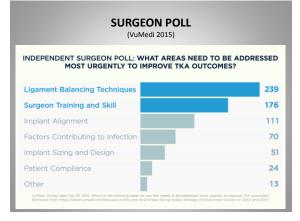
SENSOR ASSISTED SURGERY


A Universal Solution to Customized Soft Tissue Balance

DISCLOSURES

• OrthoSensor Inc: (Royalties, Board Member)

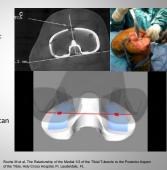
Stryker-MAKO, Inc: (Royalties)

WHAT DO WE WANT TO CHANGE ?

- Reduce Rev TKA Burden
- Mal-rotation
- Mal-alignment
- Soft tissue Imbalance
- Patient Dissatisfaction

DRIVE TOWARDS A DEFINITION of "KNEE BALANCE"

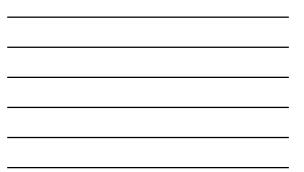
INTRA-OP SCENERIOS


- Soft Tissue Asymmetry and Imbalance
- Selective Soft Tissue Releases
- Implant Congruency and Mal-rotation
- Relation of "Balance" and Alignment Adjustments
- Effects of Cementing Techniques

ROTATION

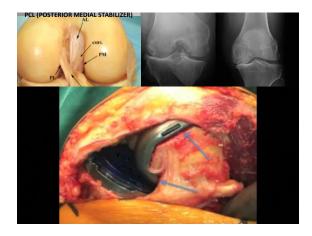
Importance of Proper Tray Rotation

- Retrospective analysis (n=170):
 53% exhibited asymmetrical tibiofemoral congruency (68% IR, 32% ER)
- 1000+ CT scans: exhibited the mid-medial 1/3 of the tibial tubercle can vary by (±25°)
- Inter-compartmental balance can be achieved by adjusting tibiofemoral congruency

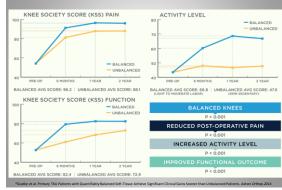


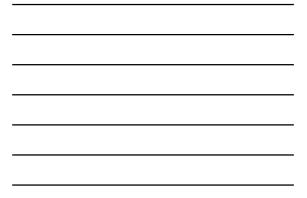
VALGUS KNEE

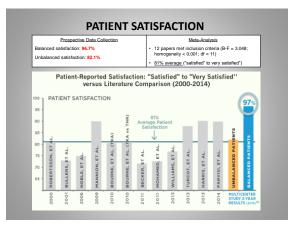
- Concerns:
- Contracture / Recurvatum
- MCL Stability
- Femoral Rotation
- Extra-articular Deformity



EFFECTS OF ALIGNMENT




CEMENTING TECHNIQUES



PATIENT REPORTED OUTCOMES

CONCLUSIONS

- Ligament Balance continues to be the most significant factor impacting patient outcomes
- Functional improvement and satisfaction scores for unbalanced patients at 1-year were inferior to those achieved by balanced patients at 6-months
- Sensor-assisted TKA patients are statistically more likely to achieve reduced pain, improved function, and greater activity levels than unbalanced patients
- Patient Satisfaction scores for balanced patients show much larger improvement than unbalanced patients

1

Improving Accuracy & Intelligence with Navigation in Total Knee Arthroplasty

VuMedi Webinar Advancing TJA with Computer Technologies

Paul K. Gilbert, MD Clinical Assistant Professor Keck Medical Center of USC Huntington Memorial Hospital, Pasadena, California

Keck Medical Center of USC

March 3, 2015

Ŵ

General Ortho/subspecialty in joints 25 years in community private practice Recently joined USC part time Started doing CAS for hips and knees in 2004 400 robotic unicompartmental knees Accelerometer based tools

Keck Medical Center of USC

Disclosures

• Teaching/research consultant for Stryker/Mako Orthopaedics

Why did I start?

- Accuracy, the biomechanical sweet spot
- Better functional outcomes
- Happier patients
- Less bleeding, fat emboli
- Less revisions

1

Keck Medical Center of USC

The Literature

- Implant malalignment and malposition are associated with decreased function and/or higher revision rates
- Navigated TKA results in better alignment and position
- Navigated TKA data does not show improved functional outcomes

Keck Medical Center of USC

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

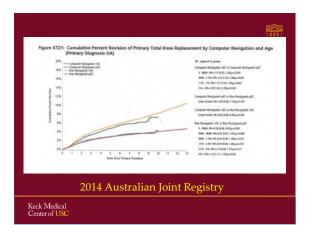
Patient Satisfaction

80%

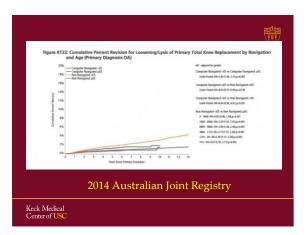
What makes a good TKA?

Keck Medical Center of USC

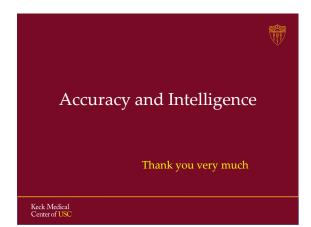
> Pre-op: evaluate, optimize, educate, educate, educate Surgery: Post-op: rehab, hand holding, rehab, rehab



Keck Medical Center of USC


1

Physical Therapists Pain management docs Patients feel they got the best Surveys


Keck Medical Center of <mark>USC</mark>

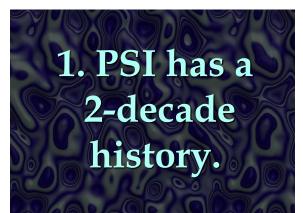
3/3/2015

Adolph V. Lombardi, Jr. Disclosure

Consultant, Speaker's Bureau: Biomet, Inc.; Pacira

Royalties:

Biomet, Inc.; Innomed, Inc.

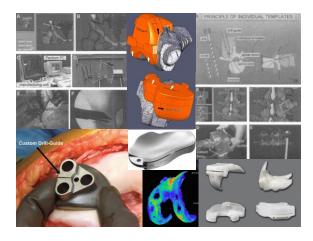

Research Support:

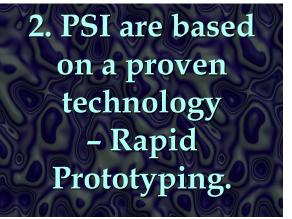
Biomet, Inc.; Stryker; Pacira; Kinamed
 Publications Editorial Boards:

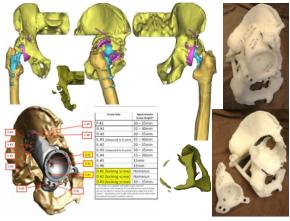
 Journal of Arthroplasty; Journal of Bone and Joint Surgery - American; Clinical Orthopaedics and Related Research; Journal of the American Academy of Orthopaedic Surgeons; Journal of Orthopaedics and Traumatology; Surgical Technology International; The Knee

🞙 Boards: 🔪

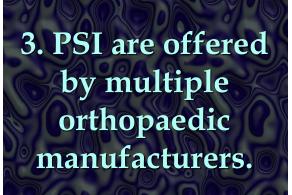
 Operation Walk USA; The Hip Society; The Knee Society; Mount Carmel Education Center at New Albany



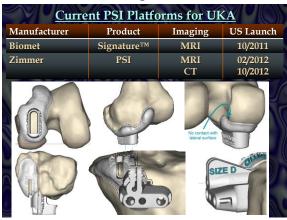

3/3/2015

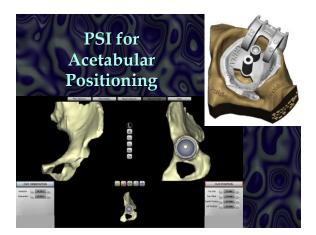

History of Technology

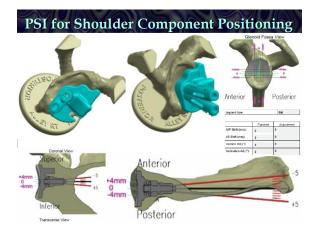
Radermacher 1994
Materialise, founded 1990
Mimics and Magics software released 1991, 1992


- Kinamed, since 1995
- ConforMIS, founded 2004
- •OtisMed, founded 2005

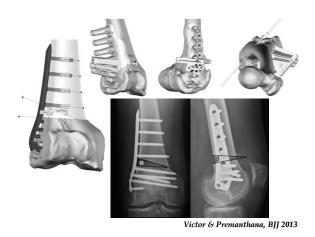
Revision THA							
Authors (Country)	# of Patients (Hips)	Males: Females	Mean Age (years)	Type of Acetabular Defect	Observation Time	Results	
Christie et al. (US) [6]	76 (78)	20:56	59	AAOS types III/IV	Surgeries 1992-1998; Mean f/u 53 months	6 reoperations for recurrent dislocation (7.8%); no removal of triflange components. Pre-op HHS: 33; Post-op HHS: 82	
Colen et. al (Belgium) [7]	6 (6)	3:3		AAOS types III/IV	Surgeries 2007-2011; Mean f/u 28 months	0 revisions. Post-op HHS: 61	
DeBoer et al. (US) [10]	18 (20)	3:15	56	Pelvic discontinuity	Surgeries 1992-1998; Mean f/u 123 months	6 revisions (30%); no removal of triflange components. Pre-op HHS: 41; Post-op HHS: 80	
Holt et al. (US) [12]	26 (26)	8:18		Paprosky type 3B; AAOS types III/IV	Mean f/u 54 months	3 failures of triflange components (11.5%). Pre-op HHS: 39; Post-op HHS: 78	
Joshi et al. (US) [13]	27 (27)	9:18		AAOS type III	Surgeries 1993-1996; Mean f/u 58 months	2 revisions with removal of triflange components (7.4%).	
Taunton et al. (US) [25]	57 (57)	6:51		Pelvic discontinuity	Surgeries 1992-2008; Mean f/u 76 months	20 revisions for any reason (35%); failures of triflange components (5.3%). Post-op HHS: 75	
Wind Jr. et al. (US) [27]	19 (19)	7:12	58	Paprosky types 3A/3B; AAOS types III/IV	Surgeries 2001-2005; Mean f/u 31 months	2 revisions for failure of triflange components (10.5%). Pre-op HHS: 38; Post-op HHS: 63	
Lombardi et al. CORR (in submission)	26 (28)	7:19	68	Paprosky type 3B	Surgeries 2003-2012; Mean f/u 47 months	4 revisions for any reason (14%); 2 failures of triflange components due to infection (7.1%). Pre-op HHS: 42; Post-op HHS: 64	

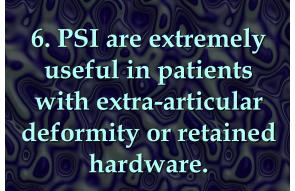



	ent TKA P pecific Ali		
Manufacturer	Product	Imaging	US Launch
Biomet	Signature™	MRI CT	10/2007 01/2010
ConforMIS	iTotal®	СТ	2011-2012
DePuy	Trumatch™	СТ	04/2009
Medacta	MyKnee®	CT or MRI	04/2010
Smith & Nephew	Visionaire™	MRI & X-ray	11/2008
MicroPort*	Prophecy™	CT or MRI	03/2009
Zimmer	PSI	MRI CT	11/2009 06/2012
*formerly Wright Med	ical		NOR

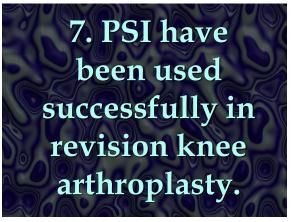


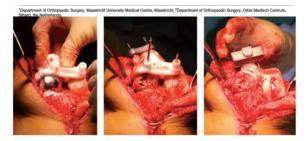




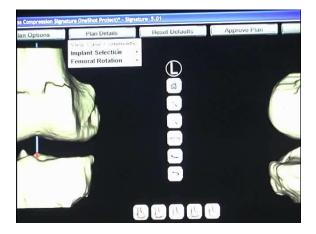

3/3/2015

5. PSI utilization is increasing throughout the world

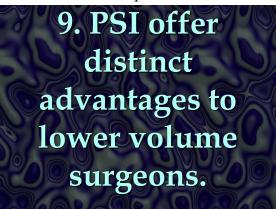

Manufacturer	Global	Europe	Global	Europe
Biomet	2011	2011	2012	2012
	11,192 6,000	3,169 700	22,506 16,000	6,501 1,100
DePuy-Synthes	,		,	,
Medacta	4,600	3,400	6,200	4,600
Smith & Nephew	19,500	1,825	22,000	2,614
Wright Medical	1,600	400	2,000	550
Zimmer	9,800	1,250	13,850	2,150
		60		



3/3/2015


Acta Orthopaedica 2013; 84 (2): 165-169

Patient-specific guide for revision of medial unicondylar knee arthroplasty to total knee arthroplasty Beneficial first results of a new operating technique performed on 10 patients


Bart Kerens¹, Bert Boonen², Martijn Schotanus², and Nanne Kort²

3/3/2015

With a 6-fold increase in the incidence of TKA projected over the next 2 decades, an increasing burden on lower volume/inexperienced arthroplasty surgeons, who tend to have longer operative times and increased complication rates compared with high-volume surgeons, is expected. Improved efficiency and reproducibility in implant positioning and limb alignment is paramount to decreasing complications, improving outcomes, and meeting the increasing demand. Patient-customized cutting guides that are being developed by most major manufacturers of total knee prostheses are an emerging technology that will allow the lower-volume surgeon to meet many of these demands. One of the primary drivers of increased surgical times for lower-volume surgeons is the significant number of steps and complexity of instrumentation required to perform a TKA. The use of CPI eliminates numerous steps in the surgical technique and eliminates the need for as many as 80 instruments, which allows for significantly improved surgical efficiency. The elimination of this instrumentation also allows for significant improvement in processing and operating room efficiency with decreased incidence of processing error. The 31-minute decrease in operating room set-up and breakdown in the study reported here was realized by an operating room staff who is very experienced with TKA. A greater improvement in efficiency may be realized by a lower volume operating room staff.

Johnson, AJO 2011

10. PSI require less instrumentation resulting in less OR time setup and breakdown, a decrease in the number of instruments requiring sterile processing.

3/3/2015

11. PSI easily fit into the operative workflow, and in the majority of timed studies actually decrease operative time.

3/3/2015

Value of PSG in TKA Significant reduction in: Processing and sterilization time Turnover time OR time Number of trays used Hospital stay Noble et al., J Arth 2012 Johnson, Am J Orthop 2011 Duffy, Am J Orthop 2011 Lionberger et al., AAHKS 2011

Nunley et al., CORR 2011 Tibesku et al., AOTS 2013

12. PSI has more supportive literature than negative literature.

3/3/2015

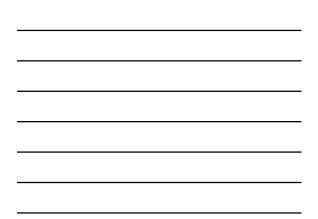
Patient Specific Guides - Pro

	Barrett et al., J Arth 2014	
•	Boyd et al., Clin Sports Med 2014	
	Cenni et al., J Ortho Res 2014	
•	Ensini et al., KSSTA 2014	
•	Marimuthu et al., J Arth 2014	
•	Silva et al., KSSTA 2014	
*	Bonicoli et al., Eur J OST 2013	
•	Chareancholvanich et al., BJJ 2013	
	Daniilidis & Tibesku, Int Orthop 2013	
	Issa et al., J Knee 2013	
*	Kerens et al., Acta Orthop 2013	
•	Koch et al., KSSTA 2013	
•	MacDessi et al., The Knee 2013	
*	Thienpont et al., The Knee 2013	
•	Thienpont et al., KSSTA 2013	
*	Tibesku et al., AOTS 2013	
*	Volpi et al., KSSTA 2013	
*	Yaffe et al., Int J CARS 2013	
•	Ast et al., OCNA 2012	

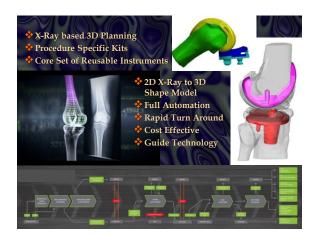
Bali et al., J Arth 2012 Boonen et al., Acta Orthop 2012 Heyse & Tibesku, The Knee 2012 on, Am J Orthop 2012 Lombardi & Frye, CRMSM 2012 Nam et al., JKS 2012 Mayer et al., J Arth 2012 Ng et al., CORR 2012 Noble et al., J Arth 2012 Slammin & Parsley, CRMSM 2012 Yaffe et al., Biomed Tech 2012 Yeo et al., ISRN Orthop 2012 Stulberg et al., KS IM 2012 Mont et al., KS IM 2012 Duffy, Am J Orthop 2011 Johnson, Am J Orthop 2011

McGovern, Am J Orthop 2011 Watters et al., JSOA 2011 Lombardi et al., Orthopedics 2008

Patient Specific Guides – <u>Con/Questionable</u>


Chen et al., KSSTA 2014
 Conteduca et al., Int Orthop 2014

Scholes et al., KSSTA 2014 Victor et al., CORR 2014 Hamilton et al., J Arth 2013 Nam et al., The Knee 2013 Parratte et al., KSSTA 2013 Roh et al., CORR 2013 Stronach et al., CORR 2013


- Barrack et al., JBJS Br 2012
 Conteduca et al., KSSTA 2012
 Conteduca et al., Int Orthop 2012
- Lustig et al., J Arth 2012
- Nam et al., J Arth 2012
- Nunley et al., CORR 2012
 Stronach et al., CORR 2012
- Bellemans et al., KS IM 2012

13. PSI has been reported to be associated with significant improvement in Knee Society Functional Score in short-term follow-up.

120 100 80 60 40 20 20 10 Pre-Op 1-month Pre-Op 1-month 6-month 6-month 60 140 Range of Motion (degrees) 120 I 50 II 100 TI Pain Score 30 50 80 60 40 10 20 0 Pre-Op Pre-Op Manual
CAS Error bars, 95% Confidence Yaffe et al., interval, 2-tailed t-test PSI Int J CARS 2013

14. PSI technology is in a state of constant evolution – Now based on preoperative CT/MRI and moving in the direction of preoperative x-rays only.

3/3/2015

15. PSI are part of the future delivery of implants.

3/3/2015

The Future of Orthopaedic Implant Delivery

 Marrying PSG with single-use instruments streamlines the delivery of orthopaedic products
 Decreased number of instruments with SUI

reduces: ♦ OR setup time

OR setup time
 OR turnover time

Overall surgical time

Overall surgical time
 Infection?

PSG and SUI increase efficiency

Patient Specific Instrumentation and Implants: Do They Significantly Impact Patient Satisfaction and Outcome?

Brian S. Parsley, MD Claical Associate Professor Director - Adult Reconstruction Fello Ryan Palmer, DO Adult Reconstruction Fellow Baylor College of Medicine Houston, Texas

- · Royalties from Conformis Inc.
- AAHKS Board

Disclosures

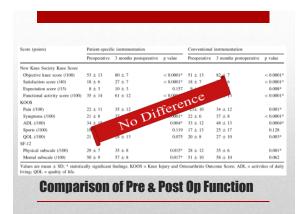
New Technology for TKA- PSI

- Rapid growth in the offerings of Patient Specific Guidance
 Customized cutting blocks for knee replacements
 Computer based guidance for hip and knee replacements
 From single to complex
 Both imageless and image based
 Individual sv robotically guided
 Custom made implants for knee replacements
- What is the justification?
- Cost reduction?Time Efficiency?Patient outcomes?

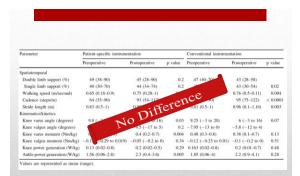
Let's Look at Function

No Benefit of Patient-specific Instrumentation in TKA on Functional and Gait Outcomes: A Randomized Clinical Trial

Matthew P. Abdel MD, Sébastien Parratte MD, PhD, Guillaume Blanc MD, Matthieu Ollivier MD, Vincent Pomero PhD, Elke Viehweger MD, PhD, MHA, Jean-Noël A. Argenson MD, PhD

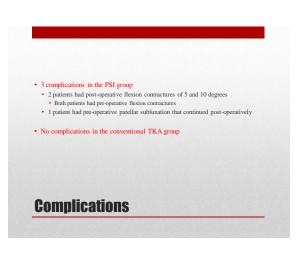

- · Patient Specific Instrumentation (PSI) vs. Conventional
 - · 40 patients randomized into 2 groups; 20 each group
 - · All pts received Zimmer NexGen LPS-Flex mobile cemented implants


· Patients evaluated pre-operatively and 3 months post-operatively


• New Knee Society Score [KSS], KOOS, SF-12, & Gait Analysis


- · Results:
- In the PSI group, 25% of cases required intra-operative modifications
 Overall, there were no differences in the new KSS, KOOS, or SF-12 between the PSI and conventional TKA groups (see graft)
 Overall, there were no differences in the analyzed gait parameters between the two groups

Clin Orthop Relat Res (2014) 472:2468-2476

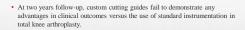


Comparison of Pre & Post Op Gait

Custom Cutting Guides Do Not Improve Total Knee Arthroplasty Outcomes at 2 Years Follow-up D. Nam, A. Park, J. Stambough, S. Johnson, R. Nunley, R. Barrack

- · 95 custom cutting guides vs. 95 conventional cutting guides for TKA by same surgeon
- · Patient self selection into either group
- UCLA Score, SF-12, Oxford Knee & Forgotten Joint scores collected pre & postoperatively

· Rotational alignment, Patient Satisfaction scores post-operatively,


Presented at AAHKS Annual Meeting Nov. 2014

• No differences for range of motion, UCLA, SF-12, Oxford Knee, or Forgotten Joint scores between the two cohorts (p=0.09 to 0.76)

- No differences were present for the incremental improvement in these scores from preoperatively to postoperatively (p=0.1 to 0.9)
- No difference in mean tourniquet time (59.1 + 13.2 mins in CCG vs. 59.7 + 14.7 mins in standard cohort; p=0.75)
- Percentage of outliers for overall mechanical alignment (31% in CCG versus 23% in standard cohort with HKA outside of $0^{\circ} + 3^{\circ}$; p=0.2).

Results

Presented by Nam at AAHKS Annual Meeting Nov. 2014

 The benefit of CCGs must be proven prior to continued implementation of this technology.

Conclusions

Presented by Nam at AAHKS Annual Meeting Nov. 2014

Systematic Review of Patient-specific Instrumentation in Total Knee Arthroplasty: New but Not Improved

Adam Sassoon MD, Denis Nam MD, Ryan Nunley MD, Robert Barrack MD

- Do patient specific cutting blocks achieve neutral mechanical alignment more reliably during TKA when compared with conventional methods? • 16 studies, Level I-III evidence
- Does patient-specific instrumentation (PSI) provide financial benefit through improved surgical efficiency?
 13 studies, Level I-III evidence
- Does the use of patient-specific cutting blocks translate to **improved clinical** results after TKA when compared with conventional instrumentation? • 2 studies, Level III evidence

Clin Orthop Relat Res (2015) 473:151-158

Study	Total number of patients	Level of evidence	Conclusion
Chareancholvanich et al. [7]	80	г	No difference in overall alignment, no difference in femoral component alignment small difference in tibial component alignment unlikely to be significant (89.8 versus 90.5*)
Hamilton et al. [13]	52	10	No difference in mechanical alignment with PSI
Noble et al. [20]	29	1	Mechanical alignment closer to neutral with PSI (1.7* versus 2.8*)
Barrack et al. [2]	200	11	Equivalent coronal plane alignment
Barrett et al. [3]	66	п	Mechanical alignment comparable between groups
Chen et al. [8]	60	п	Increased rate of mechanical axis outliers (± 3°) with PSI
Silva et al. [30]	45	п	Decreased rate of tibial component internal rotation with PSI
Parratte et al. [25]	40	П	PSI does not improve component rotation in TKA
Daniilidis and Tibesku [11]	170	11	Overall mechanical alignment equivalent, fewer outliers (± 3°) with PSI
Ng et al. [19]	724 (160*)	Ш	Overall mechanical alignment equivalent, fewer outliers $(\pm 3^\circ)$ with PSI
Variable Result	s From In	nprove:	ment in Reduction in Outliers When PSI Used
Heyse and Tibesku [14]	94	111	PSI reduced the number of femoral component rotation outliers
Barke et al. [1]	89	111	No difference in mechanical alignment with PSI
Vundelinckx et al. [32]	62	ш	No difference in mechanical alignment, posterior slope of tibial component mon accurate with PSI
		111	Overall mechanical alignment equivalent, fewer outliers $(\pm 3^{\circ})$ with PSI

Study	Total number of patients	Level of evidence	Conclusion	
Chareancholvanich et al. [7]	80	1	No difference in overall alignment, no difference in femoral component alignment,	
			small difference in tibial component alignment unlikely to be significant (89.8° yersus 90.5°)	
Hamilton et al. [13]	52	10	No difference in mechanical alignment with PSI	
Noble et al. [20]	29	1	Mechanical alignment closer to neutral with PSI (1.7* versus 2.8*)	
Barrack et al. [2]	200	п	Equivalent coronal plane alignment	
Barrett et al. [3]	66	Ш	Mechanical alignment comparable between groups	
Chen et al. [8]	60	п	Increased rate of mechanical axis outliers (± 3°) with PSI	
Silva et al. [30]	45	п	Decreased rate of tibial component internal rotation with PSI	
Parratte et al. [25]	40	п	PSI does not improve component rotation in TKA	
Daniilidis and Tibesku [11]	170 To 1	Jo Diff	ference In Benefit	
Ng et al. [19]	124 (quirturele rewer sources (2.5.7) with 155	
Nunley et al. [22]	150	ш	Equivalent number of mechanical axis outliers with standard instrumentation and PSI	
Yaffe et al. [33]	122	m	No difference in mechanical alignment with PSI	
Heyse and Tibesku [14]	94	111	PSI reduced the number of femoral component rotation outliers	
Barke et al. [1]	89	m	No difference in mechanical alimment with PSI	
Vundelinckx et al. [32]	62	ш	No difference in mechanical alignment, posterior slope of tibial component more accurate with PSI	
Boonen et al. [5]	40	111	Overall mechanical alignment equivalent, fewer outliers $(\pm 3^{\circ})$ with PSI	

Study	Total number of patients	Level of evidence	Conclusion		
Chareancholvanich et al. [7]	80	г	No difference in overall alignment, no difference in femoral component alignment, small difference in tibial component alignment unlikely to be significant (89.8° versus 50.5°)		

Hamilton et al. [13]	52	1	No difference in mechanical alignment with PSI		
Noble et al. [20]	29	1	Mechanical alignment closer to neutral with PSI (1.7° versus 2.8°)		
Barrack et al. [2]	200	11	Equivalent coronal plane alignment		
Barrett et al. [3]	66	11	Mechanical alignment comparable between groups		
Chen et al. [8]	60	п	Increased rate of mechanical axis outliers (± 3°) with PSI		
Silva et al. [30]	45	п	Decreased rate of tibial component internal rotation with PSI		
Parratte et al. [25]	40	п	PSI does not improve component rotation in TKA		
Daniilidis and Tibesku [11]	170	11	Overall mechanical alignment equivalent, fewer outliers (± 3°) with PSI		
Ng et al. [19]	724 (160*)	111	Overall mechanical alignment equivalent, fewer outliers $(\pm 3^{\circ})$ with PSI		
Nunley et al. [22]	150	Ш	Equivalent number of mechanical axis outliers with standard instrumentation and		
Yaffe et al. [33]	122 To	The R	everse Effect with PSI at with PSI		
Heyse and Tibesku [14]	94	111	PSI reduced the number of femoral component rotation outliers		
Barke et al. [1]	89	111	No difference in mechanical alignment with PSI		
Vundelinckx et al. [32]	62	ш	No difference in mechanical alignment, posterior slope of tibial component more accurate with PSI		
Boonen et al. [5]	40	111	Overall mechanical alignment equivalent, fewer outliers $(\pm 3^{\circ})$ with PSI		

Study	Total number of patients	Level of evidence	Conclusion
Chareancholvanich et al. [7]	80	П	No difference in overall alignment, no difference in femoral component alignment small difference in tibial component alignment unlikely to be significant (89.8 versus 90.5*)
Hamilton et al. [13]	52	1	No difference in mechanical alignment with PSI
Noble et al. [20]	29	1	Mechanical alignment closer to neutral with PSI (1.7* versus 2.8*)
Barrack et al. [2]	200	11	Equivalent coronal plane alignment
Barrett et al. [3]	66	ш	Mechanical alignment comparable between groups
Chen et al. [8]	60	11	Increased rate of mechanical axis outliers (+ 3°) with PSI
Chen et al. [8] Silva et al. [30]	60	u .	Conclusion: vite of mechanical axis outliers (4-3°) with PSI
Silva et al. [30] Parraite et al. [25]	No Signif	ïcant I	Conclusion: with PSI Difference Overall in Ability to product and
Silva et al. [30] Parratte et al. [25] Daniilidis and Tibesku [11]	No Signif	ïcant I	Conclusion: vith PSI
Silva et al. [30] Parratte et al. [25] Daniilidis and Tibesku [11] Ng et al. [19]	No Signif	ïcant I	Conclusion: with PSI Difference Overall in Ability to product and
Silva et al. [30] Parratte et al. [25] Daniilidis and Tibesku [11] Ng et al. [19] Nunley et al. [22]	No Signif	icant I Achiev	Conclusion: Mth PSI Difference Overall in Ability to eventla Alignment $e_x (\pm 3^v)$ with PSI eventla Alignment Equivation Universe with Analogue Internation and Equivation Universe eventuation international internationali
Silva et al. [30] Parratie et al. [25] Daniilidis and Tibesku [11] Ng et al. [19] Nunley et al. [22] Yaffe et al. [33]	No Signif	icant I Achiev	Conclusion: with PSI Difference Overall in Ability to re (± 3°) with PSI expression number of mechanical XXI contexts with Ausdard instrumentation are PSI
Silva et al. [30] Permite et al. [25]	No Signif	icant I Achiev	
Silva et al. [30] Parratie et al. [25] Daniifidis and Tibesku [11] Nunley et al. [19] Nunley et al. [22] Yaffe et al. [33] Heyse and Tibesku [14]	No Signif	icant I Achiev	Conclusion: an PSI Difference Overall in Ability to ge Overall Alignment m(± P) with PSI m(± P) with PSI m(± P) with PSI Point of the summer of monolecence with PSI m(± P) with PSI m(± P) with PSI m(± P) with PSI Point of the summer of monolecence with PSI m(± P) with PSI m(± P) with PSI m(± P) with PSI

Study	Total number of patients	Level of evidence	Conclusion
Chareancholvanich et al. [7]	80	1	PSI decreased OR time by 5 minutes
Hamilton et al. [13]	52	1	PSI was 4 minutes longer than standard instrumentation but decreased number o instrument trays
Noble et al. [20]	29	1	PSI decreased OR time by 7 minutes and decreased instrument trays
	200	п	PSI decreased OR time and instrument processing time, overall increase in cost of
			procedure after accounting for preoperative scan and cutting guide
Baruck et al. [2] Issaert al. [10] Bar Minimal decrees		Time if	Minimum development of the second state and state the BCL
Bar Minimal decrea		Time if	procedure after accounting for preoperative scan and cutting guide any except one study (12min) and one at 10
Bar Minimal decrea	ase in OR		any except one study (12min) and one at 10
Bar Minimal decrea	ase in OR		any except one study (12min) and one at 10
Bar Minimal decrea min Che Frequent need	ase in OR	spite P	any except one study (12min) and one at 10
Minimal decrea Minimal decrea min Che Frequent need See Decrease in # c	ase in OR to recut de of trays and	spite P 1 cost a	any except one study (12min) and one at 10 SI susciated Custom Cutting Blocks and CT or MRI
Bar Minimal decrea min Che Frequent need Sch Decrease in # c Che Increase in cost	ase in OR to recut de of trays and t associate	spite P 1 cost a d with	any except one study (12min) and one at 10 SI ssociated Custom Cutting Blocks and CT or MRI
Issa - 5 (1) Bar Minimal decres Sin Frequent need Sch Decrease in # c Con Increase in cost Nunley et al. [21]	ase in OR to recut de of trays and	spite P 1 cost a	any except one study (12min) and one at 10 SI sussociated Custom Cutting Blocks and CT or MRI cantally immegatively.
Minimal decrea Minimal decrea min Che Frequent need See Decrease in # c	ase in OR to recut de of trays and t associate	spite P l cost a d with	any except one study (12min) and one at 10 SI ssociated Custom Cutting Blocks and CT or MRI

Study	Total number of patients	Level of evidence	Conclusion
affe et al. [33]	122	3	No difference in pain, motion, Knee Society knee scores; PSI had higher Knee Society function scores pre- and postoperatively
underlinckx et al. [32]	62	3	No difference in pain, patient satisfaction, or functional outcomes (KOOS, Lysholm score
	Limited	number	of studies available

- Limited data exist with regard to the effect of PSI on post-operative function, improvement in pain, and patient satisfaction
 Neither of the 2 studies evaluating clinical results provided strong evidence to support an advantage favoring the use of PSI
- There is a need for Mid- and long-term data regarding PSI's effect on functional outcomes and component survivorship
- · Short-term data scarce
- Limited available literature does not clearly support any improvement of post-operative pain, activity, function, or ROM when PSI is compared with traditional instrumentation

Conclusions

Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer-assisted surgery, and manual instrumentation: a short-term follow-up study

Mark Yaffe + Michael Luo + Nitin Goyal + Philip Chan + Anay Patel + Max Cayo + S. David Stulberg

· Retrospective case-control study

- · 122 Total Knee Arthroplasties by one surgeon · 44 with (PSI) vs 38 with Computer Assisted Surgery (CAS) vs 40 with manual instrumentation
- Groups were identical with regard to age, gender, diagnosis, BMI, and perioperative management but had significantly different starting points

Int J CARS (2014) 9:837-844

Table 2 Clinical, functional, an	d radiographic findings			
	Patient-specific instruments group	Computer-assisted surgery group	Manual instrumentation group	p value (ANOVA
Knee score (points) ^a				
Preop.	64.5 ± 7.0 (45 to 70)	40.4 ± 14.5 (18 to 75)	$48.0\pm15.0~(17\ {\rm to}\ 77)$	< 0.0001
1 month postop.	88.4 ± 3.8 (79 to 100)	$72.4\pm16.5~(27~{\rm to}~100)$	$69.3\pm14.0~(40~{\rm to}~100)$	< 0.0001
6 months postop,	98.3 ± 5.3 (70 to 100)	$83.4 \pm 18.0 (32 \ {\rm to} \ 100)$	$84.7 \pm 16.7 (23 \text{ to } 100)$	0.0001
Change in Score Pre to Post	NS 3	33.8 43	.0	36.7
9 Pre-	operative and post-operati	ve knees scores were higher	in the PSI group.	
	Similar impro	ovements from pre to post-op	.	
	Disc? Lack of r	andomization? Skewed resul	te?	

Table 2 Clinical, function	nal, and radiographic findings			
	Patient-specific instruments group	Computer-assisted surgery group	Manual instrumentation group	p value (ANOVA
Function score (points) ^a				
Preop.	62.3 ± 20.9 (17 to 97)	$47.3\pm15.1~(5~{\rm to}~80)$	56.7 \pm 12.4 (35 to 80)	0.0014
1 month postop.	63.9 ± 22.3 (5 to 100)	49.3 ± 14.6 (20 to 85)	$48.4\pm17.9~(20~{\rm to}~100)$	0.0010
6 months postop.	87.8 ± 13.3 (59 to 100)	$66.2 \pm 20.7 \ (30 \ {\rm to} \ 100)$	61.3 ± 17.2 (20 to 90)	<0.0001
g			mpared to manual	

	Patient-specific instruments group	Computer-assisted surgery group	Manual instrumentation group	p value (ANOVA
Range of motion (deg) Preop.	123.3 ± 9.3 (98 to 138)	112.1 ± 15.1 (70 to 140)	113.7 ± 15.7 (70 to 140)	0.0004
1 month postop.	125.3 ± 9.3 (98 to 138) 116.7 \pm 11.6 (65 to 135)	112.1 ± 10.1 (70 to 140) 105.1 ± 10.2 (80 to 125)	103 ± 13.4 (65 to 135)	< 0.0001
6 months postop.	124.8 ± 7.7 (105 to 140)	113.4 ± 21.4 (35 to 135)	116.1 ± 9.4 (95 to 135)	0.0047
Change in ROM	1.5		1.3	2.4
Pre	and post-operative range of mo betwee	tion was higher in the PSI gen groups was no different.	group. The change in ROM	

	Patient-specific instruments group	Computer-assisted surgery group	Manual instrumentation group	p value (ANOVA
Pain score (points) ^b				
Preop.	$17.2 \pm 7 (0 \text{ to } 20)$	$10.5 \pm 9.1 \ (0 \ {\rm to} \ 30)$	$12.8 \pm 9.1 \ (0 \ {\rm to} \ 30)$	0.0017
1 month postop.	$40.5 \pm 2.1 \; (40 \text{ to } 50)$	$29.3\pm13~(0~{\rm to}~50)$	25.6 ± 12.5 (10 to 50)	< 0.0001
6 months postop.	47.9 ± 7.9 (10 to 50)	36.9 ± 15.3 (0 to 50)	38.8 ± 10.8 (20 to 50)	0.0003
Change in pain score	30.7	26.4	26	
Pre to	post-operative knees pain sc improveme	ore improvement was highe nt within groups was simile		

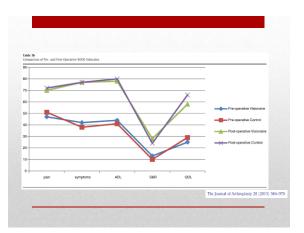
	Patient-specific instruments group	Computer-assisted surgery group	Manual instrumentation group	p value (ANOVA
Aechanical axis (deg) ^e				
Preop.	7.4 ± 6.2 (-9 to 15)	$7.7\pm8.9~(-14~{\rm to}~20)$	5.2 ± 11.5 (-27 to 22)	0.4478
Postop.	0.98 ± 2.3 (-4 to 6)	2.0 ± 2.5 (-3 to 7)	-0.24 ± 3.5 (-6 to 8)	0.0053
ostoperative sagittal femoral alignment (deg) ^c	$1.4\pm4.8~(-6~to~13)$	$1.9\pm2.2~(-2~{\rm to}~7)$	$2.7\pm3.2~(-6~{\rm to}~9)$	0.3729
ostoperative sagittal tibial alignment (deg) ^c	$87.2\pm5.0~(80~{\rm to}~100)$	88.1 ± 1.9 (83 to 92)	$88.1 \pm 1.8 \; (83 \text{ to } 91)$	0.7928
CAS showed a	more varus mechanical axis	s compared to manual (2.00 valgus)	degrees varus vs. 0.24 degree	s en

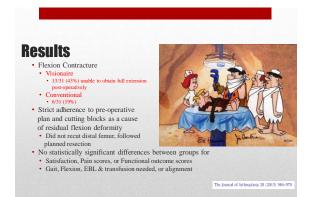
Conclusions

The PSI group showed greater improvement in Knee Society function scores over 6 months when compared to manual TKA
 But the PSI group also had higher pre-operative function scores

· Lack of randomization limits conclusions

- No statistical differences seen in knee score, ROM, or pain score improvement from pre-operative to the 6-month post-operative period among all groups
- · No difference in mechanical alignment


Int J CARS (2014) 9:837-844


Functional and Radiographic Short-Term Outcome Evaluation of the Visionaire System, a Patient-Matched Instrumentation System for Total Knee Arthroplasty Bart J. Vundelinckx MD $^{\rm Ac},$ Liesbeth Bruckers Msc $^{\rm b},$ Kris De Mulder MD $^{\rm c},$ Jo De Schepper MD $^{\rm c},$ Gert Van Esbroeck MD $^{\rm c}$

- 62 patients Smith and Nephew Genesis II TKA Visionaire(31) vs Conventional(31)
- · Randomized in 1:1 linear fashion
- Mean follow up: short- 200+days
- Results:
- No statistical difference in Satisfaction
 No statistical differences between pre-ope
 Total KOOS scores (see grafi)
 KOOS subscales (see grafi)
 No statistical differences in VAS scores

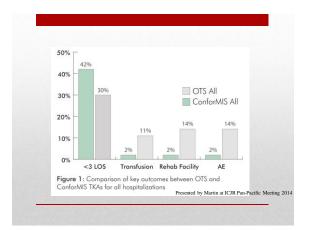
The Journal of

Biomet Signature PSI System

- Average \$4000 per standard Vanguard TKA hospital contract
 General number in Houston, TX Medical Center region
- Add approximately \$950 upcharge for PSI creation with Signature system
- Cost of MRI to create instrumentation-?? Cost

spital Outcomes and Cost for Patients Undergoing a Customized Individually Made TKA vs Off-The-Shelf TKA. Gregory Marlin, MD, Alysta Swearingen; Steven Culler, PhD

- 248 TKA's by one surgeon: 126 ConforMIS TKA vs. 122 Off-the-shelf (OTS) TKA
- · Retrospective review
- · Data collected:
 - · Length of procedure,
 - LOS,Transfusions,
 - Cost,
 - Disposition



Presented at ICJR Pan-Pacific Meeting 2014

Results

- · Demographics, LOS: No statistical differences
- Transfusion rates
- Conformis showed significantly less (2.4% ConforMIS vs 10.7% OTS)
- Adverse event rate
- Conformis showed significantly less (1.6% ConforMIS vs 13.9% OTS)
 Specific adverse events not published in abstract
- · Total hospital cost
- Not statistically significant (\$16,192 vs \$16,240)
- Discharge disposition
- Significantly lower percentage of patients in the ConforMIS group were discharge to acute care facilities (ConforMIS 2.4% vs 13.9% OTS)

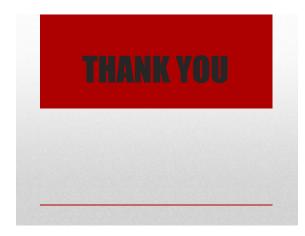
Presented by Martin at ICJR Pan-Pacific Meeting 2014

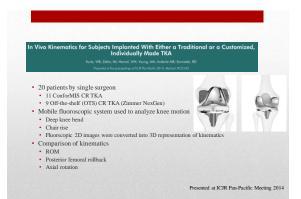
Conclusions

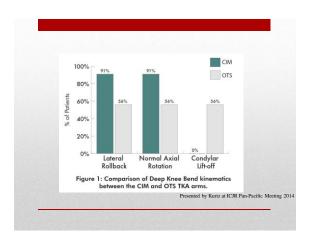
- Significantly lower transfusion rates
 Likely related to eliminating the need for intra-medullary guides
- Ekely related to eliminating the need for intra-medullary guides
 General estimated associated cost of \$2200 per blood transfusion
- Significantly lower reported adverse event rates
 Specific adverse events not defined in abstract
- Costs associated with these specific adverse events not know
- · Fewer patients discharged to acute care facilities with ConforMIS
 - Authors reasons for this not revealed
 - · Criteria for discharge to acute care facility unknown
- Estimated \$16,000 per discharge to acute care facility
- · No statistical difference in overall hospital costs between the two groups

Presented by Martin at ICJR Pan-Pacific Meeting 2014

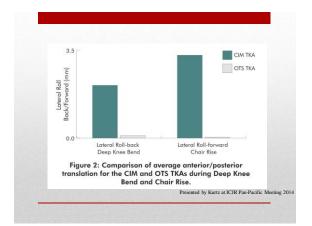
 Is the difference in the cutting blocks vs. the conventional cutting systems when an OTS type knee is still being used??


· Is it the combination of PSI and a custom patient specific TKR?




In Conclusion

- There is NO clear data that PSI demonstrates consistent improvement in function, ROM, alignment, or patient reported outcomes in the current literature.
- · The literature is limited and short term at this time.
- · The cost justification is lacking with few exceptions.
- · Should the Healthcare System be paying the bill?



Conclusions

- Authors conclude ConforMIS TKA patients experienced a more normal kinematic pattern of the knee compared to an OTS TKA
- · OTS TKA experienced greater variability in kinematic patterns
- No patient satisfaction or outcome scores reported
- Do differences in kinematic patterns equate to improved patient satisfaction, function, or longevity of the implant?

Presented by Kurtz at ICJR Pan-Pacific Meeting 2014

Robotics in UKA: Latest Advances in Technique and Cost Efficiency

Jess H. Lonner, MD Rothman Institute Associate Professor, Department of Orthopaedic Surgery Thomas Jefferson University Philadelphia, PA

Disclosure

- Royalties
- Zimmer, Blue Belt Technologi
- Consultant
 - Zimmer, Blue Belt Technologies
- Speaker's bureau
- Zimmer, Blue Belt Technologies
- Publishers: Saunders, Lippincott Williams Wilkin
 - Shareholder: Blue Belt Technologies, CD Diagnostics

Jefferson.

Growing Use of UKA in US 1998-2005

- UKA utilization increased 32.5% (vs TKA: 9.4%)
 - Expanding use of early intervention strategies
 - Improved surgeon education
 - Better diagnosis
 - Demographics- younger, employed, restless

Advantages of UKA vs TKA

- Tissue sparing
- Safer (Lower M &M)
- Rapid recovery
- More normal feel
- Greater functionability
- Less expensive

Jefferson.

Growing emphasis on outpatient surgery


Durability???

94% survivorship at 10-15 yrs in hands of high volume surgeons...

(R) OTHMAN

What Impacts the Results of UKA?

- Pathology/Disease
- Patient selection
- Component design
- Polyethylene quality
- Surgeon experience/volume
- Accuracy of implantation

Jefferson.

Malalignment Predisposes to Failure

■ Coronal malalignment of tibial component >3° varus

Collier /Engh et al. J Arthroplasty 2006; Hernigou JBJS 2004; Chatellard Orthop Traumatol Surg

Res 2013

- Mechanical limb varus >8°
- Posterior tibial slope >7°

Jefferson.

Outliers in Alignment in UKA with

Conventional Methods

■ 40-60% of cases are malaligned beyond 2° of

Rationale of Robotics for UKA

- Simplify the procedure
 - Reduce the amount of instrumentation
 - Eliminate surgical steps
- Enhance accuracy
 - Bone preparation/component alignment
 - Soft tissue balance
 - Improve clinical results

Lonner JH. American Journal of Orthopedics 2009

Jefferson.

Story of Robotics in UKA

- Study in patterns that define technological progress and innovation, in general
 - Declining capital and maintenance costs
 - Smaller space requirements
 - Broadening access
 - Increased utilization

Jefferson

Expanding Role for Robotics in UKA

■ 15% of UKA's in US (2013)

Semi-autonomous Robotics in UKA

- Mako (Mako Stryker, Ft. Lauderdale, FL)
 - Initial FDA approval 2005; revised 2008
 - Image-based (CT scan)

- Navio PFS (Blue Belt Technologies, Plymouth, MN)
 - Initial FDA approval 201
 - ∎ Image-free

Jefferson.

1st Generation Semi-Autonomous Robotic Arm for UKA: Mako*

- FDA clearance 2005
- Haptic constraint
- Efficient
- Safe
- Image-based (preop CT scan)
- Closed system (metal backed, FB UKA)

*Mako Stryker, Ft. Lauderdale, FL Jefferson.

Alignment – UKA Conventional vs. Mako Robotic

- 2.6x more variability with manual techniques (p<0.05)
- Average error:
 - Manual: 2.7°
 - Robot: 0.2° (p<0.0001)

nner, John, Conditt CORR 201

Mako Results vs Conventional UKA

- RCT, 100 patients
- Conventional Oxford UKA vs Robotic Mako
- Postop CT to assess coronal, sagittal, rot'l alignment
- Significantly less error in tibial slope, femoral v/v, tibial rotation (p<0.01)

Jefferson, University Hoepitals Blyth MJ et al. AAOS 2013

Downsides of 1st Generation Robotic System in US

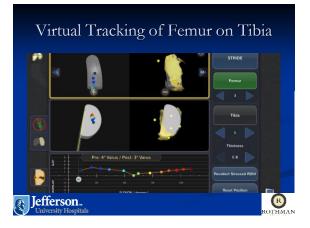
- Capital expense
- Preop CT scan
 - Additional expense
 - Denials common; high copays; bundled payments
 - Hospitals "eat cost"
 - Time/Inconvenience
 - Radiation exposure
- Closed platform

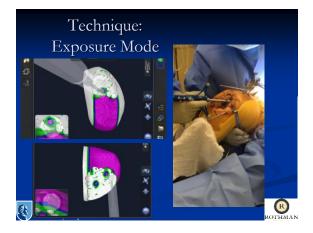
Jefferson.

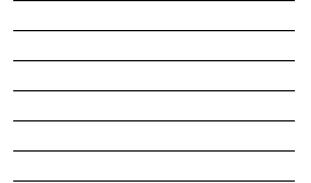
R

2nd Generation Robotic System: Navio PFS

- FDA clearance: 2012
- Image-free (No CT scan)
- Intraop registration/mapping/planning
- Intraop gap balancing
- Semi-autonomous
- Burr Speed/Exposure control


Dynamic Intraop Gap Balancing



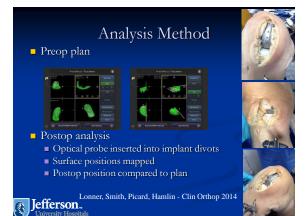


Key Studies

Accuracy of bone preparation Pre-clinical (cadaveric specimens)

- Comparison of intraoperative plan for limb alignment with postop limb alignment
 - Clinical (navigated measures)
- Accuracy of tibial component alignment
 - Radiographic
- Safety
- Radiation avoidance

Jefferson. t



Study 1: Pre-Clinical Accuracy

- 25 cadaveric specimens
 - Medial UKA (Tornier HLS Uni Evolution)
- 3 surgeons

Vs. Other <u>Se</u>	mi-Autono	nment: <u>omous</u> (C' Manual	Г-based) I	Robots
RMS Error	NavioPFS	Mako Rio	Acrobot	Manual
Flex/Ext (°)	1.6	2.1	2.1	4.1
Varus/Valgus (°)	2.3	2.1	1.7	6.0
Int/Ext (°)	1.7	3.0	3.1	6.3
Prox/Dist (mm)	1.3	1.0	1.0	2.8
Ant/Post (mm)	1.3	1.6	1.8	2.4
Med/Lat (mm)	0.9	1.0	0.6	1.6
	Dunbar et al Cobb J JBJS Jenny J Arth Lonner et al	rop 2002	6	

Study 2: Planned versus Achieved Limb Alignment

■ 65 cases

- Multiple surgeons
- Postop limb alignment ≤1° from plan 92% (60/65)

F Picard, A Gregori, J Bellemans, J Lonner, J Smith, D Gonzales, A Simone, B Jaramaz – CAOS July 2014

Jefferson. University Hospita

Study 3: Safety of Hand-Held Robot

- Initial 1000 cases
- No soft tissue complications

R DTHMAN

MAN

Jefferson.

Study 4: Learning Curve

- Mean of 8 procedures (range 5-11) to reach a steady state surgical time.
- Mean steady state surgical time was 50 minutes (range 37-55 minutes)

A Gregori, F Picard, J Bellemans, J Lonner, R Marquez, J Smith, A Simone, B Jaramaz -CAOS Abstract 2014

Study 5: Avoidance of Radiation from preop CT Scans (Mako protocol)

- 236 scans 2011-2013
- ED of radiation from LE CT scan:
 4.8 +/- 3.0 mSv
- 25% had add'l CT scans (est cumulative ED of 6-103 mSv)
- Note: 10 mSv increases risk of fatal cancer by 1 in 2000

Jefferson.

Economics of Robotic Technologies

Assumptions:

Avg. Medicare payment per case: \$12,500

System List Price	\$1,200,000	\$450,000
Svc Costs (List Price)	\$100,000	\$45,000
CT scan	\$400-\$800	\$ 0
Implant/Disposable Costs	negotiated	negotiated
Break even on ROI	240 cases	60 cases

<u>Costs</u> of Care (Partial Knees)			
Cohort	Mean	Min	Max
Hospital (Inpatient) N=50	\$16,495	\$12,784	\$28,644
Hospital (Outpatient) N=50	\$13,295	\$7,249	\$24,758
ASC N=50	\$ 9,969	\$3,406	\$15,321
Jefferson. University Hospitals	Uhr A, Davis	D, Lonner J. 2015	RO

Conclusion: Precise preoperative/intraop planning

- Surface mapping
- Gap balancing
- Accurate bone preparation, implant alignment, component positioning
- Enhanced early outcomes
- Impact on late results?
- Cost analysis

Jefferson. Æ

MAN

Conclusion: 2nd Generation Robot

- Semi-autonomous system
- Image-free
- Cost favorable
- ASC-feasible
- Work flow intuitive
- Implant-specific vs open platform
- Expanding applications

Jefferson.

New Approaches: Robotics in THA

Adam M Freedhand, MD Assistant Professor

> THE UNIVERSITY of Texas Health Scince Center at Houston Hertib Science Center

Disclosures

- Stryker
 - Educational consultant
- OrthoSensor
 - Stockholder

What are we improving?

i.e. Why robotics?

Goals of THA

Implants

Pain relief Restoration of Function Durable results

- Materials
- Approaches

Areas of Improvement

- Component / Mechanical failures
- Product recalls
- Surgical Complications

THA Issues

Lawsuits

- Component Malposition
 - Leg length discrepancies
 - Instability/Dislocation

Upadhyay, JOA 2007

Critical Factors

Biomechanics/Kinematics

- Implant Sizing
- Implant Positioning
- Fit
- Alignment

Component Malposition

- Early
 - LLD/Dislocation
 - 4%
 - Late
 - Impingement/Wear
 - Loosening

Component Malposition

Conventional Instruments

Little Guidance

- Manual instruments inconsistent
- Outcomes depend on alignment
 - Acetabulum / Femur

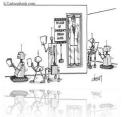
How Can We Improve?

Low and High Tech

- Surgical planning template
- Intra-operative X-ray
- Alignment tools
- CAS
- Robotics

Robotics

What's available

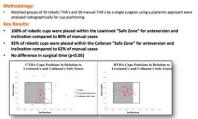


- Think Surgical
 - Since 1992
 - Femur
 - Open platform
 - Mako
 - Since 2006
 - Acetabulum
 - Closed platform

Robotics

Advantages

- Advanced surgical planning
- Precise robotic machining of bone
- Improved component placement
- Know result before leaving the OR



Mako / Think Surgical

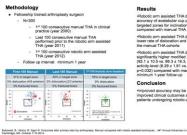
- Pre-operative CT scans
- 3D virtual surgery
- Intra-operative execution of plan
- Optimize implant position
 - Improve outcomes?

Accuracy and Precision

Robot vs Manual Instruments

Comparison of Robotic-assisted and Conventional Acetabular Cup Placement In THA: A Matched-pair Controlled Bludy. Dont: BO Blur YF, Sadik BS, Staka CE, Botser IB, Can Ontrop Rolar Res. 2014 Jan;472(1):328-36.

Clin Onhop Relat Res (2010) 468:1072-1081 DOI 10.1007b/1999-009-1158-2 CLINICAL RESEARCH


A Comparison between Robotic-assisted and Manual Implantation of Cementless Total Hip Arthroplasty Nolwo Nakamura MD, Noluliko Sugano MD, Takashi Nakali MD, Akhifer Kakimoto MD, Hidendou Mai MD,

146 hips: 75 robot, 71 manual

- Leg lengths more accurate
- Slightly better JOA Clinical scores
- Less stress shielding in the Robot Cohort

Patient Outcomes

Higher Harris Hip Scores, Lower Dislocation Rate

Think Surgical THA

Outcomes

- ٠ Less fractures
- Better fit/fill
- Precise placement of the femoral ٠ component
 - Size, alignment, depth of seat

a remated Research: lume 354 - Issue - pp 82-91 Yr Assisted Orthopaedic: Surve al Robotics and Image

Mako THA

More Cups in the Safe Zone

- Cup inclination/Version
- <5[.] from plan
- Acetabular COR
- <2mm from plan</p>

Robotics in THA

Workflow

- 3D surgical plan
- Exposure
- Registration
- Machining of the bone
- Trial / Implantation
- Closure

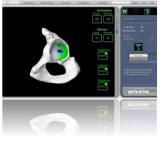
Bone Registration

- Mako
 - Pelvic array
 - Acetabulum and Femur checkpoints
- Robodoc
 - Femoral head armature
 - CAS for acetabulum

Robotic Bone Resection

- Robodoc
 - Surgeon clears workspace
 - Active femur prep
- Mako
 - Passive acetabular prep
 - Visual, tactile and audible feedback

Surgeon's Role


WILL ROB	OTS EVER REPL	ACE MAN
WORKBOT	COMMUNICATORBOT	SEXBOT
WORKSOT	COMMUNICATORBOT	SEXBOT

- Patient selection
- Implant selection
- Virtual Surgical Plan
- Expose / Protect / Close tissues
- Execute / Verify surgical Plan

Robotics

Not Experimental

- Robodoc since 1992
 - 60 units worldwide
 - Over 30K cases-Hip/Knee
- Mako since 2006
 - 29K cases- Knee/Hip

Industrial Revolution Analogy

Before:

- Everything Handmade
- Apprenticeship / Artisans
- Variation in Quality and Outcome
- After:
 - Mostly Machinemade
 - Quality Control
 - Minimize Human error

Robotic Surgical Revolution

Before

The Future is now!

- Surgeon Apprentices
- Apprenticeship / Artisans
- Conventional Instruments
- Variation in Quality and Outcome
- CAS/Robotics for precision and accuracy
- Quality Control
- Minimize Surgical error