
1 Revision 18.02 Board Instrumentation Framework

BIFF User Guide

Board Instrumentation Framework
Flexible, data agnostic instrumentation

2 Revision 18.02 Board Instrumentation Framework

Legal
Copyright © 2018 Intel Corporation

Licensed under the Apache License, Version 2.0 (the "License");

You may not use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the

License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the

License.

http://www.apache.org/licenses/LICENSE-2.0

3 Revision 18.02 Board Instrumentation Framework

Revisions
Date Revision Description

April 2016 16.04 Initial Release

June 2016 16.06 Added Peekaboo Options

July 2016 16.07 Fixed <Modifier> section. Added experimental

SyncFile. Added ProcessThread.

August 2016 16.08 Added note on Multi-Source widgets

Added <Plugin> for DynamicWidgets

Added <Synchronized> for charts.

September 2016 16.09 Added –altSplash option for Marvin. Added new

entry to trouble shooting.

Added new feature to <Operator>Average.

Added <Bound> option for collectors

Added MinValue and MaxValue operators

October 2016 16.10 Added <Oscar> settings to Marvin <Network>

for dynamic connections.

Operator <Input> added DefaultValue.

Added <Import> and <DefaultAlias> for Marvin

Alias’s, SVG widget, PrevRowAlias and

PrevColumnAlias. Added <AutoAdvance> for

dynamic Grids and Images.

December 2016 16.12 Added <Shunt> capability in Oscar

Added Stepped to TaskList

Added DataPulse and Mathematic Task

Added Case Conditional

Added MarvinLocalData application option

January 2017 17.01 Added PDF_Reader widget

Added <BITW> In Oscar

%(Namespace,ID) for Tasks in Marvin added

Added Marvin <If>then-else ability

February 2017 17.02 Can now use OscarTask to load and playback

file in one command.

Added MarvinMath

Changed Name

Added <ToolTip> and <SelectedStyle>to Marvin

March 2017 17.03 Added <Transition> to DynamicImage

April 2017 17.04 Added Marvin Ability to loop through files in a

directory as part of<For>

Deprecated <Repeat> in favor of <For> for

looping.

4 Revision 18.02 Board Instrumentation Framework

Added ‘LegacyMode’ for application padding.

May 2017 17.05 Added info about updated collectors – libvirt,

ovsdb, ipmi, SystemInfo, IPC

Added <Format> tag to Text widget.

July 2017 17.07 Doc cleanup and more troubleshooting info

September 2017 17.10 Added <SplitToken> to DynamicCollector. Note

about Java 9 support.

December 2017 17.12 Added <ClickThroughTransparent> ability for all

widgets/grids. Added % for dimensions.

Added <MonitorNumber> and

$(CANVAS_WIDTH),$(CANVAS_HEIGHT),$(SCR

EEN_H2W_RATIO),$(SCREEN_W2H_RATIO)

January 2018 18.01 Added GridMacro ability. Hgap and vgap can be

% for dimenstions.

Added ability to specify dimensions and

stylesheet for prompts.

Added WORKING_DIR (in Minion too) and

WORKING_DIR_URI aliases.

Added ExcludeForAutoActions to DynamicGrid

February 2018 18.02 Added Tasks for individual video files if clicked.

Added blurb for Linux_CPU collector.

5 Revision 18.02 Board Instrumentation Framework

Contents

1 Introduction .. 17

1.1 History and Design Goals .. 17

1.2 Coding .. 17

1.3 Versioning ... 18

2 High Level Overview ... 19

3 System Requirements ... 20

3.1 Installing Python .. 20

3.2 Installing Java ... 20

4 Minion ... 21

4.1 Invoking Minion ... 21

4.1.1 One-and-done ... 22

4.1.2 Using Alias File... 22

4.2 Configuration File ... 22

4.2.1 <Minion> .. 23

4.2.2 <Namespace> ... 23

4.2.2.1 <Name> .. 23

4.2.2.2 <TargetConnection> ... 23

4.2.2.3 <DefaultFrequency> ... 24

4.2.2.4 <DefaultPrecision> .. 24

4.2.2.5 <IncomingConnection> ... 25

4.3 <Collector> .. 25

4.3.1 Attributes .. 26

4.3.1.1 ID ... 26

4.3.1.2 OverrideID ... 26

4.3.1.3 Frequency .. 26

4.3.1.4 OnlySendOnChange ... 27

4.3.1.5 SendOnlyOnChange ... 27

4.3.1.6 DoNotSend ... 27

4.3.1.7 Scale ... 27

4.3.1.8 ProcessThread .. 27

4.3.2 <Executable> .. 28

4.3.3 <Bound> .. 28

4.3.4 <Param> .. 28

4.3.4.1 Example ... 28

6 Revision 18.02 Board Instrumentation Framework

4.3.5 Using another Collector as a <Param> .. 29

4.3.6 <Normalize> ... 29

4.3.6.1 SyncFile Attribute .. 29

4.3.7 <Precision> ... 30

4.3.8 Example .. 30

4.4 <Group> .. 30

4.4.1.1 Frequency .. 31

4.4.1.2 Example ... 31

4.5 <DynamicCollector> .. 31

4.5.1 Attributes .. 32

4.5.1.1 Frequency .. 32

4.5.1.2 OnlySendOnChange ... 33

4.5.1.3 DoNotSend ... 33

4.5.1.4 Prefix ... 33

4.5.1.5 Suffix... 33

4.5.2 <File> .. 33

4.5.2.1 Example ... 33

4.5.3 <SplitToken> .. 34

4.5.3.1 Example ... 34

4.5.4 <Normalize> ... 34

4.5.4.1 Example ... 34

4.5.5 <LockFile> .. 36

4.5.6 <Modifier> .. 36

4.5.7 Attributes .. 37

4.5.8 <Normalize> ... 37

4.5.9 <Precision> ... 37

4.5.10 <Plugin>... 37

4.5.10.1 <PythonFile> .. 38

4.5.10.2 <EntryPoint> .. 38

4.6 <ProcessThread> .. 38

4.7 Aliases .. 39

4.7.1 Reading Alias From external File .. 40

4.7.2 ComputerName Alias .. 40

4.7.3 Usage ... 40

4.8 Build-In Collectors.. 42

4.8.1 FileCollector... 42

4.8.1.1 ReadFromFile .. 42

4.8.1.2 ReadFromFileWithLock ... 42

7 Revision 18.02 Board Instrumentation Framework

4.8.1.3 ParseFile .. 43

4.8.1.4 ParseFileWithLock ... 44

4.8.2 Network .. 45

4.8.2.1 GetNetworkRx .. 45

4.8.2.2 GetNetworkTx ... 46

4.8.3 CPU .. 46

4.8.3.1 GetCPU_Percentage ... 46

4.8.3.2 GetCPU_Core_Percentage .. 46

4.8.4 PowerShell .. 47

4.8.5 RandomVal .. 47

4.8.6 Parrot ... 48

4.8.7 IPC_Linux ... 48

4.8.8 OVSdb .. 49

4.8.9 LibVirt ... 49

4.8.10 Collectd .. 49

4.8.11 IPMI ... 50

4.8.12 SystemInfo - Linux ... 50

4.8.13 LinuxNetwork .. 50

4.9 Operator Collectors .. 51

4.9.1 Operator <Input> .. 52

4.9.1.1 Default Value .. 52

4.9.2 Operator Addition ... 52

4.9.3 Operator Average ... 53

4.9.4 Operator MakeList .. 53

4.9.5 Operator Duplicate ... 53

4.9.6 Compare Operators .. 53

4.9.7 Operator Compare_EQ .. 53

4.9.8 Operator Compare_NE .. 54

4.9.9 Operator Compare_GT .. 54

4.9.10 Operator Compare_GE .. 54

4.9.11 Operator Compare_LT ... 54

4.9.12 Operator Compare_LE... 54

4.9.13 Greatest .. 54

4.9.14 Least .. 54

4.9.15 MaxValue .. 55

4.9.16 MinValue ... 55

4.9.17 UserDefined... 55

4.9.18 Looping for Input ... 56

4.10 Making your own collectors ... 57

4.10.1 Python .. 57

4.10.2 Considerations ... 57

8 Revision 18.02 Board Instrumentation Framework

4.11 Mute Collector ... 58

4.12 <Actor> (Tasks) .. 58

4.12.1 Attributes .. 58

4.12.1.1 ID ... 58

4.12.2 <Executable> .. 58

4.12.3 <Param> .. 59

4.12.4 Example .. 59

4.13 Using Additional Files ... 59

5 Oscar .. 60

5.1 Running Oscar ... 60

5.2 The configuration file .. 61

5.2.1 <Oscar> ... 61

5.2.2 <IncomingMinionConnection> ... 62

5.2.2.1 Attributes ... 62

5.2.2.2 IP .. 62

5.2.2.3 Port ... 62

5.2.3 <TargetConnection> .. 62

5.2.3.1 Attributes ... 62

5.2.3.2 IP .. 63

5.2.3.3 Port ... 63

5.2.4 <IncomingMarvinConnection> ... 63

5.2.4.1 Attributes ... 63

5.2.4.2 IP .. 63

5.2.4.3 Port ... 63

5.2.5 <MarvinAutoConnect> .. 63

5.2.6 <Shunt> ... 64

5.2.6.1 Attributes ... 64

5.2.7 <BITW> ... 64

5.3 Using Oscar ... 65

5.3.1 Live Data .. 65

5.3.2 Recording Data feed ... 65

5.3.3 Playing back Recorded Data... 66

6 Marvin .. 67

6.1 General Components .. 67

6.1.1 Grids .. 68

6.1.2 Grids within Grids ... 69

6.2 Running Marvin ... 69

6.2.1 External Alias File ... 70

6.3 Configuration File ... 71

9 Revision 18.02 Board Instrumentation Framework

6.3.1 <Marvin> .. 72

6.3.2 <Application> .. 72

6.3.2.1 Attributes ... 72

6.3.2.2 <Title> .. 73

6.3.2.3 <RefreshInterval> .. 73

6.3.2.4 <MonitorNumber> .. 73

6.3.2.5 <Network> .. 73

6.3.2.6 <CreationSize> .. 74

6.3.2.7 Attributes ... 75

6.3.2.8 Padding ... 75

6.3.2.9 StyleSheet ... 75

6.3.2.10 IgnoreWebCerts .. 76

6.3.2.11 Heartbeat ... 76

6.3.2.12 Tasks ... 76

6.3.2.13 MainMenu .. 76

6.3.2.14 Tabs .. 77

6.3.2.15 <UnregisteredData>.. 77

6.3.3 Tab .. 79

6.3.3.1 Attributes ... 80

6.3.3.2 Title... 81

6.3.3.3 Padding/PaddingOverride ... 81

6.3.3.4 StyleOverride ... 81

6.3.3.5 Widget ... 81

6.3.3.6 Grid ... 81

6.3.4 AliasList .. 81

6.3.4.1 Scope .. 82

6.3.4.2 Using ... 82

6.3.4.3 Environment Variables ... 82

6.3.4.4 Creating Alias when Specifying External File 82

6.3.4.5 Automatically Generated Alias’ 83

6.3.4.6 <Import> .. 83

6.3.4.7 <DefaultAlias> ... 84

6.3.5 TaskList .. 84

6.3.6 <For> option ... 84

6.3.6.1 Count – Option to iterate through files 85

10 Revision 18.02 Board Instrumentation Framework

6.3.7 $(CurrentRowAlias), $(CurrentColumnAlias) etc. 86

6.3.8 <If> then-else ... 86

6.3.9 MarvinMath ... 87

7 Widgets .. 89

7.1 Widgets .. 90

7.1.1 Dials ... 91

7.1.2 Indicators .. 92

7.1.3 Charts .. 92

7.1.4 Images ... 93

7.1.5 Media ... 93

7.1.6 Other .. 94

7.2 Directory Structure .. 95

7.3 Common Application Settings .. 95

7.3.1 Attributes .. 95

7.3.1.1 File .. 95

7.3.1.2 Row ... 95

7.3.1.3 Column .. 95

7.3.1.4 Rowspan .. 96

7.3.1.5 Colspan.. 96

7.3.1.6 Align .. 96

7.3.1.7 Width .. 96

7.3.1.8 Height ... 96

7.3.1.9 Width and Height as percentages 96

7.3.1.10 Task .. 97

7.3.2 MinionSrc .. 97

7.3.3 ClickThroughTransparent... 97

7.3.4 StyleOverride .. 97

7.3.4.1 Attributes ... 98

7.3.4.2 Item .. 98

7.3.5 Peekaboo .. 98

7.3.5.1 Attributes ... 99

7.3.5.2 Peekaboo Options ... 100

7.3.6 Peekaboo – Marvin ... 100

7.3.6.1 Set New Title .. 100

7.3.6.2 Change Style .. 101

7.3.7 <ValueRange> .. 101

7.3.7.1 Attributes ... 101

11 Revision 18.02 Board Instrumentation Framework

7.3.8 <ToolTip> ... 101

7.3.9 <SelectedStyle> .. 102

7.4 Common Widget Definition File Definitions .. 102

7.4.1 Type Attribute.. 102

7.4.2 Style .. 102

7.4.3 ClickThroughTransparent... 102

7.5 How to understand the following sections .. 103

7.6 Dials .. 103

7.6.1 SteelGauge ... 103

7.6.1.1 Definition File ... 103

7.6.1.2 Application Settings ... 106

7.6.2 SteelGauge180 .. 107

7.6.2.1 Definition File ... 107

7.6.2.2 Application Settings ... 108

7.6.3 SteelSimpleGauge .. 108

7.6.3.1 Definition File ... 108

7.6.3.2 Application Settings ... 109

7.6.4 SteelGaugeRadial ... 110

7.6.4.1 Definition File ... 110

7.6.4.2 Application Settings ... 112

7.6.5 SteelGaugeRadialSteel .. 113

7.6.5.1 Definition File ... 113

7.6.5.2 Application Settings ... 115

7.6.6 Bar Gauge ... 116

7.6.6.1 Definition File ... 116

7.6.6.2 Application Settings ... 117

7.6.7 Double Bar Gauge .. 118

7.6.7.1 Definition File ... 118

7.6.7.2 Application Settings ... 118

7.7 Indicators ... 119

7.7.1 ProgressBar ... 119

7.7.1.1 Definition File ... 119

7.7.1.2 Application Settings ... 120

7.7.2 ProgressIndicator ... 120

7.7.2.1 Definition File ... 120

7.7.2.2 Application Settings ... 120

7.7.3 LEDBargraph ... 121

12 Revision 18.02 Board Instrumentation Framework

7.7.3.1 Definition File ... 121

7.7.3.2 Application Settings ... 122

7.8 Charts & Graphs .. 122

7.8.1 MultiSourceAreaChart ... 123

7.8.1.1 Definition File ... 123

7.8.1.2 Application Settings ... 124

7.8.2 AreaChart ... 126

7.8.2.1 Definition File ... 126

7.8.2.2 Application Settings ... 127

7.8.3 MultiSourceStackedAreaChart .. 128

7.8.3.1 Definition File ... 129

7.8.3.2 Application Settings ... 130

7.8.4 StackedAreaChart .. 132

7.8.4.1 Definition File ... 132

7.8.4.2 Application Settings ... 133

7.8.5 MultiSourceLineChart .. 134

7.8.5.1 Definition File ... 134

7.8.5.2 Application Settings ... 136

7.8.6 LineChart .. 137

7.8.6.1 Definition File ... 137

7.8.6.2 Application Settings ... 138

7.8.7 PieChart .. 140

7.8.7.1 Definition File ... 140

7.8.7.2 Application Settings ... 140

7.8.8 Bar Chart .. 141

7.8.8.1 Definition File ... 142

7.8.8.2 Application Settings ... 142

7.8.9 StackedBarChart .. 146

7.8.9.1 Definition File ... 146

7.8.9.2 Application Settings ... 147

7.9 Images/Video/Sound .. 149

7.9.1 StaticImage ... 149

7.9.1.1 Definition File ... 149

7.9.1.2 Application Settings ... 149

7.9.2 DynamicImage .. 150

7.9.2.1 Definition File ... 150

13 Revision 18.02 Board Instrumentation Framework

7.9.2.2 Application Settings ... 151

7.9.2.3 AutoAdvance .. 151

7.9.2.4 <Transition> .. 152

7.9.3 VideoPlayer ... 152

7.9.3.1 Supported File Types: .. 152

7.9.3.2 Definition File ... 152

7.9.3.3 Application Settings ... 153

7.9.4 AudioPlayer ... 155

7.9.4.1 Supported Audio File Types: 156

7.9.4.2 Definition File ... 156

7.9.4.3 Application Settings ... 156

7.10 Text Display Widgets .. 159

7.10.1 Text ... 159

7.10.1.1 Definition File ... 159

7.10.1.2 Application Settings ... 159

7.10.2 SVG .. Error! Bookmark not defined.

7.10.2.1 Definition File ... 160

7.10.3 SteelLCD ... 160

7.10.3.1 Definition File ... 160

7.10.3.2 Application Settings ... 161

7.11 Web Widget .. 162

7.11.1.1 Definition File ... 162

7.11.1.2 Application Settings ... 163

7.12 QuickView Widget .. 163

7.12.1.1 Definition File ... 164

7.12.1.2 Application Settings ... 165

7.13 QuickViewLCD Widget ... 167

7.14 Other ... 167

7.14.1 Button .. 167

7.14.1.1 Definition File ... 168

7.14.1.2 Application Settings ... 168

7.14.2 PDF_Reader Widget .. 168

7.14.2.1 Definition File ... 169

7.14.2.2 Application Settings ... 169

7.14.3 Spacer .. 169

7.14.4 FlipPanel ... 170

14 Revision 18.02 Board Instrumentation Framework

7.14.4.1 Definition File ... 170

7.14.4.2 Application Settings ... 172

7.14.4.3 Flipping the Panel .. 173

7.15 Grid ... 173

7.15.1.1 Attributes ... 174

7.15.1.2 PaddingOverride/Padding ... 175

7.15.1.3 StyleOverride ... 175

7.15.1.4 Widget ... 175

7.15.1.5 <Grid> .. 176

7.15.1.6 <Peekaboo> ... 176

7.16 GridMacro ... 176

7.17 DynamicGrid ... 176

7.17.1 Attributes of <GridFile> .. 177

7.17.2 Transitions .. 177

7.17.3 Peekaboo .. 178

7.17.4 AutoAdvance ... 179

8 Tasks .. 180

8.1 Defining a Task .. 180

8.1.1 Attributes .. 180

8.1.1.1 StyleOverride ... 181

8.2 Calling/Executing a Task ... 181

8.3 Minion Task ... 182

8.3.1 Defining a Minion Task in Marvin .. 182

8.3.2 Minion Task Parameters .. 183

8.3.3 Mixing Minion Task Parameters .. 183

8.3.4 Using a MinionSrc as a Parameter .. 184

8.4 Oscar Task .. 184

8.4.1 LoadFile .. 185

8.4.2 Playback ... 185

8.4.2.1 Speed .. 186

8.4.2.2 Repeat ... 186

8.4.2.3 Loop .. 186

8.4.2.4 File .. 187

8.4.3 StopPlayback ... 187

8.4.4 PausePlayback ... 187

8.4.5 StopLive ... 188

8.4.6 StartLive ... 188

8.4.7 StartRecording ... 188

15 Revision 18.02 Board Instrumentation Framework

8.4.8 StopRecording ... 188

8.5 Marvin Task .. 189

8.6 Marvin Admin Task ... 190

8.6.1 SetActiveTab ... 190

8.6.2 SetTabVisibility .. 191

8.7 Remote Marvin Task ... 191

8.8 Chained Task... 192

8.9 Random Task .. 193

8.10 DataPulse Task .. 193

8.11 Mathematic Task .. 193

8.12 Desktop Task .. 194

8.13 LaunchProgram Task .. 194

8.14 Running a Task at Startup ... 194

8.15 User Prompts .. 195

8.15.1 Defining a Prompt .. 195

8.15.1.1 ListBox Prompt ... 196

8.15.1.2 InputBox Prompt ... 197

8.15.2 Prompting the user ... 198

8.16 Postponing Task Action ... 199

8.16.1 Random Postpone Time... 199

9 Conditionals ... 200

9.1 Defining a Conditional .. 200

9.1.1 Type ... 200

9.1.2 CaseSensitive .. 201

9.1.3 <MinionSrc> ... 201

9.1.4 <Value> ... 201

9.1.5 <Then> .. 201

9.1.6 <Else> ... 201

9.2 CASE .. 202

10 Connectivity Overview .. 203

10.1 Secondary communication Channels ... 203

11 Advanced Tactics.. 205

11.1 Widget Stacking ... 205

11.2 Show Current Computer Name .. 205

11.3 Changing the Images being shown ... 206

12 Support... 207

13 Summary .. 208

14 Troubleshooting ... 209

14.1 Stack overflow error ... 209

14.2 Getting Audio and Video working in a VM .. 209

16 Revision 18.02 Board Instrumentation Framework

14.3 Connectivity Problems .. 210

14.4 The Dynamic type Widget isn’t working .. 210

14.5 The Web Widget isn’t working all the time ... 211

14.6 Slow network performance, tasks not getting run in a timely manner 211

14.7 Collector Data not showing up in Oscar or Marvin 211

14.8 Multi-Source Widgets not Updating properly .. 211

14.9 Error: Could not find or load main class kutch.biff.marvin.Marvin 212

14.10 java.lang.UnsupportedOperationException: Unable to open DISPLAY 212

14.11 The fonts on one system do not look the same as on another 212

14.12 My images and goodies don’t look right on another computer 213

14.13 My widgets don’t line up anymore .. 213

14.14 Marvin does not work when using Java 9. ... 213

15 Thanx and Recognitions .. 214

16 About Me .. 215

17 Revision 18.02 Board Instrumentation Framework

1 Introduction

This document serves as a guide to the various components of the BIFF Instrumentation

Framework project.

It is intended to provide an overview of the various components as well as provide technical

details on the XML configuration files that are at the heart of its flexibility.

1.1 History and Design Goals
I set out to create a flexible framework that could be used for demonstrations. Years ago I

wrote a fairly simple Java application to demonstrate the power of SR-IOV (you can see it in

action here: https://www.youtube.com/watch?v=bOMB9RsQfo4&list=WL&feature=mh_lolz)

This little application helped the industry understand what SR-IOV is and what it can do for

them. It helped take something fairly complex and put it into simple understandable dials.

Years later and I still get requests for updates to this tool for in-house demos.

Now I am working on new things that are even more complicated, so I set out to create a

way of demonstrating not just Ethernet traffic as my first application did, but anything that

could be instrumented.

The first founding principle of this framework is that you can display any data you wish. If

you can gather a piece of information somehow, this framework should be able to display it,

whether it be CPU utilization, network bandwidth, temperature, voltage or the number of

users on a system.

The second design goal is that the framework should know nothing about the data it is

collecting and displaying. It is agnostic to the data, could be string, could be an integer

could be a real number, Gigabits per/second, I/O operations per second, power usage etc.

The framework does not know anything about this.

The last major design goal is that it be completely configurable via external files that

describe how to gather data and how to display it. You should be able to put a Dial on the

screen with a few lines in a text file and with a few more lines in another file describe how

to go get the data to feed that dial.

So in summary the design goals are:

 If you can instrument it, the framework can display it

 Framework is agnostic to the data being collected and displayed

 Changes to data being collected and displayed can be achieved via external text files

1.2 Coding

Minion and Oscar are written in Python while Marvin is written in Java. I could have written

all in Java, however I had never done any Python it seemed like a good opportunity to learn

it.

https://www.youtube.com/watch?v=bOMB9RsQfo4&list=WL&feature=mh_lolz

18 Revision 18.02 Board Instrumentation Framework

As it turns out, Python is a very good choice for Minion as it provides a great framework for

the data collection and is available in all Linux distros.

This entire project has been and continues to be very organic. I had an idea of what I

wanted and just started coding (and learning). As such, the code is much more erratic and

spaghetti like than I would have preferred, but it does work even if it is a bit hard to follow.

A quick note on my coding style, especially for the Java purists – if you don’t like it

(especially my indentation style), then suck it up I’m a dinosaur and that’s the coding

style I learned nearly 30 years ago and it works for me. If you can’t read it, use the pretty-
printer in your editor to make it how you like. Note though that if you push updates to my

repository, I reserve the right to pretty-print it myself if I tweak it.

Also note that this was my first attempt at coding in Python – not my most elegant work.

1.3 Versioning

I have chosen to version all the components of BIFF, including this document much in the

same way Ubuntu does its versioning, where the version number is the Year and Month of

the release. Followed possibly by the day of the month and a build #.

19 Revision 18.02 Board Instrumentation Framework

2 High Level Overview

The BIFF Instrumentation Framework project has three components:

1. Minion - the data collector

2. Oscar – The orchestrator

3. Marvin – The display GUI

Figure 1 Components of Instrumentation Framework

The operation is fairly straight forward, the Minion framework collects data (as defined and

described in an external XML file) associated an ID with it (also defined in the XML file) and

passes it to Oscar over a UDP socket in XML format.

Oscar receives data from one or more Minions and simply passes it on to one or more

Marvin GUI’s. Additionally Oscar can save the incoming data to a file and play it back at a

later time.

The GUI, named Marvin receives the data originally sent by a Minion and after validating it,

pushes it to one or more ‘Widgets’ (dial, graph, text etc.) for displaying. The association of

a data point ID with a widget, as well as the location, size, color and more for a widget is

defined in an external XML file.

All of these components can exist on a single computer or on separate ones. It makes no

difference to the framework.

20 Revision 18.02 Board Instrumentation Framework

3 System Requirements

Minion and Oscar are written in Python and require Python v3.3 or later. I chose Python 3.3

because my initial development was on a Microsoft Windows system, and I just grabbed the

latest version, unaware that most Linux distros come with a 2.x release.

Marvin is written in Java 8 and needs it to run. Specifically Java 8 update 20 or later. Note

that Java 9 is NOT supported at this time – changes in some package location in Java 9

break the Enzo library used.

Note: I have successfully converted Minion to python 2 using the python 3to2 package, and

even have some build-in support in Minion for 2.x

3.1 Installing Python
https://www.python.org/download/.

Note: Make sure you select Add Python to Path during install or manual add Python to your

environment path if installing on a Windows platform.

3.2 Installing Java
https://java.com/en/download/index.jsp

https://www.python.org/download/
https://java.com/en/download/index.jsp

21 Revision 18.02 Board Instrumentation Framework

4 Minion

Minion, the data collection portion of the BIFF Instrumentation Framework project is written

in Python. It is a command line application with no GUI components.

It is designed to be a light-weight framework that collects data at defined intervals,

packages it up and sends it to an Oscar.

The basic operation of Minion is that it will call an external application (defined in an XML

file) at a given interval (also defined in the XML file), take the output of that external

application, assign an ID (again, defined in the XML file) then send it to an Oscar (whose IP

and port are in the XML file).

Minion itself knows nothing about how to collect the data, it simply calls the external

application (or script), takes the output, tags it with an ID and sends it on its way.

The Minion framework can call as many external applications (or scripts) as you define in

the XML file.

Minion supports normalization of data (averaging it to a per second basis) if so configured in

the XML file.

There are two ‘bundles’ for Minion. One that works with Python 2.x and the other that

works with Python 3.x.

4.1 Invoking Minion
Running minion is the same as launching any other Python application, by running Python

with the parameter of Minion.py.

Minion itself requires a parameter to specify the application definition file, which is an XML

file. An example invocation is:

python Minion.py –i MinionConfig.xml

Minion can also be invoked with additional parameters.

Parameter Description / Use

-i <filename> Application XML definition file

-h | -help Show the help information

-v # -verbose # Prints out debug information as it runs at a level 1-4

-r or -runonce Runs each of the collectors once and only once and then exit

-a | -aliasfile

22 Revision 18.02 Board Instrumentation Framework

4.1.1 One-and-done

There is an additional Minion command line parameter –r or –runonce. This parameter will

run each of the collectors once and only once and then exit.

The usage for this is that you could setup a Task to call a script that in turn launches a

minion with a –r option in which the configuration file might send default/initial values for all

dials as a kind of ‘reset’.

4.1.2 Using Alias File
-a | -aliasfile

The Alias file is a simple AliasName=AliasValue. Where each Alias is on a different line. For

example:

NumberOfCores=72

TimeZone=New Zealand

Author=Patrick Kutch

If these are in an alias file and used, then within the configuration file, the aliases of

$(NumberOfCores), $(TimeZone) and $(Author) would be available.

4.2 Configuration File
The XML configuration file is where you will define what data you want to collect, how often

to collect it, the ID to tag it with and where to send it.

The basic hierarchy for the XML file is as follows:

<Minion>

 <Namespace>

 <Name><Name>

 <TargetConnection></TargetConnection>

 <Collector>

 </Collector>

 ...

 <Collector>

 </Collector>

 </Namespace>

 <Namespace>

 <Name><Name>

 <TargetConnection></TargetConnection>

 <Collector>

 </Collector>

 ...

 <Collector>

 </Collector>

 </Namespace>

 <Namespace>

23 Revision 18.02 Board Instrumentation Framework

 </Namespace>

</Minion>

Where <Minion> is the root XML node and there are one or more <Namespace> nodes –

though in most cases there is only one <Namespace>

Note: Since Linux is case-sensitive it is important to use the same case in the Minion xml

and both Oscar and Marvin definition files.

4.2.1 <Minion>

The Minion Tag (the root) can take a single optional attribute which determines the

threading model Minion uses. Each collector can be run in its own thread, or all collectors

within a single <Namespace> can be run in a single thread.

This is an experimental setting for testing purposes.

The attribute is SingleThreading and can be either True or False, or not there at all, which is

the same as False.

4.2.2 <Namespace>

A Namespace can be thought of as a container or an identifier. In most cases it is used to

identify the computer from which the data is being gathered.

The Namespace and ID for a data point are used for a unique identifier for a Widget. In this

way one could use the same minion configuration file on multiple different systems to

gather the same data (such CPU Utilization) and the ID for the collectors would be the same

(say CPU_UTIL) but the namespace would be different to reflect the different computers

from where the data was collected.

4.2.2.1 <Name>

This is the name of the Namespace, it must be unique per instance of a minion. It can be

repeated in other Minions, but not within the same XML configuration file.

 Example

<Minion>

 <Namespace>

 <Name>Workload_Server</Name>

 </Namespace>

</Minion>

4.2.2.2 <TargetConnection>

The TargetConnection tag defines where the target Oscar can be found on the network.

 Attributes

The <TargetConnection> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

IP M Target IP Address or FQDM or DNS Name

24 Revision 18.02 Board Instrumentation Framework

PORT M Target UDP Port Number

 IP

IP address of the target Oscar. This can be a DNS name or an IP address.

Note: If the target Oscar does not have a static IP address and uses DHCP to set the IP

Address it is recommended to use the Full Qualified Domain Name (FQDM).

Additionally, if the target Oscar is not in a permanent location or the IP address

changes it may take some time for the DNS name resolution to point to the new IP

address.

 Port

Port on which the target Oscar is listening

 Example

<Minion>

 <Namespace>

 <TargetConnection IP="localhost" PORT="3232"/>

 </Namespace>

</Minion>

Note: Verify that the UDP Port is not already assigned and that it is not blocked by Firewalls

or Routers such as firewalld or iptables in Linux.

4.2.2.3 <DefaultFrequency>

This is the default frequency, in milliseconds for which the Minion framework will call every

Collector within this Namespace, unless the Collector specifies its own frequency.

Note: The faster the DefaultFrequency (Lower number) the more often the Collectors will

run which may impact system performance and increase network traffic between

Minion and Oscar. Using a slower DefaultFrequency (Higher number) will increase the

amount of time between data collection for all Collectors. Setting the

DefaultFrequency between 3000-5000 (3-5 seconds) and then specifying 1000 (1

second) Frequency on individual collectors is a good way to balance data collection

and system performance.

 Example

This example specifies a default frequency of 1.5 seconds (1500ms).

<Minion>

 <Namespace>

 <DefaultFrequency>1500</ DefaultFrequency >

 </Namespace>

</Minion>

4.2.2.4 <DefaultPrecision>

This is the default precision for numeric values collected within the namespace. The default

in two decimal places. With this setting you can change the default for all collectors in the

Namespace.

25 Revision 18.02 Board Instrumentation Framework

The default precision can be overridden in any individual collector using the <Precision>

capability.

 Example

This example specifies a default precision of 4. With this if a collector has a value of 1.25,

the value sent will be 1.2500.

<Minion>

 <Namespace>

 <DefaultPrecision>4</ DefaultPrecision >

 </Namespace>

</Minion>

4.2.2.5 <IncomingConnection>

The IncomingConnection tag defines a socket where Minion will listen for incoming data

packets. This connection point will be for performing Tasks and other data exchanges.

This tag is optional, if you do not have it, the framework will listen on all interfaces and pick

a random port.

 Attributes

The <IncomingConnection> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

IP O Local IP Address

PORT O Local UDP Port

 IP

IP address for Minion to listen on. If not specified, it will listen on all available interfaces

 Port

UDP Port on which the minion will listen for incoming data. If not specified a random,

unused UDP port number will be chosen. Example

<Minion>

 <Namespace>

 <IncomingConnection IP="192.168.1.10" PORT="6032"/>

 </Namespace>

</Minion>

4.3 <Collector>
Each namespace contains one or more collector. A collector can be thought of as a plugin

that is responsible for going and gathering a desired piece of data. The Collector calls the

specified executable program and takes the result, tags it with the given ID and sends it to

Oscar.

26 Revision 18.02 Board Instrumentation Framework

4.3.1 Attributes

The <Collector> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

ID M The ID the resulting data is tagged with

Frequency O How often, in milliseconds, to collect data or OnDemand, or

RunOnce

OnlySendOnChange O Boolean (Default is False)

SendOnlyOnChange O Boolean (Default is False)

DoNotSend O Boolean (Default is False)

Scale O Multiplier for the collected value (Default is 1)

OverrideID O Different ID to use when sent to Marvin.

ProcessThread O Specify an ID of a separate worker thread group

4.3.1.1 ID

This is the ID the collected data will be tagged with, the Widget in the GUI uses the

Namespace + ID as an identifier. The ID must be unique within the Namespace.

4.3.1.2 OverrideID

This was added to accommodate Compare <Operator>s. Every collector must have a

unique ID within the namespace, however you may want different compare operators to

send data to the same ID. In this case you can use the OverrideID. The Minion

demonstration has an example in the AdditionalFile.xml file for LCD.Override.

4.3.1.3 Frequency

How often to call this collector, in milliseconds. If Frequency is not specified for a Collector,

then the DefaultFrequency for the Namespace is used.

If you specify “OnDemand” for the frequency, then the collector will only collect when it

receives a task from Marvin.

 “OnDemand” Frequency

If you specify this value, then the Collector will act more like a task than a collector. The

difference being that a task does not return data, an OnDemand collector will. In order to

activate the OnDemand collector, Marvin sends a Task with the approprate TaskID, which is

the ID of the Collector and the corresponding Namespace, along with any optional

parameters you wish to add to the Collector. The collector can have its own list of

parameters defined in the config file, and an OnDemand one can also have additional

parameters sent from Marvin as part of the task.

27 Revision 18.02 Board Instrumentation Framework

 “RunOnce” Frequency

If you specify this value, then the collector will run at the default frequency once and only

once.

4.3.1.4 OnlySendOnChange

This Attribute can have a value of “True” or “False”. If True, then the data collected is only

sent to Oscar if it has changed since the last time it was sent.

This can be useful for things such as a flag indicating if a test has finished or not. For

example if you have a FileCollector reading a status every 200ms that updates an image in

Marvin, it may not be desirable to send an update every 200ms when the data may not

change for several minutes.

Note: In order to ensure that the GUI gets all data when it starts up, it sends a message to

Oscar, which in turn sends a message to all Minion to an update from all collectors,

even if it is marked as OnlySendOnChange.

4.3.1.5 SendOnlyOnChange

Is the same as OnlySendOnChange – added this because I kept typing it in instead of
OnlySendOnChange

4.3.1.6 DoNotSend

This Attribute can have a value of “True” or “False”. If True, then the data collected but not

sent. The default value is False, which is the same as not specifying DoNotSend, and the

data will be sent.

This can be useful for Operators that can take data from other collectors and do something

with them. Say for example you want to use the average operator that averages the data

from several collectors – you may not need or want the data from the individual collectors

to be sent, in such a case use the DoNotSend attribute.

4.3.1.7 Scale

If you specify the Scale=”value” value then the resulting numeric value from the collection

(or Normalization if you do that) will be multiplied by the value specified.

4.3.1.8 ProcessThread

The collection process is done sequentially in the order you specify within the configuration

files. Some collectors may take a relatively long time to perform. You can create a new

ProcessThread group using the ‘ProcessThread’ attribute for a collector, or the

<ProcessThread> tag.

When you use the ‘ProcessThread’ attribute or Tag you specify an ID that you create. Each

unique ID you specify will place the Collector in a process that only processes collectors with

that ProcessThread ID. In this way you can place ‘slow’ collectors in their own process.

Specifying a ProcessThread is pretty flexible, and is case sensitive. So if you specify an ID

of ‘Foo’ on one collector and create a <ProcessThread> tag for a group of collectors with an

ID of ‘foo’ they will be in different processes; if you however specify ‘Foo’ for both, they will

28 Revision 18.02 Board Instrumentation Framework

all run in the same process/worker thread.

Example:

 <Collector ID="RX-1" ProcessThread=”MyOtherWorker”>

 <Executable>Collectors/Network2.py</Executable>

 </Collector>

4.3.2 <Executable>

This specifies the external program to be launched that will return the data to be sent to

Oscar. The Minion framework will use the exact case that is provided in the XML file, as

such if the OS and or program you are calling is case sensitive, take care.

When the external program is launched, it is done so in an external process, this is not very

fast and does take resources. Please view section 4.10.2 for more information.

Note that I’ve done some interesting work that allows Python collectors to be dynamically

loaded into the Minion process, rather than launching a separate process. Please refer to

section 4.10.1 for more details.

4.3.3 <Bound>

Optional

This tag allows you to specify a range to bound the numeric data in and what to do if the

data falls outside that range.

Example:

<Bound Max="20000" Min="15555" Action="set"/>

The <Bound> allows you to specify a minimum or maximum, or both and what to do if the

collected value is outside those. The values must be numeric, they can be integer or float

values.

Valid Actions are:

 Drop – drop the data, do not send it

 Set – change the collected value to the bound which it passed

 RepeatLast – re-send the last value sent that falls within the bounds.

Set is the default Action if you do not specify one. You must specify either Min or Max or

both.

4.3.4 <Param>

The <Executable> specified may need parameters. You may put one or more <Param>

nodes in a collector to provide the parameters.

4.3.4.1 Example

The following is an example of a collector that is written in Python, it will be called every

250ms. Note that the name of the executable is Python.exe and the parameters are the

29 Revision 18.02 Board Instrumentation Framework

actual Python file to run (GetProgress.py).

<Collector ID="Progress" Frequency="250">

 <Executable>Python.exe</Executable>

 <Param>GetProgress.py </Param>

</Collector>

4.3.5 Using another Collector as a <Param>

You may wish to use the output of another collector or operator as a <Param> to a

collector. To do this, you specify the ID of the collector wrapped in @() as the parameter:

<Collector ID="ProcessProgress" Frequency="250">

 <Executable>MyBashScript.sh</Executable>

 <Param>@(Progress)</Param>

</Collector>

In this collector, we call an external script called “MyBashScript.sh” and pass the value of

the data collected from the ‘Progress’ Collector.

The two collectors must be in the same Namespace. If the ‘ProcessProgress” collector is run

before the ‘Progress” collector has actually collected any data, then the ‘ProcessProgress’

collector will not collect anything.

4.3.6 <Normalize>

Sometimes the data being collected is desired to be in a per second or per time period

basis. Network throughput for example is usually in a Megabits Per Second or Gigabits Per

Second resolution.

A Collector may go out and read the current # of Bytes that have been send or received

over a given network interface every second. However that is raw data not normalized (or

averaged).

If you specify a Normalization factor the framework will do some calculations to determine

the difference from the last time the data was collected and normalize it to a per second

basis.

The <Normalize> number is a float value, it should be a positive non-zero number.

A value of 1, will simply normalize the data to a per second value.

However if you wish to do other calculations, you can specify a different value. For example

the build-in Network Collectors return BytesPerSecond. This is not the way most customers

in the networking world think, they are used to Megabits Per Second. To convert from

Bytes to second to Bits per second, a Normilize value of 0.00000008. (1Byte per second =

0.00000008 Mbps)

4.3.6.1 SyncFile Attribute

Experimental

Normalization is a data rate over calculated based upon the time between collections that is

factored into a rate per second value and then scaled with whatever number you provide.

The time between collections is done within the Minion framework. You can use the

30 Revision 18.02 Board Instrumentation Framework

timestamp of a file as the time between collections instead if you like:

<Collector ID="TX-1" Frequency="250">

 <Executable>Collectors/Network.py</Executable>

 <Param>GetNetTx</Param>

 <Param>Local Area Connection</Param>

 <Normalize SyncFile=”NetworkIo.txt”>0.00000008<Normalize>

</Collector>

Here you gather some data and instead of using the current system time and comparing it

to the last time the collection was run as part of the normalization factoring, it uses the

current timestamp on the NetworkIo.txt file and compares to the last time the collection

was run and it checked the timestamp on the same file.

This type of calculation likely has limited value and maybe most suited for

DynamicCollectors.

4.3.7 <Precision>

Many times the data collected, normalized and scaled is a float value. The <Precision> tag

specifies how many digits to the right of the decimal you wish the data to have. The default

is to leave the precision as none, meaning as many decimal places as was provided by the

collector.

4.3.8 Example

The following example calls a built-in collector to read the network TX bytes from the ‘Local

Area Connection’ LAN Port. Note the <Normalize> tag and value. The resulting value will

have a single digit to the right of the decimal place via the <Precision> tag.

<Collector ID="TX-1" Frequency="250">

 <Executable>Collectors/Network.py</Executable>

 <Param>GetNetTx</Param>

 <Param>Local Area Connection</Param>

 <Normalize>0.00000008<Normalize>

 <Precision>1</Precision>

</Collector>

4.4 <Group>
The <Group> tag allows you to group a bunch of collectors together. The collectors

<Collector> listed within a <Group> tag are all collected in sequential order and the results

from all the collectors are packaged up into a single network packet and sent.

This could be useful if you are charting many individual pieces of data within one chart – it

makes sure they all arrive at the same time.

Attribute M/O Comments

Frequency O Frequency to collect data – for ALL collectors within the

group

31 Revision 18.02 Board Instrumentation Framework

4.4.1.1 Frequency

How often to call this group of collectors, in milliseconds. If Frequency is not specified for a

group, then the DefaultFrequency for the Namespace is used. Any frequencies listed on an

individual Collector within the group will be ignored.

4.4.1.2 Example

 <Group Frequency="300">

 <Collector ID="TX" Frequency="250">

 <Executable>Collectors\FileCollector.py</Executable>

 <Param>ParseFile</Param>

 <Param>BX_Simulator.txt</Param>

 <Param>TX</Param>

 <Param>=</Param>

 <Param>1</Param>

 </Collector>

 <Collector ID="RX" Frequency="250">

 <Executable>Collectors\FileCollector.py</Executable>

 <Param>ParseFile</Param>

 <Param>BX_Simulator.txt</Param>

 <Param>RX</Param>

 <Param>=</Param>

 <Param>1</Param>

 </Collector>

 <Collector ID="BX" Frequency="250">

 <Executable>Collectors\FileCollector.py</Executable>

 <Param>ParseFile</Param>

 <Param>BX_Simulator.txt</Param>

 <Param>BX</Param>

 <Param>=</Param>

 <Param>1</Param>

 </Collector>

 </Group>

4.5 <DynamicCollector>
A DynamicCollector reads the contents of a text file containing one or more lines and ID and

DATA pairing such as:

Temp=75

NumCPUs=4

NumCores=16

It will read this text file at the period defined by the Namespace Frequency, or one specified

for the DynamicCollector itself.

When it reads the file, it will make a <Collector> for each ID found in the file and assign the

32 Revision 18.02 Board Instrumentation Framework

value associated with it. If new IDs are added to the file, they will dynamically be added as

well.

As the DynamicCollector runs, it will update the data associated with each <Collector> it

adds to the framework, and the data for those collectors will be sent onwards.

The key point is that the DynamicCollector is the piece that creates other Collectors based

upon it doing something – usually reading the contents of a file.

Note: There is no ID associated with the <DynamicCollector>

Note: If you have a large file as your source (many data points) you are likely to get an OS

level error something like: Minion - WARNING - Error sending data :[WinError 10040]

A message sent on a datagram socket was larger than the internal message buffer or

some other network limit, or the buffer used to receive a datagram into was smaller

than the datagram itself.

This is because the single packet it attempted to create as too huge for the network

to handle. If can happen if you put the <DynamicCollector> in a group.

4.5.1 Attributes

The <DynamicCollector> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

Frequency O How often, in milliseconds, to collect data or OnDemand

OnlySendOnChange O Boolean (Default is False)

DoNotSend O Boolean (Default is False)

Prefix O Text to prepend to the ID

Suffix O Text to append to the ID

4.5.1.1 Frequency

How often to call this collector, in milliseconds. If Frequency is not specified for a Collector,

then the DefaultFrequency for the Namespace is used.

If you specify “OnDemand” for the frequency, then the collector will only collect when it

receives a task from Marvin.

Keep in mind that this collector goes and reads a file and creates <Collector>s based upon

the data within the file which in turn sends data. It does not send data itself.

 “OnDemand” Frequency

This has not been tested for the <DynamicCollector>, it will most likely work just fine, just

be aware that it won’t update the resulting <Collector>s data until you active this collector.

See the <Collector> OnDemand for an explanation on how it work.

file:///C:/Users/bpjohns1/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/5NP79OX4/OnDemand%23_

33 Revision 18.02 Board Instrumentation Framework

4.5.1.2 OnlySendOnChange

This Attribute can have a value of “True” or “False”. If True, then the data collected is only

sent to Oscar if it has changed since the last time it was sent. In the case of the

<DynamicCollector> it will pass this flag down to any <Collector>s it creates.

4.5.1.3 DoNotSend

This Attribute can have a value of “True” or “False”. If True, then the data collected but not

sent. The default value is False, which is the same as not specifying DoNotSend, and the

data will be sent.

In the case of the <DynamicCollector> it will pass this flag down to any <Collector>s it

creates.

4.5.1.4 Prefix

The DynamicCollector makes the ID for the resulting collector from the data within the

specified file. If you specify a Prefix, it will prepend that to the ID string found in the file.

So if in the file you have:

Temp=75

And you specify Prefix=”CPU.” The resulting data ID will be “CPU.Temp”

4.5.1.5 Suffix

The DynamicCollector makes the ID for the resulting collector from the data within the

specified file. If you specify a Suffix it will append that to the ID string found in the file.

4.5.2 <File>

This specifies the external text file that the <DynamicCollector> is to go read. This is

required, unless you are making your own DynamicCollector and using the <Plugin>

capability.

4.5.2.1 Example

The following is an example of a dynamic collector, it reads the file ‘perfdata.txt’ and I

specify a prefix of ‘Wow’.

 <DynamicCollector Prefix=”Wow.” OnlySendOnChange="True">

 <File>perfdata.txt</File>

 </DynamicCollector>

Let’s assume the file looks like this:

Temp=75

NumCPUs=4

NumCores=16

It will create three collectors with ID’s of:

Wow.Temp

34 Revision 18.02 Board Instrumentation Framework

Wow.NumCPUs

Wow.NumCores

As it reads the file, it will re-read those ID and values and update the values within those

Collectors

4.5.3 <SplitToken>

You may specify one or more of these to indicate the string you wish to use to determine

the ID from the value. The defaults used are '=','= ',': ',':',' '

Note that these are specified in order of priority, the 1st token that works is used

4.5.3.1 Example

 <DynamicCollector Prefix=”Wow.” OnlySendOnChange="True">

 <File>perfdata.txt</File>

 <SplitToken>=</SplitToken>

 <SplitToken>= </SplitToken>

 </DynamicCollector>

This make it so the only two tokens used to split the data is an equal or an equal followed

by a space.

4.5.4 <Normalize>

Sometimes the data being collected is desired to be in a per second or per timeperiod basis.

Network throughput for example is usually in a MegabitsPer Second or Gigabits Per Second

resolution.

A Collector may go out and read the current # of Bytes that have been send or received

over a given network interface every second. However that is raw data not normalized (or

averaged).

If you specify a Normilization factor the framework will do some calculations to determine

the difference from the last time the data was collected and normalize it to a per second

basis.

The <Normalize> number is a float value, it should be a positive non-zero number.

A value of 1, will simply normalize the data to a per second value.

However if you wish to do other calculations, you can specify a different value. For example

the build-in Network Collectors return BytesPerSecond. This is not the way most customers

in the networking world think, they are used to Megabits Per Second. To convert from

Bytes to second to Bits per second, a Normilize value of 0.00000008. (1Byte per second =

0.00000008 Mbps)

4.5.4.1 Example

The following example calls a built-in collector to read the network TX bytes from the ‘Local

35 Revision 18.02 Board Instrumentation Framework

Area Connection’ LAN Port. Note the <Normalize> tag and value.

<Collector ID="TX-1" Frequency="250">

 <Executable>Collectors/Network.py</Executable>

 <Param>GetNetTx</Param>

 <Param>Local Area Connection</Param>

 <Normalize>0.00000008</Normalize>

36 Revision 18.02 Board Instrumentation Framework

4.5.5 <LockFile>

This optional tag allows you to specify a lockfile to be used when the file collector is running.

It acts as a semaphore or lock. While the file exist this collector does not run. When the

file is not present, it creates the file, reads the data from the file specified in <File> and

creates/updates the collectors. When finished it deletes the lockfile. In this way an

external program that is generating the file can use the lockfile in the same way to prevent

reading only a partially updated file.

4.5.6 <Modifier>

Sometimes the data being collected in a DynamicCollector is something you may want to

have treated differently than the rest of the data collected. Say for example the dynamic

collector collects some data that you don’t care about so you don’t want to send it to Oscar,

or you want to change the precision, scale or normalization of a data point. You can use a

modifier.

Example:

 <DynamicCollector DoNotSend=”True”>

 <File>foo.txt</File>

 <Normalize>1</Normalize>

 <Precision>2</Normalize>

 <Modifier ID=”ErrorCount_TX” DoNotSend=”False” SendOnlyOnChange=”True”>

 <Normalize>0</Normalize>

 <Precision>0</Precision>

 </Modifier>

 <Modifier ID=”ErrorCount_BX” DoNotSend=”False” SendOnlyOnChange=”True”>

 <Normalize>0</Normalize>

 <Precision>0</Precision>

 </Modifier>

 <Modifier ID=”ErrorCount_RX” DoNotSend=”False” SendOnlyOnChange=”True”>

 <Normalize>0</Normalize>

 <Precision>0</Precision>

 </Modifier>

 </DynamicCollector>

So in this example, the DynamicCollector goes and reads data from the foo.txt file and

creates dynamic collects from it. For each of those it normalizes them to a per second value

(with Normalize = 1) and it sets the Precision to 2 decimal places, in addition the

DynamicCollector itself specifies not to send any of the data it collects (which can be useful

if it gathers 100’s of pieces of data but you only care about say 1 of them).

So then we add a Modifier (you can add as many as you like). In this case I say for the

ErrorCount_TX collector (read from the foo.txt file) I want you to send the data, but only if

it changes from collection to collection, I want a precision of zero and I don’t want the data

normalized.

I do the same with the ErrorCount_BX and ErrorCount_RX collectors.

37 Revision 18.02 Board Instrumentation Framework

An interesting feature (if I do say so myself) is that I made it so you can specify a RegEx

filter for the ID. So you could specify an ID of ErrorCount_(*.) once and be done in order to

accomplish what was above:

 <DynamicCollector DoNotSend=”True”>

 <File>foo.txt</File>

 <Normalize>1</Normalize>

 <Precision>2</Normalize>

 <Modifier ID=”ErrorCount_(.*)” DoNotSend=”False” SendOnlyOnChange=”True”>

 <Normalize>0</Normalize>

 <Precision>0</Precision>

 </Modifier>

 </DynamicCollector>

4.5.7 Attributes

The <Modifier> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

SendOnlyOnChange O Boolean (Default is False)

OnlySendOnChange O Boolean (Default is False)

Scale O Float value

4.5.8 <Normalize>

See <Normalize>

4.5.9 <Precision>

See <Precision>

4.5.10 <Plugin>

The DynamicCollector by default reads information from a file (as specified in the <File>

tag, and creates collectors based upon what is in the file.

Rather than specifying a file, you can specify a plugin where you identify a specific function

to call within a python file to run. This function then can dynamically create and update

Collectors using ‘callback’ object passed as a required parameter to the function.

All the other capabilities of a DynamicCollector remain the same, except you replace <File>

with <Plugin> and the tags it requires.

Example:

 <DynamicCollector Frequency="1000">

38 Revision 18.02 Board Instrumentation Framework

 <Plugin>

 <PythonFile>Collectors/Collectd.py</PythonFile>

 <EntryPoint SpawnThread="True">CollectionThread</EntryPoint>

 <Param>localhost</Param>

 <Param>3232</Param>

 </Plugin>

4.5.10.1 <PythonFile>

Specifies the external python file where the function to call resides. Only python is

supported currently.

4.5.10.2 <EntryPoint>

Specifies the function within the python file to execute. The function specified must have at

least one parameter, the first parameter will always be a frameworkInterface object that the

function can use to add new collectors. Other parameters can also be added per <Param>

tags.

This Tag has an option attribute of SpawnThread (case sensitive) and it takes a boolean

string (“True” or “False”). If it is True, then the framework will create a new thread to run

your custom DynamicCollector in. It is up to you to implement it in a thread-safe manner.

The frameworkInterface object passes along a lot of useful things, including a function

(KillThreadSignalled) that you can call each loop to see if you should gracefully exit.

For example the function signature for the Collectd plugin collector looks like:

def CollectionThread(frameworkInterface, IP, Port):

 frameworkInterface object

This object is the 1st parameter passed to your function, and it contains functions and

information you need for your own custom DynamicCollector.

frameworkInterface.DoesCollectorExist(ID) # does a collector with ID already exist

frameworkInterface.AddCollector(ID) # Add a new collectr

frameworkInterface.SetCollectorValue(ID,Value,ElapsedTime) # Assign the collector a

 new value, along with how

 long since last update

frameworkInterface.KillThreadSignalled() # returns True if signalled to end your

 worker thread, else False

frameworkInterface.LockFileName() ockfile name for dynamic collector, if specified

frameworkInterface.Interval() # the frequency from the config file

For the function SetCollectorValue() if you do not provide the optional ElapsedTime

parameter, the framework will automatically calculate this for you.

4.6 <ProcessThread>

You can specify that a group of collectors/groups etc. all reside within a ProcessThread,

which will create a new worker thread to process all of those

The <ProcessThread> tag supports the following attributes, which are case sensitive.

39 Revision 18.02 Board Instrumentation Framework

Attribute M/O Comments

Name M How often, in milliseconds, to collect data or OnDemand

Example:

<ProcessThread Name=”MyWorker”>

 Collector ID="TX-1" Frequency="250">

 <Executable>Collectors/Network.py</Executable>

 </Collector>

 <Collector ID="RX-1"

 <Executable>Collectors/Network2.py</Executable>

 </Collector>

</ProcessThread>

See ProcessThread attribute for more information.

4.7 Aliases
I added the ability to have Aliases within the configuration XML file. Aliases come from two

places, a global <AliasList> section in the XML file (per file, not per Namespace) and also all

environment variables are automatically added as Aliases.

Why would you use an Alias you may ask? An easy example is from Section 4.3.8 where a

numeric value of 0.00000008 was used as a normalization value. This could be defined as

an Alias and used to make it much more readable and easy to change throughout the file:

<Alias BytesPerSec2MBPS=".00000008"/>

 ...

<Collector ID="TX-1" Frequency="250">

 <Normalize>$(BytesPerSec2MBPS)</Normalize>

 <Executable>Collectors/Network.py</Executable>

 <Param>GetNetTx</Param>

 <Param>Local Area Connection</Param>

</Collector>

The use of an alias can be anywhere that you would provide a piece of data, such as

Frequency, ID, Parameters etc. They are bounded by “$()”

When defining an Alias it must be within the <AliasList> tag. Each Alias is define as:

<Alias YourDesiredAlias=”Value to be substituted”/>

Another example is as follows:

<AliasList>

 <Alias BytesPerSec2MBPS=".00000008"/>

 <Alias ButesPerSec2GBPS=".000000008"/>

 <Alias MyFreq="500"/>

 <Alias NS="$(COMPUTERNAME)"/>

 <Alias Test="$(NS).$(MyFreq)"/>

</AliasList>

40 Revision 18.02 Board Instrumentation Framework

You may use one alias within the definition of another, so long as it has already been

defined, as seen in this example:

<Alias NS="$(COMPUTERNAME)"/>

Here I create an alias of NS and associate it with the COMPUTERNAME alias – which in this

case came from the environment variable on my Windows box.

You can also combine aliases:

<Alias Test="$(NS).$(MyFreq)"/>

This creates an alias of Test that results in the NS and MyFreq aliases being combined with

a period between the two, which would be “Patrick-Laptop.500”. This is a silly example,

however it illustrates the feature.

4.7.1 Reading Alias From external File

The AliasList tag can take an optional File attribute. You can specify an external file to load

additional aliases from.

<AliasList File=”MyAliasList.txt”>

 <Alias.......

</AliasList>

You can specify an AliasList and therefore an external Alias File for every xml file used for

Minion configuration. See <ExternalFile> for more information.

4.7.2 ComputerName Alias

On a Microsoft Windows system, the Computername environment variable exits. However

there is no environment variable under Linux for this. So I create one. The

$(CompuerName) alias is available under both Linux and Windows.

4.7.3 WORKING_DIR Alias

The current working directory of where the Minion.py file is running from.

4.7.4 Usage

It may be desirable to send a Minion with some pre-defined collectors to somebody to

gather say Network statistics, you can create scripts to be called that take as a parameter

the Network device that return such things as data rate, errors, packet count, queue count

etc.

However you will not know what the actual system name for the port you want that person

to gather data on is. For example in Windows the default name is “Local Area Connection”,

however the user could have changed it to something more useful for them such as “IT

Connection” or “Test Network”. You can create an Alias that can be changed in one place:

<Alias NIC="Test Network”/>

<Collector ID="TX-1" Frequency="250">

 <Normalize>$(BytesPerSec2MBPS)</Normalize>

 <Executable>Collectors/Network.py</Executable>

41 Revision 18.02 Board Instrumentation Framework

 <Param>GetNetTx</Param>

 <Param>$(NIC)</Param>

</Collector>

You could even get fancy and based upon some environment variable call different scripts

depending on the OS you are running, one set for Windows and another for Linux.

42 Revision 18.02 Board Instrumentation Framework

4.8 Build-In Collectors
I have provided a small yet growing library of build in collectors that can be used and

modeled after if you wish to make your own based upon Python. They are located in the

Collectors directory.

Note: New collectors provided in releases of Minion may not be reflected here in the

documentation; best to go and take a peek in there once in a while.

4.8.1 FileCollector

Located in the Collectors\FileCollector.py file. The File Collectors provide an easy

mechanism to read a value from a file and use it as the dataset to be sent to Oscar.

This can be useful if you are running a long test and want to occasionally write the progress

of that test to a file, you can define a collector to go read that file and send the value

(presumably 0 to 100) to some Widget in the GUI.

There are two functions defined within the Collectors\FileCollector.py:

4.8.1.1 ReadFromFile

Takes a single parameter, the filename to open and read. If the file does not exist or

cannot be opened, “Error” will be returned.

 Example

The following example calls the ReadFromFile function from the FileCollector.py source file

with the parameter of “Demonstration\ServerName.txt”, which is the name of the file to go

read the data from.

This collector also uses the OnlySendOnChange attribute.

<Collector ID="ServerName" OnlySendOnChange="True">

 <Executable>Collectors\FileCollector.py</Executable>

 <Param>ReadFromFile</Param>

 <Param>Demonstration\ServerName.txt</Param>

</Collector>

4.8.1.2 ReadFromFileWithLock

Takes two parameters, the first is the filename to open and read. If the file does not exist

or cannot be opened, “Error” will be returned. The second is a semaphore file to be used for

exclusivity. How this works is if the file exists, then the data file is assumed to be in the

process of being updated by something else and the collector will wait for up to 1 second for

the lock file to not be present.

Once the lockfile is not present, it will then create it, read the datafile, close the lockfile and

return the contents of the datafile.

The algorithm another process should use to update the datafile is as follows:

While (Lockfile Exists)

{

 Wait

43 Revision 18.02 Board Instrumentation Framework

}

Create Lockfile

Open Datafile

Write data to Datafile

Close Datafile

Delete Lockfile

 Example

The following example calls the ReadFromFileWithLock function from the FileCollector.py

source file with the parameter of “Demonstration\ServerName.txt”, which is the name of

the file to go read the data from and the lock file is “TempDir\ServerNameLockFile.txt”

<Collector ID="ServerName">

 <Executable>Collectors\FileCollector.py</Executable>

 <Param>ReadFromFileWithLock</Param>

 <Param>Demonstration\ServerName.txt</Param>

 <Param>TempDir\ServerNameLockFile.txt</Param>

</Collector>

4.8.1.3 ParseFile

I’ve provided a kinda cool collector that will allow you to parse a file. Let’s say for example

that you have a worker script that is always running that is every 100ms dumping the

output from Ethtool to a file. You can use this collector to specify which individual piece of

data you want from that file!

Example file resulting from piping Ethtool –S:

NIC statistics:

 rx_bytes: 1124739465

 rx_error_bytes: 0

 tx_bytes: 12467736

 tx_error_bytes: 0

 rx_ucast_packets: 198836

 rx_mcast_packets: 686

 rx_bcast_packets: 10546993

 tx_ucast_packets: 130518

 tx_mcast_packets: 8

 tx_bcast_packets: 2097

 tx_mac_errors: 0

 tx_carrier_errors: 0

 rx_crc_errors: 0

 rx_align_errors: 0

 tx_single_collisions: 0

 tx_multi_collisions: 0

 tx_deferred: 0

 tx_excess_collisions: 0

 tx_late_collisions: 0

 tx_total_collisions: 0

 rx_fragments: 0

44 Revision 18.02 Board Instrumentation Framework

 rx_jabbers: 0

 rx_undersize_packets: 0

 rx_oversize_packets: 0

 rx_64_byte_packets: 8662169

 rx_65_to_127_byte_packets: 1416121

 rx_128_to_255_byte_packets: 135089

 rx_256_to_511_byte_packets: 255267

 rx_512_to_1023_byte_packets: 101485

 rx_1024_to_1522_byte_packets: 176384

 rx_1523_to_9022_byte_packets: 0

 tx_64_byte_packets: 13332

 tx_65_to_127_byte_packets: 104450

 tx_128_to_255_byte_packets: 4689

 tx_256_to_511_byte_packets: 10152

 tx_512_to_1023_byte_packets: 0

 tx_1024_to_1522_byte_packets: 0

 tx_1523_to_9022_byte_packets: 0

 rx_xon_frames: 0

 rx_xoff_frames: 0

 tx_xon_frames: 0

 tx_xoff_frames: 0

 rx_mac_ctrl_frames: 0

 rx_filtered_packets: 11408451

 rx_ftq_discards: 0

 rx_discards: 0

 rx_fw_discards: 0

You specify the File to open, the pattern you are searching for (such as ‘rx_bytes’), the

tokens to use to break the line where the pattern is found up into an array of individual

string, and the index of the string you want from the resulting array, zero based.

 Example

The following example calls the Parse function from the FileCollector.py source file with the

parameter of “Demonstration\ethtool.txt”, which is the name of the file to go read the data,

searching for the rx_65_to_127_byte_packets statistic, tokenized by a colon and a space,

and you want the string[1] result. Per the above example, it will return 1416121

 <Collector ID="ParseTest" Frequency="250">

 <Executable>Collectors\FileCollector.py</Executable>

 <Param>ParseFile</Param>

 <Param>Demonstration\ethtool.txt</Param>

 <Param>rx_65_to_127_byte_packets</Param>

 <Param>: </Param>

 <Param>1</Param>

 </Collector>

4.8.1.4 ParseFileWithLock

This performs the same thing as ParseFile, with the addition of a lock file, as discussed in

ReadFromFileWithLock.

45 Revision 18.02 Board Instrumentation Framework

You specify the File to open, the lockfile, the pattern you are searching for (such as

‘rx_bytes’), the tokens to use to break the line where the pattern is found up into an array

of individual string, and the index of the string you want from the resulting array, zero

based.

 Example

The following example calls the Parse function from the FileCollector.py source file with the

parameter of “Demonstration\ethtool.txt”, which is the name of the file to go read the

data,the lockfile “Demonstration\ethtool.txt.lock” searching for the

rx_65_to_127_byte_packets statistic, tokenized by a colon and a space, and you want the

string[1] result. Per the above example, it will return 1416121

 <Collector ID="ParseTest" Frequency="250">

 <Executable>Collectors\FileCollector.py</Executable>

 <Param>ParseFileWithLock</Param>

 <Param>Demonstration\ethtool.txt</Param>

 <Param>Demonstration\ethtool.txt.lock</Param>

 <Param>rx_65_to_127_byte_packets</Param>

 <Param>: </Param>

 <Param>1</Param>

 </Collector>

4.8.2 Network

Note: If gathering data on a Linux system, better to use LinuxNetwork collector.

The Collectors\Network.py file contains two routines, one to read the Network Tx data for a

device and another to read the Network Rx data for a device.

This Collector file uses the PSUTIL library that is available for both Windows and LINUX

based system. If you wish to use the collector, you must install PSUTIL on the system

where it will be used. See http://code.google.com/p/psutil/ for details.

4.8.2.1 GetNetworkRx

Takes a single parameter, the name of the network device to go read data from. This will

be OS and possibly system specific. Examples are ETH0, eth0, Local Network Connection.

The data returned will be in Total Bytes Received on that interface. Using the Normalization

capability of the Minion framework, this can be converted to Bytes/Sec, Bits/Sec, Mbps,Gbps

etc.

 Example

This example reads the network RX data from the ‘Local Area Connection’ device and

normalizes it to Gbps.

<Collector ID="RX-1" Frequency="250">

 <Executable>Collectors/Network.py</Executable>

 <Param>GetNetworkRx</Param>

 <Param>Local Area Connection</Param>

 <Normalize>0.00000008<Normalize>

</Collector>

http://code.google.com/p/psutil/

46 Revision 18.02 Board Instrumentation Framework

4.8.2.2 GetNetworkTx

Takes a single parameter, the name of the network device to go read data from. This will

be OS and possibly system specific. Examples are ETH0, eth0, Local Network Connection.

The data returned will be in Total Bytes Received on that interface. Using the Normalization

capability of the Minion framework, this can be converted to Bytes/Sec, Bits/Sec, Mbps,Gbps

etc.

 Example

This example reads the network RX data from the ‘Local Area Connection’ device and

normalizes it to Gbps.

<Collector ID="RX-1" Frequency="250">

 <Executable>Collectors/Network.py</Executable>

 <Param>GetNetworkTx</Param>

 <Param>Local Area Connection</Param>

 <Normalize>0.00000008<Normalize>

</Collector>

4.8.3 CPU

Note: If gathering data on a Linux system, better to use Linux_CPU collector.

The Collectors\CPU.py file contains two routines, one to read the overall CPU Utilization

percentage and another to read for a specific core.

This Collector file uses the PSUTIL library that is available for both Windows and LINUX

based system. If you wish to use the collector, you must install PSUTIL on the system

where it will be used. See http://code.google.com/p/psutil/ for details.

4.8.3.1 GetCPU_Percentage

Takes no parameters, it simply reads the overall CPU utilization for ¼ of a second and

returns the utilization value percentage.

 Example

This example reads the overall CPU utilization.

<Collector ID="CPU" >

 <Executable>Collectors/CPU.py</Executable>

 <Param>GetCPU_Percentage</Param>

</Collector>

4.8.3.2 GetCPU_Core_Percentage

Takes a single parameter – the core # to read the utilization from, it reads the CPU

utilization for the specified cor for ¼ of a second and returns the utilization value

percentage.

 Example

This example reads the l CPU utilization for core 12.

<Collector ID="CPU_Core_12" >

http://code.google.com/p/psutil/

47 Revision 18.02 Board Instrumentation Framework

 <Executable>Collectors/CPU.py</Executable>

 <Param>GetCPU_Core_Percentage</Param>

 <Param>12</Param>

</Collector>

4.8.4 Linux_CPU

The Collectors\Linux_CPU.py file contains two real functions of use. The First is

CreateUtilizationList, which creates a comma separated list of CPU utilization for every core

– useful for feeding a bar chart in Marvin.

Usage in Minion:

<Collector ID="CPU_Utilization_List" >

 <Executable>Collectors/Linux_CPU.py</Executable>

 <Param>CreateUtilizationList</Param>

</Collector>

If you require more details (essentially all the info linux ‘top’ will give you) then you can use

the dynamic collector function CollectStatsFunction like so:

 <DynamicCollector>

 <Plugin>

 <PythonFile>Collectors/Linux_CPU.py</PythonFile>

 <EntryPoint SpawnThread="True">CollectStatsFunction</EntryPoint>

 </Plugin>

 </DynamicCollector>

4.8.5 PowerShell

This collector allows you to call a PowerShell script. Not used it much.

4.8.6 RandomVal

This collector is used for testing or simulating a data feed when a feed is not available. The

RandomVal collector can generate a single integer, floating point or a comma separated

integer list between a defined min and max value.

GetBoundedRandomValue(min,max) This will return a random integer between the two

values, not inclusive of second value. The collector below will create a single value of 3

through 14 every second.

<Collector ID="StackedTx_Server1" Frequency="1000">

 <Executable>Collectors\RandomVal.py</Executable>

 <Param>GetBoundedRandomValue</Param>

 <Param>3</Param> <!-- Min -->

 <Param>15</Param> <!-- Max -->

</Collector>

GetBoundedRandomList(min,max,listSize) Returns a comma separated list of random

integer between the two values, not inclusive of second value. Size of list is determined by

48 Revision 18.02 Board Instrumentation Framework

the fourth param. The collector below will create a 20 list with integer values of 1 through 9

every 250 milliseconds.

 <Collector ID="RandomList" Frequency="250">

 <Executable>Collectors\RandomVal.py</Executable>

 <Param>GetBoundedRandomList</Param>

 <Param>1</Param> <!-- Min -->

 <Param>10</Param> <!-- Max -->

 <Param>20</Param> <!-- List Size -->

</Collector>

GetScaledBoundedRandomValue(min,max,scale) Returns a scaled random value. So if you

want values of 1.0 to 100.0 send min=10,max=100,scale=0.1 to get the float value.

<Collector ID="RandomList" Frequency="250">

 <Executable>Collectors\RandomVal.py</Executable>

 <Param>GetScaledBoundedRandomValue</Param>

 <Param>10</Param> <!-- Min -->

 <Param>100</Param> <!-- Max -->

 <Param>0.1</Param> <!-- Scale -->

</Collector>

4.8.7 Parrot

This collector is used for testing, not much use in a real environment. All it does is return

the string you send to it as the parameter. Is useful for testing a widget, or doing

something like sending the ComputerName to the Gui by using an environment variable

Alias for the single parameter.

Maybe something like:

<Collector ID="Computer_Name" >

 <Executable>Collectors/Parrot.py</Executable>

 <Param>Echo </Param>

 <Param>$(ComputerName)</Param>

</Collector>

4.8.8 IPC_Linux

This collector is now a plugin collector. It will call one or more of the programs that is part

of the Intel Performance Counter Monitor. It will actually call those executables for you and

parse the output. The result is potentially > 1000 data points.

 <DynamicCollector SendOnlyOnChange="True">

 <Plugin>

 <PythonFile>Collectors/IPC_Linux.py</PythonFile>

 <EntryPoint SpawnThread="True">PCM_Collector</EntryPoint>

 <Param>pcm,core,memory,numa,pcie</Param>

 <Param>1.0</Param>

 </Plugin>

 </DynamicCollector>

https://software.intel.com/en-us/articles/intel-performance-counter-monitor

49 Revision 18.02 Board Instrumentation Framework

This config example says to go run the PCM_Collector function in the IPC_Linux.py file, give

it its own worker thread. The Parameters are a list of the names of the IPC programs

(currently pcm,pcm-core,pcm-memory,pcm-numa and pcm-pcie). And to call each one of

them for 1 second in order to gather data. Do not make the value of the 2nd param less

than 1.0. The names in the list are as in the example – the order does’t matter, only the

spelling. If you only want one of them, then don’t enter the others.

The programs will be called sequentially, so this collector example will take a bit over 5

seconds to loop through and collect data from all of the programs.

4.8.9 OVSdb

This collector will connect to an OVSdb to gather information. You must have configured

OVSdb to accept json socket calls.

Example:

 <DynamicCollector SendOnlyOnChange="True">

 <Plugin>

 <PythonFile>Collectors/OVSdb.py</PythonFile>

 <EntryPoint SpawnThread="True">OVSDB_Collector</EntryPoint>

 <Param>sut ip or dns name </Param>

 <Param>6640</Param>

 <Param>False</Param>

 </Plugin>

 </DynamicCollector>

The three params are the location of the OVSdb (could be local or remote), the port it is

listening on and lastly a Boolean (True or False) flag to indicate that the collector should

gather a minimal dataset (True) or everything (False).

4.8.10 LibVirt

This collector will connect to an libvirt to gather information about virtualization. It

theoretically could connect to a libvirt on another system – have not yet tested that.

Example:

 <DynamicCollector SendOnlyOnChange="False">

 <Plugin>

 <PythonFile>Collectors/LibVirt.py</PythonFile>

 <EntryPoint SpawnThread="True">LibVirt_Collector</EntryPoint>

 <Param>qemu:///system</Param>

 </Plugin>

The single parameter is the location of the libvirt service.

4.8.11 Collectd

This collector will listen for data from collectd (which needs to be configured to send data

over the network).

Example:

50 Revision 18.02 Board Instrumentation Framework

 <DynamicCollector SendOnlyOnChange="True">

 <Plugin>

 <PythonFile>Collectors/Collectd.py</PythonFile>

 <EntryPoint SpawnThread="True">CollectionThread</EntryPoint>

 <Param>127.0.0.1</Param>

 <Param>4444</Param>

 </Plugin>

 </DynamicCollector>

The Parameters indicate where to listen for incoming collectd data.

4.8.12 IPMI

This collector will run ipmitool locally and gather data from the local BMC. ipmitool must be

installed and configured.

Example:

 <DynamicCollector SendOnlyOnChange="True">

 <Plugin>

 <PythonFile>Collectors/ipmitoolParser.py</PythonFile>

 <EntryPoint SpawnThread="True">CollectIPMI_Info</EntryPoint>

 </Plugin>

 </DynamicCollector>

4.8.13 SystemInfo - Linux

This collector will go gather a bunch of linux information, such as cpu utilization, BIOS

version, system manufacturer etc. Uses the dmidecode application, so it must be present.

Example:

 <DynamicCollector SendOnlyOnChange="True">

 <Plugin>

 <PythonFile>Collectors/SystemInfo_Linux.py</PythonFile>

 <EntryPoint SpawnThread="True">CollectSystemInfo_Linux</EntryPoint>

 </Plugin>

4.8.14 LinuxNetwork

This collector will go and mine data from the /sys/class/net file system. It is capable of

getting data from ALL devices in that tree, or a specific device (depending on which function

you call). It can gather all details, or just data about data rates – again depending on

parameters.

Example – Single device:

 <DynamicCollector DoNotSend="False" SendOnlyOnChange="True">

 <Plugin>

 <PythonFile>Collectors/LinuxNetwork.py</PythonFile>

 <EntryPoint SpawnThread="True">CollectDevice</EntryPoint>

 <Param>eth0</Param>

51 Revision 18.02 Board Instrumentation Framework

 <Param>False</Param>

 </Plugin>

 </DynamicCollector>

This example will collect a ton of data available for eth0 by mining the /sys/class/net/eth0

directory structure. The 1st Param indicates the device, the second indicates if the collector

should gather a ‘slim data set’ (only rx/tx information) or not. Value of false gathers a

great deal more data.

Example – All devices:

 <DynamicCollector DoNotSend="False" SendOnlyOnChange="True">

 <Plugin>

 <PythonFile>Collectors/LinuxNetwork.py</PythonFile>

 <EntryPoint SpawnThread="True">CollectAllDevices</EntryPoint>

 <Param>False</Param>

 </Plugin>

 </DynamicCollector>

Note that this example calls a different Entry Point function. It will gather data from all

devices in /sys/class/net. The 2nd parameters is the same as the previous example, for a

slim data set or not.

4.9 Operator Collectors
There are times when you might like to take the results of two collectors and perform an

operation on them. A good example is that you can easily go read the RX and TX bytes on

a Linux system by using the build in FileCollector to read the /sys/class/net/device/statistics

files. However if you want the BX (Bidirectional Value), there is no file to go read that. So I

created Operators that will allow you to manipulate data from other collectors within the

same namespace.

An Operator looks the same as a Collector, has an ID, and a frequency however instead of

an <Executable> tag, there is an <Operator> tag, followed by 1 or more <Input> tags

(instead of <Param>).

Here is an example:

 <Group Frequency="500">

 <Collector ID="Eth1.TX.bytes">

 <Executable>Collectors\FileCollector.py</Executable>

 <Normalize>$(BytesPerSec2GBPS)</Normalize>

 <Param>ReadFromFile</Param>

 <Param>/sys/class/net/eth1/statistics/tx_bytes</Param>

 </Collector>

 <Collector ID="Eth1.RX.bytes">

 <Executable>Collectors\FileCollector.py</Executable>

 <Normalize>$(BytesPerSec2GBPS)</Normalize>

 <Param>ReadFromFile</Param>

 <Param>/sys/class/net/eth1/statistics /rx_bytes</Param>

 </Collector>

52 Revision 18.02 Board Instrumentation Framework

 <Collector ID="Eth1.BX.bytes">

 <Operator>Addition</Operator>

 <Input>Eth1.TX.bytes</Input>

 <Input>Eth1.RX.bytes</Input>

 </Collector>

 </Group>

This example read the RX and TX bytes from standard linux files, then gives you the BX

bytes by doing an Addition Operator on the data collected from the RX and TX collectors.

4.9.1 Operator <Input>

All of the Operators take 1 or more <Input>s. The inputs can be either the ID of another

collector in the same namespace, or a constant value. The ID of anther collector can be a

the ID from a Dynamic Collector and as such it may not be created at the time of the

application initialization, if this is true then a message will be logged about the missing

Collector ID.

Example:

<Input>Eth1.RX.bytes</Input>

<Input Constant=”True”>52.5<Input>

The above example has two inputs, one is from a collector with the ID of Eth1.rx.bytes and

the second is a constant value.

Example:

<Collector ID=”QueueAverage”>

 <Operator>Averate</Operator>

 <Input DefaultValue=”0”>Queue_0_tx</Input>

 <Input DefaultValue=”0”>Queue_1_tx</Input>

</Collector>

Here the Average operator will try to read the data from the collectors with IDs of

Queue_0_tx and Queue_1_tx. If those collectors have already been collected their values

will be used, otherwise they will use the default value of 0 for their calculations.

4.9.1.1 Default Value

An <Input> is either a Constant as shown above, or another collector ID. However

sometimes the input collector specified by the ID is not yet available (meaning the Collector

has not run yet, or the value hasn’t been created yet by say a DynamicCollector). Yet you

will want the Operator to be run. You can specify a DefaultValue to use until the collector

becomes valid.:

4.9.2 Operator Addition

This Operator will take 2 or more <Input>s and sum them up. They must be numeric

values.

53 Revision 18.02 Board Instrumentation Framework

4.9.3 Operator Average

This Operator will take 1 or more <Input>s and average them. They must be numeric

values.

If you specify but a single <Input> then the Operator will keep a history of up to 100 values

for averaging.

Note: Might make it configurable for how long to keep history for single input

4.9.4 Operator MakeList

This Operator will make a comma separated list from <Input>s. This can be useful for

making charts.

4.9.5 Operator Duplicate

This Operator will simply duplicate the <Input> provided. This may not sound too useful,

but consider a collector that collects data say every 5 seconds, but you want to make a

chart update every seconds. You could use the Duplicate Operator to accomplish this.

4.9.6 Compare Operators

There are several compare Operators that take 3 or 4 <Inputs>. The first two <Input>s

are compared and if the result of the comparison operation is True, then the result of

<Input> 3 is sent. If the result is False and <Input> 4 was specified, it is sent. If

<Input> 4 is not specified, nothing is sent.

Example:

 <Collector ID="TestRunning">

 <Operator>Compare_EQ</Operator>

 <Input>StatusCollector</Input> <!—If StatusCollector == ‘True’ -->

 <Input Constant="True">Running</Input>

 <Input Constant=”True”>Yes</Input> <!—then send ‘Yes’ -->

 <Input Constant="True">No</Input> <!—else send ‘No’ -->

 </Collector>

Supported Compare Operators are:

 Compare_EQ

 Compare_NE

 Compare_GT

 Compare_GE

 Compare_LT

 Compare_LE

4.9.7 Operator Compare_EQ

Provides a mechanism to compare two Inputs, if they equal, it will send the value indicated

in the 3rd <Input>. If they are not equal, and there is a 4th <Input> specified, it will send

that value. This make an if-then-else ability.

54 Revision 18.02 Board Instrumentation Framework

Example:

 <Collector ID="TestRunning">

 <Operator>Compare_Eq</Operator>

 <Input>StatusCollector</Input> <!—If StatusCollector == ‘True’ -->

 <Input Constant="True">Running</Input>

 <Input Constant=”True”>Yes</Input> <!—then send ‘Yes’ -->

 <Input Constant="True">No</Input> <!—else send ‘No’ -->

 </Collector>

4.9.8 Operator Compare_NE

Compare Operator that checks for Not Equal (!=) between the 1st two <Input>s, if result is

true then the <Input> 3 is sent, else if specified <Input> 4 is sent.

4.9.9 Operator Compare_GT

Compare Operator that checks for Greater Than (>). Compare Operator that checks for Not

Equal (!=) between the 1st two <Input>s, if result is true then the <Input> 3 is sent, else if

specified <Input> 4 is sent.

4.9.10 Operator Compare_GE

Compare Operator that checks for Greater Than or Equal (>=).Compare Operator that

checks for Not Equal (!=) between the 1st two <Input>s, if result is true then the <Input> 3

is sent, else if specified <Input> 4 is sent.

4.9.11 Operator Compare_LT

Compare Operator that checks for Less Than (<).Compare Operator that checks for Not

Equal (!=) between the 1st two <Input>s, if result is true then the <Input> 3 is sent, else if

specified <Input> 4 is sent.

4.9.12 Operator Compare_LE

Compare Operator that checks for Less Than or Equal (<=).Compare Operator that checks

for Not Equal (!=) between the 1st two <Input>s, if result is true then the <Input> 3 is

sent, else if specified <Input> 4 is sent.

4.9.13 Greatest

Sends the greatest <Input> value for a list of <Input>s. If all values are numeric it will

send the highest numeric value, otherwise it will be a string compare.

4.9.14 Least

Sends the least <Input> value for a list of <Input>s. If all values are numeric it will send

the smallest numeric value, otherwise it will be a string compare

55 Revision 18.02 Board Instrumentation Framework

4.9.15 MaxValue

Keeps track of the numeric data sent for the <Input> collectors (1 or more) and always

sends the maximum value that has been collected amongst that list since collection began.

4.9.16 MinValue

Keeps track of the numeric data sent for the <Input> collectors (1 or more) and always

sends the minimum value that has been collected amongst that list since collection begain.

4.9.17 UserDefined

Pretty stoked about this one.

This is an interesting Operator that is a hybrid between a Collector and an Operator. It

takes an <Executable> and <Param>s as well as <Input>s used for using data from other

collectors.

This can be very useful of your own logic. Take for example you want to display a

DyanmicImage in the GUI based upon a state machine that has 4 inputs that are all

available via Collectors. With this Operator you can send those inputs to your own

externally defined operator and return an state machine state value that corresponds to the

appropriate image to be displayed in the GUI.

Example:

 <Collector ID="BX" Frequency="250">

 <Normalize>2</Normalize>

 <Operator>Addition</Operator>

 <Input>TX</Input>

 <Input>RX</Input>

 </Collector>

 <Collector ID="dymmyList">

 <Operator>MakeList</Operator>

 <Repeat Count="72">

 <Input Constant="True">CORE$(CurrentValueAlias).Utilization</Input>

 </Repeat>

 </Collector>

 <Collector ID="foo">

 <Operator>UserDefined</Operator>

 <Executable>Test.py</Executable>

 <Param>Perftest5</Param>

 <Param>P1</Param>

 <Param>P2</Param>

 <Input>dymmyList</Input>

 <Input Constant="True">const val</Input>

 <Input>BX</Input>

 </Collector>

56 Revision 18.02 Board Instrumentation Framework

The above example ‘foo’ Collector uses the UserDefined Operator that calls the user

supplied Perftest5 Function within the user supplied Test.py file, and passes 5 parameters to

the function.

The 1st,2nd and 4th parameters are constant value. The 3rd and 5th are all values from other

Collectors.

4.9.18 Looping for Input

There are times when you might have a lot of input for a given Operator. Say you wanted

to use the MakeList Operator to make a list of CPU utilization for all of the CPU’s in your

system, and you have 72 of them. You could do something like this:

 <Collector ID="CPU.UTIL.LIST ">

 <Operator>MakeList</Operator>

 <Input>CORE0.Utilization</Input>

 <Input>CORE1.Utilization</Input>

 <Input>CORE2.Utilization</Input>

 <Input>CORE3.Utilization</Input>

 <Input>CORE4.Utilization</Input>

 ….

 <Input>CORE71.Utilization</Input>

 </Collector>

And that would work just fine. But can get tedious and not flexible. Instead you can use

the <Repeat> ability (currently just for Operator <Input>s)

 <Collector ID="CPU.UTIL.LIST ">

 <Operator>MakeList</Operator>

 <Repeat Count=”72”>

 <Input>CORE$(CurrentValueAlias).Utilization</Input>

 </Repeat>

 </Collector>

When you use Repeat, you must specify count. There is automatically going to be two

aliases created:

 CurrentValueAlias – as used above, range is 0-71

 CurrentCountAlias – as used above, range is 0-71

There is another options you can specify which is “StartValue”, which indicates the starting

to begin counting at. Final number will be StartValue + Count.

 <Collector ID="CPU.UTIL.LIST ">

 <Operator>MakeList</Operator>

 <Repeat “Count=36” StartValue=”36”>

 <Input>CORE$(CurrentValueAlias).Utilization</Input>

 </Repeat>

 </Collector>

In this example, CurrentValueAlias has the range of 36-71 and CurrentCountAlias has range

of 0-36.

57 Revision 18.02 Board Instrumentation Framework

4.10 Making your own collectors
While I’ve provided a few basic collectors, different demos and tests will likely want a much

broader range of data to collect. The basic rule is if you create a runnable ‘thing’ that can

be called by the framework, and that thing returns (if it is Python) or prints to stdout a data

point the Minion framework can call it and send the data.

The collectors can be executables, .BAT files, script files, Python, Perl, bash, etc. It matters

not.

For example, a .BAT version of the Parrot collector could look like:

Parrot.bat:

echo %1

4.10.1 Python

Python scripts can be called just like any other script, making the Python executable the

<Executable> part of the collector.

However I’ve also made it so the Minion framework will try to dynamically load the specified

python script into its own process space, rather than launching a completely new process.

See Section 4.10.2 for information about performance considerations.

If you make a python script that simply runs on its own (as if it has a main()) then the

dynamic load will fail. The script will still run and be launched, however it will be done so in

a separate process.

In order to make your own Python script that will be dynamically loaded into the process

space of the Minion framework, the script must be made up of functions, and those

functions called in the framework. Refer to the build-in-collectors provided for examples.

4.10.2 Considerations

While the Minion framework is robust enough to allow you to call any external program or

script you create to gather the data you wish to be displayed, each time this external

program or script is run, it is done so in a completely separate process. Think of it as

opening a new DOS Box, or Terminal each time you need to gather data. It works fine, but

is not very efficient.

The exception to this is if you make Python scripts that can be dynamically loaded into the

Minion framework process space as discussed in Section 4.10.1.

To prevent running out of memory, each Collector can only have one active instance at a

time. What this means is if your collector takes say 1 second to run, yet the Frequency for

the collector is set to say ½ a second, the framework will wait for the previous instance to

run before launching the next one.

If the framework did not do this, it would quickly open up so many processes that the

system ran out of memory and compute power.

If you need to create many collectors that gather data that are launched in a separate

process (for example a bash script, or a binary executable), it may have a noticeable effect

on system resources – that could skew the desired test/demo results. If this is the case,

58 Revision 18.02 Board Instrumentation Framework

consider making your data gathering app/script/etc. run on its own and instead of printing

the data to be sent to the GUI to standard out, write it to a file and then use a File Collector

to read the data. It may prove much more efficient.

Note: To see a comparison of performance differences between an internally called

(dynamically loaded python script) vs. launching an external script, run both the

DemoConfig.xml and DemoConfig_DynaLoad.xml config files and compare the CPU

utilizing of the system under test.

4.11 Mute Collector
There are times when you may want to perform a task at a regular interval, but not send

any data to the GUI or Oscar. To accommodate this, make a regular collector but instead of

returning a piece of data, return the string “HelenKeller” (very case sensitive). Helen may

be the most famous of all mute people in history – even though in reality she was not mute

and learned to speak.

4.12 <Actor> (Tasks)
The Minion framework is capable of also performing tasks – which means it is capable of

executing external applications to go perform tasks on demand as opposed to on a regular

basis.

A Task is initiated by a GUI (such as Marvin) to go do something. For example if you want

to go start a performance test of some kind. You can manually start a script from a

command line, or you can assign a task to a Widget in the GUI and a message will be sent

to the Minion framework to go do that task.

Tasks are defined in the configuration XML file in a manor very similar to that of a collector;

there is no frequency (as it is done on demand) and since the tasks do not return any data,

there is no normalization.

4.12.1 Attributes

The <Actor> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

ID M The ID the Task to be performed

4.12.1.1 ID

This is the ID the actor to call. As with the ID for a Collector, the ID+Namespace of an

Actor should be unique within a Minion Config file.

4.12.2 <Executable>

This is nearly the same as the <Executable> tag for a Collector. The exception being that if

the external program called as a Task returns any data, it is ignored and NOT sent back to

the GUI.

59 Revision 18.02 Board Instrumentation Framework

4.12.3 <Param>

The <Executable> specified may need parameters. You may put one or more <Param>

nodes in a collector to provide the parameters.

Parameters can also be sent from Marvin as part of the Task Request. Any Paramaters sent

from Marvin will be added to the invocation after the ones listed in the Minion configuration

file.

4.12.4 Example

The following is an example Actor entry into the Minion configuration XML file that when

invoked will run the ‘launchCoreWorkload.sh’ script and pass it a parameter of ‘0’.

<Actor ID="RunWorkLoadTask_Core_0">

 <Executable>launchCoreWorkload.sh</Executable>

 <Param>0</Param>

</Actor>

4.13 Using Additional Files
One might want to create a library of files in which you define a common set of collectors.

You can do this using the <ExternalFile> tag.

Within a namespace, you simply add this tag. Here is an example (from the

DemoConfig.xml file):

<!-- Some others are defined externally, and use some aliases-->

<ExternalFile Rate1="250" Rate2="500">Demonstration/AdditionalFile.xml</ExternalFile>

Within an external file you can create an alias list (which is only valid for that file, and any

files it may load externally) and additional collectors. You cannot create new Actors. All

collectors will be part of the Namespace which the <ExternalFile> tag is listed within.

You can pass ‘parameters’ to an external file as shown above. It is really an Alias that is

created just before the file is parsed, and removed when it is done parsing. So this means

in the example above, Rate1 and Rate2 are aliases used within the ‘AdditionalFile.xml’, but

they do not exist outside of that.

60 Revision 18.02 Board Instrumentation Framework

5 Oscar

In addition to being a character from my early youth, Oscar is the name I’ve given the

‘middle’ layer of the BIFF Instrumentation Framework project. Oscar receives data from

one or more Minions and sends that data onto one or Marvin. Oscar has the ability to save

and playback the data received from minions.

Oscar can now (as of version Beta 1.20) accept input from other Oscars as well – allowing
you to chain them. Be careful though, no protection is in place for circular connections

Oscar is written in Python and has a GUI written in tkinter. As of Beta 1.20 you can run

Oscar in a session with no gui. If it fails to load a GUI, it will default to command no Gui.

Figure 2 Oscar

5.1 Running Oscar

To run Oscar you simply type:

python Oscar.py

This will start up Oscar with the default configuration file of OscarConfig.xml.

There are many optional command line parameters when you invoke Oscar:

Parameter Description / Usage

-i | --input filename Specify a specific configuration filename

-v | --verbose Print debug information to console and log file

61 Revision 18.02 Board Instrumentation Framework

-l | --logfile Logfile name – default is OscarLog.txt

-p | --playback Loads and plays the specified file

-rp Repeat mode – replays the specified playback file

-lp Loop mode – repeats data in specified file from points

Specified by –b and –e options

-b | --begin Data packet # in playback file to begin playback, used with –

e option

-e | --end Data packet # to stop at before returing to –begin # when

looping

-s | --speed Playback speed, only used with –p option

-r | --record filename Records and when done recording, saves to specified file

-t | --time Runs for specifed time (minutes) before exiting. Used with –r

option mostly

-m | --minimize Launches gui minimized

5.2 The configuration file
Example

<?xml version="1.0" encoding="utf-8"?>

<Oscar ID="Oscar1">

 <IncomingMinionConnection IP="localhost" PORT ="3232"/>

 <TargetConnection IP="localhost" PORT="3234"/>

 <TargetConnection IP="patrick-pc" PORT="3234"/>

 <TargetConnection IP="javabox" PORT="3234"/>

 <SendStatus>True</SendStatus>

</Oscar>

5.2.1 <Oscar>

The Oscar tag is the root for the configuration file. It takes a required ID. This is used to

identify the specific Oscar. This is because you can actually have more than one Oscar

feeding data to Marvin(s). Since Marvin(s) need to send data to Oscar(s) this provided a

mechanism by which to identify Oscar(s).

The Oscar ID needs to be different for each Oscar connected to a specific Marvin –

otherwise undesired results are likely.

62 Revision 18.02 Board Instrumentation Framework

5.2.2 <IncomingMinionConnection>

The IncomingMinionConnection tag defines a socket where Oscar will listen for incoming

data packets from one or more minions. This connection point will be for receiving data

from minions that will then be sent to Marvin.

This tag is required. This is the connection point that you specify in your Minion

configuration file <TargetConnection> tag.

5.2.2.1 Attributes

The <IncomingMinionConnection> tag supports the following attributes, which are case

sensitive.

Attribute M/O Comments

IP M Local IP Address to listen for data from Minion(s)

PORT M Local UDP Port to listen for data from Minion(s)

5.2.2.2 IP

IP Address for Oscar to listen on.

5.2.2.3 Port

Port on which the Oscar will listen for incoming data.

5.2.3 <TargetConnection>

You specify one or more <TagetConnection> tags, each one points to a Marvin Gui. You

can run multiple Marvins at the same IP, but they will need different ports. What you

specify in the Oscar <TargetConnection> tag should match the Marvin <Network>

information.

Note: Oscar will scan the configuration file for changes while it is running. Any NEW targets

added to the configuration file will be added while it is running. Only additions can be

made while running. If you wish to remove a target, you must re-start the

application.

5.2.3.1 Attributes

The <TargetConnection> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

IP M Remote IP Address to send data to a Marvin

PORT M Remote UDP Port to send data to a Marvin

63 Revision 18.02 Board Instrumentation Framework

5.2.3.2 IP

Remote Address to send data to a Marvin or a downstream Oscar.

5.2.3.3 Port

Remote Address to send data to a Marvin

5.2.4 <IncomingMarvinConnection>

Marvin needs to communicate with Oscar, to send Tasks as well as a heartbeat.

If you do not specify the <IncomingMarvinConnection> tag, Oscar will randomly choose a

port and listen on all interfaces. If you specify all or part of <IncomingMarvinConnection>

that will be used.

Oscar will send a message to Marvin informing Marvin of where to send data to Oscar.

5.2.4.1 Attributes

The <TargetConnection> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

IP O IP address for Oscar to listen for Marvin messages on. If not

specified, will listen on all devices

PORT O UDP Port to listen for Marvin messages on. If not specified, a

random port will be chosen

5.2.4.2 IP

IP address to listen for Marvin messages on.

5.2.4.3 Port

UDP Port to listen for Marvin messages on.

5.2.5 <MarvinAutoConnect>

The <MarvinAutoConnect> key is an optional way that a Marvin can automatically connect

to an Oscar. This is opposed to the ‘normal’ mechanism by which the Oscar must explicitly

point to a Marvin for Marvin to get data.

Using the MarvinAutoConnect feature a Marvin can point to an Oscar and connect

automatically upon startup.

Example

<MarvinAutoConnect Key="PatrickKutchKey"/>

If a Marvin is configured for automatic connections it will upon startup (and only upon

startup) send a message to Oscar with a hash of the key it has been configured with. If

those keys match, then Oscar will add that Marvin to its list of targets to send data to.

Note:

64 Revision 18.02 Board Instrumentation Framework

If you specify a Marvin as a traditional target via <TargetConnection> and that target also

connects via MarvinAutoConnect, that Marvin will receive each data point twice. So

take care.

5.2.6 <Shunt>

EXPERIMENTAL: This has not been fully tested

The Shunt option allows you to write specific data sets to files. You can use Regular

Expressions for both the Namespace and ID used in selecting the data. Additionally you can

specify how the data is written – it can be written to a file in a DynamicCollector format, or

it can be written in a historical manner where the file is appended with latest value.

5.2.6.1 Attributes

The <Shunt> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

Namespace M Namespace of the dataset to filter on. Can be a RegEx.

ID M ID of the dataset to filter on. Can be a RegEx.

Type O Current only valid option is ‘History’, which will append the

data to the specified file. Default option is to overwrite the

data within the file on every update.

Example:

<Shunt Namespace=".*" ID="Systime" Type="History">HistoricalData.txt</Shunt>

<Shunt Namespace=”DemoNamespace" ID="Brazil">BrazilData.txt</Shunt>

The 1st one will match on any incoming Namespace and an ID of SysTime. The data will be

written to the HistoricalData.txt file, all changes are appended to the file.

The 2nd one matches on DemoNamespace for the Namespace and any data with the string

Brazil will be written to the BrazilData.txt file in a Namespace.DataID=Value format.

5.2.7 <BITW>

EXPERIMENTAL: This has not been fully tested

This is Bump In The Wire. It allows you to change the namespace of data before it is

transmitted. Consider the case where you instrument you server or a bunch of VMs or

whatever, you run your tests and record the results using Oscar. Then you go and modify

the settings on the system run the tests again and record them. Now you have two sets of

recorded data and you would like to show them side-by-side in the GUI. You could have 2

instances of Oscar running to play the two recordings – but the Namespace and ID’s of the

data in both files is the same.

With BITW, you can change the namespace/s from one set of data before it is sent.

Example: <BITW>

65 Revision 18.02 Board Instrumentation Framework

<BITW>

 <Input Namespace="(.*)"/>

 <Output Namespace=".newNamespace"/>

 <Mode>Append</Mode>

</BITW>

You can specify more than one <BITW> section. Each section must have an Input

namespace and out Output Namespace as shown above. The <BITW>, <Input>, <Output>

and optional <Mode> tags are case sensitive.

<Input> specifies the namespace to search for. It can be a literal, or a regular expression.

In the example above, it is match on ALL.

<Output> is the new namespace to use, or the one to append to the existing, depending on

<Mode>

<Mode> by default is Replace. Which will replace the matched namespace with the one

specified. If Mode is ‘Append’, then the string specified in <Output> will be appended to

the matched namespace. In the example above, all namespaces will have the string

“.newNamespace” appended to them.

<BITW>

 <Input Namespace="VM18"/>

 <Output Namespace="VM18.SecondTest"/>

</BITW>

In this example, all data points with the Namespace of VM18 and replace it with

“VM18.SecondTest”.

Note that the Namespaces themselves are not case dependent, so in this example it will

also match on Vm18, vm18 and vM18.

Bump In The wire should work with Saved data, live data and chained data.

5.3 Using Oscar

5.3.1 Live Data

Once Oscar has started up, you can press the Start button to start receiving data from

Minion(s) and sending it to Marvin(s).

The stop button will stop the live feed.

5.3.2 Recording Data feed

Once you have pressed the Start button, you will start to receive data from Minion(s).

Pressing the record button will keep a copy of the incoming data in memory while also

sending it to Marvin(s). It will keep doing so until you press ‘Stop’. At which time you can

then playback the recorded data with the panel on the right, or you can save the recorded

data for playback. Using the File menu.

You can save the data to either an Oscar file for playback later, or you can save it to a CSV

formatted file for using in Excel.

66 Revision 18.02 Board Instrumentation Framework

Note: If you exit the app without saving your data, you will not be prompted, it will be

gone.

5.3.3 Playing back Recorded Data

Figure 3 Oscar with Playback Pane

Once you have recorded live data as described above, or loaded a saved recorded session

using the File menu, the Playback tab will appear. It works very much like A CD player.

There are some options to repeat the playback (will loop through all the data repeatedly)

and to change the speed at which the playback occurs.

67 Revision 18.02 Board Instrumentation Framework

6 Marvin

Marvin is the code name for the Java 8 based GUI that is part of the BIFF Instrumentation

Framework . It receives a piece of data from Oscar that can be either live data or recorded

that originated from a Minion. Each data packet contains a Namespace and an ID, these are

used to ‘connect’ a data point to a ‘Widget’ (GUI component) to be displayed in Marvin.

Marvin has been designed to be highly configurable; everything is configurable via XML files.

This includes what you display as well as how it is displayed. The what is a collection of

Widgets and the how is determined by stylesheets (CSS Files). Furthermore, Marvin is

designed to be agnostic to the data it is displaying – it knows nothing about the kind of data

it is getting, could be CPU Utilization, network throughput or the name of the computer.

6.1 General Components

Marvin will have on or more Tabs, similar to

what is shown in Figure 1. On each Tab you

can place as many Widgets as you like.

Widgets are placed into Grids. Grids are very

similar (pretty much idential) to HTML tables.

When adding a widget to a Tab, you specify

which grid position the widget should be

placed.

You can layer widgets on top of each other,

there is no restriction on this. You can do

some advanced features doing this as

discussed in Section 11.1.

Figure 4 Tab Control

68 Revision 18.02 Board Instrumentation Framework

6.1.1 Grids

Grids are the basis of layouts for displaying your Widgets. Figure 5 shows a simple example

of a Grid within a Tab.

Figure 5 Sample Grid

Grid rows and columns start numbering at 0. The width and height of an individual Grid cell

is determined by the largest height and width of widgets within its row and column. If there

is no widget placed into a row or column, its size will be 0. The above figure features both a

row and column in which no widgets are placed, thus resulting in a size of 0; this would be

row 3 and column3.

In between rows and columns there are configurable gaps; hgap is for horizontal spacing

(gap) between columns while vgap is the spacing between row. In the above example the

hgap is set to 15 and the vgap is set to 5.

Note in Figure 5 how the width of column 0 is determined by the width of the Dial 1 Widget.

The same is true for both the height or Row 1 – it is the height of the LCD 1 widget; while

the width of Column 1 is the width of the LCD 1 widget.

Note how the height of rows 1 and 2 are the same, but how LCD 2 is not as wide as the

column it is in.

69 Revision 18.02 Board Instrumentation Framework

6.1.2 Grids within Grids

Each Tab that you define has a grid automatically placed in it by default. You can add more

grids within this ‘base’ grid in order to achieve desired layouts. The following figure provides

an example of a tab with multiple grids.

Figure 6 Grids

The standard grid, or Tab Grid, is where the large dial is placed, at location 0,0

(row,column). Next there is a Grid Widget placed at location 0,1 within the Tab Grid.

Within this grid widget, 8 dials are placed. Then finally another Grid Widget is placed in grid

location 1,1 (the center) of the first Grid Widget and a simple colored pane placed with it.

Using Grids within grids you can achieve very sophisticated layouts – though it will take

practice; I suggest reading up on best practices on HTML tables.

6.2 Running Marvin
The working directory from where you launch Marvin must be the directory where the

BIFF.Marvin.jar file exists.

Command line options are:

Parameter Description / Usage

-i Specify application configuration file, default is

Application.xml

-v,-vv,-vvv,-vvvv Different verbosity levels for debugging

70 Revision 18.02 Board Instrumentation Framework

-log Specify the name of the log file. Default is MarvinLog.html

-aliasfile Specify an external file (See Section 6.2.1)

-dumpalias Dumps all aliases at the root (main application level)

-dumpWidgetInfo Dumps dimensions of widgets, and all files used to create

app (tab and grid files)

-altSplash Specifies an alternate splash image file to use

Example:

java –jar BIFF.Marvin.jar –i demo\DemoApp.xml

6.2.1 External Alias File

Note: No spaces between –aliasfile=inputfile

If you use the –aliasfile command line parameter you can specify an external file will be

turned into aliases. The format text of the file is pretty simple:

Aliasname=aliasvalue

You can use the # sign for comments.

This is useful if you want to create a generic tab with alias values for namespaces and ID’s,

that are defined externally.

See the MyAliasList.txt file packaged with the example app.

71 Revision 18.02 Board Instrumentation Framework

6.3 Configuration File
The XML configuration file is where the magic happens for Marvin, it is where you define

what data gets displayed, how it is displayed and what Tasks you might like to perform

when you click on a widget.

The default XML file used by Marvin is “Application.xml” in the same directory as the .jar

file. You can specify a different XML file, see Section 6.2 for details.

The basic hierarchy for the XML file is as follows:

<Marvin>

 <Application>

 <Network>< /Network >

 <Title></Title>

 <Tabs>

 <Tab ID=”tab-1”/>

 ...

 <Tab ID=”tab-n”/>

 </Tabs>

 </ Application >

 <Tab ID=”tab-1>

 <Widget></Widget>

 ...

 <Widget></Widget>

 </Tab>

 <Tab ID=”tab-n>

 <Widget></Widget>

 ...

 <Widget></Widget>

 </Tab>

 </Namespace>

 <TaskList ID=”TaskList-1”>

 <TaskItem></TaskItem>

 ...

 <TaskItem></TaskItem>

 </TaskList>

 <TaskList ID=”TaskList-n”>

 <TaskItem></TaskItem>

 ...

 <TaskItem></TaskItem>

 </TaskList>

 <AliasList>

 <Alias Foo=”Hi Bob” Bar=”Bye Bob/>

 </AliasList>

</Marvin>

72 Revision 18.02 Board Instrumentation Framework

6.3.1 <Marvin>

This is the root node for the application XML configuration file. It has no attributes.

6.3.2 <Application>

The <Application> section of the XML configuration file defined what components will be

used in composing the resulting GUI. This includes the title, look and feel, network

connections, tabs etc.

6.3.2.1 Attributes

The <Application> tag supports the following attributes.

Attribute M/O Comments

ID O ID of the Marvin

Mode O Debug or Kiosk

Scale O Global size change for widgets

Height O

Width O

EnableScrollBars O

MarvinLocalData O Creates some local data points

 ID

The attribute provide an ID for the specific instance of the Marvin. It is used for

RemoteMarvinTasks.

 Mode

If ‘Debug’ is specified then the gridlines in the grids will appear – very helpful for working on

layouts. Additionally Spacer widgets will be red by default instead of invisible. Logging will

also be at higher level.

In Debug mode, if you press shift and click on a Widget, the log file will contain information

about that Widget, including the Minion Source associated with it.

If ‘Kiosk’ is specified, no tasks will be performed. If you have a task associated with a menu

item or a Widget, nothing will happen. This is designed to be used at a kiosk or some sort

of location where people can play with the Gui and look at stuff, but not manipulate

anything directly.

In Debug mode, if you press shift and click on a widget, it will log that widget’s information.

If you are pressing CTRL and click on a widget (again Debug mode), the background and

border will change, makes it easier to see the different grids within grids.

 Scale

Experimental setting that will grow or shrink sizes of widgets based upon a float value (ex

73 Revision 18.02 Board Instrumentation Framework

0.75 or 1.25 to shrink or grow by %25)

There is a way to automatically scale the widgets. Rather than specifying a value for the

Scale attribute, set it to “Auto”: Scale=”Auto”, and use the <CreationSize> tag to try

automatically scaling.

NOTE: At this time the scaling of charts and graphs does not work.

 Height

Height of main window. Note if not specified, will grow to the size of the screen.

 Width

Width of main window. Note if not specified, will grow to the size of the screen.

 EnableScrollBars

If “True”, will add scroll bars to the application on every tab. Default is False.

 MarvinLocalData

If set to ‘Enabled’, Marvin will automatically generate several MinionSrc datapoints that are

completely local to that instance of Marvin. They will all have the namespace of

‘MarvinLocalNamespace’. Id’s are as follows:

 Datapoints - Number of unique datapoints (Namespace+ID)

 DataUpdateCount - Number of times data has come in

 LocalTime

 MarvinID - ID, if set in application config

 RuntimeFormatted - days,hours,minutes,secs Marvin has been running

 RuntimeSecs - seconds Marvin has been running

 TaskCount - Number of tasks created

 TasksExecutedCount - number of tasks Run

 UnassignedDatapointCount – Number of unique datapoints received, but not used

 WidgetCount - # of widgets/grids in app

6.3.2.2 <Title>

This specifies the title to be displayed in the title bar of the GUI.

6.3.2.3 <RefreshInterval>

Is really a debug type setting that is optional. Specifices the interval in milliseconds at

which the widgets should be re-drawn. Default is 350 which is 350ms.

6.3.2.4 <MonitorNumber>

Optional setting where you can specify a monitor number that is the application will launch

on. Monitor numbering stats at 1.

Example:

<MonitorNumber>2</MonitorNumber>

6.3.2.5 <Network>

The Network tag defines where the application should be listening for incoming data coming

from one or more Oscars.

74 Revision 18.02 Board Instrumentation Framework

 Attributes

The <Network> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

IP O Target IP Address

Port M Target UDP Port

 IP

IP Address that Marvin will bind to for listening for data on the specified port. If not

specified, it will listen on ALL interfaces on the specified port.

 Port

Port on which the Marvin is listening for data.

 Example

<Marvin>

 <Application>

 <Network IP="localhost" Port="3232"/>

 </Application>

</Marvin>

 Oscar Settings

The <Network> Settings can include any number of additional <Oscar> Tags as in the blow

example:

<Network Port="5200">

 <Oscar IP="MyOscarBox.kutch.com " Port="6200" Key="PatrickKutchKey"/>

</Network>

In this example Marvin is listening on port 5200 on all interfaces for data from one or more

Oscars. It also has an <Oscar> tag that points to a specific Oscar IP and Port as well as an

identifying Key. The Oscar IP and Port are the <IncomingMinionConnection> IP and port for

a specific Oscar. Using this information, upon startup Marvin will send a ‘quick message’ to

that location with the Marvin connection information so that the Oscar so that the Oscar

may in turn perform a ‘dyamic connection’ to this Marvin.

They Key provided is a minor security measure. A hash of the key is sent along with the

message from Marvin to Oscar. If Oscar has been configured with this same Key then it

allows the ‘dynamic’ session to be created. It also logs the connection.

Using this feature you can provide a user or a customer a copy of Marvin and have it point

to a specific Oscar somewhere with a specific Key. Your customer can then remotely view

your demo using a local GUI and you can see when they ran the demo (again, Oscar will log

it) and you can control access by removing that supported Key from the Oscar configuration

file.

6.3.2.6 <CreationSize>

CreationSize is an optional tag you can put in that will help automatically scale your widgets

75 Revision 18.02 Board Instrumentation Framework

and still maintain the correct relative dimensions.

If you put in the Height and Width of the screen you use to create you GUI (the about box

will tell you the Java dimensions. If you use the Scale=”Auto” setting, then the framework

will attempt to automatically determine a scaling factor based upon the <CreationSize>

dimensions and the current screen resolution.

6.3.2.7 Attributes

The <CreationSize> tag supports the following attributes, which are not case sensitive.

Attribute M/O Comments

Height O Height of screen used when you laid out the widgets

Width O Wiedht of screen used when you laid out the widgets

6.3.2.8 Padding

Defines global padding for the space between the edge of a grid and the placement of the

Widget. For example if you place a dial, and there is no padding, it will (likely) fill to the

size of the grid cell it is in. If you specify a padding, then the specified spacing will be

within the grid cell. This is the global default, that may be overridden on a per tab and grid

basis.

 Attributes

The <Padding> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

Top O Default global padding on top of cell grid, in pixels

Bottom O Default global padding on bottom of cell grid, in pixels

Left O Default global padding on left of cell grid, in pixels

Right O Default global padding on right of cell grid, in pixels

LegacyMode O I changed the way padding is not ‘inherited’ from the

application <Padding> setting for grids (it now works as it

should), but setting this flag to true will go back to old way, as

to not break existing apps.

6.3.2.9 StyleSheet

Specifies the optional external stylesheet that can be provided to change the look and feel

for the entire application.

76 Revision 18.02 Board Instrumentation Framework

6.3.2.10 IgnoreWebCerts

This Tag is for when you are using the Web widget and you point it towards a page that has

security certificates that are not installed on your system (like most KVM systems in our

labs). Since the Web Widget is basically a home-grown browser, I have not implemented

support to prompt to continue for this type of situation. So you can use this tag and put in

a value of True to ignore them.

<IgnoreWebCerts>True</IgnoreWebCerts>

This tag is optional.

6.3.2.11 Heartbeat

This is the rate (in seconds) in which Marvin will send an ‘I’m Here’ message to all of the

Oscars sending data. This allows the Oscars to stop sending data if a Marvin goes away –

prevents the sending of large amounts of data on the network when nobody is listening.

6.3.2.12 Tasks

This tag allows one to configure if Tasks will be allowed or not. Is similar to kiosk mode.

 Attributes

The <Tasks> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

Enabled O Either True or False Default is True

6.3.2.13 MainMenu

Marvin provides a mechanism by which you can create menu’s where a menu item is

associated with a Task. Note that this feature is used with the <Tasks> tag. The MainMenu

is made up of one or more Menu’s.

 Attributes

The <MainMenu> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

Show O Either True or False, if false hides the menu, default is True

 Menu

This is a menu to be displayed in the menu bar (MainMenu). It contains a title and a list of

menu items.

 Attributes

The <Menu> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

Title M Text to be displayed on menu bar

77 Revision 18.02 Board Instrumentation Framework

 MenuItem

This is the definition of the menu item. It contains two parts, the Text (what to display in

the menu and the Task to be performed.

 Example

<MainMenu Show="True">

 <Menu Title="Test">

 <MenuItem Text="Remote Dir" Task="RunDir"/>

 </Menu>

</MainMenu>

6.3.2.14 Tabs

The <Tabs> section of the <Application> definition contains the list of Tab ID’s to be

displayed. The definition of what is in each Tab is defined in a different location in the

configuration file. See Section 6.3.3 for details on defining and individual Tab.

The <Tabs> tag can take an optional attribute of ‘Side’, which allows you to specify a

location for the tabs to be placed on the screen. Valid options are ‘Top’ (the default),

‘Bottom’,’Left’ and ‘Right’

The <Tabs> tag contains no attributes, only a list of one or more <Tab> tags. The Tabs

will be displayed in the order listed within this section.

 Tab

Defines the Tab to be displayed, based upon the ID provided. The <Tab> tag contains but

a single mandatory Attribute of ID. The ID must have a corresponding Tab definition later

in the file.

 Example

<Tabs Side=”Right”>

<Tab ID="DemoTab-Dials"/>

<Tab ID="DemoTab-Indicators"/>

<Tab ID="DemoTab-LCD"/>

<Tab ID="DemoTab-Charts"/>

<Tab ID="DemoTab-Charts2"/>

<Tab ID="DemoTab-Images"/>

<Tab ID="DemoTab-Grids"/>

<Tab ID="DemoTab-Playback"/>

<Tab ID="DemoTab-Demo"/>

</Tabs>

6.3.2.15 <UnregisteredData>

There are times when you may be capturing data from Minion but not yet setup a Widget to

display that widget. Or you may simply want it displayed as text for a quick visual.

To accommodate this you can fill out the <UnregisteredData> section in the <Application>.

If the feature is enabled, then a new tab will be automatically created in the Application at

runtime for each Namespace for which there is unregistered data. All unregistered data for

that namespace will be displayed as text within that tab. The data will be sorted in

78 Revision 18.02 Board Instrumentation Framework

Alphabetical order by the ID.

Example:

Figure 7 UnregisteredData Example

In the example above, there are nearly 300 data points being automatically displayed. This

example uses the IPC_Linux.py Collector and the <DynamicCollector> to quickly gather a

great deal of performance data from the system under test.

Other than the ‘Enabled’ attribute, everything else has a default value that can be

overridden to change the visual attributes of the feature.

 Attributes

The <Menu> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

Width 0 Maximum # of items to display in a single row. Default is 5

Enabled O True or False, default is False. Must be True to enable the

feature

Title O Sets the title at top of page. Overrides the default.

 <TitleStyle>

Override the display style of the Title, using standard CSS string.

 <EvenStyle>

The data points are designed so that you can have alternating styles to differentiate the

data points. EvenStyle defines one of the alternating styles.

 <Background>

Override the background CSS style, using standard CSS string.

 <ID>

Override the CSS style of the ID portion of the data set to be displayed, using standard CSS

string.

 <Value>

Override the CSS style of the Value portion of the data set to be displayed, using standard

79 Revision 18.02 Board Instrumentation Framework

CSS string.

 <OddStyle>

The data points are designed so that you can have alternating styles to differentiate the

data points. OddStyle defines one of the alternating styles.

 <Background>

Override the background CSS style, using standard CSS string.

 <ID>

Override the CSS style of the ID portion of the data set to be displayed, using standard CSS

string.

 <Value>

Override the CSS style of the Value portion of the data set to be displayed, using standard

CSS string.

 <Example>

This example is what was used for the data displayed in Figure 7.

<UnregisteredData Width="13" Enabled="True" Title="System Info">

<TitleStyle>-fx-font-size: 3.5em;</TitleStyle>

<EvenStyle>

 <Background>-fx-background-color:green</Background>

 <ID>-fx-font-size: 1.0em;</ID>

 <Value>-fx-font-size: .9em;-fx-text-fill:yellow</Value>

 </EvenStyle>

 <OddStyle>

 <Background>-fx-background-color:grey</Background>

 <ID>-fx-font-size: 1.0em;-fx-text-fill:black</ID>

 <Value>-fx-font-size: .9em;-fx-text-fill:yellow</Value>

 </OddStyle>

</UnregisteredData>

6.3.3 Tab

The <Tab> section of the XML configuration file defines/describes what should appear on a

Tab screen.

There are several components to a Tab including layout, look and feel and of course the

widgets to display within the Tab.

The contents of a <Tab> may be defined wholly within the application XML configuration

file, or it may also be defined in another external XML file, using the File attribute. In

general, unless doing a very simple GUI, it is recommended to use an external file for each

Tab to keep things simple and modular. Additionally one could create a ‘library’ of tab to

use as needed.

Note that you may define a Tab, but not use it – meaning you can define a <Tab> section,

but if you do not specify the Tab within the <Tabs> it will not be displayed. Also note that

the order of the <Tab> definitions is not relevant to how they are displayed, tab display

order is defined by the order listed in <Tabs>.

80 Revision 18.02 Board Instrumentation Framework

Each Tab is a separate application ‘screen’. Each can have its own layout, color scheme,

padding, Alias’s etc. As mentioned in Section 6.1.1, each Tab has a built-in grid in which to

place widgets.

Within the <Tab></Tab> tag is where you will place your widget

6.3.3.1 Attributes

The <Tab> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

ID M ID of the Tab, must be unique.

Align O Where within application the

File O Specifies external file which defines widgets within the tab

hgap O Horizontal gap within the tab grid, default is 0

vgap O vertical gap within the tab grid, default is 0

 ID

This is the ID of the Tab, it must be unique within the XML configuration file. This ID

corresponds to the ID in the <Tabs> section.

 Align

Specifies where in the tab the tab grid should appear. Valid options are (points on a

compass):

Center

N

NE

E

SE

S

SW

W

NW

 File

Specifies an additional external file where the contents of the tab are specified. As with all

additional external files, the root of the XML scheme for the external file is

<MarvinExternalFile>. Widgets will then be required to be defined within the <Tab> tag.

<AliasList> and <TaskList> tags are at same level as <Tab>

 hgap

Specifies the horizontal gap to be inserted in between each column in the grid.

Can be specified as a % of application size, or parent grid size, just like height and width.

See Section 7.3.1.9 for details.

81 Revision 18.02 Board Instrumentation Framework

 vgap

Specifies the vertical gap to be inserted in between each row in the grid.

Can be specified as a % of application size, or parent grid size, just like height and width.

See Section 7.3.1.9 for details.

6.3.3.2 Title

Specifies the Title of the Tab – the text to be displayed at in the Tab control near the top of

the application.

6.3.3.3 Padding/PaddingOverride

Allows you to override the application global setting for the padding described in Section

6.3.2.6. You can use either <Padding> or <PaddingOverride>

 Attributes

The <PaddingOverride> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

Top O Default Tab padding on top of cell grid, in pixels

Bottom O Default Tab padding on bottom of cell grid, in pixels

Left O Default Tab padding on left of cell grid, in pixels

Right O Default Tab padding on right of cell grid, in pixels

6.3.3.4 StyleOverride

Allows you to change the style of the tab. For example the background is the background

color of the Tab frame or Grid that this grid is within. You can change that here, or add a

picture etc.

6.3.3.5 Widget

One or more widgets can be placed within a Tab. See Section on widgets information

6.3.3.6 Grid

You may place grids within grids in order to achieve various layouts. See Section 7.15.1.5

for information about Grids. Widgets are then placed within grids.

6.3.4 AliasList

Like the Alias in Minion, Marvin provides a mechanism by which you can create an Alias.

Aliases can be created in the main application XML configuration file, external Tab and

external Grid files. They must be created at same level as the Tab or Grid (not within a Grid

or Tab definition).

Aliases are read before the rest of the file, so you can use them in the top portion of the file,

82 Revision 18.02 Board Instrumentation Framework

even if not defined until the end of the file.

Example AliasList

 <AliasList>

 <Alias DownloadFont="Bold-Italic-title"/>

 <Alias TextCSS="MyText.css"/>

 </AliasList>

The Alias will be propagated all the way down to a Wiget definition file. So if you create

your own MyTextWidget.xml file and in that specify the <Style> as $(TextCSS), it will result

in using MyText.css.

6.3.4.1 Scope

The scope of an alias is within the file where it is created and any external files called from

within that file. So for example you can define an Alias in an external Tab file, and from

within that file you can have multiple external Grid files. The alias you create in the Tab file

will propagate to each of the Grid files. However it does not propagate to other Tab files –

unless you define the alias in the main application XML file from where you call the external

Tab Files.

This scoping also works for overriding an Alias. So if you say within one of these external

Grid files you redefine the Alias, it will be available within that Grid file, and any subsequent

external Grid files called from within that Grid file as well as any widgets placed within these

grids that may have an Alias used within them.

6.3.4.2 Using

Using an Alias is pretty easy and is just like using in the Minion definition file – except that

Marvin has multiple files that you can use the alias in, such as the main configuration file,

external Tab files, external Grid files and Widget definition files.

Usage is simple, $(AliasName). A dollar sign followed by the alias name in parenthesis. It

can be used within any Tag or Attribute, but cannot be used as the Tag or attribute itself.

This applies to any .XML file within the entire project.

You can do some pretty cool things with aliases and external files.

You can also combine Aliases. Such as $(ComputerName).TxRate.$(NIC). If

ComputerName=”Server2” and NIC=”Eth0” the resulting string will be Server2.TxRate.Eth0.

6.3.4.3 Environment Variables

By default, the environment variables of where Marvin is running is automatically sucked in

and made an Alias. So for example if you are running Marvin on a Microsoft® Windows

system, there will be at your disposal an $(ComputerName) alias available for your use.

You could pass this as a parameter to a MinionTask that would then write this data to a file,

which the a Minion Collector would read and send back to be displayed as a text value. You

could also achieve the same thing with a Marvin task that is run on startup. See Section

8.14 for details.

6.3.4.4 Creating Alias when Specifying External File

You can specify external files for Tabs and Grids. I have added the ability to also specify an

83 Revision 18.02 Board Instrumentation Framework

alias that becomes available within the file you specify.

Example:

 <Tab ID="DemoTab-Grids" Align="Center" File="Demo\DemoTab_Grids.xml"

Color3="blue"/>

Here the Alias of Color3 is set to “blue”. This Alias is available when processing the

DemoTab_Grids.xml file and any files that it subsequently references.

You can create as many aliases in this way when specify an external file as you like. This

only works when calling external Tab and Grid files.

You might wonder how useful this is. Consider that you want to display the same pieces of

data from 5 different servers. You could create a Tab definition file that takes an Alias for

the Namespace. Then in your application xml file when you specify the external tab file,

you specify the same exact external file for each, but create an alias for namespace that is

passed. Then in the Tab definition file, each widget you place uses this alias for the

<MinionSrc> namespace.

6.3.4.5 Automatically Generated Alias’

I create several aliases that are useful for some.

 $(TabID) – the Id of the current <Tab> being constructed

 $(CurrentFileAlias) – Name of the current XML file being parsed

 $(CurrentFileWithPathAlias) – same as previous, but with full path

 $(CurrentConfigFilename) –?

 $(CANVAS_WIDTH) & $(CANVAS_HEIGHT) - Alias of screen width and height that

the app will run on

 $(SCREEN_H2W_RATIO) & $(SCREEN_W2H_RATIO)

 $(WORKING_DIR) – the directory from where Marvin is running

 $(WORKING_DIR_URI) – same as above but in URI form (file:/// bla)

 $(DEBUG_STYLE) – This is the default style when in debug mode. You can override

this for any widget or grid to help differentiate them when debugging things.

6.3.4.6 Using an Alias in the name of an Alias

A rare corner case can arise where you want to define an Alias, and use another Alias as

part of the name for the alias to be created. Using the Symbols $,(and) breaks XML

syntax. So what I did was make a keyword REPLACE be searched for and replaced by, and

only by the case sensitive REPLACE value. Must be in the same <Alias> Tag. REPLACE

must be case sensitive for both, otherwise will be used as a normal string.

 <Alias Alias.REPLACE.Name=”MyTitle” REPLACE=”$(AlreadyDefinedAlias)”/>

6.3.4.7 <Import>

Within <AliasList> you can specify another XML file to import that has an <AliasList> within

it. If you do this then the framework will only go and read the Aliases from that file, it will

do no other processing.

Example:

84 Revision 18.02 Board Instrumentation Framework

<MarvinExternalFile>

 <AliasList>

 <Import>OtherAliases.xml</Import>

 <Alias Title=”MyTitle”/>

 </AliasList>

</MarvinExternalFile>

Note: Be careful of circular imports – the framework makes no checks for this

6.3.4.8 <DefaultAlias>

<DefaultAlias> works just like defining an <Alias> and has the same scope. The difference

is that if the Alias ID specified already exists it will not create the alias. You can do some

powerful overrides this way.

Example:

 <AliasList>

 <DefaultAlias DownloadFont="Bold-Italic-title"/>

 <Alias FontToUse=”$(DownloadFont)”/>

 </AliasList>

So in the example above, the Alias FontToUse will be set to the alias defined by

DownloadFont. If a level above this definition set the ‘DownloadFont’ alias then that value

will be used, otherwise if it wasn’t, the value set by DefaultAlias will be used.

6.3.5 TaskList

Being able to display instrumented data is very useful and powerful. However it isn’t the

complete capability that you really need. What one needs is the ability to press a button on

the GUI and have it go run some script on the other end where Minion is running to go start

the workload, or to change some hardware config and start a workload, or to stop the

workload. This is where Tasks come in.

There are several kinds of Tasks:

 Minion Task – Sends a message to a Minion to have it run a Minion Task (Actor)

 Oscar Task – Allows a remote control of Oscar

 Marvin Task – Can insert data into the incoming <MinionSrc> datastream

 MarvinAdminTask – Special things you can do in Marvin

 RemoteMarvinTask – allows one Marvin to execute a Task within another Marvin

 ChainedTask –Allows defining a task that calls another defined task.

A task can be defined in the main application configuration file, an external Grid or external

Tab file. The scope of this definition is global – so you can define it in one file and use it in

another and the order does not matter; you can use it in the 1st file and define it in another

file that isn’t loaded until later. You can also of course use an Alias in the tasks.

Section 8 provides details on Tasks.

6.3.6 <For> option

Note: As of April 2017, <Repeat> has been deprecated and no longer supported.

85 Revision 18.02 Board Instrumentation Framework

I found that there are times when you may want to repeat something many times. Such as

putting down a text widget. You can certainly cut and paste, however I created a <For>

option that allows you to repeat things easily for widgets and grids:

<For Count=”10” StartValue=”20”>

 <Widget File=”Text/Text.xml row=”$(CurrentValueAlias)” column=”1”>

 <InitialValue>$(CurrentCountAlias)</InitialValue>

 </Widget>

</For>

The above lines will create 10 Text Widgets, each on a separate line, start at line 20, in

column1, with a value from 0 to 9.

Attribute Description / Usage

Count [required] The number of times to iterate through the repeat.

StartValue [Optional default is 0] The Start value to use

CurrentValueAlias automatically generated Alias, = Start + plus loop number

CurrentCountAlias current loop #

Both CurrentValueAlias and CurrentCountAlias are automatically generated for you, however

you can change those names to be something else (in case you want to nest repeats):

<For Count=”10” StartValue=”20” CurrentValueAlias=”MyVar”>

 <Widget File=”Text/Text.xml row=”$(MyVar)” column=”1”>

 <InitialValue>$(CurrentCountAlias)</InitialValue>

 </Widget>

6.3.6.1 Count – Option to iterate through files

EXPERIMENTAL

If you specify Count as Count=”[DirScan:dir:ext1:ext2]” it will iterate through each of the

files in ‘dir’ and use the optional ext as file extension filters. A new alias of

‘CurrentFileAlias’ as well as a ‘CurrentFileWithPathAlias’ will be available. All other things

such as start value etc. remain valid.

<For Count=”[DirScan:$(AppDir):xml:jpg:gif]” >

 <Widget File=”Text/Text.xml row=”$(NextRowAlias)” column=”1”>

 <InitialValue>$(CurrentFileAlias)</InitialValue>

 </Widget>

</For>

86 Revision 18.02 Board Instrumentation Framework

6.3.7 $(CurrentRowAlias),
$(CurrentColumnAlias) etc.

I noticed that it can become tedious when you are placing a bunch of widgets in rows and

columns and you need to go back and insert a new widget, to help with that, I automatically

create some new Aliases for you. They are scoped to Tabs and grids.

Attribute Description / Usage

CurrentRowAlias The last Row value used, changes only when you use a different

value.

NextRowAlias Increments CurrentRowAlias every time you use it, is the

CurrentRowAlias +1

CurrentColumnAlias The last column value used, changes only when you use a

different value.

NextColumnAlias Increments CurrentColumnAlias every time you use it, is the

CurrentColumnAlias + 1

PrevRowAlias Decrements CurrentRowAlias

PrevColumnAlias CurrentColumnAlias

6.3.8 <If> then-else

Sometimes you may want to do place or define things in your xml configuration files based

upon some variable. You should be able to use this mechanism in pretty much anyplace

within the document. If you use an Alias as part of an if input that Alias must be defined

within a previous <AliasList> block (you can do an <If> within an <AliasList> block, but an

alias you use within the <If> must have been declared previously.

<If Value1=”$(ShowAlternateDials)” Compare=”IF_EQ” Value2=”True”>

 <Then>

 <Grid File=”MyAltertateDialsGrid.xml” row=”0” column=”0”/>

 </Then>

</If>

An If statement must have Value1, Compare, Value2 and <Then>, <Else> is optional.

Value1 and Value2 are compared using the Compare comparison, of which the following are

valid:

 If_EQ - If Equal (==)

 If_NE - If Not Equal (!=)

 If_GT - If Greater Than (>)

 If_GE - If Greater Than or Equal (>=)

87 Revision 18.02 Board Instrumentation Framework

 If_LT - If Less Than (<)

 If_LE - If Less Than or Equal (<=)

Marvin will attempt a numeric comparison first, if that fails it will do a case insensitive string

compare.

If the compare evaluation results in a true value the items in <Then> are used. These can

be anything, grids, widgets, repeats, more <If> statements.

If it is not true and you have an <Else> section those will be used. If no Else section is

present then nothing is added. See the example below.

<If Value1=”$(ShowAlternateDials)” Compare=”IF_EQ” Value2=”True”>

 <Then>

 <Grid File=”MyAltertateDialsGrid.xml” row=”0” column=”0”/>

 </Then>

 <Else>

 <Grid File=”MyNormalDialsGrid.xml” row=”0” column=”0”/>

 </Then>

</If>

6.3.9 MarvinMath

MarvinMath allows you to do simple math calculations that result in a value. It is only at

load time, not run time and only in XML statements. It can be used anywhere an Alias can

be used (so pretty much in any XML content except the tag names).

A MarvinMath statement has 4 parts, the declarator with is the case insensitive string

‘MarvinMath’ and a set of parenthesis. Within the parenthesis is a value and operator and

another value.

Example:

ID=”MyTask.MarvinMath(2,*,2)”

Will result in the ID being “MyTask.4”.

This simple example does not really do anything, however you can replace any of the values

for an Alias, which can allow some interesting things.

Valid operators are:

‘+’,‘Add

‘-‘,’Subtract’,’Sub’

‘*’,’Multiply’,Mul’

‘Divide’,’Div’

‘Maximum’,’Max’ – returns the larger of the 2 values

‘Minimum’,’Min’ - returns the smaller of the 2 values

88 Revision 18.02 Board Instrumentation Framework

You may also embed MarvinMath statements within each other:

ID="MyOtherTask.Marvinmath(2,*,MarvinMaTh(MarvinMath(1,ADD,1),-,1))"

Will result in ID=”MyOtherTask.2”

89 Revision 18.02 Board Instrumentation Framework

7 Widgets

Widget is the term I use to refer to something that gets placed on the screen. There is a

growing library of widgets available for you to use.

In general you place a widget in a specific location in a Tab/grid and usually you assign a

data source (originating from a Minion) to it.

All widgets have some common attributes (such as row and column) and some have some

unique settings.

To place a widget, at the minimum you specify a widget definition file and where to place

the widget.

The widgets themselves are described in the Widget Definition file. These files contain the

necessary information to describe the parameters for the widget. For example a Dial widget

– the definition file describes (among other things) what the minimum and maximum values

to display are. If you need a different range, then copy an existing widget definition file and

make the changes you need, and then specify the new file in your application.

We provide a growing library of widgets and corresponding definition files; if your needs

differ from what we provide then you simply make a new definition file that suits your

needs.

Figure 8 Placing a Widget in a Grid or Tab

Figure 8 shows a simplified example of placing a widget in a tab or a grid. It specifies a

Widget definition file (MyWidget.xml”), where to place the widget (row and column) as well

as the title for the widget (might be a dial) and the remote data source from where the data

will be fed its values.

90 Revision 18.02 Board Instrumentation Framework

Figure 9 Sample Widget Definition File

Figure 9 provides a sample (not valid) Widget configuration file. In this case it is for a

SteelGauge Widget (as specified by the Type attribute. This configuration file describes the

display requirements for the widget, including an external stylesheet, the min and max

value to be displayed etc.

This sample widget file is for showing 0 to 10 Gbps of data. If you wanted 0 to 40 Gbps, or

changed from 0 to 1000 Mbps you could change the widget definition file to reflect your

needs. Or you could copy it to another name and modify it and create a library (as we have

started for you).

The Type attribute is what determines what the actual widget to be displayed is, and the

rest of the file is specific to that widget type – for example a Text Widget does not have

angels or ticks.

7.1 Widgets
Below you will find examples of the various widgets. Click on the example to jump to the

details.

Note: I might not always remember to update this section with images of new widgets, so

read below or look in the Table of Contents.

91 Revision 18.02 Board Instrumentation Framework

7.1.1 Dials

Figure 10 Steel Gauge Figure 11 Steel Gauge

Simple

Figure 12 Steel Gauge

180

Figure 13 Steel Gauge

Radial

Figure 14 Steel Radial

Steel Gauge

Figure 15 Bar Gauge

Figure 16 Double Bar

Gauge

92 Revision 18.02 Board Instrumentation Framework

7.1.2 Indicators

Figure 17 Progress

Bar

Figure 18 Progress

Indicator

Figure 19 Horzontal

LED Bar

Figure 20

Vertical LED

Bar

7.1.3 Charts

Figure 21 Area Chart Figure 22 Stacked Area

Chart

Figure 23 Line Chart

Figure 24 Stacked Chart Figure 25 Pie Chart Figure 26 Bar Graph

93 Revision 18.02 Board Instrumentation Framework

7.1.4 Images

Figure 27 Static Image Figure 28 Dynamic

Image

Figure 29 Animated GIF

7.1.5 Media

Figure 30 Audio Player Figure 31 Video Player

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCP_IzvKs-sgCFUGWiAodS2YBcA&url=https://play.google.com/store/apps/details?id%3Dmedia.music.musicplayer&psig=AFQjCNEYCtjhQT2LhIL6WPdmvr2CrVQWmA&ust=1446849578992082
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCNmFwoCt-sgCFVEtiAodhawHEQ&url=http://www.coffeecup.com/video-player/&psig=AFQjCNEH4JKBDxlCAQuUbQPBa3fD914s9w&ust=1446849613398768

94 Revision 18.02 Board Instrumentation Framework

7.1.6 Other

TEXT, Static and

Dynamic

Figure 32 LCD Widget Figure 33 Buttons Figure 34 Text

Figure 35 Quick View Widget Figure 36 Quick View LCD

Widget

Figure 37 Web

View Widget

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCOqtw5is-sgCFc83iAodrZQCeQ&url=http://linqed.eu/2014/07/11/getting-html-from-any-richtext-item/&bvm=bv.106923889,d.cGU&psig=AFQjCNExm-f1eQuUGkXrrY6aV1nwIgjk4g&ust=1446849402139246

95 Revision 18.02 Board Instrumentation Framework

7.2 Directory Structure
The default location for widgets is in the ‘Widget’ directory one level below where the

BIFF.Marvin.jar file exists. It is expected that the working directory is where the

BIFF.Marvin.jar file exists. You may optionally specify a full path to a widget file. This

option is useful for making a self-contained project with custom widgets.

CSS files must exist in the same directory where the widgets are found.

Widgets can exist in a sub-directory off of the Widget directory, such as ./Widgets/Demo.

In this case any .CSS files used by any widgets in the Demo directory must also reside in

the Demo directory.

7.3 Common Application Settings

7.3.1 Attributes

The <Widget> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

File M Specifies the widget definition file

Row M The row within a grid where the widget is to be placed

Column M The column within a grid where the widget is to be placed

Rowspan O The number of rows the widget should span – default is 1

Colspan O The number of columns the widget should span – default is 1

Align O Where within the grid cell to align the widget

Width O ‘Preferred’ width of the widget

Height O ‘Preferred’ Height of the widget

Task O ID of task to be performed when the widget is clicked

7.3.1.1 File

Specified the widget definition file. This file contains the description of the Widget itself.

7.3.1.2 Row

Zero based row number of where in the grid to place the Widget.

7.3.1.3 Column

Zero based column number of where in the grid to place the Widget.

96 Revision 18.02 Board Instrumentation Framework

7.3.1.4 Rowspan

A widget by default takes up a single cell which is in a specific row and column within a grid.

Rowspan allows you to have a widget span more than one row. Used for making nice

layouts.

7.3.1.5 Colspan

A widget by default takes up a single cell which is in a specific row and column within a grid.

Colspan allows you to have a widget span more than one column. Used for making nice

layouts.

7.3.1.6 Align

Using the Align attribute you can determine where within the grid cell the Widget will be

placed.

Valid options are (points on a compass):

Center

N

NE

E

SE

S

SW

W

NW

7.3.1.7 Width

The Width attribute specifies the ‘preferred’ width for the widget. Desired is in quotes

because this width is more of a suggestion to the underlying Java framework than a hard

rule. It (Java – not Marvin itself) will try to make it this width; however there are other

factors such as the size of other widgets within the same row and column etc. Also the size

of the widgets can shrink and grow depending on resizing of the application.

7.3.1.8 Height

The Height attribute specifies the ‘preferred’ height for the widget. Desired is in quotes

because this width is more of a suggestion to the underlying Java framework than a hard

rule. It (Java – not Marvin itself) will try to make it this height; however there are other

factors such as the size of other widgets within the same row and column etc. Also the size

of the widgets can shrink and grow depending on resizing of the application.

7.3.1.9 Width and Height as percentages

You can specify either Width our Height as a percentage of the application size, or as a % of

the grid whatever you are specifying is within.

Say you specify: Width=”80%” then the Width of whatever you are placing is going to be

80% of the width of your application.

It does not matter where the % is – could be %80 or 80%.

97 Revision 18.02 Board Instrumentation Framework

You can also do a percentage of the height or width of the grid you are placing the

widget/grid within by having a ‘g’ after the % sign. So Width=”25%g” says the width of

whatever you are placing is to be 25% of the width of the grid you are placing it within.

The requirement is that the grid, or one of its ‘parents’ must have a specific dimension set

somewhere.

7.3.1.10 Task

Specifies a Task ID for a tasklist to be executed when the widget is clicked. This is most

commonly used with a button however there is no limitation on this, you can assign a task

to any widget.

7.3.2 MinionSrc

Optional

The MinionSrc tag is where you connect a data source to a widget.

Example:

<Widget File="Gauge\GaugeRadial.xml " row="1" column="1">

 <MinionSrc ID="10GTx" Namespace="MyTestServer-2"/>

</Widget>

The ID and Namespace attributes of the MinionSrc Tag corresponds EXACTLY to the ID and

Namespace from a Minion.

Note

7.3.3 ClickThroughTransparent

This optional setting (which can also be defined in most Widget Definition files) allows you

to stack widgets/grids etc. atop each other, and still be able to click on tasks on things that

are not on the top most level, provided the region you are clicking on is transparent.

Example:

<ClickThroughTransparent>False</ClickThroughTransparent>

The default is false (unless specified in the widget definition file). Valid options are ‘true/ or

‘false’ and is not case sensitive.

If the widget you specify this for is a GRID, then you can put in an attribute of Propagate

that is a Boolean. If you set Propagate to True then it will force all widgets within that grid

to use the ClickThroughTransparent option you specified for the grid.

<ClickThroughTransparent Propagate=”faLsE”>False</ClickThroughTransparent>

7.3.4 StyleOverride

Optional

The StyleOverride tag provides you with a very powerful mechanism to override and add to

the stylesheet associated with the widget and in some cases the application.

You can specify a different stylesheet, or a new stylesheet ID number for a brand new

98 Revision 18.02 Board Instrumentation Framework

layout, or you may override/add new styles.

7.3.4.1 Attributes

The <StyleOverride> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

File O Specifies a new stylesheet file to apply to the Widget

ID O Specifies a new style ID that is in the stylesheet to use

 File

Specify a new stylesheet file to apply to the widget. If you just specify a .CSS file, it will

search for that file in the same directory where the Widget definition file is located. If it is

an alternate path, it will search that path.

 ID

ID of style in either default stylesheet or within new stylesheet to apply to the widget. See

the LCD.css file for a good example.

7.3.4.2 Item

The <Item> tag within the <StyleOverride> tag allows you to apply different/new

stylesheet settings to a Widget. These are STANDARD stylesheet settings and the format

for them is per the standard.

There can be more than one <Item>, each will be applied to the widget. Note that if any of

the <Items> are incorrect in any way, none will be applied. This is beyond the Marvin

application and part of Java itself. The log file should provide some hints as to the reason

for failure.

Example 1:

 <StyleOverride >

 <Item>-fx-rotate:-90</Item>

 <Item>-fx-font-size:2.5em</Item>

 </StyleOverride>

You may also combine the individual lines into a single one, separated by a semi-color.

Example 2:

<StyleOverride >

 <Item>-fx-rotate:-90; >-fx-font-size:2.5em </Item>

</StyleOverride>

Example 3:

<StyleOverride ID=”RedBackground”/>

7.3.5 Peekaboo

Optional

99 Revision 18.02 Board Instrumentation Framework

Peekaboo is a feature I added so we can dynamically hide and show widgets based upon a

Minion Collector. This allows you to stack widgets on top of each other and hide and show

as needed for interesting results.

For example you may have two LCD Panel Widgets both receiving data from a Minion

collecting CPU utilization. One panel may have a stylesheet that makes it the familiar

green-gray LCD background and the 2nd may have a bright red background. You can place

both widgets at the same location, with the red one placed second (and therefore on top of

the green-gray one). You can assign a peekaboo to the red one and have it hidden. Then

when the CPU utilization gets above a certain threshold, say 90% a collector can show the

red one, giving the appearance that the LCD pane turned red upon reaching a threshold.

The <Peekaboo> has the ID and Namespace attributes just like <MinionSrc>, however

instead of displaying data, the Peekaboo will look for a specific string as the data to either

hide or show a widget. The expected data to either hide or show the widget are ‘Hide’ and

‘Show’.

In addition to hiding and showing a widget. Most widgets (where it makes sense) now

support pausing and resuming widgets getting updated. If you send a ‘Pause’ string as the

data in a Peekaboo packet, the widget(s) will pause, just as if you send a ‘Resume’ string

they will resume. Not all widgets support this (buttons for example) as I could not think of

a good reason to add support to all of them. If you have a need to ‘pause’ a button, then

let me know. This is likely most useful for a MarvinTask that will pause a Widget(s).

The Sample application has a demo of this under the Test menu.

Note: You can assign multiple <Peekaboo>’s to a widget. In this way you can for example

modify an individual Widget (say change the Title) and also manipulate a group of

Widgets by giving them all the same Peekaboo settings. There will only be one

‘default’ action, no matter how many you put in, the same goes for the Hide and

Show alternate strings, only the last one specified will be used.

7.3.5.1 Attributes

The <Peekaboo> tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

ID M ID to identify peekaboo action

Namespace M Namespace to identify peekaboo action

Default O “Hide” or “Show” – determines initial state, default is Show

Hide O Additional string to “Hide” string you can use if you like

Show O Additional string to “Show” string you can use if you like

Example:

<Widget File="Gauge\GaugeSimple.xml" row="2" column="2">

 <Title>Throughput</Title>

 <MinionSrc ID="Port1_RX_" Namespace="Hadoop_Server1"/>

 <Peekaboo ID="AltDials" Namespace="LocalNamespace" Default="Hide"/>

</Widget>

100 Revision 18.02 Board Instrumentation Framework

Note that as with the MinionSrc, you can have many widgets associated with the same

Peekaboo. In this way you can hide and show many widgets at the same time.

7.3.5.2 Peekaboo Options

You can do many things with Peekaboo by sending a specific String to it:

 Hide - Hides the widget

 Show - Shows the widget if hidden

 Remove - Removes the widget from the Grid

 Insert - Re-adds a removed Widget back to the grid

 Disable - Some widgets (like buttons) can be disabled from tasks working

 Enable - Re-enables disabled widgets

 Pause - Pauses data feed for widget

 Resume - Resumes data feed for a paused widget

 Select - Applies an alternate CSS style see <SelectedStyle>

 Deselect - Applies default/original CSS style see <SelectedStyle>

7.3.6 Peekaboo – Marvin

I’ve recently added some functionality by which data that comes in via Peekaboo can

change some visual attributes of a Widget while visible. Presently that includes specify a

new Title for the Widget and a new stylesheet.

Example of string send from a Minion to change the Title:

Marvin:[Title]New Widget Title[/Title]

The data following ‘Marvin:’ is a modified XML, where the ‘<>’ characters are replaced with

‘[]’. This is needed because of the way XML works, you can’t easily encode an XML payload

within and XML document.

7.3.6.1 Set New Title

You can change a Widget in Marvin that has registered for Peekaboo messages during

runtime with this mechanism. Most, but not all Widgets have a Title that can be

dynamically updated using this method.

The source of this data can be from either a Minion data feed, or a Marvin Task.

Format:

The string sent to a Peekaboo listener to modify the Title must start with the text ‘Marvin:’

and be followed by [Title]New Title[/Title].

Example to change the Title:

Marvin:[Title]New Widget Title[/Title]

Note The format of the data following ‘Marvin:’ is a modified XML, where the ‘<>’ characters

are replaced with ‘[]’. This is needed because of the way XML works, you can’t easily

encode an XML payload within and XML document.

101 Revision 18.02 Board Instrumentation Framework

7.3.6.2 Change Style

You can change the Style of a Widget in Marvin that has registered for Peekaboo messages

during runtime with this mechanism. Most, but not all Widgets have a Style that can be

dynamically updated using this method.

The source of this data can be from either a Minion data feed, or a Marvin Task.

Format:

The string sent to a Peekaboo listener to modify the Style must start with the text ‘Marvin:’

and be followed by the same format as is available in <StyleOverride> in the application

xml, except that the ‘<>’ is replaced by ‘[]’. This includes new CSS file, ID and [Item]s.

Example to change the Style ID of a LCD (this is from the AdditionalFile.xml file in Minion

Demo):

Marvin:[StyleOverride ID="lcd-red"][/StyleOverride]

Note The format of the data following ‘Marvin:’ is a modified XML, where the ‘<>’ characters

are replaced with ‘[]’. This is needed because of the way XML works, you can’t easily

encode an XML payload within and XML document.

7.3.7 <ValueRange>

Optional

Many (but not all) widgets have the ability to specify the range of valid values when you

place them. This will override the settings within the widget definition file. In general,

charts and gauges have this feature.

7.3.7.1 Attributes

The <ValueRange> tag supports the following attributes, which are case insensitive.

Attribute M/O Comments

Min O Specifies the minimum value for the widget

Max O Specifies the maximum value for the widget

7.3.8 <ToolTip>

Optional

This allows you to add a tooltip to a widget. You may optionally also set the style of the

tooltips.

 Simple form:

 <ToolTip>My Tool Tip</ToolTip>

Customizable form:

 <ToolTip>

 <DisplayString>My Other Tool Tip</DisplayString>

 <StyleOverride><Item>-fx-background-color:blue</Item></StyleOverride>

102 Revision 18.02 Board Instrumentation Framework

 </ToolTip>

7.3.9 <SelectedStyle>

Optional

This Tag has all the same exact features of the <StyleOverride> tag, this includes ID, File

and <Item>s. This tag is used in conjunction with <Peekaboo> to Select and Deselect a

widget. Essentially it allows you to have 2 sets of Styles for a widget and you can go back

and forth between them by ‘Selecting’ and ‘Deselecting’.

7.4 Common Widget Definition File

Definitions

This section describes the settings that are common to all widget definition files.

Example:

<Widget Type = "Button">

 <Style ID=”#default”>Button.css</Style>

</Widget>

7.4.1 Type Attribute

In the Widget definition file, the Type attribute is that actually specifies the type of Widget is

defined in the rest of the file. The above example is a widget definition file for a Button.

7.4.2 Style

The <Style> Tag is where you specify the default external stylesheet for the widget. In this

example we specify the Button.css stylesheet. In addition there is an optional ID attribute

that can be added to specify the style ID within the specified stylesheet to apply.

Take a peek at the Button.css file to get a better understanding.

7.4.3 ClickThroughTransparent

This optional setting (which can also be defined when you place a widget) allows you to

stack widgets/grids etc. atop each other, and still be able to click on tasks on things that are

not on the top most level, provided the region you are clicking on is transparent.

Example:

<ClickThroughTransparent>False</ClickThroughTransparent>

The default is false. Valid options are ‘true/ or ‘false’ and is not case sensitive.

103 Revision 18.02 Board Instrumentation Framework

7.5 How to understand the following

sections
Since you can create your own widget definition files and modify them to suit your needs it

doesn’t make much sense to detail specific widget definition files as a way of describing

them. So I will take the approach of providing an image example of the widget, an example

widget definition file and details on each part of it and finally any widget specific options

that may be used within the application configuration XML file when you add the widget to

your app.

7.6 Dials
I used an open source package for all the dials. This package was originally called Steel,

the author has subsequently renamed and updated the package, however I kept the name

for the Widgets.

The open source package I use is called Enzo and it is available here:

https://bitbucket.org/hansolo/enzo/wiki/Home

7.6.1 Gauge

Figure 38 Gauge

7.6.1.1 Definition File

This section discusses what the contents of a Gauge Widget definition file contains.

Example:

<Widget Type = "SteelGauge">

 <Style>gaugeEthernet.css</Style>

 <MinValue>0</MinValue>

 <MaxValue>10</MaxValue>

https://bitbucket.org/hansolo/enzo/wiki/Home

104 Revision 18.02 Board Instrumentation Framework

 <UnitText>Gbps</UnitText>

 <Decimals>2</Decimals>

 <DialStartAngle>300</DialStartAngle>

 <DialRangeAngle>240</DialRangeAngle>

 <MajorTicksSpace>1</MajorTicksSpace>

 <MinorTicksSpace>1</MinorTicksSpace>

 <TickLableOrientation>Horizontal</TickLableOrientation>

 <EnhancedRateText>True</EnhancedRateText>

 <Shadowed>True</Shadowed>

 <ShowMaxMeasuredValue>True</ShowMaxMeasuredValue>

 <ShowMinMeasuredValue>True</ShowMinMeasuredValue>

 <Sections>

 <Section start="0" end="4" />

 <Section start="2.5" end="5" />

 <Section start="5" end="9.5" />

 <Section start="9.5" end="10" />

 </Sections>

</Widget>

 <MinValue>

Required

The minimum value that can be displayed on the dial. Usually zero, but can be whatever

you like.

 <MaxValue>

Required

The maximum value that can be displayed on the dial.

 <UnitText>

Required

The kind of data you are wanting to display, such as Gbps, Ghz, RPM etc.

 <Decimals>

Required

The number of decimal places to be available for the current value # displayed in the middle

of the dial.

 <DialStartAngle>

Required

This specifies where the numbering on the dial begins, it is in degrees. 180 will start at the

bottom of the dial, while 270 will be at 9:00 on a clock.

 <DialRangeAngle>

Required

The angle range that the dial should utilize, in degrees.

 <MajorTicksSpace>

Required

105 Revision 18.02 Board Instrumentation Framework

Numeric interval that a major Tick should be shown on the dial.

 <MinorTicksSpace>

Required

Numeric interval that a minor Tick should be shown on the dial.

 <TickLableOrientation>

Required

Determines the way in which the numbers on the dial are drawn. Valid values are:

Horizontal

Orthogonal

Tangent

Figure 39 Horizontal

Orientation

Figure 40 Tangent

Orientation

Figure 41 Orthogonal

Orientation

 <EnhancedRateText>

Required

Is a Boolean value (either True or False) that determines if the value text in the middle of

the dial is displayed with shadowing or not.

 <Shadowed>

Required

Is a Boolean value (either True or False) that determines if the dial will be displayed with a

shadow effect or not.

 <ShowMaxMeasuredValue>

Required

Is a Boolean value (either True or False) that determines a small dot will appear on the dial

that indicates the maximum value that has been received thus far.

 <ShowMinMeasuredValue>

Required

Is a Boolean value (either True or False) that determines a small dot will appear on the dial

that indicates the minimum value that has been received thus far.

106 Revision 18.02 Board Instrumentation Framework

 <Sections>

Optional

You may create as many sections as you like (by adding a <Section> tag within the

<Sections> tag. Each section will be displayed around the edge of the dial in the range you

specify. All of the examples in this section of the document have Sections defined as:

 <Sections>

 <Section start="0" end="4" />

 <Section start="2.5" end="5" />

 <Section start="5" end="9.5" />

 <Section start="9.5" end="10" />

 </Sections>

Which contains 4 colored sections. These are only for display purposes and are optional.

Note that the color of the sections is defined within the stylesheet.

7.6.1.2 Application Settings

This section discusses the settings used to add a SteelGauges dial in the application

configuration XML file.

Example:

<Widget File="Gauge\Gauge.xml" row="1" column="1">

 <Title>Throughput</Title>

 <UnitsOverride>Mb per sec</UnitsOverride>

 <MinionSrc ID="3to10" Namespace="DemoNamespace"/>

</Widget>

 <Title>

Optional

Sets the title of the Dial, shown at the bottom.

 <UnitsOverride>

Optional

Allows you to use a different units type text than what is defined in the widget definition file.

 <ValueRange>

Optional

Allows you to override the min and max set in the widget definition file.

Example:

 <ValueRange Min=”1” Max=”10”/>

 <TickCount>

Optional sub-tag of ValueRange

You can use this tag to specify how many Major Ticks and Minor Ticks are displayed on the

gauge. In the definition file you specify the interval. This will override it.

<ValueRange>

107 Revision 18.02 Board Instrumentation Framework

 <TickCount Major=”10” Minor=”20”/>

</ValueRange>

Will have 10 Major ticks, and 20 Minor.

7.6.2 SteelGauge180

Figure 42 SteelGauge180

7.6.2.1 Definition File

This section discusses what the contents of a SteelGauge180 Widget definition file contains.

Example:

<Widget Type = "Steel180Gauge">

 <Style>oneeightygauge.css</Style>

 <MinValue>0</MinValue>

 <MaxValue>500</MaxValue>

 <UnitText>Gbps</UnitText>

</Widget>

 <MinValue>

Required

The minimum value that can be displayed on the dial. Usually zero, but can be whatever

you like.

 <MaxValue>

Required

The maximum value that can be displayed on the dial.

 <UnitText>

Required

The kind of data you are wanting to display, such as Gbps, Ghz, RPM etc.

108 Revision 18.02 Board Instrumentation Framework

7.6.2.2 Application Settings

This section discusses the settings used to add a SteelGauge180 dial in the application

configuration XML file.

Example:

<Widget File="Gauge\GaugeOneEigty.xml" row="1" column="1">

 <Title>Throughput</Title>

 <UnitsOverride>Mb per sec</UnitsOverride>

 <MinionSrc ID="3to10" Namespace="DemoNamespace"/>

</Widget>

 <ValueRange>

Optional

Allows you to override the min and max set in the widget definition file.

Example:

 <ValueRange Min=”1” Max=”10”/>

7.6.3 SteelSimpleGauge

Figure 43 SteelSimpleGauge

7.6.3.1 Definition File

This section discusses what the contents of a SteelSimpleGauge Widget definition file

contains.

Example:

 <Widget Type = "SteelSimpleGauge">

 <Style>SimpleGauge.css</Style>

 <MinValue>0</MinValue>

 <MaxValue>500</MaxValue>

 <Decimals>0</Decimals>

 <UnitText>Mbps</UnitText>

109 Revision 18.02 Board Instrumentation Framework

 <Sections>

 <Section start="0" end="20" />

 <Section start="20" end="100" />

 <Section start="100" end="200" />

 <Section start="250" end="500" />

 </Sections>

</Widget>

 <MinValue>

Required

The minimum value that can be displayed on the dial. Usually zero, but can be whatever

you like.

 <MaxValue>

Required

The maximum value that can be displayed on the dial.

 <UnitText>

Required

The kind of data you are wanting to display, such as Gbps, Ghz, RPM etc.

 <Decimals>

Required

The number of decimal places to be available for the current value # displayed in the middle

of the dial.

 <UnitText>

Required

The kind of data you are wanting to display, such as Gbps, Ghz, RPM etc.

 <Sections>

Optional

You may create as many sections as you like (by adding a <Section> tag within the

<Sections> tag. Each section will be displayed around the edge of the dial in the range you

specify. All of the examples in this section of the document have Sections defined as:

 <Sections>

 <Section start="0" end="20" />

 <Section start="20" end="100" />

 <Section start="100" end="200" />

 <Section start="250" end="500" />

 </Sections>

Which contains 4 colored sections. These are only for display purposes and are optional.

Note that the color of the sections is defined within the stylesheet.

7.6.3.2 Application Settings

This section discusses the settings used to add a SteelSimpleGauge dial in the application

110 Revision 18.02 Board Instrumentation Framework

configuration XML file.

Example:

<Widget File="Gauge\GaugeSimple.xml.xml" row="1" column="2" >

 <Title>Throughput</Title>

 <UnitsOverride>Bytes Per Sec </UnitsOverride>

 <MinionSrc ID="Eth0_BiDir_Data" Namespace="MadeupServer"/>

 <Size>

 <Minimum Width=”100”/>

 </Size>

</Widget>

 <Title>

Optional

Sets the title of the Dial, shown at the bottom.

 <UnitsOverride>

Optional

Allows you to use a different units type text than what is defined in the widget definition file.

 <ValueRange>

Optional

Allows you to override the min and max set in the widget definition file.

Example:

 <ValueRange Min=”1” Max=”10”/>

7.6.4 SteelGaugeRadial

Figure 44 SteelGaugeRadial

7.6.4.1 Definition File

This section discusses what the contents of a SteelRadialGauge Widget definition file

contains.

111 Revision 18.02 Board Instrumentation Framework

Example:

<Widget Type = "SteelGaugeRadial">

 <Style>GaugeRadial.css</Style>

 <MinValue>0</MinValue>

 <MaxValue>10</MaxValue>

 <UnitText>Gbps</UnitText>

 <Decimals>2</Decimals>

 <DialStartAngle>300</DialStartAngle>

 <DialRangeAngle>240</DialRangeAngle>

 <MajorTicksSpace>1</MajorTicksSpace>

 <MinorTicksSpace>1</MinorTicksSpace>

 <TickLableOrientation>Horizontal</TickLableOrientation>

 <EnhancedRateText>True</EnhancedRateText>

</Widget>

 <MinValue>

Required

The minimum value that can be displayed on the dial. Usually zero, but can be whatever

you like.

 <MaxValue>

Required

The maximum value that can be displayed on the dial.

 <UnitText>

Required

The kind of data you are wanting to display, such as Gbps, Ghz, RPM etc.

 <Decimals>

Required

The number of decimal places to be available for the current value # displayed in the middle

of the dial.

 <DialStartAngle>

Optional

This specifies where the numbering on the dial begins, it is in degrees. 180 will start at the

bottom of the dial, while 270 will be at 9:00 on a clock.

NOTE: The open source project for this widget does not yet use this field, so I ignore it.

 <DialRangeAngle>

Required

The angle range that the dial should utilize, in degrees.

NOTE: The open source project for this widget does not yet use this field, so I ignore it.

 <MajorTicksSpace>

Required

112 Revision 18.02 Board Instrumentation Framework

Numeric interval that a major Tick should be shown on the dial.

 <MinorTicksSpace>

Required

Numeric interval that a minor Tick should be shown on the dial.

 <TickLableOrientation>

Required

Determines the way in which the numbers on the dial are drawn. Valid values are:

Horizontal

Orthogonal

Tangent

Figure 45 Horizontal

Orientation

Figure 46 Tangent

Orientation

Figure 47 Orthogonal

Orientation

Note: I know – was lazy and re-used the graphic from a previous widget. However the

meanings of the settings are the same.

 <EnhancedRateText>

Required

Is a Boolean value (either True or False) that determines if the value text in the middle of

the dial is displayed with shadowing or not.

7.6.4.2 Application Settings

This section discusses the settings used to add a SteelRadialGauge dial in the application

configuration XML file.

Example:

<Widget File="Gauge\GaugeRadial.xml" row="1" column="1">

 <Title>Throughput</Title>

 <UnitsOverride>Mb per sec</UnitsOverride>

 <MinionSrc ID="3to10" Namespace="DemoNamespace"/>

</Widget>

 <Title>

Optional

113 Revision 18.02 Board Instrumentation Framework

Sets the title of the Dial, shown at the bottom.

 <UnitsOverride>

Optional

Allows you to use a different units type text than what is defined in the widget definition file.

 <ValueRange>

Optional

Allows you to override the min and max set in the widget definition file.

Example:

<ValueRange Min=”1” Max=”10”/>

 <TickCount>

Optional sub-tag of ValueRange

You can use this tag to specify how many Major Ticks and Minor Ticks are displayed on the

gauge. In the definition file you specify the interval. This will override it.

<ValueRange>

 <TickCount Major=”10” Minor=”20”/>

</ValueRange>

Will have 10 Major ticks, and 20 Minor.

7.6.5 SteelGaugeRadialSteel

Figure 48 SteelGaugeRadialSteel

7.6.5.1 Definition File

This section discusses what the contents of a SteelRadialSteelGauge Widget definition file

contains.

Example:

<Widget Type = "SteelGaugeRadialSteel">

 <Style>GaugeRadialSteel.css</Style>

 <MinValue>0</MinValue>

114 Revision 18.02 Board Instrumentation Framework

 <MaxValue>10</MaxValue>

 <UnitText>Gbps</UnitText>

 <Decimals>2</Decimals>

 <DialStartAngle>300</DialStartAngle>

 <DialRangeAngle>240</DialRangeAngle>

 <MajorTicksSpace>1</MajorTicksSpace>

 <MinorTicksSpace>0</MinorTicksSpace>

 <TickLableOrientation>Orthoginal</TickLableOrientation>

 <EnhancedRateText>True</EnhancedRateText>

</Widget>

 <MinValue>

Required

The minimum value that can be displayed on the dial. Usually zero, but can be whatever

you like.

 <MaxValue>

Required

The maximum value that can be displayed on the dial.

 <UnitText>

Required

The kind of data you are wanting to display, such as Gbps, Ghz, RPM etc.

 <Decimals>

Required

The number of decimal places to be available for the current value # displayed in the middle

of the dial.

 <DialStartAngle>

Optional

This specifies where the numbering on the dial begins, it is in degrees. 180 will start at the

bottom of the dial, while 270 will be at 9:00 on a clock.

 <DialRangeAngle>

Required

The angle range that the dial should utilize, in degrees.

 <MajorTicksSpace>

Required

Numeric interval that a major Tick should be shown on the dial.

 <MinorTicksSpace>

Required

Numeric interval that a minor Tick should be shown on the dial.

115 Revision 18.02 Board Instrumentation Framework

 <TickLableOrientation>

Required

Determines the way in which the numbers on the dial are drawn. Valid values are:

Horizontal

Orthogonal

Tangent

Figure 49 Horizontal

Orientation

Figure 50 Tangent

Orientation

Figure 51 Orthogonal

Orientation

Note: I know – was lazy (again) and re-used the graphic from a previous widget. However

the meanings of the settings are the same.

 <EnhancedRateText>

Required

Is a Boolean value (either True or False) that determines if the value text in the middle of

the dial is displayed with shadowing or not.

7.6.5.2 Application Settings

This section discusses the settings used to add a SteelGauges dial in the application

configuration XML file.

Example:

<Widget File="Gauge\GaugeRadialSteel.xml" row="1" column="1">

 <Title>Throughput</Title>

 <UnitsOverride>Mb per sec</UnitsOverride>

 <MinionSrc ID="3to10" Namespace="DemoNamespace"/>

</Widget>

 <Title>

Optional

Sets the title of the Dial, shown at the bottom.

 <UnitsOverride>

Optional

Allows you to use a different units type text than what is defined in the widget definition file.

116 Revision 18.02 Board Instrumentation Framework

 <ValueRange>

Optional

Allows you to override the min and max set in the widget definition file.

Example:

<ValueRange Min=”1” Max=”10”/>

 <TickCount>

Optional sub-tag of ValueRange

You can use this tag to specify how many Major Ticks and Minor Ticks are displayed on the

gauge. In the definition file you specify the interval. This will override it.

<ValueRange>

 <TickCount Major=”10” Minor=”20”/>

</ValueRange>

Will have 10 Major ticks, and 20 Minor.

7.6.6 Bar Gauge

Figure 52 Bar Gauge

7.6.6.1 Definition File

This section discusses what the contents of a BarGauge Widget definition file contains.

Example:

<Widget Type = "BarGauge">

 <Style>GaugeBar.css</Style>

 <MinValue>0</MinValue>

 <MaxValue>100</MaxValue>

 <UnitText>Gbps</UnitText>

 <Decimals>2</Decimals>

</Widget>

 <MinValue>

Required

117 Revision 18.02 Board Instrumentation Framework

The minimum value that can be displayed on the dial. Usually zero, but can be whatever

you like.

 <MaxValue>

Required

The maximum value that can be displayed on the dial.

 <UnitText>

Required

The kind of data you are wanting to display, such as Gbps, Ghz, RPM etc.

 <Decimals>

Optional

The number of decimal places to be available for the current value # displayed in the middle

of the dial.

7.6.6.2 Application Settings

This section discusses the settings used to add a BarGauge dial in the application

configuration XML file.

Example:

<Widget File="Gauge\GaugeBar.xml" row="1" column="1">

 <Title>Throughput</Title>

 <UnitsOverride>Mb per sec</UnitsOverride>

 <MinionSrc ID="3to10" Namespace="DemoNamespace"/>

</Widget>

 <Title>

Optional

Sets the title of the Dial, shown at the bottom.

 <UnitsOverride>

Optional

Allows you to use a different units type text than what is defined in the widget definition file.

 <ValueRange>

Optional

Allows you to override the min and max set in the widget definition file.

Example:

<ValueRange Min=”1” Max=”10”/>

118 Revision 18.02 Board Instrumentation Framework

7.6.7 Double Bar Gauge

Figure 53 Double Bar Gauge

7.6.7.1 Definition File

This section discusses what the contents of a DoubleBarGauge Widget definition file

contains.

Example:

<Widget Type = "DoubleBarGauge">

 <Style>DoubleGaugeBar.css</Style>

 <MinValue>0</MinValue>

 <MaxValue>100</MaxValue>

 <Decimals>2</Decimals>

</Widget>

 <MinValue>

Required

The minimum value that can be displayed on the dial. Usually zero, but can be whatever

you like.

 <MaxValue>

Required

The maximum value that can be displayed on the dial.

 <Decimals>

Optional

The number of decimal places to be available for the current value # displayed in the middle

of the dial.

7.6.7.2 Application Settings

This section discusses the settings used to add a DoubleBarGauge dial in the application

configuration XML file.

Example:

<Widget File="Gauge\GaugeDoubleBar.xml" row="1" column="1">

119 Revision 18.02 Board Instrumentation Framework

 <Title>Throughput</Title>

 <InnerMinionSrc ID="RX" Namespace="DemoNamespace"/>

 <OuterMinionSrc ID="TX" Namespace="DemoNamespace"/>

/Widget>

 <Title>

Optional

Sets the title of the Dial, shown at the bottom.

 <InnerMinionSrc>

Required

Most Widgets have a MinionSrc. This widget has two sources, one for the inner bar and out

for the outer bar. This one is for the Inner bar, and works the same was a <MinionSrc> but

with a different name.

 <OuterMinionSrc>

Required

Most Widgets have a MinionSrc. This widget has two sources, one for the inner bar and out

for the outer bar. This one is for the Outer bar, and works the same was a <MinionSrc> but

with a different name.

 <ValueRange>

Optional

Allows you to override the min and max set in the widget definition file.

Example:

 <ValueRange Min=”1” Max=”10”/>

7.7 Indicators
Indicators are very simple widgets that take as data a value between 0 and 1. If any value

is sent greater than 1, it is repeatedly divided by 10 until <= 1.

7.7.1 ProgressBar

Figure 54 ProgressBar Widget

7.7.1.1 Definition File

This section discusses what the contents of a ProgressBar Widget definition file contains.

Example:

<Widget Type = "ProgressBar">

 <Style ID = "default">ProgressBar.css</Style>

</Widget>

120 Revision 18.02 Board Instrumentation Framework

7.7.1.2 Application Settings

This section discusses the settings used to add a ProgressBar dial in the application

configuration XML file.

Example:

<Widget File="Indicator\ProgressBar.xml" row="1" column="1" Width="400" Height="40"

colSpan="2">

 <MinionSrc ID="TestProgress" Namespace="SR-IOVSystem1"/>

</Widget>

7.7.2 ProgressIndicator

Figure 55 ProgressIndicator Widget

7.7.2.1 Definition File

This section discusses what the contents of a ProgressIndicator Widget definition file

contains.

Example:

<Widget Type = "ProgressIndicator">

 <Style ID = "default">ProgressIndicator.css</Style>

</Widget>

7.7.2.2 Application Settings

This section discusses the settings used to add a ProgressIndicator dial in the application

configuration XML file.

Example:

<Widget File="Indicator\ProgressIndicator.xml" row="2" column="2" Width="200"

Height="200">

 <StyleOverride ID="red"/>

 <MinionSrc ID="Progress" Namespace="DemoNamespace"/>

</Widget>

121 Revision 18.02 Board Instrumentation Framework

7.7.3 LEDBargraph

Figure 56 LEDBarGraph Widget

7.7.3.1 Definition File

This section discusses what the contents of a LEDBargraph Widget definition file contains.

Example:

<Widget Type = "LedBargraph">

 <Style>ledbargraph.css</Style>

 <Orientation>Vertical</Orientation>

 <LedType>Vertical</LedType>

 <ShowPeakValue>False</ShowPeakValue>

 <NumberOfLeds>12</NumoberLeds>

 <SizeOfLeds>20</SizeOfLeds>

</Widget>

 Orientation

Required

Specifies if the LEDBarGraph widget is drawn Horizontal or Vertical. Valid values are

“Horizontal” and “Vertical”. See above figure for examples.

 LedType

Required

Allows you to configure how the LED’s should appear. Valid options (which can be seen in

the above figure) are:

Horizontal

Vertical

Round

Square

 ShowPeakValue

Required

Is a boolean value (True or False). If true, the peak value LED will remain lit for a little

while before turning off when the value drops.

 NumberOfLeds

Required

122 Revision 18.02 Board Instrumentation Framework

Specifies the number of LED’s to display in the LEDBarGraph widget.

 SizeOfLeds

Required

Specifies the size of each of the LED’s to display in the LEDBarGraph widget.

7.7.3.2 Application Settings

This section discusses the settings used to add a LEDBarGraph dial in the application

configuration XML file.

Example:

<Widget File="LED\BarGraphLED.xml" row="3" column="1" Align="Center">

 <MinionSrc ID="Progress" Namespace="DemoNamespace"/>

</Widget>

Note: The LEDBarGraph widget is a great example of how you can use one widget type to

create multiple different looking widgets to display by having different definition files.

You can one a definition file for a vertical+round LedBarGraph and another for a

horizontal+square one, etc.

7.8 Charts & Graphs

Java 8 comes with a rich library of charts and graphs. I’ve incorporated many of them into

the Marvin Gui.

Some of these widgets can have what I refer to as ‘Single Source’ inputs – which is a

comma separated array of values from a single <MinionSrc> as well as separate values for

each series that comes from individual <MinionSrc> entries. In general I’ve found the

single source to be easier to use and of more value.

Most charts have what I call a Series. Series will have a Label (like a key). Most charts also

have a xAxis and yAxix with a label.

123 Revision 18.02 Board Instrumentation Framework

7.8.1 MultiSourceAreaChart

Figure 57 Area Chart

7.8.1.1 Definition File

This section discusses what the contents of a MultiSourceAreaChart Widget definition file

contains.

Example:

 <Widget Type = "MultiSourceAreaChart">

 <Style>LineChart.css</Style>

 <Animated>False</Animated>

 <Synchronized MaxSyncWait="0">True</Synchronized>

 <yAxis MajorTickInterval="10" MinorTickInterval="5" TickLabelVisible="True"/>

 <xAxis MajorTickInterval="1" MinorTickInterval="0" TickLabelVisible="False"/>

</Widget>

 < Animated >

Required

Determines if the chart will show the drawing and moving of datapoints. I usually have it

off. It is a Boolean (true or false) value.

 < xAxis>

Required

Determines look of the xAxis on the chart.

Attributes

The < xAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

124 Revision 18.02 Board Instrumentation Framework

MajorTickInterval M Numeric interval for Major Ticks on xAxis

MinorTickInterval M Numeric interval for Minor Ticks on xAxis

TickLabelVisible M Boolean – display the value on major ticks

 < yAxis>

Required

Determines look of the yAxis on the chart.

Attributes

The < yAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on yAxis

MinorTickInterval M Numeric interval for Minor Ticks on yAxis

TickLabelVisible M Boolean – display the value on major ticks

 < Synchronized>

Optional

For charts with multiple data sources, this option allows you to specify that the chart will not

be updated until all of the data sources have sent data. It takes a Boolean value (true or

false). The default is true.

Attributes

The < Synchronized > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MaxSyncWait 0 MAX time in milliseconds to wait for all data to synchronize

before updating chart. A value of 0 (zero) will wait

indefinitely. Default value is 0.

Note: Default values are TRUE and a MaxSyncWait is 0. This means if you have say 4

minions feeding a single chart and one of them is currently down, the chart will never

update.

7.8.1.2 Application Settings

This section discusses the settings used to add a MultiSrcAreaChart in the application

configuration XML file.

Example:

 <Widget File="Chart\ChartMultiSrcArea.xml" row="1" column="0">

125 Revision 18.02 Board Instrumentation Framework

 <Title>Area Chart - Multisourced</Title>

 <xAxis Label="Over Time" MaxEntries="10"/>

 <yAxis Label="Data Value" MaxValue="100" MinValue=”0”/>

 <Series Label="Data Series 1">

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace"/>

 </Series>

 <Series Label="Data Series 2">

 <MinionSrc ID="GraphSource2" Namespace="DemoNamespace"/>

 </Series>

 <Series Label="Data Series 3">

 <MinionSrc ID="GraphSource3" Namespace="DemoNamespace"/>

 </Series>

 <Series Label="Data Series 4">

 <MinionSrc ID="GraphSource4" Namespace="DemoNamespace"/>

 </Series>

 </Widget>

 <Title>

Optional

Sets the title of the chart, shown at the top.

 <xAxis>

Required

Defines how the xAxis should be handled. Has two attributes, Label and MaxEntries. Label

is the label to display on the chart. MaxEntries specifies how many series to display before

starting to scroll to the left when new data comes in.

 <yAxis>

Required

Defines how the yAxis should be handled. Has two attributes, Label and MaxValue. Label is

the label to display on the chart. MaxValue specifies the maximum value to be displayed.

MinValue is optional, defaults to 0.0. Is the bottom of the chart, can be negative value.

 <Series>

Required

The Series defines the Source of the data for a series. This is a mulit-src chart, so each

series has its own MinionSrc. A Series has a Label Attribute (the name of the series to be

displayed) and a MinionSrc:

<Series Label="Data Series 1">

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace"/>

</Series>

You must specify a Series for each expected MinionSrc. The example above has 4.

Note: Muliti-Source charts can be problematic unless used with care. Each data source is

an independent stream and even if the collector is run with the same interval, the

traffic is UDP and not guaranteed, so it can be dropped. If the collectors feeding the

Widget are all from the same Minion, I recommend using the <Group> capability – it

126 Revision 18.02 Board Instrumentation Framework

is why it was invented.

If your data is coming from different Minions and feeding the same chart/graph then you

will almost certainly see update issues. This is simply because you have separate

data sources sending data over a network and they are not synchronized. As solving

this issue is beyond the scope of BIFF (at this time anyhow) I recommend you

coordinate the data collection into a single Minion for that Widget. Use a file share or

some other mechanism to collect the desired data into a single comma separated

source, or into multiple sources in a <Group>, but from a single Minion.

7.8.2 AreaChart

Figure 58 Area Chart

The AreaChart widget is nearly identical to the MultiSourceAreaChart, except that there is a

single <MinionSrc> that is expected to send data in a comma separated string.

7.8.2.1 Definition File

This section discusses what the contents of a AreaChart Widget definition file contains.

Example:

 <Widget Type = "AreaChart">

 <Style>LineChart.css</Style>

 <Animated>False</Animated>

 <yAxis MajorTickInterval="10" MinorTickInterval="5" TickLabelVisible="True"/>

 <xAxis MajorTickInterval="1" MinorTickInterval="0" TickLabelVisible="False"/>

</Widget>

 < Animated >

Required

Determines if the chart will show the drawing and moving of datapoints. I usually have it

127 Revision 18.02 Board Instrumentation Framework

off. It is a Boolean (true or false) value.

 < xAxis>

Required

Determines look of the xAxis on the chart.

Attributes

The < xAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on xAxis

MinorTickInterval M Numeric interval for Minor Ticks on xAxis

TickLabelVisible M Boolean – display the value on major ticks

 < yAxis>

Required

Determines look of the yAxis on the chart.

Attributes

The < yAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on yAxis

MinorTickInterval M Numeric interval for Minor Ticks on yAxis

TickLabelVisible M Boolean – display the value on major ticks

7.8.2.2 Application Settings

This section discusses the settings used to add a MultiSrcAreaChart in the application

configuration XML file.

Example:

 <Widget File="Chart\ChartArea.xml" row="1" column="0">

 <Title>Area Chart - Multisourced</Title>

 <xAxis Label="Over Time" MaxEntries="10"/>

 <yAxis Label="Data Value" MaxValue="100"/>

 <MinionSrc ID=”CombinedSource” Namespace=”DemoNamespace”/>

 <Series Label="Data Series 1"/>

 <Series Label="Data Series 2"/>

 <Series Label="Data Series 3"/>

 <Series Label="Data Series 4"/>

128 Revision 18.02 Board Instrumentation Framework

 </Widget>

 <Title>

Optional

Sets the title of the chart, shown at the top.

 <xAxis>

Required

Defines how the xAxis should be handled. Has two attributes, Label and MaxEntries. Label

is the label to display on the chart. MaxEntries specifies how many series to display before

starting to scroll to the left when new data comes in.

 <yAxis>

Required

Defines how the yAxis should be handled. Has two attributes, Label and MaxValue. Label is

the label to display on the chart. MaxValue specifies the maximum value to be displayed.

MinValue is optional, defaults to 0.0. Is the bottom of the chart, can be negative value.

 <Series>

Required

The Series defines how many datapoints are to be expected from each update from the

MinionSrc. It also defines the name of each series for display purposes.

<Series Label="Data Series 1"/>

7.8.3 MultiSourceStackedAreaChart

Figure 59 Area Chart

The MultiSourcedStackedArea chart is nearly exactly the same as the

MultSourcedAreaChart. The only difference being that the data points are ‘stacked’ rather

than displayed at a specify y value.

129 Revision 18.02 Board Instrumentation Framework

Note: These charts can be useful, however if you have multiple <MinionSrc> they can easily

get out of sync and the chart can look ‘messy’.

7.8.3.1 Definition File

This section discusses what the contents of a MultiSourcedStackedArea Widget definition file

contains.

Example:

 <Widget Type = "MultiSourceStackedAreaChart">

 <Style>LineChart.css</Style>

 <Animated>False</Animated>

 <yAxis MajorTickInterval="10" MinorTickInterval="5" TickLabelVisible="True"/>

 <xAxis MajorTickInterval="1" MinorTickInterval="0" TickLabelVisible="False"/>

</Widget>

 < Animated >

Required

Determines if the chart will show the drawing and moving of datapoints. I usually have it

off. It is a Boolean (true or false) value.

 < xAxis>

Required

Determines look of the xAxis on the chart.

Attributes

The < xAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on xAxis

MinorTickInterval M Numeric interval for Minor Ticks on xAxis

TickLabelVisible M Boolean – display the value on major ticks

 < yAxis>

Required

Determines look of the yAxis on the chart.

Attributes

The < yAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on yAxis

130 Revision 18.02 Board Instrumentation Framework

MinorTickInterval M Numeric interval for Minor Ticks on yAxis

TickLabelVisible M Boolean – display the value on major ticks

 < Synchronized>

Optional

For charts with multiple data sources, this option allows you to specify that the chart will not

be updated until all of the data sources have sent data. It takes a Boolean value (true or

false). The default is true.

Attributes

The < Synchronized > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MaxSyncWait 0 MAX time in milliseconds to wait for all data to synchronize

before updating chart. A value of 0 (zero) will wait

indefinitely. Default value is 0.

Note: Default values are TRUE and a MaxSyncWait is 0. This means if you have say 4

minions feeding a single chart and one of them is currently down, the chart will never

update.

7.8.3.2 Application Settings

This section discusses the settings used to add a MultiSrcAreaChart in the application

configuration XML file.

Example:

 <Widget File="Chart\ChartMultiSrcStackedArea.xml" row="2" column="0">

 <Title>Stacked Area Chart - Multisourced</Title>

 <xAxis Label="Over Time" MaxEntries="10"/>

 <yAxis Label="Data Value" MaxValue="100"/>

 <Series Label="Data Series 1">

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace"/>

 </Series>

 <Series Label="Data Series 2">

 <MinionSrc ID="GraphSource2" Namespace="DemoNamespace"/>

 </Series>

 </Widget>

 <Title>

Optional

Sets the title of the chart, shown at the top.

 <xAxis>

Required

Defines how the xAxis should be handled. Has two attributes, Label and MaxEntries. Label

131 Revision 18.02 Board Instrumentation Framework

is the label to display on the chart. MaxEntries specifies how many series to display before

starting to scroll to the left when new data comes in.

 <yAxis>

Required

Defines how the yAxis should be handled. Has two attributes, Label and MaxValue. Label is

the label to display on the chart. MaxValue specifies the maximum value to be displayed.

MinValue is optional, defaults to 0.0. Is the bottom of the chart, can be negative value.

 <Series>

Required

The Series defines the Source of the data for a series. This is a mulit-src chart, so each

series has its own MinionSrc. A Series has a Label Attribute (the name of the series to be

displayed) and a MinionSrc:

<Series Label="Data Series 1">

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace"/>

</Series>

You must specify a Series for each expected MinionSrc. The example above has 2.

Note: Muliti-Source charts can be problematic unless used with care. Each data source is

an independent stream and even if the collector is run with the same interval, the

traffic is UDP and not guaranteed, so it can be dropped. If the collectors feeding the

Widget are all from the same Minion, I recommend using the <Group> capability – it

is why it was invented.

If your data is coming from different Minions and feeding the same chart/graph then you

will almost certainly see update issues. This is simply because you have separate

data sources sending data over a network and they are not synchronized. As solving

this issue is beyond the scope of BIFF (at this time anyhow) I recommend you

coordinate the data collection into a single Minion for that Widget. Use a file share or

some other mechanism to collect the desired data into a single comma separated

source, or into multiple sources in a <Group>, but from a single Minion.

132 Revision 18.02 Board Instrumentation Framework

7.8.4 StackedAreaChart

Figure 60 Area Chart

The StackedArea chart is nearly exactly the same as the AreaChart. The only difference

being that the data points are ‘stacked’ rather than displayed at a specify y value.

7.8.4.1 Definition File

This section discusses what the contents of a StackedArea Widget definition file contains.

Example:

 <Widget Type = "StackedAreaChart">

 <Style>LineChart.css</Style>

 <Animated>False</Animated>

 <yAxis MajorTickInterval="10" MinorTickInterval="5" TickLabelVisible="True"/>

 <xAxis MajorTickInterval="1" MinorTickInterval="0" TickLabelVisible="False"/>

</Widget>

 < Animated >

Required

Determines if the chart will show the drawing and moving of datapoints. I usually have it

off. It is a Boolean (true or false) value.

 < xAxis>

Required

Determines look of the xAxis on the chart.

Attributes

The < xAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

133 Revision 18.02 Board Instrumentation Framework

MajorTickInterval M Numeric interval for Major Ticks on xAxis

MinorTickInterval M Numeric interval for Minor Ticks on xAxis

TickLabelVisible M Boolean – display the value on major ticks

 < yAxis>

Required

Determines look of the yAxis on the chart.

Attributes

The < yAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on yAxis

MinorTickInterval M Numeric interval for Minor Ticks on yAxis

TickLabelVisible M Boolean – display the value on major ticks

7.8.4.2 Application Settings

This section discusses the settings used to add a MultiSrcAreaChart in the application

configuration XML file.

Example:

 <Widget File="Chart\ChartStackedArea.xml" row="2" column="0">

 <Title>Stacked Area Chart - Singlesourced</Title>

 <xAxis Label="Over Time" MaxEntries="10"/>

 <yAxis Label="Data Value" MaxValue="100"/>

 <MinionSrc ID=”TwoDataPts” Namespace=”DemoNamespace”\>

 <Series Label="Data Series 1"/>

 <Series Label="Data Series 2"/>

 </Widget>

 <Title>

Optional

Sets the title of the chart, shown at the top.

 <xAxis>

Required

Defines how the xAxis should be handled. Has two attributes, Label and MaxEntries. Label

is the label to display on the chart. MaxEntries specifies how many series to display before

starting to scroll to the left when new data comes in.

134 Revision 18.02 Board Instrumentation Framework

 <yAxis>

Required

Defines how the yAxis should be handled. Has two attributes, Label and MaxValue. Label is

the label to display on the chart. MaxValue specifies the maximum value to be displayed.

MinValue is optional, defaults to 0.0. Is the bottom of the chart, can be negative value.

 <Series>

Required

The Series defines the Source of the data for a series. This is a single-src chart, so each

series has only the label.

<Series Label="Data Series 1"/>

7.8.5 MultiSourceLineChart

Figure 61 Line Chart

7.8.5.1 Definition File

This section discusses what the contents of a MultiSourceLineChart Widget definition file

contains.

Example:

<Widget Type = "MultiSourceLineChart">

 <Style>LineChart.css</Style>

 <Animated>False</Animated>

 <yAxis MajorTickInterval="10" MinorTickInterval="5" TickLabelVisible="True"/>

 <xAxis MajorTickInterval="1" MinorTickInterval="0" TickLabelVisible="False"/>

</Widget>

 < Animated >

Required

135 Revision 18.02 Board Instrumentation Framework

Determines if the chart will show the drawing and moving of datapoints. I usually have it

off. It is a Boolean (true or false) value.

 < xAxis>

Required

Determines look of the xAxis on the chart.

Attributes

The < xAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on xAxis

MinorTickInterval M Numeric interval for Minor Ticks on xAxis

TickLabelVisible M Boolean – display the value on major ticks

 < yAxis>

Required

Determines look of the yAxis on the chart.

Attributes

The < yAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on yAxis

MinorTickInterval M Numeric interval for Minor Ticks on yAxis

TickLabelVisible M Boolean – display the value on major ticks

 < Synchronized>

Optional

For charts with multiple data sources, this option allows you to specify that the chart will not

be updated until all of the data sources have sent data. It takes a Boolean value (true or

false). The default is true.

Attributes

The < Synchronized > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MaxSyncWait 0 MAX time in milliseconds to wait for all data to synchronize

before updating chart. A value of 0 (zero) will wait

136 Revision 18.02 Board Instrumentation Framework

indefinitely. Default value is 0.

Note: Default values are TRUE and a MaxSyncWait is 0. This means if you have say 4

minions feeding a single chart and one of them is currently down, the chart will never

update.

7.8.5.2 Application Settings

This section discusses the settings used to add a MultiSrcAreaChart in the application

configuration XML file.

Example:

 <Widget File="Chart\ChartMultiSrcLine.xml" row="1" column="1">

 <Title>Line Chart - Multisourced</Title>

 <xAxis Label="Over Time" MaxEntries="10"/>

 <yAxis Label="Data Value" MaxValue="100" MinValue=”0”/>

 <Series Label="Data Series 1">

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace"/>

 </Series>

 <Series Label="Data Series 2">

 <MinionSrc ID="GraphSource2" Namespace="DemoNamespace"/>

 </Series>

 <Series Label="Data Series 3">

 <MinionSrc ID="GraphSource3" Namespace="DemoNamespace"/>

 </Series>

 <Series Label="Data Series 4">

 <MinionSrc ID="GraphSource4" Namespace="DemoNamespace"/>

 </Series>

 </Widget>

 <Title>

Optional

Sets the title of the chart, shown at the top.

 <xAxis>

Required

Defines how the xAxis should be handled. Has two attributes, Label and MaxEntries. Label

is the label to display on the chart. MaxEntries specifies how many series to display before

starting to scroll to the left when new data comes in.

 <yAxis>

Required

Defines how the yAxis should be handled. Has two attributes, Label and MaxValue. Label is

the label to display on the chart. MaxValue specifies the maximum value to be displayed.

MinValue is optional, defaults to 0.0. Is the bottom of the chart, can be negative value.

 <Series>

Required

The Series defines the Source of the data for a series. This is a mulit-src chart, so each

137 Revision 18.02 Board Instrumentation Framework

series has its own MinionSrc. A Series has a Label Attribute (the name of the series to be

displayed) and a MinionSrc:

<Series Label="Data Series 1">

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace"/>

</Series>

You must specify a Series for each expected MinionSrc. The example above has 4.

Note: Muliti-Source charts can be problematic unless used with care. Each data source is

an independent stream and even if the collector is run with the same interval, the

traffic is UDP and not guaranteed, so it can be dropped. If the collectors feeding the

Widget are all from the same Minion, I recommend using the <Group> capability – it

is why it was invented.

If your data is coming from different Minions and feeding the same chart/graph then you

will almost certainly see update issues. This is simply because you have separate

data sources sending data over a network and they are not synchronized. As solving

this issue is beyond the scope of BIFF (at this time anyhow) I recommend you

coordinate the data collection into a single Minion for that Widget. Use a file share or

some other mechanism to collect the desired data into a single comma separated

source, or into multiple sources in a <Group>, but from a single Minion.

7.8.6 LineChart

Figure 62 Line Chart

7.8.6.1 Definition File

This section discusses what the contents of a LineChart Widget definition file contains – it is

pretty much identical to the other charts.

Example:

<Widget Type = "LineChart">

138 Revision 18.02 Board Instrumentation Framework

 <Style>LineChart.css</Style>

 <Animated>False</Animated>

 <yAxis MajorTickInterval="10" MinorTickInterval="5" TickLabelVisible="True"/>

 <xAxis MajorTickInterval="1" MinorTickInterval="0" TickLabelVisible="False"/>

</Widget>

 < Animated >

Required

Determines if the chart will show the drawing and moving of datapoints. I usually have it

off. It is a Boolean (true or false) value.

 < xAxis>

Required

Determines look of the xAxis on the chart.

Attributes

The < xAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on xAxis

MinorTickInterval M Numeric interval for Minor Ticks on xAxis

TickLabelVisible M Boolean – display the value on major ticks

 < yAxis>

Required

Determines look of the yAxis on the chart.

Attributes

The < yAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on yAxis

MinorTickInterval M Numeric interval for Minor Ticks on yAxis

TickLabelVisible M Boolean – display the value on major ticks

7.8.6.2 Application Settings

This section discusses the settings used to add a MultiSrcAreaChart in the application

configuration XML file.

Example:

139 Revision 18.02 Board Instrumentation Framework

 <Widget File="Chart\ChartMultiSrcLine.xml" row="1" column="1">

 <Title>Line Chart - Multisourced</Title>

 <xAxis Label="Over Time" MaxEntries="10"/>

 <yAxis Label="Data Value" MaxValue="100"/>

 <MinionSrc ID="CPU_LineChart" Namespace="DemoNamespace"/>

 <Series Label="Data Series 1"/>

 <Series Label="Data Series 2"/>

 <Series Label="Data Series 3"/>

 <Series Label="Data Series 4"/>

 </Widget>

 <Title>

Optional

Sets the title of the chart, shown at the top.

 <xAxis>

Required

Defines how the xAxis should be handled. Has two attributes, Label and MaxEntries. Label

is the label to display on the chart. MaxEntries specifies how many series to display before

starting to scroll to the left when new data comes in.

 <yAxis>

Required

Defines how the yAxis should be handled. Has two attributes, Label and MaxValue. Label is

the label to display on the chart. MaxValue specifies the maximum value to be displayed.

MinValue is optional, defaults to 0.0. Is the bottom of the chart, can be negative value.

 <Series>

Required

The Series defines the number and name of the series data to be sent from a single

<MinionSrc> as a comma separated string.

<Series Label="Data Series 1"/>

140 Revision 18.02 Board Instrumentation Framework

7.8.7 PieChart

Figure 63 Pie Chart

7.8.7.1 Definition File

This section discusses what the contents of a PieChart Widget definition file contains.

Example:

<Widget Type = "PieChart">

 <Style>PieChart.css</Style>

</Widget>

Very simple definition file.

7.8.7.2 Application Settings

This section discusses the settings used to add a Pie Chart dial in the application

configuration XML file.

Example:

<Widget File="Chart\ChartPie.xml" row="3" column="1">

 <Title>Pie Chart</Title>

 <MinionSrc ID="PieSource" Namespace="DemoNamespace"/>

 <Slice Label="Slice 1"/>

 <Slice Label="Slice 2"/>

 <Slice Label="Slice 3"/>

 <Slice Label="Slice 4"/>

</Widget>

 <Title>

Optional

Sets the title of the chart, shown at the top.

141 Revision 18.02 Board Instrumentation Framework

 <Series>

Required

The Series defines the number and name of the series data to be sent from a single

<MinionSrc> as a comma separated string.

<Series Label="Slice 1"/>

In the above example there are 4.

7.8.8 Bar Chart

Figure 64 Multi Series Bar Chart

Figure 65 Bar Chart

Figure 66 Bar Chart

The BarChart was the last chart widget I created. As such, it works a bit differently than

142 Revision 18.02 Board Instrumentation Framework

the others. Rather than have multi-src and single source widgets, there is a single widget

that gets instantiated differently in the application configuration xml file. The three figures

above are all BarChart widgets, but declared differently.

7.8.8.1 Definition File

This section discusses what the contents of a BarChart Widget definition file contains.

Example:

<Widget Type = "BarChart">

 <Style>BarChart.css</Style>

 <Animated>True</Animated>

 <yAxis MajorTickInterval="10" MinorTickInterval="0" TickLabelVisible="True"/>

</Widget>

 < Animated >

Required

Determines if the chart will show the drawing and moving of datapoints. I usually have it

off. It is a Boolean (true or false) value.

 < yAxis>

Required

Determines look of the yAxis on the chart.

Attributes

The < yAxis > tag supports the following attributes, which are case sensitive.

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on yAxis

MinorTickInterval M Numeric interval for Minor Ticks on yAxis

TickLabelVisible M Boolean – display the value on major ticks

7.8.8.2 Application Settings

This section discusses the settings used to add a Pie Chart dial in the application

configuration XML file.

Example1:

 <Widget File="Chart\ChartBar.xml" row="1" column="1">

 <Title>Country Summary</Title>

 <xAxis Label="Country"/>

 <yAxis Label="Value" MaxValue="120000"/>

 <Series ID="Series1" Label="2002"/>

 <Series ID="Series2" Label="2003"/>

 <Series ID="Series3" Label="2004"/>

 <SeriesSet Title="Austria">

143 Revision 18.02 Board Instrumentation Framework

 <MinionSrc ID="Austria02" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="Austria03" Namespace="DemoNamespace" SeriesID="Series2"/>

 <MinionSrc ID="Austria04" Namespace="DemoNamespace" SeriesID="Series3"/>

 </SeriesSet>

 <SeriesSet Title="Brazil">

 <MinionSrc ID="Brazil02" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="Brazil03" Namespace="DemoNamespace" SeriesID="Series2"/>

 <MinionSrc ID="Brazil04" Namespace="DemoNamespace" SeriesID="Series3"/>

 </SeriesSet>

 <SeriesSet Title="France">

 <MinionSrc ID="France02" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="France03" Namespace="DemoNamespace" SeriesID="Series2"/>

 <MinionSrc ID="France04" Namespace="DemoNamespace" SeriesID="Series3"/>

 </SeriesSet>

 <SeriesSet Title="Italy">

 <MinionSrc ID="Italy02" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="Italy03" Namespace="DemoNamespace" SeriesID="Series2"/>

 <MinionSrc ID="Italy04" Namespace="DemoNamespace" SeriesID="Series3"/>

 </SeriesSet>

 <SeriesSet Title="USA">

 <MinionSrc ID="USA02" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="USA03" Namespace="DemoNamespace" SeriesID="Series2"/>

 <MinionSrc ID="USA04" Namespace="DemoNamespace" SeriesID="Series3"/>

 </SeriesSet>

 </Widget>

Example2:

 <Title>CPU</Title>

 <xAxis Label="CPU Utilization"/>

 <yAxis Label="Value" MaxValue="100"/>

 <Series Label = "CPU0" ID="Series1"/>

 <Series Label = "CPU1" ID="Series2"/>

 <Series Label = "CPU2" ID="Series3"/>

 <Series Label = "CPU3" ID="Series4" />

 <Series Label = "CPU4" ID="Series5" />

 <Series Label = "CPU5" ID="Series6" />

 <Series Label = "CPU6" ID="Series7" />

 <Series Label = "CPU7" ID="Series8" />

 <Series Label = "CPU8" ID="Series9" />

 <Series Label = "CPU9" ID="Series10" />

 <Series Label = "CPU10" ID="Series11" />

 <Series Label = "CPU11" ID="Series12" />

 <Series Label = "CPU12" ID="Series13" />

 <Series Label = "CPU13" ID="Series14" />

 <Series Label = "CPU14" ID="Series15" />

 <Series Label = "CPU15" ID="Series16" />

 <Series Label = "CPU16" ID="Series17" />

 <Series Label = "CPU17" ID="Series18" />

144 Revision 18.02 Board Instrumentation Framework

 <Series Label = "CPU18" ID="Series19" />

 <Series Label = "CPU19" ID="Series20" />

 <SeriesSet Title="CPU">

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="GraphSource2" Namespace="DemoNamespace" SeriesID="Series2"/>

 <MinionSrc ID="GraphSource3" Namespace="DemoNamespace" SeriesID="Series3"/>

 <MinionSrc ID="GraphSource4" Namespace="DemoNamespace" SeriesID="Series4"/>

 <MinionSrc ID="GraphSource3" Namespace="DemoNamespace" SeriesID="Series3"/>

 <MinionSrc ID="GraphSource4" Namespace="DemoNamespace" SeriesID="Series4"/>

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace" SeriesID="Series5"/>

 <MinionSrc ID="GraphSource2" Namespace="DemoNamespace" SeriesID="Series6"/>

 <MinionSrc ID="GraphSource3" Namespace="DemoNamespace" SeriesID="Series7"/>

 <MinionSrc ID="GraphSource4" Namespace="DemoNamespace" SeriesID="Series8"/>

 <MinionSrc ID="GraphSource3" Namespace="DemoNamespace" SeriesID="Series9"/>

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace" SeriesID="Series10"/>

 <MinionSrc ID="GraphSource3" Namespace="DemoNamespace" SeriesID="Series11"/>

 <MinionSrc ID="GraphSource4" Namespace="DemoNamespace" SeriesID="Series12"/>

 <MinionSrc ID="GraphSource2" Namespace="DemoNamespace" SeriesID="Series13"/>

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace" SeriesID="Series14"/>

 <MinionSrc ID="GraphSource3" Namespace="DemoNamespace" SeriesID="Series15"/>

 <MinionSrc ID="GraphSource2" Namespace="DemoNamespace" SeriesID="Series16"/>

 <MinionSrc ID="GraphSource4" Namespace="DemoNamespace" SeriesID="Series17"/>

 <MinionSrc ID="GraphSource3" Namespace="DemoNamespace" SeriesID="Series18"/>

 <MinionSrc ID="GraphSource2" Namespace="DemoNamespace" SeriesID="Series19"/>

 <MinionSrc ID="GraphSource1" Namespace="DemoNamespace" SeriesID="Series20"/>

</SeriesSet>

</Widget>

Example3:

<Widget File="BarChart.xml" row="1" column="2">

 <Title> CPU Utilization</Title>

 <xAxis Label="CPU Number" Count="80"/>

 <yAxis Label="% Utilization" MaxValue="100"/>

 <MinionSrc ID="CPU_LIST" Namespace="DemoNamespace"/>

 <StyleOverride>

 <Item>-fx-legend-visible:false;-fx-bar-gap:1;-fx-category-gap:1;</Item>

 </StyleOverride>

</Widget>

 <Title>

Optional

Sets the title of the chart, shown at the top.

 <xAxis>

Required

Defines how the xAxis should be handled. Has two attributes, Label and MaxEntries. Label

is the label to display on the chart. MaxEntries specifies how many bars to display if you

don’t specify any series, as in Exampl3, which matches Figure 66.

145 Revision 18.02 Board Instrumentation Framework

 <yAxis>

Required

Defines how the yAxis should be handled. Has two attributes, Label and MaxValue. Label is

the label to display on the chart. MaxValue specifies the maximum value to be displayed.

 <Series>

Optional

The Series defines the Source of the data for a series. A Series has a Label Attribute (the

name of the series to be displayed, which is optional) and an ID:

<Series ID="Series1" Label="2002"/>

 <SeriesSet>

Series set is where you can make a grouping of series, such as in Figure 64. Each Series

Set has a Title Attribute that is the title of the Series. It also has a <MinionSrc> for each

dataset in that series, with each <MinionSrc> having a new Attribute of SeriesID, that

corresponds to the ID in the <Series> tag described above.

Example:

<Series ID="Series1" Label="2002"/>

<Series ID="Series2" Label="2003"/>

<Series ID="Series3" Label="2004"/>

<SeriesSet Title="Austria">

 <MinionSrc ID="Austria02" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="Austria03" Namespace="DemoNamespace" SeriesID="Series2"/>

 <MinionSrc ID="Austria04" Namespace="DemoNamespace" SeriesID="Series3"/>

</SeriesSet>

You can define a Single SeriesSet as in Figure 65 or many as in Figure 64.

Or you can do as in Example3 above and define no series, but define in the xAxis how many

datapoints you expect (with a comma separated list of values coming from your Minion
Collector). Very useful for many cores

146 Revision 18.02 Board Instrumentation Framework

7.8.9 StackedBarChart

Figure 67 StackedBarChart

7.8.9.1 Definition File

This section discusses what the contents of a StackedBarChart Widget definition file

contains.

Example:

<Widget Type = "Chart\ChartStackedBar">

 <Style>BarChart.css</Style>

 <Animated>True</Animated>

 <yAxis MajorTickInterval="10" MinorTickInterval="5" TickLabelVisible="True"/>

</Widget>

Very simple definition file.

 < Animated >

Required

Determines if the chart will show the drawing and moving of datapoints. I usually have it

off. It is a Boolean (true or false) value.

 < yAxis>

Required

Determines look of the yAxis on the chart.

Attributes

The < yAxis > tag supports the following attributes, which are case sensitive.

147 Revision 18.02 Board Instrumentation Framework

Attribute M/O Comments

MajorTickInterval M Numeric interval for Major Ticks on yAxis

MinorTickInterval M Numeric interval for Minor Ticks on yAxis

TickLabelVisible M Boolean – display the value on major ticks

7.8.9.2 Application Settings

This section discusses the settings used to add a StackedBarChart in the application

configuration XML file.

Example:

<Widget File="StackedBarChart.xml" row="1" column="1">

 <Title>Stacked Chart</Title>

 <xAxis Label="Server"/>

 <yAxis Label="Throughput" MaxValue="80"/>

 <Series ID="Series1" Label="Tx"/>

 <Series ID="Series2" Label="Rx"/>

 <SeriesSet Title="Server1">

 <MinionSrc ID="StackedTx_Server1" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="StackedRx_Server1" Namespace="DemoNamespace" SeriesID="Series2"/>

 </SeriesSet>

<SeriesSet Title="Server2">

 <MinionSrc ID="StackedTx_Server2" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="StackedRx_Server2" Namespace="DemoNamespace" SeriesID="Series2"/>

 </SeriesSet>

<SeriesSet Title="Server3">

 <MinionSrc ID="StackedTx_Server3" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="StackedRx_Server3" Namespace="DemoNamespace" SeriesID="Series2"/>

</SeriesSet>

<SeriesSet Title="Server4">

 <MinionSrc ID="StackedTx_Server4" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="StackedRx_Server4" Namespace="DemoNamespace" SeriesID="Series2"/>

</SeriesSet>

</Widget>

 <Title>

Optional

Sets the title of the chart, shown at the top.

Optional

The Series defines the Source of the data for a series. A Series has a Label Attribute (the

name of the series to be displayed, which is optional) and an ID:

<Series ID="Series1" Label="2002"/>

148 Revision 18.02 Board Instrumentation Framework

 <SeriesSet>

Series set is where you can make a grouping of series, such as in Figure 64. Each Series

Set has a Title Attribute that is the title of the Series. It also has a <MinionSrc> for each

dataset in that series, with each <MinionSrc> having a new Attribute of SeriesID, that

corresponds to the ID in the <Series> tag described above.

Example:

<SeriesSet>

 <Series ID="Series1" Label="Tx"/>

 <Series ID="Series2" Label="Rx"/>

 <SeriesSet Title="Server1">

 <MinionSrc ID="StackedTx_Server1" Namespace="DemoNamespace" SeriesID="Series1"/>

 <MinionSrc ID="StackedRx_Server1" Namespace="DemoNamespace" SeriesID="Series2"/>

</SeriesSet>

Just as with the BarGraph widget, you can define a single or multiple <SeriesSet>s.

Note: Muliti-Source charts can be problematic unless used with care. Each data source is

an independent stream and even if the collector is run with the same interval, the

traffic is UDP and not guaranteed, so it can be dropped. If the collectors feeding the

Widget are all from the same Minion, I recommend using the <Group> capability – it

is why it was invented.

If your data is coming from different Minions and feeding the same chart/graph then you

will almost certainly see update issues. This is simply because you have separate

data sources sending data over a network and they are not synchronized. As solving

this issue is beyond the scope of BIFF (at this time anyhow) I recommend you

coordinate the data collection into a single Minion for that Widget. Use a file share or

some other mechanism to collect the desired data into a single comma separated

source, or into multiple sources in a <Group>, but from a single Minion.

149 Revision 18.02 Board Instrumentation Framework

7.9 Images/Video/Sound

7.9.1 StaticImage

Figure 68 Static Image

A static image is just that. You can place an image (.bmp,.jpg,.gif,.tiff, etc.) in a grid.

7.9.1.1 Definition File

This section discusses what the contents of a StaticImage Widget definition file contains.

Example:

<Widget Type = "StaticImage">

 <PreserveRatio>True</PreserveRatio>

 <ScaleToFit>True</ScaleToFit>

</Widget>

 < PreserveRatio>

Optional

Value is either True or False. If True, the image will grow in change size in both height and

width if you specify only one value when placing the Widget.

 < ScaleToFit>

Optional

TBD - Experimental

7.9.1.2 Application Settings

This section discusses the settings used to add a StaticImage in the application

configuration XML file.

Example:

150 Revision 18.02 Board Instrumentation Framework

<Widget File="Image\ImageScale.xml" row="1" column="1" >

 <Source>Demo\Images\ajax_loader_blue_256.gif</Source>

 <ClickThroughTransparent>False</ClickThroughTransparent>

</Widget>

The Source Tag points to the image to load. Pretty easy.

The optional <ClickThroughTransparent> tag takes either True or False, and defaults to

True. This is used if you want to put up an image that you assign a task to and ignore clicks

to any area of the image that is transparent.

7.9.2 DynamicImage

Figure 69 Dynamic Image

The DynamicImage widget allows you to control which image to display at a location

depending on a string that comes from a Minion collector.

A good example is when you go start a test, the collector (could be a file collector reading

status from a file) sends an ID to make the image one that indicates test is starting. Then

when the test if finished, the string ID associated with the ‘finished test’ image is sent and

the image is changed.

In addition to the ID of the specific image you wish to display, you can also send ‘Next’ or

‘Previous’, and the next or previous image in the list will be displayed. When using ‘Next’ or

‘Previous’ the list is considered to be circular.

7.9.2.1 Definition File

This section discusses what the contents of a DynamicImage Widget definition file contains.

Example:

 <Widget Type = "DynamicImage">

 <PreserveRatio>True</PreserveRatio>

 <ScaleToFit>False</ScaleToFit>

</Widget>

 < PreserveRatio>

Optional

Value is either True or False. If True, the image will grow in change size in both height and

width if you specify only one value when placing the Widget.

 < ScaleToFit>

Optional

TBD - Experimental

151 Revision 18.02 Board Instrumentation Framework

7.9.2.2 Application Settings

This section discusses the settings used to add a DynamicImage in the application

configuration XML file.

Example:

<Widget File="Image\DynamicImage.xml" row="3" column="1" Task=”ClickedOnAnyButRedTask”

>

 <MinionSrc ID="TrafficLight" Namespace="DemoNamespace"/>

 <Image Source="Demo\Images\yellowlight.png" ID="2"/>

 <Image Source="Demo\Images\greenlight.png" ID="1"/>

 <Image Source="Demo\Images\redlight.png" ID="3" Task=”ClickedOnRedTask”/>

 <Initial ID="1"/>

 <Size>

 <Minimum Height="250"/>

 </Size>

</Widget>

The widget has three unique Tags, Image and Initial. Image takes as Attributes a Source,

that points to a file containing the image and an ID. The ID is a string that the collector

(identified by the MinionSrc) sends to change the image. You may also specify a task to be

run for all images if clicked on, by specifying a task at the <Widget> level. Additionally you

can specify a task for individual images by adding a Task attribute for each Image Source

tag.

Initial indicates what image to display at startup.

The Optional <ClickThroughTransparent> tag takes either True or False, and defaults to

True. This is used if you want to put up an image that you assign a task to and ignore clicks

to any area of the image that is transparent. This is the same as StaticImage.

7.9.2.3 AutoAdvance

You may wish to automatically advance through all of the images within a DynamicImage

rather than issuing a <Peekaboo> “next” repeatedly with say a task, you can configure it

for <AutoAdvance>.

<Widget File="Image\DynamicImage.xml" row="3" column="1" >

 <AutoAdvance Frequency='1000' Loop='True'/>

 <MinionSrc ID="TrafficLight" Namespace="DemoNamespace"/>

 <Image Source="Demo\Images\yellowlight.png" ID="2"/>

 <Image Source="Demo\Images\greenlight.png" ID="1"/>

 <Image Source="Demo\Images\redlight.png" ID="3"/>

 <Initial ID="1"/>

 <Size>

 <Minimum Height="250"/>

 </Size>

</Widget>

152 Revision 18.02 Board Instrumentation Framework

<AutoAdvance> takes two attributes – the frequency in milliseconds of how often to

advance to the next image, and Loop boolean attribute. If True then after going through

the entire list of images, it will begin again with the first one.

7.9.2.4 <Transition>

You may now add transitions between the images, just as you can with <DynamicGrids>.

The syntax is the same, you just use it on an <Image> rather than GridFile:

<Image Source="$(AppDir)\Media\Images\Other\Optimizations.png" ID="Optimizations">

 <Transition Duration="1750">CUBE</Transition>

</Image>

7.9.3 VideoPlayer

The VideoPlayer widget allows you play video files. Formats include MP4 and FLV. WMV is

not supported.

NOTE: you must have the ability to play videos installed in your OS, as the VideoPlayer

widget uses that underlying technology.

The most likely used for a VideoPlayer widget is to have a tab where you can have different

videos be selected to talk about different technologies or example. However there is

nothing to prevent you from having a VideoPlayer widget the ‘pops’ up to show a little video

indicating that your test is running, or finished etc.

The VideoPlayer, using a mechanism similar <Peekaboo> (using the <PlaybackControl>

tag) provides the abilitiy to Start,Stop and Pause a video. Additionally you can specify a

playback volume and seek to a location in the video.

The VideoPlayer widget is very similar to the DynamicImage Widget, where you specify a

list of things to be displayed and an ID for each of them, then the incoming <MinionSrc>

data would specify which ID to display.

In addition to the ID of the specific video you wish to display, you can also send ‘Next’ or

‘Previous’, and the next or previous video in the list will be displayed. When using ‘Next’ or

‘Previous’ the list is considered to be circular.

7.9.3.1 Supported File Types:

Java doesn’t support all video types. See the Java support for the list of supported types:

http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-

summary.html#SupportedMediaTypes

7.9.3.2 Definition File

This section discusses what the contents of a VideoPlayer Widget definition file contains.

Example:

 <Widget Type = "VideoPlayer">

 <AutoStart>True</AutoStart>

 <InitialVolume>50</InitialVolume>

 <Repeat Mode="Single">False</Repeat>

 <PreserveRatio>True</PreserveRatio>

http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html#SupportedMediaTypes
http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html#SupportedMediaTypes

153 Revision 18.02 Board Instrumentation Framework

</Widget>

 <AutoStart>

Optional

Value is either True or False. If True, the video will begin as soon as selected/loaded –

which could be when your app starts.

 <InitialVolume>

Optional

Sets the initial volume level when the VideoPlayer starts. Expressed in range of 0 to 100.

 <Repeat>

Optional

Allows the video playing to be automatically repeated or not.

The Mode attribute can be either “Single” (default mode), which, if <Repeat> is True, would

repeat the current video over and over. Or it could be “LoopList”, in which case if there is a

list of video files, it will cycle through them repeatedly.

 < PreserveRatio>

Optional

Value is either True or False. If True, the video will grow in change size in both height and

width if you specify only one value when placing the Widget.

NOTE: This is currently experimental and may not work

7.9.3.3 Application Settings

This section discusses the settings used to add a VideoPlayer in the application configuration

XML file.

Note: Unlike most other widgets, the <Size> tags will be IGNORED for a video widget. You

can specify the Height and Width attributes however.

Example:

<Widget File="Media\VideoPlayer.xml" row="3" column="1" >

 <Video Source="Demo\Media\barsandtone.flv" ID="Video_1"/>

 <Video Source="Demo\media\how2.mp4" ID="Video_2" Task=”NormalTask”/>

 <Video Source="Demo\media\Sintel.mp4" ID="Video_3">

 <Task Marker=’1500’>MyTask</Task>

 <Task Marker=”50%’”>MyOtherTask</Task>

 </Video>

 <Video Source="Demo\Media\20051210-w50s.flv" ID="Video_4"/>

 <Initial ID="Video_3"/>

 <PlaybackControl ID="Video.PlaybackControl.ID"

Namespace="Video.PlaypackControl.NS"/>

 <MinionSrc ID="Vid_ID" Namespace="Vid_NS"/>

 <AutoStart>False</AutoStart>

 <Repeat Mode="Single">True</Repeat>

</Widget>

154 Revision 18.02 Board Instrumentation Framework

 <MinionSrc>

Optional

The expected incoming data would get a string indicating the ID of the video to load and

automatically play if <AutoStart> is configured for doing so.

 <Video>

Optional

You should have at least one of these . Specifies the video file to play via the Source

attribute, and the ID of that video.

 <Task>

You can specify a standard task to be run if you click on the video with the Task= attribute,

or you can specify one or more tasks to be run at different times during the playback. If

you specify more than one task to be run at the same time, only the last one specified will

be run.

When specify a task, you must specify the Marker, which is the location within the playback

you want the task to occur, and the task itself, such as below:

<Video Source="Demo\media\Sintel.mp4" ID="Video_3">

 <Task Marker=’1500’>MyTask</Task>

 <Task Marker=”50%’”>MyOtherTask</Task>

</Video>

The Task specified is the same as all other tasks. The Marker indicates where in the

playback to perform the Task. It can be any of the following:

Atrribute Description / Usage

Begin Start of playback

End End of Playback

Milliseconds How many milliseconds into playback to run task

Percentage At what percentage of playback to run the task

Note: The playback must occur over these points in order to initiate the task. If you ‘skip’

or jump past using the <PlaybackControl> a Marker, the associated Task will not be

run.

Optional

You should have

 <Initial>

Optional

The ID attribute specifies the ID of the video (as defined in the <Video> tag) to be the first

loaded.

155 Revision 18.02 Board Instrumentation Framework

 <PlaybackControl>

Optional

This is a special tag. You specify a namespace and ID used specifically for controlling the

widget. With it you can Play,Pause,Stop, control volume and seek. The supported data

format is:

Atrribute Description / Usage

“Play” Plays the video / resumes from pause

“Stop” Stops the video and rewinds to the beginning

“Pause” Pauses playback

“JumpTo:###” Jumps to a location in the video. The ### indicates the percentage of

the video to skip to. So a string of “JumpTo: 25” jumps to the point in

the video equal to 25% of the total playback time

“Volume:###” Sets the playback volume. ### indicates a % of the maximum volume.

So a string of “Volume: 50” sets the volume at 50% of maximum

 <AutoStart>

Optional

Value is either True or False. If True, the video will begin as soon as selected/loaded –

which could be when your app starts.

 <Repeat>

Optional

Allows the video playing to be automatically repeated or not.

The Mode attribute can be either “Single” (default mode), which, if <Repeat> is True, would

repeat the current video over and over. Or it could be “LoopList”, in which case if there is a

list of video files, it will cycle through them repeatedly.

7.9.4 AudioPlayer

The AudioPlayer widget allows you play Audio files. Formats include MP3 and others.

NOTE: you must have the ability to play videos installed in your OS, as the AudioPlayer

widget uses that underlying technology.

There is no visual component to the AudioPlayer.

You can use this to play a short audio clip to indicate the success or failure of a test, or just

listen to your favorite tunes!

The AudioPlayer, using a mechanism similar <Peekaboo> (using the <PlaybackControl>

tag) provides the abilitiy to Start,Stop and Pause a video. Additionally you can specify a

playback volume and seek to a location in the sound clip.

The AudioPlayer widget is very similar to the DynamicImage Widget, where you specify a

156 Revision 18.02 Board Instrumentation Framework

list of things to be displayed and an ID for each of them, and then the incoming

<MinionSrc> data would specify which ID to play.

In addition to the ID of the specific audio file you wish to play, you can also send ‘Next’ or

‘Previous’, and the next or previous audio file in the list will be used. When using ‘Next’ or

‘Previous’ the list is considered to be circular.

7.9.4.1 Supported Audio File Types:

Java doesn’t support all audio types. See the Java support for the list of supported types:

http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-

summary.html#SupportedMediaTypes

7.9.4.2 Definition File

This section discusses what the contents of a AudioPlayer Widget definition file contains.

Example:

 <Widget Type = "AudioPlayer">

 <AutoStart>True</AutoStart>

 <InitialVolume>50</InitialVolume>

 <Repeat Mode="Single">False</Repeat>

</Widget>

 <AutoStart>

Optional

Value is either True or False. If True, the audio will begin as soon as selected/loaded –

which could be when your app starts.

 <InitialVolume>

Optional

Sets the initial volume level when the AudioPlayer starts. Expressed in range of 0 to 100.

 <Repeat>

Optional

Allows the audio playing to be automatically repeated or not.

The Mode attribute can be either “Single” (default mode), which, if <Repeat> is True, would

repeat the current audio over and over. Or it could be “LoopList”, in which case if there is a

list of video files, it will cycle through them repeatedly.

7.9.4.3 Application Settings

This section discusses the settings used to add a AudioPlayer in the application configuration

XML file.

Note: All size components, are ignored.

Example:

<Widget File="Media\AudioPlayer.xml" row="3" column="1" >

 <Audio Source="Demo\Media\01 - Heartbreaker.mp3" ID="Audio_1"/>

http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html#SupportedMediaTypes
http://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html#SupportedMediaTypes

157 Revision 18.02 Board Instrumentation Framework

 <Audio Source="Demo\Media\song.mp3" ID="Audio_2"/>

 <Audio Source="Demo\Media\02 - We Live For Love.mp3" ID="Audio_3"/>

 <Audio Source="Demo\Media\04 - Hell Is For Children.mp3" ID="Audio_4"/>

 <Audio Source="Demo\Media\03 - Hit Me With Your Best Shot.mp3" ID="HitME"/>

 <Repeat Mode="LoopList">True</Repeat>

 <Initial ID="HitME"/>

 <PlaybackControl ID="Audio.PlaybackControl.ID" Namespace="Audio.PlaypackControl.NS"/>

 <MinionSrc ID="Audio_ID" Namespace="Audio_NS"/>

 <AutoStart>False</AutoStart>

 <Repeat Mode="Single">True</Repeat>

</Widget>

 <MinionSrc>

Optional

The expected incoming data would get a string indicating the ID of the audio to load and

automatically play if <AutoStart> is configured for doing so.

 <Audio>

Optional

You should have at least one of these . Specifies the audio file to play via the Source

attribute, and the ID of that audio file.

 <Task>

You can specify one or more tasks to be run at different times during the playback. If you

specify more than one task to be run at the same time, only the last one specified will be

run.

When specify a task, you must specify the Marker, which is the location within the playback

you want the task to occur, and the task itself, such as below:

<Audio Source="Demo\media\DingDong.mp3" ID="Audio_3">

 <Task Marker=’1500’>MyTask</Task>

 <Task Marker=”50%’”>MyOtherTask</Task>

</Audio>

The Task specified is the same as all other tasks. The Marker indicates where in the

playback to perform the Task. It can be any of the following:

Atrribute Description / Usage

Begin Start of Playback

End End of Playback

Milliseconds How many milliseconds into playback to run task

Percentage At what percentage of playback to run the task

Note: The playback must occur over these points in order to initiate the task. If you ‘skip’

or jump past using the <PlaybackControl> a Marker, the associated Task will not be

158 Revision 18.02 Board Instrumentation Framework

run.

Note: There seems to be an issue with trying to run a Task in the last few hundred

milliseconds of an audio file. For this reason if any specified Task is less than 300ms

from the end of the media (including specifying ‘End’) then the task Marker will be set

at the end – 300ms. In this case if you have a Marker at ‘end’ and a Marker at say

100ms before the end, they will end of up at the same Marker location and only the

last one specified will be run.

 <Initial>

Optional

The ID attribute specifies the ID of the audio file (as defined in the <Audio> tag) to be the

first loaded.

 <PlaybackControl>

Optional

This is a special tag. You specify a namespace and ID used specifically for controlling the

widget. With it you can Play,Pause,Stop, control volume and seek. The supported data

format is:

Atrribute Description / Usage

“Play” Plays the video / resumes from pause

“Stop” Stops the video and rewinds to the beginning

“Pause” Pauses playback

“JumpTo:###” Jumps to a location in the audio file. The ### indicates the percentage

of the video to skip to. So a string of “JumpTo: 25” jumps to the point in

the video equal to 25% of the total playback time

“Volume:###” Sets the playback volume. ### indicates a % of the maximum volume.

So a string of “Volume: 50” sets the volume at 50% of maximum

 <AutoStart>

Optional

Value is either True or False. If True, the audio will begin as soon as selected/loaded –

which could be when your app starts.

 <Repeat>

Optional

Allows the video playing to be automatically repeated or not.

The Mode attribute can be either “Single” (default mode), which, if <Repeat> is True, would

repeat the current audio over and over. Or it could be “LoopList”, in which case if there is a

list of audio files, it will cycle through them repeatedly.

159 Revision 18.02 Board Instrumentation Framework

7.10 Text Display Widgets

7.10.1 Text

The Text widget allows you to place text in anyplace. This text can be associated with a

<MinionSrc> and therefore change, or it can be static and never change (by not putting a

<MinionSrc> when you insert the Widget.

7.10.1.1 Definition File

This section discusses what the contents of a TextWidget definition file contains.

Example:

<Widget Type="Text">

 <Style ID="default_text">Text.css</Style>

 <ScaleToShape>False</ScaleToShape>

</Widget>

Note: ScaleToShape is an experimental setting at this time.

7.10.1.2 Application Settings

This section discusses the settings used to add a Text widget in the application configuration

XML file.

Example:

 <Widget File="Text\Text.xml" row="0" column="0" colSpan="3">

 <InitialValue> Various Indicator and Progress Widgets</InitialValue>

 <StyleOverride ID="Title"/>

 </Widget>

The optional <InitialValue> tag is used to provide the text to display at startup. If you

don’t specify a <MinionSrc>, then this is the only text that will be displayed for this widget.

 <Format>

You can modify how a text string is displayed by specifying a type and even a suffix string

to be added. The types supported are:

 Number (Adds commas)

 Percent (Adds commas and % sign)

 Money (Adds commas and $)

Example:

 <Widget File="Text.xml" row="0" column="0" colSpan="3">

 <InitialValue>10000 </InitialValue>

 <Format Type=”Number” />

 </Widget>

In addition to the Type attribute, you can specify a ‘Suffix’ attribute of the Format tag.

Whatever string you specify will be added to the string displayed.

160 Revision 18.02 Board Instrumentation Framework

7.10.2 Scalable Vector Graphic Widget (SVG)

The SVG widget is an extension of the Text widget, with the same settings in .XML. The

Application settings however takes a <Shape> tag in which you specify a SVG (Scalable

Vector Graphic) shape for the widget.

7.10.2.1 Definition File

This section discusses what the contents of a TextWidget definition file contains.

Example:

<Widget File="SVG/ScalableVectorGraphic.xml" row="0" column="0">

 <Shape>M 0 0 h 100 v -20 h -100 z </Shape>

 <InitialValue>SVG Text</InitialValue>

</Widget>

7.10.3 SteelLCD

Figure 70 LCD Widget

7.10.3.1 Definition File

This section discusses what the contents of a SteelLCD definition file contains.

Example:

<Widget Type = "SteelLCD">

 <Style ID="lcd-standard">lcd.css</Style>

 <Decimals>1</Decimals>

 <MinValue>0</MinValue>

 <MaxValue>1000</MaxValue>

 <UnitText>MBPS</UnitText>

 <KeepAspectRatio>True</KeepAspectRatio>

 <ShowMaxMeasuredValue>True</ShowMaxMeasuredValue>

 <ShowMinMeasuredValue>True</ShowMinMeasuredValue>

</Widget>

161 Revision 18.02 Board Instrumentation Framework

 < Decimals >

Required

Determines how many decimals places the widet will display.

 < MinValue>

Required

The minimum value displayed by the Widget.

 < MaxValue>

Required

The maxiumum value displayed by the Widget.

 < UnitText>

Required

The units text to be displayed in the widget. Can be overridden in application config.

 <ShowMaxMeasuredValue>

Required

Is a Boolean value (either True or False) that determines a small dot will appear on the dial

that indicates the maximum value that has been received thus far.

 <ShowMinMeasuredValue>

Required

Is a Boolean value (either True or False) that determines a small dot will appear on the dial

that indicates the minimum value that has been received thus far.

 <KeepAspectRatio>

Optional

Is a Boolean value (either True or False) that determines if the aspect ratio the developer

specified is maintained. Prevents you from specifying any ole height and width, should be a

ratio of 2.75. Default is true.

With this value set, if you specify a Width of any kind for the widget, it will automatically

calculate the Height.

If you do not specify a Width (preferred, minimum or maximum) but you do specify a

Height, then the Width will be automatically calculated for you. If both Width and Height

are specified, Width will be used and Height automatically re-calculated.

7.10.3.2 Application Settings

This section discusses the settings used to add a SteelLCD widget in the application

configuration XML file.

Example:

<Widget File="LCD\LCD.xml" row="1" column="2" Width="400">

 <MinionSrc ID="CPU" Namespace="DemoNamespace"/>

 <UnitsOverride>%</UnitsOverride>

162 Revision 18.02 Board Instrumentation Framework

 <Title>CPU 0</Title>

</Widget>

 <Title>

Optional

Sets the title of the LCD Panel, shown at the top.

 <UnitsOverride>

Optional

Allows you to use a different units type text than what is defined in the widget definition file.

7.11 Web Widget
The Web widget will render HTML web pages. The MinionSrc can take as data a HTML link,

or it can receive the HTML content. This allows you to via a Collector generate a detailed

HTML page and then send it to Marvin without the need for a web server.

Note: If you want to send your own HTML page, the entire contents of that page needs to

be wrapped in a CDATA wrapper – otherwise the XML parsers in Oscar and Marvin will

try to parse the HTML data and complain because most HTML isn’t properly formed

XML.

Figure 71 Web Widget

7.11.1.1 Definition File

This section discusses what the contents of a SteelLCD definition file contains.

Example:

<Widget Type = "Web">

 <Style ID="default">Web.css</Style>

 <ReverseContent>False</ReverseContent> <!-- fun thing, set it to true.... -->

</Widget>

163 Revision 18.02 Board Instrumentation Framework

7.11.1.2 Application Settings

This section discusses the settings used to add a SteelLCD widget in the application

configuration XML file.

Example:

<Widget File="Web\Web.xml" Width = "800" row="0" column="0">

 <InitialValue>http://google.com</InitialValue>

 <MinionSrc=”URL” Namespace=”DemoNamespace”/>

</Widget>

You can pass a URL, or you can point to a file with a fully qualified path name by putting

“file:” before the filename. (For files local to Marvin, you can specify a path relative to

where Marvin is running). You may also send an entire HTML document wrapped in CDATA

format.

Note: This is a fully baked Web Engine. As such if Marvin is behind a firewall or proxy, you

will need to configure the proxy information. This is done via command-line

parameters when you launch Marvin:

java -Dhttp.proxyHost=proxy.myproxy.company.com -Dhttp.proxyPort=911 -jar

BIFF.Marvin.jar

using the –Dhttp.proxyHost and –Dhttp.proxyPort settings.

You can also use the http.nonProxyHosts option (-D http.nonProxyHosts=) to create a list of

subnets that would not use the proxy.

You may need to enable the < IgnoreWebCerts> option.

7.12 QuickView Widget

The QuickView widget allows you to specify a Regular Expression (RegEx) for the ID,

allowing you to easily display many data points from a single Namespace. The data is

displayed in alternating Styles for easier viewing.

1

http://www.w3schools.com/xml/xml_cdata.asp
https://en.wikipedia.org/wiki/Regular_expression

164 Revision 18.02 Board Instrumentation Framework

Figure 72 QuickView Widget

7.12.1.1 Definition File

This section discusses what the contents of a QuickView definition file contains.

Example:

<Widget Type = "QuickView">

 <RowWidth>7</RowWidth>

 <Order>Ascending</Order>

 <EvenBackgroundStyle>-fx-background-color:green</EvenBackgroundStyle>

 <EvenIDStyle>-fx-font-size: 1em</EvenIDStyle>

 <EvenDataStyle>-fx-font-size: .9em</EvenDataStyle>

 <OddBackgroundStyle>-fx-background-color:grey</OddBackgroundStyle>

 <OddIDStyle>-fx-font-size: 1em</OddIDStyle>

 <OddDataStyle>-fx-font-size: .9em</OddDataStyle>

</Widget>

 < RowWidth >

Optional

The number of values to be displayed in a row before starting a new row. If not specified a

default value will be used.

 < Order >

Optional

Specifies the order the data is to be displayed. Valid options are:

 Ascending

 Descending

 None - Displayed in order received

If not specified a default value will be used.

 < ShowID >

Optional

Boolean value. If False then the ID text is not shown. Default is True.

165 Revision 18.02 Board Instrumentation Framework

 < EvenBackgroundStyle >

Optional

Background style to specify for every other datapoint displayed. Is a CSS string. If not

specified a default value will be used.

 < EvenIDStyle >

Optional

Style to specify for every other datapoint ID displayed. Is a CSS string. If not specified a

default value will be used.

 < EvenDataStyle >

Optional

Style to specify for every other datapoint value displayed. Is a CSS string. If not specified a

default value will be used.

 < OddBackgroundStyle >

Optional

Background style to specify for every other datapoint displayed. Is a CSS string. If not

specified a default value will be used.

 < OddIDStyle >

Optional

Style to specify for every other datapoint ID displayed. Is a CSS string. If not specified a

default value will be used.

 < OddDataStyle >

Optional

Style to specify for every other datapoint value displayed. Is a CSS string. If not specified a

default value will be used.

7.12.1.2 Application Settings

This section discusses the settings used to add a QuickView widget in the application

configuration XML file.

There is an optional <ExcludeList> tag you can use to filter out specific ID’s that may be

caught by your RegEx expression. Enter as many entries as you like in this list, separated

by semi-colons.

Example1:

<Widget File="Quick\QuickView.xml" row="2" column="1" >

 <MinionSrc Namespace = "CSX-61" ID="(.*)Socket0(.*)"/>

 <ExcludeList>Core0.Socket0.sleep</ExcludeList>

</Widget>

This is a very easy simple example. It is the exact settings used to generate Widget shown

in Figure 72.

It specifies it wants all Data from Namespace = CSX-61 that matches the RegEx pattern of

"(.*)Socket0(.*)".

166 Revision 18.02 Board Instrumentation Framework

Example2:

<Widget File="Quick\QuickView.xml" row="2" column="3" >

 <MinionSrc Namespace = "CSX-61" ID="(.*)Socket1(.*)"/>

 <RowWidth>5</RowWidth>

 <Order>Descending</Order>

 <ShowID>True</ShowID>

 <EvenBackgroundStyle>-fx-background-color:blue</EvenBackgroundStyle>

 <EvenIDStyle>-fx-font-size: .7em</EvenIDStyle>

 <EvenDataStyle>-fx-font-size: .6em</EvenDataStyle>

 <OddBackgroundStyle>-fx-background-color:grey</OddBackgroundStyle>

 <OddIDStyle>-fx-font-size: .7em</OddIDStyle>

 <OddDataStyle>-fx-font-size: .6em</OddDataStyle>

</Widget>

This is a more complicated example where the application can override any of the settings

defined in the Widget definition file.

 < RowWidth >

Optional

The number of values to be displayed in a row before starting a new row.

 < Order >

Optional

Specifies the order the data is to be displayed. Valid options are:

 Ascending

 Descending

 None - Displayed in order received

 <ShowID>

Optional

Takes a value of “True” or “False”. Default is True. If set to False, only the value

associated with the RegEx ID will be displayed. The ID itself will not be shown.

 < EvenBackgroundStyle >

Optional

Background style to specify for every other datapoint displayed. Is a CSS string.

 < EvenIDStyle >

Optional

Style to specify for every other datapoint ID displayed. Is a CSS string.

 < EvenDataStyle >

Optional

Style to specify for every other datapoint value displayed. Is a CSS string.

167 Revision 18.02 Board Instrumentation Framework

 < OddBackgroundStyle >

Optional

Background style to specify for every other datapoint displayed. Is a CSS string.

 < OddIDStyle >

Optional

Style to specify for every other datapoint ID displayed. Is a CSS string.

 < OddDataStyle >

Optional

Style to specify for every other datapoint value displayed. Is a CSS string.

7.13 QuickViewLCD Widget
The QuickLCD is very similar to the QuickView Widget, allowing you to specify a Regular

Expression (RegEx) for the ID. Has all the same settings for both application and widget

definition. See the sample application for an example.

Figure 73 QuickView LCD Widget

7.14 Other

7.14.1 Button

Figure 74 Button Widget

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

168 Revision 18.02 Board Instrumentation Framework

7.14.1.1 Definition File

This section discusses what the contents of a Button definition file contains.

Example:

<Widget Type = "Button">

 <Style>Button.css</Style>

</Widget>

Not much to this one

7.14.1.2 Application Settings

This section discusses the settings used to add a Button widget in the application

configuration XML file.

Example:

<Widget File="Button\Button.xml" row="3" column="2" Task="ShowHiddenDials">

 <Title> Click me!</Title>

 <Image Height="40" Width="40">Demo/Images/PlayerControl/LiveBtn1.png</Image>

</Widget>

Note the Task!

 <Title>

Optional

This is the text to be displayed in the button.

 <Image>

Optional

You can put an image in the button. This is where you point to the image file. You may

also optionally specify a Height and Width for the image as shown above. If you don’t

specify, the actual height and width of the image will be used.

7.14.2 PDF_Reader Widget

NOTE: This widget has been removed for licensing contamination.

This Widget will read a PDF file and display a page at a time. Is useful if you want to

convert a PPT presentation to a PDF and then you can move through the pages with tasks,

or have it automatically rotate through the pages.

The PDF_Reader widget uses the very cool OpenViewerFX library to decode the PDF files.

This is the free version and not as robust as an Adobe reader, so you may not see all the

text show up (I think this is a font thing). The license for this is available at

https://github.com/IDRSolutions/maven-OpenViewerFX-src

If you want to use this for PPT presentations – I recommend you save the PPT presentation

as a Powerpoint Picture Presentation, then save that presentation as a PDF. This will get rid

https://github.com/IDRSolutions/maven-OpenViewerFX-src
https://github.com/IDRSolutions/maven-OpenViewerFX-src

169 Revision 18.02 Board Instrumentation Framework

of font issues.

7.14.2.1 Definition File

This section discusses what the contents of a PDF_Reader definition file contains. Which is
nothing .

Example:

<Widget Type = "PDF_Reader">

</Widget>

Not much to this one

7.14.2.2 Application Settings

This section discusses the settings used to add a Button widget in the application

configuration XML file.

Example:

<Widget File="PDF.xml" row="3" column="2">

 <MinionSrc ID=”PDF” Namespace=”PDF”/>

 <AutoAdvance Frequency='1000' Loop='True'/>

 <Source>https://www.irs.gov/pub/irs-pdf/f1040.pdf</Source>

</Widget>

 <MinionSrc>

Optional

Standard MinionSrc. However instead of taking a value to display, it can take 3 possible

values:

 ‘Next’ – moves to next page

 ‘Previous’ – moves to previous page

 Numeric values – moves to that page

 <AutoAdvance>

You may wish to automatically advance through all of the pages within a PDF rather than

issuing a <MinionSrc> “next” repeatedly with say a task, you can configure it for

<AutoAdvance>.

<AutoAdvance> takes two attributes – the frequency in milliseconds of how often to

advance to the next page, and Loop boolean attribute. If True then after going through the

entire document pages, it will begin again with the first one.

7.14.3 Spacer

The spacer widget is so simple it is almost not worth explaining. It is simple, but without it,

making advanced looking interfaces would be nearly impossible.

170 Revision 18.02 Board Instrumentation Framework

Spacers are invisible (except when Mode=Debug), or you do a <StyleOverride> to give it a

color.

Since the Marvin GUI uses grids for all widget layouts, if there is nothing placed in a row or

column within a grid, it will have no height or width. Sometimes you really need a blank

width or height to get things to align the way you want in other columns. Use the Spacer

widget for this.

Example Usage

<Widget File="Spacer.xml" row="0" column="1" Width="50" Height="50">

 <StyleOverride>

 <Item>-fx-background-color: white</Item>

 </StyleOverride>

</Widget>

Note the override

7.14.4 FlipPanel

Note: FlipPanels are still supported, but have a better option is DynamicGrids with

Transitions.

A flip panel is a special kind of grid that can ‘flip over’. Is kinda cool and has uses such as

simplified data on one side and detailed on the other, or it can have speaker notes on the

back.

The FlipPanel widget has a front and a back, that are actually grids and you place your

widgets within the <Front> and the <Back> tags.

The FlipPanel will have a button on each side, which is of course can be styled and can be

placed in 8 different possible locations. When the button is pressed, the panel will flip over.

It can flip either horizontally or vertically, as configured.

Using StyleOverride you can change the background of the FlipPanel, just as with any other

<Grid>.

7.14.4.1 Definition File

This section discusses what the contents of a FlipPanel definition file contains.

Example:

<Widget Type = "FlipPanel">

 <Style>FlipPanel.css</Style>

 <RotationDirection>Vertical</RotationDirection>

 <AnimationDuration>500</AnimationDuration>

 <FrontButton Text=">" Position="NE">

 <Style>FlipPanelBtn.css</Style>

 </FrontButton>

 <BackButton Text=">" Position="SW">

 <Style>FlipPanelBtn.css</Style>

 </BackButton>

</Widget>

171 Revision 18.02 Board Instrumentation Framework

 <RotationDirection>

Required

Determines which direction the panel will rotate. Valid options are Vertical and Horizontal.

This can be overridden in the application configuration XML file with the <RotationOverride>

tag.

 <AnimationDuration>

Optional

Determines the animation time (in ms) it takes to perform the flip. Valid range is 100 to

2000. Default is 700.

 <FrontButton>

Optional

Places a button with specified text at the specified location on the panel. Valid options are

(points on a compass):

 N

 NE

 E

 SE

 S

 SW

 W

 NW

There is also an ability to specify the stylesheet associated with the button. As with all

stylesheet declarations in Marvin, you can specify a stylesheet and/or and ID.

When this front button is pressed, the panel will flip the direction specified by

<RotationDirection> to the back side.

 <BackButton>

Optional

Places a button with specified text at the specified location on the panel. Valid options are

(points on a compass):

 N

 NE

 E

 SE

 S

 SW

 W

 NW

There is also an ability to specify the stylesheet associated with the button. As with all

stylesheet declarations in Marvin, you can specify a stylesheet and/or and ID.

172 Revision 18.02 Board Instrumentation Framework

When this front button is pressed, the panel will flip the direction specified by

<RotationDirection> back to the front side.

7.14.4.2 Application Settings

This section discusses the settings used to add a FlipPanel widget in the application

configuration XML file.

Example:

<Widget File="FlipPanel\FlipPanelWithButtons.xml" row="1" column="3">

 <RotationOverride>Horizontal</RotationOverride>

 <Front>

 <PaddingOverride bottom="50" top="50" left="50" right="50" />

 <Widget File="xxx” row="1" column="1"/>

 </Widget>

 …

 <Widget File="yyy” row="3" column="6"/>

 </Widget>

 </Front>

 <Back Align="Center">

 <Widget File="LineChart.xml" row="1" column="2">

 <Title>Line Chart</Title>

 <xAxis Label="Over Time" MaxEntries="10"/>

 <yAxis Label="Data Value" MaxValue="100" Count="4"/>

 <MinionSrc ID="CombinedSource" Namespace="DemoNamespace"/>

 </Widget>

 </Back>

</Widget>

 <RotationOverride>

Optional

This allows you to change the direction the flip panel flips from what is defined in the widget

definition file. Valid options are ‘Horizontal’ and ‘Vertical’.

 <AnimationDuration>

Optional

Determines the animation time (in ms) it takes to perform the flip. Valid range is 100 to

2000.

 <Front>

Required

This is where you put all the widgets on the front of the panel. The <Front> tag can have

all the same sub-tags as a <Grid>; this includes PaddingOverride, <StyleOverride> etc.

 <Back>

Required

173 Revision 18.02 Board Instrumentation Framework

This is where you put all the widgets on the front of the panel. The <Back> tag can have

all the same sub-tags as a <Grid>; this includes PaddingOverride, <StyleOverride> etc.

7.14.4.3 Flipping the Panel

If your widget definition file includes the <FrontButton> and <BackButton> then the

buttons to flip the panel are already built in.

However this is another way to flip the panel. The FlipPanel can take a <MinionSrc> which

is how you will flip the panel. Valid flip (case insensitive) strings are:

 Flip

 Flip:Horizontal

 Flip:Vertical

 Front

 Front:Horizontal

 Front:Vertical

 Back

 Back:Horizontal

 Back:Vertical

Those with a ‘:’ allow you to override for that flip the flip direction.

Additionally you can place a button somewhere else and assign a MarvinTask to it that will

result in a flip. You can even, via a MarvinTask and a RemoteMarvinTask flip it from a

different computer running Marvin!

7.15 Grid
A grid isn’t really a Widget as it is invisible (unless Mode=Debug), however it is the thing

that all widgets actually are placed into. Each Tab and FlipPanel come equipped with a grid

for your use (the FlipPanel actually has two, on on each side). In these instances you do

not need to create a <Grid> tag in the XML file, it is already there.

Where you would use a <Grid> is for specific layouts. If you are familiar with HTML tables,

it is the same basic principle.

A Grid is placed in a Tab, FlipPanel or another Grid just as you would any other widget, with

the same options including Row, Column, StyleOverride etc. (There is no <MinionSrc> for a

Grid though).

With a grid you can specify the hgap,vgap, alignment just as you can with a Tab. Like a

Tab you can also specify a Grid to be defined in an external file. This will allow you to do

some very interesting things, such as create a library of Grids filled with widgets that you

can plop anywhere you like.

174 Revision 18.02 Board Instrumentation Framework

7.15.1.1 Attributes

The <Grid> tag supports the following attributes, which are case sensitive.

File O Specifies the external file where contents for grid are defined

Row M The row within a grid where this grid is to be placed

Column M The column within a grid where this grid is to be placed

Rowspan O The number of rows the grid should span – default is 1

Colspan O The number of columns the grid should span – default is 1

Align O Where within the parent grid cell to align this grid

Height O

Width O

Task O

Hgap O

Vgap O

Note: RowSpan,ColSpan,Height,Width,Task,hgap,vgap can all be defined within the opening

<Grid> statement of the xternal file, and also when specified (called) in the XML file

indicating the external file. With the latter having precedence. Row and Column are

ignored in the opening <Grid> tag of external file. Meaning if you specify Width

within the external Grid File, and you specify it when you ‘call’ that external grid file,

the Width specified when you call it will be used.

 Align

Specifies where in the tab the tab grid should appear. Valid options are (points on a

compass):

 Center

 N

 NE

 E

 SE

 S

 SW

 W

 NW

175 Revision 18.02 Board Instrumentation Framework

 File

Specifies an additional external file where the contents of the grid are specified. As with all

additional external files, the root of the XML scheme for the external file is

<MarvinExternalFile>. Widgets will then be required to be defined within the <Grid> tag.

<AliasList> and <TaskList> tags are at same level as <Grid>

Note: you can combine both an external file and widgets when defining a grid with your

application configuration file.

<Grid File=”ExternalGrid.xml” row=”3” column=”2” colspan=”4”>

 <Widget File=”Gauge\GaugeSteel.xml” row=”1” column=”1”>

 <MinionSrc ID=”CPU_Core1” NameSpace=”Server1”/>

 <Title>Core 0</Title>

 </Widget>

</Grid>

 hgap

Specifies the horizontal gap to be inserted in between each column in the grid.

 vgap

Specifies the vertical gap to be inserted in between each row in the grid.

7.15.1.2 PaddingOverride/Padding

Allows you to override the application global setting for the padding described in Section

6.3.2.6.

 Attributes

The <PaddingOverride> or <Padding> tag supports the following attributes, which are case

sensitive.

Attribute M/O Comments

Top O Default Tab padding on top of cell grid, in pixels

Bottom O Default Tab padding on bottom of cell grid, in pixels

Left O Default Tab padding on left of cell grid, in pixels

Right O Default Tab padding on right of cell grid, in pixels

7.15.1.3 StyleOverride

Allows you to change the style of the grid. For example the background is the background

color of the Tab or Grid that this grid is within. You can change that here, or add a picture

etc.

7.15.1.4 Widget

One or more widgets can be placed within a Grid. See Section on widgets for more

information.

176 Revision 18.02 Board Instrumentation Framework

7.15.1.5 <Grid>

You may place grids within grids in order to achieve various layouts.

7.15.1.6 <Peekaboo>

A grid can have a <Peekaboo> that works just like a Widget <Peekaboo>, though you

cannot ‘Pause’ and ‘Resume’.

7.16 GridMacro
A GridMacro is a container for a grid that you can use as a MACRO, as you would an

external grid file. It has the same scoping rules as alias’s.

Example:

Definition of the macro.

<GridMacro Name="My Macro Grid">

 <Widget File="Text\Text.xml" row="0" column="0">

 <InitialValue>$(My_Text)</InitialValue>

 </Widget>

</GridMacro>

The later and in scope of the macro:

<Grid Macro="My Macro Grid" row=”3” Column=”0” MyText=”Patrick was”/>

<Grid Macro="My Macro Grid" row=”3” Column=”1” MyText=”Here”/>

This is just a very simple example. GridMacro can be used within other grids, including

DynamicGrid.

7.17 DynamicGrid
The DynamicGrid is just like the <Grid>, except that it also allows you to specify a list of

other grids (defined in external grid files, or GridMacros) with an associated ID, then select

which one is visible. This works along the same way as the DynamicImage widget.

<DynamicGrid row="1" column="0">

 <GridFile Source="Demo/DemoTab_FlipGrid1.xml" ID="0" Color="Yellow" />

 <GridFile Source="Demo/DemoTab_FlipGrid2.xml" ID="1" Color="Green TaskOnActivate=”RunTest"/>

 <GridFile Source="Demo/DemoTab_FlipGrid3.xml" ID="2" Color="Blue" hGap=”5” vGap=”10” />

 <Initial ID="0"/>

 <MinionSrc ID="DynaGrid" Namespace="DynaGrid"/>

</DynamicGrid>

The list of external grid files is specified by having multiple <GridFile> tags, each of which

has a required Source attribute which must point to an external <Grid> file.

As you can see in the above example, you can also pass aliases (parameters) to the grid

files.

The <Initial> tag work just like the <DynamicImage>, it indicates the default grid to be

177 Revision 18.02 Board Instrumentation Framework

visible.

In addition to the ID of the specific grid you wish to display, you can also send ‘Next’ or

‘Previous’, and the next or previous grid in the list will be displayed. When using ‘Next’ or

‘Previous’ the list is considered to be circular.

Example of using a MacroGrid for a DynamicGrid GridFile:

<GridFile Macro=" My Macro Grid " ID="PK_Test"/>

7.17.1 Attributes of <GridFile>

As you can see in the example above you can specify things other than just the external

GridFile. Anything specified other than what is listed below is an Alias passed to the Grid.

The following are reserved attributes when specifying a Grid within the dynamic grid:

 hGap – Just like any grid, can specify horizontal gap within the grid

 vGap – Just like any grid, can specify vertical gap within the grid

 TaskOnActivate – Task to perform when the Grid becomes the active Grid. Does

NOT apply to the initial grid when the application first begins.

 ExcludeForAutoActions– Optional boolean (‘True’ or ‘False’). If true, then using the

‘next’ or ‘previous’ actions will skip that specific grid.

 Task – just a normal Task. If you do not specify a task for an individual grid, if you

have specified a task for the DynamicGrid widget itself, that one will be run.

7.17.2 Transitions

Figure 75 Example Transition

178 Revision 18.02 Board Instrumentation Framework

Optional

I thought it would be fun to have the ability to have transition effects when you go from one

dynamic grid to another. Much like going from one slide to another in a presentation using

PowerPoint or other such application.

To do this, there is a <Transition> tag you can add to the <GridFile> declaration.

 <GridFile Source="Demo/Grid2.xml" ID="1">

 <Transition>VERTICAL_AROUND_X</Transition>

 </GridFile>

The specified transition is what the transition to that grid will be – regardless of what the

previous grid was.

 <Transition> Attributes

There are default values for all of these, however you can change the way each of the

individual transitions look. You can achieve some interesting results by the modification of

these settings.

Attribute M/O Comments

xGrids O Number of columns to divide the transition effect into

yGrids O Number of rows to divide the transition effect into

Duration O Time for each of the individual animations to run

Delay O Time to wait after one animation begins until the next

starts

Note: Not all transitions use both xGrids and yGrids.

 Transition Types

The <Transition> Tag needs an actual Transition to use. The following are valid transitions:

 VERTICAL_AROUND_X

 VERTICAL_AROUND_Y

 VERTICAL_AROUND_X_AND_Y

 HORIZONTAL_AROUND_X

 HORIZONTAL_AROUND_Y

 HORIZONTAL_AROUND_X_AND_Y

 RECTANGULAR_AROUND_X

 RECTANGULAR_AROUND_Y

 RECTANGULAR_AROUND_X_AND_Y

 DISSOLVING_BLOCKS

 CUBE

 FLIP_HORIZONTAL

 FLIP_VERTICAL

7.17.3 Peekaboo

If you send the text “Next” or “Previous” to the DynamicGrid peekaboo, it will move to the

179 Revision 18.02 Board Instrumentation Framework

appropriate grid.

7.17.4 AutoAdvance

You may wish to automatically advance through all of the grids within a DynamicGrid rather

than issuing a <Peekaboo> “next” repeatedly with say a task, you can configure it for

<AutoAdvance>.

<DynamicGrid row="1" column="0">

 <AutoAdvance Frequency='1000' Loop='True'/>

 <GridFile Source="Demo/DemoTab_FlipGrid1.xml" ID="0" Color="Yellow" />

 <GridFile Source="Demo/DemoTab_FlipGrid2.xml" ID="1" Color="Green TaskOnActivate=”RunTest"/>

 <GridFile Source="Demo/DemoTab_FlipGrid3.xml" ID="2" Color="Blue" hGap=”5” vGap=”10” />

 <Initial ID="0"/>

 <MinionSrc ID="DynaGrid" Namespace="DynaGrid"/>

</DynamicGrid>

<AutoAdvance> takes two attributes – the frequency in milliseconds of how often to

advance to the next grid, and Loop boolean attribute. If True then after going through the

entire list of grids, it will begin again with the first one.

180 Revision 18.02 Board Instrumentation Framework

8 Tasks

This section provided details on Tasks defined in Marvin.

8.1 Defining a Task
Tasks are defined at the same XML level as Tab ,Grid and AliasList. You cannot define a

task within any of those tags, must be at the same level.

Each Task definition is created within a <TaskList> Tag, and contains a <TaskItem> Tag.

Each Task has a required ID.

Example Task Definition

<TaskList ID = "HideX_21">

 <TaskItem Type="Marvin">

 <DataToInsert ID="x_21" Namespace="DemoTicTacToe" Data="Hide"/>

 </TaskItem>

</TaskList>

The above example is from the DemoTab_Grids.xml file. The TaskList has an ID that must

be unique within the scope of the running application, and 1 or more TaskItems. You can

define multiple things to happen when this task is run. The example above only performs a

single task, which is a Marvin task and it inserts some data into the datastream for

processing by the GUI.

Another Example

<TaskList ID="ResetPressed">

 <TaskItem Type="OtherTask" ID="ShowBlank_00"/>

 <TaskItem Type="OtherTask" ID="HideX_00"/>

 <TaskItem Type="OtherTask" ID="HideO_00"/>

 <TaskItem Type="OtherTask" ID="ShowBlank_01"/>

 <TaskItem Type="OtherTask" ID="HideX_01"/>

 <TaskItem Type="OtherTask" ID="HideO_01"/>

 <TaskItem Type="OtherTask" ID="ShowBlank_02"/>

 <TaskItem Type="OtherTask" ID="HideX_02"/>

 <TaskItem Type="OtherTask" ID="HideO_02"/>

 <TaskItem Type="OtherTask" ID="HideO_22"/>

</TaskList>

This example shows multiple actions to be performed when the ‘RestPresssed’ task is

executed. They all happened to be the same kind (ChainedTask) in this example, however

it could be any kind of task.

8.1.1 Attributes

The <Tag> tag supports the following attributes.

181 Revision 18.02 Board Instrumentation Framework

Attribute M/O Comments

PerformOnStartup O See Running a Task at Startup

Stepped O Boolean. Runs the tasks consecutively, one at a time, one

per call to the tasklist ID

LoopTasks O Boolean, if Stepped=True, will repeatedly loop through all

listed tasks when end reached. Default is True.

8.1.1.1 StyleOverride

Allows you to change the style of the grid. For example the background is the background

color of the Tab or Grid that this grid is within. You can change that here, or add a picture

etc.

8.2 Calling/Executing a Task

Every widget has the ability to specify a Task to be run when clicked. So if you add a

Button and assign a Task to it, when that button is pressed the corresponding Task will be

run. The task you specify in the Task attribute of the Widget is the ID defined above.

Example:

 <Widget File="Button.xml" row="3" column="2" Task="ShowHiddenDials">

 <Title> Click me!</Title>

 </Widget>

Here is an example from the DemoTab_Dials.xml file. A Button widget is placed and a Task

is associated with it. When this button is clicked the task with ID “ShowHiddenDials” is run.

A Task can also be set to execute from a MenuItem.

Note: You can associate the same Task with as many widgets as you like!

182 Revision 18.02 Board Instrumentation Framework

8.3 Minion Task

Figure 76 Minion Task Flow

A Minion task is one in which you want to run some external program/script where the

Minion is running. When you execute a MinionTask (by clicking a Widget, or a MenuItem)

the Marvin framework will send that TaskID to the Minion. The Minion in turn looks up the

Task ID (Actor) and executes the task associated.

Example:

<TaskList ID=”EnableFD_On_2_Servers”>

 <TaskItem Type=”Minion”>

 <Actor Namespace=”Server-22” ID=”EnableFD”/>

 </TaskItem>

 <TaskItem Type=”Minion”>

 <Actor Namespace=”Server-11” ID=”EnableFD”/>

 </TaskItem>

</TaskList>

The above example has a Task with an ID of EnableFD_On_2_Servers that you might assign

to a Button, MenuItem or any other widget. When pressed, the framework will send two

packets to Oscar, who in turn will send it to every minion using the namspaces of Server-22

or Server-11.

If a minion receives a task to perform that hasn’t been defined for it, it will log it and ignore

– no response is ever sent from a task.

Note: Care should be taken when defining the namespace of your Minions. You can have

them all with the same namespace, however that could lead to complications,

especially when doing tasks.

8.3.1 Defining a Minion Task in Marvin
<TaskList ID=”EnableRSSTask”>

183 Revision 18.02 Board Instrumentation Framework

 <TaskItem Type=”Minion”>

 <Actor Namespace=”Server-22” ID=”EnableFD”/>

 </TaskItem>

The TaskItem tag requires the ‘Type’ attribute. A minion task has a type of “Minion”. A

minion task also requires an <Actor> tag.

The <Actor> tag takes a Namespace and ID. These correspond to the Namespace in the

Minion and the Actor ID in the configuration file.

Note: Again – the definition of the Task can occur in any of the Marvin configuration files

except for a Widget definition file.

 Scope of Minion Task

Keep in mind that there can be multiple Oscars connected to Marvin, and each Oscar can

have multiple Minions, and further, each Minion can have multiple Namespaces. Oscar

keeps track of the Namespaces of each Minion, when it receives a Minion Task, it will send

the task to all Minions matching the Namespace you define in the <Actor > as described

above.

8.3.2 Minion Task Parameters

As discussed in Section 4.12.3, when you define an Actor for a Minion (in Marvin it is a

Minion Task) the Actor can have parameters assigned to it that will be used when invoking

the Actor script.

You can also pass parameters from Marvin when it sends the Minion Task:

Example

<TaskList ID=”EnableRSSTask”>

 <TaskItem Type=”Minion”>

 <Actor Namespace=”Server-22” ID=”EnableFD”/>

 <Param>eth0</Param>

</TaskItem>

When Minion receives this and invokes the Actor associated with the ID of “EnableFD”, it will

pass the ‘eth0’ parameter to the externally invoked script.

8.3.3 Mixing Minion Task Parameters

A minion Actor can define parameters to send to the external script when invoked. Likewise

a <MinionTask> definition in Marvin allows you to send parameters that are used when

invoking the script.

You can utilize both methods to invoke a script. All parameters defined within the minion

Actor (in the Minion configuration file) are used first, in the defined order, followed by any

and all parameters defined in the <MinionTask> definition in the Marvin configuration files.

184 Revision 18.02 Board Instrumentation Framework

8.3.4 Using a MinionSrc as a Parameter

You may want to use a piece of data collected from a collector as an input to a <Task>. To

do that you can Define your <Param> as follows:

<Param Namespace=”MinionSrcNamespace” ID=”MinionSrcID”/>

The example above will use a single MinionSrc data point as a parameter. You may also

want to use multiple to create a complex string, as you can with Aliases. To do this you use

the following format:

%(Namespace,ID)

The ‘%’ followed by a comma separated Namespace and ID within parens signals Marvin to

go look for a Minsrc with that namespace and ID and use the current value.

For example the following, if SUT_NS,Test1ID datapoint = “PK_TEST” and

SUT_NS,INTERFACE1 = ETH0 the following

<Param>Recordinig.%(SUT_NS,Test1ID).%(SUT_NS,INTERFACE1).biff</Param>

Would be ‘Recording.PK_TEST.ETH0.biff’.

8.4 Oscar Task

Figure 77 Oscar Task Flow

Oscar Tasks allow you to do things such as start and stop live data capture, load a saved

file, start, pause, restart, stop playback of a Oscar from the Gui.

Oscar Tasks have a TaskItem Type of “Oscar”. Each Task requires a OscarID and a task to

be performed and may take parameters.

Example Task Definition:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">Load File</Task>

 <Param> SaveFile8.biff</Param>

</TaskItem>

An Oscar Task requires a <Task> tag that must have a OscarID attribute and the task to be

performed. The OscarID corresponds to the ID within the Oscar configuration file. It is

185 Revision 18.02 Board Instrumentation Framework

recommended that each Oscar connected to a Marvin have its own ID, otherwise each will

be sent the same task, which may nor not be desirable.

Valid Oscar Tasks, defined by the <Task> tag currently are:

 LoadFile

 StartPlayback

 Playback

 PausePlayback

 StartLive

 StopLive

 StartRecording

 StopRecording

Note: Marvin does no verification what you place in the <Task>. It will send whatever task

you specify with whatever Parameters to the Oscar(s). Oscar will be the one that

verifies what it receives. Oscar will never send back a response, only log unknown or

invalid requests.

8.4.1 LoadFile

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">LoadFile</Task>

 <Param>c:\MyDemoFiles\BetterTogetherDemo.biff</Param>

</TaskItem>

The LoadFile Oscar Task takes a single parameters, which is file to load. Oscar will receive

this, and load the specified file. If it is a bad or incorrect filename, it will fail to load and no

indication will be sent to Marvin.

8.4.2 Playback

The Playback task is the most powerful of the Oscar Tasks. Is has a great number of

options to perform the kind of playback you desire.

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">Playback</Task>

 <Param>speed=2</Param>

</TaskItem>

The Play Oscar task takes a OscarID and Task of ‘Playback’. It will play the currently loaded

file.

The Playback command can also take optional parameters:

 Speed - specifies the playback speed

186 Revision 18.02 Board Instrumentation Framework

 Repeat - play the entire file again when end reached

 Loop - repeatedly play between the start and end packets

 Start - used with ‘loop’ option, is packet to start playing at, if not

specified, will be zero

 End - used with ‘loop’ option, is packet to stop playing at, if not

specified, will be last packet available

 File - specify a file to load and play along with the other options

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">Playback</Task>

 <Param>speed=10</Param>

 <Param>loop</Param>

 <Param>start=230</PAram>

 <Param>end=1230</PAram>

</TaskItem>

8.4.2.1 Speed

Indicates the playback speed. Can be a real (with decimals) value >0 and <= 100.

Indicates a multiplier of how fast to play the data. So a value of .25 will play at ¼ speed. A

value of 10.0 will playback at 10x speed.

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">Playback</Task>

 <Param>speed=2</Param>

</TaskItem>

Notice that the speed parameter indicates the speed with an equals sign.

8.4.2.2 Repeat

This indicates that the playback should repeat the entire dataset in an endless loop until told

to stop. It will do so at the specified speed (default is 0).

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">Playback</Task>

 <Param>speed=0.75</Param>

 <Param>repeat</Param>

</TaskItem>

8.4.2.3 Loop

Loop is similar to Repeat, except that it takes a start and stop location within the dataset to

loop.

Example:

TaskItem Type="Oscar">

187 Revision 18.02 Board Instrumentation Framework

 <Task OscarID="OscarDemo">Playback</Task>

 <Param>loop</Param>

 <Param>start=123</Param>

 <Param>end=750</Param>

 <Param>speed=10</Param>

</TaskItem>

Note start and end are like the optional speed parameter, number is indicated with an

equals sign. The start and end values indicate data packet # within the dataset.

If you do not specify a start value, the start default is packet 0. Similarly if you do not

specify an end value the default is the last packet in the dataset.

8.4.2.4 File

Specifies the file to load and run automatically – saves a step, you no longer need to load

and then run. Note that you need file=.

Example:

TaskItem Type="Oscar">

 <Task OscarID="OscarDemo">Playback</Task>

 <Param>loop</Param>

 <Param>start=123</Param>

 <Param>end=750</Param>

 <Param>speed=10</Param>

 <Param>File=MySaveFile.biff</Param>

</TaskItem>

8.4.3 StopPlayback

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">StopPlayback</Task>

</TaskItem>

The StopPlayback Oscar task will stop playback of the current file. Starting it again will

restart from starting point.

8.4.4 PausePlayback

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">PausePlayback</Task>

</TaskItem>

The Pause Oscar task will pause the playback of a loaded file. Starting again (with just a

playback task) will resume from current position.

188 Revision 18.02 Board Instrumentation Framework

8.4.5 StopLive

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">StopLive</Task>

</TaskItem>

The StopLive Oscar task will stop reading live data.

8.4.6 StartLive

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">StartLive</Task>

</TaskItem>

The StartLive task will stop playing a loaded file and start receiving live data from Minions or

other Oscars.

8.4.7 StartRecording

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">StartRecording</Task>

</TaskItem>

The StartRecording task will begin recording the live data feed. It will continue recording

until the app ends or you indicate it should stop.

8.4.8 StopRecording

Example:

<TaskItem Type="Oscar">

 <Task OscarID="Oscar1">StartRecording</Task>

 <Param>File=C:\MyRecordings\Session1.biff</Param>

</TaskItem>

The StopRecording task will stop an active recording session and save it to the file specified

by the File parameter.

189 Revision 18.02 Board Instrumentation Framework

8.5 Marvin Task
A Marvin Task is a way to achieve some interesting visual things locally to your GUI. To

understand how it works, I need to explain a bit of the internals of how I handle incoming

data.

Figure 78 Data Handling

When Marvin receives a piece of data from Oscar, it hands it off to the Data Manager

component, which in turn updates all of the widgets that are registered for the Namespace

and ID that was associated with the data that was received.

This is the same way both data for <MinionSrc> and <Peekaboo> are handled.

A Marvin Task is a way of inserting data into the Data Manager yourself, without the need

for a Oscar at all. In this way you can set some local text, set the value of a dial, hide and

show (using <Peekaboo>) widgets. For example you want to have a button you press to go

start a script via a Minion Task, you might also have the <TaskList> have a task that will

show a big image saying ‘Test Running’ using <Peekaboo> to show the image that was

previously hidden.

A good example of this can be seen in the DemoTab_Images.xml file, where by clicking a

button you seem to go through a series of images. In reality what happens is there are

many many different Image and Button widgets that using <Peekaboo> get hidden and

shown to give the appearance of displaying different images.

Example:

<TaskList ID="TestTask">

<TaskItem Type="Marvin">

 <DataToInsert ID="3to10" Namespace="DemoNamespace" Data="3.4"/>

</TaskItem>

</TaskList>

The example above shows that a Marvin Task required a Type of “Marvin” and a

<DataToInsert> tag which has 3 attributes:

 ID - <MinionSrc> and <Peekaboo> ID

 Namespace - <MinionSrc> and <Peekaboo> Namespace

190 Revision 18.02 Board Instrumentation Framework

 Data - The data you wish to insert.

Note that Data can be either an Element as shown above, or a Tag within the

<DataToInsert> tag as show here:

<TaskList ID="TestTask">

<TaskItem Type="Marvin">

 <DataToInsert ID="3to10" Namespace="DemoNamespace">

 <Data>3.4</Data>

 </DataToInsert>

</TaskItem>

</TaskList>

Note: under a single MarvinTask, you can create many data points:

 <TaskList ID="TestTask"> fun -->

 <TaskItem Type="Marvin">

 <DataToInsert ID="3to10" Namespace="DemoNamespace" Data="3.4"/>

 <DataToInsert ID="a" Namespace="testNS" Data="2.8"/>

 <DataToInsert ID="b" Namespace="testNS" Data="2.7"/>

 <DataToInsert ID="c" Namespace="testNS" Data="2.7"/>

 <DataToInsert ID="f" Namespace="testNS" Data="7.7"/>

 </TaskItem>

 </TaskList>

8.6 Marvin Admin Task

Marvin Admin Task is an EXPERIMENTAL mechanism to do some manipulation of the GUI.

Currently it allows you to, via a task, change the active Tab being displayed in the GUI, and

allows you to hide and show a Tab.

8.6.1 SetActiveTab

Examples:

<TaskList ID="TabSwitch-1" >

 <TaskItem Type="MarvinAdmin">

 <Task ID="SetActiveTab" Data="StartTab"/>

 </TaskItem>

</TaskList>

<TaskList ID="TabSwitch-2">

 <TaskItem Type="MarvinAdmin">

 <Task ID="SetActiveTab" Data="DemoTab"/>

 </TaskItem>

</TaskList>

The above two examples create a <TaskItem> with Type=”MarvinAdmin”. The Marvin

Admin task takes a <Task> Tag that has two required Attributes:

 ID – the type of Task to do,

191 Revision 18.02 Board Instrumentation Framework

 Data – In this case (only one implemented) it is the Tab ID to switch to.

A MarvinAdmin Task isn’t too exciting or of great use by itself. One usage is that you can

use the PerformOnStartup option to set the default Tab to be displayed when your

application starts.

8.6.2 SetTabVisibility

Examples:

<TaskList ID="Hide Charts1Tab">

 <TaskItem Type="MarvinAdmin">

 <Task ID="SetTabVisibility" Data="DemoTab-Charts:False"/>

 </TaskItem>

 </TaskList>

 <TaskList ID="Show Charts1Tab">

 <TaskItem Type="MarvinAdmin">

 <Task ID="SetTabVisibility" Data="DemoTab-Charts:True"/>

 </TaskItem>

 <TaskItem Type="MarvinAdmin">

 <Task ID="SetActiveTab" Data="StartTab"/>

 </TaskItem>

 </TaskList>

The above two examples create two tasks, one that hides a tab, with ID of ‘DemoTabl-

Charts’ and one that will show the same tab. The ID is the Marvin action to take, in this

case SetTabVisibility.

The usage is that the Data portion has the name of the Tab (DemoTab-Charts in this case)

followed by a color and a Boolean (True or False) value that indicates to make that tab

visible or invisible.

8.7 Remote Marvin Task
This task is very interesting, and extremely powerful. It allows you to send a message from

a Marvin application to all other Marvin’s connected to the same Oscar and tell them to

perform a specific task. If the remote Marvin doesn’t have that task defined it will ignore

the request ; if however it has defined the task, it will perform that task, no matter what

kind of task it is. This would be the same as pressing a Button widget with a task

associated with it.

Example:

<TaskItem Type="RemoteMarvinTask">

 <MarvinID>MainMarvin</MarvinID>

 <Task ID="TabSwitch-1"/>

</TaskItem>

The TaskItem Type = “RemoteMarvinTask” The <Task> tag takes but a single Attribute,

192 Revision 18.02 Board Instrumentation Framework

the ID of the task to be run on the remote Marvin(s).

The <MarvinID> tag identifies the specific Marvin to target the task to. The task will be

sent to all Marvins, and each Marvin will check to see if it matches the ID of the Marvin as

defined in the ID attribute of the <Application> tag. Optionally you can also use

BROADCAST as the Marvin ID :

<TaskItem Type="RemoteMarvinTask">

 <MarvinID>Broadcast</MarvinID>

 <Task ID="TabSwitch-1"/>

</TaskItem>

And it will send the message to all Marvins, and any that have a Task defined as TabSwich-

1, will run that task.

This can be very powerful. Consider you have two Marvins running, one on a giant display

behind you at a conference, the 2nd on a Tablet. From the tablet you can have buttons that

allow you to change the displayed tab on the giant display using the Marvin Admin Task.

Take a peek at the RemoteDemo_Controller.xml and RemoteDemo_Controlee.xml files for

examples.

8.8 Chained Task
Say you have a Task (<TaskList> defined to zero out all of your widgets (using Marvin

Tasks) and another one to hide a bunch of Widgets when your demo was over. You may

have two different Buttons for MenuItems for these. There may be a time when you want

to run both of these tasks together and other times you want to run them independently.

Rather than having 3 separate <TaskList>s, one for zeroing out things, one for hinding and

one that does both, you can reuse the 1st two in the 3rd one using Chained Tasks.

Note: the name Chained isn’t very good, and is not even what I call it in the config file, may

change/update later, but for now it works

Example:

<TaskList ID="ResetPressed">

 <TaskItem Type="OtherTask" ID="ShowBlank_00"/>

 <TaskItem Type="OtherTask" ID="HideX_00"/>

 <TaskItem Type="OtherTask" ID="HideO_00"/>

 <TaskItem Type="OtherTask" ID="ShowBlank_01"/>

</TaskList>

The above is a snippet from the DemoTab_Grids.xml file where I created a Tic-Tac-Toe

game. When you click on a square successively I use Tasks to hide/show ‘X’ ‘O’ and Blank

images in a square. Each square has a hide and show task for each of the three possible

images to show in that square.

There is also a Button widget that has a task of ‘ResetPressed’ ID. This is the task defined

above, that in turn will call already defined tasks. In this case to go hide all but the blank

images.

193 Revision 18.02 Board Instrumentation Framework

Take a look at the DemoTab_Grids.xml for an example.

The chained task takes a TaskItem with a Type of “Other Task” an ID of the other task to

run. Can even be another chained task, or a Marvin Task, or Remote Marvin task etc.

8.9 Random Task
A Random task task is one in which you provide a list of <Task>s (which are other Task

IDs) that will be chosen at random when the task is run.

Example:

 <TaskList ID="Twinkle" PerformOnStartup="True">

 <TaskItem Type="Random" postpone="500:2000">

 <Task>Twinkle.FirstBlink</Task>

 <Task Weight=”75”>Twinkle.SecondBlink</Task>

 <Task>Twinkle.ThirdBlink</Task>

 <Task>Twinkle.FourthBlink</Task>

 </TaskItem>

 </TaskList>

Each task by default has an even chance of being chosen. You can skew this by providing

the optional Weight attribute. In the example above the TwinkleSecondBlink has a 75%

chance of being selected, while the other 3 have an 8% change of being selected – which is

an even distribution of the remaining 25% left after TwinkleSecondBlink.

8.10 DataPulse Task
Conditionals are only ‘executed’ when the associated data (a MinionSrc) is updated.

Sometimes you may want to cause the conditional to run even though there has not been a

real update. You can ‘pulse’ the data to make this occur.

 <TaskItem Type="DataPulse">

 <MarvinDataPoint ID="MyDataID" Namespace="PK Laptop"/>

 </TaskItem>

The above TaskItem simply ‘refreshes’ the data with Id MyDataID and Namespace of ‘PK

Laptop’.

8.11 Mathematic Task
Likely not to be used often, this task will take a data point, perform a mathematical

operation on it, and then store the result.

 <TaskItem Type="Mathematic ">

 <MarvinDataPoint ID="MyData" Namespace="PK Laptop"/>

 <Operation Value="1">Add</Operation>

 </TaskItem>

Valid operations are:

 Add

194 Revision 18.02 Board Instrumentation Framework

 Subtract

 Multiply

Value attribute indicates the other value to be used in the operation.

8.12 Desktop Task
This task allows you to specify a document or a file on your local system to be opened in the

default application for that document type.

The document to open is specified in the <Document> Tag.

 <TaskItem Type="Desktop">

 <Document>c:\users\patrick\changelog.txt</Document>

 </TaskItem>

The example above (when placed in a TaskList) automatically opens the specified file in

NotePad on my system.

There is an optional Action attribute of Action where you can specify other possible actions:

 <TaskItem Type="Desktop">

 <Document

Action="Browse">https://www.google.com/intl/en/chrome/browser/welcome.html</Document>

 </TaskItem>

The example above will open a web browser with the specified url.

The default Action is ‘Open’, which opens the application associated with the file type

specified.

Currently only ‘Open’ and ‘Browse’ are supported. May in the future include ‘Email’, ‘and

Print’.

8.13 LaunchProgram Task
This task allows you run the specified external Application.

The program to run is specified in the <Application> Tag.

 <TaskItem Type="LaunchProgram">

 <Application>notepad</Application>

 <Param>MyFile.txt</Param>

 </TaskItem>

The example above (when placed in a TaskList) runs notepad and tries to open the

MyFile.txt file as indicated by the optional Param tag. You can have multiple Param tags.

8.14 Running a Task at Startup
A recent addition is when you create a Task, you can specify that it be run when your

application starts. This is done with an additional attribute to the <TaskList> tag of

PerformOnStartup and it takes a value of either “True” or “False”. If you do not specify this

195 Revision 18.02 Board Instrumentation Framework

attribute it is the same as specifying False.

Example:

<TaskList ID="TestTask" PerformOnStartup="true">

 <TaskItem Type="Marvin">

 <DataToInsert ID="3to10" Namespace="DemoNamespace" Data="3.4"/>

 </TaskItem>

</TaskList>

The above example is a Marvin Task that sets some dials (listing for MinionSrc with

ID=3to10 and Namespace=DemoNamespace) to a value of 3.4. This task is done as soon

as the application is up and running.

You do not even need to assign this task to a Widget, it will run automatically. Take a look

at the DemoTab_Dials.xml for an example.

Note: Tasks that are performed on startup are really done on startup. The network

communication between Marvin and Oscar are likely to not have occurred yet. As

such it is not recommend to rely on performing any tasks other than local ones such

as Marvin and Marvin Admin tasks using the PerformOnStartup ability.

8.15 User Prompts

I added the ability to prompt the user for input. This is envisioned to be mostly useful for

Tasks, where you want to say send a parameter value as a task that isn’t always hard-

coded in your XML file somewhere, or if it is, it comes from a list of possibilities.

There are two type of prompt methods. One where the user is presented with a list of items

to select from and another where an input box is presented and whatever the user types in

is used.

8.15.1 Defining a Prompt

Prompt methods are similar to Tasks. They must be defined and given an ID before they

can be used. As with tasks, once a prompt is defined, it is global.

196 Revision 18.02 Board Instrumentation Framework

8.15.1.1 ListBox Prompt

Figure 79: Example of a ListBox Prompt

Example definition:

<Prompt ID="Volume Selection" Type="ListBox">

 <Title>Volume Level</Title>

 <Message>Select the Volume for this media player</Message>

 <List>

 <Item Text="Mute">Volume:0</Item>

 <Item Text="100%">Volume:100</Item>

 <Item Text="25%">Volume:25</Item>

 <Item Text="50%">Volume:50</Item>

 <Item Text="75%">Volume:75</Item>

 </List>

</Prompt>

 ID

Specifies the unique ID of the prompt. If used again, a warning will be logged, and the new

ID ignored.

 Type

Specifies the type of the prompt, currently only “ListBox” and “InputBox” are supported.

 Height and Width

Optional

You can optionally specify a height and width for the input box as an attribute of the

<Prompt line. They can use the percentage options just as with widgets.

 <Title>

Optional

Specifies the Title of the listox.

 <Message>

Optional

Explanatory message to be displayed.

197 Revision 18.02 Board Instrumentation Framework

 <List>

This is where you define the <Items> to be displayed in the list.

 <Item>

One or more Items should be defined as part of the <List>.

The value of the Item is what is returned to the framework. So in the above example, if the

first item in the list is selected by the user, the string “Volume:0” will be returned.

The optional “Text” attribute provides a mechanism by which you can put a more user-

friendly string to be displayed in the listbox. If the Text attribute is not used, then the

string used with the <Item> will be displayed.

 <StyleSheet>

Optional

Can specify a specific .css file to be used for the style, default will be the one the app uses.

 <StyleOverride>

Optional

Can apply style override <Item>s like most other things. You cannot specify an alternate

ID or File here though, only items.

8.15.1.2 InputBox Prompt

Figure 80: Example of an InputBox Prompt

Example definition:

<Prompt ID="NewTextPrompt" Type="InputBox">

 <Title>User Prompt</Title>

 <Message>Type in new text</Message>

</Prompt>

 ID

Specifies the unique ID of the prompt. If used again, a warning will be logged, and the new

ID ignored.

 Type

Specifies the type of the prompt, currently only “ListBox” and “InputBox” are supported.

 <Title>

Optional

198 Revision 18.02 Board Instrumentation Framework

Specifies the Title of the listox.

 <Message>

Optional

Explanatory message to be displayed.

8.15.2 Prompting the user

Now that you have defined a prompt of some kind, you need to use it.

You can use a prompt for any part of a Task. Be it <MinionSrc> or parameters etc.

The usage is pretty simple, just use the ampersand (@) symbol in front of the piece of data

you want to prompt for.

As an example:

<TaskList ID = "Video_Volume_Control">

 <TaskItem Type="Marvin">

 <DataToInsert ID="VidPlayer" Namespace="VidPlayerNS" Data="@Volume Selection"/>

 </TaskItem>

</TaskList>

If you associate the TaskID with a button, then click on that button, it will see that the

Prompt with ID Volume Selection has been requested (the @). The framework will display

the following list box:

Figure 81: Example listbox

If the Video Player has a <PlaybackContol> with ID="VidPlayer" and

Namespace="VidPlayerNS" , then the desired volume setting will be sent to it and changed

as requested.

199 Revision 18.02 Board Instrumentation Framework

8.16 Postponing Task Action
There may be times when you want to click on a button and have a task take place just a

bit later. For example you may want to reveal an image by removing a series of covering

panels in a sequential way (See the demo application, Flipping tab).

This can be accomplished by adding a Postpone attribute to the TaskItem declaration and

giving it a value, which is a postpone time in milliseconds.

 <TaskList ID="FlipIt">

 <TaskItem Type="Marvin" Postpone="500">

 <DataToInsert ID="FlipItPanel" Namespace="local" Data="DummyData"/>

 </TaskItem>

 </TaskList>

In the example above, the Marvin Task will be executed to flip a flip panel. The task will be

executed approximately 500ms after the task was initiated.

8.16.1 Random Postpone Time

You may want some things to occur at pseudo ‘random’ times. Do accomplish this you can

specify a range for the Postpone value separated by a colon.

Example:

<TaskItem Type="Marvin" Postpone="500:60000">

Will postpone for a random time between ½ a second (500) and a minute (60000).

200 Revision 18.02 Board Instrumentation Framework

9 Conditionals

This section provided details on Conditionals defined in Marvin. A Conditional is a ‘If-Then-

Else’ mechanism that you can create that will compare a MinionSrc value with another

value, if the comparison evaluates to True it will execute the task associated with the then,

otherwise if defined it will execute the task associated with the else.

9.1 Defining a Conditional
Conditionals are defined at the same XML level as Tab, Grid and AliasList. You cannot

define a task within any of those tags, must be at the same level.

Each Task definition is created within a <Conditional> Tag. There is no ID associated with a

Conditional, so you could define the same Conditional repeatedly.

Just like Tasks, Conditionals can define in external files, grids etc, however once defined has

a global scope.

Example Conditional Definition

<Conditional Type="IF_GT" CaseSensitive=”True”>

 <MinionSrc ID="CPU" Namespace="DemoNamespace"/>

 <Value>75</Value>

 <Then>greater</Then>

 <Else>less</Else>

</Conditional>

The above example results in the following (in pseudocode):

Whenever the MinionSrc data with ID=”CPU” & Namespace of “DemoNamespace” is updated,

check to see if it is greater than (>) the value of 75. If it is, then go execute the

task with the ID of ‘greater’, otherwise execute the task with the ID of ‘less’.

Note: There is an example of this in the Widget Demonstration, the LCD tab.

9.1.1 Type

Required

Every conditional require a type to be specified. Supported types are:

 If_EQ - If Equal (==)

 If_NE - If Not Equal (!=)

 If_GT - If Greater Than (>)

 If_GE - If Greater Than or Equal (>=)

 If_LT - If Less Than (<)

 If_LE - If Less Than or Equal (<=)

 CASE - CASE statement

201 Revision 18.02 Board Instrumentation Framework

9.1.2 CaseSensitive

Optional

The CaseSensitive attribute is optional. The default is FALSE. If you set this to true, then

all comparisons for the Conditional will be performed with case sensitivity, else it won’t.

9.1.3 <MinionSrc>

Required

This is the same as <MinionSrc> used for widgets. This is the data source that when

updated triggers the conditional to be evaluated.

9.1.4 <Value>

Required

This is the value to be compared against the <MinionSrc>. It can be a constant value as

below:

<Conditional Type="IF_GT">

 <MinionSrc ID="CPU" Namespace="DemoNamespace"/>

 <Value>75</Value>

 <Then>greater</Then>

 <Else>less</Else>

</Conditional>

Or it can be another <MinionSrc> (declared inside the <Value> tag) as below:

<Conditional Type="IF_GE">

 <MinionSrc ID="CPU" Namespace="DemoNamespace"/>

 <Value><MinionSrc ID=”WarningLevel” Namespace=”DemoNamespace”/></Value>

 <Then>greater</Then>

 <Else>less</Else>

</Conditional>

In this example the Value is a Minion Src. You could have a Minion collector that sets this

value depending on the system configuration.

9.1.5 <Then>

Required

Identifies the Task to be executed if the conditional evaluates to True.

9.1.6 <Else>

Optional

Identifies the Task to be executed if the conditional evaluates to False. If not defined then

the conditional will do nothing.

202 Revision 18.02 Board Instrumentation Framework

9.2 CASE
You can setup a conditional CASE statement that looks something like:

<Conditional Type="CASE">

 <MinionSrc Namespace="MyNamespace" ID="StateVar" />

 <Case Value="0">MyTask</Value>

 <Case Value="1">MyTask1</Value>

 <Case Value="2">MyTask2</Value>

 <Default>myDefTask</Default>

</Conditional>

Where you have the MinionSrc as is required for all conditionals, followed by one ore more

Case entries, where each Case has a constant value to compare against. If the value

matches then the defined task (for example MyTask) is run.

If none of the defined Case values match, you may optionally put in a <Default> task to

run.

203 Revision 18.02 Board Instrumentation Framework

10 Connectivity Overview

This section describes the various network connections used amongst Minion,Oscar and

Marvin. I add this section mostly for my own reference, it gets confusing sometimes.

Figure 82 Primary Communication Channels

Figure 82 shows the primary communication paths between Minion and Oscar and between

Oscar and Marvin.

Oscar has two primary channels, the path between itself and Minion and between itself and

Marvin. Both are defined within the Oscar configuration file and are required. The Oscar-

Minion connection is defined within the <IncomingMinionConnection> tag. What you put in

here must match what you place in the <TargetConnection> tag in the Minion config file.

Oscar’s second primary channel (I know that didn’t sound right) is defined in the

<TargetConnection> tag within the Oscar configuration file. It must match the <Network>

settings within the Marvin configuration file.

These primary channels provide the data from Minion to Oscar, which in turn re-packages

and sends it on to Marvin.

10.1 Secondary communication
Channels

As shown in Figure 83 there is a 2nd set of communication channels used by the BIFF

Instrumentation Framework.

This secondary channel is used to send information such as heartbeats from Marvin (to keep

Oscar from blasting data to a system not running Marvin). Tasks are also sent over this

channel.

204 Revision 18.02 Board Instrumentation Framework

Figure 83 Secondary Channel

Both Minion and Oscar create network connections for use the secondary channels. Both

Oscar and Minion can create these channels automatically, or can be specified within the

configuration files. Oscar uses the <IncomingMarvinConnection> tag and Marvin uses the

<IncomingConnection> tag. Both of these are optional, if you don’t use the tags the IP and

ports will be automatically selected.

You may note that Oscar does not have a configuration as to the secondary channel for

Minion, nor does Marvin have any configuration to know where to send Tasks and

heartbeats to Oscar. This is because they are ‘told’ this information over the primary

channels. Minion periodically sends a message to Oscar indicating the IP and Port that it is

listening for Tasks on, in addition to its namespace. Likewise Oscar periodically sends a

message to Marvin informing it what IP and Port (along with the Oscar ID) it is listening for

Heartbeats and tasks on.

If you are having troubles with firewalls, you might want to specify

<IncomingMarvinConnection> and <IncomingConnection> to ease network debugging

issues, or to open specific ports in the firewall.

205 Revision 18.02 Board Instrumentation Framework

11 Advanced Tactics

11.1 Widget Stacking

You can place as many widgets in the same location as you like. You may not like the
results though

One thing you can do is to stack widgets but selectively hide and show them as needed to

achieve some interesting effects. For example, if you look in the DemoTab_LCD.xml file you

may see that there are two widgets placed in the same location:

<Widget File="LCD.xml" row="1" column="2" Height="200" Width="400">

 <MinionSrc ID="CPU" Namespace="DemoNamespace"/>

 <UnitsOverride>%</UnitsOverride>

 <Title>CPU 0</Title>

</Widget>

<Widget File="LCD.xml" row="1" column="2" Height="200" Width="400">

 <MinionSrc ID="CPU" Namespace="DemoNamespace"/>

 <UnitsOverride>%</UnitsOverride>

 <Title>CPU 0 - Warning</Title>

 <StyleOverride ID="lcd-red"/>

 <Peekaboo ID="ShowWarning" Namespace="DemoNamespace_LCD" Default="Hide"/>

</Widget>

Both LCD widgets have the same <MinionSrc>, which is showing CPU utilization. The 2nd

one has a slightly different title (adds ‘Warning’) and changes the LCD color to red. It also

has a <Peekaboo> associated with it and by default is hidden.

I’ve setup a task to show the 2nd widget when I press a button. Since the 2nd LCD widget is

defined after the 1st one, it will be displayed on top of the 1st one when made visible.

Using this technique you could, on your Minion side have two Collectors always running.

One that is constantly feeding the <MinionSrc> for both of these LCD widgets and another

that when the CPU utilization is below a certain threshold always sends the <Peekaboo>

with the data of “Hide”. However when the CPU utilization goes above a certain level, it will

send “Show”, which would then cause the red LCD widget to be visible and give a very

noticeable change to the appearance of your application.

11.2 Show Current Computer Name
Using the Alias ability of Marvin and the fact that I suck in all of the environment variables

in the system as Aliases, you could display the name of the computer running Marvin:

<Widget File="Text.xml" row="2" column="1" >

 <InitialValue>$(ComputerName)</InitialValue>

</Widget>

206 Revision 18.02 Board Instrumentation Framework

11.3 Changing the Images being shown
TBD

207 Revision 18.02 Board Instrumentation Framework

12 Support

Despite my best efforts to document the pieces of the BIFF Instrumentation Framework

project – I know that it is a complicated beast. It was designed to be ‘stupid’ (not know

anything about what it is processing) and highly flexible – both of which make it actually

kinda complicated

If you have bugs that you have found or questions (after reading this doc) please contact

me and I will do my best to help as time allows.

Please keep in mind that this is my ‘spare time’ project and not what I get paid me to do.

So plese be patient.

208 Revision 18.02 Board Instrumentation Framework

13 Summary

So here we are near the end of the doc that I think has more lines than both Minion and

Oscar. If you made it this far – thank you!

The overriding design strategy for this ‘shot from the hip’, ‘make it up as I go’ project was

to make it ignorant and agnostic to where the data is coming from. This includes

everything from Minion to Marvin. I think that goal was met pretty well. The other goal

was to make the GUI completely configurable from a text file (XML File) and be very

versatile. While there are a few widgets that harder to use and understand than others

(some of the charts), in general I think it’s pretty flexible.

Flexibility comes at a cost of complexity in both code and configuration files. Hopefully this

document will help some with the configuration files. The code – well if I had it to do over

and know what I know now, or if I had done this as a real sanctioned project rather than a

‘hmm, what could I do’ skunk-works project it would be better. As it is, it works and does

everything I’ve wanted it to do thus far.

This organic project will, I truly hope continue to grow with new features and refinements

over time.

I hope you find the BIFF Instrumentation Framework project useful and have as much fun

using it as I did writing it.

209 Revision 18.02 Board Instrumentation Framework

14 Troubleshooting

This section will try and cover known issues and challenges.

14.1 Stack overflow error
Symptom: you have a pretty complex GUI with a lot (hundreds) of Widgets. When you run

the app you get a stackoverflow error. The app may or may not still run.

This is because Java only reserves a certain amount of memory by default for such gui

components. You need to tell Java that you need more memory. To do this add the –Xss

option to the invocation of the application, and specify more memory.

Try:

Java –Xss1M –jar BIFF.Marvin.jar

That will reserve one MB of ram for threads and such. If this is not enough, increase the

number. Only pick enough to get it to run, you pick too much and it will be a waste of

system memory.

If you need more than 2GB of heap/stack (say you have tons of videos or images) then you

MUST use a 64bit JVM.

14.2 Getting Audio and Video working

in a VM

If you are trying to get the GUI working in a Hyper-V VM, you need to specify in the VM

settings to get Desktop Experience.

210 Revision 18.02 Board Instrumentation Framework

Figure 84: Allowing Video and Sound for a VM

14.3 Connectivity Problems
Sometimes you may see that Marvin gets data for about a minute before it stops getting

updated. This is usually an indicator that there is a firewall blocking communication from

Marvin to Oscar. Marvin periodically sends a message to Oscar it is a ‘heartbeat’ indicating

to Oscar that there is actually something consuming the data it is sending. If Oscar does

not get a notification every 60 seconds, it will nearly stop sending data until a Marvin

responds with a heartbeat. If a firewall is blocking the response, you will see data blast for

60 seconds in Marvin right after you start transmitting from Oscar. To test this, exit Oscar

and restart. If you get data in Marvin for a short while and then nothing despite Oscar

showing new data arriving from Minion then it is likely a firewall problem.

See Section 9 for more details on the various connectivity channels.

14.4 The Dynamic type Widget isn’t

working

So you have a Dynamic Image or Dynamic Grid etc. type of Widget and your collector is

sending the ID that looks correct (you can see it in Oscar), but the widget isn’t changing in

Marvin.

One possible reason for this is that you are using the ‘built-in’ FileCollector to read some file

that would contain the ID for your widget. The File collector read the entire file, including

any interesting OS specific CR/LF characters. If the widget is looking for and ID of ‘foo’ and

the collector sends ‘foo’ + and invisible character, the comparison will fail.

211 Revision 18.02 Board Instrumentation Framework

14.5 The Web Widget isn’t working all

the time
The Web widget may need proxy information configured. This is done via command-line

arguments to the Java VM (JVM) as shown below:

java -Dhttp.proxyHost=proxy.myproxycom -Dhttp.proxyPort=911 -jar BIFF.Marvin.jar

using the –Dhttp.proxyHost and –Dhttp.proxyPort settings.

14.6 Slow network performance, tasks

not getting run in a timely manner

We recently found a frustrating, yet interesting problem. For a demo we were

instrumenting > 12,000 data points and also running some tasks to start and stop

workloads. The systems under test were located in a lab and the demo was running off of

the corporate network. We found very poor and bursty performance. It turned out to be a

mis-alignment of MTU between the systems under test, the switch in the lab and the main

network. Once we set them all to the standard 1500 on the systems under test and lab

switch, these issues went away.

14.7 Collector Data not showing up in

Oscar or Marvin

Sometimes you can create a collector that sends a lot of data (for example the

FileCollector), or you can <Group> a bunch of collectors together. If the resulting packet

size is too large (greater than the MTU) the packet will likely not make it to the destination.

If logging is turned on, then you should get a warning message about the specific Collector

that is possibly having the problem.

14.8 Multi-Source Widgets not Updating

properly

Muliti-Source Widgets can be problematic unless used with care. Each data source is an

independent stream and even if the collector is run with the same interval, the traffic is UDP

and not guaranteed, so it can be dropped. This can result in data being out of sync and

looking poorly.

This is why I added the <Synchronized> capability to the multi-source charts/graphs. The

default settings for this option is to synchronize the data and wait for all data sources to

https://en.wikipedia.org/wiki/Maximum_transmission_unit
https://en.wikipedia.org/wiki/Maximum_transmission_unit

212 Revision 18.02 Board Instrumentation Framework

send a data update before updating the chart. The problem with this is if you have a data

source that is ‘dead’ (say a minion that isn’t running) then the chart will never update. To

get around this set <Synchronized> to false, or change the MaxSyncWait time to something

reasonable for the data rate to have the data that is coming in synchronized.

14.9 Error: Could not find or load main

class kutch.biff.marvin.Marvin

This usually occurs if you are trying to run a non-Oracle version of Java 8, usually OpenJDK.

OpenJDK does not include the JavaFX features, which is a requirement for Marvin.

For example doing a java –version will tell you what is going on:

java -version

 openjdk version "1.8.0_91"

OpenJDK Runtime Environment (build 1.8.0_91-8u91-b14-3ubuntu1~16.04.1-b14)

OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode

Try installing openjfx. Using apt-get it would look like:

sudo apt-get install openjfx

That should get you moving forward.

14.10 java.lang.UnsupportedOperationEx

ception: Unable to open DISPLAY

You most likely get this kind of exception when you try to launch Marvin on a Linux OS via a SSH session.

Try using VNC, should have much better results.

14.11 The fonts on one system do not

look the same as on another

You may find that you develop your Marvin application on your PC and it all looks great.

Then you give it to a friend, or put it on another system and things don’t line-up properly or

the fonts no longer fit.

Could be a couple of things, one you may be using a font on the 1st system that is not on

the other.

The other and more common reason is that the fonts in the application are based upon the

system default font size. It is kinda technical and I don’t know how to explain it very well,

just know that you should set your font size settings the same on all systems you want to

show this on. In windows the settings page looks like:

213 Revision 18.02 Board Instrumentation Framework

Make sure that all systems you want to use have the same settings of either smaller,

medium or larger if you want to ensure they all look the same when you run the gui.

14.12 My images and goodies don’t look

right on another computer

Marvin has an auto-scaling ability that should re-size your images and widgets if you run

the application on a computer with different screen dimensions than the one where you

created the application. However you must set CreationSize propery.

14.13 My widgets don’t line up anymore
I changed the way Grid padding works, it now properly does not inherit the setting from the

parent application the default is 0. If you want to use it ‘old’ way, look at ‘LegacyMode’

option in application Padding section.

14.14 Images don’t always appear
I’ve noticed that if you use CSS code to put in images (say background) and the path to the

image (such as the directory of your application) have spaces in it, it will fail to load the

image and Java engine (outside of what Marvin can see) will spit out a error message and

ignore the image.

214 Revision 18.02 Board Instrumentation Framework

15 Thanx and Recognitions

Brian Johnson has been instrumental in this project. While he doesn’t write code, he has

been my tester and provided more ideas than I can name. Most of which I rejected as

idiotic before I took a moment and realized it was a great idea. He also has taught himself

a lot about CSS styling and provided a lot of the fun styles.

Gerrit Grunwald (http://harmoniccode.blogspot.com/) has been somewhat of an inspiration

for me. I leverage his awesome gauges (https://bitbucket.org/hansolo/enzo/wiki/Home) for

a great number of my Widgets. I muddle through his code to learn new things every

chance I get.

http://harmoniccode.blogspot.com/
https://bitbucket.org/hansolo/enzo/wiki/Home

215 Revision 18.02 Board Instrumentation Framework

16 About Me

I enjoy fishing, reading, video games and getting schooled at basketball by my 13 year old.

I still have a passion for writing code; I just don’t get to do it for pay anymore. Thus

another reason I decided to write this project during my off time.

This project has been my passion for years now.

I hope you find it of use.

Thanx,

Patrick Kutch

October 2017

