
http://www.facebook.com/share.php?u=http://www.quepublishing.com/title/9780789751980
http://twitter.com/?status=RT: download a free sample chapter http://www.quepublishing.com/title/9780789751980
https://plusone.google.com/share?url=http://www.quepublishing.com/title/9780789751980
http://www.linkedin.com/shareArticle?mini=true&url=http://www.quepublishing.com/title/9780789751980
http://www.stumbleupon.com/submit?url=http://www.quepublishing.com/title/9780789751980/Free-Sample-Chapter

C Programming

Greg Perry and Dean Miller

800 East 96th Street
Indianapolis, Indiana 46240

Third Edition

00_9780789751980_fm.indd i 7/17/13 12:29 PM

C Programming Absolute Beginner’s Guide
Third Edition
Copyright © 2014 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-5198-0
ISBN-10: 0-7897-5198-4

Library of Congress Control Number: 2013943628

Printe d in the United States of America

First Printing: August 2013

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Que Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided is
on an “as is” basis. The authors and the publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the
programs accompanying it.

Bulk Sales
Que Publishing offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information, please
contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Krista Hansing Editorial
Services, Inc.

Indexer
Brad Herriman

Proofreader
Anne Goebel

Technical Editor
Greg Perry

Publishing Coordinator
Vanessa Evans

Interior Designer
Anne Jones

Cover Designer
Matt Coleman

Compositor
TnT Design, Inc.

00_9780789751980_fm.indd ii 7/17/13 12:29 PM

Contents at a Glance

Introduction ... 1

Part I: Jumping Right In

1 What Is C Programming, and Why Should I Care? 5
2 Writing Your First C Program ..13
3 What Does This Do? Clarifying Your Code with Comments23
4 Your World Premiere—Putting Your Program’s Results
 Up on the Screen ...31
5 Adding Variables to Your Programs...41
6 Adding Words to Your Programs ...49
7 Making Your Programs More Powerful with
 #include and #define ..57
8 Interacting with Users ..65

Part II: Putting C to Work for You with Operators and Expressions

9 Crunching the Numbers—Letting C Handle Math for You73
10 Powering Up Your Variables with Assignments and Expressions83
11 The Fork in the Road—Testing Data to Pick a Path91
12 Juggling Several Choices with Logical Operators103
13 A Bigger Bag of Tricks—Some More Operators for
 Your Programs ..115

Part III: Fleshing Out Your Programs

14 Code Repeat—Using Loops to Save Time and Effort123
15 Looking for Another Way to Create Loops ...131
16 Breaking in and out of Looped Code ..141
17 Making the case for the switch Statement149
18 Increasing Your Program’s Output (and Input)163
19 Getting More from Your Strings ...171
20 Advanced Math (for the Computer, Not You!)181

Part IV: Managing Data with Your C Programs

21 Dealing with Arrays ..193
22 Searching Arrays...201
23 Alphabetizing and Arranging Your Data ...209
24 Solving the Mystery of Pointers ..221
25 Arrays and Pointers ..231
26 Maximizing Your Computer’s Memory ..243
27 Setting Up Your Data with Structures ..257

00_9780789751980_fm.indd iii 7/17/13 12:29 PM

iv

Part V: Files and Functions

28 Saving Sequential Files to Your Computer ...267
29 Saving Random Files to Your Computer ...277
30 Organizing Your Programs with Functions ..285
31 Passing Variables to Your Functions ..293
32 Returning Data from Your Functions ...305

Appendixes

A The ASCII Table ...313
B The Draw Poker Program ..319

Index ..331

00_9780789751980_fm.indd iv 7/17/13 12:29 PM

Table of Contents
Introduction ..1

Who’s This Book For? .. 2

What Makes This Book Different? ... 2

This Book’s Design Elements ... 3

How Can I Have Fun with C? ... 4

What Do I Do Now? .. 4

Part I: Jumping Right In

1 What Is C Programming, and Why Should I Care? ..5

What Is a Program? ... 6

What You Need to Write C Programs ... 7

The Programming Process ..10

Using C ...11

2 Writing Your First C Program ..13

A Down-and-Dirty Chunk of Code ..14

The main() Function ...16

Kinds of Data ...17

Characters and C ..18

Numbers in C ..19

Wrapping Things Up with Another Example Program ..21

3 What Does This Do? Clarifying Your Code with Comments23

Commenting on Your Code ...24

Specifying Comments ...25

Whitespace ...27

A Second Style for Your Comments ..28

4 Your World Premiere—Putting Your Program’s Results
Up on the Screen ...31

How to Use printf() ...32

The Format of printf() ...32

Printing Strings ...33

00_9780789751980_fm.indd v 7/17/13 12:29 PM

vi

Escape Sequences ...34

Conversion Characters ..36

Putting It All Together with a Code Example ...38

5 Adding Variables to Your Programs ...41

Kinds of Variables ..42

Naming Variables ..43

Defining Variables ..44

Storing Data in Variables ..45

6 Adding Words to Your Programs ..49

Understanding the String Terminator ..50

The Length of Strings ..51

Character Arrays: Lists of Characters ..52

Initializing Strings ...54

7 Making Your Programs More Powerful with #include and #define57

Including Files ..58

Placing #include Directives ...60

Defining Constants ..60

Building a Header File and Program ...62

8 Interacting with Users ...65

Looking at scanf() ...66

Prompting for scanf()..66

Problems with scanf() ...68

Part II: Putting C to Work for You with Operators and Expressions

9 Crunching the Numbers—Letting C Handle Math for You73

Basic Arithmetic ...74

Order of Operators ...77

Break the Rules with Parentheses ..79

Assignments Everywhere ..80

00_9780789751980_fm.indd vi 7/17/13 12:29 PM

vii

10 Powering Up Your Variables with Assignments and Expressions83

Compound Assignment ..84

Watch That Order! ...88

Typecasting: Hollywood Could Take Lessons from C ..88

11 The Fork in the Road—Testing Data to Pick a Path ..91

Testing Data ...92

Using if ...93

Otherwise…: Using else ...96

12 Juggling Several Choices with Logical Operators .. 103

Getting Logical ..104

Avoiding the Negative ..109

The Order of Logical Operators ..111

13 A Bigger Bag of Tricks—Some More Operators for Your Programs 115

Goodbye if…else; Hello, Conditional ..116

The Small-Change Operators: ++ and -- ..119

Sizing Up the Situation ...121

Part III: Fleshing Out Your Programs

14 Code Repeat—Using Loops to Save Time and Effort 123

while We Repeat ...124

Using while ..125

Using do…while ...127

15 Looking for Another Way to Create Loops ... 131

for Repeat’s Sake! ..132

Working with for ..134

16 Breaking in and out of Looped Code ... 141

Take a break ...142

Let’s continue Working ..145

00_9780789751980_fm.indd vii 7/17/13 12:29 PM

viii

17 Making the case for the switch Statement .. 149

Making the switch ..151

break and switch...153

Efficiency Considerations ..154

18 Increasing Your Program’s Output (and Input) .. 163

putchar() and getchar() ..164

The Newline Consideration ..167

A Little Faster: getch() ..169

19 Getting More from Your Strings .. 171

Character-Testing Functions ...172

Is the Case Correct? ..172

Case-Changing Functions...176

String Functions ...176

20 Advanced Math (for the Computer, Not You!) .. 181

Practicing Your Math ...182

Doing More Conversions ..183

Getting into Trig and Other Really Hard Stuff ..184

Getting Random ..187

Part IV: Managing Data with Your C Programs

21 Dealing with Arrays .. 193

Reviewing Arrays ...194

Putting Values in Arrays ..197

22 Searching Arrays ... 201

Filling Arrays ...202

Finders, Keepers ..202

23 Alphabetizing and Arranging Your Data .. 209

Putting Your House in Order: Sorting ...210

Faster Searches ..215

00_9780789751980_fm.indd viii 7/17/13 12:29 PM

ix

24 Solving the Mystery of Pointers ... 221

Memory Addresses ..222

Defining Pointer Variables ..222

Using the Dereferencing * ...225

25 Arrays and Pointers .. 231

Array Names Are Pointers ..232

Getting Down in the List ..233

Characters and Pointers ..234

Be Careful with Lengths ..234

Arrays of Pointers ..236

26 Maximizing Your Computer’s Memory .. 243

Thinking of the Heap ..244

But Why Do I Need the Heap? ...245

How Do I Allocate the Heap? ..246

If There’s Not Enough Heap Memory ...249

Freeing Heap Memory ..250

Multiple Allocations ...250

27 Setting Up Your Data with Structures .. 257

Defining a Structure ..258

Putting Data in Structure Variables ..262

Part V: Files and Functions

28 Saving Sequential Files to Your Computer .. 267

Disk Files...268

Opening a File ...268

Using Sequential Files ...270

29 Saving Random Files to Your Computer... 277

Opening Random Files ...278

Moving Around in a File ...279

00_9780789751980_fm.indd ix 7/17/13 12:29 PM

x

30 Organizing Your Programs with Functions ... 285

Form Follows C Functions ..286

Local or Global?...290

31 Passing Variables to Your Functions .. 293

Passing Arguments ..294

Methods of Passing Arguments ...294

Passing by Value ...295

Passing by Address ..297

32 Returning Data from Your Functions ... 305

Returning Values ..306

The return Data Type ...309

One Last Step: Prototype ...309

Wrapping Things Up ...312

Appendixes

A The ASCII Table ... 313

B The Draw Poker Program .. 319

Index ... 331

00_9780789751980_fm.indd x 7/17/13 12:29 PM

xi

About the Authors
Greg Perry is a speaker and writer in both the programming and applications
sides of computing. He is known for bringing programming topics down to the
beginner’s level. Perry has been a programmer and trainer for two decades. He
received his first degree in computer science and then earned a Master’s degree
in corporate finance. Besides writing, he consults and lectures across the country,
including at the acclaimed Software Development programming conferences.
Perry is the author of more than 75 other computer books. In his spare time, he
gives lectures on traveling in Italy, his second favorite place to be.

Dean Miller is a writer and editor with more than 20 years of experience in both
the publishing and licensed consumer product businesses. Over the years, he
has created or helped shape a number of bestselling books and series, including
Teach Yourself in 21 Days, Teach Yourself in 24 Hours, and the Unleashed
series, all from Sams Publishing. He has written books on C programming and
professional wrestling, and is still looking for a way to combine the two into one
strange amalgam.

00_9780789751980_fm.indd xi 7/17/13 12:29 PM

xii

Dedication
To my wife and best friend, Fran Hatton, who’s always supported my dreams and was
an incredible rock during the most challenging year of my professional career.

Acknowledgments
Greg: My thanks go to all my friends at Pearson. Most writers would refer to them
as editors; to me, they are friends. I want all my readers to understand this: The
people at Pearson care about you most of all. The things they do result from their
concern for your knowledge and enjoyment.

On a more personal note, my beautiful bride, Jayne; my mother, Bettye Perry;
and my friends, who wonder how I find the time to write, all deserve credit for
supporting my need to write.

Dean: Thanks to Mark Taber for considering me for this project. I started my
professional life in computer book publishing, and it is so gratifying to return after
a 10-year hiatus. I’d like to thank Greg Perry for creating outstanding first and
second editions upon which this version of the book is based. It was an honor
working with him as his editor for the first two editions and a greater honor to
coauthor this edition. I can only hope I did it justice. I appreciate the amazing
work the editorial team of Mandie Frank, Krista Hansing, and the production team
at Pearson put into this book.

On a personal level, I have to thank my three children, John, Alice, and Maggie
and my wife Fran for their unending patience and support.

00_9780789751980_fm.indd xii 7/17/13 12:29 PM

xiii

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.
We value your opinion and want to know what we’re doing right, what we could
do better, what areas you’d like to see us publish in, and any other words of
wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you
did or didn’t like about this book—as well as what we can do to make our books
better.

Please note that we cannot help you with technical problems related to the
topic of this book and may not be able to reply personally to every message we
receive.

When you write, please be sure to include this book’s title, edition number, and
authors, as well as your name and contact information. We will carefully review
your comments and share them with the authors and editors who worked on the
book.

Email: feedback@quepublishing.com

Mail: Que Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at http://informit.com/register for
convenient access to any updates, downloads, or errata that might be available
for this book.

00_9780789751980_fm.indd xiii 7/17/13 12:29 PM

http://informit.com/register

This page intentionally left blank

INTRODUCTION

Are you tired of seeing your friends get C programming jobs while you’re

left out in the cold? Would you like to learn C but just don’t have the

energy? Is your old, worn-out computer in need of a hot programming

language to spice up its circuits? This book is just what the doctor ordered!

C Programming Absolute Beginner’s Guide breaks the commonality of

computer books by talking to you at your level without talking down to

you. This book is like your best friend sitting next to you teaching C. C

Programming Absolute Beginner’s Guide attempts to express without

impressing. It talks to you in plain language, not in “computerese.” The

short chapters, line drawings, and occasionally humorous straight talk

guide you through the maze of C programming faster, friendlier, and easier

than any other book available today.

I N T H I S I N T R O D U C T I O N
• Who’s This Book For?

• What Makes This Book Different?

• This Book’s Design Elements

• How Can I Have Fun with C?

• What Do I Do Now?

01_9780789751980_intro.indd 1 7/17/13 12:29 PM

2 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Who’s This Book For?
This is a beginner’s book. If you have never programmed, this book is for you. No
knowledge of any programming concept is assumed. If you can’t even spell C, you
can learn to program in C with this book.

The phrase absolute beginner has different meanings at different times. Maybe
you’ve tried to learn C but gave up. Many books and classes make C much more
technical than it is. You might have programmed in other languages but are a
beginner in C. If so, read on, O faithful one, because in 32 quick chapters, you’ll
know C.

What Makes This Book Different?
This book doesn’t cloud issues with internal technical stuff that beginners in C
don’t need. We’re of the firm belief that introductory principles have to be taught
well and slowly. After you tackle the basics, the “harder” parts never seem hard.
This book teaches you the real C that you need to get started.

C can be an extremely cryptic and difficult language. Many people try to learn
C more than once. The problem is simply this: Any subject, whether it be brain
surgery, mail sorting, or C programming, is easy if it’s explained properly. Nobody
can teach you anything because you have to teach yourself—but if the instructor,
book, or video doing the teaching doesn’t make the subject simple and fun, you
won’t want to learn the subject.

We challenge you to find a more straightforward approach to C than is offered in
the C Programming Absolute Beginner’s Guide. If you can, call one of us because
we’d like to read it. (You thought maybe we’d offer you your money back?)
Seriously, we’ve tried to provide you with a different kind of help from that which
you find in most other places.

The biggest advantage this book offers is that we really like to write C programs—
and we like to teach C even more. We believe that you will learn to like C, too.

01_9780789751980_intro.indd 2 7/17/13 12:29 PM

INTRODUCTION 3

This Book’s Design Elements
Like many computer books, this book contains lots of helpful hints, tips, warnings,
and so on. You will run across many notes and sidebars that bring these specific
items to your attention.

TIP Many of this book’s tricks and tips (and there are lots
of them) are highlighted as a Tip. When a really neat feature
or code trick coincides with the topic you’re reading about, a
Tip pinpoints what you can do to take advantage of the added
bonus.

NOTE Throughout the C language, certain subjects provide
a deeper level of understanding than others. A Note tells you
about something you might not have thought about, such as a
new use for the topic being discussed.

WARNING A Warning points out potential problems you
could face with the particular topic being discussed. It indicates a
warning you should heed or provides a way to fix a problem that
can occur.

Each chapter ends by reviewing the key points you should remember from that
chapter. One of the key features that ties everything together is the section titled
“The Absolute Minimum.” This chapter summary states the chapter’s primary
goal, lists a code example that highlights the concepts taught, and provides
a code analysis that explains that code example. You’ll find these chapter
summaries, which begin in Chapter 2, “Writing Your First C Program,” to be a
welcome wrap-up of the chapter’s main points.

This book uses the following typographic conventions:

 • Code lines, variables, and any text you see onscreen appears in monospace.

 • Placeholders on format lines appear in italic monospace.

 • Parts of program output that the user typed appear in bold monospace.

 • New terms appear in italic.

 • Optional parameters in syntax explanations are enclosed in flat brackets
([]). You do not type the brackets when you include these parameters.

01_9780789751980_intro.indd 3 7/17/13 12:29 PM

4 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

How Can I Have Fun with C?
Appendix B, “The Draw Poker Program,” contains a complete, working Draw
Poker program. The program was kept as short as possible without sacrificing
readable code and game-playing functionality. The game also had to be kept
generic to work on all C compilers. Therefore, you won’t find fancy graphics, but
when you learn C, you’ll easily be able to access your compiler’s specific graphics,
sound, and data-entry routines to improve the program.

The program uses as much of this book’s contents as possible. Almost every
topic taught in this book appears in the Draw Poker game. Too many books offer
nothing more than snippets of code. The Draw Poker game gives you the chance
to see the “big picture.” As you progress through this book, you’ll understand
more and more of the game.

What Do I Do Now?
Turn the page and learn the C language.

01_9780789751980_intro.indd 4 7/17/13 12:29 PM

This page intentionally left blank

WRITING YOUR FIRST C
PROGRAM
You get to see your first C program in this chapter! Please don’t try to

understand every character of the C programs discussed here. Relax and

just get familiar with the look and feel of C. After a while, you will begin

to recognize elements common to all C programs.

I N T H I S C H A P T E R

2
• Typing your first program

• Using the main() function

• Identifying kinds of data

03_9780789751980_ch02.indd 13 7/17/13 12:29 PM

14 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

A Down-and-Dirty Chunk of Code
This section shows you a short but complete C program and discusses another
program that appears in Appendix B, “The Draw Poker Program.” Both programs
contain common and different elements. The first program is extremely simple:
/* Prints a message on the screen */

#include <stdio.h>

main()

{

 printf("Just one small step for coders. One giant leap for");

 printf(" programmers!\n");

 return 0;

}

Open your programming software and type in the program as listed. Simple,
right? Probably not the first time you use your new compiler. When you open
Code::Blocks for the first time, you will be greeted by a “Tip of the Day.” These
tips will come in handy later, but right now you can just get rid of it by clicking
Close.

To create your program, Click the File Menu and select New. Choose Empty File
from the options that appear on the submenu. Now you’ve got a nice clean file to
start writing your seven-line program.

After you type in your program, you will need to compile or build your program.
To do this, click the little yellow gear icon in the upper-left corner. If you’ve typed
the program in exactly and had no errors, you can then run the program by click-
ing the green right-facing arrow next to the gear. (The next icon in that row, with a
gear and arrow, will do both the compiling and running of the program, simplify-
ing your life by reducing the number of arduous clicks you must perform from two
to one.)

When you compile (or build) the program and run it, you should see something
like Figure 2.1.

03_9780789751980_ch02.indd 14 7/17/13 12:29 PM

CHAPTER 2 WRITING YOUR FIRST C PROGRAM 15

FIGURE 2.1

The output of your first program.

NOTE Producing that one-line message took a lot of work!
Actually, of the eight lines in the program, only two—the ones that start
with printf—do the work that produces the output. The other lines
provide “housekeeping chores” common to most C programs.

To see a much longer program, glance at Appendix B. Although the Draw Poker
game there spans several pages, it contains elements common to the shorter pro-
gram you just saw.

Look through both the programs just discussed and notice any similarities. One
of the first things you might notice is the use of braces ({}), parentheses (()), and
backslashes (\). Be careful when typing C programs into your C compiler. C gets
picky, for instance, if you accidentally type a square bracket ([) when you should
type a brace.

WARNING In addition to making sure you don’t type the
wrong character, be careful when typing code in a word processor
and then copying it to your IDE. I typed the previous program in
Word (for this book) and then copied it to Code::Blocks. When com-
piling the program, I received a number of errors because my quotes
on the printf line were smart quotes created by the word proces-
sor (to give that cool slanted look), and the compiler did not recog-
nize them. After I deleted the quotes on the line and retyped them
in my programming editor, the code compiled just fine. So if you get
errors in programs, make sure the quotes are not the culprit.

03_9780789751980_ch02.indd 15 7/17/13 12:29 PM

16 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

C isn’t picky about everything. For instance, most of the spacing you see in C
programs makes the programs clearer to people, not to C. As you program, add
blank lines and indent sections of code that go together to help the appearance
of the program and to make it easier for you to find what you are looking for.

TIP Use the Tab key to indent instead of typing a bunch of
spaces. Most C editors let you adjust the tab spacing (the number
of spaces that appear when you press Tab). Some C program
lines get long, so a tab setting of three provides ample indention
without making lines too long.

C requires that you use lowercase letters for all commands and predefined func-
tions. (You learn what a function is in the next section.) About the only time you
use uppercase letters is on a line with #define and inside the printed messages
you write.

The main() Function
The most important part of a C program is its main() function. Both of the pro-
grams discussed earlier have main() functions. Although at this point the distinc-
tion is not critical, main() is a C function, not a C command. A function is nothing
more than a routine that performs some task. Some functions come with C, and
some are created by you. C programs are made up of one or more functions.
Each program must always include a main() function. A function is distinguished
from a command by the parentheses that follow the function name. These are
functions:

main() calcIt() printf() strlen()

and these are commands:

return while int if float

When you read other C programming books, manuals, and webpages, the author
might decide to omit the parenthesis from the end of function names. For exam-
ple, you might read about the printf function instead of printf(). You’ll learn
to recognize function names soon enough, so such differences won’t matter much
to you. Most of the time, authors want to clarify the differences between functions
and nonfunctions as much as possible, so you’ll usually see the parentheses.

03_9780789751980_ch02.indd 16 7/17/13 12:29 PM

CHAPTER 2 WRITING YOUR FIRST C PROGRAM 17

WARNING One of the functions just listed, calcIt(),
contains an uppercase letter. However, the preceding section said
you should stay away from uppercase letters. If a name has mul-
tiple parts, as in doReportPrint(), it’s common practice to use
uppercase letters to begin the separate words, to increase read-
ability. (Spaces aren’t allowed in function names.) Stay away from
typing words in all uppercase, but an uppercase letter for clarity
once in a while is okay.

The required main() function and all of C’s supplied function names must contain
lowercase letters. You can use uppercase for the functions that you write, but most
C programmers stay with the lowercase function name convention.

Just as the home page is the beginning place to surf a website, main() is always
the first place the computer begins when running your program. Even if main() is
not the first function listed in your program, main() still determines the beginning
of the program’s execution. Therefore, for readability, make main() the first func-
tion in every program you write. The programs in the next several chapters have
only one function: main(). As you improve your C skills, you’ll learn why adding
functions after main() improves your programming power even more. Chapter
30, “Organizing Your Programs with Functions,” covers writing your own functions.

After the word main(), you always see an opening brace ({). When you find a
matching closing brace (}), main() is finished. You might see additional pairs
of braces within a main() function as well. For practice, look again at the long
program in Appendix B. main() is the first function with code, and several other
functions follow, each with braces and code.

NOTE The statement #include <stdio.h> is needed in
almost every C program. It helps with printing and getting data.
For now, always put this statement somewhere before main().
You will understand why the #include is important in Chapter
7, “Making Your Programs More Powerful with #include and
#define.”

Kinds of Data
Your C programs must use data made up of numbers, characters, and words;
programs process that data into meaningful information. Although many different
kinds of data exist, the following three data types are by far the most common
used in C programming:

03_9780789751980_ch02.indd 17 7/17/13 12:29 PM

18 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

 • Characters

 • Integers

 • Floating points (also called real numbers)

TIP You might be yelling “How much math am I going to have
to learn?! I didn’t think that was part of the bargain!” Well, you
can relax, because C does your math for you; you don’t have to
be able to add 2 and 2 to write C programs. You do, however,
have to understand data types so that you will know how to
choose the correct type when your program needs it.

Characters and C
A C character is any single character that your computer can represent. Your com-
puter knows 256 different characters. Each of them is found in something called the
ASCII table, located in Appendix A, “The ASCII Table.” (ASCII is pronounced ask-
ee. If you don’t know-ee, you can just ask-ee.) Anything your computer can repre-
sent can be a character. Any or all of the following can be considered characters:

A a 4 % Q ! + =]

NOTE The American National Standards Institute (ANSI),
which developed ANSI C, also developed the code for the ASCII
chart.

TIP Even the spacebar produces a character. Just as C needs
to keep track of the letters of the alphabet, the digits, and all the
other characters, it has to keep track of any blank spaces your
program needs.

As you can see, every letter, number, and space is a character to C. Sure, a 4
looks like a number, and it sometimes is, but it is also a character. If you indicate
that a particular 4 is a character, you can’t do math with it. If you indicate that
another 4 is to be a number, you can do math with that 4. The same holds for the
special symbols. The plus sign (+) is a character, but the plus sign also performs
addition. (There I go, bringing math back into the conversation!)

All of C’s character data is enclosed in apostrophes ('). Some people call apostro-
phes single quotation marks. Apostrophes differentiate character data from other
kinds of data, such as numbers and math symbols. For example, in a C program,
all of the following are character data:

03_9780789751980_ch02.indd 18 7/17/13 12:29 PM

CHAPTER 2 WRITING YOUR FIRST C PROGRAM 19

'A' 'a' '4' '%' ' ' '-'

None of the following can be character data because they have no apostrophes
around them:

A a 4 % -

TIP None of the following are valid characters. Only single
characters, not multiple characters, can go inside apostrophes.

‘C is fun’

‘C is hard’

‘I should be sailing!’

The first program in this chapter contains the character '\n'. At first, you might
not think that \n is a single character, but it’s one of the few two-character combi-
nations that C interprets as a single character. This will make more sense later.

If you need to specify more than one character (except for the special characters
that you’ll learn, like the \n just described), enclose the characters in quotation
marks ("). A group of multiple characters is called a string. The following is a C
string:

“C is fun to learn.”

NOTE That’s really all you need to know about characters
and strings for now. In Chapters 4 through 6, you’ll learn how to
use them in programs. When you see how to store characters in
variables, you’ll see why the apostrophe and quotation marks are
important.

Numbers in C
Although you might not have thought about it before now, numbers take on many
different sizes and shapes. Your C program must have a way to store numbers, no
matter what the numbers look like. You must store numbers in numeric variables.
Before you look at variables, a review of the kinds of numbers will help.

Whole numbers are called integers. Integers have no decimal points. (Remember
this rule: Like most reality shows, integers have no point whatsoever.) Any number
without a decimal point is an integer. All of the following are integers:

10 54 0 –121 –68 752

03_9780789751980_ch02.indd 19 7/17/13 12:29 PM

20 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

WARNING Never begin an integer with a leading 0 (unless
the number is zero), or C will think you typed the number in
hexadecimal or octal. Hexadecimal and octal, sometimes called
base-16 and base-8, respectively, are weird ways of represent-
ing numbers. 053 is an octal number, and 0x45 is a hexadecimal
number. If you don’t know what all that means, just remember
for now that C puts a hex on you if you mess around with leading
zeroes before integers.

Numbers with decimal points are called floating-point numbers. All of the follow-
ing are floating-point numbers:

547.43 0.0 0.44384 9.1923 –168.470 .22

TIP As you can see, leading zeroes are okay in front of floating-
point numbers.

The choice of using integers or floating-point numbers depends on the data
your programs are working with. Some values (such as ages and quantities) need
only integers; other values (such as money amounts or weights) need the exact
amounts floating-point numbers can provide. Internally, C stores integers differ-
ently than floating-point values. As you can see from Figure 2.2, a floating-point
value usually takes twice as much memory as an integer. Therefore, if you can
get away with using integers, do so—save floating points for values that need the
decimal point.

1923

121.34

121.34

1923

Memory

FIGURE 2.2

Storing floating-point values often takes more memory than integers.

03_9780789751980_ch02.indd 20 7/17/13 12:29 PM

CHAPTER 2 WRITING YOUR FIRST C PROGRAM 21

NOTE Figure 2.2 shows you that integers generally take less
memory than floating-point values, no matter how large or small
the values stored there are. On any given day, a large post office
box might get much less mail than a smaller one. The contents of
the box don’t affect what the box is capable of holding. The size
of C’s number storage is affected not by the value of the number,
but by the type of the number.

Different C compilers use different amounts of storage for integers and floating-
point values. As you will learn later, there are ways of finding out exactly how
much memory your C compiler uses for each type of data.

Wrapping Things Up with Another Example
Program

This chapter’s goal was to familiarize you with the “look and feel” of a C program,
primarily the main() function that includes executable C statements. As you
saw, C is a free-form language that isn’t picky about spacing. C is, however, picky
about lowercase letters. C requires lowercase spellings of all its commands and
functions, such as printf().

At this point, don’t worry about the specifics of the code you see in this chapter.
The rest of the book explains all the details. But it is still a great idea to type and
study as many programs as possible—practice will increase your coding confidence!
So here is a second program, one that uses the data types you just covered:
/* A Program that Uses the Characters, Integers, and Floating-Point

Data Types */

#include <stdio.h>

main()

{

 printf("I am learning the %c programming language\n", 'C');

 printf("I have just completed Chapter %d\n", 2);

 printf("I am %.1f percent ready to move on ", 99.9);

 printf("to the next chapter!\n");

 return 0;

}

This short program does nothing more than print three messages onscreen. Each
message includes one of the three data types mentioned in this chapter: a charac-
ter (C), an integer (2), and a floating-point number (99.9).

03_9780789751980_ch02.indd 21 7/17/13 12:29 PM

22 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE On the first printf statement, the %c tells the pro-
gram where to introduce the character 'C'. It is %c as an abbre-
viation for character, not because the character is a C. If you were
learning the N programming language, you would still use %c to
place the 'N' character.

The main() function is the only function in the program written by the program-
mer. The left and right braces ({ and}) always enclose the main() code, as well
as any other function’s code that you might add to your programs. You’ll see
another function, printf(), that is a built-in C function that produces output.
Here is the program’s output:
I am learning the C programming language

I have just completed Chapter 2

I am 99.9 percent ready to move on to the next chapter!

TIP Try playing around with the program, changing the mes-
sages or data. You should even try making a mistake when typing,
like forgetting a semicolon (;) at the end of a line, just to see what
happens when you try to compile the program. Learning from
mistakes can make you a better programmer!

THE ABSOLUTE MINIMUM
This chapter familiarized you with the “look and feel” of a C program, primarily
the main() function. The key points from this chapter include:

 • A C function must have parentheses following its name. A C program consists
of one or more functions. The main() function is always required. C executes
main() before any other function.

 • Put lots of extra spacing in your C programs, to make them more readable.

 • Don’t put leading zeroes before integers unless the integer is zero.

 • If you use a character, enclose it in single quotes. Strings go inside quotation
marks. Intege rs are whole numbers without decimal points. Floating-point
numbers have decimal points.

03_9780789751980_ch02.indd 22 7/17/13 12:29 PM

Symbols
#define directives, 60-62

#include directives, 58-60

-- operators, 119-121

++ operators, 119-121

A
addition operator, compound, 86

addPayroll() function, 292

addresses
memory, 222
passing arguments by,

297-302

allocating heap memory,
244-249

multiple allocations, 250-255

American National Standards
Institute (ANSI), 11, 18

ampersands, scanf() function,
variables, 68-69

ANSI (American National
Standards Institute), 11, 18

apostrophes (‘), character data, 18

arguments, 294
passing, 293-294

by address, 297-302
by value, 295-297

arithmetic
compound assignment

operators, 84-87
addition, 86
multiplication, 86
order, 88
updating variables, 85-86

operators, 74-77
assignment, 80-81
order of, 77-79
parentheses rules, 79

arrays, 52, 193, 231
character, 52-54

storing string literals, 234-
236

defining, 194-196
elements, 53, 194-197
filling, 202
names, 232-233
nums, 196
parallel, 202
passing, 303
pointers, 236, 239-241
putting values in, 197-199
searching, 201-208
sorting, 210

ascending order, 210,
214-215

data searches, 215-220
descending order, 210,

214-215
strings, printing in, 54
subscripts, 196
vals, 195

ascending order, sorting arrays,
210, 214-215

ASCII table, 313-317

assignment operator, storing
data in variables, 45

assignment operators, 45,
80-81

compound, 84-87
addition, 86
multiplication, 86
order, 88
updating variables, 85-86

B
backslashes (/), 15

base-8 numbers, 20

base-16 numbers, 20

binary, 10

binary searches, arrays, 208

blocks, braces, 290

body, if statements, 94

braces ({}), 15
blocks, 290

break statement, 142-144,
153-154

bubble sorting, arrays
ascending order, 210,

214-215
data searches, 215-220
descending order, 210,

214-215

bugs, 10

buildContact() function, 288, 292

C
calcIt() function, 17

case, variables, checking,
172-176

case statements, 153-162

case-changing functions, 176

C compilers, 7

ceil() function, 182

char variables, 42

character arrays, 52-54
storing string literals,

234-236

character string literals, 43

character-testing functions, 172

characters, 18-19
ASCII table, 313-317
conversion, 36-37

Index

36_9780789751980_index.indd 331 7/17/13 12:25 PM

332 CHARACTERS

data searches, sorting arrays,
215-220

data types, 17-18
character, 18-19
floating-point numbers,

20-21
int, 258
integers, 19-20
mixing, 89
return, 309
variables, 42

deallocating heap memory,
244-246

debugging, 10

declaring
structures, 259
variables, 44-45

decrement operators, 74,
119-121

deficiencies, heap memory, 249

defined constants, 60-64
naming, 61

defining
arrays, 194-196
constants, #define directive,

60-62
pointer variables, 222-224
structures, 258-262
variables, 44-45, 60

same line, 44

dereferencing pointer variables,
225, 228

descending order, sorting arrays,
210, 214-215

disk files, 268-270

dot operator, 262

double variables, 42

do...while loops
repeating code, 127-129
terminating, 142-144

Draw Poker program, 14
comments, 25
functions, 289
header files, 60
main() function, 96

compound assignment
operators, 84-87

addition, 86
multiplication, 86
order, 88
updating variables, 85-86

compound relational operators.
See logical operators

compound statements, 94

computer programs. See
programs

concatenation, strings, 176

conditional operators, 116-118

constant data, 42

constants
defined, 60-64

naming, 61
named, 60
variables, 232

continue statement, 145-146

control string characters, leading
spaces, scanf() statements, 68

control strings, printf()
function, 32

conversion characters, 36-37

copy() function, passing argu-
ments by, 295-297

counter variables, 84

cross-platform software, 7

D
data

literal, 42
saving, 267
sorting, 209
storing in variables, 45-48
structures, 257

defining, 258-262
putting data in, 262-265

testing
else statement, 96-100
if statement, 92-96

keywords, extracting from,
164-167

pointers, 234
sending single character to

screen, 164-167
strings, 19

closing files, 269

code
See also programming
blocks, opening, 14
Blocks C compiler, 7-9
comments, 23-25

alternate style, 28
multi-line, 25
single-line, 28
specifying, 25-27

debugging, 10
indention, 16
line breaks, 27-28
loops

continue statement,
145-146

do...while, 127-129
for, 132-139
nesting, 135
terminating with break

statement, 142-144
while, 124-129

output, printf() function, 31-39
source, 10
whitespace, 27-28
word processors, copying

from, 15

commands, 11
do...while, repeating code,

127-129
while, 124

repeating code, 124-129

comments, 23-25
alternate style, 28
multi-line, 25
single-line, 28
specifying, 25-27

compilers, 7, 10
Blocks C compiler, 7-9

36_9780789751980_index.indd 332 7/17/13 12:25 PM

FUNCTIONS 333

isalpha(), 172
isdigit(), 172
islower(), 172-176
isupper(), 172-176
main(), 16-17, 21-22, 59-62,

96, 260, 285, 288, 295-296,
308-312

malloc(), 246-252
math, 181-184

generating random values,
187-188, 191

logarithmic, 184-186
trigonometric, 184-186

passing arguments, 293-294
by address, 297-302
by value, 295-297

pow(), 183
prAgain(), 291
printContact(), 288
printf(), 16, 22, 32, 49, 56, 59,

65-66, 118, 126, 195, 233,
270, 310

code output, 31-39
controlString, 32-33
conversion characters,

36-37
escape sequences, 34-36
format, 32-33
placeholders, 32
printing strings, 33
prompting users before

scanf(), 66-68
prototypes, 305, 309-311
putc(), 281
putchar(), 164-167
puts(), 177, 195
rand(), 187-188, 191, 214
returning values, 306-309
scanf(), 65, 300

ampersands, 68-69
header file, 66
problems with, 68-71
prompting users with

printf(), 66-68
sizeof(), 196, 247
sqrt(), 183, 306
srand(), 187
strcpy(), 54, 59, 176-179, 194,

197, 234

floating-point numbers, 20-21
conversion characters, 36-37

floor() function, 182

fopen() function, 268-270,
278-279

for loops, 131-135, 138-139
nested, 210
relational test, 134
semicolons, 133
terminating, break statement,

142-144

formats, printf() function, 32-33

found variable, 206

fprintf() function, 270

fputc() function, 281

free() function, 246, 252

freeing heap memory, 250

fscanf() function, 274

fseek() function, 279-284

functions, 286-289
addPayroll(), 292
buildContact(), 288, 292
calcIt(), 17
case-changing, 176
ceil(), 182
character-testing, 172
Draw Poker program, 289
exit(), 153
fabs(), 183-184
fclose(), 269, 278
feof(), 274
fgetc(), 281
fgets(), 235-236, 272
floor(), 182
fopen(), 268-270, 278-279
fprintf(), 270
fputc(), 281
free(), 246, 252
fscanf(), 274
fseek(), 279-284
getch(), 172
getchar(), 164-169, 172
gets(), 177, 194, 235, 307
gradeAve(), 307-308
half(), 295-296

E
editors, 10

elements, arrays, 53, 194-197

else statement, testing data,
96-100

Enter keypress, terminating,
getchar() function, 167-168

equals sign, storing data in vari-
ables, 45

escape sequences, 34-36
printf() function, 34

exit() function, 153

expressions, 6, 74

F
fabs() function, 183-184

fclose() function, 269, 278

feof() function, 274

fgetc() function, 281

fgets() function, 235-236, 272

Fibonacci searches, arrays, 208

file pointers, 268
global, 269

files
closing, 269
disk, 268
header, 59

building, 62-64
Draw Poker program, 60
quotation marks, 59

including, #include preproces-
sor directives, 58-60

navigating, 279-284
opening, 268-270
pointer, 268
random-access, 268, 277-278

opening, 278-279
sequential, 268-275

filling arrays, 202

flag variables, 206

float variables, 42

floating-point absolute values, 183

36_9780789751980_index.indd 333 7/17/13 12:25 PM

334 FUNCTIONS

terminating, break statement,
142-144

while, 124-129

M
machine language, 10

main() function, 16-17, 21-22,
59, 62, 96, 260, 285, 288,
295-296, 308-312

#include directives, 60

maintenance, programs, 24

malloc() function, 246-252

math
compound assignment oper-

ators, 84-87
addition, 86
multiplication, 86
order, 88
updating variables, 85-86

operators, 74-77
assignment, 80-81
order of, 77-79
parentheses rules, 79

math functions, 181-184
generating random values,

187-191
logarithmic, 184-186
trigonometric, 184-186

members, 257

memory, heap, 243-246
allocating, 244-249
deallocating, 244-246
deficiencies, 249
freeing, 250
multiple allocations, 250-255
pointer variables, 243-244

memory addresses, 222

mixing data types, 89

mode strings, fopen()
function, 270

modulus operator, 76

multi-line comments, 25

indention, code, 16

infinite loops, 123

initializing strings, 54-56

int data type, 258

int variables, 42

integers, 19-20

integrated development
environment (IDE), 7

invStruct statement, 260-262

isalpha() function, 172

isdigit() function, 172

islower() function, 172-176

isupper() function, 172-176

K-L
keywords, extracting single char-

acter from, getchar() function,
164-167

leading 0, integers, 20

leading spaces, control string
characters, scanf()
statements, 68

length, strings, 51-52

line breaks, 27-28

literal data, 42

local variables, 45, 290-292

logarithmic functions, 184-186

logical operators, 103-108
avoiding negative, 109-111
combining with relational

operators, 104-108
order, 111-112

loops, 123, 131
continue statement, 145-146
do...while, 127-129
for, 131-135, 138-139

nested, 210
relational test, 134
semicolons, 133

infinite, 123
nesting, 135

string, 176-179
strlen(), 176-179
tolower(), 176
toupper(), 129, 176, 240

G
getchar() function, 164-169, 172

terminating Enter keypress,
167-168

getch() function, 172

gets() function, 177, 194, 235, 307

global file pointers, 269

global variables, 45, 290-292, 312

gradeAve() function, 307-308

H
half() function, 295-296

header files
building, 62-64
Draw Poker program, 60
quotation marks, 59
scanf() function, 66

heap memory, 243-246
allocating, 244-249
deallocating, 244-246
deficiencies, 249
freeing, 250
multiple allocations, 250-255
pointer variables, 243-244

hexadecimal numbers, 20

I-J
IDE (integrated development

environment), 7

if...else statements, 96,
116-118, 150

if statement, 91, 149
body, 94
testing data, 92-96

increment operators, 119-121

incrementing counter
variables, 132

36_9780789751980_index.indd 334 7/17/13 12:25 PM

PROGRAMS 335

characters, 234
constants, 232
defining, 222-224
dereferencing, 225, 228
files, 268

global, 269
heap memory, 243-244
memory addresses, 222
structure, 262

postfix operators, 119

pow() function, 183

prAgain() function, 291

prefix operators, 119

preprocessor directives, 57
#define, 60-62
#include, 58-60

placing, 60

printContact() function, 288

printf() function, 16, 22, 32, 49,
56, 59, 65-66, 118, 126, 195,
233, 270, 310

code output, 31-39
controlString, 32-33
conversion characters, 36-37
escape sequences, 34-36
format, 32-33
placeholders, 32
printing strings, 33
prompting users before

scanf(), 66-68

printing
strings, 33
strings in arrays, 54

programmers, 6

programming
See also code
process, 10
requirements, 7-10

programs, 6-7
building, 62-64
Draw Poker, 14

comments, 25
functions, 289
header files, 60

IDE (integrated development
environment), 7

logical, 103-108
avoiding negative, 109-111
combining with relational

operators, 104-108
order, 111-112

modulus, 76
order of, 77-79
parentheses rules, 79
postfix, 119
prefix, 119
relational, 91-92, 96, 103-104

combining with logical
operators, 104-108

sizeof(), 121-122

order
arrays, 210, 214-215
compound assignment

operators, 88
logical operators, 111-112
operators, 77-79

organizing programs, 285-289

origin values, fseek() function, 279

output, 7
code, printf() function, 31-39
programs, 14

P
parallel arrays, 202

parameters, 294

parentheses (()), 15
logical operators, 111
rules, operators, 79

passing
arguments, 293-294

by address, 297-302
by value, 295-297

arrays and nonarray
variables, 303

placeholders, 32

placing #include directives, 60

pointer files, 268

pointers, 221, 231
array names, 232-233
arrays of, 236, 239-241

multiple allocations, heap
memory, 250-255

multiplication operator,
compound, 86

N
named constants, 60

naming
defined constants, 61
variables, 43-44

navigating files, 279-284

nested for loops, 210

nesting loops, 135

nonarray variables, passing, 303

nonintegers, promoting/
demoting, 182

null zeros, 50

numbers
floating-point, 20-21
hexadecimal, 20
integers, 19-20
octal, 20

nums array, 196

O
octal numbers, 20

open source software, 7

opening
files, 268-270
random-access files, 278-279

operators, 73-77
assignment, 80-81

variables, 45
compound assignment, 84-87

addition, 86
multiplication, 86
order, 88
updating variables, 85-86

conditional, 116-118
decrement, 74, 119-121
dot, 262
increment, 119-121

36_9780789751980_index.indd 335 7/17/13 12:25 PM

336 PROGRAMS

strcpy() function, 54, 59, 176-
179, 194, 197, 234

string functions, 176-179

string.h header file, 176

string literals, character arrays,
234-236

string terminator, 50

string variables, 49

strings, 19, 171
character arrays, 52-54
concatenation, 176
control, printf() function, 32
initializing, 54-56
length, 51-52
mode, fopen(), 270
printing, 33
printing in arrays, 54
string terminator, 50
terminating zero, 50-51

strlen() function, 176-179

struct statement, 258-259

structures, 257-258
declaring, 259
defining, 258-262
putting data in structure

variables, 262-265

subscripts, 53
arrays, 196

switch statement, 150-154

syntax, code comments, 25-27

T
terminating loops, break state-

ment, 142-144

terminating zero, strings, 50-51

testing data
else statement, 96-100
if statement, 92-96

tolower() function, 176

toupper() function, 129, 176, 240

trigonometric functions, 184-186

typecasting, 88-89

semicolons
commands and functions, 33
for loops, 133

sequential files, 268-275
closing, 269
opening, 268-270

sequential searches, arrays, 208

single-line comments, 28

sizeof() function, 121-122,
196, 247

software, cross-platform and
open source, 7

sorting arrays, 209
ascending order, 210,

214-215
data searches, 215-216,

219-220
descending order, 210,

214-215

source code, 10

spacebar character, 18

spaces, control string characters,
scanf() statements, 68

specifying comments, 25-27

sqrt() function, 183, 306

srand() function, 187

statements
break, 142-144, 153-154
case, 153-162
compound, 94
continue, 145-146
do...while, repeating code,

127-129
for, repeating code, 132-139
if, 91, 149

body, 94
testing data, 92-96

if...else, 96, 116-118, 150
invStruct, 260-262
struct, 258-259
switch, 150-154
while, repeating code,

124-129

storing data in variables, 45-48
equals sign, 45

maintenance, 24
organizing, 285-289
output, 7, 14
writing, requirements, 7-10

prototypes (functions), 305,
309-311

putc() function, 281

putchar() function, 164-167

puts() function, 177, 195

Q-R
quotation marks (),characters, 19

header files, 59

rand() function, 187-188, 191, 214

random-access files, 268, 277-278
navigating, 279-284
opening, 278-279

random values, generating,
187-191

real numbers, 20-21
conversion characters, 36-37

records, 258

relational operators, 91-92, 96,
103-104

combining with logical
operators, 104-108

relational tests, for loops, 134

return data type, 309

returning values, functions,
306-309

S
saving data, 267

scanf() function, 65, 300
header file, 66
problems with, 68-71
prompting users with printf(),

66-68
variables, ampersands, 68-69

searching arrays, 201-208

self-prototyping functions, 310

36_9780789751980_index.indd 336 7/17/13 12:25 PM

ZEROES, TERMINATING, STRINGS 337

structure, putting data in,
262-265

typecasting, 89
updating, compound assign-

ment operators, 85-86

void keyword, 309

W-Z
while command, 124

while loops
repeating code, 124-129
terminating, 142-144

whitespace, 27-28

word processors, copying code
from, 15

writing programs, requirements,
7-10

zeroes, terminating, strings,
50-51

U-V
updating variables, compound

assignment operators, 85-86

uppercase letters, defined con-
stant names, 61

vals arrays, 195

values
arrays, putting in, 197-199
passing arguments by,

295-297
returning, functions, 306-309

variables, 41-43, 294
char, 42
checking case, 172-176
counter, 84
data types, 42
decrementing, 119
defining, 44-45, 60
double, 42
flag, 206
float, 42
found, 206
global, 45, 290-292, 312
incrementing, 119
incrementing counter, 132
int, 42
local, 45, 290-292
naming, 43-44
nonarray, passing, 303
passing, 293-294

by address, 297-302
by value, 295-297

pointers, 221, 231
array names, 232-233
arrays of, 236, 239-241
characters, 234
constants, 232
defining, 222-224
dereferencing, 225, 228
heap memory, 243-244
memory addresses, 222

scanf() function, ampersands,
68-69

storing data in, 45-48
string, 49

36_9780789751980_index.indd 337 7/17/13 12:25 PM

	Table of Contents
	Introduction
	Who’s This Book For?
	What Makes This Book Different?
	This Book’s Design Elements
	How Can I Have Fun with C?
	What Do I Do Now?

	2 Writing Your First C Program
	A Down-and-Dirty Chunk of Code
	The main() Function
	Kinds of Data
	Wrapping Things Up with Another Example Program

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I-J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U-V
	W-Z

