
Assignment 6: Hash Table implementation and concordance

There are three parts to this assignment. In the first two parts, you will complete the implementation of
a hash map and a concordance program. In the third part, you will answer a number of questions using
the concordance program. There is also an extra credit opportunity.

Prerequisites

Reading chapter 12, watching this week’s lecture on hash tables with chaining, and completingworksheet
38will better prepare you to tackle this assignment. Itmay also be helpful to reviewCfile I/Owith fopen()
and fclose().

Hash map

First complete the hashmap implementation in hashMap.c. This hashmap uses a table of buckets, each
containing a linked list of hash links. Each hash link stores the key-value pair (string and integer in this
case) and a pointer to the next link in the list. See hashMap.h and the accompanied drawing posted with
this assignment for clarification. You must implement each function in hashMap.c with the // FIXME:
implement comment.

At the top of hashMap.h you should see twomacros: HASH_FUNCTION andMAX_TABLE_LOAD. You are free
to change their definitions but know that the default values will be used when grading. HASH_FUNCTION
is the name of the hash function you want to use. You will change this when answering the written part of
the assignment. Make sure everywhere in your implementation to use HASH_FUNCTION(key) instead of
directly calling a hash function. MAX_TABLE_LOAD is the table load threshold on which you should resize
the table.

A number of tests for the hash map are included in tests.c. Each one of these test cases use several
or all of the hash map functions, so don’t expect tests to pass until you implement all of them. Each test
case is slightly more thorough than the one before it and there is a lot of redundancy to better ensure
correctness. Use these tests to help you debug your hash map implementation. They will also help your
TA grade your submission. You can build the tests with make tests or make and run themwith ./tests.

Concordance

The concordance counts howmany times eachword occurs in a document. Youwill implement a concor-
dance using the hash map implementation from the previous part. Each hash link in the table will store a
word from the document as the key and the number of times the word appeared as the value. You must
finish the concordance implementation in main.c.

You are providedwith a function nextWord()which takes a FILE*, allocatesmemory for the next word in
the file, and returns the word. If the end of the file is reached, nextWord()will return NULL. It is your job to

1



open the file using fopen(), populate the concordance with the words, and close the file with fclose().
The file name to open should be given as a command line argument when running the program. It will
default to input1.txt if no file name is provided.

Your concordance code should loop over the words until the end of the file is reached, doing the following
steps each iteration:

1. Get the next word with getWord.
2. If the word is already in the hash map, then increment its number of occurrences.
3. Otherwise, put the word in the hash map with a count of 1.
4. Free the word.

After processing the text file, print all words and occurrence counts in the hash map. Please print them
in the format of the following example above the call to hashMapPrint():

best: 1
It: 2
was: 2
the: 2
of: 2
worst: 1
times: 2

You can build the program with make prog or make and run it with ./prog <filename>, where
<filename> is the name of a text file like input1.txt.

Written

Submit a pdf or text file answering the following questions:

1. Give an example of twowords that would hash to the same value using hashFunction1 but would
not using hashFunction2.

2. Why does the above observation make hashFunction2 superior to hashFunction1?
3. When you run your program on the same input file once with hashFunction1 and once with

hashFunction2, is it possible for your hashMapSize function to return different values?
4. When you run your program on the same input file once with hashFunction1 and once with

hashFunction2, is it possible for your hashMapTableLoad function to return different values?
5. When you run your program on the same input file once with hashFunction1 and once with

hashFunction2, is it possible for your hashMapEmptyBuckets function to return different values?
6. Is there any difference in the number of empty buckets when you change the table size from an

even number like 1000 to a prime like 997?

2



Extra credit

There are a lot of uses for a hash map, and one of them is implementing a spell checker. All you need to
get started is a dictionary, which is provided in dictionary.txt. In spellChecker.c you will find some
code to get you started with the spell checker. It is fairly similar to the code in main.c.

You can build the program with make spellChecker.

Grading

• Compile and style – 20
• Hash map implementation – 50
• Concordance – 20
• Written answers – 10
• Extra credit – 10

Submission

Submit the following files to TEACH and Canvas. Do not zip the TEACH submission. Do not zip thewritten
answers in the Canvas submission.

• hashMap.c
• main.c
• spellChecker.c (optional)
• The written answers in a pdf or text file.

3


	Assignment 6: Hash Table implementation and concordance
	Prerequisites
	Hash map
	Concordance
	Written
	Extra credit
	Grading
	Submission


