIRECT_DATA_BASIC and 

MAC_INDIRECT_DATA_FFD. .............................................................................................................................. 39 
Figure 5-11. Provided functionality for MAC_ASSOCIATION_INDICATION_ RESPONSE and 

MAC_ASSOCIATION_REQUEST_CONFIRM. ..................................................................................................... 40 
Figure 5-12. Provided functionality for MAC_ORPHAN_INDICATION_RESPONSE and 

MAC_SCAN_ORPHAN_REQUEST_CONFIRM (orphan scan procedure). .......................................................... 41 
Figure 5-13. Start of non-beacon network and active scan. ......................................................................................... 42 
Figure 5-14. Enabling of receiver and proper data reception. ....................................................................................... 43 
Figure 5-15. Synchronization and loss of synchronization. ........................................................................................... 44 
Figure 7-1. Build configuration example. ....................................................................................................................... 54 
Figure 7-2. Handling of promiscuous mode. ................................................................................................................. 57 
Figure 10-1. Performance Analyzer Application State Diagram ................................................................................... 76 
Figure 10-2. Sequence diagram of Range measurement ............................................................................................. 77 
Figure 10-3. Initializing Range measurement - transmitter (TX) ................................................................................... 78 
Figure 10-4. Initializing Range measurement - receiver (RX) ....................................................................................... 78 
Figure 10-5. Statistics of Range measurement ............................................................................................................. 78 
Figure 10-6. REB Rx path ............................................................................................................................................. 80 
Figure 10-7. Sequence Diagram for Peer Search process ........................................................................................... 80 
Figure10-8. General approach for using bootloader to program a NCP in 2p approach .............................................. 85 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  7 

8412A-AVR-02/13 

1 Introduction 

This document is the user guide for the Atmel MAC software for IEEE 802.15.4 transceivers. The mechanisms and 

functionality of the IEEE 802.15.4 standard is the basis for the entire MAC software stack implementation. Therefore 

it is highly recommended to use it as a reference. Basic concepts that are introduced by the IEEE standard are 

assumed to be known within this document. 

The user guide describes about: 

 The Atmel AVR®2025 MAC software package release contains the IEEE 802.15.4 MAC, which: 

 Allows a highly flexible firmware configuration to adapt to the application requirements 

 Supports different microcontrollers and platforms/boards 

 Supports different IEEE 802.15.4 based transceivers and single chips 

 Allows easy and quick platform porting 

 Provides project files for two supported IDEs (IAR Embedded Workbench®, Atmel Studio®) and gcc support as 

well. 

 Supports star networks and peer-to-peer communication 

 Supports non-beacon and beacon-enabled networks 

The MAC software package is a reference implementation demonstrating the use of the Atmel IEEE 802.15.4 

transceivers. It follows a generic approach and is not optimized to any specific application requirement. The user 

needs can be adapted to its specific application requirements. 

 The general software architecture followed, package directory structure, understanding the stack, MAC power 

management and stack configuration. 

 Example applications provided in the release, supported platforms, supported tool chains, integrated development 

environments and references for help.



 

8412A-AVR-02/13 

2 General architecture 

The MAC software package follows a layered approach based on several stack modules and applications. Figure 2-1 
shows the stack’s architecture. The stack modules are from the bottom up: 

 Platform Abstraction Layer (PAL) (see Section 2.1.1) 

 Transceiver Abstraction Layer (TAL) (see Section 2.1.2) and Transceiver Feature Access (TFA) (see Section 

2.2.4) 

 MAC including MAC Core Layer and MAC-API (see Section 2.1.3) 

 Resource Management including Buffer and Queue Management (BMM and QMM) (see Section 2.2.1) 

Figure 2-1. MAC architecture. 

 

Complete description of each layer and component are provided in the succeeding section of this document. 

2.1 Main stack layers 

The main MAC stack software consists of three layers starting from the bottom up: 

 Platform Abstraction Layer - PAL 

 Transceiver Abstraction Layer - TAL 

 MAC Core layer – MCL 

For other stack layers please refer to Section 2.2. 

TPSTFATAL

MAC

(MCL incl. 

MAC API)

Resource 

Management 

(BMM, QMM)

Application

PAL Wrapper

STB

Hardware Platform (i.e. Microcontroller, Board, Configuration)

TRx Access - SPI, GPIO and IRQ

Services/Drivers

Timers ASF SAL



 

8412A-AVR-02/13 

2.1.1 Platform abstraction layer (PAL) 

The Platform Abstraction Layer (PAL) contains wrapper functions, which provides a seamless interface between the 

MAC software and ASF-PAL modules.  

PAL provides interface to the following components: 

1. Base timer for running software timer. 

2. GPIO interrupt for External transceiver access. 

3. SPI access for External transceiver access. 

4. Access to persistent storage (for example, Flash or NVM or EEPROM). 

 

Services such as Timer, SPI, and persistent storage are mapped to common\services of ASF directory to the extent 

possible to reduce the porting efforts. All the GPIO related configurations has to be available in corresponding 

<board>.h or conf_pal.h. 

For each microcontroller a separate implementation exists within the ASF modules. The board and application needs 

are adapted via a board configuration file (conf_board.h). This board configuration file exists exactly once for each 

supported hardware platform. 

These components are implemented as software blocks and are ported based on the target microcontroller. The 

timer module implements software timer functionality used by the MAC, TAL, and Application layer. The function 

prototypes for all PAL API functions we use are included in file PAL/Inc/pal.h. 

2.1.2 Transceiver abstraction layer (TAL) 

The Transceiver Abstraction Layer (TAL) contains the transceiver specific functionality used for the 802.15.4 MAC 

support and provides interfaces to the MAC Core Layer which is independent from the underlying transceiver. 

Besides that, the TAL API can be used to interface from a basic application. There exists exactly one implementation 

for each transceiver using transceiver-embedded hardware acceleration features. The TAL (on top of PAL) can be 

used for basic applications without adding the MCL. 

The following components are implemented inside the TAL: 

 Frame transmission unit (including automatic frame retries) 

 Frame reception unit (including automatic acknowledgement handling) 

 State machine 

 TAL PIB storage 

 CSMA module 

 Energy detect scan 

 Power management 

 Interrupt handling 

 Initialization and reset 

The Transceiver Abstraction Layer uses the services of the Platform Abstraction Layer for its operation. The Frame 

Transmission Unit generates and transmits the frames using PAL functionality. The Frame Reception Unit 

reads/uploads the incoming frames and pushes them into the TAL-Incoming-Frame-Queue. The TAL handles the 

Incoming-Frame-Queue and invokes the receive callback function of the MCL. The operation of the TAL is controlled 

by the TAL state machine. The CSMA-CA module is used for channel access. The PIB attributes related to the TAL 

are stored in the TAL PIB storage. 

The function prototypes for the TAL features are provided in file TAL/Inc/tal.h. The implementation of a TAL is located 

in a separate subdirectory for each transceiver. 

2.1.3 MAC core layer (MCL) 

The MAC Core Layer (MCL) abstracts and implements IEEE 802.15.4-2006 compliant behavior for non-beacon 

enabled and beacon-enabled network support. The implemented building blocks are: 

 MAC Dispatcher 



 

8412A-AVR-02/13 

 MAC Data Service 

 MAC Management Service (like start, association, scan, poll, etc.) 

 MAC Beacon Manager 

 MAC GTS Manager 

 MAC Security Module 

 MAC Incoming Frame Processor 

 MAC PIB Module 

 MAC-API 

 MAC stack task functions 

The MAC Core layer provides an API that reflects the IEEE 802.15.4 standard (4). 

2.1.3.1 Stack task functionality 

The stack (consisting of PAL, TAL, and MCL) task functionality consists of the following API: 

 Initialization 

The function wpan_init() initializes all stack resources including the microcontroller and transceiver using functions 

provided by the TAL and the PAL. 

 Task handling 

The function wpan_task () is the stack task function and is called by the application. It invokes the corresponding 

task functions of the MCL, TAL, and PAL. Using the MAC software package it is required to call this function 

frequently supporting a round robin approach. This ensures that the different layers’ state machines are served 

and their queues are processed. 

2.1.3.2 MAC-API 

The application interfaces the MAC stack via the MAC-API (see file mac_api.h in directory MAC/Inc). 

It sends requests and responses to the stack by calling the functions provided by the MAC-API. The MAC-API places 

these requests and responses in the NHLE-MAC-Queue. It also invokes the confirmation and indication callback 

functions implemented by the user. 

2.1.3.3 MAC core layer functionality 

The MAC Dispatcher reads the NHLE-MAC-Queue and passes the requests or responses to the MAC Data Service 

or the MAC Management Service. The MAC Dispatcher also reads the internal event queue (TAL-MAC-Queue) and 

calls the corresponding event handler. 

The MAC Data Service transmits data using the frame transmission services of the Transceiver Abstraction Layer 

and invokes the confirmation function mcps_data_conf(), which is implemented in the MAC-API. This function in turn 

calls the usr_mcps_data_conf() callback function implemented by the application. The indirect data requests are 

queued into the Indirect-Data-Queue, where the frames are re-fetched from when a corresponding data request (poll 

request) is received from a device. 

Receiving a data frame from the TAL through MAC Incoming Frame Processor, the MAC Data Service invokes the 

indication function mcps_data_ind(), which is implemented by the MAC-API. This function calls the 

usr_mcps_data_ind() callback function implemented by the application. 

The MAC Management Service processes the management requests and responses through TAL and PAL and if 

applicable invokes the respective confirm function implemented by the MAC-API. This function in turn calls the 

usr_mlme_xyz_conf() callback function implemented by the application. 

Receiving a command frame from the TAL through the MAC incoming frame processor, the MAC Management 

Service invokes the indication function mlme_xyz_ind(), which is implemented by the MAC-API if required. The 

mlme_xyz_ind() function calls the usr_mlme_xyz_ind() callback function implemented by the application. 

The MAC Incoming Frame Processor receives frames from the TAL and depending on the type of the frame, passes 

it to the MAC Data Service or the MAC Management Service for further processing. 



 

8412A-AVR-02/13 

The MAC PIB attributes are stored in the MAC PIB and are accessed by the MAC Data Service, the MAC 

Management Service and the Beacon Manager. PIB attributes that are used by the TAL module are stored within the 

TAL. 

The Beacon Manager generates the beacon frames which are transmitted using the TAL. The beacon manager is 

also responsible for beacon reception at the start of a superframe and its synchronization. The received beacons are 

processed based on the current state of the MAC and if required indications or notifications are given to the MAC-

API. 

AVR2025 Security module is responsible for providing the security services on specified incoming and outgoing 
frames when requested to do by the higher layers. Security module is used to protect the MAC Data, MAC Beacon 
Frames for incoming and outgoing frames. The security module will covers the all the security level from security 
level-0 to security level-7. Security Level-0 is not used for any frame protection. So security level-0 frames will not 
have Integrity and Encryption.  
The Security Module Provides the Data Confidentiality, Data authenticity and Replay protection. 

 

 

 

 

 

 

 

MAC Security transmitting frame 

 

 

mac_secure api will be used to 

secure the incoming frame based 

on the security level and FCS 

Security Enable bit. Based on the 

outgoing frame addressing mode 

and frame type, key id, key source, 

the security module will retrieve the 

key to encrypt and add MIC to the 

frame. 

 MAC Higher Layer 

  

 Plain Text + Security Enabled 

 Cipher Text + MIC(If MAC_SUCCESS) 

 

 

 MAC Security Module 

 
 

MAC Security receiving frame 

 



 

8412A-AVR-02/13 

mac_unsecure api will be used to 

unsecure the incoming frame based 

on the security level and FCS 

Security Enable bit. Based on the 

incoming frame addressing mode 

and frame type, key id, keyIndex, 

key source, the security module will 

retrieve the key to decrypt and 

authenticate the frame. 

 MAC Higher Layer 

  

 

 

 MAC Security Module 

             Cipher Text + MIC 

 Plain Text (If MAC_SUCCESS) 

 

2.1.4 Usage of the stack 

An application can use any layer as desired depending on the required functionality. An application that is based on a 

standard IEEE 802.15.4 MAC uses the MAC-API based on the stack built by PAL, TAL, and MCL. Another 

application (for example, a simple data pump) may want to use only the basic channel access mechanism, automatic 

handling of Acknowledgments, etc. In this case potentially only the TAL API based on a stack consisting of PAL and 

TAL will be used. What kind of stack is actually being used by the application is always depending on the end user 

needs and the available resources. 

In order to specify which layer of the stack the application is actually based on (that is, which API it is using), the build 

switch HIGHEST_STACK_LAYER needs to be set properly. Depending on this switch only the required resources 

from the stack are used for the entire application. For further information about the usage of 

HIGHEST_STACK_LAYER please see Section 7.1.1.1 HIGHEST_STACK_LAYER. 

The following picture shows which layers of the stack are available for the application depending on the build switch 

HIGHEST_STACK_LAYER. Obviously a trade-off needs to be found between required functionality on one hand and 

the footprint on the other hand. 



 

8412A-AVR-02/13 

Figure 2-2. Stack usage.  

 

2.2 Other stack components 

2.2.1 Resource management 

The Resource Management provides access to resources to the stack or the application. These resources are: 

1. Buffer Management (large and small buffers): provides services for dynamically allocating and freeing memory 
buffers. 

2. Queue Management: provides services for creating and maintaining the queues. 

The following queues are used by the software: 

3. Queue used by MAC Core Layer: 
a. NHLE-MAC-Queue 
b. TAL-MAC-Queue 
c. Indirect-Data-Queue 
d. Broadcast-Queue 

4. Queue used by TAL: 
a. TAL-Incoming-Frame-Queue 

5. Additional queues and buffers can be used by higher layers, like application such as the MAC-NHLE-Queue. 
 

2.2.2 Security abstraction layer 

The SAL (Security Abstraction Layer) provides an API that allows access to low level AES engine functions 

abstraction to encrypt and decrypt frames. These functions are actually implemented dependent on the underlying 

hardware, for example, the AES engine of the transceiver. The API provides functions to set up the proper security 

key, security scheme (ECB or CBC), and direction (encryption or decryption). 

For more information about the SAL-API see file services/sal/inc/sal.h. 



 

8412A-AVR-02/13 

2.2.3 Security toolbox 

The STB (Security Toolbox) is a high level security abstraction layer providing an easy-to-use crypto API for direct 

application access. It is placed on top of the SAL and abstracts and implements transceiver or MCU independent 

security functionality that encrypts or decrypts frames using CCM* according to 802.15.4 / ZigBee®. 

For more information about the STB-API see file stb/inc/stb.h. 

2.2.4 Transceiver feature access 

2.2.4.1 Introduction 

The current 802.15.4 stack is designed to be fully standard compliant. On the other hand Atmel transceivers provide 

a variety of additional hardware features that are not reflected in the standard. In order to have a clear design 

separation between the standard features and additional features, a new software block has been introduced – TFA 

(Transceiver Feature Access). 

If the TFA shall be used within the application a special build switch needs to be set in order to get access to these 

specific features (see Section 7.1.4.2). 

2.2.4.2 Features 

The following features have been implemented within the TFA: 

 Additional PIB attribute handling 

o Function for reading or writing special PIB attributes (not defined within 4) are provided 

o Example: Transceiver Rx Sensitivity (see the Data Sheets of the transceivers for more information 

about the Transceiver Rx Sensitivity) 

 Single CCA 

o Based on 4 a function is implemented to initiate a CCA request to check for the current state of the 

channel 

o The result is either PHY_IDLE or PHY_BUSY 

o Allows for CCA measurements independent from the MAC-based CSMA-CA algorithm 

 

 Single ED measurement 

o Based on 4 a function is implemented to initiate a single ED measurement separate from the cycle of 

a full ED scanning 

 Reading transceiver's supply voltage 

o The battery or supply voltage reading can be enabled separately without enabling the entire TFA. If 

only the reading (function tfa_get_batmon_voltage()) of the supply voltage is needed, the build 

switch TFA_BAT_MON needs to be set. See also Section 7.1.4.2 for further information about build 

switches for the TFA 

 Continuous transmission 

o For specific measurements a continuous transmission on a specific is required 

o In order to support this feature functions are implemented to initiate or stop a continuous 

transmission 

 Temperature Measurement (Single Chip transceivers only) 

o A function is implemented to read the temperature value from the integrated temperature sensor in 

degree Celsius 

For more information about the TFA implementation see file TFA/Inc/tfa.h and the source code for the various 

transceivers (tfa/tal_type/src/tfa.c). 

 

For further explanation of applications and the included example applications please refer Chapter 10. 



 

8412A-AVR-02/13 

3 Understanding the software package 

The following chapter describes the content of the AVR2025_MAC software package, common asf modules and 

drivers which are required for this MAC software to work and explains some general guidelines how the various 

software layers are structured. 

3.1 MAC package directory structure 

The AVR2025_MAC package directory structure looks as shown in Figure 3-1. This software package strategically 

placed under the thirdparty/wireless folder in the ASF directory. 

 

Figure 3-1. Avr2025_mac package directory Structure 
 

wireless 

├──addons 

├───avr2025_mac 

├───addons 

│   ├───api_parser 

│   ├───serial_bridge 

│   │   ├───sam4lc4c_sam4l_xplained_pro 

├───apps 

│   ├───MAC 

│   │   ├───beacon 

│   │   │   ├───coord (Coordinator) 

│   │   │   │   ├───host 

│   │   │   │   │    ├───sam4lc4c_sam4l_xplained_pro 

│   │   │   │   │    ├───. . .    

│   │   │   │   │    ├───Config files 

│   │   │   │   ├───ncp 

│   │   │   │   │    ├───at32uc3a3256s_rz600_at86rf212 

│   │   │   │   │    ├───. . .    

│   │   │   │   │    ├───Include files 

│   │   │   │   └───main.c – source file 

│   │   │   └───dev (Device) 

│   │   │   │   ├───host 

│   │   │   │   │    ├───sam4lc4c_sam4l_xplained_pro 

│   │   │   │   │    ├───. . .    

│   │   │   │   │    ├───Config files 

│   │   │   │   ├───ncp 

│   │   │   │   │    ├───at32uc3a3256s_rz600_at86rf212 

│   │   │   │   │    ├───. . .    

│   │   │   │   │    ├───Include files 

│   │   │   │   └───main.c – source file 

│   │   ├───no_beacon 

│   │   │   ├───coord (Coordinator) 

│   │   │   │   ├───host 

│   │   │   │   │    ├───sam4lc4c_sam4l_xplained_pro 

│   │   │   │   │    ├───. . .    

│   │   │   │   │    ├───Config files 

│   │   │   │   ├───ncp 



 

8412A-AVR-02/13 

│   │   │   │   │    ├───at32uc3a3256s_rz600_at86rf212 

│   │   │   │   │    ├───. . .    

│   │   │   │   │    ├───Include files 

│   │   │   │   └───main.c – source file 

│   │   │   └───dev (Device) 

│   │   │   │   ├───host 

│   │   │   │   │    ├───sam4lc4c_sam4l_xplained_pro 

│   │   │   │   │    ├───. . .    

│   │   │   │   │    ├───Config files 

│   │   │   │   ├───ncp 

│   │   │   │   │    ├───at32uc3a3256s_rz600_at86rf212 

│   │   │   │   │    ├───. . .    

│   │   │   │   │    ├───Include files 

│   │   │   │   └───main.c – source file 

│   │   ├───no_beacon_sleep 

│   │   │   ├───. . . 

│   │   │   ├───Include files 

│   │   │   └───main.c – source file 

│   │   ├───serial_if 

│   │   │   ├───bcn_ffd 

│   │   │   ├───bcn_rfd 

│   │   │   ├───no_bcn_ffd 

│   │   │   └───no_bcn_rfd 

│   │   │ 

│   ├───sio_helper 

│   │   ├───module_config 

│   │   ├───uart 

│   │   ├───usb 

│   ├───TAL 

│   │   ├───Performance_analyzer 

│   │       ├───at32uc3a3256s_rz600_at86rf212 

│   │       ├───. . . 

│   │       ├───inc 

│   │       └───src 

├───Doc 

│   └───User_Guide 

├───Include 

├───Source 

│   ├───mac 

│   │   ├───inc 

│   │   ├───src 

│   │   ├───unit_tests 

│   │   │   ├──at32uc3a3256s_rz600_at86rf212 

│   │   │   ├──... 

│   ├───pal 

│   │   ├───common_hw_timer 

│   │   │   ├──example 

│   │   │   ├──mega 

│   │   │   ├──module_config 

│   │   │   ├──sam 



 

8412A-AVR-02/13 

│   │   │   ├──uc3 

│   │   │   ├──xmega 

│   │   ├───common_sw_timer 

│   │   │   ├──example 

│   │   │   ├──module_config 

│   ├───resources 

│   │   ├───buffer 

│   │   │   ├──inc 

│   │   │   ├──src 

│   │   ├───queue 

│   │   │   ├──inc 

│   │   │   ├──src 

│   ├───sal 

│   │   ├───at86rf2xx 

│   │   │   ├──src 

│   │   ├─── ... 

│   │   ├───inc 

│   ├───stb 

│   │   ├───src 

│   │   ├───inc 

│   ├───tal 

│   │   ├───at86rf212 

│   │   │   ├──inc 

│   │   │   ├──src 

│   │   ├───atmegarf... 

│   │   │   ├──... 

│   │   │   ├──... 

│   │   ├───inc 

│   │   ├───src 

│   │   ├───unit_tests 

│   │   │   ├──at32uc3a3256s_rz600_at86rf212 

│   │   │   ├──... 

│   ├───tfa 

│   │   ├───at86rf212 

│   │   │   ├──inc 

│   │   │   ├──src 

│   │   ├───atmegarf... 

│   │   │   ├──... 

│   │   │   ├──... 

│   │   ├───inc 

│   │   ├───src 

│   │   ├───unit_tests 

├───services 

│   ├───sal 

│   │   ├───at86rf2xx 

│   │   │   ├──src 

│   │   ├─── ... 

│   │   ├───inc 

These directories contain the following items (in alphabetical order): 



 

8412A-AVR-02/13 

 Addons (wireless\addons): 

 This addons directory placed under the wireless directory (wireless\addons) contains Serial I/O functionalities for 

sio2host and sio2ncp (serial I/O to Network Co-Processor) for combinations shown in below picture. 

Figure 3-2. Host NCP approach 
 

 
 
 

1. Driver to encode and decode serial interface for NCP. 
2. Stand alone sample application to drive NCP from Host controller. 
3. API to Serial Bridge - convert API calls to serial command and vice versa. 
4. Firmware for Wireless Software Package (MAC or ZRC). 

 
 

Addons (avr2025_mac): 

 This addons directory place under 

the wireless directory 

(avr2025_mac/addons) contains the 

source files for following addons 

supported by avr2025_mac. 

o api_parser : 

This module is 

responsible for 

encoding and 

decoding the serial 

bytes from NCP into 

APIs to provide 

seamless working for 

application similar to 

stack running in 

same processor or 

on NCP. 

o bootloader : Consists of hex file for UART based bootloader along with PC utility for upgrading 

the firmware. Also supports NCP firmware upgrade and the steps are explained in 

\thirdparty\wireless\avr2025_mac\bootloader\ readme.txt. 

o serial_if  : This module is responsible for serial interface to the host. 

 

   The above modules can co-exist in same application as described in the below architecture with proper 

handling in the application main.c for individual tasks. 

 

 Examples: 



 

8412A-AVR-02/13 

o The MAC package comes with a variety of examples applications which comprise MAC examples 

(using the MAC-API on top of the MAC Core Layer), TAL examples (using the TAL API) 

o The provided makefiles and project files can be used as quick start 

 Doc: 

o This directory contains the AVR2025_MAC software package user guide. 

 

 Include:  

o This directory contains header files that are of general interest both for example-applications and for 

all layers of the stack, such as IEEE constants, data types, return values, etc. 

 Source : 

o This directory holds the source sub-directories for MAC, PAL, TAL, SAL, STB layers and other 

resources required. 

o MAC: This directory contains the MAC Core Layer (MCL) and the MAC-API 

o PAL: This directory contains only wrapper functions which communicate with ASF-PAL drivers 

(located outside this AVR2025_MAC software package) for each microcontroller family. 

o Resources: This directory contains the buffer and queue management implementation used 

internally inside MCL and TAL. Also hooks for application usage are provided 

o SAL: This directory contains the Security Abstraction Layer providing specific security 

implementations based on available hardware support 

o STB: This directory contains the Security Toolbox implementing an independent crypto API 

o TAL: This directory contains the Transceiver Abstraction Layer with subdirectories for each 

supported transceiver providing specific implementations addressing the specific needs of each 

transceiver 

o TFA: This directory contains the Transceiver Feature Access with sub-directories for each supported 

transceiver providing access to unique transceiver features, like receiver sensitivity configuration, 

etc. 

3.2 Header file naming convention 

The different modules or building blocks of the stack are structured very similar. Once the reader is familiar with the 

provided file structure, it becomes very easy to find any required information. 

Each stack layer directory or building block has a directory named Inc: 

 mac/inc 

 pal/inc 

 sal/inc 

 stb/inc 

 tal/inc 

 tfa/inc 

These directories contain basic header files that are generic for the entire block (independent from the specific 

implementation) or required for the upper layer. 

Additionally there are further Inc subdirectories designated to specific implementations. Each transceiver 

implementation inside the TAL has its own Inc directories (for example, tal/at86rf231/inc). 

Generally the following header file naming conventions are followed: 

6. layer.h: 

o This file contains global information that forms the layer or building block API such as function 

prototypes, global variables, global macros, defines, type definitions, etc. 

o Each upper layer that wants to use services from a lower layer needs to include this file 

o Examples: mac.h, tal.h, pal.h, stb.h, sal.h, tfa.h 

7. layer_internal.h: 



 

8412A-AVR-02/13 

o This file contains stack internal information only. No other layer or building block shall include such a 

file 

o Examples: 

MAC/Inc/mac_internal.h, TAL/AT86RF212/Inc/tal_internal.h 

8. layer_types.h: 

o This file contains the definitions for the supported types of each category that can be used with 

Makefiles or project files to differentiate between the various implementations and make sure that the 

proper code is included 

o Whenever a new type of this category is introduced (for example a new hardware board type), the 

corresponding file needs to be updated 

o Examples: tal_types.h, sal_types.h, vendor_boardtypes.h 

9. layer_config.h: 

o This file contains definitions of layer specific stack resources such as timers or buffers. 

o For further information see Section 5.3 

o Examples: mac_config.h, tal_config.h, pal_config.h 



 

8412A-AVR-02/13 

4 Brief about ASF 

The following chapter gives a brief explanation about the Atmel Software Framework. 

The Atmel Software Framework (ASF) is a MCU software library providing a large collection of embedded software 

for Atmel flash MCUs: megaAVR, AVR XMEGA, AVR UC3 and SAM devices. 

4.1 ASF directory structure 

For more details on ASF directory structure please refer to Atmel Software Framework documentation [9] 

5 Understanding the stack 

The following chapter explains how an end user application is configured. Generally the stack is formed by every 

software portion logically below the application. 

The stack can comprise: 

 The TAL based on PAL, or 

 The MAC based on TAL and PAL, or 

 A network layer (NWK) based on MAC, TAL, and PAL 

 Any other layer residing below the application 

For configuring the stack appropriately please refer to Chapter 7. 

5.1 Frame handling procedures 

5.1.1 Frame transmission procedure 

This section shall explain the stack layer interworking for the transmission of a MAC data frame. The payload of such 

a frame requires special treatment, since it is handed over from the higher layer or application, whereas other MAC 

frames are generated inside the MAC layer itself. 

The stack is always separated into a stack domain and an application domain. The application resides on the stack 

layer called Highest Stack Layer (see Section 2.1.4). The AVR2025 software package can be utilized in the following 

two different architectures: 

(1) An Application residing on top of the MAC layer: The application interacts with the MAC Layer by means of 
functions call (residing in file mac_api.c) and callbacks (residing in files usr_*.c). The MAC-API in return interacts 
with the MAC Core Layer (MCL) by means of messages handled with an internal queue. 

(2) An application residing on top of another layer (above the MAC layer): The application interacts with the “Highest 

Stack Layer” by means of function calls and callback to be implemented within the highest stack layer and/or the 

application. The stack layer above the MAC (that is, the Network Layer – NWK) interacts with the MAC by means 

of messages handled with an internal queue (similar to (1)). 



 

8412A-AVR-02/13 

5.1.1.1 Part 1 – Data frame creation and transmission 

Figure 4-1. Data frame transmission procedure – Part 1. 

 

MCL

NWKmac_api.c

App 
( based on 

MAC)

wpan_mcps_data_req()

mcps_data_ request() mcps_data_ request()

TAL

PAL /

HW

Highest 

Stack Layer

App 
( based on 

Highest Stack 

Layer)

1 2

A

A’

B

B’

B’’

C C

E

F

tal_tx_ frame()

D

NHLE- MAC-

Queue

 
 

How is the procedure for a MAC Data frame which shall be transmitted? 

(A) In case the MAC application wants to initiate a frame transmission, it call the MAC-API function 
wpan_mcps_data_req() function with the corresponding parameters (see file MAC/Inc/mac_api.h). As part of the 
parameter list the application needs to specify the proper MAC addressing information and the actual application 
payload. 

In case the application resides on another higher layer than the MAC, the Highest Stack Layer needs to provide a 
similar API than the MAC and should handle the request of the application for a frame transmission similarly (A’). 

(B) Within file mac_api.c the corresponding MAC message is generated and queued into the NHLE-MAC-Queue 
(which handles all MAC layer request and response messages). During this process the actual application 
payload is copied once into the proper position of the MCPS message. This is actually the only the data payload 
is copied during the entire frame transmission process. During the further processing of the frame, the payload is 
not copied further (except for the utilization of MAC security). 

In case the application resides on another higher layer than the MAC, the Highest Stack Layer needs to generate the 
corresponding message accordingly and queued this into the proper queue. Here the application payload is also 
copied only once at the interface of the Highest Stack Layer (B’). If the application is already at the right position, is it 
not necessary to copy the application payload again during the further process of the frame in all lower layers down 
to the MAC layer (B’’). 

The subsequent handling of the frame transmission attempt is identical independent from the stack layer the 
application is actually residing on. 



 

8412A-AVR-02/13 

(C) Within the MAC Core Layer (MCL) the dispatcher reads the message form the NHLE-MAC-Queue and call the 
corresponding function mcps_data_request() (see file MAC/Src/mac_mcps_data.c). The following functions are 
performed: 

 Parsing of MAC address information 

 Creation of the actual MAC frame by filling the information structure (structure frame_info_t – see file 

TAL/Inc/tal.h) 

 The frame_info_t structure for the data frame contains a fully formatted MAC frame including the MAC Header 

information and the MSDU (that is, the MAC payload of the frame); the MSDU is not copied again during this 

process of the MAC frame creation 

(D) Once the MAC frame is properly formatted, the corresponding TAL-API function is called in order to initiate the 
actual frame transmission (see function tal_tx_frame(); declaration in TAL/Inc/tal.h). The TAL functions required 
the frame_info_t structure as input. 

(E) Inside the TAL no further formatting of the MAC frame is done. The frame is transmitted using the requested 

CSMA-CA scheme and retry mechanism. This is done by means of using PAL functions and the provided 

hardware (F). For further information, check function tal_tx_frame() in file TAL/tal_type/tal_tx.c. 

5.1.1.2 Part 2 – Data frame clean-up and confirmation 

Figure 5-1-. Data frame transmission procedure – Part 2. 

 

MCL

NWKmac_ callback_

wrapper.c

App 
( based on 

MAC)

mcps_ data_ conf ()

TAL

PAL /

HW

Highest 

Stack Layer

App 
( based on 

Highest Stack 

Layer)

1 2

f

f’

e

e’’

b

a

tal_ rx_ frame_ cb()tal_ tx_ frame_ done_ cb()

c

MAC- NHLE-

Queue

usr_ mcps_ data_ conf()

d

e’

 
 



 

8412A-AVR-02/13 

(a)(b) Once the MAC frame has been transmitted (either successfully or unsuccessfully) by means of using PAL 

functions and the provided hardware, the TAL calls the frame transmission callback function 

tal_tx_frame_done_cb() residing inside the MAC (see MAC/Src/mac_process_tal_tx_frame_status.c) (c). 

(d) Inside the MCL the corresponding callback message is generated including the frame transmission status 

code for the MAC DATA frame and queued into the MAC-NHLE-Queue (which handles all MAC layer 

confirmation and indication messages). 

(e) The dispatcher extracts the confirmation message and calls the corresponding callback function 

(mcps_data_conf() in file MAC/Src/mac_callback_wrapper.c) if the application is residing on top of the MAC 

layer. 

In case the stack utilizes another stack on top of the MAC layer, the callback functions are implemented inside the 

higher stack layers (e’)(e’’). 

(f)(f’) Finally the application is notified about the status of the attempt to transmit a data frame by means of the 

callback function (usr_mcps_data_conf() if the application resides on top of the MAC layer) to be implemented 

inside the application itself. 

5.1.2 Frame reception procedure 

This section shall explain the stack layer interworking by for the reception of a MAC data frame. 

As already explained in Section 5.1.1 the stack is always separated into a stack domain and an application domain. 

Figure 5-2. Data frame reception procedure. 

  TAL

  MCL

NWKmac_ callback_ wrapper.c

App ( based on 

MAC)

mcps_data_ind()

PAL /

HW

Highest Stack 

Layer

App 
( based on Highest 

Stack Layer)

1

2

H

H’

G’’

tal_rx_ frame_cb()

TAL- MAC-

Queue

usr_mcps_data_ind()

E

G’

process_ incoming_

frame()

D

MAC- NHLE-

Queue

F

G

TAL-

Incoming-

Frame-

Queue

A

handle_ received_ frame_irq()

ISR

tal_task() C
B

mac_task()

 
 



 

8412A-AVR-02/13 

How is the procedure for a MAC Data frame which is received? 

(A) Once the frame has been received by the hardware the ISR is invoked and function handle_received_frame_irq() 

(located in file TAL/tal_type/Src/tal_rx.c) is called within the ISR contect. In this function the following tasks are 

performed: 

 Reading of the ED value of the current frame 

 Reading of the frame length 

 Uploading of the actual frame including the LQI octet appended at the end of the frame 

 Constructing the “mdpu” array of the frame_info_t structure for the received frame by additionally appending the 

ED value after the LQI value (for more information about the structure of the received frame see Section 5.2.1.2) 

 Reading of the timestamp of received frame if required 

 Queuing the received frame into the TAL-Incoming-Frame-Queue for further processing in the main context 

(B) During the subsequent call to tal_task() (see file TAL/tal_type/Src/tal.c) the frame is extracted from the TAL-
Incoming-Frame-Queue and function process_incoming_frame() (see file TAL/tal_type/Src/tal_rx.c) is called 

(C) Within function process_incoming_frame() further handling of the frame is performed (such as calculation of the 
normalized LQI value based on the selected algorithm for LQI handling) and the callback function 
tal_rx_frame_cb() residing inside the MAC (see file MAC/Src/mac_data_ind.c) is called 

(D) The callback function tal_rx_frame_cb() pushes the TAL frame indication message into the TAL-MAC-Queue for 
further processing inside the MCL  

(E) During the subsequent call to mac_task() (see file MAC/Src/mac.c) the TAL indication message is extracted from 
the TAL-MAC-Queue and function mac_process_tal_data_ind() (see file MAC/Src/mac_data_ind.c) is called 

(F) Within MCL the following task are performed once function mac_process_tal_data_ind() is executed 

 Depending on the current state of the MCL the frame type is derived and the function handling the specific frame 

type is invoked 

 In case of a received MAC Data Frame received during regular state of operation (that is, no scanning is ongoing, 

etc.) the corresponding function is mac_process_data_frame() residing in MAC/Src/mac_mcps_data.c 

 Within function mac_process_data_frame() the MAC Header information is extracted from the received frame and 

the corresponding MCPS-DATA.indication primitive message is assembled 

 The formatted MCPS-DATA.indication message is pushed into the MAC-NHLE-Queue 

(G) The dispatcher extracts the indication message and calls the corresponding callback function (mcps_data_conf() 

in file MAC/Src/mac_callback_wrapper.c) if the application is residing on top of the MAC layer. 

In case the stack utilizes another stack on top of the MAC layer, the callback functions are implemented inside the 

higher stack layers (G’)(G’’). 

(H)(H’) Finally the application is notified about the reception of a Data frame data by means of the callback function 

(usr_mcps_data_ind() if the application resides on top of the MAC layer) to be implemented inside the 

application itself. 

Once the received frame content is uploaded from the hardware into software, during the further process of the 

reception of a MAC Data frame, the actual payload of the Data frame only needs to be copied once within the 

receiving application on top of the MAC layer (or on top of another Highest Stack Layer). Within the stack itself the 

payload handling is very efficient and the content never needs to be copied. 

5.2 Frame buffer handling 

5.2.1 Application on top of MAC-API 

This section explains the buffer handling for applications residing on top of the MAC-API (HIGHEST_STACK_LAYER 

= MAC). 

5.2.1.1 Frame transmission buffer handling 

The following section describes how the buffers are used inside the stack during the procedure of the transmission of 

a MAC Data Frame. 



 

8412A-AVR-02/13 

Figure 5-3. Frame buffer handling during data frame transmission – part 1. 

Free Area

cmd_code 
(=MCPS_DATA_REQUEST)

SrcAddrMode

DstAddrMode

DstAddr

DstPANId

msduHandle

TxOptions

msduLength

*msdu

MSDU (= Data payload)

Space for FCS

m
s
d

u
L

e
n

g
th

 o
c

te
ts

m
c

p
s

_
d

a
ta

_
re

q
_

t *m
c

p
s

_
d

a
ta

_
re

q

wpan_mcps_data_req() 

in mac_api.c

Free Area

msg_type 
(=MCPS_MESSAGE)

MPDU 

(= MAC Header 

+ Data Payload)

Space for FCS

fra
m

e
_

in
fo

_
t *tra

n
s
m

it_
fra

m
e

mcps_data_request() 

in mac_mcps_data.c

*buffer_header

to 

buf_header 

array

msduHandle

indirect_in_transit 
(only for indirect transmission)

time_stamp
(Only filled after Tx)

*mpdu

Length of MPDU

MAC-API

(Step 1)

MCL

(Step 2)

TAL

(Step 3)

tal_tx_frame() in tal_tx.c

Free Area

msg_type 
(=MCPS_MESSAGE)

MPDU

Space for FCS

fra
m

e
_

in
fo

_
t *tx

_
fra

m
e

*buffer_header

msduHandle

indirect_in_transit 
(only for indirect transmission)

time_stamp
(Only filled after Tx)

*mpdu

Length of MPDU

uint8_t 

*tal_frame_to_tx

T
x

 F
ra

m
e

persistence_time
(only for indirect transmission)

persistence_time
(only for indirect transmission)

 

Step 1: 

If an application based on the MAC layer as Highest Stack Layer shall transmit a frame to another node, the MAC 

needs to generate a MAC Data frame. Initially the application calls function wpan_mcps_data_req() (located in file 

mac_apic.). In this function a new (large) buffer is requested from the Buffer Management Module (BMM) by means 

of the function bmm_buffer_alloc(). After the successful allocation of the buffer the structure of type mcps_data_req_t 

is overlaid over the actual buffer body: 

mcps_data_req =  

   (mcps_data_req_t *)BMM_BUFFER_POINTER(buffer_header); 

For more information about the mcps_data_req_t structure see file MAC/Inc/mac_msg_types.h. 

The mcps_data_req_t structure is filled according to the parameters passed to function wpan_mcps_data_req() and 

the Data frame payload (MSDU) is copied to the proper place within this buffer. This is the only time the actual 

payload is copied during frame transmission inside the entire stack. The MSDU will reside right at the end of the 

buffer (with additional space for the FCS). The size of such a buffer fits the maximum possible payload (according to 

4). Also the parameter msdu is updated to point right at the beginning of the MSDU content. 

The entire frame buffer is then queued as an MCPS_DATA_REQUEST message into the NHLE-MAC-Queue. 

Step 2: 

Once the MCPS_DATA_REQUEST message has been de-queued and the dispatcher has called the corresponding 

function mcps_data_request() (see file MAC/Src/mac_mcps_data.c), the structure of type frame_info_t is overlaid 

over the actual buffer body: 



 

8412A-AVR-02/13 

frame_info_t *transmit_frame =  

(frame_info_t *)BMM_BUFFER_POINTER((buffer_t *)msg); 

For more information about the frame_info_t structure see file MAC/Inc/mac_msg_types.h. 

Afterwards the corresponding elements of the frame_info_t structure are filled accordingly: 

 The message_type parameter is set to MCPS_MESSAGE 

 The MSDU handle is copied to the proper place 

 The parameter in_transit (only utilized during indirect transmission) is set to the default value 

 The buffer_header parameter is set to point to the actual buffer header; this is required once the transmission has 

finished to free the buffer properly 

As the last step the complete frame (that is, the MPDU) is formatted. This is done by simply adding the required MAC 

Header information fields at the correct location in front of the MSDU (that is, the Data payload). The first element of 

the MPDU fill then contain the length of the entire MPDU to be transmitted, and the mpdu pointer within the 

frame_info_t structure is updated to point to the beginning of the frame. 

This step within the MCL is finalized by initiating the actual frame transmission by calling the TAL function 

tal_tx_frame(). 

Step 3: 

Within the TAL in function tal_tx_frame() (see file TAL/tal_type/Src/tal_tx.c) a pointer is set to the location of the 

actual MPDU inside the frame buffer (member mpdu of structure frame_info_t). This pointer is used for initiating the 

frame transmission (by means of function send_frame() with the appropriate parameters for CSMA-CA and frame 

retry. 

Figure 5-4. Frame buffer handling during data frame transmission – part 2. 

TAL

(Step 4)

handle_tx_end_irq() 

and tx_done_handling()

in tal_tx.c

Free Area

msg_type 
(=MCPS_MESSAGE)

fra
m

e
_
in

fo
_

t *m
a
c
_

fra
m

e
_
p

tr

*buffer_header

msduHandle

time_stamp
(Filled after Tx)

*mpdu

mac_gen_mcps_data_conf() 

in mac_mcps_data.c

msduHandle

status

MCL

(Step 5)

time_stamp

Free Area

cmd_code 
(=MCPS_DATA_CONFIRM)

m
c

p
s
_

d
a

ta
_
c
o

n
f_

t 

*m
d

c

mcps_data_conf() in

mac_callback_wrapper.c

msduHandle

status

MAC-API

(Step 6)

time_stamp

Free Area

cmd_code 
(=MCPS_DATA_CONFIRM)

m
c

p
s
_

d
a

ta
_
c
o

n
f_

t 

*p
m

s
g

indirect_in_transit 
(only for indirect transmission)

persistence_time
(only for indirect transmission)

 



 

8412A-AVR-02/13 

Step 4: 

Once the transmission of the frame has been finished (either successfully or unsuccessfully), the transceiver 

generates an interrupt indicating the end of the transmission. This interrupt is handled in function handle_tx_end_irq() 

located in file TAL/tal_type/Src/tal_tx.c. In case timestamping is enabled, the time_stamp parameter is written into the 

proper location of the frame_into_f structure of the frame buffer. This happens in the context of the Interrupt Service 

Routine. 

Afterwards function tx_done_handling() (located in TAL/tal_type/Src/tal_tx.c) is called in the main execution context. 

Here the timestamp is updated and the corresponding callback function tal_tx_frame_done_cb() inside the MCL is 

called. 

Step 5: 

Function tal_tx_frame_done_cb() (residing in file MAC/Src/ mac_process_tal_tx_frame_status.c) calls a number of 

other functions inside the MCL, which (in the case of a processed Data frame) finally will end up in function 

mac_gen_mcps_data_conf() in file mac_mcps_data.c. 

 

 

Here the structure of type mcps_data_conf_t is overlaid over the actual buffer body: 

mcps_data_conf_t *mdc =  

    (mcps_data_conf_t *)BMM_BUFFER_POINTER(buf); 

For more information about the mcps_data_conf_t structure see file MAC/Inc/mac_msg_types.h. 

The mcps_data_conf_t structure is filled accordingly and the entire buffer is then queued as an 

MCPS_DATA_CONFIRM message into the MAC-NHLE-Queue. 

Step 6: 

Once the MCPS_DATA_ CONFIRM message has been de-queued and the dispatcher has called the corresponding 

function mcps_data_conf() (see file MAC/Src/mac_callbcak_wrapper.c), the structure of type mcps_data_conf_t is 

again overlaid over the message (which is the actual buffer body): 

pmsg =  

    (mcps_data_conf_t *)BMM_BUFFER_POINTER(((buffer_t *)m)); 

Finally the corresponding parameters of the callback function inside the application (function usr_mcps_data_conf()) 

are filled by the corresponding members of the mcps_data_conf_t structure and the buffer is freed again by calling 

function bmm_buffer_free(). The buffer is now free for further usage. 

Through all steps from (1) to (6) the same buffer is used. 



 

8412A-AVR-02/13 

5.2.1.2 Frame reception buffer handling 

Figure 5-5. Frame buffer handling during data frame reception. 

TAL

(Step 1)

handle_received_frame_irq()

and 

process_incoming_frame()

in tal_rx /

tal_rx_frame_cb() 

in mac_data_ind.c

Free Area

*buffer_header

msduHandle

(not used for Rx)

time_stamp

*mpdu

mac_process_tal_data_ind() 

in mac_data_ind.c /

mac_process_data_frame() 

in mac_mcps_data.c

MCL

(Step 2)

mcps_data_ind() in

mac_callback_wrapper.c

MAC-API

(Step 3)

Free Area

cmd_code 
(=MCPS_DATA_IND.)m

c
p

s
_
d

a
ta

_
in

d
_
t *p

m
s

g

fra
m

e
_

in
fo

_
t

*re
c

e
iv

e
_
fra

m
e

ED value

(read from TRX register)

LQI

(uploaded from TRX)

FCS

(uploaded from TRX)

MPDU

(PHY frame)

(uploaded from TRX)

Frame length

(uploaded from TRX)

to 

buf_header 

array

Free Area

cmdcode 
(=MCPS_DATA_IND.)

Src Addr Info

Dst Addr Info

ED value

LQI

FCS

MPDU

Length of MPDU

msg_type 
(=TAL_DATA_INDICATION)

m
c
p

s
_

d
a

ta
_

in
d

_
t *m

d
i

mpduLinkQuality

DSN

Timestamp

msduLength

*msdu

Src Addr Info

Dst Addr Info

mpduLinkQuality

DSN

Timestamp

msduLength

*msdu

MPDU

Length of MPDU

indirect_in_transit 
(only for indirect transmission)

persistence_time
(only for indirect transmission)

 

Step 1: 

Once the transceivers raises an interrupt indicating the reception of a frame, function handle_received_frame_irq() 

(located in file TAL/tyl_type/Src/tal_rx.c) is called in the context of an ISR. Here a structure of type frame_info_t is 

overlaid over the current receive buffer body: 

frame_info_t *receive_frame; 

… 

receive_frame =  

    (frame_info_t*)BMM_BUFFER_POINTER(tal_rx_buffer); 

After reading the ED value of the current frame and the frame length, the entire frame is uploaded from the 

transceiver and the ED value is stored at the location after the LQI (which automatically was uploaded from the 

transceiver). The mpdu pointer of the frame_info_t structure points to the proper location where the actual frame 

starts within the buffer. Afterwards the entire buffer is pushed into the TAL-Incoming_Frame-Queue for further 

processing outside the ISR context. 

After removing the buffer from the TAL-Incoming-Frame-Queue function process_incoming_frame() (also located in 

file TAL/tal_type/Srctal_rx.c) is called. Here again a structure of type frame_info_t is overlaid over the receive buffer 

body: 



 

8412A-AVR-02/13 

frame_info_t *receive_frame = 

    (frame_info_t*)BMM_BUFFER_POINTER(buf_ptr); 

Before the callback function inside the MAC is called, the proper buffer header is stored inside the buffer_header 

element of structure frame_info_t: 

receive_frame->buffer_header = buf_ptr; 

The processing inside the TAL is done once tal_rx_frame_cb() is called. Although this function resides inside the 

MCL (see file MAC/Src/mac_data_ind.c), the functionality is considered here being logically part of the TAL. Here the 

msg_type of the frame residing in the current buffer is specified as TAL_DATA_INDICATION and the buffer is 

pushed into the TAL-MAC-Queue. 

Step 2: 

Once the TAL_DATA_INDICATION message has been de-queued from the queue the dispatcher calls the 

corresponding function mac_process_tal_data_ind() (see file MAC/Src/mac_data_ind.c). In this function the received 

frame is parsed and eventually the dedicated function handling the particular frame type is invoked, which is 

mac_process_data_frame() in file MAC/Srcmac_mcps_data.c. 

Here a structure of type mcps_data_ind_t is overlaid over the receive buffer body: 

mcps_data_ind_t *mdi =  

    (mcps_data_ind_t *)BMM_BUFFER_POINTER(buf_ptr); 

For more information about the mcps_data_ind_t structure see file MAC/Inc/mac_msg_types.h. 

The members of the mcps_data_ind_t structure are filled based on the information within the received MAC Data 

frame. The message is identified as a MCPS_DATA_INDICATION message and is queued into the MAC-NHLE-

Queue. 

Step 3: 

Once the dispatcher removes the MCPS_DATA_INDICATION from the queue, the corresponding function for 

handling this message is called - mcps_data_ind() in file MAC/Src/mac_callback_wrapper.c. Here the structure of 

type mcps_data_ind_t is overlaid again over the actual buffer body: 

pmsg =  

    (mcps_data_ind_t *)BMM_BUFFER_POINTER(((buffer_t *)m)); 

Finally the corresponding parameters of the callback function inside the application (function usr_mcps_data_ind()) 

are filled by the corresponding members of the mcps_data_ind_t structure and the buffer is freed again by calling 

function bmm_buffer_free(). The buffer is now free for further usage. 

Through all steps from (1) to (3) the same buffer is used. 

5.2.2 Application on top of TAL 

While an application on top of the MAC-API is logically decoupled from the actual buffer handling inside the entire 

stack (such an application does neither need to allocate nor free a buffer), an application on top of the TAL requires 

more interworking with the stack in regards of buffer handling and internal frame handling structures. This is 

explained in the subsequent section. 

As an example for an application residing on top of the TAL (HIGHEST_STACK_LAYER = TAL) is described in 

Section 10.2.2.1. 

5.2.2.1 Frame transmission buffer handling using TAL-API 

The following section describes how buffers are used inside the stack during the procedure of the transmission of a 

Frame using the TAL-API. 

While the application on top of the TAL needs to free buffers received by the frame reception callback function (since 

these buffers are always allocated inside the TAL automatically), for frame transmission two different approaches are 

available: 

10. Application uses buffer management module provided by stack including allocation and freeing of buffers for 
frame transmission, or 

11. Application uses static frame transmission buffer without the need for allocating or freeing buffers dynamically. 



 

8412A-AVR-02/13 

Approach (2) will be used subsequently (similar to the source code based on example application in Section 

10.2.2.1). 

IMPORTANT Independent from the selected approach regarding the buffer management, it is important that the frame 
finally presented to the TAL for transmission follows the scheme in Figure 5-6. The frame needs to be 
stored at the end of the buffer (right in front of the space for the FCS). This is required in order to fit a 
frame using the maximum frame length according to 4 into a buffer of size LARGE_BUFFER_SIZE. If this 
scheme is not proper applied, memory corruption may occur. 

Figure 5-6. Frame buffer handling during frame transmission using TAL-API. 

static frame buffer for 

Tx

m
a
c
_

fra
m

e
_

le
n

g
th

u
in

t8
_
t s

to
ra

g
e
_

b
u

ffe
r[L

A
R

G
E

_
B

U
F

F
E

R
_
S

IZ
E

]

Appl.

(Step 1)

TAL

(Step 2)

tal_tx_frame() in tal_tx.c

Free Area

msg_type 

MPDU

Space for FCS

fra
m

e
_
in

fo
_
t *tx

_
fra

m
e

*buffer_header

msduHandle

time_stamp

*mpdu

Length of MPDU

uint8_t 

*tal_frame_to_tx

T
x
 F

ra
m

e

fra
m

e
_
in

fo
_
t *tx

_
fra

m
e

Space for FCS

MSDU

MAC Header

Length of MPDU

uint8_t *frame_ptr

Free Area

*mpdu

msg_type

*buffer_header

msduHandle

time_stamp

N
o

t u
s

e
d

 in
 c

a
s

e
 o

f 

s
ta

tic
 T

x
 b

u
ffe

r

N
o

t u
s
e

d
 in

 c
a
s

e
 o

f 

s
ta

tic
 T

x
 b

u
ffe

rindirect_in_transit 
(only for indirect transmission)

persistence_time
(only for indirect transmission)

indirect_in_transit 
(only for indirect transmission)

persistence_time
(only for indirect transmission)

 

Step 1: 

The application (not using dynamic buffer management for frame transmission) requires a static buffer for frame to be 

transmitted, such as: 

static uint8_t storage_buffer[LARGE_BUFFER_SIZE]; 

A large buffer is big enough to incorporate the longest potential frame to be transmitted based on 4. 

Later a structure of type frame_info_t is overlaid over the static transmit buffer: 

tx_frame_info = (frame_info_t *)storage_buffer; 

For more information about the frame_info_t structure see file TAL/Inc/tal.h. 

The static frame buffer is filled with the MSDU (that is, the actual application payload) and the MAC Header 

information as required by this frame. Note that also a free format frame not compliant with 4 can be created within 

the application. The octet in front of the MAC header needs to store the actual length of the frame. 

Afterwards the mpdu pointer (member of the frame_info_t structure) is updated to point at the start of the MPDU (that 

is, the octet containing the length of the actual frame). Since dynamic buffer management is not used for frame 

transmission, the other members of the frame_info_t structure are not used in this frame transmission approach. 



 

8412A-AVR-02/13 

Once the frame formatting is completed, the frame is handed over to the TAL for transmission by calling function 

tal_tx_frame(). 

Step 2: 

Within the TAL in function tal_tx_frame() (see file TAL/tal_type/Src/tal_tx.c) a pointer is set to the location of the 

actual MPDU inside the frame buffer (member mpdu of structure frame_info_t). This pointer is used for initiating the 

frame transmission (by means of function send_frame() with the appropriate parameters for CSMA-CA and frame 

retry. 

Step 3: 

After the frame has been transmitted the TAL acts as similar at described in Section 5.2.1.1. Once the TAL frame 

transmission callback function tal_tx_frame_done_cb() (residing inside the application) is called, no further handling 

is required in case of the usage of a static frame transmission approach. The static frame buffer can immediately be 

re-used for further transmission attempts. In case of dynamic buffer handling the Tx frame buffer needed to be freed 

additionally by calling function bmm_buffer_free(). 

5.2.2.2 Frame reception buffer handling using TAL-API 

The following section describes how buffers are used inside the stack during the procedure of the reception of a 

Frame using the TAL-API. 



 

8412A-AVR-02/13 

Figure 5-7. Frame buffer handling during frame reception using TAL-API. 

TAL

(Step 1)

handle_received_frame_irq()

and 

process_incoming_frame()

in tal_rx

Free Area

*buffer_header

msduHandle

time_stamp

*mpdu

Appl.

(Step 2)

fra
m

e
_

in
fo

_
t

*re
c
e

iv
e

_
fra

m
e

ED value

(read from TRX register)

LQI

(uploaded from TRX)

FCS

(uploaded from TRX)

MPDU

(PHY frame)

(uploaded from TRX)

Frame length

(uploaded from TRX)

to 

buf_header 

array

msg_type

Free Area

*buffer_header

msduHandle

time_stamp

*mpdu

fra
m

e
_

in
fo

_
t *fra

m
e

LQI

FCS

MPDU

Frame length

to 

buf_header 

array

msg_type

 tal_rx_frame_cb() 

indirect_in_transit 
(only for indirect transmission)

persistence_time
(only for indirect transmission)

indirect_in_transit 
(only for indirect transmission)

persistence_time
(only for indirect transmission)

ED value

 

 

 

Step 1: 

The processing of a received frame in side the TAL is independent from the layer residing on top of the TAL. The 

same mechanisms as described in Section 5.2.1.2 apply within in the TAL layer. 

Step 2: 



 

8412A-AVR-02/13 

Once the TAL frame reception callback function tal_rx_frame_cb() (implemented inside the application) is called, the 

application can access the frame buffer via a frame_inof_t structure. At the end it is necessary to free the receive 

buffer by calling the function bmm_buffer_free(). A new buffer for frame reception is automatically allocated inside the 

TAL itself, so the application does not need to take for Rx buffer allocation. 

5.3 Configuration files 

The stack contains a variety of configuration files, which allow: 

 The stack to configure the required stack resources according to the application needs based on the required 

functionality, and 

 The application to configure its own resources 

Throughout the various layers and thus directories within the software package the following configuration files are 

available: 

 app_config.h 

 stack_config.h 

 tal_config.h 

 mac_config.h 

 mac_build_config.h 

 mac_user_build_config.h 

The meaning of these configuration files are described in more detail in the following sections. 

The following picture shows the “#include”-hierarchy (#include “file_name.h”) for these configuration files. 



 

8412A-AVR-02/13 

Figure 5-8. Configuration file #include-hierarchy. 

app_config.h mac_user_build_config.h

stack_config.h

nwk_config.h

mac_config.h

tal_config.h

+

mac_build_config.h

Application Domain

Stack Domain
 

 

 

 

 

5.3.1 Application resource configuration – app_config.h 

Each application is required to provide its own configuration file app_config.h usually located in Inc directory of the 

application. 



 

8412A-AVR-02/13 

This configuration file defines the following items: 

 Timers required only within the application domain (independent from the timers used within the stack): Here the 

number of application timers are defined. 

 Large and small buffers required only within the application domain (independent from the buffers used within the 

stack) 

 Additional settings regarding the buffer size of USB or UART buffers 

 Any other resources as required 

In order to allow for proper resource configuration (for example, to calculate the overall number of timers) 

app_config.h includes the file stack_config.h which contains resource definitions from the stack domain (without the 

application). 

This file can be adjusted by the end user according to its own needs. 

5.3.2 Stack resources configuration – stack_config.h 

The stack uses its own configuration file stack_config.h located in directory Include. 

This configuration file defines the following items: 

 IDs of the currently known stack layers (PAL up to NWK) 

 Size of large and small buffers 

 Total number of buffers and timers 

Depending on the setting of the build switch HIGHEST_STACK_LAYER the configuration file of the highest layer of 

the stack (tal_config.h, mac_config.h, etc.) is included in order to calculate the resource requirements at compile 

time. 

IMPORTANT This file must not be changed by the end user. 

5.3.3 TAL resource configuration – tal_config.h 

The TAL layer uses its own configuration file tal_config.h located in directory TAL/trx_name/Inc, that is, each 

transceiver (and thus each TAL implementing code for a specific transceiver) has its own TAL configuration file: 

 tal/ atmegarfr2/inc 

 tal/at86rf212/inc 

 tal/at86rf231/inc 

 tal/at86rf233/inc 

 Etc. 

These configuration files define the following items: 

 Transceiver dependent values required by any upper layer (radio wake-up time) 

 No. of timers used within this particular TAL implementation 

 The capacity of the TAL-Incoming-Frame-Queue 

If the build switch HIGHEST_STACK_LAYER is set to TAL, the proper tal_config.h file (depending on build switch 

TAL_TYPE) is directly included into file stack_config.h since there are no further stack layers defined. 

IMPORTANT These files must not be changed by the end user. 

5.3.4 MAC resource configuration – mac_config.h 

The MAC layer uses its own configuration file mac_config.h located in directory MAC/Inc. 

This configuration file defines the following items: 

 Timers used within the MAC layer based on the current build configuration 

 The capacity of certain MAC specific queues 

If the build switch HIGHEST_STACK_LAYER is set to MAC, mac_config.h is directly included into file stack_config.h 

since there is no upper stack layer defined. 



 

8412A-AVR-02/13 

IMPORTANT This file must not be changed by the end user. 

5.3.5 NWK resource configuration – nwk_config.h 

Once a network layer (NWK) is provided as part of the stack on top to the MAC, the network layer uses its own 

configuration file nwk_config.h located in directory NWK/Inc. 

If the build switch HIGHEST_STACK_LAYER is set to NWK, nwk_config.h is directly included into file stack_config.h 

since there is no upper stack layer defined. 

IMPORTANT This file must not be changed by the end user. 

5.3.6 Build configuration file – mac_build_config.h 

File mac_build_config.h located in directory /Include defines the MAC features required for specific build 

configurations. See Section 7.2.1 for more information about mac_build_config.h. 

IMPORTANT This file must not be changed by the end user. 

5.3.7 User build configuration file – mac_user_build_config.h 

Each application may provide its own user build configuration file mac_user_build_config.h usually located in Inc 

directory of the application, although this is not required. This configuration file defines the actual MAC components 

used for the end user application and can actually reduce resource requirements drastically. 

If the application wants to use its own user build configuration the build switch MAC_USER_BUILD_CONFIG needs 

to be set. See Section 7.2.2 for more information about mac_user_build_config.h. 

This file can be adjusted by the end user according to its own needs. 

For more information about user build configurations and its utilization please refer to Section 5.4 and Section 7.2.2. 

5.4 MAC components 

The MAC is implemented to be fully compliant to the IEEE 802.15.4-2006 standard. 

The MAC components are clustered in essential components and supplementary components. 

Essential components are required for a minimum reasonable application based on the MAC and are thus always 

included in a build. These components are: 

 MAC reset 

 Direct data transmission and reception 

 Writing MAC PIB attributes 

Supplementary components are components that provide standard MAC functionality that might not be required for 

some applications. This is example association, indirect data transmission, scanning, etc. These components are 

also included in the standard build and can be used by any applications, so the end application does not have to 

worry about the inclusion of any functionality. 

On the other hand all supplementary components can be removed from the build in order to drastically reduce 

footprint. For more information about how to add or remove components from the build please see Section 7.2 (using 

build switch MAC_USER_BUILD_CONFIG). 



 

8412A-AVR-02/13 

Figure 5-9. Essential and supplementary MAC components. 

Essential components

(always included)

Supplementary components

(can be excluded by using 

MAC_USER_BUILD_CONFIG)

Rx / Tx of 

direct 

frames

MAC 

Reset

MAC PIB 

Attr.

setting

Indirect 

frame 

handling

(Tx, Rx, 

polling, 

…)

Scanning

(ED, 

active, 

passive, 

orphan)

Associa-

tion

Disasso-

ciation

Purging of 

indirect 

data

. . .

MAC compliant to 802.15.4

 

The following sections describe some of these supplementary components (especially the more complex ones) in 

more detail. 

 

5.4.1 MAC_INDIRECT_DATA_BASIC 

This feature is usually required for any node (both RFD and FFD) that wants to receive indirect data. This is for 

instance helpful, if a node is usually in power save mode and thus cannot receive direct frames from its parent. The 

node could then periodically wake-up and poll its parent for pending data. 

This feature includes the following functionality: 

 Initiation of explicit polling for pending of indirect data (usage of wpan_mlme_poll_req() / usr_mlme_poll_conf()) 

 Transmission of data request frames to its parent 

 Reception of indirect data frames 

 Initiation of implicit polling for indirect data (that is, transmission of data request frame without an explicit call of 

function wpan_mlme_poll_req()): 

o Polling for an association response frame during the association procedure 

o Polling for more pending data once a received frame from its parent has indicated more pending 

data at the parent 

o Polling for pending data in case a received beacon frame from its parent has indicated pending data 

at the parent 

5.4.2 MAC_INDIRECT_DATA_FFD 

This feature is a further extension of the feature MAC_INDIRECT_DATA_BASIC (that is, in order to use 

MAC_INDIRECT_DATA_FFD also MAC_INDIRECT_DATA_BASIC is required). It is designed for FFDs (PAN 

Coordinators or Coordinators) to allow the handling of transmitting indirect data frames. 

This feature includes the following functionality: 

 Initiation of indirect data transmission (usage of wpan_mcps_data_req() with TxOption = Indirect Transmission) 

 Handling of the Indirect-Data-Queue 

o Adding and removing of indirect frames 

o Handling of a persistence timer in order to check for expired transactions 

 Transmission of association response frame or indirect disassociation notification frames 

 Handling of received data request frames and the proper responses (either with pending frames or a data frame 

with zero length payload) 

 Setting of Frame Pending bit in the Frame Control field 



 

8412A-AVR-02/13 

 Adding of address of nodes with pending frames in the beacon frame payload 

Figure 5-10. Example of provided functionality for MAC_INDIRECT_DATA_BASIC and 
MAC_INDIRECT_DATA_FFD. 

wpan_mlme_poll_req()

usr_mlme_poll_conf()

Node (FFD) using

MAC_INDIRECT_DATA_FFD

S
ta

n
d

a
rd

 P
o

ll
 P

ro
c
e

d
u

re

Node using 

MAC_INDIRECT_DATA_BASIC

Data Request Frame

Data Frame

wpan_mcps_data_req

(Indirect)

MAC App

Add indirect 

frame to 

indirect queue

Check for 

pending 

indirect frames 

for the polling 

node

usr_mcps_data_ind()
Remove 

indirect frame 

from indirect 

queue

usr_mcps_data_conf()

MACApp

 

5.4.3 MAC_PURGE_REQUEST_CONFIRM 

This feature is a typical FFD feature allows a node to purge pending indirect frames from its Indirect_Data_queue by 

means of using functions wpan_mcps_purge_req() / usr_mcps_purge_conf(). 

Since purging of pending data requires handling of transmitting indirect frames, the feature 

MAC_INDIRECT_DATA_FFD is also required. 

5.4.4 MAC_ASSOCIATION_INDICATION_RESPONSE 

This feature is a typical FFD feature that allows a node to receive and process association request frames and 

handle them properly. In case the network uses short addresses, a short address may be selected and returned to 

the initiating device by means of association response frame. 

Since the association procedure is perform using indirect traffic and the node using 

MAC_ASSOCIATION_INDICATION_RESPONSE has to transmit the association response frame indirectly also the 

components MAC_INDIRECT_DATA_BASIC and MAC_INDIRECT_DATA_FFD are required. 

5.4.5 MAC_ASSOCIATION_REQUEST_CONFIRM 

This feature allows a node (both RFD and FFD) to associate to a parent (PAN Coordinator or Coordinator) to initiate 

an association procedure (by transmitting an association request frame) and handle the reception of an association 

response frame. 

In case a short address is desired this will be requested by the parent if allowed. All required timer for the association 

process are handled as well. 



 

8412A-AVR-02/13 

Since the association response frame is received indirectly, also the feature MAC_INDIRECT_DATA_BASIC is 

required. 

The node is able accept and process a request from its upper layer (for example, the network layer) to associate 

itself to another node (that is, its parent). 

Figure 5-11. Provided functionality for MAC_ASSOCIATION_INDICATION_ RESPONSE and 
MAC_ASSOCIATION_REQUEST_CONFIRM. 

wpan_mlme_associate_req()

Node (FFD) using

MAC_ASSOCIATION_

INDICATION_RESPONSE

S
ta

n
d

a
rd

 A
s

s
o

c
ia

to
n

 P
ro

c
e
d

u
re

Node using 

MAC_ASSOCIATION_

REQUEST_CONFIRM

Association 

Request Frame

Association 

Response Frame

MAC App

usr_mlme_associate_conf()

Add 

association 

response frame 

to indirect 

queue

usr_mlme_comm_status_ind()

MACApp

usr_mlme_associate_ind()

Assign short 

address if 

desired and 

allowed

wpan_mlme_associate_resp()

Data Request 

Frame

c

c

c

c

Timer

Timer

 

5.4.6 MAC_DISASSOCIATION_BASIC_SUPPORT 

This components allows 

 A node (both RFD and FFD) to initiate a disassociation procedure from its parent (PAN Coordinator or 

Coordinator), 

 a node (both RFD and FFD) to handle a received disassociation notification frame from its parent, 

 a node (both RFD and FFD) to poll for a pending indirect disassociation notification frame, 

 a node (FFD only) to initiate a disassociation procedure to its child 

Since the disassociation notification frame may be received indirectly, also the feature 

MAC_INDIRECT_DATA_BASIC is required. 

5.4.7 MAC_DISASSOCIATION_FFD_SUPPORT 

This feature is a typical FFD feature that allows a node to transmit an indirect disassociation notification frame to one 

of its children. 

The following components are required as well: 

 MAC_DISASSOCIATION_BASIC_SUPPORT 



 

8412A-AVR-02/13 

 MAC_INDIRECT_DATA_BASIC 

 MAC_INDIRECT_DATA_FFD 

5.4.8 MAC scan components 

These components allow a node to perform a specific type of scanning. 

 MAC_SCAN_ACTIVE_REQUEST_CONFIRM 

The node is able to perform an active scan to search for existing networks 

 MAC_SCAN_ED_REQUEST_CONFIRM 

The node is able to perform an energy detect scan 

 MAC_SCAN_ORPHAN_REQUEST_CONFIRM 

The node is able to perform an orphan scan in case it has lost its parent 

 MAC_SCAN_PASSIVE_REQUEST_CONFIRM 

The node is able to perform a passive scan to search for existing networks. This feature is only available if 

beacon-enabled networks are supported 

5.4.9 MAC_ORPHAN_INDICATION_RESPONSE 

This feature is a typical FFD feature that allows a node to process a received orphan notification frame from any of its 

children (initiated via an orphan scan request at the children) and process them properly. In response a realignment 

frame may be returned. 

Figure 5-12. Provided functionality for MAC_ORPHAN_INDICATION_RESPONSE and 
MAC_SCAN_ORPHAN_REQUEST_CONFIRM (orphan scan procedure). 

wpan_mlme_scan_req

(Orphan scan)

Node (FFD) using

MAC_ORPHAN_

INDICATION_RESPONSE

S
ta

n
d

a
rd

 O
rp

h
a
n

 S
c

a
n

 P
ro

c
e

d
u

re

Node using 

MAC_SCAN_ORPHAN_

REQUEST_CONFIRM

Orphan Notification 

Frame

Coordinator 

Realignment Frame

MAC AppMACApp

usr_mlme_orphan_ind()

Process orphan 

indication

wpan_mlme_orphan_resp()

Node has lost 

ist parent

usr_mlme_scan_conf()

 

5.4.10 MAC_START_REQUEST_CONFIRM 

This feature is a typical FFD feature that allows a node to start a new PAN (network) by means of using functions 

wpan_mlme_start_req() / usr_mlme_start_conf(). Depending on the setting of BEACON_SUPPORT this can be 

either only a non-beacon enabled network or also a beacon-enabled network. 

Consequently this also enables the ability of the node to: 

 Transmitting beacon frames (in case beacon-enabled networks are supported) 

 Respond to beacon request frames (active scan by another node) with proper beacon frames 



 

8412A-AVR-02/13 

 Perform network realignment and transmit coordinator realignment frames (initiated by calling function 

wpan_mlme_start_req() with parameter CoordinatorRealignment = true) 

Figure 5-13. Start of non-beacon network and active scan. 

wpan_mlme_scan_req

(Active scan)

Node (FFD) using

MAC_START_

REQUEST_CONFIRM

N
e

tw
o

rk
 S

ta
rt

Node using 

MAC_SCAN_ACTIVE_

REQUEST_CONFIRM

Beacon Request Frame

MAC AppMACApp

usr_mlme_start_conf()

Nonbeacon 

network 

established

wpan_mlme_start_req

(Nonbeacon network)

usr_mlme_scan_conf()

Beacon Frame

A
c
ti

v
e
 S

c
a
n

 P
ro

c
e

d
u

re

 

5.4.11 MAC_RX_ENABLE_SUPPORT 

This feature is usually required for any node (both RFD and FFD) that wants to enable its receiver for a certain 

amount of time or disable its receiver. Most commonly it is utilized at an RFD that goes to sleep mode during idle 

periods to save as much power as possible. In order to periodically listen to the channel or frames to be received, the 

application can initiate a wpan_mlme_rx_enable_req() with proper parameters (see MAC Example 

Basic_Sensor_Network in Section 10.2.1.1). 



 

8412A-AVR-02/13 

Figure 5-14. Enabling of receiver and proper data reception. 

wpan_mlme_rx_enable_req()

usr_mlme_rx_enable_conf()

Other Node 

(e.g. PAN Coordinator)

U
n

s
u

c
c
e

s
s

fu
l 

D
a
ta

 T
ra

n
s
m

is
s

io
n

Node using 

MAC_RX_ENABLE_SUPPORT

Data Frame

Data Frame (last retry)

wpan_mcps_data_req

(Direct)

MAC App

Data frame is 

retried since no 

Acknowledge-

ment is 

received

usr_mcps_data_ind()

Wake up radio 

an enable 

receiver

usr_mcps_data_conf

(No Ack)

MACApp

Node is in 

power safe 

mode

Data Frame

wpan_mcps_data_req

(Direct)

Ack Frame
usr_mcps_data_conf

(Success)S
u

c
c
e
s

s
fu

l 
D

a
ta

 

T
ra

n
s

m
is

s
io

n

E
n

a
b

li
n

g
 o

f 

R
e

c
e

iv
e
r

 

5.4.12 MAC_SYNC_REQUEST 

This feature is usually required for any node (both RFD and FFD) that wants to synchronize with its beacon-enabled 

network tracking beacon frames from its parent by means of using function wpan_mlme_sync_req(). 

5.4.13 MAC_SYNC_LOSS_INDICATION 

This feature is usually required for any node (both RFD and FFD) that needs to be able to report a sync loss 

condition to its upper layer. This can be either the reception of a coordinator realignment frame from its parent, or 

caused by the fact that a synchronized node has not received beacon frames from its parent for a certain amount of 

time. 



 

8412A-AVR-02/13 

Figure 5-15. Synchronization and loss of synchronization. 

wpan_mlme_sync_req()

PAN Coordinator 

using 

MAC_START_REQUEST_

CONFIRM

S
ta

rt
 o

f 
B

e
a

c
o

n
-e

n
a

b
le

d
 N

e
tw

o
rk

Node using 

MAC_SYNC_REQUEST and 

MAC_SYNC_LOSS_INDICATION

Beacon Frame

wpan_mlme_start_req

(Beacon Network)

MAC App

Beacon-

enabled 

network 

running

usr_mlme_sync_loss_ind()

Process 

received 

beacon frames

usr_mlme_start_conf()

MACApp

Node is in 

power safe 

mode

L
o

s
s

 o
f 

S
y
n

c
h

ro
n

iz
a
ti

o
S

y
n

c
h

ro
n

iz
a
ti

o
n

 w
it

h
 P

a
re

n
t

Beacon Frame

Beacon Frame

Beacon Frame

Node does not 

receive beacon 

frames 

anymore

Beacon 

Frame

Beacon 

Frame

Beacon 

Frame

 

5.4.14 MAC_BEACON_NOTIFY_INDICATION 

This feature is usually required for any node (both RFD and FFD) that may need to present received beacon frame to 

its upper layer. This could be caused by the fact that the received beacon frame contains a beacon payload or the 

MAC PIB attribute macAutoRequest within the node is set to false. 

5.4.15 MAC_GET_SUPPORT 

This feature allows reading the current values of MAC PIB attributes by means of using function 

wpan_mlme_get_req(). 

5.4.16 MAC_PAN_ID_CONFLICT_AS_PC 

This feature is a typical FFD feature that allows a PAN Coordinator node to detect a PAN-Id conflict situation and 

report this to its higher layer, allowing the higher layer or application to initiate the proper PAN-Id conflict resolution. 

The node is able to detect a PAN-Id conflict situation while acting as a PAN Coordinator by checking received 

beacon frames from other PAN Coordinators and being able to act upon the reception of PAN-Id Conflict Notification 

Command frames from its children. 



 

8412A-AVR-02/13 

The following components are required as well: 

 MAC_START_REQUEST_CONFIRM 

 MAC_SYNC_LOSS_INDICATION 

5.4.17 MAC_PAN_ID_CONFLICT_NON_PC 

This feature is usually required for any node (both RFD and FFD) that may need to detect a PAN-Id conflict situation 

while acting not as a PAN Coordinator node. The node is able to detect a PAN-Id conflict situation while NOT acting 

as a PAN Coordinator by checking received beacon frames from other PAN Coordinators and being able to initiate 

the transmission of PAN-Id Conflict Notification Command frames from its parents if required. 

The following components are required as well: 

 MAC_SYNC_LOSS_INDICATION 

 Either MAC_ASSOCIATION_REQUEST_CONFIRM or MAC_SYNC_REQUEST 

5.5 High-density network configuration 

The IEEE standard 4 provides knobs to adjust the MAC layer to the application needs. These knobs are the PIB 

attributes that allow configuring the behavior of the MAC. In particular, in high-density networks where many nodes 

access the network at the same time it might be necessary to tweak the MAC to achieve better performance. This 

applies to non-beacon enabled and beacon-enabled networks. The following PIB attributes can be used to tweak the 

MAC in this regard: 

 Back off exponent: The PIB attributes macMinBE and macMaxBE determine the potential length of the back off 

exponent used for the CSMA algorithm. By default macMinBE = 3 and macMaxBE = 5. In order to reduce the 

probability that different nodes use the same back off period, it is recommend changing the PIB attribute values 

from the default values. Example: macMinBE = 6 and macMaxBE = 8. The macMaxBE value needs to be 

increased before the macMinBE is increase. 

 Frame retries: The PIB attribute macMaxFrameRetries defines the maximum number of re-transmissions if a 

requested ACK is not received. The default value (defined by the IEEE standard and used by the MAC 

implementation) is three. The IEEE standard allows increasing the number of retries up to seven. 

 Maximum CSMA back offs: The PIB attribute macMaxCSMABackoffs defines the number of back offs that are 

allowed before the channel is finally determined as busy and no transmission happens. The MAC implementation 

uses the default value of four. Increasing the value to five also increases the probability of successful transmission 

of a big number of nodes trying to access the channel at the same time. 

5.6 High data rate support 

The Atmel transceivers are capable of transmitting frames at higher data rates than the standard data rates within the 

given band. The supported data rates are currently up to 2Mbit/s. These higher data rates are rates not defined within 

the IEEE standard (see 4). For more information about high data rate support please refer to the data sheet for the 

corresponding transceiver. 

In order to enable higher data rates than the standard rates, the following two items needs to be done: 

12. Enable the build switch HIGH_DATA_RATE_SUPPORT within the corresponding Makefile or project file (see 
Section 7.1.4.3). 

13. Set the PIB attribute phyCurrentPage to the corresponding value (for example, phyCurrentPage = 17 for 2Mbit/s 
support); after setting the correct channel page all frames will be transmitted using the corresponding data rate 
belonging to this channel page. 

 

 

 

 

 

 



 

8412A-AVR-02/13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-1 shows which data rate can be selected (by setting a specific channel page) using a particular transceiver. 

The table entries with yellow background refer to Atmel proprietary channel pages for non-standard high rates. 

Please note that the standard channel page is always channel page 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8412A-AVR-02/13 

 

 

 

 

Table 5-1. Channel pages vs. data rates. 
 

Frequency band/ 

transceiver 

MAC-2003 

compliant 

channel page 0 

MAC-2006 

compliant 

High data 

rate mode 1 

High data 

rate mode 2 

Sub-1 GHz 

Channel 0 

Channel 1-10 

 

AT86RF212 

20kb/s @ -110dBm 

40kb/s @ -108dBm 

 
(2)

 

Channel 

Page 2 

 

100kb/s 

250kb/s 

Channel 

Page 16 

 

200kb/s 

500kb/s 

 
(1)(3)(4)(5)(6)

 

Channel 

Page 17 

 

400kb/s 

1000kb/s 

 
(1)(3)(4)(5)(6)

 

Chinese Band 

Channel 0-3 

 

AT86RF212 

N/A Channel 

Page 5 

 

250kb/s 

Channel 

Page 18 

 

500kb/s 

 
(1)(3)(4)(5)(6)

 

Channel 

Page 19 

 

1000kb/s 

 
(1)(3)(4)(5)(6)

 

2.4GHz 

Channel 11-26 

 

AT86RF231, 

ATmega256RFR2, 

AT86RF233 

250kb/s @ -101dBm Channel 

Page 2 

 

500kb/s 

 
(1)(3)(5) 

Channel 

Page 16 

 

1000kb/s 

 
(1)(3)(5)

 

Channel 

Page 17 

 

2000kb/s 

 
(1)(3)(5

 

Notes: 1. PSDU data rate. 

2. BPSK. 

3. Reserved channel pages are used to address the appropriate mode (non-

compliant). 

Marked w/ yellow background color. The Atmel AT86RF212’s sensitivity 

values for the proprietary modes are based on PSDU length of 127 bytes. 

4. Scrambler enabled. 

5. Reduced ACK timing. Proprietary channel pages can be enabled using build 

configuration switch HIGH_DATA_RATE_SUPPORT. 

6. Proprietary channel pages 18 and 19 used for Chinese frequency band. Pages 

18 and 19 support channels 0-3. 

For a TAL example using a high data rate of 2Mbit/s please refer to Section 10.2.2.1. 



 

8412A-AVR-02/13 

6 MAC power management 

The MAC stack provide built-in power management that allows to put the transceiver into power save state as often 

as possible in order to save as much energy as possible. This allows for example End Devices, which are usually 

battery powered, to use a sleeping state of the transceiver as default state. The entire power management is inherent 

in the MAC itself and works without any required interaction from the application. On the other hand there exist 

means for the application to control the power management scheme in general as desired. 

6.1 Understanding MAC power management 

The following section is only valid for MAC applications (or applications on higher layers), but not for TAL 

applications. For TAL applications please refer to Section 6.4. 

Once a node (running an application on top of the MAC stack) has finished its initialization procedure, the MAC layer 

decides whether the node stays awake or enters SLEEP state. This is controlled by the MAC PIB attribute 

macRxOnWhenIdle. 

Whenever this PIB attribute is set to True, the MAC keeps the radio always in a state where the default state of the 

receiver is on, that is, the transceiver is able to receive incoming frames whenever there is nothing else to do for the 

stack. Since this is a non-sleeping state for the transceiver and requires much more energy than a power save state, 

this behavior is usually applied for all mains powered nodes, such as PAN Coordinators or Coordinators/Routers 

(nodes built using build switch FFD, see Section 7.2.1.1). 

As mentioned MAC power management works automatically within the stack. Once a node is started, it is 

automatically in power save mode. This is handled by the MAC PIB attribute macRxOnWhenIdle. The default value 

for macRxOnWhenIdle is False, that is, the radio shall be off in case the node is idle, meaning that the radio will be in 

sleep mode. This is valid for all nodes including End Devices, Coordinators and PAN Coordinators. 

Any node that shall not be in sleep as the default mode of operation needs to be put in listening mode by setting the 

PIB attribute macRxOnWhenIdle to True. Usually this is only done for mains powered nodes, such as Coordinator or 

PAN Coordinators. This will be explained more in detail in the subsequent sections. 

For battery powered nodes (usually End Devices) the default state shall be sleeping, since otherwise the battery 

would be emptied too fast. Since the PIB attribute macRxOnWhenIdle is per default set to False by default, such 

nodes will automatically enter SLEEP state when there is nothing to be done for the transceivers. 

The transceiver of such nodes will be woken up automatically whenever a new request from the upper layer (for 

example, the application on top of the MAC or the Network layer), which requires the cooperation of the transceiver, 

is received. This could be the request to transmit a new frame (wpan_mcps_data_req()), the request to set a PIB 

attribute that is mirrored in transceiver registers, the request to poll for pending data at the node’s parent, etc. 

Once such a request has been received at the MAC-API, the MAC performs a check whether the radio is currently in 

SLEEP state and wakes up the transceiver if required. Afterwards the MAC can us the transceiver to perform 

whichever action is required. After the ongoing transaction is finished, the MAC will put the transceiver back to 

SLEEP if allowed. 

This complete MAC controlled power management implies that a node being in SLEEP state will be not able to 

receive any frame during, that is, a PAN Coordinator would not be able to send a direct frame to its sleeping child 

being an End Device. This can be reproduced using the provided MAC example applications nobeacon (see Section 

10.2.1.1). In both of these applications all directed traffic goes from the End Device to the PAN Coordinator. If these 

applications where changed so that the PAN Coordinator sent traffic to the End Device, the End Device would not 

accept these frames, since it is in SLEEP most of the time. 

Of course there is variety of means defined within IEEE 802.15.4 to allow a reasonable communication between 

mains powered nodes and battery powered nodes (applying power management) in both directions. This is explained 

in more detail in the following section. One way to allow communication from the PAN Coordinator to the End Device 

is to use a timer which wakes up the End Device periodically, allowing this device to receive frames during this time 

period from other nodes. This is implemented in MAC example nobeacon_sleep (see Section 10.2.1.3).` 

 



 

8412A-AVR-02/13 

6.2 Reception of data at nodes applying power management 

When data shall be received by an End Device (that is, a node applying MAC power management as default), we 

have several options as described in the subsequent sections. 

6.2.1 Setting of macRxOnWhenIdle to true 

One option is to leave the receiver of the node always on, so the device is able to always receive frames. This can be 

done be setting the MAC PIB Attribute macRxOnWhenIdle to True (1) (by using the API function 

wpan_mlme_set_req()) at any time. This will immediately wake up the radio and enable the receiver of the node. 

If this scheme is applied, the node will not enter SLEEP state anymore and thus uses it’s battery power very 

extensively. So for battery powered End Devices this is not recommended, although it might be an easy solution for 

mains powered End Devices. 

6.2.2 Enabling the receiver 

If a PAN Coordinator wants to send data to an End Device periodically, the application of the Device can be 

implemented as such, that the Device maintains a timer with the same time interval that the Coordinator wants to 

transmit its data to the Device. 

Upon expiration of this timer the application of the Device can then enable its receiver for a certain amount of time or 

until it receives data from the Coordinator, and turn off the receiver again. The receiver can be enabled or disabled by 

using the MAC-API function “wpan_mlme_rx_enable_req”. 

The parameter RxOnDuration contains the value (number of symbols, for example, one symbols is 16µs for 2.4GHz 

networks) that the receiver shall be enabled. If this parameter is zero (0), the receiver of the node will be disabled. 

The parameters DeferPermit and RxOnTime shall be set to 0 for a nonbeacon-enabled network, since these 

parameters are obsolete for nonbeacon-enabled networks. 

If this scheme is used, handling of power management is done by the device itself. When the RxEnable timer 

expires, or if parameter RxOnDuration is zero, the MAC will initiate its standard power management scheme and put 

the transceiver again into SLEEP if allowed (that is, in case macRxOnWhenIdle is False). 

6.2.3 Handshake between end device and coordinator 

Another scheme is based on a combination of enabling the receiver in conjunction with a handshake scheme 

between End Device and the PAN Coordinator. 

The End Device enables its receiver periodically (as in Section 6.2.2), and sends a data frame to the Coordinator 

indicating it is alive for a certain amount of time. The Coordinator in return either answers with direct data to the 

Device directly (in case it has something to deliver) to the Device, or simply does nothing. 

After the device has received a frame from the PAN Coordinator the End Device disables its receiver again. This can 

be done by simply letting the RxEnable timer expire (depending on the original value of RxOnDuration” at the first call 

of wpan_mlme_rx_enable_req”) by directly calling wpan_mlme_rx_enable_req” with parameter RxOnDuration” set to 

zero. 

If the End Device does not receive a frame from its Coordinator, the device automatically goes to sleep depending on 

the original value of RxOnDuration” at the first call of wpan_mlme_rx_enable_req”. 

If this scheme is used, handling of power management is done by the device itself. When the RxEnable timer 

expires, or if parameter RxOnDuration is zero, the MAC will initiate its standard power management scheme and put 

the transceiver again into SLEEP if allowed (that is, in case macRxOnWhenIdle is False). 

6.2.4 Indirect transmission from coordinator to end device 

Another option is to use indirect data transmission from the Coordinator to the End Device and let the Device poll the 

Coordinator periodically for pending data. When this scheme is applied the Coordinator sets the parameter 

TxOptions of the API function: 

bool wpan_mcps_data_req(uint8_t SrcAddrMode, 

                        wpan_addr_spec_t *DstAddrSpec, 

                        uint8_t msduLength, 



 

8412A-AVR-02/13 

                        uint8_t *msdu, 

                        uint8_t msduHandle, 

                        uint8_t TxOptions) 

to WPAN_TXOPT_INIDIRECT_ACK (indirect, but acknowledged Transmission; value 5), instead of 

WPAN_TXOPT_ACK (direct, acknowledged Transmission value 1) as it is currently (see file mac_api.h in directory 

MAC/Inc). 

NOTE This requires an additional check which device type the node is currently, since data from the Device to the 
Coordinator is still only transmitted directly. 

Additionally the Device needs to implement a polling scheme in its application, during which it periodically calls 

function wpan_mlme_poll_req(). This will initiate a data request frame to the Coordinator. In case the Coordinator 

does have pending data for the Device, it initiates the direct transmission of those frames. Otherwise Coordinator 

sends a null data frame (data frame with empty payload). The Device both receives the response from the 

Coordinator and, if there is no further action to be done, returns to standard power management procedures. For 

more information see Sections 5.4.1 and 5.4.2. 

If this scheme is used, handling of power management is done by the device itself. 

6.3 Application control of MAC power management 

As indicated throughout the previous sections there are several means for the application to control the general 

power management scheme applied by the MAC. 

These are setting the MAC PIB attribute macRxOnWhenIdle and the MAC primitive MLME_RX_ENABLE.request. 

6.3.1 MAC PIB attribute macRxOnWhenIdle 

Setting the MAC PIB attribute to a specific value controls the handling of MAC power management. Whenever a 

transaction within the MAC has finished (for example, transmitting a frame, setting of PIB attributes residing within 

the transceiver, etc.) the MAC checks this PIB attribute. If the corresponding value is False, the radio enters SLEEP 

mode again, otherwise the transceiver stays awake. 

Any node will always enter SLEEP mode after each finished transition, since the PIB attribute macRxOnWhenIdle is 

False as default. 

If this behavior shall be altered (especially for Coordinators or PAN Coordinators), the application needs to change 

the value of macRxOnWhenIdle to True after whenever this shall be applied. 

The current value of the MAC PIB attribute macRxOnWhenIdle can be altered by calling function 

wpan_mlme_set_req() with the appropriate value (see file main.c of example in Section 10.2.1.2): 

/* Switch receiver on to receive frame. */ 

wpan_mlme_set_req(macRxOnWhenIdle, true); 

or 

/* Switch receiver off. */ 

wpan_mlme_set_req(macRxOnWhenIdle, false); 

Please note that the receiver will be immediately enabled or disabled. 

6.3.2 Handling the receiver with wpan_rx_enable_req() 

While setting of the PIB attribute macRxOnWhenIdle is a more “globally” or “statically” applied means to change the 

standard MAC power management scheme, the MAC primitive MLME_RX_ENABLE.request can be used to change 

the behavior more temporarily. 

The receiver can be enabled by calling function wpan_mlme_rx_enable_req() with (the 3
rd

 parameter) RxOnDuration 

larger than zero: 

/* Switch receiver on for 10000 symbols. */ 

wpan_mlme_rx_enable_req(false, 0, 10000); 

This wakes up the transceiver (independent from the current value of the PIB attribute macRxOnWhenIdle) if 

required and switches the receiver on. 



 

8412A-AVR-02/13 

After the timer with the specified time (RxOnDuration symbols) expires, the receiver is disabled automatically if the 

current value of macRxOnWhenIdle is false, or remains in receive mode if macRxOnWhenIdle is true. 

 

The receiver can be disabled explicitly by calling wpan_mlme_rx_enable_req() with (the 3
rd

 parameter) 

RxOnDuration equal to zero: 

/* Disable receiver now. */ 

wpan_mlme_rx_enable_req(false, 0, 0); 

This disables the receiver if the current value of the PIB attribute macRxOnWhenIdle is false and puts the transceiver 

to SLEEP mode. 

For more information about function wpan_mlme_rx_enable_req() see files mac_api.c and mac_rx_enable.c in 

directory mac/src.  

For more information about the interaction of MLME_RX_ENABLE and macRxOnWhenIdle see file mac_misc.c in 
directory mac/src and check the following function mac_sleep_trans(). 

 

6.3.3 Handling Controller Sleep in Inactive Region 

Transceiver will enter into sleep in the inactive region of the super frame. Apart from the inherent power management 
in MAC, An API from MAC is provided to the Application to decide on to put the Controller in power down mode 
during the inactive region.ENABLE_SLEEP Symbol needs to be enabled in the application to handle Sleep 
functionality. 

 

 

 

 

 

 

 

 

x us – from the Point application called mac_ready_to_sleep to the end of inactive region. 

y us – guard time to synchronize with beacon timing (beacon prep time + TRX wakeup time) 

6.3.3.1 mac_ready_to_sleep 

6.3.3.1 Syntax 

uint32_t mac_ready_to_sleep(void) 

6.3.3.2 Description 

API to be called by application to check whether mac is ready to sleep(in inactive region) 

6.3.3.3 Parameters 

                        void 

6.3.3.4 Return 

uint32_t - the time duration in microseconds for which the device can enter sleep. 

                              0-When the Superframe is in active state.  



 

8412A-AVR-02/13 

6.3.4 Mac_wakeup 

6.3.4.1 Syntax 

Void mac_wakeup (uint32_t res_time); 

 

6.3.4.2 Description 

Callback from application after wakeup from sleep to sync up with beacon timing in MAC. 

6.3.4.3 Parameters 

              uint32_t res_time – Residual time to sync up with superframe timing. 

6.3.4.4 Return 

Void 
 

 

 

6.4 TAL power management API 

The MAC power management mechanisms as described in this chapter are only valid if the application is residing on 

top of the MAC layer (or a higher layer on top of the MAC). In case the application is residing on top of the TAL layer, 

the application needs to take care for transceiver power management itself. 

Therefore the TAL provides a Power Management API which is generally used by the MAC layer but can also be 

used by an application residing on top of the TAL. Nevertheless an application residing on top of any higher layer 

than the TAL must not use this TAL API explicitly, otherwise this may lead to undefined behavior. 

The TAL Power Management API consists of two functions: 

 tal_trx_sleep() 

 tal_trx_wakeup() 

For more information see file tal.h in directory tal/inc and the various implementations for each transceiver in file 

tal_pwr_mgmt.c in directories tal/TAL_TYPE_NAME/src. 



 

8412A-AVR-02/13 

7 Application and stack configuration 

The MAC and its modules are highly configurable to adapt to the application requirements. The utilized resources 

can be configured and adjusted according to the application needs. This allows a drastic footprint reduction. 

During build process the required features are included depending on the used build switches and basic configuration 

type. 

Qualitative configuration includes: 

 Features or modules can be included to or excluded from the firmware using build switches 

 The build configuration is controlled by switches within Makefiles or the project files 

 Primitives as defined within IEEE 802.15.4 (and thus features within the MAC) can be included or excluded 

depending on the required degree of standard compliance or application needs 

 Two generic profiles are provided: RFD and FFD primitive configuration 

Quantitative configuration includes: 

 Resources can be adjusted to the application needs 

 The file app_config.h (usually located in the inc path of the applications) provides hooks for the application 

configuration to configure its own resources 

 Each demonstration application comes with its own configuration file (app_config.h) that can be re-used for own 

application design 

7.1 Build switches 

The stack and application based on the stack can be highly configured according to the end user application needs. 

This requires a variety of build switches to be set appropriately. The following section describes that build switches 

may be used during the build process. 

The switches may be categorized as follows: 

1. Global stack switches 

o HIGHEST_STACK_LAYER 

o REDUCED_PARAM_CHECK 

o PROMISCUOUS_MODE 

o ENABLE_TSTAMP 

o MAC_SECURITY_ZIP 

o MAC_SECURITY_2006 

o MAC_SECURITY_BEACON 

2. Standard or user build configuration switches 

o BEACON_SUPPORT 

o FFD 

o MAC_USER_BUILD_CONFIG 

3. GTS_SUPPORTPlatform switches 

o BOARD (Values provided in ASF common sources) 

o ENABLE_TRX_SRAM 

o NON_BLOCKING_SPI 

o VENDOR_STACK_CONFIG 

4. Transceiver specific switches 

o TAL_TYPE 

o ENABLE_TFA 

o TFA_BAT_MON 



 

8412A-AVR-02/13 

o HIGH_DATA_RATE_SUPPORT 

o CHINESE_BAND 

o RSSI_TO_LQI_MAPPING 

o ENABLE_FTN_PLL_CALIBRATION 

o DISABLE_IEEE_ADDR_CHECK 

5. Test and Debug switches 

o _DEBUG_ 

o TEST_HARNESS 

The following picture shows an example how the various build switches lead to a particular configuration. For 

simplicity reasons only the basic building blocks are included. More advance blocks (for example, TFA or STB have 

been omitted). The used build switches are explained in the subsequent sections. 

Figure 7-1. Build configuration example. 

 

AVR32 SAM

PAL Wrapper

ATMEGARFR2 AT86RF231 AT86RF212. . .

mac_start.c mac_scan.c mac_data.c mac_ associate.c. . .. . .. . .

application.c

mac_api.c

TAL

MCL

PAL

TAL_ TYPE= 

AT86RF231

HIGHEST_ STACK_ LAYER=

MAC

Application

( FFD is not set)

ASF XMEGA MEGARFSAM0

 

 

 

7.1.1 Global stack switches 

7.1.1.1 HIGHEST_STACK_LAYER 

This build switch defines the layer that the end user application is actually based on. The MAC software package 

comprises of three real layers (from bottom: PAL, TAL, and MAC Core Layer). All these layers forms the stack, 

although not necessarily all layers are always part of the actual binary. Depending upon the required functionality (full 

blown MAC versus simple data pump), the user application needs to define which layer it shall be based on (that is, 

which API it is using). If an application for instance only uses the PAL and TAL layers (that is, MAC is not used), all 



 

8412A-AVR-02/13 

resources required for MAC are not part of the final application. This reduces code size and SRAM utilization 

drastically. 

Also, if a Network Layer (NWK) will be part of the stack and residing on top of the MAC layer, a number of resources 

are used differently compared to an application on top of the MAC. 

Example: Reading of PIB attributes residing in TAL layer. 

If the HIGHEST_STACK_LAYER is MAC (HIGHEST_STACK_LAYER = MAC), the function tal_pib_get() in file 

tal_pib.c is not included in the binary, because the MAC reads all PIB attributes residing in TAL directly by accessing 

the global variables. On the other hand, if the HIGHEST_STACK_LAYER is TAL (HIGHEST_STACK_LAYER = TAL) 

this function is available, because an application (being not part of the stack) shall not access global variables of the 

stack directly. 

Conclusion: 

If the application sits on top of the MAC layer, this build switch shall be set to „HIGHEST_STACK_LAYER = MAC“. 

If the application sits on top of the TAL layer, this build switch shall be set to „HIGHEST_STACK_LAYER = TAL“. 

Usage in Makefiles: 

CFLAGS += -DHIGHEST_STACK_LAYER=MAC 

or 

CFLAGS += -DHIGHEST_STACK_LAYER=TAL 

Usage in IAR ewp-files: 

HIGHEST_STACK_LAYER=MAC 

or 

HIGHEST_STACK_LAYER=TAL 

For more information check file include/stack_config.h. This shows how the resources are used and included in the 

end application depending upon the highest stack used. 

7.1.1.2 REDUCED_PARAM_CHECK 

Whenever an application or a higher layer accesses an API function of a lower layer usually a variety of parameter 

checks are done in order to ensure proper usage of the desired functionality. This leads to a more robust application. 

On the other hand, if the higher layer is designed to always call an API function with reasonable parameter values, 

this build switch might be omitted. This will reduce the code size. 

Please refer the file mac\src\mac_mcps_data.c how a build switch is used. In function mcps_data_request() a 

number of additional checks are performed if this switch is not set. 

It is strongly recommended to disable the following build switch at least during the development cycle of the 

application. 

Usage in Makefiles: 

CFLAGS += -DREDUCED_PARAM_CHECK 

disables the additional parameter checking. 

Usage in IAR ewp-files: 

REDUCED_PARAM_CHECK 

reduces the additional parameter checking. 

7.1.1.3 PROMISCUOUS_MODE 

This build switch allows for the creation of a special node that can be put into promiscuous mode thus allowing it to 

act as a very simple frame sniffer. It can be used as a very simple network diagnostic tool. 

When this switch is enabled the node is not supposed to act as a standard node being part of network, that is, the 

node will never acknowledge any received frame, etc. Instead the node will be able to receive any proper IEEE 



 

8412A-AVR-02/13 

802.15.4 frame on its channel within range and present it to the application. The application can reside on top of the 

MAC layer (using MAC-API callback function usr_mcps_data_ind()) or on top of the TAL layer (using TAL callbacks). 

Switching promiscuous mode on or off is controlled by the standard MAC PIB macPromiscuousMode (see IEEE 

802.15.4-2006, Section 7.5.6.5 Promiscuous Mode). The payload contained in the usr_mcps_data_ind() callback 

function is the MAC Header (MHR) of the received frame concatenated with the original payload of the received 

frame. 

Promiscuous mode can be switched on or off by setting or resetting the PIB attribute macPromiscuousMode. If the 

radio is awake and in receive mode on the current channel, the node will present all received frames to the upper 

layer. In order to work properly, the receiver needs to be enabled. This can be done, for example, by setting MAC 

PIB attribute macRxOnWhenIdle to 1 before turning promiscuous mode on. Generally the transceiver state can be 

controlled similar to normal operation (see Chapter 6). 

Once the PIB attribute macPromiscuousMode is reset, the node switches back to normal operation. It will be in the 

same state as before switching to promiscuous mode, for example, a node that was associated will still be connected 

to the same network. 

The following picture indicates the proper handling of promiscuous mode. 



 

8412A-AVR-02/13 

Figure 7-2. Handling of promiscuous mode. 

Application 

(main.c)
Stack 

wpan_mlme_reset_req()

usr_mlme_reset_conf()

wpan_mlme_set_req

(phyCurrentChannel)

usr_mlme_set_conf(Success)

wpan_mlme_set_req

(phyCurrentPage)

usr_mlme_set_conf(Success)

wpan_mlme_set_req

(macPromiscuouMode, True)

usr_mlme_set_conf(Success)

Other Node on 

same Channel

Wake up receiver and 

switch to RX_ON

usr_mcps_data_ind

(Frame 1 content)

Process received 

frame

Promiscuous Mode

wpan_mlme_set_req

(macPromiscuouMode, False)

usr_mlme_set_conf(Success)

Receiver still enabled in 

RX_AACK_ON

Standard Mode

Standard Mode

S
e
tt

in
g

-u
p

 o
f 

P
ro

m
is

c
u

o
u

s
 M

o
d

e
P

ro
m

is
c

u
o

u
s

 M
o

d
e

 U
s
e

d
S

w
it

c
h

te
d

 b
a
c
k

 

to
 N

o
rm

a
l 
M

o
d

e
Node built with

PROMISCUOUS_MODE

Frame 1

Frame 2

wpan_mlme_set_req

(macRxOnWhenIdle, True)

usr_mlme_set_conf(Success)

 

7.1.1.4 ENABLE_TSTAMP 

This build switch allows creation of timestamping information throughout the entire MAC stack. This includes two 

different angles: 

 Generation of timestamping information within the TAL 

 Inclusion of timestamp information in the MAC-API primitives (see function usr_mcps_data_conf() and 

usr_mcps_data_ind() in file mac/inc/mac_api.h) 



 

8412A-AVR-02/13 

In case timestamping information shall be generated and included in the MAC-API for further utilization within the 

application, the compile switch needs to be set. 

Usage in Makefiles: 

CFLAGS += -DENABLE_TSTAMP 

enables the timestamping. 

Usage in IAR ewp-files: 

ENABLE_TSTAMP 

enables the timestamping. 

7.1.2 Standard and user build configuration switches 

The standard and user build configuration switches are described in detail in Sections 7.2.1 and 7.2.2. 

7.1.3 Platform switches 

Since the PAL layer is part of ASF, please refer [9] for more details on Platform switches. 

7.1.4 Transceiver specific switches 

7.1.4.1 TAL_TYPE 

The TAL (Transceiver Abstraction Layer) contains all transceiver based functionality and provides an API to the MAC 

which is independent from the underlying transceiver. Certain functionality that for instance the MAC or an application 

may require is dependent from the actual used transceiver chip. Examples are the utilization of antenna diversity, 

time stamping mechanisms, or the automatic CRC calculation in hardware. 

Examples of currently supported transceivers are: 

 Atmel Atmega256RFR2 

 Atmel AT86RF231 

 Atmel AT86RF212 

 Atmel AT86RF212B 

 Atmel AT86RF233 

For more information please check the tal\inc\tal_types.h file. 

Usage in Makefiles: 

CFLAGS += -DTAL_TYPE=AT86RF212 

Selects the AT86RF212 transceiver. 

Usage in IAR ewp-files: 

TAL_TYPE=AT86RF231 

selects the AT86RF231 transceiver. 

7.1.4.2 ENABLE_TFA 

This build switch enables the usage of non-standard compliant features of the transceiver based on the block 

Transceiver Feature Access (TFA). 

Currently the following features are implemented in the TFA: 

 Changing of Receiver Sensitivity 

 Perform CCA 

 Perform ED (Energy Detect) measurement 



 

8412A-AVR-02/13 

 Reading the current transceiver supply voltage (transceiver battery monitor). Reading the current transceiver 

supply voltage (transceiver battery monitor). The reading of the supply voltage can also be enabled separately by 

setting the build switch TFA_BAT_MON 

 Reading of current temperature (only Atmel ATmega256RFR2 only) 

CCA and ED measurement are an inherent part of the MAC/TAL, so there is no need for a standard application to 

use this. On the other hand there could be special test applications which might use such functionality. 

If only standard defined behavior is required or code size is important this switch should not be set. 

Usage in Makefiles: 

CFLAGS += -DENABLE_TFA 

enables the usage of the TFA. 

Usage in IAR ew-files: 

ENABLE_TFA 

enables the usage of the TFA. 

7.1.4.3 HIGH_DATA_RATE_SUPPORT 

All 802.15.4 Atmel transceivers supported with this software package beyond AT86RF230 provide high data modes 

not defined within the IEEE 802.15.4 standard. In order to enable these high speed transmission modes, the build 

switch HIGH_DATA_RATE_SUPPORT needs to be set. An example application where this switch is used to gain a 

significantly higher data throughput is the Performance Analyzer application (see 

avr2025_mac\apps\tal\performance_analyzer). If only standard rates are used or code size is important this switch 

should not be set. 

Usage in Makefiles: 

CFLAGS += -DHIGH_DATA_RATE_SUPPORT 

enables support of high speed data rates. 

Usage in IAR ewp-files: 

HIGH_DATA_RATE_SUPPORT 

enables support of high speed data rates. 

7.1.4.4 CHINESE_BAND 

This build switch is used in conjunction with a Sub-GHz transceiver chip that is capable of working properly within the 

Chinese 780MHz radio band (for example, the Atmel AT86RF212). Within the stack this switch is solely used to set 

the proper default value for the channel page. So any application that per default is required to operate within this 

particular band (and uses the proper TAL type) may use this build switch to set the channel page to a proper default 

value. This switch currently not used in any example application. 

Usage in Makefiles: 

CFLAGS += -DCHINESE_BAND 

enables the channel page for the Chinese band as default. 

Usage in IAR ewp-files: 

CHINESE_BAND 

enables the channel page for the Chinese band as default. 

7.1.4.5 RSSI_TO_LQI_MAPPING 

This build switch is used to control the mechanism for calculation of the normalized LQI value of received frames. 

The normalized LQI value (that is provided to the higher layer of the MAC as parameter ppduLinkQuality) is 



 

8412A-AVR-02/13 

 based on the RSSI/ED value (switch RSSI_TO_LQI_MAPPING is used) where only the ED value (signal strength) 

is mapped to a LQI value, or is 

 based on the ED (signal strength) and the measured LQI value (quality of received packet) (switch 

RSSI_TO_LQI_MAPPING is not used) 

For further information about the LQI value, see IEEE 802.15.4-2006 Section 6.9.8. The build switch 

RSSI_TO_LQI_MAPPING reflects the “and/or” relation described in the first paragraph of the mentioned section. If 

RSSI_TO_LQI_MAPPING is set, signal strength is only used for LQI measurement. 

Usage in Makefiles: 

CFLAGS += -DRSSI_TO_LQI_MAPPING 

enables the calculation of the normalized LQI value based on RSSI/ED value. 

Usage in IAR ewp-files: 

RSSI_TO_LQI_MAPPING 

enables the calculation of the normalized LQI value based on RSSI/ED value. 

For more information please check the implementation in the files tal/tal_type/Src/tal_rx.c. 

7.1.4.6 ENABLE_FTN_PLL_CALIBRATION 

This build switch is used to enable the filter tuning and PLL calibration for the transceiver. Once this feature is 

enabled in an application, a period timer is started, which ensures that the proper filter tuning and PLL calibration is 

executed after a certain amount of time. 

This feature might be required in case the environment conditions (that is, temperature) vary over time. 

The filter tuning and PLL calibration is done automatically when a node periodically enters sleep state, or when other 

specific state changes are performed within the transceiver periodically. For more information please check the 

corresponding transceiver data sheets. 

The current timer interval is five minutes, that is, whenever the node does not enter sleep state within this timer 

interval, the filter tuning and PLL calibration mechanism will be invoked. 

This switch is currently not enabled in any example application. 

7.1.4.7 DISABLE_IEEE_ADDR_CHECK 

This build switch is used to disable the check whether the node has a valid IEEE address (that is, the IEEE address 

is different from 0 or 0xFFFFFFFFFFFFFFFF). 

Currently all TAL and MAC based applications require a valid and unique IEEE address being present on each node. 

Since some board may not necessarily have a valid IEEE address stored in (either internal or external) EEPROM (for 

example Atmel AT91SAM7X-EK boards), the applications cannot run properly. For the purpose of proper example 

demonstration a check for this IEEE address is implemented. If the IEEE address is not correct (that is, it is 0 or 

0xFFFFFFFFFFFFFFFF), a random IEEE address is assigned to this node. 

Some applications do not require this specific IEEE check. In this case the code can be significantly smaller by 

setting the build switch DISABLE_IEEE_ADDR_CHECK. 

Also this build switch gives a very good indication which portions or the TAL need to be changed or removed for 

smaller code size by simply searching for build switch DISABLE_IEEE_ADDR_CHECK. 

This switch is currently not enabled in any example application, since all example applications require a valid IEEE 

address. 

Boards providing a valid IEEE address always use their original unique IEEE address during operation. 

7.1.4.8 DISABLE_TSTAMP_IRQ 

This build switch is used to disable the Timestamp interrupt (that is, the second transceiver interrupt for Atmel 

AT86RF231, Atmel AT86RF233 and Atmel AT86RF212) on systems which do not utilize this transceiver interrupt. 

This is for example valid for boards based on Atmel Xmega MCUs in conjunction with AT86RF231. 



 

8412A-AVR-02/13 

The TAL for AT86RF231, AT86RF233 and AT86RF212 is designed to utilize the Timestamp interrupt as default for 

generating timestamp information.. 

7.1.4.9 TRX_REG_RAW_VALUE 

This build switch is used to disable the scaling of ED value.By default ED value read from the RG_PHY_ED_LEVEL 

register shall be scaled using CLIP_VALUE REG value.By using this build switch, this can be avoided and raw value 

of ED sall be used. 

7.1.4.10 SW_CONTROLLED_CSMA 

This build switch SW_CONTROLLED_CSMA includes functions to the build process that control the CSMA-CA 

algorithm by software. CCA, backoffs and re-transmissions are controlled by software while the transceiver handles 

frame validation (e.g. CRC and frame filtering) and ACK transmission using its automatic (extended) modes. 

7.1.4.11 TX_OCTET_COUNTER 

This build switch TX_OCTET_COUNTER includes functions to the build process that count the number of actually 

sent bytes over-the-air. The numbers of bytes are accumulated in the variable tal_tx_octet_cnt. This includes data 

frames that are sent “actively” and ACK frames that are sent due to received frames including preamble, SFD and 

length field. 

The application can reset and read the tal_tx_octect_cnt variable. It can be used to calculate an actual duty-cycle. In 

order to use the TX_OCTET_COUNTER switch the build switch SW_CONTROLLED_CSMA needs to be set as well 

7.1.4.12 TX RX_WHILE_BACKOFF 

The build switch RX_WHILE_BACKOFF enables switching the receiver on during backoff periods of the CSMA 

algorithm. If the build switch RX_WHILE_BACKOFF is not defined for the build, the receiver remains off during 

backoff periods.  

In order to use the RX_WHILE_BACKOFF switch the build switch SW_CONTROLLED_CSMA needs to be set as 

well.  

If the receiver is switched on during backoff periods and a frame is received (including automatic ACK transmission), 

the received frames get queue into the receive frame queue. After frame reception the CSMA algorithm is continued 

with the next CSMA attempt. 

Impacts with RX_WHILE_BACKOFF 

 In a “normal” scenario (low traffic) the maximum data throughput is reduced by about 2 percent (at 250kb/s 

and about 1 percent at 100kb/s) due to the software-controlled CSMA using a SPI-based transceiver. 

 In high density networks the outgoing data throughput highly varies based on the number of received frames 

during the backoff periods. 

 The implementation of the software-controlled CSMA algorithm requires about 0.5 kB (0.5kB for Xmega; 

0.8kB for SAM4L) program code.  

 An additional (software) timer is required and the MCU utilization is higher during the actual CSMA 

procedure. 

 

7.1.5 Test and debug switches 

7.1.5.1 DEBUG 

This build switch enables further debug functionality and additional sanity checks within the software package, but 

also increased code size or changes run time behavior since the optimization level is changed. 

If the GCC compiler is used, this switch also enables printout functionality for debug purposes (ASSERT). 

7.1.5.2 TEST_HARNESS 

This build switch is used for serial-if application in the case of NCP approach and for Atmel internal regression 

testing.  



 

8412A-AVR-02/13 

This switch is not adviced to be used by other applications. 

NOTE Although the code in file mac_pib.c may lead to the conclusion, that this switch needs to be set in order to be 
allowed to set the IEEE address of this node via software, this is not supposed to be used this way. 

Each device has its own IEEE address that is fixed for this device and usually it is located in any type of persistent 

storage. This is actually not a PIB attribute but rather a MAC constant (see IEEE 802.15.4-2006 Section 7.4.1, Table 

85 (aExtendedAddress)). So the value is only READ_ONLY and in normal mode not supposed to be written by the 

application or stack. Therefore this attribute can be read using API functions (wpan_mlme_get_req()) but not written 

(wpan_mlme_set_req()). 

7.2 Build configurations 

7.2.1 Standard build configurations 

Based on the IEEE 802.15.4 standard there are four basic standard configurations available which provide different 

functionality to the user application. This implies different APIs for each of these configurations and also different 

footprints (codes size, SRAM utilization). 

These standard configurations can be classified in two categories: 

 Support of beacon enabled networks 

 Reduced Functional Devices - RFD (for example, End Devices) vs. Full Functional Devices – FFD (PAN 

Coordinators, Coordinators) 

The Atmel MAC provides two build switches that can be used in Makefiles or IAR Embedded Workbench project files 

to enable or disable these configurations. Depending on the usage of these switches in the project, the MAC provides 

certain functionality to the user application. 

1. FFD 

 Setting of this build switch additionally enables functionality required for a FFD node 

 Omission of this build switch only enables functionality required for a simple RFD node 

2. BEACON_SUPPORT 

 Setting of this build switch additionally enables functionality required for a network using a superframe 

structure, that is, beacon-enabled networks 

 Omission of this build switch only enables functionality required for a networks without using a superframe 

structure, that is, non-beacon enabled networks 

Example 1: A node that shall start its own network always has to be an FFD, because starting of networks is only 

supported for an FFD configuration. 

Example 2: A node that shall be able to join both non-beacon and beacon-enabled networks has to use an 

application built with BEACON_SUPPORT. 

Please refer to file “/include/mac_build_config.h” for more information about the supported functionality. 

7.2.1.1 FFD feature set 

The following features are enabled if FFD is set during the build process: 

 MAC_ASSOCIATION_INDICATION_RESPONSE 

The node is able to accept and process association attempts from other nodes. Also this node can provide Short 

Addresses to other nodes if desired 

 MAC_ASSOCIATION_REQUEST_CONFIRM 

The node is able accept and process a request from its upper layer (for example, the network layer) to associate 

itself to another node (that is, its parent) 

 MAC_BEACON_NOTIFY_INDICATION 

The node is able to present received beacon frame to its upper layer in case the beacon frame contains a beacon 

payload or the MAC PIB attribute macAutoRequest is set to false 

 MAC_DISASSOCIATION_BASIC_SUPPORT 

The node is able to accept and process a request from its upper layer to disassociate itself from its network or 

disassociate one of its children, or to process a received disassociation frame from another node 



 

8412A-AVR-02/13 

 MAC_DISASSOCIATION_FFD_SUPPORT 

The node is able to transmit an indirect disassociation notification frame. This requires that the switch 

MAC_DISASSOCIATION_BASIC_SUPPORT is also set 

 MAC_INDIRECT_DATA_BASIC 

The node is able to poll its own parent for indirect data 

 MAC_INDIRECT_DATA_FFD 

The node is able to handle requests to transmit data frames to its children indirectly once being polled by those 

nodes. This requires that the switch MAC_INDIRECT_DATA_BASIC is also set 

 MAC_ORPHAN_INDICATION_RESPONSE 

The node is able to accept and process a received orphan indication frame by one of its children and respond 

appropriately 

 MAC_PAN_ID_CONFLICT_AS_PC 

The node is able to detect a PAN-Id conflict situation while acting as a PAN Coordinator by checking received 

beacon frames from other PAN Coordinators and being able to act upon the reception of PAN-Id Conflict 

Notification Command frames from its children 

 MAC_PAN_ID_CONFLICT_NON_PC 

The node is able to detect a PAN-Id conflict situation while NOT acting as a PAN Coordinator by checking 

received beacon frames from other PAN Coordinators and being able to initiate the transmission of PAN-Id 

Conflict Notification Command frames from its parents if required 

 MAC_PURGE_REQUEST_CONFIRM 

The node is able to purge indirect data frames from its Indirect-Data-Queue upon request by its upper layer 

 MAC_RX_ENABLE_SUPPORT 

The node is able to switch on or off its receiver for a certain amount of time upon request by its upper layer. This is 

required in order to allow for the upper layer to receive frames in case the node is generally in a power safe state 

 MAC_SCAN_ACTIVE_REQUEST_CONFIRM 

The node is able to perform an active scan to search for existing networks 

 MAC_SCAN_ED_REQUEST_CONFIRM 

The node is able to perform an energy detect scan 

 MAC_SCAN_ORPHAN_REQUEST_CONFIRM 

The node is able to perform an orphan scan in case it has lost its parent 

 MAC_SCAN_PASSIVE_REQUEST_CONFIRM 

The node is able to perform a passive scan to search for existing networks. This feature is only enabled if also 

BEACON_SUPPORT is enabled 

 MAC_START_REQUEST_CONFIRM 

The node is able to start its own network. Depending on the setting of BEACON_SUPPORT this can be either only 

a non-beacon enabled network or also a beacon-enabled network 

 MAC_SYNC_LOSS_INDICATION 

The node is able to report a sync loss condition to its upper layer. This can be either the reception of a coordinator 

realignment frame from its parent, or (if BEACON_SUPPORT is enabled and the node is synchronized with its 

parent) caused by the fact that the node has not received beacon frames from its parent for a certain amount of 

time 

Please check IEEE 802.15.4-2006 for further information about the MAC primitives and the implementation of their 

corresponding features in the MAC. 

7.2.1.2 RFD feature set 

The following features are enabled if FFD is NOT set during the build process: 

 MAC_ASSOCIATION_REQUEST_CONFIRM 

The node is able accept and process a request from its upper layer (for example, the network layer) to associate 

itself to another node (that is, its parent) 

 MAC_BEACON_NOTIFY_INDICATION 

The node is able to present received beacon frame to its upper layer in case the beacon frame contains a beacon 

payload or the MAC PIB attribute macAutoRequest is set to false 



 

8412A-AVR-02/13 

 MAC_DISASSOCIATION_BASIC_SUPPORT 

The node is able to accept and process a request from its upper layer to disassociate itself from its network, or to 

process a received disassociation frame from its parent 

 MAC_INDIRECT_DATA_BASIC 

The node is able to poll its own parent for indirect data 

 MAC_PAN_ID_CONFLICT_NON_PC 

The node is able to detect a PAN-Id conflict situation while NOT acting as a PAN Coordinator by checking 

received beacon frames from other PAN Coordinators and being able to initiate the transmission of PAN-Id 

Conflict Notification Command frames from its parents if required 

 MAC_RX_ENABLE_SUPPORT 

The node is able to switch on or off its receiver for a certain amount of time upon request by its upper layer. This is 

required in order to allow for the upper layer to receive frames in case the node is generally in a power safe state 

 MAC_SCAN_ACTIVE_REQUEST_CONFIRM 

The node is able to perform an active scan to search for existing networks 

 MAC_SCAN_ORPHAN_REQUEST_CONFIRM 

The node is able to perform an orphan scan in case it has lost its parent 

 MAC_SYNC_LOSS_INDICATION 

The node is able to report a sync loss condition to its upper layer. This can be either the reception of a coordinator 

realignment frame from its parent, or (if BEACON_SUPPORT is enabled and the node is synchronized with its 

parent) caused by the fact that the node has not received beacon frames from its parent for a certain amount of 

time 

 

The following features are disabled if FFD is NOT set during the build process: 

 MAC_ASSOCIATION_INDICATION_RESPONSE 

The node is not able to handle association attempts from other nodes 

 MAC_DISASSOCIATION_FFD_SUPPORT 

The node is not able to transmit an indirect disassociation notification frame 

 MAC_INDIRECT_DATA_FFD 

The node is not able to handle requests to transmit data frames indirectly 

 MAC_ORPHAN_INDICATION_RESPONSE 

The node is not able to handle orphan indication frames by other nodes 

 MAC_PAN_ID_CONFLICT_AS_PC 

The node is not able to act upon the reception of PAN-Id Conflict Notification Command frames 

 MAC_PURGE_REQUEST_CONFIRM 

The node is not able to purge indirect data 

 MAC_SCAN_ED_REQUEST_CONFIRM 

The node is not able to perform an energy detect scan 

 MAC_SCAN_PASSIVE_REQUEST_CONFIRM 

The node is not able to perform a passive scan 

 MAC_START_REQUEST_CONFIRM 

The node is not able to start its own network 

Please check IEEE 802.15.4-2006 for further information about the MAC primitives and the implementation of their 

corresponding features in the MAC. 

7.2.1.3 BEACON_SUPPORT feature set 

If BEACON_SUPPORT is set during the build process all functionality required to support beacon-enabled networks 

are enabled. The actually enabled functionality differs depending on the internal requirements for FFDs or RFDs. 

Additionally the following feature is enabled: 

 MAC_SYNC_REQUEST 

The node is able to sync itself with its parent by tracking the corresponding beacon frames 



 

8412A-AVR-02/13 

Please check IEEE 802.15.4-2006 for further information about the MAC primitives and the implementation of their 

corresponding features in the MAC. 

 

7.2.2 User build configurations – MAC_USER_BUILD_CONFIG 

7.2.2.1 Introduction 

Since a number of applications do not necessarily need the functionality provided by any of the standard build 

configurations, or may even have more rigid requirements concerning FLASH or RAM utilization, the concept of user 

build configuration has been introduced. The usage of the build MAC_USER_BUILD_CONFIG in the Makefiles or 

IAR Embedded Workbench project files allows the end user to tailor its MAC completely according to its own needs. 

The following MAC features can be separately selected or removed from the build: 

 Association 

 Disassociation 

 Support of scanning (energy detect, active, passive, or/and orphan scanning) 

 Starting of networks 

 Support of transmitting or receiving indirect data including polling of data 

 Purging of indirect data 

 Enabling of the receiver 

 Synchronization in beacon-enabled networks 

 Presentation of loss of synchronization 

 Handling of orphan notifications 

 Handling of beacon notifications 

Each feature can be used independently from each other. It is also possible to deselect all of the above features, 

which leads to a minimum application in terms of resource utilization. In this case only the following basic MAC 

features are available: 

 Direct data transmission and reception 

 Initiation of a MAC reset 

 Reading and writing of PIB attributes 

An example application implementing the proper utilization of this feature can be found in 

avr2025_mac/examples/mac/no_beacon. In this example only RX-ENABLE is used in addition to the standard 

features. For more information about this example application please refer to Section 10.2.1.1. 

7.2.2.2 File mac_user_build_config.h 

If the switch MAC_USER_BUILD_CONFIG is activated, the C-pre-processor looks for a file mac_user_build_config.h 

in the current include path (usually in the Inc directory of the application). See file /Include/mac_build_config.h: 

#ifdef MAC_USER_BUILD_CONFIG 

#include "mac_user_build_config.h" 

#else 

... 

The standard feature definitions for an FFD or RFD configuration are by-passed, and instead the user defined feature 

set from mac_user_build_config.h is used. This features set needs to be defined entirely, that is, each feature needs 

to be either enabled or disabled. 

7.2.2.2.1 Examples 

Example 1: An end device that does neither use association nor disassociation functionality, but still wants to poll 

indirect data from its parent, may set the following the build switches in file mac_user_build_config.h: 

#define MAC_ASSOCIATION_INDICATION_RESPONSE     (0) 



 

8412A-AVR-02/13 

#define MAC_ASSOCIATION_REQUEST_CONFIRM         (0) 

#define MAC_DISASSOCIATION_BASIC_SUPPORT        (0) 

#define MAC_DISASSOCIATION_FFD_SUPPORT          (0) 

#define MAC_INDIRECT_DATA_BASIC                 (1) 

#define MAC_INDIRECT_DATA_FFD                   (0) 

 

Example 2: A network whose nodes read their fixed network parameters from a persistent store, and thus never 

perform scanning or start a network, may set the following build switches in file mac_user_build_config.h: 

#define MAC_SCAN_ACTIVE_REQUEST_CONFIRM         (0) 

#define MAC_SCAN_ED_REQUEST_CONFIRM             (0) 

#define MAC_SCAN_ORPHAN_REQUEST_CONFIRM         (0) 

#define MAC_SCAN_PASSIVE_REQUEST_CONFIRM        (0) 

#define MAC_START_REQUEST_CONFIRM               (0) 

The other features are omitted in the examples, but have to be set according to the application need. 

7.2.2.3 Implications and Internal Checks 

There are a number of dependencies between several of the features mentioned above. In order to keep the burden 

for the end user low, certain required internal checks or further implicit settings are done while configuring the build. 

These checks and implications can be seen in file /Include/mac_build_config.h. 

7.2.2.3.1 MAC_COMM_STATUS_INDICATION 

Communication systems usually follow the approach to implement primitives in pairs. This is (1) Request / Confirm 

(for example, MLME_ASSOCIATE-request and MLME_ASSOCIATE.confirm, or (2) Indication / Response (for 

example, MLME_ASSOCIATE.indication and MLME_ASSOCIATE.response). Whenever such an Indication / 

Response scheme is applied, the corresponding node needs a confirmation that its last transaction has finished 

successfully (for example, the last transmitted frame has been acknowledged by its receiver). This confirmation is 

done within IEEE 802.15.4 by creating an MLME_COMMUNICATION_STATUS.indication message to the upper 

layer. 

This implies that whenever MAC_ASSOCIATION_INDICATION_RESPONSE or 

MAC_ORPHAN_INDICATION_RESPONSE is used (both is valid for an FFD only), the feature 

MAC_COMM_STATUS_INDICATION is enabled automatically. 

7.2.2.3.2 MAC_SYNC_REQUEST vs. MAC_SYNC_LOSS_INDICATION 

Whenever the feature MAC_SYNC_REQUEST is used, also the feature MAC_SYNC_LOSS_INDICATION is 

required to be included in the build. If the requirement is not met, the C-pre-processor will indicate an error. 

7.2.2.3.3 Dependency from MAC_INDIRECT_DATA_BASIC 

Whenever one of the subsequently listed features is used, also the feature MAC_INDIRECT_DATA_BASIC is 

required to be included in the build: 

 MAC_ASSOCIATION_INDICATION_RESPONSE 

 MAC_ASSOCIATION_REQUEST_CONFIRM 

 MAC_DISASSOCIATION_BASIC_SUPPORT 

 MAC_DISASSOCIATION_FFD_SUPPORT 

 MAC_INDIRECT_DATA_FFD  

 MAC_PURGE_REQUEST_CONFIRM 

If this requirement is not met, the C-pre-processor will indicate an error. 



 

8412A-AVR-02/13 

7.2.2.3.4 Dependency from MAC_INDIRECT_DATA_FFD 

Whenever one of the subsequently listed features is used, also the switch MAC_INDIRECT_DATA_FFD is required 

to be included in the build: 

 MAC_ASSOCIATION_INDICATION_RESPONSE 

 MAC_DISASSOCIATION_FFD_SUPPORT 

 MAC_PURGE_REQUEST_CONFIRM 

7.2.2.3.5 MAC_PAN_ID_CONFLICT_AS_PC 

Whenever the feature MAC_PAN_ID_CONFLICT_AS_PC is used, also the following features are required to be 

included in the build: 

 MAC_START_REQUEST_CONFIRM 

 MAC_SYNC_LOSS_INDICATION 

7.2.2.3.6 MAC_PAN_ID_CONFLICT_NON_PC 

Whenever the feature MAC_PAN_ID_CONFLICT_ NON _PC is used, also the following features are required to be 

included in the build: 

 MAC_SYNC_LOSS_INDICATION 

 MAC_ASSOCIATION_REQUEST_CONFIRM or MAC_SYNC_REQUEST 

7.2.2.3.7 Dependency from BEACON_SUPPORT 

Whenever the feature MAC_SYNC_REQUEST is used, also the switch BEACON_SUPPRT is required to be 

included in the build. If the requirement is not met, the C-pre-processor will indicate an error. 



 

8412A-AVR-02/13 

8 Migration History 

8.1 Guide from version 3.0.x to 3.1.x 

Following are the major updates on this release, 
 
1. GTS feature implementation. 
2. Data security error correction. 
3. Beacon Security implementation. 
4. RF4Control library updation. 
5. Fixes for Motorola delivery. 
6. High data rate support for MAC. 
7. Beacon application changes for Security, GTS and Sleep. 
8. Alignment and RAM optimization for SAM platforms. 

8.2 Guide from version 2.8.x to 3.0.x 

With the release of Atmel AVR2025 version 3.0.x a number of significant improvements have been achieved by 

introducing design changes, enhancements, changes in mac package structure and release approach. 

The complete MAC software is integrated into the Atmel Software Framework (ASF) in this release version. 

The design changes do not affect the MAC and TAL layers. This release version contains significant changes in the 

PAL layer; the PAL drivers no more exists in the AVR2025 MAC software package, only the PAL wrapper functions 

will be available. The Stack will be using the ASF-PAL drivers with the help of PAL wrapper functions. 

Atmel Studio 6® support (with Wireless composer integrated) is added for all the Atmel AVR 8bit and 32bit families 

supported in this version. MAC examples are provided for Beacon and No-beacon applications. Performance 

Analyzer application is added in TAL. 

8.3 Guide from version 2.7.x to 2.8.x 

Atmel AVR2025 version 2.8.x contains Mac application Power Management enhancement, Performance Test Evk 

application redesign, Watchdog support for SAM3S and a significant number of new hardware platforms and boards 

are added. New transceiver’s AT86RF233, ATMEGARFR2 support added to this release. AVR Studio 5.1® support 

got added for all the Atmel AVR 8bit and 32bit families. Mesh bean support added for ATmega1281 MCU’s. 

8.4 Guide from version 2.6.x to 2.7.x 

Atmel AVR2025 version 2.7.x contains mac security and example applications to demonstrate the mac security 

feature. AVR Studio 5® support got added for all the Atmel AVR 8bit and 32bit families. Two new MAC applications 

got added which covers most of the features of Beacon and No-beacon MAC. 



 

8412A-AVR-02/13 

9 Toolchain 

The following sections describe the required tools and toolchain for the development and build process and how the 

provided example applications can be built. 

9.1 General prerequisites 

The following tools and tool-chains are used for building the applications from this MAC package: 

 Atmel Studio 6 

(see http://www.atmel.com/tools/ATMELSTUDIO.aspx) 

 Atmel AVR and AVR32 GNU Toolchain for Windows 

(see http://www.atmel.com/tools/atmelavrtoolchainforwindows.aspx) 

 ARM Code Sorcery GCC Toolchain for Windows(IA32 Windows Installer) 

(see http://www.codesourcery.com/sgpp/lite/arm/portal/release642) 

 IAR Embedded Workbench for Atmel AVR V6.11 

(see http://www.iar.com/) 

 IAR Embedded Workbench for Atmel AVR32 V4.10 

(see http://www.iar.com/) 

 IAR Embedded Workbench for Atmel ARM V6.40 

(see http://www.iar.com/) 

9.2 Building the applications 

9.2.1 Using GCC makefiles 

Each application should be built using the provided Makefiles. Please follow the procedure as described: 

 Change to the directory where the Makefile for the desired platform of the corresponding application is located, for 

example: 

cd D:\ASF\thirdparty\wireless\avr2025_mac\apps\mac\beacon\coord\ncp 

cd xmega_a3bu_xplained_rz600rf212\gcc 

 Run the desired Makefile, for example: 

make –f Makefile 

 

NOTE Makefile builds a binary optimized for code size without Serial I/O support, whereas Makefile_Debug builds a version 
for better debug support without optimization but with additional Serial I/O support 

 After running one of the Makefiles the same directory contains both a hex-file and an elf-file which can be 

downloaded onto the hardware (see Section Error! Reference source not found.) 

 The above procedure for building the Makefiles is common for Atmel AVR8, Atmel AVR32, and ARM Platforms 

9.2.2 Using IAR Embedded Workbench 

Each application can be rebuilt using the IAR Embedded Workbench directly. Please follow the procedure as 

described: 

 Change to the directory where the IAR Embedded Workbench workspace file (eww-file) for the desired platform of 

the corresponding application is located, for example: 

cd D:\ASF\thirdparty\wireless\avr2025_mac\apps\mac\beacon\coord\ncp 

cd xmega_a3bu_xplained_rz600rf231\iar 

 Double click on the corresponding IAR Embedded Workbench file (eww-file), for example beacon_coord.eww 

 Select the desired workspace (Release or Debug) and Rebuild the entire application in IAR Embedded Workbench 

 After building the application the subdirectory IAR/Exe contains either an a90-file (in case the Release 

configuration was selected) or a d90-file (in case a Debug configuration was selected). Both binaries can be 

downloaded onto the hardware (see Section Error! Reference source not found.) 

http://www.atmel.com/tools/ATMELSTUDIO.aspx
http://www.atmel.com/tools/atmelavrtoolchainforwindows.aspx
http://www.codesourcery.com/sgpp/lite/arm/portal/release642
http://www.iar.com/
http://www.iar.com/
http://www.iar.com/


 

8412A-AVR-02/13 

 The Release configuration binary (a90-file) can be downloaded using IAR Embedded Workbench directly or AVR 

Studio 

 The Debug configuration binary (d90-file) can only be downloaded using IAR Workbench and can be debugged 

using IAR C-Spy® 

 In case is it desired to create a binary with IAR Embedded Workbench, which contains AVR Studio Debug 

information and can thus directly be downloaded and debugged using AVR Studio, the following changes need to 

be done with IAR Embedded Workbench: 

o Select the Debug configuration 

o Open the “Options” dialog 

o Select “Category” “Linker” 

o Select tab “Output” 

o Change “Format” from “Debug information for C-Spy” to “Other” 

o Select “ubrof 8 (forced)” as “Output format” 

o Select “None” as “Format variant” 

o Rebuild the application 

o The generated binary can now contains debug information that can be used directly within AVR 

Studio 

9.2.3 Using IAR AVR32 Embedded Workbench 

Each application can be rebuilt using the IAR AVR32 Embedded Workbench directly. Please follow the procedure as 

described: 

 Change to the directory where the IAR Embedded Workbench workspace file (eww-file) for the desired platform of 

the corresponding application is located, for example: 

cd D:\ASF\thirdparty\wireless\avr2025_mac\apps\mac\beacon\coord\ncp 

cd at32uc3a3256s_rz600_at86rf212\iar 

 Double click on the corresponding IAR Embedded Workbench file (eww-file), for example beacon_coord.eww 

 Select the desired workspace (Release or Debug) and Rebuild the entire application in IAR Embedded Workbench 

 After building the application the subdirectory IAR/Exe contains either an elf-file (in case the Release or Debug 

configuration was selected).The binaries can be downloaded onto the hardware (see Section Error! Reference 

source not found.) 

 The Release configuration binary (elf-file) can both be downloaded using IAR AVR32 Embedded Workbench 

directly or AVR Studio 

 The Debug configuration binary (elf-file) can only be downloaded using IAR AVR32 Workbench and can be 

debugged using IAR AVR32 C-Spy® 

9.2.4 Using IAR ARM Embedded Workbench 

Each application can be rebuilt using the IAR ARM Embedded Workbench directly. Please follow the procedure as 

describe: 

 Change to the directory where the IAR Embedded Workbench workspace file (eww-file) for the desired platform of 

the corresponding application is located, for example: 

cd D:\ASF\thirdparty\wireless\avr2025_mac\apps\mac\beacon\coord\host 

cd sam4lc4c_sam4l_xplained_pro\iar 

 Double click on the corresponding IAR Embedded Workbench file (eww-file), for example beacon_coord.eww 

 Select the desired workspace (Release or Debug) and Rebuild the entire application in IAR Embedded Workbench 

 After building the application the subdirectory IAR/Exe contains either a binary file or an elf-file (in case the 

Release or Debug configuration was selected). The binaries can be downloaded onto the hardware (see Section 

Error! Reference source not found.) 

 The Release and Debug configuration binary or elf-file can both be downloaded using IAR ARM Embedded 

Workbench directly 

 



 

8412A-AVR-02/13 

10 Example applications 

The MAC package includes a variety of example applications which can be flashed on the supported hardware 

platforms and be executed immediately. On the other hand the complete source code is provided to help the 

application developer to more easily understand the proper utilization of the stack and to be able to build its own 

applications as fast as possible. 

The provided example applications are categorized into two groups as MAC and TAL. These applications are located 

under the apps subdirectory of avr2025_mac directory. 

These applications will be explained in more detail in the subsequent sections. If the example application makes use 

of the UART interface, the UART is set to 9600 (8,N,1). 

10.1 Walking through a basic application 

This section describes a basic example application provided with this MAC release (see Section 10.2.1.1) more 

thoroughly to allow better understanding of all other examples. The example serves as a first introduction on how to 

control the MAC-API and how to start an 802.15.4 compliant network. It can be used by a developer as a starting 

point for further designs. The example implements a network with star topology. 

There are two types of nodes in the network: PAN Coordinator and device. A PAN Coordinator can be understood as 

the central hub of a network. It handles association requests from devices and assigns a short address if appropriate. 

In this example, the PAN Coordinator does not initiate any data transmissions; it receives data from the associated 

devices. The usr_mcps_data_ind() callback function is provided only as stub and can be extended by user. 

The Devices scan all channels for the PAN Coordinator. Once the coordinator is found, the Device will initiate the 

association procedure. If the association is also successful, the Device periodically (that is, every two seconds) sends 

out a data packet to the Coordinator. The data packets contain a random payload. As already mentioned earlier, this 

example can be extended by the user. 

Details of application APIs can be viewed from doxygen documents. 

10.2 Provided examples applications 

10.2.1 MAC examples 

10.2.1.1 Nobeacon_Application 

10.2.1.1.1 Introduction 

The basic MAC Example Nobeacon Application deploys a non-beacon enabled network consisting of PAN 

Coordinator and Device utilizing the mechanism of indirect data transfer between Coordinator and Device. 

In this example the Coordinator wants to send data to the Device and since a Device in a non-beacon enabled 

network is in sleep mode as default, direct transmission to the Device is not possible. 

In order to enable communication with the Device, indirect data transmission using polling by the device is applied. 

For further explanation of indirect transmission see section 5.4.1/5.4.2. For power management and indirect 

transmission see Section 6.2.4. 

After the Device receives the data from the Indirect_Data_Queue from the Coordinator, the Device sends back the 

data received from the Coordinator to the Coordinator itself by direct data transmission 

This example application uses MAC-API as interface to the stack.  

The application and all required build files are located in directory avr2025_mac\apps\mac\no_beacon\. The source 

code of the application can be found in the subdirectories coord or dev. The common source code for handling Serial 

I/O can be found in the subdirectory wireless\addons\sio2ncp. 



 

8412A-AVR-02/13 

10.2.1.1.2 Requirements 

The application requires (up to three) LEDs on the board in order to indicate the proper working status. A sniffer is 

suggested in order to check frame transmission between the nodes. 

For further status information this application requires a serial connection. Depending on the available Serial I/O 

interface for each board this can be either UART or USB. In order to start the application and to see the output of the 

application please start a terminal application on your host system and press any key for the application to begin. 

10.2.1.1.3 Implementation 

The PAN Coordinator starts a PAN at first channel(Channel 11 for 2.4GHz) with the PAN ID DEFAULT_PAN_ID. The 

Device scans for this network and associates to the PAN Coordinator.  

Once the device is associated, it uses a timer that fires every 5 seconds to poll for pending data at the coordinator by 

means of transmitting a data request frame to the coordinator. On the other hand the coordinator every 5 seconds 

queues a dummy data frame for each associated device into its Indirect-Data-Queue. If the coordinator receives a 

data request frame from a particular device, it transmits the pending data frame to the device. Device after receiving 

the data from the Coordinator sends back the data to the Coordinator itself by direct data transmission. While the 

device is idle (when the timer is running) the transceiver enters sleep in order to save as much power as possible. 

10.2.1.1.4 Limitations 

 The current channel is coded within the application. In order to run the application on another channel, change the 

default channel in file main.c and re-built the application. 

 Currently only six devices are allowed to associate to the PAN Coordinator. This can be easily extended by 

increasing the define MAX_NUMBER_OF_DEVICES. 

10.2.1.2 Beacon_Application  

10.2.1.2.1 Introduction 

The basic MAC Example Beacon Application deploys a beacon enabled network consisting of PAN Coordinator and 

(up to 100 associated) Devices. The application shows how basic MAC features can be utilized within an application 

using beacon-enabled devices, such as announcement of pending broadcast data at the coordinator within beacon 

frames (that is, whenever the coordinator has pending broadcast data to be delivered in a beacon-enabled network it 

sets the Frame Pending Bit in the transmitted beacon frame) and synchronization with the coordinator and utilization 

of beacon payload by the coordinator. Also the Coordinator in this example wants to send data to the Device using 

indirect transmission. In order to enable communication with the Device, indirect data transmission using polling by 

the device is applied. For further explanation of indirect transmission see Section 5.4.1 /5.4.2. For power 

management and indirect transmission see Section 6.2.4. 

This example application uses MAC-API as interface to the stack.  

The application and all required build files are located in directory avr2025_mac\apps\mac\beacon. The source code 

of the application can be found in the subdirectories Coord or Dev. 

10.2.1.2.2 Requirements 

The application requires (up to three) LEDs on the board in order to indicate the proper working status. A sniffer is 

suggested in order to check frame transmission between the nodes. 

For further status information this application requires a serial connection. Depending on the available serial I/O 

interface for each board this can be either UART or USB. In order to start the application and to see the output of the 

application please start a terminal application on your host system and press any key for the application to begin. 



 

8412A-AVR-02/13 

10.2.1.2.3 Implementation 

The coordinator in this application creates a beacon-enabled network and periodically transmits beacon frames with 

a specific beacon payload. The beacon payload changes after a certain time period. 

Each device of this application joins the beacon-enabled network by first attempting to synchronize with the 

coordinator to be able to receive each beacon frame. Once it has successfully synchronized with the coordinator, the 

device associates with the coordinator.  

The connected devices wake-up whenever a new beacon frame is expected, extract the received payload of each 

beacon frame from its coordinator. This received payload is printed on the terminal and sent back to the coordinator 

by means of a direct data frame transmission to the coordinator. After successful beacon reception and data 

transmission, the devices enter sleep mode until the next beacon is expected. 

The coordinator indicates each received data frame from each device on its terminal. 

Whenever a device looses synchronization with its parent, it initiates a new synchronization attempt. 

Also in this application the coordinator periodically tries to transmit broadcast data frames to all children nodes in its 

network. Whenever broadcast frames are pending at the coordinator, it sets the Frame Pending Bit of the next 

beacon frame.  

The connected devices wake-up whenever a new beacon frame is expected. Once it receives a beacon frame that 

has the Frame Pending Bit set, it remains awake until a broadcast data frame is received. After successful reception 

of the expected broadcast data frame the devices enter sleep mode until the next beacon is expected. 

Once the device is associated, when it receives a beacon frame that has the data Frame Pending Bit set, the device 

sends a data request frame to the coordinator. On the other hand the coordinator every 5 seconds queues a dummy 

data frame for each associated device into its Indirect-Data-Queue. If the coordinator receives a data request frame 

from a particular device, it transmits the pending data frame to the device. While the device is idle (when the timer is 

running) the transceiver enters sleep in order to save as much power as possible. 

 

10.2.1.2.4 Limitations 

 The current channel is coded within the application. In order to run the application on another channel, change the 

default channel in file main.c and re-built the application. 

 Currently 100 devices are allowed to associate to the PAN Coordinator. This can be easily extended by increasing 

the define MAX_NUMBER_OF_DEVICES. 

10.2.1.3 No_beacon_sleep 

10.2.1.3.1 Introduction 

The application No_beacon_sleep provides a simple start network application based on IEEE 802.15.4-2006.The 

application uses two nodes: a PAN Coordinator (1) and an End Device (2). The firmware is implemented as such that 

a node can either act as a PAN Coordinator or an End Device.  

This application demonstrates how MCU sleep modes can be utilized in the wireless networks in order to save more 

power. By default, End Device MCU is full sleep mode wakes for every 2 seconds and sends a data to the 

coordinator before going to sleep again. 

This example application uses MAC-API as interface to the stack.  

The application is  located in directory avr2025_mac\apps\mac\no_beacon_sleep.  

10.2.1.3.2 Requirements 

The application requires (up to three) LEDs on the board in order to indicate the proper working status. A sniffer is 

suggested in order to check the proper association and the data transfer between the devices. 



 

8412A-AVR-02/13 

10.2.1.3.3 Implementation 

The application works as described subsequently. 

Node one: 

 Switch on node one. 

 LED 0 indicates that the node has started properly. 

 Flashing of LED 1 indicates that the node is scanning its environment. Scanning is done three times on each 

available channel depending on the radio type. 

 If no other network with the pre-defined channel and PAN Id is found, the node establishes a new network at the 

pre-defined channel (channel 20 for 2.4GHz radio). This node now becomes the PAN Coordinator of this network. 

The successful start of a new network is indicated by switching LED 1 on. 

Node two: 

 Switch on the other node. 

 LED 0 indicates that the node has started properly. Flashing of LED 1 indicates that the node is scanning its 

environment. Scanning is again done three times on each available channel depending on the radio type. 

 If a proper network is discovered, the node joins the existing network, indicates a successful association by 

switching on LED 1 and goes both MCU and transceiver to sleep.  

 For every 2 seconds the end device wakes up and sends a data to the coordinator before going to sleep again. 

10.2.1.3.4 Limitations 

 The current channel is coded within the application. In order to run the application on another channel, change the 

default channel in file main.c and re-built the application. 

 Currently only 2 devices are allowed to associate to the PAN Coordinator. This can be easily extended by 

increasing the define MAX_NUMBER_OF_DEVICES. 

 

10.2.2 TAL examples 

10.2.2.1 Performance_Analyzer 

10.2.2.1.1 Introduction 

The TAL example Performance_Analyzer is a GUI-based application used to demonstrate various features and 

capabilities of Atmel 802.15.4 Transceivers such as 

 

 Range of the Transceiver for peer-to-peer communication (Range Measurement) 
 Robust Link Quality 
 Antenna Diversity 
 TX Power of Radio 
 Rx Sensitivity 
 CSMA-CA Transmission 
 Read / Write Transceiver Registers 
 Continuous transmit test modes 
 Reduced Power Consumption mode 
 Energy Detection 
 Cyclic Redundancy Check 
 Battery Monitor 

 

The different states of the Performance Analyzer application are explained and also the state diagram is shown in 

Figure 10-1.Each state is represented by a number in the state diagram 



 

8412A-AVR-02/13 

 

1 INIT 

 Initializes all underlying layers like TAL, PAL and Resource Management (BMM/QMM). 

 Initializes all board utilities like LEDs and buttons etc. 
 
2 WAIT_FOR_EVENT 

 Initializes the TAL PIB attributes PAN Id with 0xCAFE, physical channel with 0x0B on both the nodes, and 
their radios are kept in receive state. 

 Continuously search for the user events like Initiating peer search  from GUI or key press on the board (Peer 
Request) received on air. 

 
3 PEER_SEARCH_RANGE_TX 

 Enters after key press event is detected from user. Peer Search process in Range Measurement mode as 
Transmitter node starts here.  

 Nodes shall go into different sub states like PEER_INIT, PEER_REQ_SENT, PEER _RSP_RCVD, 
PEER_SEARCH_SUCCESS. 
 

4 PEER_SEARCH_PER_TX 

 Enters after initiating peer search from Wireless Composer. Peer Search process in PER mode as 
Transmitter node starts here.  

 Nodes shall go into different sub states like PEER_INIT, PEER_REQ_SENT, PEER _RSP_RCVD, 
PEER_SEARCH_SUCCESS.  

 
5 PEER_SEARCH_RANGE_RX 

 Enters after receiving a valid frame (Peer Request) from Transmitter. Peer Search process in Range 
Measurement mode as Reflector node starts here.  

 Nodes shall go into different sub states like PEER_INIT, PEER _RSP_SENT, WAIT_FOR_ PEER_CONF, 
PEER_SEARCH_SUCCESS.  

 
6 PEER_SEARCH_PER_RX 

 Enters after receiving a valid frame (Peer Request) from Transmitter. Peer Search process in PER 
Measurement mode as Reflector node starts here.  

 Nodes shall go into different sub states like PEER_INIT, PEER _RSP_SENT, WAIT_FOR_ PEER_CONF, 
PEER_SEARCH_SUCCESS.  

 
8 RANGE_TEST_TX_ON 

 Starts Range Measurement mode as Transmitter. 

 Enters after successful Peer Search on key press event. 

 Continuous packet transmission with a period of 200 ms time interval.  

 Enters from RANGE_TEST_TX_OFF(7) state on button press 
 
 

7 RANGE_TEST_TX_OFF 

 Starts Range Measurement mode as Reflector. 

 Enters after successful Peer Search on a valid frame (Peer Request in Range Measurement mode) received 
from Transmitter.  

 Receives the packets from other node and acknowledges (by an 802.15.4 protocol ACK)  each packet 
received 

 Enters from RANGE_TEST_TX_ON(8) state on button press 
 
10 PER_TEST_INITIATOR 

 PER Measurement mode as Transmitter  

 Enters after successful Peer Search on initiating from Wireless Composer. 

 Node shall go into sub states like TX_PER, TEST_FRAMES_SENT, WAIT_FOR_TEST_RES, 
SET_PARAMETER, IDENTIFY_PEER, DIVERSITY_SET_REQ, DIVERSITY_STATUS_REQ, 
CRC_SET_REQ_WAIT, CRC_STATUS_REQ_WAIT, CONTINOUS_TX_MODE, RESULT_RSP, 
DIV_STAT_RSP etc. 

 
11 PER_TEST_RECEPTOR 



 

8412A-AVR-02/13 

 PER Measurement mode as Reflector  

 Enters after successful Peer Search on a valid frame (Peer Request) received from Transmitter. 

 Node shall respond back for the cmds sent from different states in Transmitter node. 
 
9 SINGLE_NODE_TESTS 

 Transmitter node in single node operation. 

 Enters on user abort or Peer Search time out, i.e. No Peer Response is received during the Peer Search 
process.  

 Node shall go into sub states similar (but applicable) states in PER_TEST_INITIATOR (10) by considering 
the Peer Search status as failed. 

 

Figure 10-1. Performance Analyzer Application State Diagram 

Successful board initialization

POWER_ON

Peer Req received
on air in Range mode

Peer Req received
on air in PER mode

Peer Search successful Peer Search successful Peer Search successful

Peer Search
 unsucceessful

Key press detected

4
PEER_SEARCH_PER_TX

Character on UART

2
WAIT_FOR_EVENT

5
PEER_SEARCH_RANGE_RX

6
PEER_SEARCH_PER_RX

9
SINGLE_NODE_TESTS

  Peer Search
 unsucceessful

1
INIT

10
PER_TEST_INITIATOR

 Peer Search
 unsucceessful

Peer Search successful

3
PEER_SEARCH_RANGE_TX

11
PER_TEST_RECEPTOR

Button Press

Periodic timer
triggered packet

transmissionButton Press

7
RANGE_TEST_TX_OFF

8
RANGE_TEST_TX_ON

Peer Search
 unsucceessful

User Aborted/
 Peer Search
   timed out

 

10.2.2.1.2 Requirements 

Some of the pre-requisites for using this application are the Wireless Composer GUI for PER Mode of 

Operation which can be found from Atmel Studio Extensions, Atmel Studio 6.0 and above. 

10.2.2.1.3 Implementation 

10.2.2.1.3.1 Range Measurement mode 

During Range measurement, the transmitter node will initiate a sequence to find a peer node. Once peer node is 

found, packet transmission is initiated by the transmitter to the receiver. The Receiver node acknowledges each 

packet received. The procedure used for finding the peer node is explained in detail in the Section 10.2.2.1.3.3 



 

8412A-AVR-02/13 

Figure 10-2. Sequence diagram of Range measurement 

Node 1 Node 2

Peer Request

(Broadcast)

Peer Request

(Broadcast)

Peer Response

(Unicast)

Peer Confirm

(Unicast)

Key press

Unicast data packets

Blink TX LED

Blink RX LED
Unicast data packets

Blink TX LED

Blink RX LED
Unicast data packets

Blink TX LED

Blink RX LEDUnicast data packets

Blink TX LED

Blink RX LED

 

The LED on the receiver will blink sequentially and repeat at the rate at which the packets are received. The LED on 

the transmitter will blink sequentially & repeat at the rate at which the packets are transmitted. The LED will blink at a 

constant rate on the transmitter as the packets are transmitted at a constant duration. The packet format is described 

in the section Packet Format 

10.2.2.1.3.1.1 Packet Format 

The transmitted packet format and content for the operation mode is customized to suite only the requirements of this 

application. The format is shown in Table 10-5: 

Table 10-5. Packet payload format for Range measurement   

Octets 1 1 8 

Payload Command ID Sequence Number Packet Count 

 

Field Description is as follows: 

 Command-ID: 

(0x00) the value of command ID (DATA FRAME) 

 Sequence Number:  

To have a sequence of packets transmitted from the transceiver to the receiver. The range of sequence number is 

0x00 ~ 0xFF, will roll-over respectively. This is to track the packet loss for a continuous transmission of packets. 

 Packet Count:  



 

8412A-AVR-02/13 

The packet format maintains a 32 bit packet counter to count the number of packets at any instant, by using an 

external sniffer tool. Once the limit is reached (4294967295) then the counter resets itself to start again from 

0x00000000. 

10.2.2.1.3.1.2 Debug message support for – Range measurement 

Debug prints can be viewed if the node is connected to a UART terminal  

The node on which the key was pressed will display a print as shown in Figure 10-3. This node initiates the 

transmission and calls itself the TX node 

Figure 10-3. Initializing Range measurement - transmitter (TX) 

 

The node connected to the TX node will display a print as shown in Figure 10-4. This node receives the packets and 

calls itself the RX node.  

Figure 10-4. Initializing Range measurement - receiver (RX) 

 

On input of any character in the UART Terminal it prints the statistics of the messages received and messages sent 

as shown in Figure 10-5. Two way communications can be enabled if the button is pressed on both the nodes.  

Figure 10-5. Statistics of Range measurement 

 

10.2.2.1.3.2 PER Measurement mode 

The primary intent of this application is PER measurement. One of the nodes should be connected to the Wireless 

Composer GUI in studio and other node can be connected to the Terminal Window or can be left alone. The node 

connected to the Wireless Composer is referred as transmitter and other node is referred as receiver. For 

Comprehensive information of using this application along with the Wireless Composer please refer 

http://www.atmel.no/webdoc/wirelesscomposer/wirelesscomposer.html 

 

10.2.2.1.3.2.1 Sensitivity testing  

In the IEEE 802.15.4 standard, the receiver sensitivity is defined as the lowest received signal power that yields a 

packet error rate loss of less than 1%. IEEE 802.15.4 requires only -85 dBm of sensitivity for operations in the 2.4 

GHz ISM band.  

Using the PER test, sensitivity can be tested by configuring one of the nodes as a transmitter and another as a 

receiver. The number of packets to be transferred is configured using Wireless composer and all the packets 

received by the receiver are acknowledged. The receiver keeps a count of the packets received. At end of the test 

the transmitter asks the receiver for the test results. The test results are displayed on the Wireless Composer GUI. 

http://www.atmel.no/webdoc/wirelesscomposer/wirelesscomposer.html


 

8412A-AVR-02/13 

For this test, unicast with ACK is used. Since the boards are not factory connected they are field connected by the 

method described in the Section 10.2.2.1.3.3. Please refer the Atmel Transceiver datasheet for expected sensitivity. 

 

10.2.2.1.3.2.2 TX Power handling  
 
The Atmel AT86RF231 provides the programmable TX output power from -17dBm to 3dBm. The output power of the 
transmitter can be controlled over a range of 20 dB. Default TX power is set to 3dBm. The PER measurement mode 
gives an option to configure the TX out power in the form of absolute power in dBm or TX PWR register value in the 
composer GUI. If the AT86RF231 is connected with front end module (e.g.REB231FE2 –EK kit), TX power can be 
extended till 21dBm. 
 
The control of an external RF front-end is done via digital control pins DIG3/DIG4. The function of this pin pair is 
enabled with register bit PA_EXT_EN (register 0x04, TRX_CTRL_1). While the transmitter is turned off pin 1 (DIG3) 
is set to low level and pin 2 (DIG4) to high level. If the radio transceiver starts to transmit, the two pins change the 
polarity. This differential pin pair can be used to control PA, LNA, and RF switches. 
 
If the AT86RF231 is not in a receive or transmit state, register bit PA_EXT_EN (register 0x04, TRX_CTRL_1) is 
disabled to reduce the power consumption or avoid leakage current of external RF switches and other building 
blocks, especially during SLEEP state. If register bits PA_EXT_EN = 0, output pins DIG3/DIG4 are pulled-down to 
analog ground. 
 
If AT86RF231 is connected with RF front end module (i.e.REB231FE2 –EK kit), default TX power is 20dBm.To 
ensure FCC compliance TX Power of CH26 has to be limited to 13dBm (TX_PWR = 0x0d).So if user changes the 
channel to 26 and the default TX power is more than 13dBm, it shall be automatically changed to 13dBm.For CH26 
the allowed range of TX power is 4dbm to 13dBm, for other channels it is 4dBm to 21dBm. 
 

10.2.2.1.3.2.3 Diversity feature testing  

In a multi-path environment, several versions of the same signal with different phases, delays, and attenuations will 

be added together at the receiver location, so there is always the possibility that at some locations, the signals could 

cancel each other out almost entirely. One way to overcome the multi-path issue is to use the receiver antenna 

diversity technique. In this method, two antennas are used instead of one in the receiver. This way if one antenna is 

in a multi-path null (also known as deep-fading region), the other antenna has a good chance of being outside the 

deep-fading region. The receiver can switch between these two antennas to escape from a multi-path null. 

Enable Diversity in the radio by Selecting the Antenna Diversity tab in the GUI. Diversity can also be configured in the 

reflector node by using Antenna Diversity on Peer. (By default diversity is enabled). AT86RF231 has a built-in 

antenna diversity feature. Upon reception of a frame the AT86RF231 selects one antenna during preamble field 

detection. The REB Rx path is shown in the Figure 10-6. 

The antenna diversity feature can be tested by doing the PER measurement on conductive medium. 

 



 

8412A-AVR-02/13 

Figure 10-6. REB Rx path 

 

10.2.2.1.3.2.4 Read Write Radio Registers 

The Atmel AT86RF231 provides a register space of 64, 8-bit registers, used to configure, control and monitor the 

radio transceiver. The PER measurement mode gives an option to write / read the content of range of these registers 

through Wireless Composer. Please note that when writing to a register, any reserved bits shall be overwritten only 

with their reset value. 

NOTE If the nodes are connected to each other and registers related to channel selection 
(0x08-PHY_CC_CCA) or channel page selection (0x0C-TRX_CTRL_2) or transmission power setting (0x05-
PHY_TX_PWR) are changed, the changes will be reverted to the old setting to prevent loss of connection with 
remote node. To test these registers use the PER measurement mode with Peer Search aborted. 

10.2.2.1.3.3 Peer Search Process 

The Peer Search process is described in detail below and is illustrated by a sequence diagram. Initially the nodes 

uses their 64-bit MAC address as source address during the Peer Search Process to get connected each other. 

During the Peer search process 16-bit random address shall be assigned to both the devices. 

Figure 10-7. Sequence Diagram for Peer Search process 

 

 



 

8412A-AVR-02/13 

Transmitter Reflector

PEER_CONF (M3)
(Src = rand addr2,Dest = rand addr1,payload = rand addr2)

Ack

E1

PEER_RSP_WAIT_TIMER
                    (T1)

PEER_REQ (M1)
(Src = 64 bit MAC addr,Dest = 0xffff,

payload: rand addr1,mode byte (PER/Range) )

                    PEER_RSP (M2)
(Src = rand addr1, Dest = 64 bit MAC addr,
 payload:rand addr2,mode byte(PER/Range) )

Ack

PEER_INIT

PEER_REQ_SENT

PEER_RSP_RCVD

PEER_SEARCH_SUCCESS

PEER_INIT

PEER_RSP_SENT

WAIT_FOR_PEER_CONF

PEER_SEARCH_SUCCESS

PEER_REQ (M1)
(Src = 64 bit MAC addr,Dest = 0xffff,

payload: rand addr1,mode byte (PER/Range) )

PEER_REQ (M1)
(Src = 64 bit MAC addr,Dest = 0xffff,

payload: rand addr1,mode byte (PER/Range) )

PEER_CONF_WAIT_TIMER
                    (T2)

PEER_RSP_WAIT_TIMER
                    (T1)

PEER_RSP_WAIT_TIMER
                    (T1)

 1 

 1 

 1 

 2 

 3 

 4 

 

1. On pressing the button T1 or Initiating peer search through Wireless Composer, which is shown as an event E1, 

the node becomes Transmitter and sends a Peer Request (M1) as broadcast at a constant period. Then the node 

enters into PEER_REQ_SENT state. A timer PEER_RSP_WAIT_TIMER (T1) is started to send the Peer Requests 

with 50ms time interval. A counter is started to count the no. of Peer Requests sent. On every expiry of the timer 

T1, count value is incremented by one. The Transmitter stops sending the Peer Request if the count reaches to 

0xff and the node goes to the WAIT_FOR_EVENT state again. The Peer Request packet payload consists of a 16 

bit random number and used as source address (rand addr1) of the receiving node and the mode byte to indicate 

in which mode (PER/Range) this Peer Request has been sent. 

  

2. If any other node is in power on state and it receives this Peer Request packet, it becomes Reflector, assigns itself 

this address (rand addr1) as its source address (IEEE 802.15.4 protocol) and sends a Peer Response (M2) which 

is a unicast to Transmitter as destination address using extended MAC address. The Reflector node then enters 

into PEER_RSP_SENT state. After receiving the acknowledgement for Peer Response from Transmitter node, 

Reflector node enters into WAIT_FOR_PEER_CONF state, and a timer called PEER_CONF_WAIT_TIMER (T2) is 

started with a timeout value of 200ms. If the Peer confirm is not received within this time, the node goes to the 

WAIT_FOR_EVENT state again. Peer Response payload consists of a random generated 16 bit number used as 

source address (rand addr2) of the receiving node i.e. Transmitter and the mode byte to indicate in which mode 

(PER/Range) this Peer Response has been sent. 

 

3.  On receipt of the Peer Response packet, the Transmitter node assigns itself the address received in the 

frame(rand addr2) as its source address (IEEE 802.15.4 protocol) and the node sends a Peer Confirm (M3) which 

is a unicast to Reflector (source address = rand addr2 and destination address = rand addr1). Peer Confirm frame 

consists of the address (rand addr2) sent to the Transmitter node in the payload of Peer Response. After receiving 

the acknowledgement for Peer confirm from Reflector, Transmitter node enters into PEER_SEARCH_SUCCESS 

state. 

 

4. On receipt of the Peer Confirm, Reflector node stops the timer T2, checks the packet and verifies the address is 

the same as the address it sent to the Transmitter node in the Peer Response (rand addr2). If it is the same, 

Reflector node enters into PEER_SEARCH_SUCCESS, and the nodes are connected each other. If Reflector 

node does not receive any Peer Confirm within timeout the node goes into WAIT_FOR_EVENT state. This 

process is followed to connect only a pair of nodes if two nodes are in the powered on state. 



 

8412A-AVR-02/13 

 
The boards are assigned random addresses and if the Peer Search process is successful then the test commences 
and the nodes operate in the respective operation modes. 

10.2.2.1.3.4 Configuration mode 

Configuration mode is the startup mode in which two nodes (i.e. Transmitter and Reflector) can connect each other if 

they are only within in the vicinity of one meter approximately. This is to restrict the distance range for connecting 

devices. This is used generally in seminars where there are no. of participants may start the Performance test at the 

same time. With configuration mode provided, each individual participant can make sure that his/her two devices are 

only getting connected without disturbing the other devices. Once the Peer Search is done successfully, the nodes 

shall come to the normal mode where the nodes can be kept afar. 

User can enter into configuration mode by pressing the button T1 while Power on /reset. Then user can initiate Peer 
Search by Initiating Peer search in composer  for PER measurement or button press for Range measurement. Then 
the device (transmitter) shall go to the low TX level (TX_PWR = 0x0F) and sends the peer request with the 
config_mode bit set to true. On the other device (reflector), if the peer request received with config_mode bit true, it 
checks the ED level and if it is above defined threshold, it will connect with the transmitter device. This ED threshold 
is defined to allow connecting with the devices which are approximately below one meter range. In configuration 
mode Transmitter node works with lowest TX power and the Reflector sends the received packets to the application 
layer if it is above ED threshold. 
 

After successful Peer Search, devices shall come to the normal mode, which means Transmitter node work with 

default TX power and the receiver node shall not do any filtering based on the ED threshold value 

 

 
10.2.2.1.3.5 Application Contents 

Using the PAL and TAL package for the corresponding controller and radio transceiver, the entire implementation of 

the Performance Analyzer Application requires an additional set of following files. 

Table 10-10. File list for Performance Test application 

File name Short description of contents 

main.c Main application task ,TX-done handler & Rx callback 

functions (represents entire state machine) 

user_interface.c User interface related functions like LED, Serial prints, 

buttons 

init_state.c Board and startup application initialization functions           

(represents INIT State) 

wait_for_event.c Functions for waiting for events like character on UART, 

Key press etc 

(represents WAIT_FOR_EVENT state) 

peer_search_initiator.c Proprietary Peer Search related functions as Initiator 

(represents PEER_SEARCH_ PER_TX & 

PEER_SEARCH_RANGE_TX states) 

peer_search_receptor.c Proprietary Peer Search related functions as Receptor 

(represents PEER_SEARCH_ PER_RX & 

PEER_SEARCH_RANGE_RX states) 

range_measure.c Range measurement related functions 

(represents RANGE_TEST_TX_OFF & 

RANGE_TET_TX_OFF states) 

per_mode_initiator.c PER measurement related functions as Initiator 

(represents PER_TEST_INITIATOR &  

SINGLE_NODE_TESTS states) 

per_mode_receptor.c PER measurement related functions as Receptor 

(represents PER_TEST_RECEPTOR state) 

per_mode_common_utils.c Common utility function related to all PER mode states 



 

8412A-AVR-02/13 

File name Short description of contents 

perf_api_serial_handler Performs serial i/o communication with the composer GUI 

10.2.2.1.4 Limitations 

Only two devices are allowed connecting each other and communicating. 

A switch on the board is required to enter into Range Measurement mode and configuration mode 

In case of the ATREB231FE2-EK, two nodes should be kept at least 50cm apart to avoid the distortion due to high 

TX Power levels. 

 

 

 

 

10.3 Common SIO handler (Serial I/O Handler) 

Applications that require Serial input or output Communication (via UART or USB) can use the sio2host and sio2ncp 

addons in  

avr2025_mac\addons 

 

12.3.110.3.1 SIO2HOST 

The sio2host addon is used for serial i/o communication between the host(PC) and the device.The sio2host can be 

either configured as USB or UART. 

This module can be configured in the file conf_sio2host.h  

 

12.3.210.3.2 SIO2NCP 

The sio2ncp addon is used for serial i/o communication between the host(ex.SAM4L Xplained Pro) and the 

NCP(Network-Co Processor)(XmegaA3U Zigbit Carrier board connected to Extension of the Xplained Pro board) for 

2p approach.Only UART can be used as a sio2ncp module. 

This module can be configured in the file conf_sio2ncp.h  

10.4 Handling of callback stubs 

The MAC stack must support asynchronous operation by all layers, for instance to allow for callbacks from lower 

layers back to higher layers without blocking the control flow. This is required to implement the request/confirm or 

indication/response primitive handling. A common way of implementing asynchrony operation by lower layers is the 

installation of callback functions, which are called a lower layer, but actually implemented in the higher layer. 

Callbacks are required by both the TAL and the MAC layer. 

10.4.1 MAC callbacks 

The MAC Core layer (MCL) requires the following callback functions: 

 usr_mcps_data_conf 

 usr_mcps_data_ind 

 usr_mcps_purge_conf 

 usr_mlme_associate_conf 

 usr_mlme_associate_ind 

 usr_mlme_beacon_notify_ind 



 

8412A-AVR-02/13 

 usr_mlme_comm_status_ind 

 usr_mlme_disassociate_conf 

 usr_mlme_disassociate_ind 

 usr_mlme_get_conf 

 usr_mlme_orphan_ind 

 usr_mlme_poll_conf 

 usr_mlme_reset_conf 

 usr_mlme_rx_enable_conf 

 usr_mlme_scan_conf 

 usr_mlme_set_conf 

 usr_mlme_start_conf 

 usr_mlme_sync_loss_ind 

 usr_mlme_gts_conf 

 usr_mlme_gts_ind 

These callback functions are declared in file mac/inc/mac_api.h. Each MAC based application 

(HIGHEST_STACK_LAYER = MAC) needs to implement these usr_...() callback functions. 

For example an application that uses data transmission mechanisms, will call a function wpan_mcps_data_request, 

which in return requires the implementation of the corresponding asynchronous callback function 

usr_mcps_data_conf() to indicate the status of the requested data transmission. 

But the same application might, for example, not want to use the MAC primitive MLME-SYNC-LOSS.indication. 

Nevertheless the callback function usr_mlme_sync_loss_ind() needs to be available or the linker generates a build 

error. This can be solved by either implementing an empty stub function in the application, or, more conveniently, use 

an already existing stub function in files eg. usr_mcps_data_conf.c All required MAC stub functions are already 

implemented in the application files. 

10.4.2 TAL callbacks 

The TAL requires the following callback functions: 

 tal_ed_end_cb 

 tal_rx_frame_cb 

 tal_tx_frame_done_cb 

These callback functions are declared in file tal/inc/tal.h. Each TAL based application (HIGHEST_STACK_LAYER = 

TAL) needs to implement these tal_..._cb () callback functions. The MAC layer (residing on top of the TAL) has also 

implemented these callback functions. 

In case these callbacks are not used within the TAL based application, the existing stub functions can easily be used. 

All required TAL stub functions are already implemented in the files tal_*_cb.c in directory tal/src. 

10.4.3 Example for MAC callbacks 

All mac callbacks are included directly inside the main.c file and necessary callbacks are used and others are left 

blank. These callbacks can also be included by adding the file in the name of the call back eg.usr_mlme_reset_conf.c 

where the callback is added but left unused. 

10.5 Bootloader  

All mac and tal application images can be uploaded without the use of a JTAG .The BootloaderPcTool available in 

avr2025_mac/addons/bootloader can be used for this purpose when using two-processor approach as well. The 

Bootloder hex files for atxmega256A3U_zigbit_ext and atmega256rfr2_Zigbit available in the same folder .Refer 

Figure 10-16 for the general approach for flashing an application image to the NCP and Figure 10-17 for Bootloade 

PC Tool. Following are the steps to flash a MAC or TAL application image to the device (NCP). 

Flash the bootloader hex file to the device (NCP) 

Flash the serial bridge hex file to the Host. 



 

8412A-AVR-02/13 

Connect the NCP to the Host and connect the host to the PC. 

Open the BootloaderPcTool and select the desired COM port and baud rate as 9600. 

Select the srec file generated from either AtmelStudio or IAR. 

Press the reset button on the NCP and release it once upload is pressed in the tool. The process is done once the 

tool shows ‘Upload Complete’ 

For more details refer readme.txt in the same folder. 

Note: This bootloader is supported only for 2P boards. 

Figure10-8. General approach for using bootloader to program a NCP in 2p approach 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bootloader PC Tool Window 

11 Supported platforms 

This chapter describes which hardware platforms are currently supported with the Atmel AVR2025 MAC software 

package. A platform usually comprises of three major components: 

 An MCU, 

 A transceiver chip (this may be integrated into the MCU for Single Chips) 

 A specific Board or even several boards that contain the MCU or the transceiver chip 

 

 
 
 
 
 
 

           Host MCU 

 
 
 
 
 
 
 
 
 
 
 
 
 
             NCP 

Embedded 

Bootloader 

Application            

Image 

Serial Bridge 

Application 

 
 
 

    Bootloader PC Tool 

.srec image 

   Serial 

Connection 

   Serial 

Connection 



 

8412A-AVR-02/13 

11.1 Supported MCU families 

Currently the following generic MCU families are supported: 

 AVR32: Atmel AVR32 platforms 

 SAM:              Atmel SAM platforms 

 MEGA_RF: Atmel AVR 8-bit ATmega RF Single Chip platforms 

 XMEGA: Atmel AVR 8-bit ATxmega platforms 

The dedicated code for each platform family can be found in the corresponding subdirectories. 

11.2 Supported transceivers 

For a complete list of all supported transceivers please refer to the AVR2025 release notes. 

11.3 Supported boards 

Few of the currently supported boards and combinations are given below. 

 Atmega256RFR2 Xplained Pro 

 ZigBit-ATmega256RFR2 (extender board) 

 ZigBit-AT86RF233 Xmega (extender board) 

 ZigBit-AT86RF212B Xmega (extender board) 

 USB stick with ZigBit Xmega-AT86RF233 

 USB stick with ZigBit Xmega-AT86RF212B 

 SAMD20 with ZigBit AT86RF233 

 SAMD20 with ZigBit-AT86RF212B 

 SAMR21 Xplained Pro 

 SAM4S with ZigBit AT86RF233 

 SAM4L with ZigBit-ATmega256RFR2 

 SAM4L with ZigBit Xmega-AT86RF233 

 SAM4L with ZigBit Xmega-AT86RF212B 

 RZ600 kits 

 Xmega-a3bu Xplained with RZ600 radio modules 

The following sections describe the currently supported boards and platforms in more detail.  

 

12 Platform porting 

For details and description about platform porting please refer to Atmel Software Framework documentation [9] and 

Atmel Studio-help [10] 

13 Protocol implementation conformance statement (PICS) 

This chapter lists the conformance of the Atmel AVR2025 MAC implementation with the requirements and optional 

features as defined by the standard specified in 4 in Section D.7. 

13.1 Major roles for devices compliant with IEEE Std 802.15.4-2006 

Table 13-1. Functional device types. 

Item number Item description Status 
Support 

N/A Yes No 

FD1 Is this a full function device (FFD) O.1  X  

http://store.atmel.com/PartDetail.aspx?q=p:10500338#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500360
http://store.atmel.com/PartDetail.aspx?q=p:10500361
http://store.atmel.com/PartDetail.aspx?q=p:10500349#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500367
http://store.atmel.com/PartDetail.aspx?q=p:10500351#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500351#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500373#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500344
http://store.atmel.com/PartDetail.aspx?q=p:10500342
http://store.atmel.com/PartDetail.aspx?q=p:10500342
http://asf.atmel.com/docs/latest/search.html?board=SAM4L%20Xplained%20Pro
http://asf.atmel.com/docs/latest/search.html?board=RZ600
http://store.atmel.com/PartDetail.aspx?q=p:10500293


 

8412A-AVR-02/13 

Item number Item description Status 
Support 

N/A Yes No 

FD2 
Is this a reduced function device 

(RFD) 
O.1  X  

FD3 Support of 64 bit IEEE address M  X  

FD4 
Assignment of short network address 

(16 bit) 
FD1:M  

X 

(FFD only) 
 

FD5 
Support of short network address (16 

bit) 
M  X  

O1: At least one of these features shall be supported. 

13.2 Major capabilities for the PHY 

Table 13-2. PHY functions. 

Item number Item description Status 
Support 

N/A Yes No 

PLF1 Transmission of packets M  X  

PLF2 Reception of packets M  X  

PLF3 Activation of radio transceiver M  X  

PLF4 Deactivation of radio transceiver M  X  

PLF5 Energy detection (ED) FD1:MO  
X 

(FFD only) 
 

PLF6 Link quality indication (LQI) M  X  

PLF7 Channel selection M  X  

PLF8 Clear channel assessment (CCA) M  X  

PLF8.1 Mode 1 O.2  X  

PLF8.2 Mode 2 O.2  X  

PLF8.3 Mode 3 O.2  X  

O2: At least one of these features shall be supported. 

 

13.3 Major capabilities for the MAC sub-layer 

13.3.1 MAC sub-layer functions 

Table 13-3. MAC sub-layer functions. 

Item 

number 
Item description Status 

Support 

N/A Yes No 

MLF1 Transmission of data M  X  

MLF1.1 Purge data 
FD1: M 

FD2: O 
 

X 

(FFD only) 
 

MLF2 Reception of data M  X  

MLF2.1 Promiscuous mode 
FD1: M 

FD2: O 
 

X 

(FFD only) 
 

MLF2.2 Control of PHY receiver O  X  

MLF2.3 Timestamp of incoming data O  X  

MLF3 Beacon management M  X  

MLF3.1 Transmit beacons 
FD1: M 

FD2: O 
 

X 

(FFD only) 
 



 

8412A-AVR-02/13 

Item 

number 
Item description Status 

Support 

N/A Yes No 

MLF3.2 Receive beacons M  X  

MLF4 Channel access mechanism M  X  

MLF5 
Guaranteed time slot (GTS) 

management 
O  X  

MLF5.1 GTS management (allocation) O  X  

MLF5.2 GTS management (request) O  X  

MLF6 Frame validation M  X  

MLF7 Acknowledged frame delivery M  X  

MLF8 Association and disassociation M  X  

MLF9 Security M  

X 

(data 

frames) 

 

MLF9.1 Unsecured mode M  X  

MLF9.2 Secured mode O  X  

MLF9.2.1 Data encryption O.4  X  

MLF9.2.2 Frame integrity O.4  X  

MLF10.1 ED 
FD1: M 

FD2: O 
 

X 

(FFD only) 
 

MLF10.2 Active scanning 
FD1: M 

FD2: O 
 X  

MLF10.3 Passive scanning M  X  

MLF10.4 Orphan scanning M  X  

MLF11 
Control/define/determine/declare 

superframe structure 
FD1: O  

X 

(FFD only) 
 

MLF12 Follow/use superframe structure O  X  

MLF13 Store one transaction FD1: M  
X 

(FFD only) 
 

O4: At least one of these features shall be supported. 

13.3.2 MAC frames 

Table 13-4. MAC frames. 

Item 

number 
Item description 

Transmitter Receiver 

Status 

Support 

N/A 

Yes/No 

Status 

Support 

N/A 

Yes/No 

MF1 Beacon FD1: M 
Yes 

(FFD only) 
M Yes 

MF2 Data M Yes M Yes 

MF3 Acknowledgment M Yes M Yes 

MF4 Command M Yes M Yes 

MF4.1 Association request M Yes FD1: M 
Yes 

(FFD only) 

MF4.2 Association response FD1: M 
Yes 

(FFD only) 
M Yes 

MF4.3 Disassociation notification M Yes M Yes 

MF4.4 Data request M Yes FD1: M Yes 



 

8412A-AVR-02/13 

Item 

number 
Item description 

Transmitter Receiver 

Status 

Support 

N/A 

Yes/No 

Status 

Support 

N/A 

Yes/No 

MF4.5 
PAN identifier conflict 

notification 
M Yes FD1: M Yes 

MF4.6 
Orphaned device 

notification 
M Yes FD1: M 

Yes 

(FFD only) 

MF4.7 Beacon request FD1: M Yes FD1: M Yes 

MF4.8 Coordinator realignment FD1: M 
Yes 

(FFD only) 
M Yes 

MF4.9 GTS request MLF5: O Yes MLF5: O Yes 

 



 

8412A-AVR-02/13 

14 Abbreviations 

API  Application Programming Interface 

ASF  Atmel Software Framework 

BMM  Buffer Management Module 

GPIO  General Purpose Input/Output 

IRQ  Interrupt Request 

ISR  Interrupt Service Routine 

MAC  Medium Access Control 

MCL  MAC Core Layer 

MCPS  MAC Common Part Sub-layer 

MCU  Microcontroller Unit 

MHR  MAC Header 

MIC  Message Integrity Code 

MLME  MAC Sub-layer Management Entity 

MPDU  MAC Protocol Data Unit 

MSDU  MAC Service Data Unit 

NHLE  Next Higher Layer Entity 

NWK  Network Layer 

PAL  Platform Abstraction Layer 

PAN  Personal Area Network 

PIB   PAN Information Base 

QMM  Queue Management 

RCB  Radio Controller Board 

REB  Radio Extender board  

SAL  Security Abstraction Layer 

SIO  Serial I/O 

SPI  Serial Peripheral Interface 

STB  Security Toolbox 

TAL  Transceiver Abstraction Layer 

TFA  Transceiver Feature Access 

TPS  Transceiver Programming Suite 

TRX  Transceiver 

WPAN  Wireless Personal Area Network 



 

8412A-AVR-02/13 

15 References 

1. Atmel Wireless MCU Software Website 

http://www.atmel.com/products/microcontrollers/wireless/default.aspx?tab=tools 

2. Dresden Elektronik Wireless data transmission 802.15.4 Website http://www.dresden-

elektronik.de/shop/cat4.html?language=en  

3. Atmel Wireless Support avr@atmel.com 

4. IEEE Std 802.15.4™-2006 Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) 

Specifications for Low-Rate Wireless Personal Area Networks (WPANs) 

5. Atmel XMEGA-A3BU Xplained Kits                   http://www.atmel.com/tools/xmega-a3buxplained.aspx  

http://www.atmel.com/tools/xmega-a3buxplained.aspx?tab=documents 

6. RZ600 Evaluation Kit Website 

http://www.atmel.com/tools/rz600.aspx?tab=overview http://www.atmel.com/tools/rz600.aspx?tab=documents 

7. ATAVRXPLAIN Evaluation and Demonstration Kit Website 

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4506&source=xplain_page 

8. ATZB ZigBit Module Website 

http://www.atmel.com/products/zigbee/zigbit_modules.asp?family_id=676 

9. Atmel Software Framework http://www.atmel.com/tools/avrsoftwareframework.aspx 

http://asf.atmel.com/docs/latest/ 

10. Atmel Studio - http://www.atmel.com/microsite/atmel_studio6/ 

11. Atmel documents for supported families and boards : asf.atmel.com/docs/latest 

16 User guide revision history 

Please note that the referring page numbers in this section are referring to this document. The referring revisions in 

this section are referring to the document revision. 

16.1 Rev. 2025M-MCU Wireless-04/14 

Released with AVR2025 MAC Version 3.0.1 

 This release version is a re-architecture of SAL and PAL layers. 

 Added support for SAMR21/SAM4S support for MAC. 

16.2 Rev. 2025M-MCU Wireless-03/13 

Released with AVR2025 MAC Version 3.0.0 

 This release version is a re-architecture of MAC and PAL layers. 

 The complete stack is ported into Atmel Software Framework [9] 

16.3 Rev. 2025M-MCU Wireless-06/12 

Released with AVR2025 MAC Version 2.8.0 

 AT86RF233 TAL support and demonstrated with TAL and MAC Examples 

 ATMEGARFR2 TAL support and demonstrated with TAL and MAC Examples 

 Platform support added for ATmega1281_REB_4_1_STK600 and ATZB_24_MN2 

 MAC examples and TAL examples added for ATZB_24_MN2 

 Pal_nvm_multi_write functionality added for AVR32 

 Watchdog support added for SAM3S 

 MAC Application Power Management Support – Star Push Button, a MAC Example demonstrates the feature.  

http://www.atmel.com/products/microcontrollers/wireless/default.aspx?tab=tools
http://www.dresden-elektronik.de/shop/cat4.html?language=en
http://www.dresden-elektronik.de/shop/cat4.html?language=en
mailto:avr@atmel.com
http://www.atmel.com/tools/xmega-a3buxplained.aspx
http://www.atmel.com/tools/xmega-a3buxplained.aspx?tab=documents
http://www.atmel.com/tools/rz600.aspx?tab=overview
http://www.atmel.com/tools/rz600.aspx?tab=documents
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4506&source=xplain_page
http://www.atmel.com/products/zigbee/zigbit_modules.asp?family_id=676
http://www.atmel.com/tools/avrsoftwareframework.aspx
http://asf.atmel.com/docs/latest/
http://www.atmel.com/microsite/atmel_studio6/
http://asf.atmel.com/docs/latest/


 

8412A-AVR-02/13 

 Accelerometer_Display_App added for KEY_RC platform as a part of TAL Example to demonstrate the LCD and 
Motion Sensor on it 

 

16.4 Rev. 2025M-MCU Wireless-10/11 

Released with AVR2025 MAC Version 2.7.1 

 Performance_Test_EVK and Performance Test Application merged as a single application 

 Serial_AT_Interface added as a MAC application 

 Atmel AT86RF232 Radio support added for Atmel ATXmega256A3 and Atmel AT32UC3B1128 as a part of MAC 
& TAL applications 

16.5 Rev. 2025L-MCU Wireless-07/11 

Released with AVR2025 MAC Version 2.7.0 

 New applications added along with this release namely, 

 Beacon_Application 

 Nobeacon_Applications 

 Added Security Example Application to demonstrate MAC security 

 Atmel AVRStudio 5 Support for all AVR 8bit & AVR 32bit 

 Filtered and removed some of the platforms & MCU families 

 Added Performance_Test_EVK application description 

16.6 Rev. 2025K-MCU Wireless-08/11 

Released with AVR2025 MAC Version 2.6.1 

 mac_security.c file contents are completely removed for the web release 

 UART software driver issue working on SAM3S-EK Platform got fixed 

16.7 Rev. 2025J-MCU Wireless-03/11 

Released with AVR2025 MAC Version 2.6.0 

 Platform description for AVR32, SAM3S, CBB boards added 

 Tool Chain section is updated for AVR32, SAM. 

 Build Switches WATCHDOG,SLEEPING_TIMER for AVR32, XMEGA Platforms added 

16.8 Rev. 2025I-MCU Wireless-10/10 

Released with AVR2025 MAC Version 2.5.3 

 Build switch ENABLE_RC_OSC_CALIBRATION for Mega-RF platforms added 

16.9 Rev. 2025H-MCU Wireless-08/10 

Released with AVR2025 MAC Version 2.5.2 

 MAC Example Star_High_Rate added 

 High Data Rate support added 

 Platform description for RZ600 on top of Xplain board added 

 Platform description for ATZB ZigBit Modules on top of MeshBean2 board added 

16.10 Rev. 2025G-MCU Wireless-08/10 

Released with AVR2025 MAC Version 2.5.1 

 Description of new design of TAL and MCL added 

 Description of Tiny-TAL added 

 Support for ZigBit 212 added 



 

8412A-AVR-02/13 

 New compiler switches added 

 Support for ATxmega256A3 added 

 Migration Guide from 2.4.x to 2.5.x added 

 High-density Network Configuration added 

 Frame transmission and reception procedure added 

 Buffer handling description added 

16.11 Rev. 2025F-MCU Wireless-02/10 

Released with AVR2025 MAC Version 2.4.2 

 Support of program code larger than 128KByte added 

 PAN-Id conflict detection handling added 

 Support for AT91SAM7XC added 

 Description of application security added 

 Description of security build switches updated 

16.12 Rev. 2025E-MCU Wireless-01/10 

Released with AVR2025 MAC Version 2.4.0 

 Support for AT86RF231 and AT86RF212 with AT91SAM7X256 added 

 Support for ATmega128RFA1-EK1 added 

 Build switch DISABLE_TSTAMP_IRQ added 

 Support for ATmega1284P removed 

 Support for ATxmega256A3 

 MAC Porting Guide using ATxmega256A3 as example added 

 MAC Examples App 3 (Beacon Payload) and App 4 (Beacon Broadcast Data) added 

 Build switch SYSTEM_CLOCK_MHZ renamed to F_CPU 

 Updated handling of MAC PIB attribute macRxOnWhenIdle and MAC power management 

 New build switch BAUD_RATE added 

 Support for AT86RF230A and related hardware platforms discontinued 

 Handling of callback stub functions added Handling of callback stub functions added 

 PICS Table added 

16.13 Rev. 2025B-MCU Wireless-09/09 

Released with AVR2025 MAC Version 2.3.1 

 Name of Radio Controller Board (RCB) changed: transceiver number suffix is replaced by board suffix 

 Support for ATmega128RFA1 added 

 Handling of Promiscuous Mode updated. 

 Migration Guide for previous MAC versions removed 

 Filter tuning section added 

 Description of Performance test application extended 

 Support for ATxmega MCU based AES within SAL 

 Handling of MAC components updated 

 Initial Support for AT91SAM7X256 added 

 DISABLE_IEEE_ADDR_CHECK added 

 Chapter Supported Platforms added 

 Chapter Topics on Platforms Porting added 

16.14 Rev. 2025-AVR-04/09 

Released with AVR2025 MAC Version 2.2.0  

 Initial Version 



 

8412A-AVR-02/13 

 

 
         
         
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       

  
 
 
 
 
 
 

       

 Atmel Corporation 
2325 Orchard Parkway 
San Jose, CA 95131 
USA 
Tel:  (+1)(408) 441-0311 
Fax: (+1)(408) 487-2600 
`www.atmel.com 

 Atmel Asia Limited 
Unit 01-5 & 16, 19F 
BEA Tower, Milennium City 5 
418 Kwun Tong Road 
Kwun Tong, Kowloon 
HONG KONG 
Tel:  (+852) 2245-6100 
Fax: (+852) 2722-1369 

 Atmel Munich GmbH 
Business Campus 
Parkring 4 
D-85748 Garching b. Munich 
GERMANY 
Tel:  (+49) 89-31970-0 
Fax: (+49) 89-3194621 

 Atmel Japan 
9F, Tonetsu Shinkawa Bldg. 
1-24-8 Shinkawa 
Chou-ku, Tokyo 104-0033 
JAPAN 
Tel:  (+81) 3523-3551 
Fax: (+81) 3523-7581 

 

         
 © 2011 Atmel Corporation. All rights reserved. 

 

Atmel
®
, Atmel logo and combinations thereof, AVR

®
, AVR Studio

®
, XMEGA

®
, STK

®
, SAM-BA

®
, QTouch

®
, ZigBit

®
, and others are 

registered trademarks of Atmel Corporation or its subsidiaries. Windows
®
 and others are registered trademarks or trademarks of 

Microsoft Corporation in U.S. and or other countries. ARM
®
 is a registered trademark of ARM Ltd. Other terms and product names may 

be trademarks of others. 
 
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to 
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL 
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS 
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE 
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, 
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO 
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or 
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and 
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically 
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or 
warranted for use as components in applications intended to support or sustain life. 

 

         

 


	Atmel AVR2025: IEEE 802.15.4 MAC Software Package - User Guide
	Features
	Table of contents
	Table of figures
	1 Introduction
	2 General architecture
	2.1 Main stack layers
	2.1.1 Platform abstraction layer (PAL)
	2.1.2 Transceiver abstraction layer (TAL)
	2.1.3 MAC core layer (MCL)
	2.1.3.1 Stack task functionality
	2.1.3.2 MAC-API
	2.1.3.3 MAC core layer functionality

	2.1.4 Usage of the stack

	2.2 Other stack components
	2.2.1 Resource management
	2.2.2 Security abstraction layer
	2.2.3 Security toolbox
	2.2.4 Transceiver feature access
	2.2.4.1 Introduction
	2.2.4.2 Features



	3  Understanding the software package
	3.1 MAC package directory structure
	3.2 Header file naming convention

	4  Brief about ASF
	4.1 ASF directory structure

	5 Understanding the stack
	5.1 Frame handling procedures
	5.1.1 Frame transmission procedure
	5.1.1.1 Part 1 – Data frame creation and transmission
	5.1.1.2 Part 2 – Data frame clean-up and confirmation

	5.1.2 Frame reception procedure

	5.2 Frame buffer handling
	5.2.1 Application on top of MAC-API
	5.2.1.1 Frame transmission buffer handling
	5.2.1.2 Frame reception buffer handling

	5.2.2 Application on top of TAL
	5.2.2.1 Frame transmission buffer handling using TAL-API
	5.2.2.2 Frame reception buffer handling using TAL-API


	5.3 Configuration files
	5.3.1 Application resource configuration – app_config.h
	5.3.2 Stack resources configuration – stack_config.h
	5.3.3 TAL resource configuration – tal_config.h
	5.3.4 MAC resource configuration – mac_config.h
	5.3.5 NWK resource configuration – nwk_config.h
	5.3.6 Build configuration file – mac_build_config.h
	5.3.7 User build configuration file – mac_user_build_config.h

	5.4 MAC components
	5.4.1 MAC_INDIRECT_DATA_BASIC
	5.4.2 MAC_INDIRECT_DATA_FFD
	5.4.3 MAC_PURGE_REQUEST_CONFIRM
	5.4.4 MAC_ASSOCIATION_INDICATION_RESPONSE
	5.4.5 MAC_ASSOCIATION_REQUEST_CONFIRM
	5.4.6 MAC_DISASSOCIATION_BASIC_SUPPORT
	5.4.7 MAC_DISASSOCIATION_FFD_SUPPORT
	5.4.8 MAC scan components
	5.4.9 MAC_ORPHAN_INDICATION_RESPONSE
	5.4.10 MAC_START_REQUEST_CONFIRM
	5.4.11 MAC_RX_ENABLE_SUPPORT
	5.4.12 MAC_SYNC_REQUEST
	5.4.13 MAC_SYNC_LOSS_INDICATION
	5.4.14 MAC_BEACON_NOTIFY_INDICATION
	5.4.15 MAC_GET_SUPPORT
	5.4.16 MAC_PAN_ID_CONFLICT_AS_PC
	5.4.17 MAC_PAN_ID_CONFLICT_NON_PC

	5.5 High-density network configuration
	5.6 High data rate support

	6  MAC power management
	6.1 Understanding MAC power management
	6.2 Reception of data at nodes applying power management
	6.2.1 Setting of macRxOnWhenIdle to true
	6.2.2 Enabling the receiver
	6.2.3 Handshake between end device and coordinator
	6.2.4 Indirect transmission from coordinator to end device

	6.3 Application control of MAC power management
	6.3.1 MAC PIB attribute macRxOnWhenIdle
	6.3.2 Handling the receiver with wpan_rx_enable_req()
	6.3.3 Handling Controller Sleep in Inactive Region
	6.3.3.1 Syntax
	6.3.3.2 Description
	6.3.3.3 Parameters
	6.3.3.4 Return

	6.3.4 Mac_wakeup
	6.3.4.1 Syntax

	Void mac_wakeup (uint32_t res_time);
	6.3.4.2 Description
	6.3.4.3 Parameters
	6.3.4.4 Return


	6.4 TAL power management API

	7  Application and stack configuration
	7.1 Build switches
	7.1.1 Global stack switches
	7.1.1.1 HIGHEST_STACK_LAYER
	7.1.1.2 REDUCED_PARAM_CHECK
	7.1.1.3 PROMISCUOUS_MODE
	7.1.1.4 ENABLE_TSTAMP

	7.1.2 Standard and user build configuration switches
	7.1.3 Platform switches
	7.1.4 Transceiver specific switches
	7.1.4.1 TAL_TYPE
	7.1.4.2 ENABLE_TFA
	7.1.4.3 HIGH_DATA_RATE_SUPPORT
	7.1.4.4 CHINESE_BAND
	7.1.4.5 RSSI_TO_LQI_MAPPING
	7.1.4.6 ENABLE_FTN_PLL_CALIBRATION
	7.1.4.7 DISABLE_IEEE_ADDR_CHECK
	7.1.4.8 DISABLE_TSTAMP_IRQ
	7.1.4.9 TRX_REG_RAW_VALUE
	7.1.4.10 SW_CONTROLLED_CSMA
	7.1.4.11 TX_OCTET_COUNTER
	7.1.4.12 TX RX_WHILE_BACKOFF

	7.1.5 Test and debug switches
	7.1.5.1 DEBUG
	7.1.5.2 TEST_HARNESS


	7.2 Build configurations
	7.2.1 Standard build configurations
	7.2.1.1 FFD feature set
	7.2.1.2 RFD feature set
	7.2.1.3 BEACON_SUPPORT feature set

	7.2.2 User build configurations – MAC_USER_BUILD_CONFIG
	7.2.2.1 Introduction
	7.2.2.2 File mac_user_build_config.h
	7.2.2.2.1 Examples

	7.2.2.3 Implications and Internal Checks
	7.2.2.3.1 MAC_COMM_STATUS_INDICATION
	7.2.2.3.2 MAC_SYNC_REQUEST vs. MAC_SYNC_LOSS_INDICATION
	7.2.2.3.3 Dependency from MAC_INDIRECT_DATA_BASIC
	7.2.2.3.4 Dependency from MAC_INDIRECT_DATA_FFD
	7.2.2.3.5 MAC_PAN_ID_CONFLICT_AS_PC
	7.2.2.3.6 MAC_PAN_ID_CONFLICT_NON_PC
	7.2.2.3.7 Dependency from BEACON_SUPPORT




	8  Migration History
	8.1 Guide from version 3.0.x to 3.1.x
	8.2 Guide from version 2.8.x to 3.0.x
	8.3 Guide from version 2.7.x to 2.8.x
	8.4 Guide from version 2.6.x to 2.7.x

	9  Toolchain
	9.1 General prerequisites
	9.2 Building the applications
	9.2.1 Using GCC makefiles
	9.2.2 Using IAR Embedded Workbench
	9.2.3 Using IAR AVR32 Embedded Workbench
	9.2.4 Using IAR ARM Embedded Workbench


	10 Example applications
	10.1 Walking through a basic application
	10.2 Provided examples applications
	10.2.1 MAC examples
	10.2.1.1 Nobeacon_Application
	10.2.1.1.1 Introduction
	10.2.1.1.2 Requirements
	10.2.1.1.3 Implementation
	10.2.1.1.4 Limitations

	10.2.1.2 Beacon_Application
	10.2.1.2.1 Introduction
	10.2.1.2.2 Requirements
	10.2.1.2.3 Implementation
	10.2.1.2.4 Limitations

	10.2.1.3 No_beacon_sleep
	10.2.1.3.1 Introduction
	10.2.1.3.2 Requirements
	10.2.1.3.3 Implementation
	10.2.1.3.4 Limitations


	10.2.2 TAL examples
	10.2.2.1 Performance_Analyzer
	10.2.2.1.1 Introduction
	10.2.2.1.2 Requirements
	10.2.2.1.3 Implementation
	10.2.2.1.3.1 Range Measurement mode
	10.2.2.1.3.1.1 Packet Format
	10.2.2.1.3.1.2 Debug message support for – Range measurement

	10.2.2.1.3.2 PER Measurement mode
	10.2.2.1.3.2.1 Sensitivity testing
	10.2.2.1.3.2.2 TX Power handling
	10.2.2.1.3.2.3 Diversity feature testing
	10.2.2.1.3.2.4 Read Write Radio Registers

	10.2.2.1.3.3 Peer Search Process
	10.2.2.1.3.4 Configuration mode
	10.2.2.1.3.5 Application Contents

	10.2.2.1.4 Limitations



	10.3 Common SIO handler (Serial I/O Handler)
	10.4 Handling of callback stubs
	10.4.1 MAC callbacks
	10.4.2 TAL callbacks
	10.4.3 Example for MAC callbacks

	10.5 Bootloader

	11 Supported platforms
	11.1 Supported MCU families
	11.2 Supported transceivers
	11.3 Supported boards

	12 Platform porting
	13 Protocol implementation conformance statement (PICS)
	13.1 Major roles for devices compliant with IEEE Std 802.15.4-2006
	13.2 Major capabilities for the PHY
	13.3 Major capabilities for the MAC sub-layer
	13.3.1 MAC sub-layer functions
	13.3.2 MAC frames


	14  Abbreviations
	15  References
	16 User guide revision history
	16.1 Rev. 2025M-MCU Wireless-04/14
	16.2 Rev. 2025M-MCU Wireless-03/13
	16.3 Rev. 2025M-MCU Wireless-06/12
	16.4 Rev. 2025M-MCU Wireless-10/11
	16.5 Rev. 2025L-MCU Wireless-07/11
	16.6 Rev. 2025K-MCU Wireless-08/11
	16.7 Rev. 2025J-MCU Wireless-03/11
	16.8 Rev. 2025I-MCU Wireless-10/10
	16.9 Rev. 2025H-MCU Wireless-08/10
	16.10 Rev. 2025G-MCU Wireless-08/10
	16.11 Rev. 2025F-MCU Wireless-02/10
	16.12 Rev. 2025E-MCU Wireless-01/10
	16.13 Rev. 2025B-MCU Wireless-09/09
	16.14 Rev. 2025-AVR-04/09


