
ScratchProgramming.org:
An Educator's Guide to Scratch Programming

Table of Contents
Introduction ..2

About..2
Underlying Philosophy..3

Why use Scratch ?..4
What can I do with Scratch ?..5

Getting Started...6
Basic Skills..8

Scaffolding Activities
..8

How to scaffold learning with Scratch:..8
Creative Activities..14

Cultivating Creativity:...14
Brainstorming Strategies:...15

Facilitating Collaboration...16
Environments that support Scratch collaboration:...16

Programming Skills...18
Problem Solving...18

Thinking through problems..19
A strategy for problem solving with Scratch...20
Exploring multiple solutions..21
Tips for facilitating multiple solutions...21

Learning from Projects...22
Experimenting with projects..22
Modifying projects...23

Coding Challenges..25
Completing code..25
Correcting code..28

Advanced Activities..29
Predicting output..29
Black-box activities...30

Curriculum Integration..31
Technology Integration...31
Integration Ideas...33

Subject specific ideas:..33
Project Examples...35

Scratch Project Rubrics...35
Creating a class generated Scratch Rubric...36
An example of a class generated Scratch rubric:...37

References...38

Introduction

About

This guide was created by Julian Screawn. It was created in conjunction with my

master's project, which is a guide to Scratch programming for educators. The

purpose of the guide is to enable Scratch educators:

• To create environments where students can have opportunities to develop

Scratch usage and programming skills.

• To explore the ways in which Scratch can be used as a tool to enhance the

teaching-learning process across the curriculum.

Scratch supports the development of 21st century learning skills such as critical

thinking, problem solving, communication, collaboration, creativity and

innovation.

The guide will be targeted at teachers (Grade 3 and up) who wish to use Scratch

as a tool for helping students develop these 21st century skills. It is hoped that

the guide will be helpful to technology teachers and subject teachers who wish to

expand their tools for teaching and integrating technology.

Content for the guide is based on both research and my own personal

experiences as a Scratch educator.

Underlying Philosophy

One of the main goals of the Scratch program designers was to facilitate learn by

designing.

Learning by design :

• Gives students greater sense of control and responsibility for the learning

process.

• Encourages creative problem-solving.

• Allows for the designing of projects that are interdisciplinary(art,

technology, math, and sciences).

• Helps kids learn to put themselves in the minds of others, since they need

to consider how others will use the things they create.

• Provides opportunities for reflection and collaboration.

• Sets up a positive-feedback loop of learning, where students can build on

ideas.

(Resnick,n.d.)

This approach to learning and teaching is inspired by the constructivist and

constructionist theories of learning and education. Most activities recommended

in this guide are based on the constructivist approach to learning.

Why use Scratch ?

1. Supports the development of 21st century learning skills. According to

the Scratch developers, Scratch supports the nine types of 21st century

learning skills identified by the Partnership for the 21st Century

(http://www.p21.org) ;these skills include: thinking creatively,

communicating clearly, analyzing systematically, collaborating effectively,

designing iteratively, and learning continuously.

(Rusk,Resnick,& Maloney,n.d.).

2. Supports the development of programming skills by making programming

more engaging and accessible for children, teens, and others. According to

the National Research Council(NRC)(1999), algorithmic thinking and

programming is a 21st century skill to be learned by all students.

3. It's a tool used for teaching and learning across the curriculum. According

to Crook, (2009) Scratch offers the teacher an opportunity to embed the

computer into everyday school activities by getting the class to develop

skills in digital literacy related to a variety of curriculum topics.

4. It's free. Sixty-three percent of the teachers surveyed by PBS

LearningMedia (2012) stated that limited budget for technology adoption

was the biggest barrier to accessing technology in the classroom.

http://www.p21.org/

What can I do with Scratch ?

According to the Scratch homepage,

Scratch is a programming language that makes it easy for users

to create their own interactive stories, animations, games, music,

and art -- and share their creations on the web.

When students design projects with Scratch they develop fluency with digital

technology using the skills that will be needed for the 21st century.

Examples:

• Simulations: demonstrate concepts by imitating something that is done in

reality. For example a probability simulation, such as a coin or dice toss

experiment. See video http://www.scratchprogramming.org/video.php?vid=23

for a probability demonstration.

• Multimedia: create interactive puzzles, quizzes, demonstrations and class

presentations. See video http://www.scratchprogramming.org/video.php?vid=24

for a quiz demonstration.

• Music: create interactive instruments, music videos, or games that prompt

students to play notes in the correct order. See video

http://www.scratchprogramming.org/video.php?vid=25 for a saxophone

demonstration.

• Art: create interactive and non-interactive art projects. See video

http://www.scratchprogramming.org/video.php?vid=26 for a Math Art

demonstration.

http://www.scratchprogramming.org/video.php?vid=23
http://www.scratchprogramming.org/video.php?vid=24
http://www.scratchprogramming.org/video.php?vid=25
http://www.scratchprogramming.org/video.php?vid=26

• Storytelling and Journals: create interactive stories or animations to support

students narrative and creative writing skills. See video

http://www.scratchprogramming.org/video.php?vid=27 for an interactive story

demonstration.

• Role play:role play real world professions, for example pretending to be a

game designer and design a new game.

Getting Started

Start Here

New to Scratch

From the Scratch website:

1. Download Scratch:
http://info.scratch.mit.edu/Scratch_1
.4

2. Read the Scratch introductory
guide:
http://info.scratch.mit.edu/sites/info
scratch.media.mit.edu/docs/Scratch
GettingStartedv14.pdf

3. See Scratch introduction videos:
http://info.scratch.mit.edu/Video_Tut
orials

Experienced User

http://www.scratchprogramming.org/video.php?vid=27
http://info.scratch.mit.edu/Video_Tutorials
http://info.scratch.mit.edu/Video_Tutorials
http://info.scratch.mit.edu/sites/infoscratch.media.mit.edu/docs/ScratchGettingStartedv14.pdf
http://info.scratch.mit.edu/sites/infoscratch.media.mit.edu/docs/ScratchGettingStartedv14.pdf
http://info.scratch.mit.edu/sites/infoscratch.media.mit.edu/docs/ScratchGettingStartedv14.pdf
http://info.scratch.mit.edu/Scratch_1.4
http://info.scratch.mit.edu/Scratch_1.4

4. All videos and activities that were created for

this guide are associated with a dodge ball game

that was created in Scratch. It is recommended

that users spend some time reviewing the dodge

ball game before reading through this website

guide. To download the dodge ball game:
http://www.scratchprogramming.org/documents/Dodge

ball.sb

Tip: If you wish to have Scratch open while viewing the scaffolding "How to"

videos on this site then split your screen between Scratch and your web browser.

How to split your screen:

Mac users: http://www.ehow.com/how_8599299_split-screens-macbook.html,

Windows users: http://www.ehow.com/how_7260916_split-screen-pc-monitor.html.

The screen can also be resized manually.

http://www.ehow.com/how_7260916_split-screen-pc-monitor.html
http://www.ehow.com/how_8599299_split-screens-macbook.html
http://www.scratchprogramming.org/documents/Dodgeball.sb
http://www.scratchprogramming.org/documents/Dodgeball.sb

Basic Skills

Scaffolding Activities

Like training wheels computer scaffolding enables learners to do

more advanced activities and to engage in more advanced

thinking and problem solving than they could without such help.

(NRC, 2000, p.214)

One of the best ways to introduce Scratch is to give students a set of fun

challenges that scaffold their learning of basic concepts and skills.

According to (Alber,2011) "Scaffolding is breaking up the learning

into chunks and then providing a tool, or structure, with each

chunk" (par. 2).

How to scaffold learning with Scratch:

• Start with an interesting level appropriate Scratch game,animation or

project and break it up into chunks(challenges or explorations).

• Provide support (teacher does student watches/helps) and a challenge

(student does teacher watches/helps) for each chunk.

• Create objectives for each chunk.

• Challenges can be completed individually, in pairs or groups.

For example:

Students will create the dodge ball game below with Scratch.

Notes:

• Each challenge should be designed to introduce a new skill or concept.

• Challenges should be sequenced from the easy to more difficult in a way

where they build on each other to complete a project (game, animation,

story, etc.).

• Challenges don't always necessarily need to be done in order.

• Solutions to challenges may differ.

The following table breaks the dodge ball game up into learning chunks:

Chunk Support Challenge
Screen

Position

Introduce:

• Position on the

screen.

• Position

variables.

• Xy coordinate

Get the cat to say its screen

address(position) using the following

blocks:

system.

• Directed

numbers.

How to video:
http://www.scratchpro

gramming.org/video.ph

p?vid=1

Videos:

• Challenge:

http://www.scratchprogramming.org/vi

deo.php?vid=6

• Solution:
http://www.scratchprogramming.org/vi

deo.php?vid=7

Direction

Introduce:

• Sprite

Direction.

• Measurement

of angles.

• Outcomes of

the random

data process in

Scratch.

How to video:
http://www.scratchpro

gramming.org/video.ph

p?vid=2

Get the cat to say its current direction and

position. The direction should be random.

Add the following blocks to the screen

position solution:

Videos:

• Challenge:
http://www.scratchprogramming.org/vi

deo.php?vid=8

• Solution:
http://www.scratchprogramming.org/vi

deo.php?vid=9

Movement Introduce:

• The three

motion blocks:

go to, glide and

move.

Get a ball to start at the middle top of the

screen and fall to the bottom, and then

bounce back up again. Use these blocks:

http://www.scratchprogramming.org/video.php?vid=9
http://www.scratchprogramming.org/video.php?vid=9
http://www.scratchprogramming.org/video.php?vid=8
http://www.scratchprogramming.org/video.php?vid=8
http://www.scratchprogramming.org/video.php?vid=2
http://www.scratchprogramming.org/video.php?vid=2
http://www.scratchprogramming.org/video.php?vid=2
http://www.scratchprogramming.org/video.php?vid=7
http://www.scratchprogramming.org/video.php?vid=7
http://www.scratchprogramming.org/video.php?vid=6
http://www.scratchprogramming.org/video.php?vid=6
http://www.scratchprogramming.org/video.php?vid=1
http://www.scratchprogramming.org/video.php?vid=1
http://www.scratchprogramming.org/video.php?vid=1

How to video:
http://www.scratchpro

gramming.org/video.ph

p?vid=3

Videos:

• Challenge:
http://www.scratchprogramming.org/vi

deo.php?vid=4

• Solution:
http://www.scratchprogramming.org/vi

deo.php?vid=5

Random

Movement
No support required.

Get the ball to move unpredictably around

the screen. Add these blocks:

 Videos:

• Challenge:
http://www.scratchprogramming.org/vi

deo.php?vid=10

• Solution:
http://www.scratchprogramming.org/vi

deo.php?vid=11

Following the

mouse cursor

No support required. Have the cat sprite follow the mouse

cursor around the screen. Choose one

block from Motion and add this block:

Videos:

• Challenge:
http://www.scratchprogramming.org/vi

deo.php?vid=14

http://www.scratchprogramming.org/video.php?vid=14
http://www.scratchprogramming.org/video.php?vid=14
http://www.scratchprogramming.org/video.php?vid=11
http://www.scratchprogramming.org/video.php?vid=11
http://www.scratchprogramming.org/video.php?vid=10
http://www.scratchprogramming.org/video.php?vid=10
http://www.scratchprogramming.org/video.php?vid=5
http://www.scratchprogramming.org/video.php?vid=5
http://www.scratchprogramming.org/video.php?vid=4
http://www.scratchprogramming.org/video.php?vid=4
http://www.scratchprogramming.org/video.php?vid=3
http://www.scratchprogramming.org/video.php?vid=3
http://www.scratchprogramming.org/video.php?vid=3

• Solution:
http://www.scratchprogramming.org/vi

deo.php?vid=13

Sensing

Introduce:

• The touching

color block.

How to video:
http://www.scratchpro

gramming.org/video.ph

p?vid=12

Get the game to stop and have the cat

say "game over" when the ball touches

the cat.Use these blocks:

Videos:

• Challenge:
http://www.scratchprogramming.org/vi

deo.php?vid=16

• Solution:
http://www.scratchprogramming.org/vi

deo.php?vid=15

Broadcasting

Introduce:

• Broadcast

block.

• Broadcast and

wait block.

• The differences

between the

two broadcasts.

Broadcast a game over message when the

cat gets hit by the ball. The cat should

should receive the message that it sends,

and then change to a new costume. Add

these blocks to the cat script:

Videos:

http://www.scratchprogramming.org/video.php?vid=15
http://www.scratchprogramming.org/video.php?vid=15
http://www.scratchprogramming.org/video.php?vid=16
http://www.scratchprogramming.org/video.php?vid=16
http://www.scratchprogramming.org/video.php?vid=12
http://www.scratchprogramming.org/video.php?vid=12
http://www.scratchprogramming.org/video.php?vid=12
http://www.scratchprogramming.org/video.php?vid=13
http://www.scratchprogramming.org/video.php?vid=13

How to video:
http://www.scratchpro

gramming.org/video.ph

p?vid=17

• Challenge:
http://www.scratchprogramming.org/vi

deo.php?vid=18

• Solution:
http://www.scratchprogramming.org/vi

deo.php?vid=19

Broadcasting

in Action
No Support required.

Broadcast a game over message when the

cat gets hit by the ball. The stage should

receive the message, and then change to

a game over background. Add the

following blocks to the stage script:

Videos:

• Challenge:
http://www.scratchprogramming.org/vi

deo.php?vid=20

• Solution:
http://www.scratchprogramming.org/vi

deo.php?vid=21

http://www.scratchprogramming.org/video.php?vid=21
http://www.scratchprogramming.org/video.php?vid=21
http://www.scratchprogramming.org/video.php?vid=20
http://www.scratchprogramming.org/video.php?vid=20
http://www.scratchprogramming.org/video.php?vid=19
http://www.scratchprogramming.org/video.php?vid=19
http://www.scratchprogramming.org/video.php?vid=18
http://www.scratchprogramming.org/video.php?vid=18
http://www.scratchprogramming.org/video.php?vid=17
http://www.scratchprogramming.org/video.php?vid=17
http://www.scratchprogramming.org/video.php?vid=17

Creative Activities

Unlike many traditional programming languages, Scratch is relatively easy to

pickup and learn by both students and teachers. The nature of Scratch is self

learning. According to the creators of Scratch:

"A key design goal of Scratch is to support self-directed learning

through tinkering and collaboration with peers" (Maloney, Resnick,

Rusk, Silverman, Eastmond, 2010, p. 1).

The design of Scratch enables tinkering and experimenting which often results in

a few students quickly becoming Scratch experts; teachers can then utilize these

experts as peer tutors.

Cultivating Creativity:

• In order to stimulate motivation, teachers should encourage students to

experiment with Scratch tools and create projects (game, animation, art,

etc.) of their own preference.

• Teachers should first introduce the tools of Scratch through scaffolding

activities.

• Once students have some basics down they should be free to show off their

creativity and take their projects further by tinkering and collaborating with

others locally (in their classroom) or globally (Scratch learning-sharing

community website).

• Take away the scaffolding as students become more able to problem-solve

and create their own projects of preference.

• After the completion of scaffolding activities students should be provided

with an opportunity to take their projects further. In order to get ideas

flowing and to motivate students it is best to first brainstorm ideas.

Brainstorming Strategies:

• Divide students into pairs or small groups and get them to think about ways

to further develop the game. Then collect and discuss ideas as a class or

have each group present their ideas.

• Have students search the internet for ideas, a great starting point is the

Scratch website (http://scratch.mit.edu/). Students can browse projects

uploaded to the site to get new project ideas and learn new programming

techniques.

• Set a brainstorming time limit.

• Encourage remixing or building on one another's ideas

For example:

On the scaffolding activities page a basic dodge ball game was created. Ideas for

further developing the dodge ball game could include:

• Adding more balls for the cat to dodge.

• Adding a survival time feature.

• Add another level with a different background.

• Add sounds to the game.

Watch a video containing additions to the dodge ball game at:

http://www.scratchprogramming.org/video.php?vid=22

http://www.scratchprogramming.org/video.php?vid=22

Facilitating Collaboration

The idea of creativity should not always be thought of as a single student thought

process. Creativity also takes place in a social context.

"An idea or product that deserves the label 'creative' arises from

the synergy of many sources and not only from the mind of a

single person. It is easier to enhance creativity by changing

conditions in the environment than by trying to make people think

more creatively" (Csikszentmihalyi, 1996, p. 1).

Environments that support Scratch collaboration:

The Scratch website: the Scratch designers emphasized sharing and collaboration

when they created the Scratch community website; "the Scratch Online

Community makes programming more engaging by turning it into a social

activity" (Monroy-Hernandez & Resnick, 2008, p.50). On the site members can:

• Post projects and get project ideas from other uploaded projects.

• Download and remix other student projects.

• Form online design teams;that is work on projects with other members

around the world.

• Offer and get help from other members through forums.

• Offer and receive feedback on projects and ideas.

• Rate projects and offer up challenges.

The classroom: a similar collaborative environment can be created in the

classroom by:

• Providing students with project feedback strategies. For example giving

students a project feedback handout that helps to guide them in giving

feedback.

• Creating feedback teams.

• Having students share their projects on the school network or have them

create multiple copies of their projects for sharing.

• Creating design teams for collaboration on projects.

For example:

The Jigsaw collaborative or cooperative technique can be used to

perform appropriate programming activities within Scratch.

(Theodorou & Kordaki, 2010).

The Jigsaw technique is described in 10 easy steps at the Jigsaw.org website.

Outlined below is an implementation of this technique using a Scratch project

example. In the jigsaw groups, students will share knowledge and then work on

the Scratch game dodge ball.

1. Divide students into jigsaw groups.

2. Appoint one student from each group as the leader.

3. Divide the project into segments, similar to what was done in the

scaffolding activities. For example: Screen Position, Direction, Movement,

Sensing, and Broadcasting.

4. Assign each student to learn one segment.

http://www.jigsaw.org/steps.htm

5. Give students time to research and tinker with their segment to become

familiar with it.

6. Form temporary "expert groups" by having one student from each jigsaw

group join other students assigned to the same segment. Give students in

these expert groups time to discuss the main points of their segment and to

rehearse the demonstrations they will make to their jigsaw group.

7. Bring the students back into their jigsaw groups.

8. Ask each student to present her or his segment to the group. Encourage

others in the group to ask questions for clarification.

9. Float from group to group, observing the demonstrations. If any group is

having trouble (e.g., a member is dominating or disruptive), make an

appropriate intervention

10. At the end of the demonstrations, get students to work on the dodge

ball game individually,in pairs or in small groups. Students can seek help

from experts or the teacher as they work on their projects.

(Aronson, 2008)

Programming Skills

Problem Solving

The Scratch programming languages was designed for educational use, to support

the constructionist approach to learning which encourages creative problem-

solving. Students will be problem solving as soon as they load up Scratch.

Although, Scratch programming facilitates higher order thinking such as problem

solving skills, teachers can provide instructional support to students, to help them

think through difficult programming problems. This can involve having students

create algorithms, that is the breaking down of problems into smaller sub-

components, and exploring multiple solutions to problems.

Thinking through problems

Getting students to master the process of thinking through programming

problems and determining the best method of solving each problem is made

easier with Scratch. One of the advantages Scratch has over traditional

programming languages is its ability to easily allow users to visualize the results

of their programming (solutions to problems) on the screen.

Scratch simulates traditional programming, by providing learners with a simple

visual drag-and-drop user interface. This visual nature of Scratch allows students

to test different ideas or approaches to a problem and to more easily learn what

works and what does not.

The results of a study on the effects of simulation games on the learning of

computational problem solving demonstrated that simulation games are an

effective approach to assisting novice programmers to learn computation problem

solving skills; the study found that "simulation games based on Paperts'

constructionism may improve problem solving" (Chen-Chung, Yuan-Bang, & Chia-

Wen, 2011, p. 1916).

When applying Constructivist learning theory to problem solving within Scratch,

students should:

• Create their own algorithms for solving Scratch programming problems.

They should not to be taught one specific algorithm, for example long

division.

• Be encouraged to discuss, reflect on, and demonstrate strategies for

problem solving.

• Solve problems collaboratively.

• Problem solve in authentic contexts.

A strategy for problem solving with Scratch

1. Give students an opportunity to practice writing and developing their own

algorithm (solutions) on paper first.

2. As a class discuss, demonstrate and reflect on different solutions.

3. Next have students develop a visualization of their solution with Scratch.

This could be a simulation, a game, or an animation. This can be done in

small groups.

For example:

How to make a cup of tea

1. In small groups ask students to write out on paper a set of instructions to

describe how to make a cup of tea. Tell them that the computer needs to

know in detail every step.

2. As a class, ask students to share their instructions and note any

differences or omissions.

3. Discuss the problems involved in creating an algorithm (set of

instructions)

4. Next have students develop a visualization of their solution to the

problem in Scratch. This could be a simulation, presentation, a game, or an

animation.

See a video example of a presentation solution to the cup of tea algorithm at:

http://www.scratchprogramming.org/video.php?vid=31

http://www.scratchprogramming.org/video.php?vid=31

Although this is an easy example, it is important to stress the need for

instructions to be precise. You can get students/groups to write algorithms for

other students/groups to follow and test out. This activity will reinforce the need

for precision in algorithms.

Exploring multiple solutions

Students should learn that there are many different ways to program games,

simulations and animations. Students should be encouraged to explore different

solutions; this will help strengthen both their problem solving and programming

skills, and give them confidence in creating their own algorithms (solutions).

Activities that explore multiple solutions allow students to see other ways of doing

things, enabling them to construct new meanings through the context of their

own experience(Dabbagh, 2005). Moreover, the experiencing of different

perspectives is necessary for the development of problem solving abilities,

creativity and advanced mathematical thinking.(Leikin, Levav-Waynberg,

Gurevich, & Mednikov, 2006).

Tips for facilitating multiple solutions

• Challenge students to discover multiple approaches and/or solutions to

programming problems.

• Share student solutions.

• Have students download and explore similar projects/solutions from the

Scratch website.

Learning from Projects

Experimenting with projects

Objective: enable students to better understand the role of programming

constructs.

Students are asked to work with a completed project and experiment with specific

blocks (programming constructs) from the code of the program. This

experimentation could include changing the position of the blocks, or changing

the value of some variables; it enables students to gain a better understanding of

the roles of specific constructs. (Kordaki, 2012).

This exercise allows for the scaffolding of basic computer programming

constructs. It is a good way to start the learning of programming constructs, as

the exercise does not require students to build programs or algorithms.

For example:

In the above code example students can experiment with the code as follows:

• Enter different random angles to which the ball can turn. This helps

students understand the concepts of direction and randomness.

• Change the number of steps the ball moves. This helps students better

understand speed and movement.

• Remove the "if on edge, bounce" block and observe the changes.

• Replace the "Forever" control construct with a "Repeat" construct. Helps

students to understand the differences between the constructs "Repeat"

and "Forever".

Modifying projects

Objective: enable students to expand on, or use previously acquired

programming knowledge to modify projects.

The idea is to have students use previously acquired knowledge to modify Scratch

projects by producing a different result or output. The benefit of this activity is

that students can be

"sheltered by the context of the already working project in order

to appropriately face the challenges of its modification" (Kordaki

M.,2012, p.4).

For example:

Dodge ball game:

In the above example students can modify the dodge ball game so that the game

ends when the cat touches the ball as opposed to the ball touching the cat.

The above code modification enables students to:

• Build on, or apply their knowledge of sensing.

• Acquire a better understanding of the importance of coding for specific

objects; that is students must move the game over script from the cat to

the ball in order to make the modification work.

• Help students understand the concept of duplicate code; that is reducing

code repetition. Students will realize that putting the game over script on

the cat object as opposed to the ball will result in code repetition whenever

a new ball is introduced.

Coding Challenges

Scratch provides students with the chance to correct their programming attempts

through trial and error in a visual environment; this makes it easier for learners

to develop coding skills. The coding activities listed below can be used to

challenge students and help them develop coding skills. Although these coding

activities are normally created by the instructor they can also be created by the

students to challenge each other.

Completing code

Objective: enable students to reflect on and apply Scratch programming

knowledge and skills to complete incomplete code in a working project.

Take a working project and remove some of the code, then give students an

opportunity to complete the project, that is fill in the missing code. Students

should be able to see the output of the working project; students can use the

working output along with the incomplete code as a guide to completing the code.

(Kordaki, 2012).

For novice programmers, the programming blocks needed to complete the project

and produce the correct output can be provided by the instructor. That is students

are required only to assemble the blocks in the correct sequence. For a more

difficult challenge the students must choose the correct blocks themselves to

complete the code.

Mixing code

Objective: enable students to reflect on, and apply Scratch programming

knowledge and skills to re-arrange mixed code.

Take a working project and mix-up some of the code, then give students an

opportunity to arrange the code so that it produces the correct output. Students

should be able to see the correct output on the screen beforehand.

This activity along with the completing code activity can be used to scaffold the

learning of computer programming; these activities are easier because students

do not have to develop the code themselves, they are given the blocks and only

have to experiment until they find the appropriate sequence of commands that

produces the correct output. (Kordaki, 2012).

For example:

Correcting code

Objective: enable students to develop an awareness of programming errors

commonly made in Scratch by novice programmers.

Students should be given a block of code that contains an error; that is producing

incorrect output. This error should be reflective of a common error that is usually

made by novice Scratch programmers.

Demonstrate to students the correct output and then ask them to correct the

error; this activity is more difficult as students have to find specific mistakes

included in the given code and also to make corrections so that it produces

correct output. (Kordaki, 2012).

It is best to start with simple errors and work to more difficult challenges as

students become more proficient.

For example:

Common error: Students often get confused with the differences between the

"broadcast" and "broadcast and wait" blocks.

Dodge ball game:

Advanced Activities

The advanced activities listed below are important as they help to

develop advanced thinking skills. These skills, such as problem-

solving and decision making are important for both the personal

and professional life of students. (Dabbagh, 2005).

Predicting output

Objective: enable students to synthesize all Scratch programming knowledge and

skills to predict programming outcomes.

Making predictions is a difficult task, it requires that students have reached an

operative level of development (Piaget) and have an understanding of all the

Scratch programming constructs (Kordaki,2012). In order to make predictions

students should be able to use abstract thinking for solving problems and have

the ability to imagine the outcome of particular actions. For example:

Dodge ball game:

Black-box activities

Objective: enable students to synthesize all Scratch programming knowledge and

skills to formulate code for a particular outcome.

Students are asked to develop the code for a particular output as it runs in the

Scratch output window. Like predicting outcome this activity requires higher level

skills, like "thinking skills such as reversible thinking, analytical and synthetic

thinking, as well as reflection, prediction, hypothesis generation and exploration"

(Kordaki, 2012, p.4).

For example: The output for the dodge ball game now has two additional

components, both extra lives and levels. Looking at the output students should be

able to produce the code.

Dodge ball game:

Curriculum Integration

Technology Integration

Integrating technology into the curriculum is more than just learning basic

computer skills, how to use the internet, or how to use software programs.

Students need to use technology for accomplishing goals and solving real world

problems in a way that is similar to how these skills are being used in a real world

setting.

"Technology integration means viewing technology as an

instructional tool for delivering subject matter in the curriculum

already in place." (Woodbridge, 2004., par. 3)

Students become active learners and develop their problem solving, critical-

thinking, and creativity skills when creating Scratch projects. Teachers must move

from traditional teaching methods to engaging students in problem-based or

project based learning which is student-centered.

For example:

In the table below is a model for Scratch Integration; it is an application of the

The Apple Classrooms of Tomorrow (ACOT) stages of technology integration.

These stages help teachers to integrate technology into teaching and learning.

Stage Examples of what teachers do with Scratch

Entry

Learn the basics of using Scratch. For teachers, learning

Scratch can be done in conjunction with the teaching of

Scratch during computer class.

Adoption

Use Scratch to support traditional instruction. Teachers can

create Scratch presentations used to illustrate an instructional

idea, or Scratch simulations can be used to demonstrate

concepts. Scratch made quizzes can be used for assessment.

Adaptation

Start having students use Scratch more frequently in other

subject areas other than computer class. For example simple

multimedia presentations, like storytelling in English class.

Appropriation

A focus on cooperative, project-based, and interdisciplinary

work using Scratch. Students can collaborate in small groups

to design a Scratch project on a given topic, using materials

they research and provide. For example, in social studies

students can use Scratch in the classroom for projects

illustrating their points of view.

Invention

There should now be a shift from teacher-centered instruction

to student-centered instruction. Essentially Scratch becomes a

tool that students can choose to use for accomplishing tasks,

solving problems, and constructing knowledge in all subject

areas.

(Apple Computer, Inc., 1995)

Integration Ideas

Scratch projects:

•can be used by educators to support curricular objectives in academic

subjects across the curriculum.

•can involve the incorporation of more than one subject area of the

curriculum.

Subject specific ideas:

Art

Scratch supports the arts by enabling students to create projects that include

elements of music, design, drawing, and dance. A virtual museum is a good

example of a way to explore Art with Scratch.

A virtual museum is a collection of digital information resources; that is

essentially a collection of anything that can be put into digital format.

They were first used in Education as an alternative to written art

history reports; they can also used to further students knowledge

of curricular objectives in academic subjects in addition to art

(Keeler, n.d.).

With Scratch students have the ability to make virtual museums even more

interesting and interactive, while developing their programming skills. See an

example of a virtual museum at: http://www.scratchprogramming.org/video.php?

vid=28. Note: You can use templates of completed museum projects and have

students re-mix them.

http://www.scratchprogramming.org/video.php?vid=28
http://www.scratchprogramming.org/video.php?vid=28

Mathematics

Scratch can be used to support the teaching and learning of the elementary

maths curriculum covering areas like algebra, numbers, shapes and space,

measures and data. Have students create projects which support concepts,

content and skill development; Scratch projects can be used to simulate real

world problems. See video of a fraction filler project which is both an example of

a Mathematics project that supports skill development and an example of real

world problem to which fractions can be applied, at:
http://www.scratchprogramming.org/video.php?vid=29

Language Arts

In Language Arts there are many opportunities for improving student writing

through the use of Scratch. By creating animations or interactive stories learners

can develop their grammar, storytelling and creative writing abilities. Students

can also develop their public speaking skills by presenting their animated stories

to the entire class.

Students also develop their multimedia skills by drawing characters for their

stories, downloading and editing images that they find on the Internet, and

importing or recording sounds or music for their stories.

To create animation stories students can first build stories using

storyboards(sequence of drawings with dialogue or story) and then convert them

into animations. With Scratch "say and think commands", students can easily

create written speech bubbles for their story characters. Students can even create

interactive stories by using the Scratch "ask command" which prompts users to

enter dialogue.

http://www.scratchprogramming.org/video.php?vid=29

Stories are also a great way to further students knowledge in other curricular

areas. See a video example of a story created by a 12-year-old boy in Bangalore

who was studying the layers of the Earth in school at:

http://www.scratchprogramming.org/video.php?vid=30

Project Examples

There are many examples of subject specific project galleries available on the

Scratch website. Just search the site. Below are but a few examples, note you will

leave this site when you click on the links below:

Projects in Science http://scratch.mit.edu/galleries/view/15003
Math Projects http://scratch.mit.edu/galleries/view/6423
Best Science (Kids) http://scratch.mit.edu/galleries/view/36449
Journalism projects http://scratch.mit.edu/galleries/view/7512
Interactive Reading Project http://scratch.mit.edu/galleries/view/61659
Book Reports and Projects http://scratch.mit.edu/galleries/view/9706
Learning Languages http://scratch.mit.edu/galleries/view/60538

Scratch Project Rubrics
Project rubrics outline the criteria used to evaluate student work. A Scratch

project rubric can be generated by the teacher or together with students. Rubrics

are easy to use and helpful:

• Tools for both teaching and assessment.

• In allowing students to become more thoughtful when judging the quality of

their own Scratch projects and other Scratch projects.

• In reducing the amount of time spent evaluating student work.

• In allowing teachers to evaluate students of all abilities including students.

who are gifted and those with learning disabilities.

• In explaining evaluation to students.

http://scratch.mit.edu/galleries/view/60538
http://scratch.mit.edu/galleries/view/9706
http://scratch.mit.edu/galleries/view/61659
http://scratch.mit.edu/galleries/view/7512
http://scratch.mit.edu/galleries/view/36449
http://scratch.mit.edu/galleries/view/6423
http://scratch.mit.edu/galleries/view/15003
http://www.scratchprogramming.org/video.php?vid=30

(Goodrich, 1997)

Creating a class generated Scratch Rubric

1. Get students to check out projects on the Scratch website and identify

what qualities made for a good project. It is easy to find the good and bad

projects because statistics are kept for each uploaded project. A popular

project will have lots of love-its, re-mixes and downloads. At the Scratch

website view featured Scratch projects at:

http://scratch.mit.edu/channel/featured

2. Together with students list some of the characteristics of a good project.

For example some of the good project qualities: the project works well,

easy to use, easy to understand, creative, fun to play, funny, cool, advanced

scripts, cool sprites and backgrounds, creative drawings, and creative

stories.

3. Use student feedback to create categories for evaluation. For example

project design/creativity, user friendliness, programming, backgrounds and

sprites.

4. Come up with different levels of quality. For example: excellent, good,

average and needs more work.

5. Create the rubric keeping in mind discussions of common problems and

the qualities of good and not so good projects.

6. Using the freshly created rubric, chose several projects and evaluate

them in groups or as a class.

(Goodrich, 1997)

http://scratch.mit.edu/channel/featured

An example of a class generated Scratch rubric:

Excellent Good Average Needs more
work

Project
Design/
Creativity

Project is very
creative and
clearly
demonstrates
unique ideas.
Well written
advanced
design.

Creative and
has a unique
design.

Somewhat
creative and
unique ideas.
Some project
design may
have been
copied from
other
projects.

Project
incomplete.

User
friendliness

Project is
extremely user-
friendly.

Project is
user friendly
and easy to
understand.

Project is not
so user-
friendly,
some parts
are not easy
to
understand.

Project is not
user friendly.
Difficult to
understand
what it does
or how to use
it.

Programming
(Scripts)

Scripts are all
working, very
well designed
and using
advanced
programming
techniques.
Student has
very good
understanding
of scripts.

All scripts are
working and
the student
understands
all the
scripts.

Scripts may
have some
errors and do
not work
perfectly.
Student does
not
understand
some of the
scripts.

Scripts do not
work.

Backgrounds
and Sprites

Are all named
properly, and
very well
designed. They
fit together very
well making the
project look like
an advanced
design.

Are all
named
properly and
blend nicely
together to
enhance the
project
design.

Some have
not been
named and
do not blend
well into the
project.

They have not
been named
correctly.
They are
designed
poorly and
distract from
the project
design.

References
Alber R.(2011). Six scaffolding strategies to use with your students. Retrieved

October 23rd, 2012 from:
http://www.edutopia.org/blog/scaffolding-lessons-six-strategies-rebecca-alber

Apple Computer, Inc. (1995). Changing the conversation about teaching, learning,

& technology: A report on 10 years of ACOT research. Cupertino, CA: Apple

Computers, Inc.

Aronson, E.(2008). Jigsaw classroom. Retrieved October 21, 2012, from

http://www.jigsaw.org/.

Chen-Chung L., Yuan-Bang C., & Chia-Wen H.(2011). The effect of simulation

games on the learning of computational problem solving, Computer and

Education, vol. 57, pp. 1907-1918, 2011.

Crook, S.J. (2009). Embedding scratch in the classroom. Redware Research

Limited. Retrieved October 22nd, 2012 from:
http://scratch.redware.com/content/embedding-scratch-classroom

Csikszentmihalyi, M., (1996). Creativity: Flow and the Psychology of Discovery

and Invention. HarperCollins Publishers, Inc.

Dabbagh, N. (2005). Pedagogical models for E-Learning: A theory-based design

framework. International Journal of Technology in Teaching and Learning, 1(1),

pp. 25-44.

Goodrich, H. 1997. Understanding rubrics. Educational Leadership 54 (4): 14-

17. Retrieved Nov. 4, 2012,

from:http://learnweb.harvard.edu/alps/thinking/docs/rubricar.htm

Keeler C.(n.d.). Educational virtual museums developed using powerpoint. Christy

Keeler's Homepage. Retrieved November 3rd, 2012, from:

http://christykeeler.com/EducationalVirtualMuseums.html

Kordaki M.,(2012). Diverse categories of programming learning activities could be

performed within Scratch. Procedia -Social and Behavioral Sciences 46, 1162-66.

http://christykeeler.com/EducationalVirtualMuseums.html
http://learnweb.harvard.edu/alps/thinking/docs/rubricar.htm
http://scratch.redware.com/content/embedding-scratch-classroom
http://www.jigsaw.org/
http://www.edutopia.org/blog/scaffolding-lessons-six-strategies-rebecca-alber

Leikin R., Levav-Waynberg A., Gurevich I. & Mednikov L. (2006). Implementation

of multiple solution connecting tasks: Do students' attitudes support teachers'

reluctance? Focus on learning problems in mathematics, 28(1), 1-22.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010). The

scratch programming language and environment. Transactions on Computer

Education 10(4), 1-15

Monroy-Hernandez, A., & Resnick, M. (2008). Empowering kids to create and

share programmable media. Interactions, 15(2), 50-53.

National Research Council (1999). Being fluent with information technology.

Washington, DC:National Academy Press.

National Research Council (2000). How People Learn: Brain, Mind, Experience,

and School. Washington, DC: National Academy Press.

PBS LearningMedia (2012). National PBS survey finds teachers want more access

to classroom tech[Press release]. Retrieved on October 11th , 2012 from:
http://www.pbs.org/about/news/archive/2012/teacher-survey-fetc/

Resnick, M. (n.d.) Learning by Designing. Retrieved October 21st, 2012, from
http://info.scratch.mit.edu/Educators

Rusk,N.,Resnick, M.,& Maloney,J.(n.d.). Learning with scratch:21st century

learning skills. Retrieved Oct. 12, 2012 from M.I.T., Lifelong Kindergarten Group

Web site:
http://info.scratch.mit.edu/sites/infoscratch.media.mit.edu/docs/Scratch-

21stCenturySkills.pdf

Theodorou, C. & Kordaki, M. (2010). Super Mario: a collaborative game for the

learning of variables in programming. IJAR, 2(4), pp. 111-118.

Woodbridge, J. (2004). Technology integration as a transforming teaching

strategy. Technology and Learning. Retrieved Nov. 1st, 2012 from:

http://www.techlearning.com/features/0039/technology-integration-as-a-

transforming-teaching-strategy/41670

http://www.techlearning.com/features/0039/technology-integration-as-a-transforming-teaching-strategy/41670
http://www.techlearning.com/features/0039/technology-integration-as-a-transforming-teaching-strategy/41670
http://info.scratch.mit.edu/sites/infoscratch.media.mit.edu/docs/Scratch-21stCenturySkills.pdf
http://info.scratch.mit.edu/sites/infoscratch.media.mit.edu/docs/Scratch-21stCenturySkills.pdf
http://info.scratch.mit.edu/Educators
http://www.pbs.org/about/news/archive/2012/teacher-survey-fetc/

	Introduction
	About
	Underlying Philosophy

	Why use Scratch ?
	What can I do with Scratch ?
	Getting Started

	Basic Skills
	Scaffolding Activities

	How to scaffold learning with Scratch:

	Creative Activities
	Cultivating Creativity:
	Brainstorming Strategies:

	Facilitating Collaboration
	Environments that support Scratch collaboration:

	Programming Skills
	Problem Solving
	Thinking through problems
	A strategy for problem solving with Scratch
	Exploring multiple solutions
	Tips for facilitating multiple solutions

	Learning from Projects
	Experimenting with projects
	Modifying projects

	Coding Challenges
	Completing code
	Correcting code

	Advanced Activities
	Predicting output
	Black-box activities

	Curriculum Integration
	Technology Integration
	Integration Ideas
	Subject specific ideas:
	Project Examples

	Scratch Project Rubrics
	Creating a class generated Scratch Rubric
	An example of a class generated Scratch rubric:

	References

